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SUMMARY

Communication networks are critical in business, government, and even our day-to-day
life. A prolonged communication outage can have devastating effects, particularly dur-
ing and after a disaster. Unfortunately, our communication infrastructure is still vulner-
able to natural disasters and other events that damage multiple network components
within a confined area. In this thesis, we study the disaster resilience of communication
networks. We propose scalable, data-driven methods to help stakeholders both assess
and improve the resilience of networks to disasters.

We first study the global risk of earthquakes to Internet Exchange Points (IXPs). We
find that many facilities are at risk of earthquakes and that, when an earthquake occurs,
it is not unlikely that multiple facilities will fail simultaneously. Fortunately, our analysis
also shows that larger IXPs tend to be located in less earthquake-prone areas, and that
peering at multiple facilities significantly reduces the impact of earthquakes to IXPs and
autonomous systems. To help network operators in reducing the impact of earthquakes
on their autonomous systems, we propose a novel metric for selecting peering facili-
ties, based on the probability of simultaneous facility failures. We show that applying
our metric can significantly increase the resilience of individual autonomous systems,
as well as that of the Internet as a whole.

To effectively improve the resilience of communication networks to natural disas-
ters, stakeholders need to make well-informed trade-offs between costs, network perfor-
mance, and network resilience. To help stakeholders make these decisions, we propose a
single-disaster and a successive-disaster framework for assessing the resilience of a net-
work to natural disasters. These frameworks can help stakeholders anticipate potential
disasters, and compare the effects of any trade-off on the resilience of their networks.

The main principle behind both frameworks is to assess the disaster resilience of a
network based on a large set of representative disaster scenarios (called the disaster set).
This approach is flexible with respect to the underlying disaster dataset, and can be ap-
plied to datasets of widely varying sizes and properties. Our single-disaster framework
allows one to efficiently compute the distribution of a network performance metric, as-
suming that a single, random disaster strikes the network and damages one or more
network components in a confined area. Our method speeds up computation by first
computing the distribution of the state of the network after a random disaster (the num-
ber of possible states tends to be much smaller than the disaster set itself), and only then
computing the performance of the network in each of these states.

In addition to studying the impact of a single disaster on a network, we also address
the issue of successive disasters. We first define the concept of successive disasters: a
subsequent disaster that strikes the network while the damage due to a previous disaster
is still being repaired. We then propose a framework capable of modeling a sequence of
disasters in time, while taking into account recovery operations. We develop both an
exact and a Monte Carlo method to compute the vulnerability of a network to successive
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viii SUMMARY

disasters and find that the probability of a second disaster striking the network during
recovery can be significant even for short repair times.

Our successive disaster framework can not only be applied to subsequent disasters,
but also to potential follow-up attacks. Experiments on two network topologies show
that even small targeted attacks can greatly aggravate the network disruption caused by
a natural disaster. Fortunately, we find that this effect can be mitigated - at almost no
cost to network performance - by adopting a calculated repair strategy that takes into
account the possibility of follow-up attacks.

In addition to providing methods for assessing the resilience of networks, we also
provide algorithms for improving the resilience of networks to natural disasters. These
algorithms can help stakeholders (1) recover network functionality more effectively in
the initial period after a disaster, and (2) reduce the initial impact of a disaster on network
performance.

After a disaster, a network operator can quickly restore some functionality by replac-
ing nodes with temporary emergency nodes. These emergency nodes should be de-
ployed as soon as possible. However, selecting an optimal set of replacement nodes is
computationally intensive, and the complete state of the network might still be unknown
after the disaster. Thus, we propose selecting a disaster strategy a priori - before the
occurrence of the disaster. We give an algorithm for evaluating such strategies, by exten-
ding our single-disaster assessment framework.

An effective, but costly, method of improving the disaster resilience of a network is
to add new, geographically redundant, cable connections. These redundant connec-
tions ensure that more areas remain connected after a disaster strikes the network, and
thus reduce the initial impact of the disaster on the network. We provide algorithms for
finding cable routes that minimize a function of disaster impact and cable cost under
any disaster set. Since this problem is NP-hard, we give an exact algorithm, as well as a
heuristic, for solving it.



SAMENVATTING

Communicatienetwerken zijn cruciaal voor bedrijven, overheden, en ons dagelijks le-
ven. Een langdurige communicatiestoring kan desastreuze gevolgen hebben, in het bij-
zonder na en tijdens een ramp. Helaas is onze communicatie-infrastructuur nog steeds
kwetsbaar voor natuurrampen en andere gebeurtenissen die meerdere netwerkcompo-
nenten in een begrensd gebied beschadigen.
In dit proefschrift bestuderen we de weerbaarheid van communicatienetwerken tegen
natuurrampen. We geven schaalbare, datagedreven methodes om stakeholders te assis-
teren in het beoordelen en verbeteren van de weerbaarheid van netwerken tegen ram-
pen.

We bestuderen eerst het wereldwijde risico van aardbevingen voor Internet Exchange
Points (IXPs). We bevinden dat veel datacenters risico lopen op aardbevingen, en dat het
niet onwaarschijnlijk is dat, als er een aardbeving plaatsvindt, meerdere datacenters te-
gelijkertijd zullen uitvallen. Gelukkig laat onze analyse ook zien dat grotere IXPs veelal
in gebieden liggen die minder vaak door aardbevingen geraakt worden, en dat de im-
pact van aardbevingen op IXPs en autonome systemen significant verlaagd wordt als
deze verpreid zijn over meerdere datacenters. Om netwerkbeheerders te assisteren in
het verminderen van de impact van rampen op hun autonome systemen geven we een
nieuwe metriek voor het selecteren van peering locaties, die gebaseerd is op de kans
van simultane datacenter uitval. We laten zien dat het toepassen van onze metriek de
weerbaarheid van individuele autonome systemen en het Internet als geheel significant
kunnen verhogen.

Om de weerbaarheid van communicatienetwerken tegen natuurrampen effectief te
kunnen verbeteren, moeten stakeholders goed geïnformeerde compromissen maken
tussen kosten, netwerk prestatie, en weerbaarheid. Om stakeholders te helpen met het
maken van deze beslissingen, geven wij een enkelvoudige-ramp en een opeenvolgende-
ramp raamwerk voor het beoordelen van de weerbaarheid van een netwerk tegen natuur-
rampen. Deze raamwerken kunnen stakeholders assisteren in het anticiperen van moge-
lijke rampen, en in het vergelijken van de effecten van beslissingen op de weerbaarheid
van hun netwerken.

De hoeksteen van beide raamwerken is het beoordelen van de weerbaarheid van
communicatienetwerken tegen natuurrampen op basis van een grote groep represen-
tatieve rampscenario’s (de “disaster set”). Deze aanpak is flexibel met betrekking tot
de onderliggende dataset van rampen, en kan toegepast worden op datasets met sterk
verschillende groottes en eigenschappen. Ons enkelvoudige-ramp raamwerk maakt het
mogelijk om de kansverdeling van een impactsmetriek efficiënt te berekenen, onder de
aanname dat een enkele, willekeurige ramp het netwerk raakt en één of meerdere net-
werkcomponenten in een begrensd gebied beschadigt. Om de rekensnelheid van onze
methode te verhogen berekenen we eerst de kansverdeling van alle mogelijke combina-
ties van uitval (normaliter zijn er veel minder mogelijke combinaties van uitval dan dat
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x SAMENVATTING

er rampscenario’s zijn), waarna we de impact van elke combinatie van uitval berekenen,
in plaats van de impact van elk rampscenario.

Naast het bestuderen van de impact van enkelvoudige rampen op een netwerk, rich-
ten we ons ook op opeenvolgende rampen. We definiëren eerst het concept “opeenvol-
gende ramp”: een ramp die plaatsvindt terwijl het netwerk nog hersteld wordt van de
schade van een vorige ramp. Vervolgens geven we een raamwerk dat een reeks ram-
pen over tijd kan modelleren en daarbij hersteloperaties meeneemt. We ontwikkelen
een exacte en een Monte Carlo methode voor het berekenen van de kwetsbaarheid van
een netwerk voor opeenvolgende rampen, en bevinden dat de kans op opeenvolgende
rampen zelfs met korte reparatietijden significant kan zijn.

Ons raamwerk voor opeenvolgende rampen kan niet alleen op rampen toegepast
worden, maar ook op potentiële aanvallen. Onze experimenten op twee netwerktopo-
logiëen laten zien dat zelfs kleine gerichte aanvallen de impact van een natuurramp op
een netwerk sterk kunnen verergeren. Gelukkig bevinden we dat dit effect gemitigeerd
kan worden - met bijna geen nadelige effecten op het netwerk - door het meenemen van
de mogelijkheid van gerichte aanvallen in de reparatie-strategie.

Naast methodes om de weerbaarheid van netwerken te beoordelen, geven we ook
algoritmes om de weerbaarheid van netwerken tegen natuurrampen te verbeteren. Deze
algoritmes kunnen stakeholders assisteren in (1) het effectiever herstellen van netwerk
functionaliteit in de aanvankelijke periode na een ramp, en (2) het verminderen van de
aanvankelijke impact van een ramp op de netwerk prestatie.

Na een ramp kan een netwerkbeheerder snel functionaliteit herstellen door netwerk-
nodes te vervangen door tijdelijke noodnodes. Deze noodnodes moeten zo snel mogelijk
ingezet worden. Het berekenen van een optimale selectie van nodes om te vervangen is
echter tijdrovend, en de volledige staat van het netwerk hoeft nog niet meteen bekend te
zijn na de ramp. Wij stellen daarom voor om de reparatiestrategie a priori te bepalen -
voordat de ramp heeft plaatsgevonden. We geven een algoritme voor het evalueren van
zulke reparatiestrategieën dat bouwt op ons raamwerk voor enkelvoudige rampen.

Een effectieve, maar dure, methode voor het verbeteren van de weerbaarheid van
netwerken tegen natuurrampen is het toevoegen van nieuwe, geografisch redundante,
kabelverbindingen. Deze redundante verbindingen verzekeren dat meer gebieden na
de ramp verbonden zullen blijven, en verminderen dus de aanvankelijke impact van een
ramp op het netwerk. We geven algoritmes voor het vinden van kabelroutes die, gegeven
een groep rampscenario’s, een functie van rampimpact en kabelkosten minimalizeren.
Omdat dit probleem NP-hard is, geven we naast een exact algoritme ook een heuristiek
om het op te lossen.



1
INTRODUCTION

Communication networks have become integral to businesses, governments, and even
our day-to-day life. As of 2019, more than 50 percent of the world’s population is con-
nected to the Internet [1] - itself a network of communication networks. This pervasive-
ness gives communication (together with energy) infrastructure somewhat of a unique
position among all of our critical infrastructures: Communication systems provide “en-
abling functions” across all other critical infrastructures [2]. The failure of our commu-
nication networks can cause havoc on our critical infrastructures, economy, as well as
our personal lives.

The Netherlands experienced the danger of our dependency on communication net-
works firsthand in 2019: On June 24, KPN (a Dutch telecommunications provider) expe-
rienced a 3.5 hour outage [3]. As the Dutch government relied on KPN to forward emer-
gency calls, citizens in the entire country were unable to call for emergency services.
At the same time, another outage at KPN also prevented the government from reaching
KPN customers through the Public Warning System, which made it more difficult to keep
all citizens informed.

Society’s dependency on communication networks only increases in the run-up to
and aftermath of a natural disaster. Citizens rely on communication networks to obtain
information, contact their loved ones, and call for help; emergency services rely on com-
munication networks to organize an effective disaster response; and government agen-
cies rely on communication networks to warn and inform citizens, as well as communi-
cate internally.

Unfortunately, while society’s dependency on communication networks increases
during and after a natural disaster, the same disaster often has devastating effects on
the communication networks themselves. For example, in 2018, an earthquake and re-
sulting tsunami struck the Indonesian island of Sulawesi, killing thousands of people.
Just before the tsunami struck, multiple tsunami warnings were sent out to the public.
However, in addition to a number of other issues with the early warning system, the com-
munication and power infrastructures were already damaged by the earthquake itself,
and these warnings may not have been received by local residents [4]. The earthquake

1
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and tsunami severely damaged the infrastructure of national telecom operators [5]. In
particular, the area of Donggala was completely cut off from the outside world.

Hurricane Irma knocked out communications in Sint-Maarten in 2017. The lack of
communication delayed the international humanitarian response and severely disrup-
ted the ability of the government to inform their citizens [6, 7].

In 2021, hurricane Ida made landfall in Louisiana, U.S. The combination of flooding,
storm damage, and power outages had a massive impact on local communication net-
works [8, 9]. As a result, numerous areas lost cell, landline, broadband, and/or cable
service. In addition, emergency services were unreachable in multiple areas, due to the
failure of 911 systems.

These are just some of the recent examples where a natural disaster both knocked
out communication infrastructure, while also increasing the need for functional com-
munication networks. There is evidence that an increase in cell phone access can save
lives during a disaster: Statistically, an increase in a country’s cell phone usage has been
found to reduce disaster fatalities [10]. With the rise of “the Internet of Things”, our
dependency on communication networks only keeps growing. At the same time, the
frequency of weather and climate disasters, such as extreme precipitation and tropical
cyclones, has increased as well [11]. It is thus becoming more and more important to
protect our networks to these and other types of natural disasters.

1.1. REGIONAL FAILURES
In this thesis, we consider the resilience of communication networks to physical damage.
Within this context, the main driver of resilience is redundancy.

A communication network is often modeled as a graph. The nodes in the graph rep-
resent devices (e.g. routers, servers, base stations, or even mobile phones), while the
links in the graph represent the physical (or in some cases virtual) connections between
these nodes. For example, Fig. 1.1 shows a simple line topology of 6 nodes. If node 1
wants to send a message to node 6, it first passes through nodes 2 to 5, and vice-versa.

A line topology is not very resilient to failures; if node 2, 3, 4, or 5 fails, the network
is split into two parts (called connected components). Suddenly, node 1 is not able to
communicate with node 6 anymore, even though both nodes themselves are still func-
tioning.

A ring topology, as shown in Fig. 1.2, is already much more resilient. By adding a
single link between nodes 1 and 6, we have made the network resilient to any single
hardware failure. Whichever node or link fails, there will always be a possible path be-
tween any of the surviving nodes (albeit with a reduction in total bandwidth capacity
and a potential increase in latency).

From a topological perspective, the ring topology in Fig. 1.2 seems quite resilient.
However, we have completely ignored the location of each network component. It is
cheaper to host nodes in the same datacenter, and to route links through the same cables
or ducts. Suppose nodes 1 and 4 share a datacenter, as illustrated in Fig. 1.3. The network
would still be able to handle any random node or link failure. However, it would not be
able to handle the failure of a whole datacenter (for example, due to a loss of power).
This kind of failures, where multiple components within a region fail together, are called
regional failures or geographically correlated challenges.
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Figure 1.1: 6-node line topology.
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Figure 1.2: 6-node ring topology.
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(a) Before regional failure.
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(b) After regional failure.

Figure 1.3: 6-node ring topology. Nodes 1 and 4 share a common location.

Regional failures can range from the very small (e.g., the failure of 2 cables sharing
a common duct) to the very large (e.g., due to a natural disaster). Past events have re-
peatedly shown that many communication networks are vulnerable to regional failures
all across this scale [12–15]. Thus, we need approaches to network resilience engineer-
ing that take into account both the structure of a network, as well as the locations of its
components.

1.2. RESILIENCE
In the previous section, we referred to resilience in an intuitive manner. In fact, most
works on the disaster resilience of communication networks do not explicitly define
what “resilience” means, simply relying on a common understanding of the word. It
turns out, however, that resilience is quite a broad concept. As a result, resilience (and
related terms) has many different definitions across many different disciplines [16].

There does seem to be a general consensus that resilience is not just about mitigating
the initial impact of an adverse event. According to Hickford et al., four main principles
emerge across many of the definitions of resilience: (1) anticipate, (2) absorb, (3) adapt,
and (4) recover. In a disaster-resilient network, the operator anticipates and adapts to
disasters, with the goal of both increasing the ability of communication networks to ab-
sorb and adapt to the impact of a disaster (as to “maintain an acceptable level of ser-
vice” [17]), as well their own ability to quickly recover the network.
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Figure 1.4: A simplified example of a resilience curve.

