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Abstract

F
ingerprint identification or verification is used more often in civilian applications. In the
near future, Automatic Fingerprint Identification Systems (AFIS) can be found on mobile
phones or smartcards. Most AFIS are however computationally intensive, and are designed

for execution on large systems such as PC’s. The main bottleneck is the minutiae extraction
part. In this thesis a solution is presented to perform this part on a FPGA.

The solution consists of a modified version of the MINDTCT system, designed by NIST. It
runs on an open-source micro-controller called LEON2, that is created by Gaisler. Both the
software and hardware are modified to form a well operating minutiae extractor. The software
is stripped and fixed-point conversion is performed. Also some algorithms are modified to
enhance performance. For the LEON the right configuration needed to be found. The most time
consuming parts of the software are accelerated by using co-processors. They where connected
to the micro-controller, by using the CPI interface.

This project shows it is possible to run a fingerprint minutiae extractor on a FPGA,
while using limited resources. Because the software is very computationally intensive, it takes
an average of 60 seconds to complete one fingerprint. The accelerators will speed-up the system
by almost 40%. The solution is based on the System-on-Chip (SoC) principle and therefore
provides a perfect basis for a low-power fingerprint chip.
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Introduction 1
Fingerprints are used in personal identification for over a century. They have several
advantages over other biometric techniques, and are therefore commonly used in different
identification and verification systems. Although fingerprints have a history in criminal
identification, they are more frequently used in civilian applications as well. Recent
examples of new types of Automatic Fingerprint Identification Systems (AFIS) are the
ones used on embedded devices, such as mobile phones or smartcards.

Much research effort is going on to improve the quality of the systems. Reducing
the execution times by software enhancements is also an important research topic.
However with the new mobile types of AFIS in mind, research on how to efficiently
execute algorithms in hardware is becoming more important. Most systems are executed
on large systems with general-purpose processors and large memories, but this is not
efficient enough for doing real-time identification on embedded systems. In this case the
hardware resources are very limited and the software must be very efficient.

This thesis focuses on executing existing AFIS algorithms on a System-on-Chip
(SoC) and therefore decreasing the processing time. The best available algorithms are
picked and adapted to run on a small microcontroller. Then the most time consuming
parts are mapped onto hardware accelerators in order to speed-up the execution.

1.1 Background

AFIS can be found more frequently in civilian applications, because of the increasing
identity fraud. This creates a growing need for biometric identification. Fingerprints are
often used, because they are the oldest and most mature form of biometric identification.
This doesn’t mean that it is completely reliable and that there are no drawbacks. Each
biometric identification method has its own advantages and disadvantages. Fingerprints
however show a good balance between the pros and cons [6].

The algorithms and computations differ for every AFIS, therefore some are more
reliable than others. It is however important that every system gives good results,
even for poor quality fingerprint images. In Figure 1.1 the basic block diagram of an
AFIS is depicted. The input is always a gray-scale image, coming from a sensor. At
the moment there are a few sensor types available, each with there own advantages and
disadvantages [6]. First some pre-processing is done, this can be image enhancement
to improve the quality of the image, image analysis to determine low quality areas
in the image or a combination of both. After that the minutiae are extracted, which
are the local ridge characteristics used in the matching step. Some post-processing is

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Basic block diagram of an AFIS

needed, it usually consists of removing false minutiae or assigning a quality factor to
the extracted minutiae. The last step is minutiae matching, where the input is matched
against fingerprints of a database. In this thesis only the pre- and post-processing and
the extraction are targeted. Fingerprint matching requires fingerprint databases or a
fingerprint sensor to live capture prints and test the system. Matching is left as future
work, because a good quality usable matcher and a complete FPGA with sensor, were
not readily available. Also minutiae extraction forms the bottleneck of the complete
system.

The proposed system is based on the System-on-Chip (SoC) principle. Improve-
ments on silicon process technology makes it possible to integrate a large number of
basic blocks on a single IC. Such blocks can be processors, memories or other kind
of hardware components. Normally each block would be a single chip and would be
connected to each other on a circuit board. With SoC they are on a single chip, resulting
in a small and fast low-power system.

1.2 Motivation

In the near future AFIS will be more frequently incorporated in mobile embedded
devices. First the software needs to be modified, it must be made small and efficient
enough. Doing the execution on large systems with general-purpose processors, is
no longer satisfying enough. Doing the computations in real-time, calls for a small
microcontroller with some hardware accelerators.

To extract minutiae from a fingerprint image, different algorithms are needed to
get a reliable result. However which ones to take is still on debate. It is clear that
some image enhancement is needed, because most of the fingerprint images are of poor
quality. The system created in this project also performs quality identification of block
or regions, which is to avoid extraction in low quality regions. Also there must be a
minutiae extraction step to filter out the minutiae from the image. Because this puzzle
has not been solved yet and the reliability of the extracted minutiae is still not high
enough, the best readily available software system was chosen. The software is adapted
and accelerated to give real-time results on a FPGA.
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Another challenge is the creation of the system based on the SoC principle. This
way the system can be put on a single chip with the advantages of lower power
consumption, small size, smaller area and low production costs.

1.3 Thesis goals

In this thesis project six main goals can be derived, which are:

• Find a good performing usable minutiae extraction software system;

• Search for the best microcontroller for execution of the software system;

• Adapt the software so it has good performance and can run on the microcontroller;

• Profile and find the most time consuming functions or operations;

• Design hardware accelerators targeted at the microcontroller, that will speed-up
the execution of the system;

• Create a synthesizable system of the microcontroller and its accelerators based on
SoC principle, targeted at a specific FPGA board.

1.4 Thesis organization

This report is organized as follows:

• Chapter 2 first gives a background on fingerprint minutiae extraction. After that
the chosen software system is discussed and motivated. Performance analysis re-
sults are presented.

• Chapter 3 discusses the modifications on the software system, needed to enable it
to run on the LEON microcontroller. Also performance and profiling results are
presented.

• Chapter 4 presents the background knowledge of the LEON processor, which will
be used for executing the minutiae extraction system.

• Chapter 5 presents the architectures for the hardware accelerators, designed for
the LEON to accelerate the most time consuming parts of the system.

• Chapter 6 shows the simulation and synthesis results for the implementation of the
LEON and its accelerators on a FPGA board.

• Finally, Chapter 7 gives the conclusion and presents some directions for work to
be done in the future.
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Minutiae extraction software 2
This chapter starts by giving some background information of the fingerprint minutiae
extraction process. Then the software system used, is presented and motivated. After
that the system and all of its steps and algorithms are discussed in detail. Finally the
performance of the system in terms of extraction results are presented and a motivation
for the use of WSQ compression on the input images is given.

2.1 Background

Fingerprints are assumed to be unique for every person and remains unchanged over a
life time. A fingerprint is formed by a pattern of ridges and valleys. Most often local
ridge characteristics are used for identification, they are called minute details. Over 150
different details are identified, which are called minutiae [3]. Only two are used in most
systems and are formed by ridge terminations (or endings) and ridge bifurcations [11].
For each minutiae some information must be stored. In most systems these are the x-
and y-coordinates and the angle between the tangent to the ridge line at the minutiae
position and the horizontal axis, see Figure 2.1. The systems used in this project also
stores a quality parameter. If the minutiae is extracted from a low quality area in the
image, a low value is assigned to it.

Figure 2.1: Minutiae types (left) and minutiae in a fingerprint image (right) [4]

Capturing minutiae is not an easy process, most often fingerprint images are of poor
quality. Variations in skin condition are the main cause of poor quality. Scars, too wet,
too dry fingers, dirt or bad contact with the sensor are examples. It results in false
minutiae and the loss of true minutiae. Image enhancement tries to improve the quality

5



6 CHAPTER 2. MINUTIAE EXTRACTION SOFTWARE

of the fingerprint image, so that the minutiae extraction step gives more reliable results.
Figure 2.2 shows a first level block diagram of the Minutiae extractor.

Figure 2.2: First level block diagram of the Minutiae extractor

Besides some small contrast enhancement the extractor performs image analysis.
This is done to determine areas that are degraded and are likely to cause problems in
the extraction step. The information collected in this step is used to assign a quality
factor to each minutiae. After enhancement and analysis, different steps are sequentially
executed resulting in a list of captured minutiae. A second level block diagram can be
seen in Figure 2.3, more details on each of the steps can be found in Section 2.3.

Figure 2.3: Second level block diagram of the Minutiae extractor

After enhancement and analysis, binarization is done. The gray-scale input image is
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transformed to a binary image, with only black or white pixels. Black pixels represents
the ridges and white pixels the valleys. This process is needed, because the extraction
algorithm can only operate on binary images. In most systems thinning is done after
binarization, which reduces the ridges to one-pixel skeletons. Due to the implementation
of the algorithm used, no thinning is needed.

After binarization, the actual minutiae detection can be performed. This step is
straight-forward, the binary image is methodically scanned to identify pixel patterns
that indicate endings or splittings. After the minutiae are extracted, some post-
processing steps are done. The binarization step, greedy detection algorithm and poor
image quality are three factors responsible for the introduction of false minutiae. Many
different algorithms are executed to remove as much false minutiae as possible. In the
end the system outputs the extracted minutiae.

2.2 Motivation

In this section the motivation for choosing the NIST MINDTCT software system is given.
It is explained what algorithms are available and why the NIST system is the best option.
Also it is explained why Matlab algorithms, which are used very often, are not the best
option for this project.

2.2.1 Available algorithms

One of the most widely used fingerprint image enhancement algorithm is based on
Gabor filtering and was first proposed by Hong et al [4]. It is based on normalizing the
image, then do an orientation and frequency estimation of the ridges in the fingerprint
and provide these to a Gabor filter. This method has been shown to give good results.
It is however computationally expensive, because it involves a spatial convolution of the
image.

Another method to enhance the image quality is proposed by Sherlock and is
called directional Fourier filtering [10]. This method performs the convolution in
the frequency domain and is therefore less computationally expensive. It only takes
the orientation of the ridges into account and assumes the frequency to be constant.
Therefore the method of Hong et al gives better results.

The third method is the STFT analysis method proposed by Sharat Chikkerur
and is based on STFT analysis and contextual/non-stationary filtering in the Fourier
domain [1]. The main advantage of this enhancement method is that it can instanta-
neously do frequency, orientation and region masks computation. After that a Fourier
filtering is done.

The MINDTCT system developed by NIST for the FBI is a system that uses a dif-
ferent method for extraction [8]. No real image enhancement is done like in most
systems that use the algorithms from above. Instead it performs an image analysis,
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where low quality areas in the input image are identified. It only performs a contrast
enhancement when needed and doesn’t improve the low quality areas. Instead it uses
this information to assign a quality value to the detected minutiae. Image analysis in
this system is also computational intensive, but far less than all of the algorithms above.
Not using real image enhancement algorithms makes it possible to run this system on a
microcontroller with limited hardware resources. The only drawback is the decrease of
extraction quality.

2.2.2 C-code versus Matlab code

All algorithms discussed so far, except the MINDTCT system are only for fingerprint
image enhancement and not for minutiae extraction. For the image enhancement
algorithms the computation costs where already higher than that of the complete NIST
system. Binarization, extraction and possible thinning still needs to be added to form
a extractor. Also the algorithms are only available in Matlab code. It provides a good
basis for developing algorithms, but this project requires C-code. It should be compiled
for the LEON processor, which is based on C-code.

