
The effect of EHOP on the writing of Program Analyzers

Brendan Mesters
Supervisor(s): Casper Bach Poulsen, Cas van der Rest 

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
Effect Handler Oriented Programming is a promis-
ing new programming paradigm, delivering sepa-
ration of of concerns with regards to side effects
in an otherwise functional environment. This pa-
per discusses the applicability of this new paradigm
to static code analysis programs. Different code
analyzers often have many similar, if not identi-
cal pieces of code which could be abstracted away.
This abstraction does not come natural to the pro-
gramming paradigm of Functional Programming
but are quite natural within EHOP. The current pro-
gramming languages do not yet seem up to the task
of rapid generalization of code and elimination of
duplicate pieces of code. However, the concepts
present in EHOP will almost certainly be able to
eliminate much of this code reduction once the lan-
guages have matured further. The implicit passing
of functionality will also allow for clearer code with
less unnecessary visual clutter.

1 Introduction
The newly proposed programming paradigm of Effect Han-
dler Oriented Programming (EHOP) is starting to see more
practical research into its potential uses. EHOP languages
look to bring a separation of concerns to the functional pro-
gramming paradigm by introducing effects. Effects can do
various things, they are, for example, used to handle the non-
functional aspects of code, such as IO operations, state depen-
dant operations and exceptions. This extra level of abstraction
could be very useful for writing general code, as well as doing
sand-boxing.

In an EHOP language you can define certain effects, just
like you can define any other data type. An effect is very simi-
lar to an interface, in that it only gives you the type definitions
of its functionality. Functions can require certain effects to be
provided for them to run, these effects will then automatically
be passed to any functions that this code calls. To provide an
effect to a function you need to give implementations to all
the functionality that an effect promises. In this way you are
able to set up very generalized and adaptable code, all within
an environment similar to Functional Programming.

A lot of research has already been done into the mathe-
matical basis for EHOP in papers such as Handlers of Al-
gebraic Effects by Gordon Plotkin and Matija Pretnar [1],
which lays down the original mathematical concepts of Effect
Handlers in computer science. Type Directed Compilation of
Row-Typed Algebraic Effects by Daan Leijen [2] presents a
research language, Koka [3], which uses row typed algebraic
effects. Koka is also the language in which this research
projects code has been written. And the article Do Be Do
Be Do by Conor McBride et al. [4] explores a bidirectionally
typed effect system which allows more effect variables to be
omitted. There has however not yet been a lot of research into
the difficulty of learning an EHOP language. Similarly there
hasn’t been much research into the application of EHOP on
different types of programs.

This article focuses on the question of whether the concepts
present in EHOP are of use when creating program analyzers.
Furthermore the article will also function as a case study on
how easy or difficult it is for someone with prior functional
programming experience to learn an EHOP language.

For this, our main research question is: How does the
EHOP programming paradigm effect the writing of Pro-
gram Analysis Tools. This main research question is further
subdivided into sub questions.

• RQ1 Do the concepts present in EHOP translate well to
program analysis tools?

• RQ2 Does EHOP allow for more code reuse then other-
wise possible?

• RQ3 How does EHOP programming effect the readabil-
ity of the code.

• RQ4 How quickly can an EHOP language be picked up
by someone with prior functional programming experi-
ence?

The contributions to the field that this paper aims to make
are as follows.

• The paper has created a type-checker and an interpreter
for Mini-ML [5] in an EHOP language, for which the
implementation details can be found on the Github 1 and
an explanation of the process can be found in Section 4.2

• It examines this code as to gain insights upon the differ-
ent advantages and disadvantages that EHOP has. (Sec-
tion 6)

• It provides a look into the learning process of EHOP
programming, specifically the difficulties in using poly-
morphic effects. (Subsection 4.3 and Subsection RQ4in
Section 6)

• This research shows pros and cons of the EHOP pro-
gramming paradigm in the given domain of program
analysis tools, as well as give us data on the ease of
adoption of EHOP languages. (Section 6)

First Section 2 will briefly explain why EHOP might be
in interesting programming paradigm for code analysis tools.
Following this, the methods used in this paper will be dis-
cussed from a theoretical point of view in Section 3. After-
wards an in depth look at the process of this research will be
given in Section 4, followed by Section 5 which will discuss
the analysis methods. The results will be discussed in Sec-
tion 6. Sections 7 and 8 will put a critical eye to the work
presented in this paper. And lastly there will be Section 9 in
which we will briefly show the final conclusions as well as
suggest some possible future research in Section 10.