To measure and improve the resilience of a network, one needs to quantify the net-
work’s performance after a disaster. Fig. 1.4 shows a simplified resilience curve of the
performance of a network after a natural disaster. At t = t1, the network is struck by a
disaster, causing an immediate drop in performance (absorb). Either manually or auto-
matically, traffic is rerouted around the disaster area, thus allowing the network to regain
some performance (adapt/recover). Finally, the much slower process of network repair
can begin (recover). At t = t3, the network is fully recovered. Hopefully, by learning from
their response to the disaster, the network operator is able to increase the resilience of
the network to the next disaster (adapt and anticipate).

1.2.1. METRIC

The selection of a metric is crucial for assessing and increasing disaster resilience. The
choice of metric almost completely determines one’s focus. For example, some authors
choose to quantify the impact of a disaster by the number of damaged components.
While this might be a good indicator of the monetary repair costs of a disaster, it is not
a good resilience metric. The metric completely shifts the operator’s focus to placing
network components away from hazardous areas. This seems like a good idea, but it
ignores the network’s purpose of connecting end-users. In fact, it could punish the addi-
tion of redundant components to the network! Essentially, a resilience metric should re-
flect the requirements, or “mission”, of the network. These requirements can differ from
stakeholder to stakeholder. For example, a network operator might prioritize meeting
its service level agreements, an individual business its own connection quality, and a
government the ability to maintain communication with its citizens.

Since there is no one correct metric, the algorithms and approaches we propose in
this thesis are designed to be applicable to almost any choice of resilience metric.

As a proof of concept, we demonstrate our approaches on the Average Two-Terminal
Reliability (ATTR) metric. The ATTR is the ratio of the number of node pairs that remain
connected after a regional failure, and the total number of node pairs in the original
network. The ATTR of a connected network is 1, while the ATTR of a network without
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any surviving links is 0. The ATTR is one of the more powerful metrics for measuring the
ability of the network to maintain connections between different areas.

As an example, the number of connected node pairs in Fig. 1.3b is 4. The total num-
ber of node pairs in the original network (Fig. 1.3a) was 6×5 = 30. Thus, the ATTR of the
network after this regional failure is 4

30 ≈ 0.1331. The loss of a single datacenter discon-
nected almost all node pairs!

ATTR is named after two-terminal reliability [18]. The more general definition of
ATTR, which incorporates component failure probabilities, is the average of the proba-
bilities that pairs of nodes remain connected. If we only allow link failure probabilities,
this is exactly the average of the two-terminal reliability of all node pairs.

1.3. THE COST OF RESILIENCE
Completely negating the impact of natural disasters on a network is not only nearly im-
possible, but also tremendously expensive. Any practical approach to raising the disas-
ter resilience of a network is a trade-off between the cost of enhancing resilience and the
impact this has on the resilience of the network. Of course, stakeholders can only make
these trade-offs if they are well-informed on both the risk of disasters to the network, as
well as the cost of increasing disaster resilience.

The difficulty here lies in that the number of choices a network operator can make to
increase the resilience of the network, as well as the number of potential disasters that
can strike the network, are large and diverse. In addition, data on the impact of these
potential disasters on the network is quite sparse, as individual disasters are rare2. It is
simply unfeasible to take all these potentialities into account manually. Thus, we are
in need of algorithms that can help assess, as well as potentially advice on, the disaster
resilience of a network.

Fig. 1.5 shows a seismic hazard map of the conterminous United States. Clearly, seis-
mic hazard is not uniform. Some areas are at a much higher risk of earthquakes than
other areas. The same is true for many other, if not all, types of natural disasters.

In general, different areas will experience disasters at different frequencies, and with
different properties. If we want to support stakeholders in making well-informed deci-
sions, it is crucial that our solutions take this into account. The only way to do so is to
create algorithms that can act on currently available disaster data.

In the next sections, we give a detailed overview of past work on the disaster re-
silience of communication networks. We focus on how different approaches model dis-
asters, and how well these approaches allow stakeholders to incorporate disaster data.
Readers without interest in a broad overview of the field can safely skip to Section 1.3.3
(for a discussion of data-driven approaches) or Section 1.4 (for the problem statement).

1.3.1. PROTECTING AGAINST ALL DISASTERS

In 1991, Bienstock proposed a polynomial-time algorithm for a generalized variant of
the min-cut problem for plane graphs, called the min-break problem [19]. Bienstock

1For comparison, the ATTR of a 6-node ring topology after a single node failure is 5∗4
30 = 2

3 ≈ 0.667
2In fact, a natural disaster is an example of a so-called High Impact, Low Frequency (HILF) event.
3https://www.usgs.gov/media/images/2018-long-term-national-seismic-hazard-map

https://www.usgs.gov/media/images/2018-long-term-national-seismic-hazard-map


1

6 INTRODUCTION

Figure 1.5: 2018 Long-term National Seismic Hazard Map of the conterminous United States3.

modeled a regional failure as a “hole” - a subset of the plane homeomorphic to an open
disk. Given a finite set of holes and nodes s and t, the min-break problem is to compute
the minimum number of holes whose selection would disconnect s from t. Bienstock
did not discuss how to obtain the list of holes. Years later, when research on the disaster-
resilience of networks had begun in earnest, Neumayer et al. defined the Geographical
Min-Cut By Circular Disasters Problem (GMCCD) [20]. Instead of only considering a fi-
nite set of potential holes, the GMCCD problem considers all possible disk failures of
radius r (except those centered inside a protective disk around s and t). The goal is the
same as the min-break problem: find a minimum cardinality set of disks that disconnect
s from t. While the min-cut approach could have potential for assessing the risk of tar-
geted attacks to a network, it is less applicable to natural disasters, since it essentially
looks for the most impactful combination of regional failures.

A number of works consider the problem of finding the regional failure that does the
most damage to the network [21–28] or drops the performance of the network below
a specified level [29]. While suitable for assessing and preparing networks for targeted
attacks (such as an Electromagnetic Pulse (EMP) attack), these approaches are less ef-
fective in assessing disaster resiliency. Effectively, they only convey information on a
single, probably extremely rare, disaster scenario.

A Shared Risk Group (SRG) is a set of network components that may fail simultane-
ously. A Shared Risk Link Group (SRLG) is a SRG of links, and a Shared Risk Node Group
(SRNG) a SRG of nodes. Note that, since we can capture any node failure as a combined
failure of multiple links, SRLGs are essentially a generalization of SRNGs. By selecting a
group of SRGs, and ensuring that primary and backup paths are not routed through the
same SRG, operators can enhance the resilience of their network to the combined failure
of components that, e.g., share common physical infrastructure.
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The concept of SRGs has also been applied to disaster resilience; put simply, if we
are able to model each potential disaster as an SRG, and if the operator can protect their
network against all these SRGs, we have achieved full disaster resilience.

Tapolcai et al. defined a regional failure as any non-empty set of links, which can all
be covered by a disk of radius r [30, 31]. They noted that protecting the network against
all possible maximal regional failures is sufficient to protect the network against all pos-
sible regional failures4. Thus, they proposed a polynomial-time algorithm for finding all
maximal regional failures, as well as a polynomial-time algorithm for finding the union
of all maximal regional failures for all radii below r (leaving the exact selection of re-
gional failures to the operator). Vass et al. also proposed over-estimating the impact of
a regional failure by a disk, and gave an algorithm for finding all maximal link sets that
can be hit by a disk hitting exactly k nodes [32]. They later extended their work to the
case where the exact paths of each link are not known [33]. Recently, Vass et al. gave
algorithms for finding maximal regional failures for networks on a sphere, instead of on
the plane (as is commonly assumed) [34]. Depending on the radius, applying these tech-
niques could lead to both over-protecting and under-protecting paths in different areas
of the network. Furthermore, since no probabilities are assigned to each regional failure,
stakeholders lack the necessary information to make well-informed trade-offs.

Cheng et al. took a similar approach [35]. They modeled a regional failure as a disk
with fixed radius, and proposed scanning potential failure coordinates to find all possi-
ble combinations of node failures. Cheng et al. also considered a simplified probabilistic
regional failure model, consisting of two disks with the same center. Nodes in the in-
ner disk are assigned a failure probability of 1, and nodes in the outer circle a failure
probability of 0.5. To simplify scanning, in this model, they only allow regional failures
centered at network nodes. These regional failures could then be used to find vulnerable
areas and assess the disaster resilience of the network.

Gardner et al. proposed using Geographic Multi-Topology Routing to quickly route
traffic away from a regional failure [36]. The main idea behind their approach is that,
in the event of a failure, the network switches to a virtual topology that routes traffic
around the disaster region. To achieve this, they generate a set of topologies based on
disk failures, where link weights are adjusted depending on the distance between the
link and the center of the disk failure. Their algorithms can create a set of topologies by
covering the network area by disk failures, or by being explicitly provided a set of disk
centers. Although Gardner et al. assumed fixed disk sizes, they did demonstrate that the
performance of their approach greatly depends on how well the actual regional failures
match the model used to generate the virtual topology. This suggests that methods such
as these could significantly benefit from the application of disaster data.

Zhang et al. proposed strengthening (or shielding) critical links against regional fail-
ures [37]. They gave an MILP formulation and heuristics for finding the minimum-cost
combination of shielded links that ensures the network remains connected or partially
connected under any SRLG. In addition, they also gave an algorithm and MILP formula-
tions for ensuring connectivity between two nodes under any disk failure of fixed radius,
or any SRLG. Allawi et al. proposed adding wireless backup connections to a subset of
network links, and gave algorithms for selecting these links under a random regional

4In other words, the maximal regional failures can be used as Shared Risk Link Groups.
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failure model [38]. Essentially, this is another variant of the shielding problem.
Habib et al. and Ju et al. proposed algorithms for placing content, and finding pri-

mary and backup paths, in datacenter networks [39, 40]. Given a set of SRGs, their ap-
proaches ensure each node remains connected to their requested content. Liu et al.
discussed a similar problem, but proposed using cooperative storage instead of cloning
data [41]. In their approach, content is encoded into several fragments. To recover the
content, only a subset of fragments is required. Since a single fragment is much smaller
than a whole clone of the content, this approach requires less storage space, while still
protecting the network against any SRG.

Grebla et al. studied the distribution of replicas or fragments of a single file [42]. They
proposed algorithms to place replicas (or fragments, when erasure coding is used) such
that any node could still access the file after any potential regional failure. Regional fail-
ures were modeled as arbitrary disks, line segments, or a union of b disks and line seg-
ments.

Cai et al. proposed a disaster protection scheme for service function chain embed-
ding using multi-path routing [43]. Their approach provisions primary and backup vir-
tual network functions and paths such that the network remains functioning under any
single SRG failure.

SRLGs and SRNGs can also be used to map virtual machines and their backup re-
sources in such a way that the virtual machines and their connections are protected
against any disaster of interest [44–46].

Banerjee et al. proposed algorithms for augmenting a network with additional links
such that, after any disk failure of radius r , the size of the largest connected compo-
nent [25] or the number of connected components [26] stays above a given level. Tapolcai
et al. proposed algorithms for computing additional links, and the routes of these links,
such that all surviving nodes remain connected after any disk failure of radius r [47].

A large number of approaches do not explicitly model regional failures, but consider
the distance between network components instead [21, 35, 48–58]. The geodiversity be-
tween a pair of paths is the minimum distance between any intermediate node or edge
of one path and any node or edge of the other path [49, 51, 57]. Clearly, any single re-
gional failure with a diameter smaller than the geodiversity (that does not strike one of
the end-nodes) cannot take out both paths simultaneously. Implicitly, these methods
make the same assumptions as approaches that model regional failures as disk failures.
However, they do allow for some flexibility by setting different geodiversity constraints
per region [49, 52].

Girão-Silva et al. combined geodiversity with Shared Risk Link Groups (SRLG) [59].
They formulated integer linear programs for finding maximally SRLG-disjoint paths, as
well as finding geodiverse maximally SRLG-disjoint paths.

1.3.2. RANDOM DISASTER MODELS

In contrast to the previous approaches, a random failure model allows stakeholders to
assess the overall disaster resilience of the network, and to make informed trade-offs
based on disaster risk. Neumayer and Modiano gave polynomial-time algorithms for
computing the expected average two-terminal reliability and other metrics under ran-
dom disk or line failures [60]. They model the network as a graph on the plane, and
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assume a single random disk failure (of fixed radius) or line failure strikes the network.
Disaster occurrence probabilities are assumed to be uniform over the network area. A
number of other works take a similar approach by assuming uniform disaster probabil-
ity and characteristics, and computing the expected value of a metric, or the probability
that a metric exceeds some given value, after a random disaster [61–64].

An interesting, related approach, is to find the regions around the network that are
vulnerable to a regional failure. Gardner and Beard proposed two methods to find the
regions where a disk failure of a given radius would either disconnect a pre-selected pair
of nodes, or disconnect any part of the network [65]. Note that, under the assumption
of uniform occurrence probabilities, the total area of these regions is proportional to the
probability that a random disk failure would disconnect part of the network. Similarly,
Gardner et al. proposed an algorithm to find the regions where a disk failure of a given
radius could cause the network to fail to perform its mission [66].

Assessing the resilience of the network to uniform disk failures can be a powerful tool,
since it essentially measures if components are located too closely together. In fact, disks
are one of, if not the, most popular models for regional failures. Computing distances is
a cheap operation, and a disk can essentially be seen as an overestimate of any disaster
shape with a smaller or equal diameter. That being said, when evaluating the disaster
resilience of a network, assuming both uniform occurrence probabilities and disaster
sizes can and will lead to severe over- or under-estimations of disaster impact in different
areas of the network. As such, these approaches are best used in conjunction with a
disaster assessment based on actual disaster data.

Saito proposed a regional failure model where a randomly placed line splits the net-
work area in two [67]. Any network component intersecting the right-half plane formed
by the line are assigned a failure probability. Saito also considered a more generic con-
vex disaster area, constructed by randomly sampling a reference point and angle of two
reference lines intersecting this point [68]. He obtained some theoretical results for tree,
ring, and a combination of ring networks, and validated these results on a selection of
historical earthquakes.

Rahnamay-Naeini et al. proposed a model for multiple correlated random regional
failures [69]. In their model, the centers of regional failures are placed according to a
Strauss point process. Link failure probabilities depend on the distances to these centers
and are computed using Gaussian functions. The impact of random disasters following
this model can be computed by running a Monte Carlo simulation. Das et al. extended
the approach to include node and link failure probability functions based on Gaussian
functions, lines and, circles [70]. Neither of these approaches take disaster data into
account.

Cao et al. discussed a number of optimization problems with the goal of finding cable
paths that minimize the disconnection probability of cities under a random disaster [71].
They modeled a disaster as a disk with uniform center distribution and an exponentially
distributed radius.

A number of algorithms simply model a regional failure as a combination of compo-
nent failures or failure probabilities, and take a list of such regional failures as input [72–
80]. This bears a resemblance to SRGs, but also (either implicitly or explicitly) assigns
an occurrence probability to each SRG. The problem of obtaining the list of regional fail-
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ures and their related component failures is outside the scope of these approaches. In
this thesis, we call the combination of component failures after a regional failure a fail-
ure state. Our approach, discussed in Chapter 3, computes lists of failures states as an
intermediate step.

Another approach to assessing the resilience of a network is to select a specific disas-
ter, and then perform an in-depth simulation or computation of the impact of this disas-
ter on the network [81–84]. Given the variety and number of potential disasters that can
strike a network (and the extremely low frequency of any individual disaster scenario),
it is ill-advisable to solely assess network resilience on a single, or few, potential disas-
ter scenarios. Thus, this approach is best used in conjunction with other methods, to
further study a selection of interesting scenarios.