Two options are available, either transforming the M-code to C-code by hand or
try to do it automatically by using the Matlab compiler. Option one will take months
of work just for getting a software program. The complexity of the algorithms and the
differences between coding in Matlab and in C is very high. The second option produces
terrible looking code with an even worse performance. Also because the performance of
the algorithms was already bad, a software system in C-code like the MINDTCT system is
preferred. It seems to be the only well documented and fully usably minutiae extraction
system that was readily available. It has good performance in case of execution time
and only a slightly less performance in terms of minutiae extraction quality.

2.3 Description

In this section each of the steps, shown in Figure 2.3, are explained in detail.

2.3.1 Image Enhancement

In this step an algorithm is executed that improves the contrast of the image. First
a histogram of the input image is evaluated. This is a plot of the pixels and there
gray-scale values or intensities. If the pixel values are not well distributed over the
histogram than enhancement is done. If they do, no enhancement is done.

The enhancement is done by using a technique called histogram equalization.
First the histogram has to be build-up, this is done by analyzing all pixels and store
all intensities in an incremental order. Then the mean intensity is determined by
accumulating all intensities and divide it by the total amount of pixels. The highest and
lowest tail intensities are searched. After this all pixels are compared to these values.
If the intensity is lower than the lowest tail value it is set to this lowest value. The
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same is done for the highest value. The last step is the equalization. This is done by
determining the equalization factor, which is computed by dividing the range (lowest
tail value to highest tail value) from the highest intensity possible (255). For every pixel
the lowest tail value is then subtracted for the pixel intensity and multiplied with the
computed factor.

2.3.2 Image analysis

Because the image quality of fingerprints is often not high, it is critical to analyze areas
in the image that are degraded and will likely cause problems in the detection step. In-
formation about the quality can be found by measuring some characteristics. These are
the directional flow of ridges, regions of low contrast, low ridge flow or areas with high
curvature. Minutiae found in regions of low contrast, low ridge flow and high curvature
are not reliable. Figure 2.4 shows the flow diagram of the image analysis step. In the
following subsections the highlighted blocks will be explained in detail.

2.3.2.1 Low contrast analysis

In some areas it is impossible to detect minutiae, this is especially true for the
background of the image and for smudges. No clearly defined ridges are present, and
minutiae extraction should be avoided. The low contrast analysis algorithm generates
a low contrast map, where low contrast areas are marked. It performs segmentation,
which separates the foreground from the background and maps out all other low contrast
areas in the image.

The analysis is done on image blocks. A block is marked low contrast if there is
little dynamic range in the pixel intensities in that block. First the pixel intensity
distribution is computed. By default the lowest and highest pixel intensities are ignored,
so a much more stable portion of the distribution is used for the analysis. Then the
distribution is compared with a threshold. If it is less, the block is marked low contrast.
Basically the algorithm marks a block as low contrast if the center 80% of the pixel
intensity distribution is not larger than 10 shades of gray on a 256 grayscale. In
Figure 2.5 a typical low contrast map is shown, blocks with low contrast are marked
with a white cross.

2.3.2.2 Direction analysis

Well-formed clearly visible ridges are essential to reliably detect minutiae. In this step
a direction map is generated that represents areas of the image with sufficient ridge
structure. It also records the general orientation of the ridges.
Orientation estimation is done for every block. By default the image is divided into
8x8 pixel blocks. To get a reliable estimation there must be enough local information,
therefore each block is part of a window. The default size of a window is 24x24.
The orientation is estimated for the block with all the information in the window,
so the information of neighboring blocks is also used. This is called overlapping or
smoothing. Each time the windows are shifted with 8 pixels. More information about
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Figure 2.4: Flow diagram of the image analysis step

the implementation of blocks, windows and offsets can be found in [8] or in the source
code.

For each block the window is rotated 16 times by default. Discrete Fourier Transform
(DFT) is conducted at each rotation. For each rotation the pixels are accumulated
along each of the 24 rows of the window, resulting in 24 rowsums. The amount of
rotations is 16 so in the end there will be 16 vectors of rowsums. These vectors are then
convolved with 4 waveforms of increased frequency. The first waveform represents ridges
and valleys with a width of about 12 pixels. The second represents 6 pixels, the third
3 and the last one 1.5 pixels. Discrete values for the sine and cosine functions for each
of the 16 vectors are computed by performing convolutions. They are multiplied with
the rowsums, accumulated and squared. Adding the squared sine and cosine, produce
a resonance coefficient that represents how well the vector fits one of the 4 waveforms.
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Figure 2.5: Typical low contrast map [8]

The dominant ridge flow direction for a block is the rotation with maximum waveform
resonance. In Figure 2.6 a typical direction map is shown, the line segments indicating
the orientation are centered in each block.

Figure 2.6: Typical fingerprint image (left) and its direction map (right) [8]
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2.3.2.3 Direction map post-processing

In this step several algorithms are executed to improve the direction map that was
initially generated in the direction analysis step. This step removes voids from the
direction map by doing erosion and dilation. Directions from the map that are too
weak or inconsistent are removed by using information from neighbors. It smooths the
direction map, by computing the average direction of the neighbors. Neighbors with
invalid directions are not used. The block is set to the average direction of its neighbors,
if the number of valid neighbors is large enough and the average value is higher then
a certain threshold. Also interpolation is performed, where the direction in a block is
replaced by the weighted average of its neighbors, inversely proportional to the distance
of the neighbors with the block.

2.3.2.4 High curvature analysis

Detecting minutiae in areas with high curvature is also problematic. Examples are
the core and delta regions of a fingerprint. A core is defined as a center point of the
semicircle pattern of a ridge shape. Delta as a center point of a triangle of a ridge pattern.

In this step a high curvature map is generated. Based on two different measures,
the algorithm decides if a block is high curved or not. The first is vorticity, which is
the amount of cumulative curvature incurred among the neighbors of each block. The
second is curvature, which is the largest change in ridge flow direction between the
analyzed block and its immediate neighbors. The algorithm details can be found in the
source code. In Figure 2.7 a typical high curvature map is shown, regions with high
curvature are marked with white crosses.

Figure 2.7: Typical high curvature map [8]
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2.3.3 Binarization

Binarization is needed because the extraction algorithm needs a binary image as input.
The algorithm uses the direction map, generated by the direction analysis step to deter-
mine if pixels in a block are white or black. If a block has no direction then all the pixels
in that block are set to white. Otherwise a rotated grid is used to determine the value
of the current pixel, based on the intensities of its surrounding pixels. With the pixel of
interest in the center, the grid is rotated so that its rows are parallel to the ridge flow di-
rection. Like in the direction analysis step, vector rowsums are formed by accumulating
all pixel intensities of a row. By multiplying the center rowsum by the number of rows
and comparing this value to the accumulated intensity of the entire grid, the value of
the center pixel is determined. The center pixel is set to black, if the multiplied value is
less than the threshold. Otherwise it is set to white. Figure 2.8 depicts the binarization
results for a typical fingerprint image.

Figure 2.8: Typical fingerprint image (left) and its binarized version (right) [8]

2.3.4 Minutiae detection

In this step the minutiae are detected. Minutiae detection is a pattern matching problem,
so a pattern matching algorithm is used. The algorithm performs a horizontal and
vertical scan over the binary image, and tries to match pixel-pairs with 10 patterns that
are stored in the system. With only 2 patterns, ridge endings can be identified. The
other ones are used to identify bifurcations. A pattern can be appearing or disappearing,
which depends on the direction the ridge or valley is protruding into the pattern. With
a horizontal scan all vertically oriented minutiae are detected, with the vertical scan the
horizontal ones. Figure 2.9 depicts the 10 patterns used by the algorithm. The star
beside the patterns states that the middle pair of each pattern may be repeated one or
more times.
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Figure 2.9: The 10 patterns used by the algorithm to detect minutiae [8]

2.3.5 False Minutiae removal

The minutiae detection algorithm is greedy, this means that the chance of missing true
minutiae is small, but many false minutiae are introduced. This is mainly because the
pattern matching is done with patterns of 6 pixels. False minutiae reduce the perfor-
mance of the system, so much effort and code is dedicated to remove them. Different
algorithms are executed to remove islands, lakes, holes, side minutiae, hooks, overlaps,
low quality minutiae and too wide or too narrow minutiae. A description of all the
algorithms is out of the scope of this report, more information can be found in [8] or in
the source code.

2.3.6 Quality assessment

Despite of the many false minutiae removal steps, there still will be false ones in the
final list. By assigning quality factors to minutiae it is possible to identify them. False
minutiae will get a significantly lower quality factor than true minutiae. In this step a
quality map is generated, that is build with the information of the low contrast, low flow
and high curvature maps. In the quality map all blocks are assigned a quality factor
ranging from high (5) to low (0). Minutiae quality is then based on two factors. The first
one is the position of the minutiae in the quality map. If it is detected in a high quality
area than the factor is increased. The second factor is based on intensity statistics. The
mean and standard deviation within the immediate neighborhood of the minutiae are
used to form a quality factor. By default the neighborhood is set to 11 pixels. If the
mean is close to 127 and the standard deviation is larger than or equal to 64, a high
quality factor will be assigned.

2.4 Performance

In this section the performance of the minutiae extractor system is discussed. First
the quality of the extracted minutiae is discussed. A good quality system should extract
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as many true minutiae as possible, while introducing as few false minutiae as possible.
Because no sensor is used in this project, the fingerprint must be provided to the system
in a different way. It is done by using a serial interface (UART). In order to reduce the
communication overhead, the best image compression method had to be found. The effect
of different types of image formats on the system is discussed. The original system has
support for different formats, after a small study the best one is chosen.

2.4.1 Minutiae extraction quality

Quality analysis on the minutiae extractor is not possible, unless the detected minutiae
are compared with the results of a well known good performing system. Such a system
is not available and therefore it is hard to determine whether the minutiae list is of
good quality. However results for extraction and matching, are available for the NIST
VTB system [7]. It uses the MINDTCT extractor as a basis. For the matching part the
NIST BOZORTH98 matcher is used.

NIST spent 8 months on testing there VTB system and used databases ranging
from 216 to over 600.000 fingerprints. The system has a false accept rate (FAR) of 1%
with a true accept rate (TAR) of 99%. Also they performed a small comparison between
the VTB system and some commercial products. The results were very satisfying and
showed very equal performance.

2.4.2 Image input performance

No sensor is used in this project, so the fingerprint image will be provided to the
system by sending the image from a PC to the hardware system. This is done by using
an UART interface. To reduce the communication, the best compression method is
chosen. The original system has support for 5 different image input formats, which are
ANSI/NIST, WSQ, JPEGB, JPEGL and IHEAD. In order to reduce the system size,
only support for one format was chosen. The ANSI/NIST and IHEAD formats are not
widely accepted and are specific NIST image formats, therefore they where not chosen.

The target of the project is running a minutiae extractor on hardware with lim-
ited resources and memory, so therefore JPEGL is not an option. Although the format
will give good results, due to the lossless compression, the image sizes are too large. That
leaves the choice between the baseline JPEG format and Wavelet Scalar Quantization
(WSQ). JPEGB has the advantages of wide acceptability. WSQ is developed by the
FBI in order to reduce there database sizes, which became to large.