2 The advantages of EHOP for Code Analysis
Tools

Static code analysis tools, as well as interpreters, often have
very large parts of similar, and sometimes even identical code.
In many of these cases this code is the structure of your pro-
gram, the part that scans over the varying tokens from the

1https://github.com/BrendanMesters/Koka-Linter



Figure 1: ”Similarities in variable handling code in the Type Checker
and Interpreter respectively”

abstract language tree and does differing things depending on
the encountered token, as well as your application. A type
checker may simply check if the arguments of any function
(including simple mathematical functions such as Plus, Mi-
nus, etc) are of the expected types (using recursive calls to
itself) while an interpreter would have to evaluate the actual
values of said function applications.

For these reasons it has been decided that a type checker
and an interpreter will be used to analyze the effects of EHOP
and to try and answer the research questions. These two code
analysis tools have been chosen as they have rather similar
functionality, thus they have some parts of duplicate code.
Clearly visible in the usage of variables, shown in Figure 1.
Further examples and in depth discussion will be provided in
Section 4.

3 Methodology
The article tries to gain insights into the practical applica-
bility of EHOP, both in general and in the context of static
code analyzers. Therefore this research will have a 3rd years
bachelor of computer science program program analysis tools
for the functional toy language of Mini-ML [5], which is in
essence a simply typed Lambda Calculus. This should help
us in answering all four of the research sub questions. The
programming will be done in the span of 10 weeks, in which
this research paper will also have to be written, and the pro-
gramming will be done in the EHOP language Koka [3].

Focusing on the full breadth of the research question would
be infeasible, due to the fact that there are many different pro-
gram analysis tools. Thus its been decided that this project
will only focus on the programming of a subset of program
analysis tools. The two programs that this paper uses for its
research are a type checker and an interpreter, as they are

relatively similar while still being complex. These two pro-
grams should give good insights into the possible abstrac-
tions that can be implemented within code analysis tools as
a whole. The code also automatically fulfils certain function-
alities such as the detection of variable usage before assign-
ment.

After the creation of the type checker and interpreter the
code will be assessed. This assessment has been done in part
by analyzing the code myself and giving substantiated an-
swers to the research questions. This will give conclusions
on RQ 1 to 3, each substantiated with arguments and code
references where applicable. RQ 4, on the other hand, will be
answered more as a subjective case study of my own experi-
ences.

It would be preferable if we could use less subjective mea-
surements to evaluate the code quality, but sadly this is not
possible. Almost all code quality analysis tools are ran by a
program as opposed to calculated by hand, since this would
be a lot of work for relatively little results. The problem here
is that all the existing tools are either created for a specific
language or require you to be able to translate your code into
some internal structure that their tool uses, which would, due
to time, be unrealistic for this project. On top of that there
is even still the problem that these tools are not made for an
Effect Handler Oriented language, which could throw off cer-
tain measurements.

One method which is sometimes employed in the field of
Programming Languages research is peer evaluation. This
project tried to use peer evaluation too, but the amount of
responses was to small to include in a scientific paper. How-
ever, there seemed to be interesting information in the few
responses we did get, thus we have added this as a possible
future research but left it out of this paper.

4 The Implementation of the EHOP Code
Analysis Tools

During the implementation of the interpreter and type checker
many very similar patterns have been found. The code tries
to abstract these away as much as possible, the example of
the variable code (Figure 1) was already given in Section 2.
For more detail on the reasons why EHOP should be inter-
esting for static code analysis tools see Section 2. A few
complex Mini-ML programs have also been created inside
the main.kk file for the sake of testing the correctness of the
written code.

The original aim of this paper was to create a type-checker
and an interpreter that where abstracted enough that they did
not contain any duplicate code anymore. During the pro-
cess of creating this code several severe problems where dis-
covered. The following section will discuss the full original
concept in Sub-Section 4.1, the actual implementation code,
highlighting interesting parts in Sub-Section 4.2, and lastly
it will discuss the issues that where encountered during the
programming in Sub-Section 4.3.

4.1 Original Plan of the Project
The original plan was to create highly generalized code which
could be transformed into a myriad of different code analysis



Figure 2: ”General program analysis structure and abstract syntax
token handler effect.”

tools depending on the provided effect handlers. The gener-
alized code would be mostly structural where the effect han-
dlers functions would be invoked depending on the core lan-
guage token encountered by this structural code as shown in
Figure 2.