1.3.3. DATA-DRIVEN APPROACHES
By themselves, none of the previous approaches can assess or improve the disaster re-
silience of a network based on actual disaster data. In fact, many approaches explicitly
ignore disaster data by either protecting the network against any disk failure, or assum-
ing uniform disaster properties across the network area.

Ma et al. improved on the uniform random disaster model5 by dividing the network
region into a grid, and assigning an occurrence probability and intensity to each grid
cell [85]. Using this model, the impact of a random disaster on the network can be es-
timated by generating one regional failure per grid cell, and computing its impact on
the network (making the assumption that the impact of any other disaster centered on
the same grid cell will be roughly the same). The disadvantage of this model is that it
assumes all disasters occurring in each grid cell have the exact same properties. Fur-
thermore, Ma et al. failed to demonstrate how to extract both occurrence probabilities
and disaster intensities from actual disaster data.

Tran and Saito proposed two algorithms for enhancing the robustness of a network
that do take actual disaster data into account [86, 87]. Their algorithms aim to optimize
the weighted average of the sum of end-to-end disconnections of all node pairs under
a set of earthquake scenarios, by either adding new links to the network, or changing
the routes of existing links. They assume that, for each scenario, they are given a grid
of ground motion intensities. The failure probability of each link is then computed by
evaluating the length of the segments of the link passing through each grid cell and the
intensities at these grid cells. Ground motion grids for both past earthquakes and earth-
quake scenarios are readily available [88, 89]. This detailed regional failure model does
come at a cost, as the approach does not scale well to larger network sizes and disaster
sets. In particular, computing the end-to-end disconnection probabilities in their evalu-
ation metric is a well-known NP-hard problem for even a single disaster [18].

Eriksson et al. defined the bit-risk miles of a path between s and t as the sum of the
geographic distance and the historical and forecast outage risk of each node on the path
(weighted by the population weights of s and t, as well as some tuning parameters) [90].
Historical disasters are modeled as points, and a Gaussian kernel is used to convert these
to historical outage risks. Forecast outage risks are extracted by parsing hurricane fore-
casts. This method incorporates the inhomogeneity of disaster risk by extracting disaster

5In particular, they extended the work of Wang et al. [62].
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frequencies from actual disaster data. However, it does not consider that what makes a
regional failure regional: the simultaneous failure of multiple network components. By
summarizing disaster risk into bit-risk miles, we lose all information on the correlation
between component failures.

Once a disaster strikes the network, it is imperative that traffic is rerouted as soon as
possible. By adopting specialized protocols that react quickly to regional failures, one
can increase the disaster resilience of a network by improving the ability of the network
to adapt to regional failures [36, 55, 91–100]. By integrating these protocols with early
warning systems, it is even possible to start rerouting traffic and migrating services be-
fore a disaster has struck the network [90, 93, 95, 100–103]. To enable a quick response,
protocols like these respond with little to no dependence on human operators. Thus, we
consider this process outside the scope of this thesis.

1.4. DATA-DRIVEN DISASTER RESILIENCE

1.4.1. PROBLEM STATEMENT
Overall, there is currently a lack of approaches that allow stakeholders to assess and im-
prove the resilience of communication networks to natural disasters based on actual
disaster data. Thus, the main problem statement of this thesis is

How to create scalable, data-driven methods for assessing and improving the resilience
of communication networks to natural disasters.

This problem statement can be split into two sub-problems: assessing disaster resilience,
and improving disaster resilience.

The methods we propose in this thesis adhere to three important requirements. They
are

• scalable to large disaster datasets;

• demonstrated on publicly available disaster data; and

• applicable to most resilience metrics.

Since the start of this project, several other regional failure models that could incor-
porate disaster data have been proposed. Interestingly, this research can be categorized
into two opposite categories: (1) general approaches that aim to be applicable to almost
any disaster, but have not been demonstrated on actual disaster data [104, 105]; and (2)
specialized approaches that are only applicable to one type of disaster (or even only one
dataset), but have been demonstrated on actual disaster data [106–110].

1.4.2. OUR APPROACH
The main principle behind our approaches - which is described in more detail in Chap-
ter 3 - is to assess the disaster resilience of a network based on a large set of representa-
tive disaster scenarios. This relatively simple principle is surprisingly powerful. First, it
automatically forces our algorithms to take into account the inhomogeneity of natural
disasters. Second, it ensures our algorithms are applicable to currently existing disaster
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data6; disaster scenarios can be created synthetically, crafted by hand, sampled from a
distribution, and/or simply taken from a database of historical disasters.

The drawback of this approach is that the set of representative disasters should be
large enough to capture the properties of all potential disasters the analyst wants to con-
sider. This means representative disaster sets can grow very large (up to millions of disas-
ters). Our approaches should reflect this, and should remain tractable for a large number
of scenarios. Thus, scalability with the number of disaster scenarios is one of the main
challenges for our algorithms.

As assessing disaster resilience is an essential step in effectively improving disaster
resilience, the initial focus of this thesis is on resilience assessment. In Chapter 2, we
study the risk of earthquakes to the Internet, and show that while a large number of In-
ternet exchange points are threatened by earthquakes, spreading out IXPs and peering
links over multiple facilities can significantly reduce the impact of these earthquakes. In
Chapter 3, we introduce our framework for assessing the impact of disasters on a net-
work. The basic assumption in these chapters is that the network will only be affected
by one disaster at a time. In Chapter 4, we challenge this assumption. We show that
the probability of two disasters striking a network in quick succession can be significant,
and propose algorithms for assessing the probability of, and resilience to, these succes-
sive disasters.

Chapter 5 shifts the focus to resilience enhancement. In this chapter, we show that a
targeted attack after a natural disaster can greatly increase the impact of this disaster on
network performance. However, we also show that by selecting the right repair strategy,
the impact of a potential targeted attack can be severely diminished, at almost no cost to
the overall recovery of the network. We continue studying repair strategies in Chapter 6,
where we propose a framework to evaluate different node replacement strategies. In
Chapter 7, we consider network augmentation. We propose a set of algorithms that allow
network operators to find cable routes that enhance disaster resilience in a cost-efficient
manner. One of the strengths of these algorithms is the explainability of their solutions;
for each potential cable, the algorithm can show which disaster areas the cable aims to
avoid, and how much it values avoiding each of these areas.

Our approach is geared towards helping stakeholders anticipate disasters. In Chap-
ters 2 to 5, we assess the ability of the network to absorb disasters. With a change of
metric however, these approaches can also assess the ability of the network to adapt and
recover from disasters. Chapter 6 aims towards helping operators recover their network
more effectively, and the framework we propose in Chapter 7 advises operators on how
to improve the ability of their network to absorb disasters.

6In fact, representative disaster sets are similar to the stochastic event sets used in catastrophe modeling [111].
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A GLOBAL STUDY OF THE RISK OF

EARTHQUAKES TO IXPS

As a demonstration of data-driven resilience assessment, we first conduct an analysis of
the resilience of key Internet infrastructure - namely IXPs - to earthquakes. We find that
many facilities are at risk of earthquakes. More than 50% of the facilities have at least a
2% probability of experiencing potentially damaging levels of shaking within a period of
50 years. Furthermore, when an earthquake occurs, it is not unlikely that multiple facil-
ities will fail simultaneously. We estimate that there is a 10% probability that at least 20
facilities will simultaneously experience potentially damaging levels of shaking within a
period of 50 years. On the positive side, our analysis shows that Internet Exchange Points
that host more Autonomous Systems tend to be located in less earthquake-prone areas,
and that spreading Internet Exchange Points and peering links out over multiple facilities
significantly reduces the impact of earthquakes to Internet Exchange Points and Autono-
mous Systems. Following this observation, we propose a novel metric and accompanying
algorithm to help AS operators select peering facilities, based on the probability of simul-
taneous facility failures. We show that applying our metric can significantly increase the
resilience of individual Autonomous Systems, as well as that of the Internet as a whole.

2.1. INTRODUCTION
As the Internet is a vital infrastructure, its resilience has been the focus of many studies.
Surprisingly, studies to the resiliency of the Internet as a whole to rare, impactful events,
such as natural disasters, are rare themselves. Events such as these can inflict significant,
concentrated damage to Internet infrastructure, disrupting local (and sometimes global)
connectivity just when people need it the most.

Many of the physical components and facilities making up the Internet are vulnera-
ble to intense levels of shaking. In 2006, an earthquake of the coast of Taiwan damaged
8 submarine cable systems, severely disrupting communications in the region[113]. The

Parts of this chapter have been published in IFIP Networking Conference, 2022 [112].
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2011 earthquake and subsequent tsunami of the coast of Japan caused extensive dam-
age to telecommunications buildings and equipment, leading to widespread connecti-
vity problems. The total cost of emergency restoration and reconstruction of the local
NTT East network was 80 billion yen (around 1 billion dollars at the time) [14, 114]. In
2015, Nepal was struck by a devastating earthquake, which damaged both cell towers
and back-haul infrastructure [15]. The total damage to the telecom industry was estima-
ted at 17.4 million dollars. The damage caused by the 2016 Kaikōura earthquake in New
Zealand led to local telecom outages of up to 5 days [115].

In this chapter, we aim to take a global look at the risk of earthquakes to key Internet
infrastructure. Our main focus is on Internet Exchange Points (IXPs). An IXP is a physical
infrastructure used by Autonomous Systems (ASes) to directly exchange traffic between
their networks. Besides potentially reducing costs (by reducing the amount of traffic
delivered via transit providers), IXPs have been shown to increase quality of service [116].

Given their critical role in the Internet and the presence of multiple ASes at each of
their facilities, the destruction of IXP facilities could have severe consequences for the
Internet as a whole. IXPs and network operators do take resiliency measures, such as
distributing their services over multiple facilities, and/or rerouting traffic through other
IXPs and ASes, in case of failures. But the loss of an IXP facility would certainly cause
both temporary issues, as well as reduce quality of service in the local area.

Using publicly available earthquake models (covering 68.9% of our IXP dataset) and
hazard computation tools, we estimate both the hazard to individual IXP facilities, as
well as the probability of simultaneous facility failures. Our main conclusions are as
follows:

• Many IXP facilities are at risk of potentially damaging levels of shaking: 32.4% of
facilities have at least a 10% probability of experiencing potentially damaging lev-
els of shaking within 50 years, and 50.9% of facilities at least a 2% probability.

• A minority of facilities host far more ASes than most other facilities. We find that
while a number of these facilities are still at risk of earthquakes, overall these more
important facilities tend to be located in less earthquake-prone areas.

• There is a real possibility of simultaneous facility failures: In 50 years, there is a 10%
probability that at least 20 facilities will experience potentially damaging levels of
shaking due to a single earthquake, and a more than 6% probability of 20 IXPs
simultaneously experiencing this level of shaking.

• Distributing IXPs over multiple facilities helps. The median probability that an IXP
with multiple facilities will simultaneously experience potentially damaging levels
of shaking at all its facilities is well below 1%.

To help operators increase the resilience of their ASes to earthquakes, we propose a
new metric and algorithm for selecting IXP facilities, based on the probability of simul-
taneous facility failures. We show that applying our metric can significantly increase the
resilience of individual ASes, as well as that of the Internet as a whole.
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2.2. RELATED WORK
There have been numerous studies on how to assess the risk of earthquakes and other
natural disasters to single communication networks. The topic has been addressed by
both network scientists (e.g. [62, 105, 117]) and seismologists [110]. Recently, Valen-
tini et al. undertook a multi-disciplinary study, combining insights from both network
science and seismology to create a custom-built model for assessing the resilience of Ital-
ian communication networks to earthquakes [109]. While crucial to our understanding
of disaster risk, such studies focus on the resilience of single communication networks,
and their methods and results do not necessarily scale well to the Internet as a whole.

The Internet is an incredibly complex network of millions of devices. A combination
of a lack of complete data, as well as its scale, makes undertaking any risk assessment a
difficult endeavor. There are few studies on the resilience of the Internet as a whole to
disasters. Jyothi studied the risk of solar storms to the Internet by considering a number
of risk factors (such as the geographical spread of ASes and datacenters), as well as by
looking at the impact of random cable failures (where the probability of failure depends
on cable length and latitude) [118]. The author concluded that solar storms have the
potential to massively disrupt the Internet.

Anderson et al. analyzed the risk of wildfires to cellular infrastructure in the United
States, by studying which cellular transceivers are under threat from wildfires [119]. They
computed the number of transceivers that lied within wildfire perimeters in past years,
as well as the number of transceivers that lie within higher-threat areas (as identified by
the United States Forest Service).

Eriksson et al. proposed RiskRoute, a routing framework that can configure routes
based on both historical and forecasted outage threats [90]. The goal of RiskRoute is
to minimize bit-risk miles: the sum of geographic distance and expected outage risk
encountered along a routing path. The authors also proposed a method for selecting
new peering links, with the goal of minimizing overall bit-risk miles. RiskRoute, and
this method, do not consider simultaneous component failures, but only consider the
individual risk to each point of presence in isolation.

Durairajan et al. and Mayer et al. used data from the Internet Atlas [120] to analyze
the risk of global warming [121] and earthquakes [122] to Internet infrastructure in the
United States. Both of these works essentially analyze the risk to Internet infrastructure
by determining the amount of infrastructure at risk. Mayer et al. do not consider how
many, and which, network components could be struck by any individual earthquake.

The true danger of an earthquake to communication networks is not only the dam-
age it can inflict to any individual point of presence, but also its ability to disrupt multi-
ple points of presence at once. Any approach that only considers the risk to individual
network components in isolation essentially only paints half the picture. For a more
thorough analysis of the risk of earthquakes to the Internet, we need to consider which
components may be disrupted simultaneously, and with what probability. This requires
a more complex approach that considers individual earthquake scenarios.

While some studies have assessed the impact of disaster scenarios on a smaller scale,
to the best of our knowledge, we are the first to analyze the risk of natural disasters to the
Internet using a large number of realistic disaster scenarios generated based on actual
disaster data, as well as the first to assess the risk of earthquakes to Internet infrastruc-
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Figure 2.1: Assignment of facility locations to hazard models. All unassigned locations are colored white.

ture globally. We combine a set of 19 earthquake hazard models covering approximately
68.9% of global IXP facilities and generate a total of 902,134,602 earthquake scenarios to
estimate the risk to individual facilities, as well as the risk of earthquakes to the Internet
as a whole.

2.3. DATASETS

2.3.1. IXPS
We use the CAIDA Internet eXchange Points (IXPs) Dataset [123] as our source of IXP
data. This dataset has been constructed by combining information from PeeringDB,
Hurricane Electric, and Packet Clearing House. The dataset gives the locations of IXPs
(from all sources), the locations of facilities (i.e., datacenters) hosting these IXPs (only
from PeeringDB), and the autonomous systems (ASes) peering at each IXP. A single facil-
ity can host multiple IXPs, and an IXP can be distributed over multiple facilities.

Our study will be on the level of individual facilities. Thus, as a first step, we create
a singly facility for each IXP without assigned facilities. We place these facilities at the
location of the IXP itself. IXPs without location information (country + city or lon+lat) are
filtered out. We also filter out all facilities that do not host an IXP. The resulting dataset
contains 1,887 facilities, hosting a total of 1,162 IXPs.

For our analysis, we need the longitude and latitude of each facility. Most facilities
are already assigned precise geographical locations. For the 220 facilities missing co-
ordinates, we assign the coordinates of their city, as given by Geonames1. Some facil-
ities were assigned incorrect coordinates by PeeringDB, placing them in the middle of
the ocean. In addition, there was a mismatch between the assigned city and country of
some IXPs (e.g., Haarlem located in Romania instead of the Netherlands). We manually
corrected the locations of these facilities.

1http://www.geonames.org/

http://www.geonames.org/
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2.3.2. OPENQUAKE ENGINE
We use the OpenQuake Engine [124] to estimate the earthquake hazard at each facility.
The OpenQuake Engine is an open-source software tool for earthquake hazard and risk
calculation. One of the key benefits of the OpenQuake Engine is the availability of hazard
data for most of the world. This allows us to use largely the same process to determine
earthquake risk, independent of the location of a facility.