Many research papers state that WSQ is superior to JPEGB in terms of quality
and image size on fingerprint images. A little performance research on the test database
of 30 good quality fingerprints shows that indeed the WSQ format is far better than
its JPEGB counterpart. In order to get good test results the original 30 fingerprints,
which where in uncompressed PNG format, where converted to either JPEGB with 85%
compression or in WSQ format. Then for both databases the minutiae where extracted
and compared with each other. From Table 2.1 it can be seen that the file-size of WSQ
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is 72% smaller than JPEGB, while at the same time improving the extraction quality
with almost 20%. The extraction quality is determined by the ratio between the amount
of detected minutiae and minutiae with a quality factor equal or above 70.

Averages JPEG WSQ diff(%)
filesize (KB) 42.6 11.9 -72.1
execution time (s) 0.36 0.39 8.3
detected minutiae 68 64 -5.9
high quality minutiae 28 39 39.3
overall quality 41.2 60.9 19.7

Table 2.1: Comparison between JPEG and WSQ

2.5 Summary

In this section the MINDTCT software system for the minutiae extraction is presented
and motivated. The software is open-source and programmed in C-code. It contains
many different algorithms, that together provides a full minutiae extraction system.
Research shows it has a performance comparable with commercial products. Because
no sensor is used in this project, a image compression method had to be found in order
to reduce the communication overhead. This is because the PC sends the fingerprint
image data, via a serial interface to the hardware system. The WSQ image compression
format has the best performance on both size and quality, so this format was chosen as
the input fingerprint format. The next section will present the modifications made on
the software system.
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The software system described in the previous chapter, needs to be adapted for execution
on a micro-controller. The system as it is developed by NIST, is targeted for execution on
a PC. The source code and execution file are too large and contains too much overhead.
Stripping of the source code is performed to remove all non essential code. The methods
are explained in Section 3.1. The original system also contains many floating-point
calculations. On CPU’s like the Intel Pentium4 or Core2, floating-point computations
can be done faster than integer versions. On micro-controllers, this is not the case. It
is much faster to execute integer instructions. Furthermore it saves resources, because
no expensive floating-point unit is needed. Therefore all floating-point computations are
replaced by fixed-point versions. It is called fixed-point conversion and in Section 3.2
some details are presented.

3.1 Stripping

The original source code of the MINDTCT software system [8] is large, it contains much
overhead. In order to let it run on a micro-controller, it must be stripped down to its
bare minimum.

As explained in Section 2.4.2 the WSQ input format is used for the compression
of fingerprint images. This means that all source code related to the other formats
could be removed. It reduces the size of the executable by a significant amount.

The original system generates many different output files like: direction map,
quality map, low contrast map, high curve map, etc. These files are not useful in this
project. Only one output file is needed, the one that contains a list of minutiae in the
ANSI/INCITS format. It can be used as an input for different minutiae matchers. By
removing all code that is related to any of these other files, the execution file and source
code is further reduced.

NIST improved many different functions in there system over time, but they left
the original functions in the source code for performance comparison. Since these old
functions are not executed and the new functions have better performance, these are all
removed.

The original code contains many fprintf and prinft calls for generating log
files and debug information. These are of no use in this project, and all calls are
removed. This results in a significant performance increase.

17
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To make sure that almost all overhead is removed and the program is stripped
to its bare minimum, profiling is done to search for functions that will never be
executed. Some functions will only be executed when, for example a fingerprint with
low contrast or high curvature is processed. This makes the search more complicated.
It is resolved by first performing dynamic analysis on fingerprints of the test database.
Then a list of unused functions is generated and verified by performing static analysis
on the source code. This way more then 10 extra functions could be removed.

Figure 3.1: Comparison results between original program and stripped version

By removing different parts of the source code, the program was reduced by more
then 73%. Figure 3.1 shows a comparison between the original program size and the
stripped version. After the stripping the executable was small enough to run on a micro-
controller, such as the LEON. After stripping, fixed-point conversion is the next step in
transforming the system.

3.2 Fixed-Point conversion

In the following sections different parts of the conversion will be explained.

3.2.1 Tools and libraries

In order to reduce computation time and save hardware resources, the complete
MINDTCT system is converted to a fixed-point version. This involves replacing all
floating-point computations with fixed-point versions. This part of the project has shown
to be very important and very time consuming. Tools and libraries for fixed-point con-
version that are suitable for this project are not available. There are some compilers that
can do the conversion automatically, but after some research it became clear that they
are not efficient and sufficient enough. The same applies for the libraries that can be
used to speed-up the conversion. There are some open-source libraries available, but all
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were not sufficient to be used in this project. They are either lacking many instructions,
use very slow methods or are not developed in C-code.

3.2.2 Representation

A fixed-point number is a 32-bit integer number, with an imaginary point separating
the integer part and the fractional part. With a floating-point number that point is not
fixed and floats, with a fixed-point number this point is fixed and user defined. It can
be signed or unsigned. For very large numbers one can decide to use 30 bits for the
integer part, leaving 2 bits for the fractional part on unsigned numbers and 1 bit on
signed numbers. This representation can represent large numbers, but has almost no
fractional part. For the conversion, the right balance between the integer- and fractional
part needs to be found for every floating-point variable that is used in the software. Also
many integer values needs to be converted. For example when there is a operation on
floats and integers.

3.2.3 Automatic conversion

In terms of this project, doing the conversion manually is a much better option than
using a compiler. The main disadvantage is the amount of time it consumes. A large
part of the time spent on this project, was devoted to the conversion. Automatic tools
are not mature enough yet. All tools work in a similar way. First the programmer
needs to annotate all the floating-point variables in the program. Then the compiler
starts to do the conversion on each of those variables. The minimum and maximum
values are determined and an accuracy is picked. Then the program is executed in a
simulator and it is determined whether there are under- or overflows. Automatic tools
can however not handle floating-point functions like: sin, cos, atan2, sqrt, etc. These
functions still needs to be converted manually. Also picking the most accurate fixed-
point representation is not sufficient enough in many cases. In terms of performance it
is better to pick the least accurate, in cases where this is sufficient. Sometimes, even the
most accurate fixed-point representation is not accurate enough. Then the only option
is to modify the complete computation. An example is the scaling of very large numbers
back to very accurate numbers. This is a worst-case scenario for fixed-point conversion,
and is done many times in the software system. Manual conversion also results in more
documented code, it is clear where modifications are made. This is handy for further
development on the system, especially when trying to optimize the computations. It is
easier to change the accuracy of functions or variables, to either improve performance or
system output.

3.2.4 Manual conversion

The conversion is done from the bottom-up. This means the process is started with con-
verting a leaf function. All the functions that call the leaf function are then converted.
This is done until the top is reached. The process is repeated for the next leaf function.
On all variables, dynamic and static analysis is performed to get the minimum and max-
imum values and the relation with other variables. The best fixed-point representation
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is then picked. After modifying a function, it is carefully tested and the program is
executed to verify the output results. If the output differs too much from the original,
the representation is modified. When this is no longer possible, when for example no
more fractional bits are available, the computations are modified. Doing computations
in a smarter way often results in having to use less accurate fixed-point numbers. Tak-
ing percentages is a good example, most often this is done by multiplying with a value
between 0 and 1. This means that often a fixed-point number with a large integer part
is multiplied with a number having a large fractional part. This way the result is very
inaccurate. The computation in this case can be modified by a multiply and divide with
larger numbers or even shifts. There are many more examples like: scaling, rounding,
truncation, etc. Little less then a hundred functions are converted this way, resulting in
an output that is very similar to the original one.

3.2.5 Fixed-point library

The second part of the conversion is the creation of a fixed-point math library. The
main computations done in the system are: add, sub, mul, div. But also a lot of
special functions are done like: sin, cos, atan2, sqrt, etc. All of these computations,
except the add and sub, where added to a library in the form of macros. They can be
used in the same way as normal functions, but with less overhead. For each fixed-point
representation a slightly different macro is needed for each of the basic computations.
The difference is mainly in the amount of shifts needed. Additions and subtractions on
fixed-point variables can be done by using the integer versions. The only thing necessary
is to convert the original floating-point or integer variables to a fixed-point variable with
the right representation. For integer variables this can be done by shifting (left) the
value, by the amount of fractional bits. For floating-point variables this can be done by
multiplying them with 2fractionalbits. Multiplying two fixed-point numbers can be done
by storing each of the operands in a 64-bit register and do an integer multiply. The result
needs to be shifted to the right by the amount of fractional bits to get the right 32-bit
value. Division can be done by storing the first operand in a 64-bit register, shifting it
to the right by the amount of fractional bits and then perform an integer devision with
the 32-bit operand.

3.2.6 Trigometric functions

The creation of fixed-point versions of the trigonometric functions takes more care and
effort than the basic operations. The sin, cos, atan2 needs to be estimated. The CORDIC
method is chosen for doing this. It stands for COordinate Rotation DIgital Computer. It is
a method for estimating trigonometric functions. Only add, sub and shift instructions
are used, in combination with table lookups. This makes the method faster than other
options. It is based on rotating the phase of a complex number. With each rotation
it becomes closer to the desired value. The accuracy of the results is depending on the
fixed-point representation used and the amount of iterations (rotations) in the CORDIC
computation. The amount of rotations can easily be adapted and depends on the ac-
curacy needed. In some parts the estimation can be rough, setting back these values
results in an execution speed-up. However the estimation must be good enough, to keep
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the correct output of the system. In other parts the estimations can hardily differ from
the floating-point versions and the most accurate fixed-point representation is needed.
Then as much as 20 rotations are needed to get a similar output. For doing the sqrt, an
integer function is first created. On a fixed-point number it can be done by first shifting
the number by the amount of fractional bits and then call the integer sqrt function. For
all other operations no special actions are needed and the integer versions can be used.

3.3 Performance

Two performance aspects of the fixed-point MINDTCT system are important. The first
one is the comparison between the output results of the original MINDTCT system and
the fixed-point version. This will be explained in Section 3.3.1. The second is the exe-
cution time of the new system compared with that of the original system. This will be
explained in Section 3.3.2.

3.3.1 Minutiae extraction

It is important that as few as possible spurious minutiae are introduced, because of
the conversion. Spurious minutiae with a low quality factor will be acceptable to some
extend, because they will not be used in the matching process. However, having a high
quality factor will not be acceptable. The amount of spurious minutiae should not be too
large, because then the performance will decrease. The output file will become larger,
and more processing needs to be done by the system. The most important factor is that
the fixed-point system is able to extract all the high quality minutiae that are extracted
by the original system. In Figure 3.2 a comparison between the output of the original
and fixed-point version is shown.

Every minutiae with enough quality is detected by the new system. Only a couple
of new low quality minutiae are introduced. Also some low quality minutiae are not
detected. This does not decrease the quality of the system, because they are not used
in the matching process. Moreover most spurious minutiae are coming from the WSQ
decoding part, which is only being used in this project to decrease UART communication
time. When a sensor is used the WSQ part becomes unnecessary and the quality of the
output of both the original and fixed-point will improve. Especially the quality of the
fixed-point version, because the decoder was very difficult to convert. The target for
this project was to introduce as less differences between the original and new output as
possible. In order to speed-up the execution, a more flexible fixed-point conversion can
be performed. As long as the high quality minutiae are found, it is sufficient enough.