Ideally each handler could choose functions from a set of
existing ’handler functions’ which would handle one or more
of the functions that the effect requires. Any remaining effect
functions would then be coded by hand. This would reduce
code duplication as, applications that use identical definitions
of these functions could just reuse the same implementation
(such as is the case for the handling of variables in the in-
terpreter and type checker). Applications that need different,
unique implementations for these effects however can just de-
fine them themselves (e.g. in a variable naming convention
checker the code ran on variables will be different to that of a
type checker).

This should greatly ease the process of creating code ana-
lyzers, as well as make the code produced less error prone as
some already tested code is part of the solution. There is how-
ever the possibility that this would create lot of overhead and
a lot of restrictions for the programmer. Whether this would
be a good trade off depends on how much is gained from the
generalization and code reuse, how costly the overhead and
restrictions are, and what the goals of the project are.

4.2 The Created Code Base
The code base can be found on Github2 the repository also

contains a README explaining what code each file contains.
The final code base which was created consists of a few

things, firstly an abstract data type had to be created which
could represent Mini-ML programs. This Abstract Data Type
(ADT) is very similar to the one shown in Figure 1 of Natu-
ral Semantics by G. Kahn [5], it has however been changed
slightly.

The original abstract syntax did not explicitly allow for the
modification of numbers, nor for any comparison between
numbers. Thus an additional addition, subtraction, multipli-
cation and equality primitives have been added to this ab-
stract syntax. Furthermore it has been decided that recursive
let bindings as well as lambda expressions should have their
arguments type annotated. Without type annotation the exer-
cise of type checking the values would have been far beyond
the scope of this research, thus it was decided that type anno-
tated arguments would be fine.

This Mini-ML expression type is important to write
down programs in Mini-ML, but we also needed an
expression_type type, both for the definition of lambda
functions and recursive let bindings, as well as for a return
type for the type checker. This expression_type consists
of four actual values and an error value. It contains the
number type, the boolean type, a type to denote pairs of
types, and a function type, containing the argument type and
the return type. Using the pair type of both expressions
as well as expression_types you are able to create any ar-
bitrarily complex (but non-infinite) data types.

Besides the ADT there also needed to be some supporting
functionality before the interpreter and type checker could be
created, the errors and warnings effect and correspond-
ing handler, and the polymorphic_scope effect and corre-
sponding handlers. The errors and warnings effect was
created because the already existing exn effect stops ex-
ecution, our new effect just accumulates errors, to be re-
quested once execution is stopped. The second effect of
polymorphic_scopewas more difficult to create. The scope
should allow someone to add a polymorphic value to the
scope, or add an unevaluated expression to the scope, this
was accomplished by using a custom closure data type
which can hold either of these two values. The Type defi-
nition of the polymorphic scope can be seen below, in Figure
3.

Figure 3: ”The type definition of the polymorphic scope effect.”

During programming a problem was encountered where
variables would escape their scope, in short, once a variable

2https://github.com/BrendanMesters/Koka-Linter



was declared it would never seize to exist. An elegant solu-
tion that was thought of would be to have a function of the
scope effect which would instantiate a new instance of the
scope effect with certain variables added. This, however, pro-
duced a lot of incomprehensible errors Because of this, it was
eventually decided that a function would be added to request
the current internal state, as well as a function to set the cur-
rent internal state, this way the problems could be fixed in the
code of the interpreter/type checker.

Lastly there where the actual implementations of the
type checker and interpreter, both of which consist
of a match case, matching on all possible type instances
of the expression type. Next up different things hap-
pened when different values where encountered, if numbers
or booleans where encountered their true value was returned
in the case of the interpreter while the type checker returned
their expression_type. Pairs where also simple, as this just
called the function that is was a part of recursively on both its
elements and then returned the pair of those two. In the in-
terpreter, functions are returned exactly as they are and left
for the apply handler code to be dealt with, while the type
checker, on the other hand, immediately infers the return type
and returns a EFunc function type.

Figure 4: ”Code duplication in let and reclet handling in the type
checker and interpreter code respectively.”

The code for handling the Let and the Letrec constructs
are both very similar to each other, as well as near identical
between the interpreter and the type checker, as can be seen in
Figure 4. They each store the current scope, so that they can
return to that one once they have handled their body, add the
bound values to their respective argument names in a scope,
and recursively call their own function on the body.