To calculate earthquake hazards, the OpenQuake engine needs both a seismic source
system and a ground motion system. In the remainder of this chapter, we will refer to the
combination of seismic source system and ground motion system as a hazard model.

SEISMIC SOURCE SYSTEM

The seismic source system consists of multiple seismic source input models, and a seis-
mic source logic tree. A seismic source input model is a list of seismic sources. Each
source (e.g., a fault) can generate earthquakes, and the model describes the location,
timing, and other properties of these earthquakes. The OpenQuake engine assumes that
earthquake occurrences follow a Poisson distribution. The only exception to this are
non-parametric sources, which require the user to explicitly provide a set of earthquake
ruptures and their occurrence probabilities.

To incorporate epistemic uncertainties, the OpenQuake engine allows users to de-
fine multiple seismic source input models, as well as parameter assignments for these
models. The potential combinations of input models and parameters are given as a seis-
mic source logic tree. Each branch of the logic tree essentially gives a possible modeling
choice, and the weight assigned to this choice.

GROUND MOTION SYSTEM

Defining the seismic source system is not sufficient. To compute the potential shaking
intensity at each location, we also need one or more ground-motion prediction equa-
tions. These allow the engine to compute the expected shaking intensity at each location
of interest, for each potential earthquake. As with the seismic source system, epistemic
uncertainties are defined in a ground motion logic tree.
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Table 2.1: Hazard models used in our calculations.

Model Version IXP Facilities
2013 Euro-Mediterranean Seismic Hazard Model (ESHM13) [125] 6.1 629
Hazard Model for South America [126] 2016.0.0 158
2018 National Seismic Hazard Assessment for Australia [127] 2018.032 81
Indian Subcontinent PSHA [128] 2.0.1 61
Hazard Model for Southeast Asia (2018) [129] 2018.0.1 59
Hazard Model for Canada (2015) [130] 2015.1.1 44
Hazard Model for Indonesia [131] 2017.0.0 41
Hazard Model for Western Africa [132] 2018.0.0 40
2014 Earthquake Model of the Middle East (EMME14) [133] 1.5.0-2016-10-31 35
Hazard Model for Eastern Sub-Saharan Africa (2018) [134] 2018.0.0 33
Hazard Model for the Caribbean and Central America [135] 2018.0.0 31
New Zealand 2010 National Seismic Hazard Model2 04 27
Hazard Model for South Africa [136] 2018.0.1 14
EMCA Central Asia seismic source model [137] 1.1 10
Hazard Model for the Philippines (2018) [138] 2018.1.1 10
Hazard Model for the Arabian Peninsula [139] 2018.0.0 9
Hazard Model for Taiwan [140] 2015.0.0 9
Hazard Model for Northern Africa (2018) [141] 2018.0.0 7
Papua New Guinea Seismic Hazard Assessment [142] NSHA_2019 3

HAZARD MODELS

To attain global coverage, we need to combine results from multiple hazard models (see
Table 2.1). Versions of these models were also used by the Global Earthquake Model
(GEM) foundation to create their Global Seismic Hazard Map3. We only make use of
publicly available models that are not under any non-disclosure agreement. While this
does leave some gaps in our coverage, we are still able to estimate the hazard to 1,301
out of 1,887 facilities (68.9%).

Based on their location, we assign each facility to a single hazard model (see Fig. 2.1).
Not unexpectedly, the European ESHM13 model is assigned the largest number of facil-
ities (629, or 48.3% of assigned facilities). The largest gap in our coverage is the United
States of America: 394, or 67.2%, of the unassigned facilities are located in the United
States.

The public datasets for New Zealand and Central Asia only contained seismic source
input models. For these regions, we used the ground motion system specified by GEM4

instead.

2.4. FACILITIES AT RISK

2.4.1. METHODS
We first study the hazard of earthquakes to individual IXP facilities. Whereas the strength
of an earthquake is typically indicated by its magnitude, we are instead interested in the
intensity of shaking at each facility. There are a number of intensity measures used to
measure the intensity of shaking, each with their own advantages and disadvantages.
One of the more common intensity measures in use today is Peak Ground Accelera-
tion (PGA).

2The Earthquake Rates – National Seismic Hazard Model is owned by GNS Science and is based on the model
explained in [143]. The model is held under licence from GNS Science.

3https://www.globalquakemodel.org/gem-maps/global-earthquake-hazard-map
4https://hazard.openquake.org/gem/models

https://www.globalquakemodel.org/gem-maps/global-earthquake-hazard-map
https://hazard.openquake.org/gem/models
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As the name implies, PGA measures the peak acceleration of the ground during an
earthquake. It is seen as a good indicator of earthquake hazard for short buildings (of up
to 7 floors) [144]. We have chosen to focus on PGA in this study as it is one of the more
intuitive intensity measures, and because we assume most IXP facilities are located in
short buildings.

We are interested in (1) the level of shaking we can expect in a given investigation pe-
riod and (2) how often we can expect potentially damaging levels of shaking at each facil-
ity. Both of these objectives can be achieved by running a classical Probabilistic Seismic
Hazard Analysis (PSHA). Simply stated, a classical PSHA considers all potential earth-
quake ruptures together with the ground motion prediction equations, to compute a
hazard curve for each location [145, 146]. A hazard curve gives the probability of exceed-
ing given levels of shaking at a location (or site) within a specified investigation time. The
hazard curves can be reduced to a hazard map, which shows the level of shaking with a
given probability of exceedance (e.g. the PGA with a 2% probability of exceedance) at
each site.

As discussed in Section 2.3.2, OpenQuake incorporates epistemic uncertainties within
a logic tree. Each path through this logic tree (called a realization in the OpenQuake En-
gine) constitutes a different combination of ground motion prediction equations and
source model. This means that instead of computing a single hazard curve for each site,
the engine needs to compute a hazard curve for each realization. Thus, when we men-
tion a probability of exceedance within this chapter, we are actually referring to a mean
probability of exceedance of all hazard curves.

POTENTIALLY DAMAGING LEVELS OF SHAKING

PGA is an objective measure of the shaking, or ground-motion, due to an earthquake.
While this correlates with damage, it is not a direct measure of the damage to buildings
and infrastructure. In contrast, a macroseismic intensity scale, such as the Modified
Mercalli Intensity scale (MMI), measures the observable (but more subjective) effects of
an earthquake. In some papers and hazard maps (e.g., [109, 122, 147]), a macroseismic
intensity of 6 (in MMI or the Mercalli-Cancani-Sieberg (MCS) scale) is used as a sort of
lower-bound for potentially damaging levels of shaking5.

It is not straightforward to convert PGA to a macroseismic intensity. The level of
damage to a building depends on a variety of factors including construction materials,
building codes, and the number of floors. Thus, there are inherent regional differences
in the relationship between ground motion and macroseismic intensity. Caprio et al.
quantified some of these regional differences, and constructed global ground motion to
intensity conversion equations (for a combined MMI/MCS intensity scale) [148]. While
one would preferably use regional conversion equations, the global scope of our study
makes the global conversion equations a practical, albeit imperfect, alternative.

5Note that the building itself does not need to be damaged to disrupt an IXP facility. A facility could also be
disrupted if equipment inside the building is damaged or falls down, or if infrastructure in the surrounding
area is damaged.
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A global macroseismic intensity of 6 roughly corresponds to a PGA of 0.086g. Thus,
we will use a PGA of 0.086g as a threshold for potentially damaging levels of shaking. In
comparison, using conversion equations for California [149] would result in a threshold
of 0.11g (or 0.084g if we round up from an intensity of 5.5), and Mayer et al. assumed
infrastructure is potentially damaged if the PGA exceeds 0.092g [122].

CALCULATION SETUP

We run a classical PSHA with an investigation time of 50 years on each hazard model6.
We compute the probability of exceeding a PGA of 0.086g in 50 years, as well as the PGA
with a probability of 10% and 2% of being exceeded in 50 years. The 10% and 2% prob-
abilities of exceedance in 50 years are two common choices for seismic hazard maps.
They correspond to a return period of 475 and 2,475 years, respectively.

Configuration To run a PSHA in OpenQuake, we need to provide a configuration file.
The configuration file points to the files containing the logic trees, specifies the sites (and
importantly, the attributes of these sites), and gives the calculation parameters. The haz-
ard models for Europe, Australia, the Indian subcontinent, the Middle East, and Papua
New Guinea include initial configuration files. For these models, we kept most calcula-
tion and site parameters, and only changed the sites, investigation time, and the inten-
sity measure type and levels.

For all other hazard models, we set the site attributes to the same reference values
used in the ESHM13 (corresponding to a reference rock condition matching Eurocode 87

Type A). This closely matches the choice of site attributes used by GEM to construct the
Global Earthquake Hazard Map [150], which opted to choose attributes that represent
“rock conditions according to the large majority of classification schemes in building
codes and normatives”.

Most of the calculation parameters are essentially a trade-of between precision and
calculation time. We set rupture_mesh_spacing to 58, width_of_mfd_bin to 0.1, and
area_source_discretization to 10. One can reduce computation times further by
setting complex_fault_mesh_spacing and pointsource_distance. However, this
was not necessary for our calculations, as the number of sites we consider is relatively
low.

One of the more important parameters is the maximum distance between ruptures
and sites at which the OpenQuake engine still considers the rupture when computing the
hazard at a site. By lowering this setting, one can reduce computation times by excluding
ruptures that are far away and would not significantly impact the computed hazard. We
set this distance to an, in our eyes, conservative level of 800km9. For Canada, we indicate
a maximum distance per tectonic region type, as described in [151].

6With the exception of the Caribbean and Central America and the Philippines. These models contain non-
parametric seismic sources, and are fixed at an investigation time of 1 year. We convert their results to a 50
year investigation time by assuming Poissonian occurrences.

7https://eurocodes.jrc.ec.europa.eu/showpage.php?id=138
8For Taiwan, we lowered this value to 1, as the model contains seismic sources with low magnitudes that can

not be represented properly with a mesh spacing of 5
9For comparison, the maximum distances are set to 200km; 400km and 1000km; 200km; 150km; and 200km

and 600km for Europe; Australia; the Indian subcontinent; the Middle East; and Papua New Guinea respec-
tively.

https://eurocodes.jrc.ec.europa.eu/showpage.php?id=138
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Figure 2.2: Locations of facilities covered by a hazard model from Table 2.1, and the local PGA with a 2% prob-
ability of being exceeded in 50 years. Results for the conterminous US were added by extracting PGA values
from the 2018 USGS long-term seismic hazard map [147].
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Figure 2.3: Locations of facilities covered by a hazard model from Table 2.1 and facilities in the conterminous
United States, and the total weight of these facilities.

To prevent very high, potentially unrealistic estimates of the level of shaking, the tail-
end of the ground motion distribution is typically cut off. In the OpenQuake engine, this
can be done by setting a truncation level. In our calculations, we use a truncation level
of 3.

2.4.2. RESULTS
Fig. 2.2 shows the PGA with a 2% probability of exceedance of each unique location of
the facilities covered by one of the hazard models, as well as those in the conterminous
United States. In this section, we discuss the facilities covered by the hazard models. For
a more complete analysis, we briefly discuss the hazard of US facilities in Section 2.4.4.
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Figure 2.4: The number of facilities with at least a 10% probability of exceeding a given PGA in 50 years. The
red line indicates our threshold of potentially damaging levels of shaking.
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Figure 2.5: The number of facilities with at least a 2% probability of exceeding a given PGA in 50 years. The red
line indicates our threshold of potentially damaging levels of shaking.

The hazard models cover a total of 1,301 facilities spread out over 1,135 unique lo-
cations. Together, these facilities host 849 unique IXPs. The facilities with the highest
shaking hazard are located in Quito, Ecuador. These facilities have a 10% probability of
exceeding a PGA of 0.744g and a 2% probability of exceeding a PGA of 1.24g (approxi-
mately equivalent to a macroseismic intensity of 9 and 10, respectively).

Figures 2.4 and 2.5 show the PGA versus the number of facilities with at least a 10%
(respectively 2%) probability of exceeding this PGA in 50 years. A surprising number of
facilities are at risk of potentially damaging levels of shaking. While the median PGA with
a 10% probability of exceedance is only 0.0333g, the median PGA with a 2% probability of
exceedance is 0.0928g - just above our threshold of 0.086g. Overall, 422 (32.4%) facilities
have at least a 10% probability of experiencing potentially damaging levels of shaking
within a period of 50 years and 662 (50.9%) facilities at least a 2% probability.
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Probability of Exceedance facilities
≤ 0.01 496

0.01 - 0.02 143
0.02 - 0.1 240
0.1 - 0.2 116
0.2 - 0.5 113
0.5 - 0.8 130
0.8 - 1 63

Table 2.2: The number of facilities with given probabilities of exceeding potentially damaging levels of shaking
(PGA of 0.086g) within a period of 50 years.
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Figure 2.6: Weight of each facility versus the probability of exceeding potentially damaging levels of shaking
within a period of 50 years.

Table 2.2 shows the number of facilities with given probabilities of exceeding poten-
tially damaging levels of shaking within a period of 50 years. Interestingly, Quito is not
the location with the highest probability of experiencing potentially damaging levels of
shaking. The facility with the highest probability, and which thus is most often expected
to experience this level of shaking, is located in Changhua, Taiwan. The probability that
this facility experiences a PGA of at least 0.086g in a period of 50 years is almost 100%!

Of course, not every facility is equally important. To measure the importance of each
IXP, we count the number of ASes at each IXP. Although the dataset does not contain all
ASes that peer at every IXP, we expect this number to be proportional to the real number
of ASes at an IXP and thus a reasonable measure of its importance. We set the weight of
each facility to the sum of the number of ASes of each of the IXPs it hosts, and set the
weight of each location to the sum of the weights of all facilities at this location. The
results have been plotted in Fig. 2.3.

Most IXPs only host a few ASes: the median number of ASes at an IXP is 11, and there
are only 138 IXPs (out of 1162) with at least 100 ASes. The disruption of these larger IXPs
would impact the Internet much more than that of other IXPs.
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Figure 2.7: The median probability of exceeding potentially damaging levels of shaking within a period of
50 years at each facility of every country. Countries with either (1) no facilities or (2) facilities that were not
assigned to a hazard model (see Fig. 2.1) are excluded (No Data).

Fig. 2.6 shows the weight and probability of exceeding potentially damaging levels
of shaking of each facility covered by one of the hazard models. Overall, facilities with
a larger weight have a lower probability of experiencing damaging levels of shaking: the
median probability of exceeding potentially damaging levels of shaking within a period
of 50 years is respectively 0.0355, 0.0134, and 0.00576 for facilities with a weight below
100, at least 100, and at least 1,000. However, there are a number of high-weight facilities
in higher-risk areas: there are 215 (of 502) facilities with a weight of at least 100 that have
at least a 2% probability of exceeding potentially damaging levels of shaking, and 26 (of
84) facilities with a weight of at least 1,000 that have at least a 2% probability of exceeding
potentially damaging levels of shaking.

2.4.3. COUNTRY-LEVEL ANALYSIS

In this section, we analyze the risk of earthquakes to IXP facilities on a country-level by
mapping each facility to the region denoted by its ISO 3166 two-letter country code [152].

Fig. 2.7 shows the median probability of exceeding potentially damaging levels of
shaking for each country. This essentially shows the earthquake hazard that an average
facility in each country faces. These values are affected by both the frequency and inten-
sity of earthquakes in each country, as well as the exact placement of facilities within the
country.

The median probability does not give the full picture, and even hides the influence
of any outliers within a country. Risk is a combination of probability and impact. Thus,
what we are more interested in is the number of facilities that could be disrupted by
earthquakes in each country.

Fig. 2.8 shows the sum of exceedance probabilities of each country. Or, in other
words, the expected number of facilities in each country that will experience potentially
damaging levels of shaking at least once within a period of 50 years. We can see that the
risk in countries with a low median probability of exceeding potentially damaging levels
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Figure 2.8: The expected number of facilities that will experience potentially damaging levels of shaking within
a period of 50 years in each country. Countries with either (1) no facilities or (2) facilities that were not assigned
to a hazard model (see Fig. 2.1) are excluded (No Data).
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Figure 2.9: The total weight of facilities in each country.

of shaking can still be relatively high, simply due to the number of facilities. Similarly,
some countries with a high median probability of exceeding potentially damaging lev-
els of shaking are at lower risk than one might expect, because they do not host many
facilities.