3.3.2 Execution time

After the fixed-point conversion, the performance could be estimated. The software will
execute on the LEON micro-controller. It is important to do the performance estimate
based on this architecture. A simulator that can simulate execution on the LEON is
available and is called TSIM. It performs an instruction-level simulation. It is accurate
and cycle-true, so it can provide good estimates of the execution times on the actual
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Figure 3.2: Output comparison between original program and fixed-point version

implementation. Only the evaluation version was available, therefore it was not possible
to differ the cache or memory sizes. These were fixed to 4KB for both the instruction
cache and data cache. There are much more restrictions, but it was possible to do a full
execution of the MINDTCT system and perform performance estimates with a clock
speed of 50 MHz.

Performance analysis is done on all 30 fingerprint images of the test database.
Table 3.1 shows the averages for the 296x560 images of the database, 256x256 sensor
sized images and uncompresses images. Future projects using this software system
will have a sensor for capturing and inputing the fingerprint image. In that case no
decompression method is necessary. From Table 3.1 it can be seen that this speeds-up
the execution by an average of 25 %. Also the image size will be smaller, with a typical
sensor size of 256 x 256 pixels. Therefore some performance estimates are done on
fingerprint images with this smaller size. These values should give a close estimate of
the performance of the FPGA implementation.
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Averages 30 database images 256 x 256 images no WSQ
execution time (s) 19,32 7,73 14,21

Table 3.1: Average execution times of the MINDTCT system

3.4 Profiling

With profiling the most time consuming parts of the system can be identified. A tool
called Gprof can be used to profile the system on the PC. Although this gives good
estimates of the most time-consuming parts, it is most likely that it will differ from
the actual results when executed on the LEON. It has a different instruction set and a
completely different architecture. The caches and main memory are much smaller and
the pipeline is shorter. Therefore to do good profiling, it is performed with the TSIM
simulator.

Function Ratio(%)
main() 99.99
get_minutiae() 73.68
lfs_detect_minutiae_V2() 72.97
gen_image_maps() 27.26
read_and_decode_grayscale_image() 25.45
read_and_decode_image() 25.45
wsq_decode_mem() 25.45
gen_initial_maps() 23.70
wsq_reconstruct() 22.19
join_lets() 22.19
dft_dir_powers() 20.94
binarize_V2() 19.77
detect_minutiae_V2() 19.24
sum_rot_block_rows() 17.13
binarize_image_V2() 16.88
dirbinarize() 14.65
match_1st_pair() 10.58

Table 3.2: Ratio of the execution time, each function of the MINDTCT system takes

Table 3.2 shows the profile for the first fingerprint of the database. Only func-
tions with an execution ratio higher then 10% are shown. The profile is almost
the same for every fingerprint. Functions are shown in top-down order, starting
with main(). Then get_minutiae() is the main function for extracting the minu-
tiae, it calls many other functions which have a lower ratio. The WSQ decoding is
part of read_and_decode_grayscale_image(). This means that this function and
all of its child’s are no candidates for the mapping on hardware. The child func-
tions are: read_and_decode_image(), wsq_decode_mem(), wsq_reconstruct() and
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join_lets(). From the results it can be seen that the functions for the direction map
generation are taking most of the time. Direction map generation involves a DFT anal-
ysis on all of the image blocks. This involves a lot of accumulations and multiplications.
Also there is a lot of fetching from memory. The second part is the binarization of
the image. The computations and methods involved are similar to the DFT analysis,
except that a smaller grid is used and the input data is different. The only functions
that are small enough and should result in an efficient mapping are: dft_dir_powers()
and dirbinarize(). As can be seen from Table 3.2, the first has a ratio of almost 21%
the second a ratio of 14.65%. Although the profile function order is almost the same for
every image of the database the ratios are not, they will differ a little.

Function min (%) max (%) average (%)
dft_dir_powers() 18.33 23.53 20.90
dirbinarize() 10.46 16.51 13.69

Table 3.3: Ratios of the execution time for the two mapping candidates

Table 3.3 shows the minimum, maximum and average ratios for both functions. It
can be seen that, when adding the averages, the total ratio is 34,59%. A good estimate
will then be a 50% speed-up over this number, which means 17,3%. More information
can be found in Section 5. Also in Section 6 it is shown that the performance increase
is much higher then the estimated 17,3%.

3.5 Algorithm modifications

Accelerators will be used to speed-up the DFT and binarization parts. Before these
functions can be mapped onto hardware, some modifications are needed on the software.
It consists of splitting the main functions into two parts, one where the fetching from
memory is done and one for the computations. The result is one function that can be
mapped onto hardware and one that remains to be done in software. In the original
system the computations are scattered over several functions. For good mapping these
computations are all collected into one function. This way there are two functions
for the DFT part, which are: load_block_from_mem() and sum_rot_block_rows2().
The first function loads all needed pixels from memory and stores it into cache. The
second function will be completely mapped onto hardware and will load the pixels from
cache and do the computations. It should be noted that there is a small overhead by
first loading from memory to cache and then from cache to the accelerator. One of
the targets for this project was to keep the code clear and use as less assembly code
as possible. Integrating the fetching and hardware calling, results in more complex
assembly code.

The binarization part is also split-up into two functions, which are:
load_block_from_mem_binar() and dirbinarize_V2(). The first one is imple-
mented in the same way as load_block_from_mem() from the DFT part. The second
function is modified in such a way that it can directly be mapped onto hardware. After
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the modifications the performance of the software is improved and the results can be
seen in Table 3.4.

Performance analysis is done on the first three prints of the database and the
ones with the highest and lowest execution times, which are fingerprint numbers 6 and
9. It can be seen that there is already a significant speed-up. This is mainly because
of the better utilization of the bus, coming from the fact that first all pixels are loaded
before doing the computations. In the original system only a small part of the pixels
are loaded, which results in an alternating sequence of loads and computations. From
the table it can be seen that not only the bus utilization is increased, but in some cases
also the cache hit rate. This is also due to separation of loading and computation. The
average speed-up achieved with the modifications is 2.83 s or 14.5%. Table 3.5 shows
how much time the two DFT functions take.

old time (s) ch & util new time (s) ch & util speed-up (s) (%)
Fingerprint1 19.55 98.3/85.7 16.96 98.3/100 2.59 (13.25)
Fingerprint2 20.87 97.2/95.4 17.64 98.5/100 3.23 (15.48)
Fingerprint3 19.18 97.2/92.4 16.32 98.5/99.8 2.86 (14.91)
Fingerprint6 21.27 97.2/94.8 18.02 98.4/100 3.25 (15.28)
Fingerprint9 16.43 98.4/80.4 14.20 98.6/93.1 2.23 (13.57)

Table 3.4: Performance results after the software modifications

DFT sum rot block rows2() load block from mem()
Fingerprint1 19.49 % 1.94 %
Fingerprint2 21.15 % 2.11 %
Fingerprint3 19.54 % 1.95 %
Fingerprint6 20.85 % 2.08 %
Fingerprint9 17.02 % 1.69 %

Table 3.5: Ratios of the execution time for the DFT functions

The ratio of the sum_rot_block_rows2() is also the maximum amount of speed-
up that can be achieved with the DFT accelerator. Also the loading and overhead
percentages are shown. Table 3.6 shows the same ratios for the binarization part.

When both DFT and binarization ratios are combined the maximum amount of
speed-up with both accelerators can be found. Also about one half of the loading ratios
is overhead, by adding assembly code and integrating this in the software an extra
amount of speed-up can be achieved. Table 3.7 shows the results. An average speed-up
of 29.68% can be achieved with an extra of 1.34% when the overhead is decreased.
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Binarization dirbinarize V2() load block from mem binar()
Fingerprint1 10.57 % 0.76 %
Fingerprint2 11.60 % 0.84 %
Fingerprint3 9.61 % 0.69 %
Fingerprint6 11.03 % 0.79 %
Fingerprint9 7.55 % 0.55 %

Table 3.6: Ratios of the execution time for the binarization functions

Totals maximum speed-up extra speed-up
Fingerprint1 30.06 % 1.35 %
Fingerprint2 32.75 % 1.48 %
Fingerprint3 29.15 % 1.32 %
Fingerprint6 31.88 % 1.44 %
Fingerprint9 24.57 % 1.12 %

Table 3.7: Maximum and extra speed-up results

3.6 Summary

Some modifications to the software where needed in order to provide execution on the
hardware platform. It needed to be stripped down to its bare minimum, so all non essen-
tial code is removed. Also fixed-point conversion was needed. The conversion resulted in
a system that is faster, needs less hardware and provides an output comparable with the
original version. Profiling on the software shows the computational bottlenecks are in
the DFT analysis and the binarization. Functions involved in both these steps are good
candidates for execution with accelerators. The next section will present some details of
the LEON micro-controller.
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In this chapter the background knowledge of the LEON2 processor is presented. Execut-
ing MINDTCT on a desktop PC will not give any problems. The system is designed
for it. The performance in terms of execution time is very good. The speed of modern
processors and the amount of memory, are responsible for this. On a specific hardware
system with limited resources, this is however very different. Therefore not only the
software system needs modifications, but also the best hardware needs to be chosen.

In Section 4.1 some background information of LEON2 will be presented. Sec-
tion 4.2 gives the motivation for choosing LEON2 instead of other architectures. Also
an explanation is given why it is chosen instead of the newer and slightly faster LEON3.
In Section 4.4 some knowledge about how to design and connect co-processors, is
presented. Finally in Section 4.5 some VHDL implementation details are given.

4.1 Background

LEON2 [9] is a 32-bit processor core compliant with the IEEE-1754 SPARC V8
architecture [5]. It is open-source and completely available in synthesizable VHDL.
The core is highly configurable, which means that it allows designers to optimize it
for performance, power consumption, I/O throughput and area. Furthermore the
architecture is based on System-on-Chip (SoC). It has a low complexity, it is highly
configurable and has low power consumption. It is proven that LEON2 can be efficiently
implemented on both FPGA and ASIC technologies, using standard synchronous RAM
for both caches and register file. The basic processor core (pipeline, cache controllers
and bus interface), consumes around 6000 LUTs and a clock frequency of up-to 50 MHz
can be achieved on a FPGA. On a typical 0.25 micron ASIC, over 125 MHz can be
reached while consuming less than 30.000 gates.

The micro-controller is implemented with separate instruction- and data caches
(Harvard architecture), and has a 5-stage pipeline. The full SPARC V8 instruction set
[5] is supported and a co-processor interface is available. It also has an unique debug
interface, which allows non-intrusive hardware debugging and provides access to all
registers and memory.

The architecture is centered around the AMBA Advanced High-speed Bus (AHB), to
which the processor core and all the other high-bandwidth IP blocks are connected.
Low-bandwidth blocks can be connected to the Advanced Peripheral Bus (APB), which
is connected to the AHB bus via a bridge. The co-processor interface provides the
highest bandwidth. Co-processor instructions are executed in parallel with the integer
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unit, if there are no data or resource dependencies.

4.2 Motivation

Choosing the right type of processor for this project, depends on certain aspects such
as: good performance, low cost, support for C-code, configuration, FPGA support, SoC
design and availability.