The recursive let binding does differ slightly between the

type checker and the interpreter, as, with the type checker we
add the assumed type to the scope and verify that the value
indeed is of the given type. In the interpreter on the other hand
we add the values to the scope, but we delay the interpretation
of the values by adding a 4th element, namely True to the
args_and_vals function call.

4.3 Problems encountered during the project
As mentioned in the introduction of Section 4, the original
plan for the project was larger then what was eventually cre-
ated. A lot of problems where encountered, when the com-
plexity of the project grew there where increasingly more
problems that arose. These problems arose, at least in part,
due to the fact that Koka [3]:w is still a research language
and because the scientific community is still trying to find the
best way to work with effect handlers. A good example of
a recent study in this field is the research by Zhixuan Yang
on scoped effects, which might help with the reasoning about
EHOP programs. [6]

The largest of the problem which was encountered dur-
ing the programming of the more generalized solution can be
seen in Figure 5. This was a simple mock setup of the effect
handler to handle an interpreter in the generalized program
structure shown in Figure 2. The effect typing is correct as
Num(n: int), ETrue and EFalse are all part of the expres-
sion type. Still this, seemingly correct, though trivial, code
raises compiler errors. This shows that one large hurdle in
the creation of programs that use effects in complex ways is
the fact that the current EHOP languages are still in a some-
what experimental phase.

5 Experimental Setup
Testing code quality is usually done through frameworks
which analyze your code and judge it on style, clarity and a
myriad of other factors. These frameworks, however, are al-
most exclusively build on a language by language basis, this
means that these tools are of little use when trying to analyze
new languages such as Koka. Even for already existing lan-
guages its been shown to be difficult to correctly assess the
clarity of code as shown by S. Scalabrino et al. [7].

For this reason most Program Language papers employ
methods such as peer evaluation to assess different qualities
about the code. Thus, this project planned on using a combi-
nation of substantiated reasoning about the code by the pro-
grammer and peer evaluation. Reasoning on the code will
give an ’expert view’ with substantiated argumentation and
code examples where possible.

Note that ’expert view’ is in quotations as it is actually a
far try to call the programmer an expert in EHOP. But we
used this word non the less as there are only very few people
who have ever coded in EHOP and even less people who have
worked on implementation code analysis tools in EHOP. Thus
this will probably be the closest we get to ’an expert’ in this
specific field.

The peer review would provide insights into the general
readability and understandability of EHOP code. Addition-
ally it could have provide feedback on the concepts of EHOP
from people who have not yet worked with those concepts,



Figure 5: ”Mock handler for the generalized program analysis struc-
ture and the compiler error encountered when compiling it.”

which could have shown how natural the EHOP ideas come.
However, the peer evaluation survey send out for this project
did not receive as many answers as hoped, and due to the
small sample size of the answers it has been decided that these
will not be included in the paper. The answers that where re-
ceived did seem to show some interesting commonalities, so
this could be an interesting subject for future research and
will be briefly touched on in Section 6.

6 Results
This research, just as most all Programming Language re-
search papers, has opted to use somewhat subjective ways
to answer the research questions as it would be infeasible to
use objective tools as explained in Section 5. The research
questions will each be answered by the programmer, these
answers will be presented in a subsection, one for each sub-
question. These answers aim to be as objective as possible,
giving reasoning and examples for the statements made where
ever possible.

Throughout this section there will also be a distinction be-
tween the current day practical answers to our questions and
the more theoretical answers looking at future applicability.
EHOP is currently still in its infant stages and some issues
may be present now but not applicable when the languages
and the concepts have matured a bit more.

In the following sub-sections I will try to answer the sub-
questions of this paper by giving my own substantiated opin-
ion. The nature of the questions often asks for either a sub-

jective answer or a substantiated reasoning. Where possible I
will try to keep the answers as objective as possible, but this
will not always be possible.

It is also worth noting that there has also been a small peer
review, using a survey to judge the code on a few metrics. The
sample size of people who filled out the survey was to small
to be included as a full result, but a consensus that seemed to
arise from the few answers we got is that EHOP helps with the
conciseness and functionality of the code This should, how-
ever, only be taken as a suggestion to this being the case as
opposed to an actual result, due to the small sample size of 4
answers.