Indonesia is both prone to large earthquakes, and hosts a reasonably high number of
IXP facilities (38). As such, it is no surprise that it is the country with the highest expected
number of facilities that will experience potentially damaging levels of shaking (20.8).
Out of all countries covered by our hazard models, Germany hosts the most IXP facilities
(101). While it is not the most earthquake-prone country we have studied, it still ranks
as the country with the 14th highest expected number of facilities that will experience
potentially damaging levels of shaking (4.16).
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Figure 2.10: The expected total weight of facilities that will experience potentially damaging levels of shaking
within a period of 50 years in each country. Countries with either (1) no facilities or (2) facilities that were not
assigned to a hazard model (see Fig. 2.1) are excluded (No Data).

As we discussed in the previous section, not every facility is equally important; most
facilities host less than 12 ASes, while a small minority host more than 1,000 ASes. Fig. 2.9
shows the sum of the weights of all facilities in each country. Interestingly, if we compare
this figure to Fig. 2.7, we can see that the facilities in countries with large total weight
(such as the Netherlands and Brazil) tend to have relatively lower probabilities of expe-
riencing potentially damaging levels of shaking.

Fig. 2.10 shows the sum of the product of weight and exceedance probability of each
facility for each country. That is, the total expected weight of the facilities in each country
that will experience potentially damaging levels of shaking at least once within a period
of 50 years. According to this metric, Indonesia only ranks as the second-most country
at risk (with an expected weight of 2,021). Due to its concentration of high-weight fa-
cilities, Germany has the highest total expected weight of facilities that will experience
potentially damaging levels of shaking (2,84310). Clearly, different weight functions may
lead to a different ranking.

2.4.4. CONTERMINOUS UNITED STATES
Out of the 1,887 facilities in the dataset, 390 are located in the conterminous United
States. The US has the 4th highest total weight of all countries. Although we lack a haz-
ard model for the United States, we would be remiss if we completely ignore it. In this
section, we give a brief analysis of the seismic hazard to IXPs in the United States based
on the 2018 USGS long-term seismic hazard maps [147].

The hazard maps give hazard data for a grid of points spread out over the conter-
minous United States. To determine the hazard for each facility, we simply map it to
its closest grid point. We first extract the PGA with a 2% probability of exceedance (see
Fig. 2.2) for site class B/C11. It seems the average hazard at US facilities is only slightly

10Note that this is only 5.72% of Germany’s total weight of 49,710.
11Roughly equivalent to the site class used for our own calculations.
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higher than that of the rest of the world; the median PGA with a 2% probability of excee-
dance is 0.103g, compared to 0.0928g in the rest of the world.

The USGS includes a map of the chance of “slight (or greater) damaging earthquake
shaking in 100 years” (i.e. the probability of MMI of 6 or higher), which can be easily
converted to 50 year probabilities. Note that, while very similar, these probabilities were
computed in a different manner than our probability of experiencing potentially dama-
ging levels of shaking, and thus are not perfectly comparable.

As in the rest of the world, a large number of US facilities are at risk of earthquakes;
the median probability of experiencing slight (or greater) damaging earthquake shaking
in 50 year is 0.0312. Out of the 390 facilities, 89 (22,8%) have at least a 10% probability of
experiencing damaging earthquake shaking, and 279 (71,5%) at least a 2% probability.

The expected number of US facilities that will experience damaging earthquake shak-
ing in 50 year is 68.9. While this is indeed more than any other country we analyzed, the
United States also contains by far the most facilities of all countries. As before, we assign
a weight to each facility equivalent to the sum of the number of ASes at each of the IXPs
it hosts. The total weight of facilities in the United States is 40,918 (4th in the world). The
expected total weight of US facilities that will experience damaging earthquake shaking
in 50 year is 11,384 (much more than any other country!). In the United States, more
than in the rest of the world, a large number of facilities with relatively high number of
ASes is at high risk of damaging earthquakes.

2.5. COMBINED FAILURES
Depending on its importance, the outage of a single IXP facility could have significant
impact. However, the Internet was designed to be resilient, and should be able to reroute
traffic around a failed facility. Even a single IXP is often spread out over multiple facilities,
allowing their clients to increase redundancy by peering at multiple different locations.
The real danger of natural disasters lies in their potential to disrupt multiple facilities
simultaneously.

Whereas in the previous section we considered facilities individually, in this section
we study the risk of simultaneous facility outages. In other words, we study the potential
disruption of multiple IXP facilities due to a single earthquake. To this end, we first run
an event-based PSHA in OpenQuake. In contrast to a classical PSHA, an event-based
PSHA randomly generates sets of earthquake events, called stochastic event sets, as well
as ground motions at each site during each of these events. A single stochastic event set
is a realisation of potential earthquakes during the full duration of the investigation time.
By generating multiple event sets, and processing the resulting ground motion fields, we
can determine which facilities could potentially be disrupted simultaneously (and with
which probability).

2.5.1. DISRUPTION

In this section, we say a facility is disrupted by an earthquake if it experiences shaking
with a PGA of at least 0.086g. In addition, we say an IXP is disrupted if at least one of its
facilities is disrupted, and is fully disrupted if all of its facilities are disrupted. Since our
threshold of 0.086g is a lower bound on potentially damaging levels of shaking, this gives
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us a pessimistic view of the potential impact of an earthquake.
We run an event-based PSHA with almost exactly the same settings as we did for the

classical PSHA. To reduce computation time and memory usage, we sample logic trees
with more than 200 realizations 200 times (number_of_logic_tree_samples = 200).
For each sampled realization, we generate 200 seismic event sets
(ses_per_logic_tree_path = 200)12. In total, we generate 902,134,602 events, out of
which 8,615,935 disrupt one or more facilities.

Analogously to the probability of exceedance, our goal will be to compute the mean
complementary cumulative distribution function (CCDF) of the worst-case impact of an
earthquake within a period of 50 years. If we focus on a single hazard model, estimating
these probabilities is straightforward. For example, suppose we want to estimate the
mean probability that at least 2 facilities are disrupted by a single earthquake within our
50 year investigation time (the CCDF of 1 disrupted facility). We can do so by first count-
ing the number of events that disrupt at least 2 facilities, cr , for each realization, r . Since
we assume earthquake occurrences are Poissonian, given realization r , we can estimate
the probability that at least 2 facilities are potentially disrupted by a single earthquake
by

1−e−
cr

200 (2.1)

To estimate the mean probability, we simply average these estimates over each realiza-
tion.

In our case, the situation is more complex, since we need to combine results from
multiple hazard models. Suppose we want to combine the results of two hazard mod-
els. For each hazard model, we sample up to 200 realizations. If we were to take the
naive approach, we would need to count events for each of the 40,000 combinations of
realizations. Clearly, this is not tractable for 19 hazard models.

Fortunately, under some conditions, we can combine mean probabilities instead.

Lemma 1. Let n be the number of hazard models, and let X1, . . . , Xn be random variables
measuring the number of events of interest in each hazard model. Furthermore, let Ri be
the realizations of hazard model i , and wr the weight of realization r ∈ Ri .

We define the mean probability

P (
n∑

i=1
Xi ≥ 1) =

∑
r1∈R1

wr1 · · ·
∑

rn∈Rn

wrn P (
n∑

i=1
Xi ≥ 1|r1, . . . ,rn)

(2.2)

If X1 to Xn are mutually independent, then

P (
n∑

i=1
Xi ≥ 1) = 1−

n∏
i=1

P (Xi = 0) (2.3)

where
P (Xi = 0) = ∑

r∈Ri

wr P (Xi = 0|r ) (2.4)

12For hazard models with an investigation time of 1, we generate 10,000 seismic events sets per realization
instead.
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Proof. Since

P (
n∑

i=1
Xi ≥ 1|r1, . . . ,rn) = 1−P (

n∑
i=1

Xi = 0|r1, . . . ,rn) (2.5)

and the realization weights of each hazard model sum to 1, we can reformulate Equa-
tion 2.2 as

P (
n∑

i=1
Xi ≥ 1) =

1− ∑
r1∈R1

wr1 · · ·
∑

rn∈Rn

wrn P (
n∑

i=1
Xi = 0|r1, . . . ,rn)

(2.6)

Now, since we have mutual independence and the results from hazard model i only de-
pend on realization ri :

1− ∑
r1∈R1

wr1 · · ·
∑

rn∈Rn

wrn P (
n∑

i=1
Xi = 0|r1, . . . ,rn) =

1− ∑
r1∈R1

wr1 · · ·
∑

rn∈Rn

wrn

n∏
i=1

P (Xi = 0|ri ) =

1− ∑
r1∈R1

wr1 P (X1 = 0|r1) · · · ∑
rn∈Rn

wrn P (Xn = 0|rn) =

1−
n∏

i=1
P (Xi = 0)

(2.7)

Equation 2.3 allows us to estimate any overall mean CCDF, by separately computing

the mean estimated probability of zero events (the weighted average of e−
Cr
200 ) for each

hazard model.
Our approach ignores the potential overlap between different hazard models. Con-

sider the ESHM13 and EMME14 hazard models for example. We use ESHM13 to esti-
mate the hazard for facilities in Europe, and EMME14 for estimating the hazard in the
Middle East. As these areas border each other, it is possible that an earthquake would
disrupt facilities in both Europe and the Middle East. Our approach ignores this possibi-
lity, and thus potentially overestimates the total number of earthquakes (since multiple
hazard models may model the same seismic sources), while underestimating the impact
of some of these earthquakes. This problem is an inherent disadvantage of combining
multiple hazard models.

RESULTS

We first consider the number of disrupted facilities. As can be seen in Fig. 2.11, the mean
probability that at least one facility will be disrupted within 50 years is nearly 1. Wor-
ryingly, there are many events that would disrupt multiple facilities at once. There is a
10% probability that at least 20 facilities will be disrupted by a single earthquake. Given
the level of facility sharing between IXPs, this could have a significant impact on the In-
ternet.
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Figure 2.11: The complementary CDF of the maximum number of facilities (IXPs) that are simultaneously
disrupted by a single earthquake within a period of 50 years.
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Figure 2.12: The total number of facilities of each IXP, and their probabilities of (full) disruption within a period
of 50 years.

Contrary to our expectations, the number of disrupted IXPs is often lower than the
number of disrupted facilities. Furthermore, the worst-case number of simultaneously
disrupted IXPs is quite a bit lower than the worst-case number of simultaneously dis-
rupted facilities: 72 facilities compared to 46 IXPs. This shows that a number of IXPs are
distributed over facilities that can be struck by the same earthquake.

For comparison, we also consider higher PGA thresholds (Fig. 2.11). While there is
a clear decrease in earthquake impact if we increase the threshold to 0.157g (roughly
corresponding to a macroseismic intensity of 7), the probability of simultaneous facility
disruption is still quite high: There is a 3.7% probability that at least 20 facilities will si-
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Figure 2.13: The complementary CDF of the maximum number of connections that are affected by a single
earthquake within a period of 50 years.

multaneously experience this level of shaking. Nevertheless, the choice of PGA threshold
greatly influences our results, and, since we chose a more pessimistic threshold, we are
potentially overestimating the impact of earthquakes on IXPs.

Our results raise the question if IXPs spread their facilities over a large enough area.
We compute the probability of full disruption of each of the 828 IXPs whose facilities are
located in the area covered by the hazard models. It seems like distributing IXPs over
multiple facilities helps: the median probability that an IXP is fully disrupted at least
once in a 50-year period is 0.0118, while the median probability that an IXP with at least
two facilities is fully disrupted is 0.00220. As can be seen in Fig. 2.12, IXPs with more
facilities tend to have a lower probability of experiencing full disruption. These results
should also translate to individual ASes. By peering with the same neighbors at multiple
locations, an AS can significantly reduce the risk of earthquakes to its connectivity.

IMPACT ON CONNECTIVITY

To get a better idea of the impact of these events, we again consider the ASes hosted
at each IXP. We assume that, within each IXP, every AS peers with every other AS. We
then define a unique (potential) connection for every pair of ASes that share at least one
IXP. While this is an overestimate of the actual peering density at each IXP, the number
of connections should be roughly proportional to the actual number of peering links.
Furthermore, the loss in connections due to IXP disruption is equivalent to the loss in
available peering links at IXPs.

We assign two impact metrics to each event: (1) the number of affected connections,
and (2) the number of lost connections. If two ASes share a disrupted facility, we mark
their connection as affected. If the two ASes share no other undisrupted facility, the
connection has no remaining backup and we mark it as lost. Note that this does not
mean that these two ASes are completely disconnected from each other (packets can
potentially still be routed through other ASes or through direct peering outside an IXP),
but it does mean that these two ASes can not exchange packets directly at any remaining
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IXP. In this manner, the metric is a good indicator of impact on the IXP ecosystem.
We note that a large majority of connections have a backup (Fig. 2.13). This shows the

power of peering at multiple IXPs. Even if some facilities are disrupted by an earthquake,
there is often another facility available that serves as a suitable backup.

That being said, the number of lost connections is still very high, even at higher prob-
abilities (and at higher PGA thresholds). At best, this means that in case of a strong earth-
quake, a large number of BGP routes might need to be rerouted. At worst, ASes will be
completely disconnected from the rest of the Internet.

2.5.2. INCREASING REDUNDANCY - A NOVEL METRIC
As we discussed in the previous section, operators can reduce the impact of earthquakes
on their ASes by peering at multiple facilities. However, selecting a new facility is not
trivial. Clearly, peering at a facility with low probability of exceeding damaging levels of
shaking helps reduce the risk of earthquakes to the AS. The results from Section 2.4.2
suggest this factor is already taken into account to some degree: facilities that host more
ASes tend to have a lower probability of exceeding damaging levels of shaking. However,
only peering at low-risk facilities might not always be possible or cost-efficient, and, al-
though less frequently, even a low-risk facility can be struck by an earthquake. Thus,
to effectively reduce the risk of earthquakes, an operator would need to consider both
the probability that its facilities will be disrupted by the same earthquake, as well as the
redundancy of connections at each of its facilities.

In this section, we introduce a novel metric for evaluating sets of peering locations
with respect to earthquake risk. Our metric can be applied to both IXP facilities, as well
as to private peering. The aim of the metric is to ensure the probability that any of a
selection of important connections is disconnected by an earthquake remains below a
pre-selected threshold.

Definition 1 (Earthquake-Resistant Peering Metric). Suppose we are given a set of weights
wi for all ASes, a set of potential facilities F , the cost of peering at each facility f ∈ F , c( f ),
and a threshold on the disconnection probability, t ∈ [0,1]. Let hi ⊆ F be the subset of all
facilities hosting AS i .

Given a selection of facilities s ⊆ F , the mean probability that the connection with AS i
will be disrupted due to an earthquake is equivalent to the mean probability that facilities
hi ∩ s will simultaneously be disrupted due to an earthquake. We denote this probability
by p(hi ∩ s), and compute it using Equation 2.3.

We define the value of a selection of facilities s ⊆ F as∑
i

wi Ii (s)− ∑
f ∈s

c( f ) (2.8)

where

Ii (s) =
{

1 if hi ∩ s ̸= ; and p(hi ∩ s) ≤ t

0 otherwise
(2.9)

Remark 1.1. Note that one can easily extend this metric to require connectivity with only
one out of a set of ASes, or to set individual thresholds per AS.
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EVALUATION

To evaluate our metric, we set a threshold of 0.01 in 50 years, and extract all ASes with
at least one connection with a disruption probability above this threshold. We filter out
any facilities outside of our hazard models, and any ASes peering at one of these fa-
cilities. Our goal will be to increase the resilience of the remaining 4,594 ASes against
earthquakes, by connecting each AS to one additional facility.