After some research it became clear that there are some commercial processor
cores available, like Micro-Blaze (Xilinx), Pico-Blaze (Xilinx) and NIOS I&II (Altera).
But these are all restricted to be used on expensive FPGAs of the brand that developed
them. Although some of these cores have very good performance, an open-source core
is preferable. In most cases they are: free, highly adaptable, not restricted to a certain
brand and are readily available. Besides the LEON2, there are several other open-source
cores available like: Open-RISC (OpenCores.org) and Open-SPARC (Sun).

For this project the LEON2 core is without a doubt the best open-source core.
The Open-RISC core does not comply with the basic aspects needed by this project
and the Open-SPARC is far too complex. Moreover research [2] shows that LEON2 is
preferable in terms of performance and configurability. It confirms to all basic aspects
and provides good documentation, support and software. It is readily available and can
be downloaded from the Gaisler website [9]. It also comes with a co-processor (FPU)
interface. This is important, because the performance of a hardware accelerator is much
better when it is implemented as a co-processor instead of being connected to the bus.

At the time there is a newer and slightly faster and more optimized version of
LEON available, named LEON3. It has a deeper pipeline and is better adapted to
SoC designs. It however turns out that it has no co-processor interface. Modifications
are needed to the integer pipeline and this is out of the scope of this project. There
is a FPU interface, but it is specifically for the Gaisler FPU unit and is therefore not
useable. LEON2 provides a clear interface to both the FPU and co-processor.

4.3 AMBA

The Advanced Micro-controller Bus Architecture (AMBA) defines an on-chip commu-
nications standard for designing high-performance embedded micro-controllers. It is
chosen to be used in LEON2, because of its market dominance (ARM processors) and
its good documentation. Three distinct buses are defined in the specification, which are:

• The Advanced High-performance Bus (AHB)

• The Advanced System Bus (ASB)

• The Advanced Peripheral Bus (APB)
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Figure 4.1 depicts a functional diagram of LEON2 with its AMBA AHB and APB
buses. The ASB system bus is not used in the processor. In Section 4.3.1 the AHB bus
will be explained and in Section 4.3.2 the APB bus.

Figure 4.1: Functional diagram of LEON2 with AMBA AHB and APB buses [9]

4.3.1 AHB

The AHB bus has a high clock frequency and has high-performance. It is the perfor-
mance bus to which all high-performing, high-bandwidth IP blocks communicate with
the processor core. Such blocks are: integer unit, local ram unit, debug unit and the
memory controller. Other user designed blocks, such as hardware accelerators can also
use this bus.

The AHB bus is a multiple master, multiple slave bus. It is multiplexed (no
tristate signals) and each master drives a group of signals to communicate with the
slaves. Each master drives a set of signals grouped into a VHDL record called HMSTO.
The output record of the current bus master is selected by the bus multiplexers and
sent to the input record (ahbsi) of all slaves. The output record (ahbso) of the active
slave is selected by the bus multiplexer and forwarded to all masters. A combined bus
arbiter, address decoder and multiplexer controls which master and slave are currently
selected. In Figure 4.2 the interconnection view is depicted.

4.3.2 APB

The APB bus is a single-master bus, suitable to interconnect units requiring only low
data rates. It is interfaced with the AHB bus by a bridge. It is the only master on the
APB bus. More than one bus can be connected to the AHB bus, by using multiple
bridges.
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Figure 4.2: AHB interconnection view [9]

The APB bus is also multiplexed. The access to the AHB slave input (AHBI) is
decoded and an access is made on the APB bus. The master drives a set of signals
grouped into a VHDL record, called APBI. It is sent to all slaves. The combined address
decoder and bus multiplexer controls which slave is currently selected. The output
record (APBO) of the active slave is selected by the bus multiplexer and forwarded to
AHB slave output (AHBO). In Figure 4.3 the interconnection view is depicted.

4.4 Co-processor

LEON can be configured to provide a generic interface to a special-purpose co-processor.
The interface allows an execution unit to operate in parallel with the integer unit. One
co-processor instruction can be started each cycle, but only if there are no data depen-
dencies. When finished, the result is written back to the co-processor register file. A
co-processor model for LEON2 is divided in two parts, the execution unit and core unit.
The execution unit is the interface with the processor core and is provided with LEON2,
it takes care of the parallel execution with the integer unit. In Figure 4.4 the interface
is shown. The core unit is the actual implementation of the co-processor. To enable
the co-processor, extra assembly instructions needs to be introduced. The FPU and
co-processor interfaces are identical. The normal way of connecting the hardware ac-
celerators, is by using the co-processor interface and creating special instructions. This
involves some extra programming or even some compiler changes. When the FPU is
not used another option is available, floating-point instructions like: FADDD, FMULD,
FSQRT, FSUBD can be used by giving another operation meaning to them. Then in-line
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Figure 4.3: AHP interconnection view [9]

or normal assembly code can be used to operate on the accelerators by just using the
FPU instructions. More detailed information on this can be found in Section 5.

Figure 4.4: The co-processor and FPU interface

4.5 VHDL architecture

When connecting a co-processor to the LEON2 via the FPU interface, several files are
involved. The LEON2 is completely written in VHDL, and is very modular. Therefore
the complete implementation contains many VHDL files. Only three files are important
when connecting a FPU or co-processor. First device.vhd, contains the configuration
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information. It is automatically generated when using the xconfig tool. With this tool
the LEON can be set with a graphical interface. Here the FPU interface can be enabled,
however there is no option for using it parallel with the integer unit. This must be done
by hand, by changing the fpu_config variable interface option from serial to parallel.
Here also the amount of registers can be set, it is by default set to 32 registers. The second
file that needs some modifications is fp1eu.vhd, which contains the implementation of
the FPU and co-processor interface. Here the actual co-processor needs to be added as
a VHDL component and port mapped with the right signals. This is straight forward
and it establishes a connection between the LEON and the co-processor, like the one
depicted in Figure 4.4. The third and last file involved is proc.vhd, which contains all
the port maps for the actual LEON implementations. It gets its information from the
constants of device.vhd. So the only thing necessary is to check if the co-processor
component is actually port mapped.

4.6 Summary

In this chapter information about the LEON2 processor core is presented. It is chosen for
this project, because it confirms to all requirements. Furthermore it has shown to have
good performance and is open-source. With the modifications to the MINDTCT system,
described in Section 3, the software system can run on the LEON2. The hardware accel-
erators can be designed and connected to the LEON2 by either using the co-processor
interface, FPU interface or the AHB high speed bus. The FPU interface is the preferred
one, because then FPU instructions can be used to operate on the accelerators. No com-
piler changes or extra programming is needed this way. The next chapter will present
the design and implementation details of the accelerators.
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In this section the hardware accelerators will be presented. Two accelerators are created
to speed-up the MINDTCT program. Section 5.1 gives a description for each of them.
In Section 5.2 the design and implementation details can be found. Each accelerator
is written in VHDL and connected to the LEON processor by using the FPU interface,
which is the fastest interface possible for connecting accelerators to LEON.

5.1 Description

This section provides some details about the most time consuming parts of the MINDTCT
system. Section 5.1.1 presents some details of the DFT power process. It is part of the
direction map generation, presented in Section 2.3.2.2. The second accelerator speeds-
up the binarization process, presented in Section 2.3.3. Some more details are given in
Section 5.1.2.

5.1.1 DFT Power accelerator

Profiling shows that sum_rot_block_rows() is taking most of the time, see Section 3.4.
It is called many times by dft_dir_powers(), which is called for each block in the
image with sufficient contrast. The second function in computing the DFT powers is
dft_power(). It takes less time than sum_rot_block_rows(), but is closely related to
it. It is included in the hardware accelerator to increase performance. This way there
is less communication between the accelerator and the LEON. The rotation function
computes 24 rowsums for each of the 16 directions, so 24 * 16 = 384 numbers (13-bits)
are computed. This means 384 * 13 = 4992-bits needs to be send back to the LEON.
When including dft_power() only 64 DFT powers (fixed-point numbers) are computed,
so 64 * 32 = 2048-bits needs to be send. Also with little hardware (some shifters and
adders) an extra 3 to 4% performance increase is possible.

5.1.2 Binarization accelerator

The binarization process also takes a considerable amount of time. Three functions
are responsible for the computations. The first binarize_V2() is the main function,
which in terms calls binarize_image_V2() and dirbinarize(). The only one that can
be mapped to hardware is dirbinarize(), because the other ones need the complete
fingerprint image. This would either take to much memory space on the FPGA or
results in large communication overheads. The only function that operates on individual
pixels is dirbinarize(). The performed computations are comparable to the ones of
the DFT process. For each pixel a surrounding window is used to compute the binary
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value (black or white). It is based on the ridge flow direction, associated with the block
each pixel is in. The surrounding window or rotated grid that is used, is set to a width
of 7 pixels and a height of 9 pixels. The pixel of interest is in the center of this grid.
Rotating the grid parallel to the local ridge flow direction, computed in the direction
map generation step, allows the algorithm to compute the binary value of the pixel.

In order to reduce communication overhead and do as much computations in
parallel as possible, the binarization algorithm was slightly modified. The original
method computes the binary value of pixels row by row. Then it is determined to which
block the pixel belongs. The direction for that block is got from the direction map.
Then the rotated grid is loaded from memory and the computations are performed to
determine the binary value. The process is repeated for all pixels. The new algorithm
makes use of the fact that all pixels in a certain block have the same direction. Block
by block iterations are therefore more efficient then row by row. For each block the
direction and the rotated grid can be loaded, and all the pixels in that block (64 pixels)
can be computed. This reduces the communication overhead. Doing the computation
in parallel on hardware will speed-up the process even further.

5.2 Implementation

This section shows the implementation details of the accelerators. It shows the full design
with block and flow diagrams. It is also shown how the FPU instructions are used, in
order to correctly control the accelerators.

5.2.1 DFT Power accelerator

Like described in Section 2.3.2.2 the DFT power computations are done on 24x24 pixel
blocks. The rotating grid principle is used to do computations on 16 different directions.
It is not sufficient to send 24x24 pixels to the hardware. For direction 0, when there is
no rotation, all pixels are available and the rowsums can be calculated. But for the first
rotation some extra pixels are needed. For the second rotation even more extra pixels
are needed and so on. The accelerator needs all pixels in its buffer, in order to avoid
communication with the LEON between the computations. The easiest way to realize
this, is to send a 34x34 pixel block from the LEON to the accelerator. All pixels are
then locally available. In total 34x34 = 1156 pixels needs to be send. From Figure 4.4
it can be seen that 128-bits can be send with a single instruction. A pixel is 8-bits so
128/8 = 16 pixels can be send with 1 instruction. In total 1156/16 = 73 instruction calls
are needed to load a complete block. The FADDD instruction is used for this. Normally
this instruction is used to add two floating-point doubles, but now it is used to send 16
pixels to the accelerator.

After sending all the pixels to the accelerator the execution can be started with
the FMULD instruction. It requires no operands, and will return the first two DFT
powers. This instruction triggers the actual computation and must only be called if all
pixels are send to the accelerator. Because it takes more then 1 cycle to complete the
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computations, the busy signal is set high and turns low 1 cycle before completion.

For each direction 4 DFT powers will be produced, so in total 64 powers needs
to be send back to the LEON. These powers are fixed-point numbers with a precision
of 17-bits. Like stated in Section 5.1.1 2048-bits needs to be send. The interface allows
64-bits to be send with one instruction. So 2048/64 = 32 instruction calls are needed.
For this the FSUBD instruction is used. Normally it is used to subtract two floating-point
doubles. Its new function is to get 2 DFT powers per instruction call from the accelerator.