RQ1: Do the concepts present in EHOP translate
well to program analysis tools?
Some of the ideas and advantages of EHOP translate quite
well into the domain of program analysis tools, while others
are not as applicable. The area where program analysis tools
do greatly benefit from the concepts present in EHOP is when
it comes to code generalization. EHOP should ultimately al-
low you to generalize your code to a degree similar to what
was shown in Figure 2. Allowing effect handlers to use the
same, slightly generalized, implementation of similar pieces
of code such as what Figure 1 shows. This ”hyper general-
ization” however, does still have some issues in the current
programming environment, for more detail see Sub-Section
4.3. These issues are partly due to the fact that Koka is still a
research language that is in development. I think it very likely
that these issues will be either solved, or way more manage-
able once the EHOP paradigm has matured more.

Another big benefit from EHOP languages is that you can
modify the behaviour of large sets of code, spanning many
files and functions with great ease. Code analysis tools do
not benefit from this feature, as most code analysis tools are
relatively small in scale. This benefit is mostly enjoyed by
large programs that want to be able to use priorities to change
what they can do and how they can do it.

RQ2: Does EHOP allow for more code reuse then
otherwise possible?
The answer to this question in theory should be a resounding
yes, in practice however this has proven to be more difficult.
There are many parts of the code that are very similar if not
near identical in many different code analyzers, look at Fig-
ures 1,2,4 for example, both structural code as well as spe-
cific code snippets often recur. It should be possible to set up
a code base where this code duplication can be eliminated, at
least for the most part. The only issue with this idea is that,
currently, the state of Koka does not seem to allow for these
pieces of code to be created, as compiler errors are thrown
when polymorphic effect handlers are used in complex ways
as can be seen in Figure 5 (for more detail see Section 4.3).

RQ3: How does EHOP programming effect the
readability of the code?
The improvements of readability that EHOP provides really
depend on what it is compared to. Comparing an EHOP im-
plementation of a code analysis tool with one in a functional



language will have the EHOP implementation be much more
readable. A functional language would have to explicitly pass
variables such as the current scope and the accumulated er-
rors and warnings, both up through recursive function calls,
as well as down through return values. This would create a lot
of visual clutter that would negatively effect the clarity of the
code. In EHOP these functionalities that the code needs are
mentioned once at the type definition of the function and can,
thereafter, just be used and passed both into function calls, as
well as out of them implicitly.

Comparing EHOP to an OOP language makes the compar-
ison a bit more nuanced however. For small programs where
the code remains in one file OOP will be more readable, as
the functions that would be wrapped in effects in EHOP can
just reside in the global scope. If the codebase is larger how-
ever you either run into the problem that the one file you use
becomes very large, thus making the code less clear. The
other option would be to spread the code across multiple files,
but then you would have to explicitly pass many extra values
trough function calls, which will have a negative effect on the
readability of the code.

RQ4: How quickly can an EHOP language be
picked up by someone with prior functional
programming experience?
Simple programs are quite trivial, as they are very similar to
functional programming. Actually working effectively with
effects takes some time however, and I feel like even 3 months
is not enough to be able to use effects to their fullest extend.
That being said, grasping the concepts well enough be be
able to program with effects well enough for most tasks took
roughly 2 weeks. And after 4 weeks I was comfortable with
what effects could and could not do in most situations. If you
really want to use effects to the fullest however I believe that
you will need multiple months of experience programming
with effects, just as with any other language that you want to
excel at.

7 Responsible Research
This paper will not be perfectly reproducible due to the na-
ture of its research. This paper looks at a single programmers
attempt to learn EHOP and create a program with it that is to
be analyzed. Since every programmer will handle this task
slightly differently we can assume to see slightly differing re-
sults if the research is reproduced. We do not believe that
there are any ethical issues which came up during the project
as this paper is just a practical look at a new programming
concept.

8 Discussion
Projects never run exactly to plan as we all know, and so this
project too had grander plans in the beginning. The original
plan was to generalize both the interpreter as well as the type
checker so that they would not have to have any duplicate
code between them. This would’ve been done by having a
polymorphic function, which would traverse the abstract data
tree, calling functions of specific effect handlers to execute

the parts of the code which differ between different code anal-
ysis tools. You would then have separate effect handlers for
interpreting or type checking, and depending on which one
you’d provide to this polymorphic ’skeleton code’ you could
get vastly different outcomes.