For the purpose of this experiment, we consider each combination of IXP and facility
(hosting the IXP) to be a unique facility. For each AS we aim to protect, we set the cost of
each facility to 0, the weight of each of its current peers to 1, and the weight of all other
ASes to 0. That is, our goal is to find the IXP-facility pair that protects as many of the
current connections as possible.

Out of the 4,594 ASes, we find a new facility for 4,420 ASes. For the other 174 ASes,
there is no possible facility that would reduce the disconnection probability of any of
its peers to below our threshold of 0.01. The mean number of connections that were
previously unsafe but are protected by adding a single facility is 31.8%. However, the
mean distance between the closest old facility and this new facility is 2,579km.

If we restrict ourselves to the countries each AS currently peers at, we find a solution
for 3,721 ASes. The average distance to the new facility is now 569km, and the facility
protects an average of 26.6% of previously unsafe connections.

For 2,280 ASes (almost 50%), we can even find a new facility within 100km of their old
facilities. These facilities protect an average of 20.2% of previously unsafe connections,
while their average distance to the old facilities is only 24km.

Fig. 2.14 shows the effect of peering at all of these facilities on the number of lost con-
nections during an earthquake. Since we chose to protect currently existing connections,
we only consider these original connections. We can see that connecting to additional
facilities did indeed protect many connections against earthquakes. Interestingly, while
peering at additional facilities within the same country increased the resilience of both
individual ASes and the Internet as a whole against earthquakes, restricting facilities to
a distance of 100km of old facilities has a much smaller impact on the overall resilience
of the Internet.

2.5.3. OVERLAP BETWEEN HAZARD MODELS

To study the impact of the overlap of hazard models on our results, we run a new event-
based PSHA, where each hazard model is applied to both its own facilities, as well as the
facilities of its neighboring models. This gives us an upper bound on our estimates of all
mean probabilities. We then compute lower bounds by filtering out all earthquakes that
disrupt any neighboring facility.

The difference between the lower and upper bound of the CCDF of the maximum
number of disrupted facilities is at most 0.00610, that of the maximum number of dis-
rupted IXPs at most 0.00725, and that of the maximum number of affected connections
is 0.00848.

Even when we include neighboring facilities in our calculations, we find that not a
single IXP that shares facilities across hazard models would be fully disrupted by any
earthquake. Thus, the CCDF of the maximum number of lost connections is completely
unaffected by overlap between hazard models.
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Figure 2.14: The complementary CDF of the maximum number of original connections that are lost due to a
single earthquake within a period of 50 years, before and after spreading ASes over more facilities.

2.6. DISCUSSION
Our analysis is a best-effort analysis of the risk of earthquakes to global IXP infrastruc-
ture. The maps included in this chapter are not meant to be used to support any impor-
tant decision involving human life, capital and movable and immovable properties. Due
to the scale of our analysis, and our selection of hazard models, a number of conces-
sions were made. The ground motion systems of our hazard models cannot account for
the intra-event spatial correlation of ground motions. Furthermore, due to a lack of data,
we assume the conditions of each site are equivalent (to reference rock). These condi-
tions affect the level of shaking, and it is possible that some facility locations have been
purposely placed in areas that are less susceptible to earthquakes. In addition, since we
lack data on the characteristics of each facility as well, we say a facility is disrupted if it
experiences potentially damaging levels of shaking. When building characteristics are
known, one can use fragility curves to estimate a probability of damage instead.

2.7. CONCLUSION
We have conducted the first global study of the risk of earthquakes to Internet infrastruc-
ture. Whereas previous studies only considered the risk to each network component
individually, we have combined a set of 19 earthquake hazard models and generated a
total of 902,134,602 earthquake scenarios to estimate the hazard to individual facilities,
as well as the probability of the disruption of multiple facilities at once, and the impact
these disruptions could have on the Internet.

We find that a large number of IXP facilities are at risk of earthquakes: more than
30% of IXP facilities have at least a 10% probability of experiencing potentially damaging
levels of shaking within 50 years, and more than 50% at least a 2%. On the positive side,
IXP facilities that host large number of ASes tend to be located in less earthquake-prone
areas.
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Of course, the true danger of natural disasters lies in their ability to damage many
facilities at once. There is a 10% probability that at least 20 facilities will experience
potentially damaging levels of shaking simultaneously, within a period 50 years. This
is equivalent to a return period of 475 years. Such an event could significantly disrupt
local traffic.

We confirm the effectiveness of spreading out over multiple facilities: IXPs with more
facilities tend to have a greatly reduced probability that all their facilities are disrupted
simultaneously. However, we find that not all ASes spread out over IXP facilities suffi-
ciently. To this end, we have proposed a novel metric for selecting new peering locati-
ons, that takes into account earthquake hazard at both current and new facilities, and
the probability of combined facility failures. We have demonstrated that when ASes ap-
ply our metric, this both protects their own connections and a great number of existing
peering connections of the Internet as a whole.





3
COMPUTING THE IMPACT OF

DISASTERS ON NETWORKS

In the previous chapter, we studied the risk of earthquakes to Internet Exchange Points. In
this chapter, we propose a more general disaster resilience assessment framework that can
be applied to any network and disaster set. We give an efficient method to compute the
distribution of a network performance metric after a random disaster, based on a finite
set of disaster regions and occurrence probabilities. Our approach has been implemented
as a tool to help visualize the vulnerability of a network to disasters. With that tool, we
demonstrate our methods on an official set of Japanese earthquake scenarios.

Parts of this chapter have been published in SIGMETRICS Perform. Eval. Rev. 45, 2 (September 2017) [117].
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3.1. INTRODUCTION
As discussed in Chapter 1, a large majority of approaches for assessing the disaster re-
silience of communication networks assume a disaster takes a fixed shape, and can
occur anywhere within an area around the network with equal probability. These ap-
proaches allow one to assess the impact of regional failures on the network without any
additional disaster data, but have a major disadvantage: In reality, as can be observed in
Fig. 2.2 of Chapter 2, the probability and properties of disasters do greatly depend on lo-
cation. To incorporate the inhomogeneity of disasters, we propose a flexible, data-driven
framework for assessing the resilience of communication networks to disasters.

Our framework can be applied to any disaster dataset that can be transformed to a
finite set of representative disaster regions and probabilities. In contrast to other ap-
proaches, which often either compute an expected or worst-case value, we compute the
distribution of any given metric after one of the disasters randomly occurs. We show that
this distribution can be efficiently calculated, and that it provides more information to a
network operator or designer than any single value could.

Our main contributions in this chapter are threefold:

• We propose an efficient method to compute the distribution of any network per-
formance metric, based on a finite set of disaster regions and occurrence proba-
bilities.

• We describe our tool to compute and visualize such distributions for any network
topology and disaster set.

• We demonstrate our method on a set of Japanese earthquake scenarios, and show
how our approach can provide more insight into the disaster resilience of commu-
nication networks.

3.2. MODEL
We model the network as a directed multigraph G = (V ,E ,ψ), with nodes v ∈ V con-
nected by links e ∈ E , where ψ : E → V ×V and e ∈ E connects v1 to v2 iff ψ(e) = (v1, v2).
Thus, we permit the same pair of nodes to be connected by multiple links. We assume
the network is embedded in a plane, and lies completely in a bounded convex region
R ⊆ R2. Instead of modeling them as straight line segments, each link is modeled as a
finite sequence of line segments connecting their nodes.

We model disasters deterministically, i.e., we assume that all links intersecting a dis-
aster region, which we take as the region(s) in which ground motions exceed a specific
level, fail. If a node lies within a disaster region, all of its links must have at least one end-
point in the disaster region and therefore would fail. Thus, we do not need to explicitly
consider node failures.

Earthquakes typically occur at faults, and thus can not occur everywhere in R. In
addition, the ground motion, and thus the disaster region after an earthquake, depends
on the earthquake’s magnitude, as well as the properties of the rocks and sediments that
earthquake waves travel through. Many earthquakes with similar locations affect the
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same links of the network, even though their exact disaster regions may differ. We there-
fore argue that it makes sense to take a finite representative set of earthquakes and use it
to calculate the network’s vulnerability.

We assume that we are given a finite set of possible disasters D. We further assume
that exactly one of these disasters will manifest at a time. The probability of multiple
independent earthquakes occurring simultaneously is generally very small and thus is
ignored in this chapter. Earthquakes that trigger other disasters (e.g., aftershocks) can
still be modeled, by combining their disaster regions. Each disaster d ∈D has a disaster
region A(d) ⊆R2 and an occurrence probability P (d). Note that

∑
d∈D

P (d) = 1.

We model a disaster region as either a circle, line segment, simple polygon, or a finite
union of these. However, our model and methods can be used with any shape of disaster
region, as long as it is possible to calculate if a line segment intersects it. In fact, as we
show in Chapter 7, our approach can even be applied to disasters and networks in a
spherical model, without first projecting coordinates to the plane.

There are multiple ways to obtain the set D. One can generate potential disaster
scenarios in a Monte Carlo approach, as was done in Chapter 2. Another approach is to
take a historical set of the last N earthquakes above a certain magnitude. Finally, one
can use a given set of scenarios as input. As an example, in the following section, we will
convert Japanese J-SHIS earthquake scenarios to our disaster model.

3.3. J-SHIS EARTHQUAKE SCENARIOS

Japan has one of the highest earthquake rates in the world and thus needs to be espe-
cially prepared for major earthquakes. The National Research Institute for Earth Science
and Disaster Resilience (NIED) provides a large amount of data on Japanese earthquakes
through the Japan Seismic Hazard Information Station (J-SHIS) [88]. We use the 2016
version of this dataset. Of particular interest to us are the Seismic Hazard Map and Sce-
nario Earthquake Shaking Maps.

The Seismic Hazard Map gives probabilities for significant ground motion for all of
Japan. These probabilities are calculated in a very similar method as our approach: by
aggregating over a set of (representative) modeled earthquakes [153]. Unfortunately, as
the end result is an aggregation, and the intermediate results are not publicly available,
this map was not usable for our purposes.

Instead, we made use of the Scenario Earthquake Shaking Maps. These scenario
maps contain, among other data, the JMA seismic intensities for each affected Divided
Quarter Grid Square [154] cell in Japan. By converting these to geographical coordinates,
and only keeping those grids with an intensity above a specific threshold, a disaster re-
gion (of a union of rectangles) can be obtained for every single scenario in the dataset.
The resulting disaster regions are not contiguous, as there are gaps where the seismic
intensity is below the threshold.

The scenarios do not contain occurrence probabilities. To obtain these probabilities,
we take the mean recurrence intervals for each fault from the parameter dataset for the
Seismic Hazard Map. If a fault segment has N scenarios and mean recurrence interval i ,
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the occurrence probability of all its disasters is taken to be

1

i N T
,

where T is the sum of the inverses of all recurrence intervals of fault segments with N > 0.

3.4. VULNERABILITY DISTRIBUTIONS
Liew et al. proposed characterizing network survivability by a function, rather than by
a single value (like the expected value after a random disaster) [155]. In essence, their
survivability function is the probability mass function of a given survivability metric after
a random disaster. Some interesting values can easily be derived from this function,
such as the worst-case survivability, r -percentile survivability, or the probability of zero
survivability. Liew et al. did not apply their method to regional failures. In this section,
we propose a method to efficiently compute these distributions in our disaster model.

3.4.1. FAILURE STATES
As an intermediate step towards computing metric distributions, we first consider the
probability distribution over the state of the network after a random disaster.

Let a failure state s be defined as a set s ⊆ E , where e ∈ s if and only if e is down.
Let S be the random value indicating the failure state after the disaster and let S(d)

be the failure state after disaster d ∈ D. Thus, S(d) is the set of all links intersecting the
disaster region A(d).

Because we assume exactly one disaster occurs, we have

P (S = s) = ∑
d∈D|S(d)=s

P (d) (3.1)

The distribution over S can now be computed as follows:

1. ∀d ∈D, compute S(d)

2. ∀s ∈ S[D] (the image of S), store
S−1(s) = {d ∈D|S(d) = s}

3. ∀s ∈ S, P (S = s) = ∑
d∈S−1(s)

P (d)

Note that |S[D]| ≤ |D| (trivially), and can be much smaller when many disasters occur
in the same small region. The value of a metric only depends on the state of the network,
and thus it only needs to be computed once per possible failure state, instead of once for
each d ∈ D. By iterating over possible failure states instead of disasters, we can poten-
tially significantly reduce the computation time of the distribution over a metric.

3.4.2. METRICS
Consider a metric M . Let M(d) be the value of the metric after disaster d , and M(s) be
the value of the metric in failure state s. Note that M(d) = M(S(d)).
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Similarly as in equation 3.1, we have

P (M = m) = ∑
d∈D|M(d)=m

P (d)

= ∑
s∈S[D]|M(s)=m

( ∑
d∈D|S(d)=s

P (d)

)
= ∑

s∈S[D]|M(s)=m
P (S = s)

(3.2)

The distribution over M can now be calculated as follows:

1. ∀s ∈ S[D], compute P (S = s) as described in section 3.4.1

2. ∀s ∈ S[D], compute M(s)

3. ∀m ∈ M [S[D]], store {s ∈ S[D]|M(s) = m}

4. ∀m, P (M = m) = ∑
s∈S[D]|M(s)=m

P (S = s)

Note that this method can be performed in parallel, to further increase performance.

3.5. DISASTER IMPACT VISUALIZATION
The disadvantage of computing a distribution instead of a single value is that one may
be overwhelmed by the amount of data. Thus, it is important to properly visualize the
results in a useful fashion.

The distributions over a metric can be clearly visualized with a histogram of the cu-
mulative distribution function (CDF), for example, as in figures 3.2 and 3.3.

The intermediate results of the computations in section 3.4.2, such as the distribu-
tion over failure states and the coupling of disasters with their resulting state and metric,
can also greatly help in preparing the network against disasters.

To this end, we have created the Disaster Impact Visualization Tool (DIVT). This tool
can, given any network topology and disaster set, compute and visualize the vulnerabil-
ity distribution and intermediate results. DIVT maps the network on a world map using
the NASA World Wind library (worldwind.arc.nasa.gov). By drawing disaster regions
over the network, users can clearly see which links are affected by a disaster and why.

The metric distribution, state distribution, and the coupling between these distribu-
tions and the disasters themselves, are visualized in a tree structure (see Fig. 3.1).

At the top level one can see and select the values of the metric with their correspon-
ding probability. Their child nodes show the probabilities of the states resulting in these
values. Finally, at the lowest level are the individual disasters causing these states. By
selecting one or more of these tree nodes, all corresponding disaster regions are drawn
in red on the map. Failed links are colored pink.

An example is given in Fig. 3.1. We first expanded all failure states that result in an
Average 2-Terminal Reliability – the number of connected node pairs divided by the total
amount of node pairs – of 0.87512. Subsequently, we expanded a specific failure state
with 4 failed links. This failure state is the result of either disaster scenario “F006104

worldwind.arc.nasa.gov
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Figure 3.1: Visualization of distributions and disasters. Red: disaster region, pink: affected links.

(case 5)” or “F006104 (case 6)” (names are assigned based on J-SHIS Fault Code and
Case Number). “F006104 (case 6)” was selected and is drawn on the map. Some basic
statistics, like the expected value, variance, worst case, and all CDF values, are computed
and displayed via the Statistics tab.

3.6. EXPERIMENTAL RESULTS
In this section, we demonstrate the use of our methods on two Japanese network topo-
logies: JGN2plus-Japan and Sinet. Both were downloaded from the Topology Zoo [156].
As these files only contain geographical coordinates for the nodes, and not the links, all
links are assumed to be straight line segments directly connecting their endpoints. The
Mercator projection was used to map all geographical coordinates to the 2-dimensional
plane. Nodes without any geographical information were ignored.

JGN2plus-Japan spans almost all of Japan, but only has 11 nodes and 10 links. In
contrast, Sinet spans a slightly smaller region, but consists of 47 nodes and 49 links.

As disasters, we took the J-SHIS earthquake scenarios described in section 3.3, specif-
ically those from the 2016 dataset. These comprise 655 scenarios for 189 fault segments.
The JMA seismic intensity threshold was set to 5.5. We chose the average 2-terminal
reliability (ATTR) as our metric.