At the top-level the co-processor needs to be able to listen to instruction calls.
Therefore the design contains a control unit. In Figure 5.1 the top-level block diagram is
depicted. The control unit contains a state machine that handles the 3 FPU instructions.
It is connected to the DFT execution unit and a pixel block RAM. This RAM module is
used to store the 34x34 pixel block. The DFT execution unit performs the DFT power
computations. Figure 5.2 shows the flow diagram of the control unit state machine. It
starts in the idle state, where it waits for a start signal from the LEON. When it is
asserted, the control unit reads out the opcode. If there is a FADDD instruction, it goes
to the receive state. It gets the operands when the LEON asserts the load signal. The
operands are stored in the pixel block RAM. The RAM is designed to store 16 pixels in
one cycle. After one cycle it returns to the idle state.

Figure 5.1: Top-level block diagram

If there is a FMULD instruction, the control unit goes to the execute state. It starts
controlling the DFT execution unit, by asserting the start signal. Then it waits for the
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Figure 5.2: Flow diagram of the control unit

offset ready signal to go high. The DFT unit sends 24 grid-offsets to the control unit,
which are used to get the right pixels from the RAM. The pixel block RAM is designed
to provide 4 pixels in 1 cycle. Therefore the control unit goes into the load state until
all 24 pixels are loaded from the RAM. As stated before, the RAM module can write 16
pixels in 1 cycle, but it can only read 4. The difference between the amount of data that
can be read and written, is due to synthesis reasons. 16 pixels can be written, because it
can be done with one address. The readout is different, 24 pixels are needed that are in
different array positions in the RAM. Therefore 24 addresses are needed. To accomplish
this, the synthesizer uses multiple block RAMs in parallel. Therefore only 4 addresses
are used and 4 pixels can be readout in 1 cycle. It is done to reduce the overhead and
still get multiple pixels per cycle out of the RAM. Instead of block RAM, distributed
RAM can also be used, but then LUTs are wasted. When all pixels are loaded from the
RAM, it asserts the pixels ready signal and goes back into the execute state. The DFT
unit keeps asserting and receiving the offset ready and pixels ready signals, until the
rowsums are computed. Then it starts to compute the DFT powers. Each time a power
is computed the power ready signal is asserted and the power is send to the control unit.
A buffer is used to hold all 64 powers. When the computations are finished, the done
signal is asserted and the control unit goes back into the idle state.

The DFT execution unit also contains a control unit, connected with two ROMS.
Figure 5.3 shows the block diagram. The grid-offsets ROM contains 9216 offset (11-
bits). So the ROM has a size of 9216 x 11 = 101.376 bits. It can provide 24 offsets each
cycle. The other ROM contains the sin and cos values needed for the DFT computations.
It contains 96 sin and cos fixed-point values. The fixed-point values are normally 32-bits,
but the values are between 1 and -1 and therefore only 17-bits are needed for fixed-point
numbers with a precision of 17-bits. This ROM has a size of 192 x 17 = 3264 bits. Each
cycle a sin and cos value can be provided.
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Figure 5.3: Block diagram of the DFT execution unit

Figure 5.4: Flow diagram of the DFT control unit

Figure 5.4 shows the flow diagram of the DFT control unit state machine. It starts in
the idle state, where it waits for the start signal to be asserted by the control unit. After
this it goes to the get data state. Here it gets 24 offsets from the grid ROM, asserts the
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offset ready signal and waits until the control unit has loaded the 24 pixels out of the
RAM and asserts the pixels ready signal. When the pixels are available, it goes into the
rowsum state and computes the rowsum.

Figure 5.5: Rowsum computations

Figure 5.5 depicts the computations performed in the rowsum state. In one cycle
24 pixels (row) are accumulated and the result is shifted to form a 32-bits fixed-point
number. It is stored in a buffer until all 24 rowsums are computed and the DFT exe-
cution unit switches to the mac2 state. In this state two multiply and accumulates are
performed on each of the rowsums. Each rowsum is multiplied and accumulated with
the corresponding sin and cos values. Figure 5.6 shows the computations performed in
the mac2 state.

Figure 5.6: Mac2 computations

The square state is the last step in the process. It is depicted in Figure 5.7. Here
the two accumulated values from the mac2 step are squared to form the DFT power.
The DFT control unit repeats the process until all rotations are performed and all 64
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Figure 5.7: Square computations

DFT powers are computed. The done signal is asserted and it goes into the hold val
state, where it stays until another start signal is given. When the reset signal is asserted
it always goes back to the idle state.

The last instruction is the FSUBD instruction. The control unit goes into the
send state, where it sends the next two powers to the LEON in one cycle. This is done
after the LEON has asserted the load signal. An internal counter keeps track of the
powers to be send. After that it goes back into the idle state.

5.2.2 Binarization accelerator

As shown in Section 2.3.3 and Section 5.1.2 the binarization process uses a rotated grid,
just like the DFT process. To enable the accelerator to compute all pixels in a block, not
only the pixels of that block, but also the surrounding pixels of the rotated grid must be
locally available. The worst-case scenario is depicted in Figure 5.8, the corner pixels in
a block needs the most pixels outside the block.

From the figure it becomes clear that a 22x22 pixel block is needed in order to have
all pixels locally available. It also needs a buffer (ROM) that contains the gridoffsets.
So before the binarization accelerator can start its execution, it first needs 22x22 = 484
pixels to be send to it. This can be done with the FADDD instruction, which is shared
with the DFT accelerator. The pixel buffer (RAM) is also shared, but now only 484
pixels are stored instead of 1156. As stated in Section 5.1.1, 128-bits can be send with
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Figure 5.8: Size of the pixel block needed to perform the computations

a single FADDD instruction. To load all pixels in the binarization accelerator, (484 * 8) /
128 = 31 instruction calls are needed.

Figure 5.9: Block diagram of the binarization accelerator

The computations can be started with the FDIVD instruction. The first operand
needs to contain the direction. The accelerator operates on one of the 16 directions, it
is the responsibility of the software to send the correct direction. Normally the FDIVD
instruction is used to divide two floating-point values with double precision. After
computing the 64 binary pixel values, the first 8 values are returned by the FDIVD in-
struction. Normally a binary value is 1-bit and immediately all pixels could be returned
with a 64-bit interface, but the software uses 0 and 255 as binary values. In order to save
the compatibility and not having to include too much assembly code, it was decided to
return the values as 8-bit values. This means 7 extra instruction calls are needed to get
the other 56 values. It is a slightly slower solution, but results in a design that is much
more clear. The FSQRTD instruction is used to send results back to the LEON. Normally
this instruction is used to perform the square root on double precision floating-point
values. In this case the FSUBD instruction could not be shared with the DFT accelerator,
because the values are coming from a different buffer and other internal counters are used.

The binarization accelerator shares the control unit with the DFT accelerator.
In Figure 5.1 this is depicted. The binarization accelerator is shown in this picture as
the binarization execution unit, the DFT accelerator as the DFT execution unit. They
also share the pixel block (RAM). Figure 5.2 shows the flow diagram of the control unit.
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When there is a FADDD call, the control unit saves the pixels in the RAM. When there is
a FDIVD call, the control unit asserts the start signal of the binarization execution unit.
The control unit goes into the binar execute state and waits for the offset ready signal
to be asserted by the execution unit. Offsets are needed to load the right pixels out of
the RAM and into local buffers of the execution unit. It therefore goes into the binar
load state, where it loads 63 pixels (rotation grid is 7 x 9 = 63) from RAM to buffers.
As stated in Section 5.1.1 it is possible to load 4 pixels from the RAM in 1 cycle, so
16 cycles are needed to load the pixels. Then the control unit goes back into the binar
execute state. It repeats the process until all 64 pixels are computed. When the FSQRTD
call is received it goes into the binar send state, where it returns the next 8 pixels to
the LEON.

Figure 5.10: Flow diagram of the binarization control unit

Figure 5.9 shows the bock diagram of the execution unit. It consists of a control unit
and a ROM that contains the rotation offsets for each of the 16 directions. Figure 5.10
shows the flow diagram of the control unit. There are only 3 states. After the start
signal is given, a switch is made from idle to the pixel load state. Here it stays until
all 63 pixels are loaded and the pb_ready signal is not asserted. After loading the
pixels, the computations are performed in the pixel calc state. Because 64 pixels needs
to be computed it goes back to the pixel load state and repeats the process 64 times.
Afterwards it returns back to the idle state.

In the pixel load state the communication is handled between the accelerator and
the control unit. Figure 5.11 shows the pixel calc state, where the computations are
performed. In this state 72 byte additions are performed in only 1 cycle. Along with
additions there are 72 counter increments, 10 comparisons and assignments. In total
64 pixels would take 64 cycles of computation time, but most of the time is spent on
loading the pixels out of the RAM. In total 16 + 1 = 17 cycles are needed to compute
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Figure 5.11: Computations performed in the pixel calc state

1 pixel. And 17 * 64 = 1088 cycles are needed to compute an 8x8 pixel block.



5.3. SUMMARY 43

5.2.3 VHDL implementation

The complete co-processor consists of 7 VHDL source files. At the top-level there is the
co_proc.vhd file. This contains the control unit and the two accelerator components,
as shown in Figure 5.1. The control unit as shown in Figure 5.2 is implemented in this
file. The third component that is port mapped in this file is the pixel block RAM. File
pbram.vhd contains the implementation. The VHDL code is written in such a way that
the synthesizer automatically infers and uses Block RAMs.

The DFT accelerator as shown in Figure 5.3 is implemented in dft_co_proc.vhd
and contains a port map to the ROM modules. The sin and cos values are lookup-table
values and stored in a ROM, implemented in scrom.vhd. The synthesizer can map
ROMs onto Block RAMs for an efficient use of FPGA resources. The VHDL code is
therefore written in such a way that this is recognized by the synthesizer. The other
ROM, contains the gridoffsets and is defined in gridrom.vhd. This is the largest ROM
of the co-processor and is therefore also mapped onto Block RAM.

The binarization accelerator shown in Figure 5.9 is implemented in binar_co_proc.vhd.
It contains one port map to the ROM component that contains the offsets. It is defined
in binarrom.vhd. Depending on how many Block RAMs are available on the FPGA,
it can be decided to map this ROM (or any other ROM or RAM module) onto Block
RAM, Select RAM or LUTs. This can be done by changing a flag, which is indicated in
the source files.

5.3 Summary

In this chapter the hardware accelerators for speeding-up the MINDTCT system, are
presented. A description for each accelerator is given along with some implementation
details. The DFT power accelerator performs the most computation intensive part of the
direction map generation process. It makes use of available block RAMs and MULs of the
FPGA. The second accelerator presented is to speed-up the binarization process, where
the image is converted from gray-scale to binary. Both accelerators are connected to the
LEON by using the co-processor interface, this is the most efficient way for connecting
them. Just like LEON the accelerators are developed completely in VHDL, are simulated
to verify there correctness and are fully synthesizable. The next chapter shows the
simulation and synthesis results.
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Simulation and Synthesis 6
In this section the simulation and synthesis results will be presented. Simulation is
performed to verify the output results of the accelerators and to determine there perfor-
mance. Section 6.1 will present the performance comparison between the original system
and the accelerated system. The LEON and the accelerators are synthesized for a Spar-
tan3 FPGA, the results can be found in Section 6.2. In Section 6.3 a special application
is presented that can communicate with the FPGA fingerprint system. It can be used
to open any WSQ compressed fingerprint image, send it to the FPGA and display the
computed minutiae. Finally in Section 6.4 some performance results are shown of the
MINDTCT system executed on the FPGA.