However, this did not go as smoothly as hoped, and com-
piler errors made this almost impossible to implement as
shown in Sub-Section 4.3. These compiler errors left the pro-
grammer in the dark about what they had done wrong, and
the error messages where becoming increasingly less intel-
ligible as the code used multiple layers of polymorphic ab-
stractions. These problems where rather large and halted any
further progress as it was not clear what went wrong or how
it could be fixed.

Thus it was eventually decided that it would be best to de-
crease the scope of the research slightly to make sure that
deadlines could be made. This is an example of effect poly-
morphism breaking on more complex and sophisticated use
cases as noted by J. I. Brachthäuser et al. [8]. This also
does not seem to be an issue with the EHOP programming
paradigm, but rather a consequence of the fact that Koka [3]
is still a relatively young language. The documentation does
not yet cover everything that Koka has to offer and the com-
piler still has some small bugs in it.

9 Conclusions
This research has shown that EHOP does have many differ-
ent benefits when it comes to writing program analysis tools,
however, it has also shown that the current research languages
might not yet be ready for such complex programs.

The concept of interchangeable functionality which is in-
herent to EHOP is very well represented in static code analy-
sis tools, as, across many different tools, the structural code is
often the same and even the code to handle specific language
tokens is often similar between different analyzers.

This allows for more effective code reuse, as implementa-
tions which would not ordinarily be able to be shared across
different code analyzers are now able to be shared if the code
structure is set up well. However, these improvements in code
reuse are not currently feasible due to the shortcomings that
Koka [3] still has as it is still a research language.

The readability also either improves or stays as good as
when Functional Programming of Object Oriented Program-
ming would’ve been used, depending on the size of the pro-
gram. And EHOP is relatively easy to pick up if someone al-
ready knows functional programming. Mastering EHOP does
take a good amount of time however, as the concepts of effect
handlers do become somewhat vague when they are used in
more complex situations.

10 Future Work
There are some areas which could still greatly benefit from
additional research. The first of these areas would be further
research into higher levels of abstraction and thus more code
reduction should be very useful, as it could give more details
into the issues and possible solutions which occur when such
highly generalized code is written.



Another interesting research topic would be to see if the
findings of this paper extend to other static code analyzers.
This paper only analyzed a type checker an interpreter, but
the applicability to say a code analyzer that checks that vari-
able naming conventions are upheld might also be interesting.
This would most likely require a different programming lan-
guage to be analyzed though, as Mini-ML is to simple to have
complex variable naming rules.

Furthermore research into the application of EHOP in
other sets of programs should be considered, as this could
give more general statements about the EHOP programming
paradigm, as well as shed light on the possible real world ap-
plications of EHOP. Research into methods to judge EHOP
code could also be interesting, as the different paradigm will
most likely have different ways of measuring code quality.

References
[1] G. Plotkin and M. Pretnar, “Handlers of algebraic ef-

fects,” Programming Languages and Systems, pp. 80–94,
2009.

[2] D. Leijen, “Type directed compilation of row-typed alge-
braic effects,” ACM SIGPLAN Notices, vol. 52, pp. 486–
499, 05 2017.

[3] D. Leijen, “The koka programming language.” https://
koka-lang.github.io/koka/doc/book.html.

[4] S. Lindley, C. McBride, and C. McLaughlin, “Do be do
be do,” Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, 01 2017.

[5] G. Kahn, “Natural semantics,” STACS 87, pp. 22–39.
[6] Z. Yang, M. Paviotti, N. Wu, B. van den Berg, and

T. Schrijvers, “Structured handling of scoped effects,”
in European Symposium on Programming, pp. 462–491,
Springer, Cham, 2022.

[7] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-
Vásquez, D. Poshyvanyk, and R. Oliveto, “Automatically
assessing code understandability,” IEEE Transactions on
Software Engineering, vol. 47, no. 3, pp. 595–613, 2021.

[8] J. I. Brachthäuser, P. Schuster, and K. Ostermann, “Ef-
fects as capabilities: Effect handlers and lightweight ef-
fect polymorphism,” Proc. ACM Program. Lang., vol. 4,
no. OOPSLA, 2020.

https://koka-lang.github.io/koka/doc/book.html
https://koka-lang.github.io/koka/doc/book.html

	Introduction
	The advantages of EHOP for Code Analysis Tools
	Methodology
	The Implementation of the EHOP Code Analysis Tools
	Original Plan of the Project
	The Created Code Base
	Problems encountered during the project

	Experimental Setup
	Results
	Responsible Research
	Discussion
	Conclusions
	Future Work