In Fig. 3.2 and 3.3, the cumulative distribution functions of the ATTR of both net-
works, after one of the earthquake scenarios, has been plotted. One may notice a dif-
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Figure 3.2: ATTR distribution of JGN2plus-Japan.

Figure 3.3: ATTR distribution of Sinet.

ference between the two: while JGN2plus-Japan has a much lower probability of beco-
ming disconnected than Sinet (0.352 and 0.673, respectively), its probability of incurring
a large ATTR impact is much higher than for Sinet. P (AT T R ≤ 0.7) is 0.224 for JGN2plus-
Japan and 0.049 for Sinet.

This is probably caused by the large difference in network size between both net-
works. As JGN2plus-Japan consists of fewer nodes and links, it has a higher probability
that it will not be hit by the earthquake at all. However, in the case that the network does
get hit, it lacks the backup paths to keep most of its connections. We can confirm this by
inspecting P (No Link Failures) in DIVT. Indeed, the probability of all links of JGN2plus-
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Japan being unaffected is 0.648, and there are no possible states in which any link fails,
but the network stays connected. The comparatively low P (No Link Failures) of Sinet is
0.263.

The worst-case disasters for JGN2plus-Japan all occur around Tokyo, resulting in
an ATTR of 0.291 with probability 0.007. The worst-case disasters for Sinet are located
around Osaka, and result in an ATTR of 0.362 with probability 0.009. JGN2plus-Japan
has an expected ATTR value of 0.866 with a variance of 0.044 and Sinet an expected ATTR
value of 0.920 with a variance of 0.016.

For both networks, only computing the ATTR for each possible failure state, instead
of for each disaster, had a large effect on performance, reducing the number of times
ATTR had to be computed from 655 to 22 and 93 for JGN2plus-Japan and Sinet, respec-
tively.

3.7. CONCLUSION
We have proposed an efficient, data-driven approach for assessing the resilience of a
communication network to disasters, by computing the distribution of the impact of
a random disaster scenario. One of the key insights of our approach is that, since the
number of considered disaster scenarios tends to be much larger than the number of
potential outcomes (which we call failure states), we can greatly reduce computation
times by first computing the distribution of failure states, and only then computing the
value of the impact metric for each unique failure state.

We have implemented our approach within a visualization tool that can draw both
selected disaster shapes and the network topology itself, and have applied our method
and tool to a dataset of Japanese earthquake scenarios to demonstrate how they can give
more insight into the disaster resilience of a network.
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THE RISK OF SUCCESSIVE

DISASTERS: A BLOW-BY-BLOW

NETWORK VULNERABILITY

ANALYSIS

In the majority of this thesis we assume, like many others, that a network will not be struck
by multiple disasters in a relatively short period of time; that is, a subsequent disaster
will not strike within the recovery phase of a previous disaster. However, recent events
have shown that combinations of disasters are plausible. This realization calls for a new
perspective on how we assess the vulnerability of our networks and shows a need for a
framework to assess the vulnerability of networks to successive independent disasters.

We propose a network and disaster model capable of modeling a sequence of disasters in
time, while taking into account recovery operations. Based on that model, we develop
both an exact and a Monte Carlo method to compute the vulnerability of a network to
successive disasters. By applying our approach to real empirical disaster data, we show
that the probability of a second disaster striking the network during recovery can be signi-
ficant even for short repair times. Our framework enables stakeholders to determine the
vulnerability of networks to such successive disasters.

Parts of this chapter have been published in IFIP Networking Conference, 2019 [157].
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4.1. INTRODUCTION
The rate at which disasters strike an area is typically very low. Therefore, it is commonly
assumed that a network will only be affected by a single (possibly composite1) isolated
disaster at a time. The probability that two or more independent disasters will occur
shortly after one another is seen as negligible and safe to ignore. Recent events have
shown that this assumption might not be as rock solid as first thought.

In 2017, the continental United States was hit by 3 hurricanes (Harvey, Irma, and
Nate), of which two where categorized as major hurricanes (Harvey and Irma) [158].
Hurricane Irma hit the East Coast only 16 days after Harvey [159, 160]. Out of the top
5 costliest US mainland tropical cyclones on record, 3 occurred in 2017 [161].

In total, there were 16 billion-dollar weather and climate disaster events in the United
States in 2017 [162]. The total cost of these events exceeded 300 billion dollars. Over
2013-2017, the United States has had an average of 11.6 major disasters per year with a
cost of more than 1 billion dollars.

Also in 2017, Mexico was hit by two major earthquakes in two weeks (where the sec-
ond quake is not considered an aftershock of the first [163]), leading to a combined eco-
nomic loss of nearly 6 billion dollars [164, 165].

Recovering a network after a disaster can take several weeks to months, as a large
amount of hardware will need to be replaced or repaired in a potentially very inaccessi-
ble area [14]. In the context of this chapter, a network is said to be affected by multiple
successive disasters if a disaster strikes the network during its recovery from a previous
disaster. Depending on the moment in the recovery phase when the next disaster occurs,
the total impact and final recovery time will differ significantly.

To increase the resilience of communication networks to disasters, it is essential to
be able to compute the vulnerability of networks to these disasters. While previous work
has been instrumental in computing the vulnerability of a network to a single disaster, it
has not addressed multiple successive disasters. In this chapter, we propose a framework
to assess the vulnerability of a network to successive disasters. Our main contributions
are as follows:

• We compose a network and disaster model capable of modeling a sequence of
disasters in time (Section 4.2).

• We develop a method to compute the vulnerability of a network to successive dis-
asters by modeling the network state as a discrete-time Markov chain (Section 4.4).
Our methodology allows for arbitrary precision by only computing the effect of
at most k successive disasters, with corresponding error bounds. Our results for
the Markov chain are subsequently used to derive a faster Monte Carlo method in
Section 4.5.

• We apply our methods to empirical disaster data in Section 4.6. These experiments
show that the probability of a second disaster striking the network during recovery
can be significant, even for short repair times.

1Highly correlated disasters such as an earthquake and its aftershocks, can be modeled as a single composite
disaster.
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To the best of our knowledge, we are the first to propose models and methods for
assessing the impact of successive disasters on networks, while taking into account re-
covery operations.

4.2. NETWORK AND DISASTER MODEL
We model the network as a directed multigraph G = (V ,E ,ψ) with nodes v ∈ V connected
by links e ∈ E , where ψ : E → V × V and e ∈ E connects v1 to v2 iff ψ(e) = (v1, v2). We
define a failure set s, where network component c ∈ V ∪E is functioning if and only if
c ∉ s. In the remainder of this chapter, we refer to the failure set of a network as the state
of that network.

Given such a network, we are interested in three factors: (1) the number of successive
disasters we can expect the network to be struck by, (2) the impact of being struck by one
or more disasters, and (3) the total time it takes to fully recover from these disasters. To
assess these attributes, we need to model the occurrence of disasters over time.

The occurrence of disasters is inherently unpredictable. A common stochastic model
for disaster occurrences [104, 166, 167], which we will also employ, is the Poisson process.
We model all disaster processes as mutually independent Poisson processes and assume
we are given a multiset of disaster processes d = (ad ,λd ) ∈D∗, where ad ⊆ V ∪E are the
components affected by d and λd is the rate of d .

If disaster process d triggers at time t , when the network state is s, the new network
state at time t will be s ∪ad . That is, all components in ad fail. We assume at most one
disaster can strike the network at any given time t .

The combination of multiple Poisson processes is again Poissonian, with as rate the
sum of its component rates. Thus, we can merge all disaster processes that affect the
same set of network components without affecting the outcome of our analysis. Hence,
we transform the set D∗ to

D = {(ad ,λd )|ad ̸= ;∧λd = ∑
(ad ,λd∗ )∈D∗

λd∗ > 0} (4.1)

Let (Tn)∞n=1 be the ordered sequence such that T1 is the occurrence time of the first
disaster, and for all n > 1, Tn is the time between disasters n −1 and n. Let (Dn)∞n=1 be
the ordered sequence of disasters. In other words, the first disaster D1 ∈ D occurs at
time T1 ∈R, the second D2 ∈D at T1 +T2 ∈R, etc. Then, for all n ∈N, Tn is exponentially
distributed:

Tn ∼ Exp(λD ) (where λD := ∑
(ad ,λd )∈D

λd ) (4.2)

Furthermore, Dn and Tn are independent:

P (Dn = d ∧Tn = t ) = P (Dn = d)P (Tn = t ) (4.3)

4.2.1. EXAMPLE NETWORK AND DISASTERS INSTANCE
To illustrate our network and disaster model, we give an example in Fig. 4.1. We consider
a small triangle network of 3 nodes and 3 links. Its representative set of disasters contains
four disaster scenarios. As each of these disasters affects a different set of components,
D∗ =D. The total disaster rate is λD = 1.6 disasters per year.
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n1 n2

n3

e1

e2e3

Network:
Disasters:

d ad λd
1 {n1,e1,e3} 0.5
2 {n2,e1,e2} 0.5
3 {n3,e2,e3} 0.5
4 {n1,n2,n3} 0.1

Repair:
Concurrently: no
Node repair time: 1

24
Link repair time: 1

12
Repair order: n1 > n2 > n3

> e1 > e2 > e3

Instance:

Figure 4.1: Example problem instance.

A network topology and set of disasters are not sufficient to properly compute the
vulnerability of the network to successive disasters, as the impact of these disasters sig-
nificantly depends on how quickly, and in what order, the network can be repaired. Thus,
we also need to include some repair properties.

Our framework can include any repair function, but in the example the following
repair rules hold: nodes can be repaired in half a month, while links take a full month to
repair, and repairs are performed according to a predetermined priority and cannot be
performed concurrently.

4.3. PROBLEM STATEMENT
We consider a deterministic repair model. We assume that, given a certain starting state,
the recovery of the network is fixed (until a new disaster occurs). For example, if disaster
4 of the example instance occurs, all nodes will be damaged. Afterwards, the nodes will
be repaired one by one. Thus, unless another disaster occurs during repair, the state of
the network will be

• {n1,n2,n3} at time 0

• {n2,n3} at time 1
24

• {n3} at time 2
24

• ; at time 3
24

Generalizing the above example, we define repair functions rs0 :R+ → V ∪E for each
s0 ∈ V ∪E . r (t )s0 ∈ V ∪E is the state of the network at time t+C , given that the state of the
network was s0 after being struck by a disaster at some time C . We assume the network
does not degrade further in the recovery phase:

r (b)s0 ⊆ r (a)s0 0 ≤ a ≤ b, s0 ∈ V ∪E (4.4)

Different repair strategies can be compared by changing the repair functions. Ad-
ditionally, by increasing the number of components being repaired simultaneously, the
benefits of acquiring more personnel can be assessed and compared to the additional
cost in salary.

In the following, we elaborate on our research objectives with respect to three pro-
perties.
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4.3.1. NUMBER OF SUCCESSIVE DISASTERS N
Network operators should decide on how many successive disasters they prepare for. To
do so, knowing the probability of at least n successive disasters is essential. In addition,
the expected number of successive disasters is also of interest. Hence, our goal is to
compute P (N ≥ n), as well as E [N ].

4.3.2. IMPACT
While knowing the expected number of successive disasters is useful, it is also important
to consider their impact. Suppose we have a metric M : V ×E → [0,1] that assigns a value
M(s) between 0 (worst case) and 1 (best case) to each state s of the network. We require
that M(a) ≤ M(b) if b ⊆ a.

We analyze the minimum value of M during the disaster-and-recovery process. In
the one-disaster case, this would simply be the value of M directly after the disaster.
Successive disasters, although rare, can have a significantly higher impact on the net-
work than single disasters. Therefore, given a critical value m, we want to compute the
probability that the network reaches a state at least as bad as m during the disaster-and-
recovery process, P (Mmin ≤ m), where Mmin is the minimum value of M between T1 and
full recovery.

4.3.3. TOTAL TIME TO FULL RECOVERY
Let Ttotal be the total repair time, from the start of the first disaster to the time when all
damage from all previous disasters has been repaired. We aim to compute the expected
time to full recovery, E [Ttotal].

4.4. ANALYSIS
In this section, we describe methods for computing the properties introduced in the
previous section by modeling the state of the network as a Discrete-Time Markov Chain
(DTMC).

4.4.1. MARKOV CHAIN
Let An be the state of network G directly after the nth disaster strikes the network. Now,
because the disaster processes are independent and memoryless, and the repair function
is deterministic,

P (An = an |A1 = a1, A2 = a2, . . . , An−1 = an−1) =
P (An = an |An−1 = an−1)

(4.5)

that is, (An)∞n=1 satisfy the Markov property and form a (discrete-time) Markov chain.
The transition probabilities of this Markov chain depend on which disaster strikes

next, as well as at which stage of the repair process this disaster strikes. By property (4.3),
these two factors are independent. Thus, the transition probabilities can be calculated
by summing over all possible disasters d ∈D:

P (An = an |An−1 = an−1) =∑
d∈D

λd

λD
(exp(−λDMan−1,d ,an )−exp(−λDSan−1,d ,an ))

(4.6)
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Here, λd
λD

is the probability that the network will be struck by disaster d = (ad ,λd ).
[Man−1,d ,an ,San−1,d ,an ) is the period of time during which the occurrence of disaster d
will result in network state an and exp(−λDMan−1,d ,an )−exp(−λDSan−1,d ,an ) the proba-
bility that the next disaster will occur in this period of time2.

We are specifically interested in the chain of network states until full recovery. Thus,
we construct an additional Markov chain (Sn)∞n=1 by adding an absorbing state ; to
(An)∞n=1 such that Sn =; if and only if the network has been fully repaired.

Let Rs := min{t ≥ 0|r (t )s =;} be the time it takes to fully repair the network (assum-
ing no subsequent disasters occur), starting from network state s ∈ V ∪E . The probability
that, starting in state s, the network is fully recovered before the next disaster strikes is
exp(−λD Rs ). Therefore, the transition probabilities to the absorbing state ; are

P (Sn =;|Sn−1 = sn−1) =
{

1 if sn−1 =;
exp(−λD Rsn−1 ) if sn−1 ̸= ; (4.7)

and the transition probabilities to all other states are

P (Sn = sn ̸= ;|Sn−1 = sn−1) =
0 if sn−1 =;∑
d∈D

λd
λD

(exp(−λD min(Msn−1,d ,sn ,Rsn−1 ))

−exp(−λD min(Ssn−1,d ,sn ,Rsn−1 ))) if sn−1 ̸= ;

(4.8)

S1 = A1 = aD1 , so the initial distribution of the Markov chain (Sn)∞n=1 is

P (S1 = s1) =
{
λd
λD

∃d ∈D s.t. ad = s1

0 otherwise
(4.9)

4.4.2. NUMBER OF SUCCESSIVE DISASTERS N
We can now compute the probability P (N ≥ n) = 1−P (Sn = ;) of at least n successive
disasters without full recovery. This probability decreases exponentially with n.

Lemma 2.
P (N ≥ n) ≤ (1−exp(−λD R))n−1 (4.10)

where R := max
s⊆V ∪E

Rs .

Proof. We give a proof by induction on n. Trivially, P (N ≥ 1) = 1 ≤ (1−exp(−λD R))0.
Now, suppose

∀k < n P (N ≥ k) ≤ (1−exp(−λD R))k−1,

then

P (N ≥ n) = P (N ≥ n −1)P (N ≥ n|N ≥ n −1)

≤ (1−exp(−λD R))n−2P (N ≥ n|N ≥ n −1)

2Man−1 ,d ,an is the first time at which ran−1 ∪ad = an (or ∞ if no such time exists), and San−1 ,d ,an is the first
time after Man−1 ,d ,an at which ran−1 ∪ad ̸= an (or ∞).
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By direct application of (4.7):

P (N ≥ n|N ≥ n −1) = 1−P (Sn =;|Sn−1 ̸= ;)

= 1− 1

P (Sn−1 ̸= ;)

∑
s ̸=;

P (Sn−1 = s)P (Sn =;|Sn−1 = s)

= 1− 1

P (Sn−1 ̸= ;)

∑
s ̸=;

P (Sn−1 = s)exp(−λD Rs )

≤ 1− 1

P (Sn−1 ̸= ;)

∑
s ̸=;

P (Sn−1 = s)exp(−λD R)

= (1−exp(−λD R))

So,
P (N ≥ n) ≤ (1−exp(−λD R))n−1

Remark 2.1. If Rs = R ∀s ̸= ; ∈ V ∪E , then

P (N ≥ n) = (1−exp(−λD R))n−1

Typically, R = max
s⊆V ∪E

Rs will be the amount of time it takes to repair all network com-

ponents (RV ∪E ).
Unfortunately, computing E [N ] directly is intractable in most cases, as the number of

possible states can be as high as 2|V |+|E |. However, we can approximate (from below) the
expected number of successive disasters by only constructing the Markov model for k
successive disasters and computing the distribution of S1 to Sk . The choice of k depends
on the required accuracy.