6.1 Performance analysis

Simulation is not only performed to verify the output results, it can also be used for
performance analysis. Simulating the system in ModelSim with the complete MINDTCT
software is no option, a single fingerprint would take up to a week to simulate. The
complete system is therefore simulated with TSIM, which reduces the simulation time
to several minutes. The developers of the simulator state that it has an inaccuracy of
about 10%, which is sufficient enough for the estimations. The accelerators could not
be simulated in TSIM, because of the evaluation version limitations. They are simulated
in ModelSim, which produces very accurate performance results. The simulation is per-
formed for three iterations, which means computations are performed on three image
blocks. This way the simulation time is not too long and a good estimate can be made.

Figure 6.1 shows the waveform for the DFT accelerator. Each iteration consist of a
sending fase, an execution fase and a receive fase. In the first fase the pixels are loaded
from memory into the accelerator. In the execution fase the accelerator is doing its
computations. In the last fase the results are received by the LEON and stored back in
memory. By performing 3 iterations a good estimate can be made, because all overhead
between iterations is included. Figure 6.2 shows the same results for the binarization
accelerator. From the figures it can be seen that three DFT iterations take 427.46 µs
and one iteration takes 143 µs. Three binarization iterations take 113.24 µs and one
iteration takes 38 µs.

To compare the performance with the original system, the amount of iterations needs
to be determined. Table 6.1 shows the amount of iterations of sum_rot_block_rows2()
and dirbinarize_V2(). It must also be determined how much time each iteration takes
in the original system. These times can be determined by dividing the total time spend
on each of the functions by the amount of function calls. The results can be found in
Table 6.2. The data is collected for the first three images of the database and the images
with the largest and smallest computation times.
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Figure 6.1: ModelSim waveform for 3 DFT iterations

Figure 6.2: ModelSim waveform for 3 binarization iterations

From Table 6.2 it can be seen that the iteration times are almost the same for every
fingerprint. This is because the computations are always the same and all block are of
equal size. Only the amount of blocks (iterations) differ, as can be seen from Table 6.1.
By multiplying the amount of iterations with the accelerator performance estimates for
one iteration, the total amount of time can be derived. The total amount of time spend
in the original system by the DFT and binarization steps where already derived and
discussed in Section 3.5. Table 6.3 shows the comparison between the times spend by
the software system and the accelerators.
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sum rot block rows2() dirbinarize V2()
Fingerprint1 2196 1981
Fingerprint2 2479 2262
Fingerprint3 2119 1734
Fingerprint6 2497 2200
Fingerprint9 1607 1188

Table 6.1: DFT and binarization iterations

sum rot block rows2() dirbinarize V2()
Fingerprint1 1.51x10−3 9.04x10−4

Fingerprint2 1.51x10−3 9.07x10−4

Fingerprint3 1.51x10−3 9.05x10−4

Fingerprint6 1.51x10−3 9.05x10−4

Fingerprint9 1.51x10−3 9.01x10−4

Table 6.2: Execution times (seconds) for 1 iteration

From Table 6.3 it can be seen that the accelerators speed-up the process by a sig-
nificant amount. For a better performance overview the execution times and the effect
of the accelerators on the complete process must be determined. Table 6.4 shows the
execution times of the complete system when using only the DFT accelerator, only the
binarization accelerator or using both accelerators. It can be seen that the DFT accelera-
tor gives more speed-up than its binarization counterpart. Combined they will speed-up
the system by a large factor.

Table 6.5 shows the improvements in seconds and percentages. The average execution
time of the system without accelerators is 16.63 s. When using the accelerators it is
reduced to an average of 12.04 s. The DFT accelerator shows an average improvement
of 17.77% and the binarization accelerator an average of 9.63%. This means the complete
system is improved by an average of 27.4%. The efficiency of the accelerators is very high,
looking at the theoretical maximum improvement of 29.68% explained in Section 3.5. It
should also be noted that the total amount of speed-up is much higher, because the times
from the tables above include the software improvements. Table 6.6 shows the execution
times of the original system without the DFT and binarization software modifications
and the accelerated system. It can be seen that both the software modifications and
the accelerators are speeding up the system by an average of 7.42 s or 37.91% and a
maximum of 8.57 or 41.06%.

6.2 Synthesis results

The LEON micro-controller is highly configurable, and therefore the best configuration
needs to be found. This effects the size of the FPGA implementation. The LEON is
kept as small as possible, to limit the resource usage. The leon2-1.0.32-xst version is
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DFT soft binar soft DFT hard binar hard
Fingerprint1 3.31 1.79 0.31 0.08
Fingerprint2 3.73 2.05 0.35 0.09
Fingerprint3 3.19 1.57 0.30 0.07
Fingerprint6 3.76 1.99 0.36 0.08
Fingerprint9 2.42 1.07 0.23 0.05

Table 6.3: Comparison between software and hardware times (all in seconds)

DFT acc binar acc both acc
Fingerprint1 13.96 15.25 12.25
Fingerprint2 14.26 15.68 12.30
Fingerprint3 13.43 14.82 11.93
Fingerprint6 14.62 16.11 12.71
Fingerprint9 12.01 13.18 10.99

Table 6.4: Execution times (seconds) for complete system when using the accelerators

used for the synthesis. It comes with a complete FPU interface and is one of the latest
version of the LEON2 model. The LEON3 version is providing better performance, but
lacks an usable FPU interface as described in Section 4. The target FPGA board is the
Xilinx Spartan3 XCS2000, which is the board that is available on the CAS laboratory
of the TU Delft.

With the xconfig call an graphical interface can be started to configure the
LEON. In case of this project many options were disabled. First the Virtex2 libraries
are used to do the synthesis, these are compatible with the Spartan3. Then a macro
is enabled to re-synchronize the clock and improve the clock-to-output delays. Also it
divides the clock by two. On the FPGA three oscillators are available, a 100 MHz, 66
MHz and a 40 MHz. The LEON without the accelerators can run on a 33 MHz clock,
that can be created by using a Digital Clock Manager (DCM) that divides the 66 MHz
clock by two. An even higher clock rate is possible as can be seen from Table 6.7.
When the accelerators are synthesized the clock needs be lowered to 25 MHz. This
is due to a strange behavior of the LEON architecture, even when a very simple and
fast co-processor is connected the critical path is increased and the clock rate must be
lowered. The macro also re-synchronizes the SDRAM clock. When the macro is not used
the inverted clock signal option needs to be enabled to get a synchronizes SDRAM clock.

The divide and multiply units needs to be enabled along with there instructions. Also
the software needs to be compiled with the -mv8 flag to enable the div and mul units.
The multiplier is set to a 5 cycle latency, which gives the best area/timing/performance
compromise. A 16x16 multiplier with a pipeline registers is then inferred by the
synthesizer. For the standard configuration the co-processor and FPU needs to be
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org (s) DFT impr (s)(%) binar impr (s)(%) total (s)(%)
Fingerprint1 16.96 3 (17.69) 1.71 (10.08) 4.71 (27.77)
Fingerprint2 17.64 3.38 (19.16) 1.96 (11.11) 5.34 (30.27)
Fingerprint3 16.32 2.89 (17.71) 1.50 (9.19) 4.39 (26.90)
Fingerprint6 18.02 3.40 (18.87) 1.91 (10.60) 5.31 (29.47)
Fingerprint9 14.20 2.19 (15.42) 1.02 (7.18) 3.21 (22.60)

Table 6.5: Improvements shown in seconds and percentages

original (s) mod+acc (s) impr (s) impr (%)
Fingerprint1 19.55 12.25 7.30 37.34
Fingerprint2 20.87 12.30 8.57 41.06
Fingerprint3 19.18 11.93 7.25 37.80
Fingerprint6 21.27 12.71 8.56 40.24
Fingerprint9 16.43 10.99 5.44 33.11

Table 6.6: Comparison between original and modified and accelerated system

disabled. The software needs to be compiled with the msoft-float flag, so no FPU
instruction are present in the assembly code. In fact when the accelerators are used, the
software still needs to be compiled this way to avoid incorrect usage of the accelerators.

In order to reduce power-consumption and gate-count, a direct-mapped cache is
used. The associativity is therefore set to 1 set with a size of 8 KB and a line size of 32
bytes. The data cache is kept the same as the instruction cache. Different cache sizes
and implementations effects the performance of the system, but a study on this is out
of the scope of this project.

Large units that occupy many resources and are not needed, are all disabled.
Examples are: the Memory Management Unit (MMU), Ethernet interface, PCI
controller, trace buffer, etc. The Debug Support Unit (DSU) is enabled to allow
non-intrusive debugging. The software can then be loaded into the implementation on
the FPGA by using the DSU UART interface and connect to it by using the Dsumon
program. Also the SDRAM controller is included to be able to use SDRAM memory.
This memory is needed, because of the size of the MINDTCT software system. It does not
fit into internal memory or the SRAM memory provided by the FPGA.

The LEON is synthesized for the Xilinx Spartan3 XCS2000 with FG676 package
and a speed-gate of -5. The synthesizer that is used is Synplicity Synplify Premier 8.6.2
with the FSM compiler, Resource Sharing, Pipelining and Re-timing options turned on.
The FPGA performance and resource usage results for the LEON2 without accelerators
can be found in Table 6.7. When the accelerators are also synthesized the FPU unit
must be enabled via the graphical interface. It must be set to the LTH interface and
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in device.vhd some modification are needed. In this file the FPU interface is always
set to serial, it must be changed to parallel in order to get much better performance.
In this case the critical path extension is limited and accelerator instructions operate
in parallel with the Integer unit. The performance and resource usage results can be
found in Table 6.7. It can be seen that the accelerators take up as much Block RAMs
as possible, in order to keep the LUT usage as low as possible and make use of the
resources available on the FPGA. Only 4 extra Block MULs are needed to perform the
multiplications in the DFT accelerator. The accelerators take up 7506 LUTs, which is
very much equal to the size of the LEON. The internal clock speed is limited to 27.2 MHz,
due to the behavior of the LEON architecture as explained before. The system created
in this project forms the basis of a low-power fingerprint chip that is the target of
future projects. Such a chip requires an clock speed that is much lower than 27.2 MHz.
Therefore it is no problem that the clock speeds are lower, the system with accelerators
will run about 40% faster than the stand-alone LEON running on the same clock speed.

LEON2 LEON2 with accelerators
clk 79.1 MHz 54.3 MHz
clk/2 39.6 MHz 27.2 MHz
Register bits 2257 (5%) 7222 (18%)
Block RAMs 12/40 (30%) 39/40 (97%)
Block MULs 1/40 (2%) 5/40 (12%)
Clock Buffs 2/8 (25%) 2/8 (25%)
Total LUTs 7052 (17%) 14558 (35%)

Table 6.7: Synthesis results for LEON2 with and without the accelerators

6.3 Fingerprint application

In order to test the system in terms of minutiae extraction results instead of perfor-
mance, an applications is created to show the results. It can open any WSQ compressed
fingerprint image and show it on the screen. It contains the same WSQ decoder as used
in the MINDTCT software. When the print is shown on the screen the user has the ability
to zoom-in to have a more clear view on the bifurcations and terminations of the ridge
segments in the fingerprint.

The applications can communicate with the MINDTCT hardware system by using
the UART interface. The MINDTCT system can run in the TSIM simulator and the
application can make contact with it by using a virtual COM port simulator. This
way the system could be tested in the simulation fase. With TSIM it is not possible to
set the UART parameters such as: baudrate, data bits, etc. It detects and uses the
latest settings of the UART. The applications needs to be started before the simulator
is started, it will then initialize the UART with the right values. The application
uses COM3 by default and TSIM needs to be send with the -uart1 //./COM2 op-
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tion in order to use COM2. Also the COM2 and COM3 connection needs to be emulated.

The WSQ fingerprint data is send to the simulator. The application and the
simulator perform some handshaking in order to startup the sending and receiving.
When all the data is received by the MINDTCT system, it starts its execution. The
applications waits and polls the UART for a finish signal. When this is received it starts
collecting the minutiae list, it displays a dialog box that shows the amount of minutiae
computed. Then it marks all computed points in the fingerprint by showing them as red
dots. Figure 6.3 shows a screen capture of the application with the fingerprint image
and Figure 6.4 shows the same fingerprint with the computed minutiae by the MINDTCT
system.

Figure 6.3: Application showing a fingerprint image

6.4 FPGA results

After the synthesis with Synplicity, a UCF file is created. It specifies the constrains
and pin assignments. Basically it connects the top-level VHDL entity signals with
the right pins on the FPGA. In order to get the SDRAM module to work several
things are needed. First the LEON needs to include the SDRAM controller, with the
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Figure 6.4: Application showing a fingerprint image with minutiae computed by the
MINDTCT system

separate address and data bus option and inverted clock turned on. Then all signals
that has to do with the SDRAM unit needs to be port-mapped in the top level entity
in leon_spartan3.vhd. In the UCF file these signals needs to be mapped to the right
pins on the FPGA, corresponding to the manual of the SDRAM module. The module
needs to be inserted on the P3 port of the Spartan3 FPGA board.

Two switches are needed in order to be able to put the LEON into debug mode.
These switches needs to be mapped to the DSU enable and break signals of the top-level
entity. When the LEON is startup without an application, the fastest way to load an
application into it, is to use Dsumon. This applications can connect to the FPGA
via the UART interface and detect the configuration. Then with the lo command
an application compiled with the SPARC compiler, can be loaded into the FPGA.
Execution of the software can be started with the run command.

Table 6.8 shows the results when the MINDTCT system is executed on the FPGA.
It can be seen that the performance is not as high as in the simulator. There are several
reason for this. The first one is the slower clock rate of 33 MHz. The simulator runs on
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50 MHz, which means the execution time is already 1.5 times higher. But there still is a
large difference remaining, even if the clock rates where equal. This is mainly due to the
limited emulation options of the evaluation version of TSIM. The simulator can only be
configured with an unrealistic and much faster memory interface. The SDRAM option
could not turned on in the simulator, as with other advanced settings for memory and
caches. Also the simulator internally simulates the LEON3 model instead of the LEON2.
In order to simulate the LEON2 an more older version of TSIM had to be used, which is
no longer supported and available. Also the simulator has an inaccuracy of 10%, on top
of the LEON3 simulation this means the inaccuracy is increased to more than 30%. Also
the execution is controlled by the Dsumon program, and this means that communication
overhead is included in the execution times. Simulating in ModelSim will provide a far
better estimation of the real FPGA execution time, but has the drawback of being too
slow, when simulating programs with the size of the MINDTCT system. The accelerators
by them self are simulated using ModelSim so these estimations should be close to the
real values.

LEON2 LEON2 with accelerators
Fingerprint1 97.58 s 61.14 s
Fingerprint2 105.23 s 62.02 s
Fingerprint3 93.29 s 58.03 s
Fingerprint6 105.88 s 63.27 s
Fingerprint9 83.29 s 55.71 s

Table 6.8: Performance results of the MINDTCT system running on the FPGA

Although the accelerators run perfectly fine in the simulator and can be synthesized,
there are some problems with them. It seems that on the FPGA they run as expected,
but only zeros are written back to memory. Probably there are some timing problems.
Due to limited time, it was not possible to fix this problem and only the simulations
estimations are available. On the right side of Table 6.8 these estimations are shown.

6.5 Summary

In this chapter the simulation and synthesis results are presented. Simulation shows
that the accelerators and algorithm modifications will speed-up the system by almost
40%. Synthesis shows that the accelerators use little resources, but effect the clock-rate.
Due to a strange behavior of the LEON architecture, the critical-path is increased when
a co-processor is connected to it. Even if the accelerator is very simple and very fast.
Also a short description of an application is given that can be used to show the output
results of the MINDTCT system. After synthesis the system is implemented on a FPGA.
Execution times are shown to be much higher on the FPGA than on the simulator. This
is due to simulator inaccuracy and limitations. Despite the performance issues, the
system runs perfectly fine. The next chapter presents the conclusion and future work for
this project.
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Conclusion and Future work 7
In this last chapter, the conclusion is presented in Section 7.1 and future work in Sec-
tion 7.2.

7.1 Conclusion

In this thesis a fingerprint minutiae extraction system is created that runs on a FPGA.
It forms the basis for a fingerprint identification or verification chip. The system is
based on the System-on-Chip (SoC) principle. It is a combination of hardware and
software. The hardware part consist of an open-source microcontroller completely
available in VHDL, named LEON2. The software is a modified version of the MINDCT
system, originally created for the FBI by NIST.

The first step was to find the best suitable software system for this project. A
minutiae extraction system consists of many algorithms. The target was to find a
collection of good performing algorithms, that forms a complete system. Because of
the nature of the algorithms, many where only available in Matlab code. Experiments
showed that converting Matlab code to C-code is resulting in very poor performance
and terrible looking code. The target therefore was reset to find a complete minutiae
extraction system completely available in C-code. At the time there was only one
useable system, called MINDTCT. This system however is developed to be executed on
a PC, and needed to be modified so it could run on a microcontroller. It had to be
stripped down, which means all non essential code had to be removed. Also to increase
performance and save resources, all floating-point instructions needed to be converted
to fixed-point counterparts.

The second step was to find a good performing microcontroller, that can run the
MINDTCT program. Although many controllers are available, research showed that the
LEON microcontroller was favorite. With the right controller found, the software system
could further be modified so it can run on this controller.

With the right hardware and software found, the first part was to build a minu-
tiae extractor that can run on a FPGA. The second part was to speed-up the execution
of this system. The LEON not only has good performance, it is also possible to
connect co-processors to it. In order to build efficient co-processors the software
was profiled and the most time consuming parts or functions where identified. This
resulted in two candidates that could be mapped onto hardware. The accelerators where
connected to the LEON by the fastest interface that was available, called the CPI interface.

55
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The system is simulated in a special program called TSIM, which is an instruction-set
simulator. Simulating the system in ModelSim would take up to one week for a single
fingerprint. With TSIM this is reduced to minutes. The system was tested on its output
and performance analysis was performed. In order to get a more clear view of the
minutiae output results of the system, a special applications was created that can show
the computed minutiae in a fingerprint. Minutiae are displayed by red dots in this
application. The modified system running on the FPGA produces almost the same
minutiae as the original system. Only a few with low quality factors are missed or
introduced, but these will be ignored in the matching step.

The system is implemented on the Xilinx Spartan3 XCS2000 FPGA. Performance
analysis on the FPGA shows that the results of the TSIM simulator are unrealistic and
too optimistic. This was due to limited emulation option of memory and caches. In
order to get more realistic results an license needs to be purchased. Furthermore the
simulator simulates the newer LEON3 system, which results in an inaccuracy of more
than 30%. Despite the lower performance the system runs perfectly fine on the FPGA.

The accelerators run fine in the simulator and can be synthesized, but when exe-
cuted on the FPGA there are some problems. It seems that they run as expected, but
only zeros are written back to memory. Probably there are some timing problems. Due
to time problems, this could not be fixed on time. However the simulation is done
in ModelSim, which should give much better estimates than the TSIM simulator. The
system with accelerators and software modifications speed-up the system by an average
of 37.91% and a maximum of 41.06% for the 30 fingerprint from the test database.
The system with accelerators can run on a speed of up to 27.2 MHz. The LEON
without accelerators can be clocked on a slightly higher clock speed. This lower clock
speed comes from behavioral aspects of the LEON architecture. When a co-processor is
connected the critical path is increased, no matter how fast the co-processor can operate.

This project shows it is possible to run a fingerprint minutiae extractor on a
FPGA, while using limited resources. Because the software is very computationally
intensive, it takes an average of 60 seconds to complete one fingerprint. The accelerators
will speed-up the system by almost 40%. The solution is based on the System-on-Chip
(SoC) principle and therefore provides a basis for a fingerprint chip.

7.2 Future work

The accelerators only work in the simulator. Debugging and testing is needed, to identify
the problem and making them to work on the FPGA. Then performance analysis, on
the FPGA needs to be performed. To get a full identification or verification system,
also the matching part is needed. Besides the MINDTCT system, also a matching system
is developed by NIST. This system needs the same modifications such as: stripping and
fixed-point conversion. Profiling should be performed, to identify if accelerators can be
used to speed-up the execution.
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Because this project was created to provide a basis for an identification chip,
there is a lot of room for improvements. There are two parts where improvements can
be made. The first is the software system. Profiling shows that some algorithms are
responsible for a large part of the execution time. In this project it was shown that
modifications can speed-up the system. Further improvements must be made on the
algorithms, especially the DFT and binarization parts. One should try to lower the
amount of iterations, by using more clever algorithms. This will increase performance
by a large amount. The MINDTCT system contains many different algorithms, which
could be replaced by better ones. Different algorithms can provide better extraction
results, better performance or both. The MINDTCT system should also be re-written for
execution on a micro-controller, this should results in better memory utilization, less
wasting of resources and faster computations.

The second part where improvements can be made are on the hardware system.
At the time LEON2 was the best option available, but this could be different in the
future. The LEON3 is faster and more efficient, but lacks the CPI interface. It is needed
to connect accelerators in a fast way. It is possible to extend the LEON3 with such
a interface, but this requires knowledge of the implementation of the microcontroller
especially the Integer pipeline. Doing this will result in a system that has an perfor-
mance increase of about 30%. Also higher clock rates are possible. This project shows
that execution times are high on a FPGA, so the system must be accelerated more
than 30%. A very good option for such a performance increase, would be to search for
a very simple and basic microcontroller and adapt it to run the software. The most
important thing would be the memory architecture. If both the microcontroller and
the accelerators can access the fingerprint image data in memory, the communication
overhead will be reduced. This creates far more opportunities for doing computations
in hardware. For example, the whole DFT and binarization processes can be done
in hardware. Depending on the resources even the whole minutiae extraction can be
performed with accelerators, which on the LEON takes more than 70% of the time. In
short, to get a significant performance increase the algorithms should be modified, the
software adapted for execution on a micro-controller and a better memory architecture
needs to be found, in order to be able to shift more computations to hardware.
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