Theorem 3 (Stopping conditions 1). Let Ê [N ] =
k∑

n=1
P (N ≥ n), then

0 ≤ E [N ]− Ê [N ] ≤ (1−exp(−λD R))k

exp(−λD R)
(4.11)

In addition, if P (N ≥ k) ≤ ϵ
exp(−λD R)

1−exp(−λD R) , then

E [N ]− Ê [N ] ≤ ϵ (4.12)

Proof. We start by proving (4.11).

E [N ]− Ê [N ] =
∞∑

n=k+1
P (N ≥ n)

≤
∞∑

n=k+1
(1−exp(−λD R))n−1 (Lemma 2)

= (1−exp(−λD R))k

exp(−λD R)
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If P (N ≥ k) ≤ ϵ
exp(−λD R)

1−exp(−λD R) , then (for n ≥ k):

P (N ≥ n) ≤ ϵexp(−λD R)(1−exp(−λD R))n−k−1

This can be proved analogously to Lemma 2. But this means that the absolute error

E [N ]− Ê [N ]

≤
∞∑

n=k+1
ϵexp(−λD R)(1−exp(−λD R))n−k−1

=
∞∑

n=0
ϵexp(−λD R)(1−exp(−λD R))n

= ϵ

Thus, to guarantee an upper bound on the absolute error, we can either choose the
number of steps k beforehand, or test if P (N ≥ k) is below the threshold after every iter-
ation, where the latter requires fewer iterations than the former.

4.4.3. IMPACT
As M is minimal directly after a disaster, Mmin = min

n
M(Sn). The cumulative distribution

function P (Mmin ≤ m) is the hitting probability of M≤m := {s ∈ V ×E |M(s) ≤ m}. We can
take a similar approach as before and approximate these probabilities as

P̂ (Mmin ≤ m) := P (M k
min ≤ m) (4.13)

where M k
min = min

n≤k
M(Sn).

Suppose we have computed the first k states and corresponding transition probabil-
ities of the Markov chain (Sn)∞n=1. To compute P (M k

min ≤ m), we construct a new Markov
chain (S≤m

n )∞n=1 by replacing all s ∈ M≤m with a single absorbing state A ≤m . Now,

P (M k
min ≤ m) = P (S≤m

k =A ≤m) (4.14)

Theorem 4 (Stopping conditions 2). Let

P̂ (Mmin ≤ m) = P (M k
min ≤ m) = P (S≤m

k =A ≤m)

Then

0 ≤ P (Mmin ≤ m)− P̂ (Mmin ≤ m) ≤
1− P̂ (Mmin ≤ m)−P (S≤m

k =;) ≤ P (N ≥ k)

≤ (1−exp(−λD R))k−1

(4.15)

Proof. If m ≥ 1, then
P (Mmin ≤ m) = P̂ (Mmin ≤ m) = 1, so we assume that m < 1.
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In this case

P (Mmin ≤ m)− P̂ (Mmin ≤ m)

= P (Mmin ≤ m)−P (M k
min ≤ m)

= P (Mmin ≤ m ∧M k
min > m)

≤ 1−P (M k
min ≤ m)−P (S≤m

k =;)

≤ P (N ≥ k)

4.4.4. TOTAL TIME TO FULL RECOVERY
The total time to full recovery, or the total repair time, Ttotal, is equivalent to the sum of
the time spent on repair in all states of (Sn)∞n=1:

Ttotal =
∞∑

n=1
Rn (4.16)

where Rn is the time spent on repairs between the nth and (n +1)th disaster. Thus, Rn

is 0 if Sn =; and Rn is the minimum between the total repair time of failures Sn and the
time till the next disaster otherwise:

Rn =
{

0 if Sn =;
min(RSn ,Tn+1) if Sn ̸= ; (4.17)

The expected value of Rn is

E [Rn] =
∑
s ̸=;

P (Sn = s)(

Rs∫
0

λD exp(−λD t )td t +exp(−λD Rs )Rs )

= ∑
s ̸=;

P (Sn = s)(
1

λD
(1−exp(−λD Rs )))

= 1

λD

∑
s ̸=;

P (Sn = s)(1−exp(−λD Rs ))

(4.18)

As before, we propose approximating E [Ttotal] by truncating (4.16). That is, we ap-
proximate E [Ttotal] by summing the expected values of R1 to Rk , which only requires
the distributions of S1 to Sk .

Theorem 5 (Stopping conditions 3). Let Ê [Ttotal] :=
k∑

n=1
E [Rn], then

0 ≤ E [Ttotal]− Ê [Ttotal] ≤
(1−exp(−λD R))k

λD exp(−λD R)
(4.19)

In addition, if P (N ≥ k) ≤ ϵλD
exp(−λD R)

1−exp(−λD R) , then

E [Ttotal]− Ê [Ttotal] ≤ ϵ (4.20)
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Proof. By the monotone convergence theorem,

E [Ttotal] = E [
∞∑

n=1
Rn] =

∞∑
n=1

E [Rn]

In addition, by (4.18), E [Rn] ≤ 1
λD

P (N ≥ n).
Now, the proof follows analogously to that of Theorem 3.

4.5. MONTE CARLO
The Markov chain in Section 4.4 has a large number of states. Most of these states have
a very small probability of ever being reached. However, we can not simply ignore these
states, as the aggregate of their probabilities is relatively high. This is a perfect use case
for Monte Carlo simulations.

We propose an efficient Monte Carlo method, based on the results from Section 4.4,
for estimating P (N ≥ n), E [N ], E [Mmin], and E [Ttotal]. The method is given in detail in
Fig. 4.2. The main idea is to simulate many sequences of successive disasters simul-
taneously, and cut off these sequences when the error bounds on the values of interest
are small enough. As all sequences are cut off after the same number n of successive
disasters, we only allow transitions to subsequent disaster states and keep track of the
probability of reaching the absorbing state separately. This allows us to closer estimate
the values of interest.

In essence, we approximate the lower bounds described in Section 4.4. By Theorems
3 to 5, these lower bounds, combined with P (N ≤ n), give us the upper bounds as well.
The method can be tuned with respect to two values: Stopping condition β determines
the maximum difference between the approximated bounds, while the number of sim-
ulations η can be adjusted to affect the accuracy of the approximation of the bounds
themselves. When the probability of successive disasters is too high, lowering β can
keep computation times manageable by reducing the number of successive disasters ta-
ken into account.

4.6. EXPERIMENTS
To demonstrate our methods, we apply them to a version of the Sinet topology (Fig. 4.3)
from the Topology Zoo [156], where all nodes without geographical information have
been removed. This backbone network of 47 nodes connected by 49 bidirectional links
is located in Japan, and hence is vulnerable to a variety of different disasters such as
earthquakes, landslides, and typhoons. All experiments are performed on an Intel Xeon
Processor E5-2620 v3.

4.6.1. DATASET

We create a set of disasters D∗ by combining datasets from two sources: (1) the Japan
Seismic Hazard Information Station (J-SHIS) [88] and (2) the International Best Track
Archive for Climate Stewardship (IBTrACS) [168].
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1: input: Number of simulations η, and bound β

2: output: P̂ (N ≥ n), Ê [N ], P̂ (Mmin ≤ m), Ê [Mmin], and Ê [Ttotal]
3: Let Statei , j be the network state in simulation i after the j th disaster
4: P̂ (N ≥ 1) ← 1
5: P̂ (Mmin ≤ m) ← 0
6: for i = 1 to i = η do
7: Sample starting state Statei ,1 from S1

8: Pi ,1 ← 1
9: Mi ,1 ← M(Statei ,1)

10: if Mi ,i ≤ m then
11: P̂ (Mmin ≤ m) ← P̂ (Mmin ≤ m)+ 1

η

12: end if
13: end for
14: n ← 1
15: while P̂ (N ≥ n) >β do
16: n ← n +1
17: for i = 1 to i = η do
18: P (Sn =;) ← exp(−λD RStatei ,n−1 )
19: Pi ,n ← Pi ,n−1(1−P (Sn =;))
20: Sample next disaster occurrence time Tn , conditioned on Tn < RStatei ,n−1

21: Sample next disaster
22: Compute Statei ,n , given occurrence time Tn

23: Mi ,n ← min(Mi ,n−1, M(Statei ,n))
24: if Mi ,n−1 > m and Mi ,n ≤ m then
25: P̂ (Mmin ≤ m) ← P̂ (Mmin ≤ m)+ 1

ηPi ,n

26: end if
27: end for

28: P̂ (N ≥ n) ← 1
η

η∑
i=1

Pi ,n

29: end while

30: Ê [N ] ←
n∑

j=1
P̂ (N ≥ n)

31: Ê [Mmin] ←
η∑

i=1

n−1∑
j=1

Pi , j exp(−λD RStatei , j )Mi , j

32: Ê [Mmin] ← 1
η Ê [Mmin]+ 1

η

η∑
i=1

Pi ,n Mi ,n

33: Ê [Ttotal] ← 1
ηλD

η∑
i=1

n∑
j=1

Pi , j (1−exp(−λD RStatei , j ))

Figure 4.2: Monte Carlo method for estimating P (N ≥ n), E [N ], P (Mmin ≤ m), E [Mmin], and E [Ttotal].

EARTHQUAKE DATA ( J-SHIS)

We create a disaster process d for each earthquake scenario. The affected components
ad of each scenario are the set of network components that intersect (or lie within) one
or more grid cells with a seismic intensity larger than or equal to 5.5. The disaster rates
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Figure 4.3: Sinet Topology.

λd are the inverse of the mean recurrence intervals of each fault, divided by the total
number of scenarios of the fault.

TROPICAL CYCLONE DATA (IBTRACS)
IBTrACS is a collection of tropical cyclone data from numerous agencies maintained
by the National Centers for Environmental Information (NCEI) of the (U.S.) National
Oceanic and Atmospheric Administration (NOAA) [168]. In our experiments, we use
IBTrACS beta version 4 and limit ourselves to cyclones from 1980 to 2017. We filter out
any storms that never reached wind speeds of 74 mph, leaving us with a set of 1649 his-
torical storms. As disaster area, we would prefer to use the regions that reached 74 mph
winds. Unfortunately, this information is only available for some storms (in the form
of the radius maximum extent per quadrant). Therefore, we apply the concept of the
hurricane strike circle instead.

A strike circle is a circle with diameter 231.5 km, centered 23.15 km to the right of
the hurricane center (based on its direction of motion). It is meant to depict the typical
extent of hurricane force winds [169].

For each typhoon-level storm, we find the first registered center point pa where the
storm had a maximum sustained wind speed of at least 74 mph, as well as the last cen-
ter point pb with at least 74 mph maximum sustained wind speed. Then, we select the
range of center points from pa up to and including the first registered center point af-
ter pb . Connecting these points forms a track. ad is the selection of all components
within or intersecting a strike circle of any point (including points on the line segment
between registered center points) on this track. The resulting set of disasters includes
many storms that do not affect any components of Sinet (e.g., hurricanes striking the
U.S.). However, this is not an issue, as empty ad are filtered out when generating D.
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Figure 4.4: Approximations of the expected number of successive disasters, E [N ], and the expected time to full
recovery, E [Ttotal], against the component repair time.
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Figure 4.5: The probability of a successive disaster during recovery of the first disaster, P (N > 1), against the
component repair time. Exact.

The final set D∗ is the union of the earthquake scenarios and historical tropical cy-
clones. This set of 2304 potential disasters can be reduced to a set D of 160 unique sce-
narios affecting Sinet. The total rate λD of these scenarios is 1.648 per year.

4.6.2. THE EFFECT OF COMPONENT REPAIR TIME

We first examine the effect of repair time. In a one-disaster scenario, the relation be-
tween component repair time and total repair time is simple: Ignoring start-up time, if
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Figure 4.6: Approximations of P (ATTRmin ≤ 0.5), P (ATTRmin ≤ 0.1), and E [ATTRmin] against the component
repair time. Computed by Monte Carlo simulations.
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Figure 4.7: Computation time of the Monte Carlo approximations against the component repair time.

repairing components takes twice as long, the total time to full recovery will also take
twice as long. However, if we take the possibility of multiple disasters into account, we
encounter another effect of repair time: When the time to repair the network increases,
so does the probability that the network will be struck by a subsequent disaster during
recovery. These successive disasters further increase the expected total recovery time on
top of the increase in component repair time itself. Our experiments show this effect can
be significant.
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We consider a situation where components are repaired one-by-one, using a greedy
strategy that tries to maximize the number of connected node-pairs. We vary the time
it takes to repair a component between 0 and 20 days. As we would need to compute
a large number of steps of the DTMC to get precise results for higher repair times, we
approximate all results. We use η= 10,000 simulations for each Monte Carlo approxima-
tion and set β= 0.05.

The expected number of successive disasters and the expected time to full network
recovery are plotted in Fig. 4.4. E [N ] rapidly increases with the (component) repair time.
Although, as could be expected, for more reasonable repair times3 E [N ] remains below
2. Due to the influence of successive disasters, E [Ttotal] grows exponentially in the com-
ponent repair time.

Fig. 4.5 shows the probability of a subsequent disaster during recovery of the first
disaster, P (N > 1). This value can be computed exactly by computing one step of the
DTMC. Interestingly, even with a component repair time of less than 5 days, the proba-
bility of facing more than 1 disaster is relatively high. Probabilities of around 0.2, or even
0.1, are significant enough to stop ignoring the possibility of successive disasters.

Next, we consider the connection between repair time and network performance. To
do so, we analyze the minimum value of the Average Two-Terminal Reliability (ATTR)
survivability metric in the period after the first disaster strikes and before all damage has
been repaired. In Fig. 4.6, we have plotted E [ATTRmin] against the component repair
time. While the repair time does affect the expected minimum ATTR, this effect is much
smaller than that on the expected time to full recovery.

A similar outcome can be observed when computing the probability that at most half
of all node pairs remain connected (Fig. 4.6). However, while P (ATTRmin ≤ 0.5) increases
relatively slowly with the repair time, P (ATTRmin ≤ 0.1) increases much faster.

Fig. 4.7 shows the computation time of the Monte Carlo method (parallelized to 11
threads) against the component repair time. The computation time grows exponentially
in the component repair time, as the method has to simulate longer sequences of dis-
asters to satisfy the stopping condition. Nevertheless, even for unrealistically large E [N ]
and P (N ≥ 1), the computation time is more than manageable.

The repair time has a significant effect on both the total recovery time and ATTR
during the recovery process. Thus, reducing it, by repairing more components at once
or by decreasing the time it takes to repair individual components, should be a high
priority.

4.6.3. CONCURRENT REPAIR

To evaluate our methods, we consider a use-case in which multiple components can be
repaired simultaneously. In addition, we assume only nodes are damaged by the disas-
ters. As Sinet is a backbone network and individual nodes are connected to many ad-
ditional network components (which will also be affected by the disaster) that are not
included in our topology, we assume repairing a single node takes half a month. How-
ever, by sending out multiple repair crews, 10 nodes can be repaired simultaneously.

3When components are repaired non-concurrently and the component repair time is 20 days, it can take more
than 5 years to fully repair Sinet.
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Table 4.1: Comparison of the exact results from Section 4.4 and the results of the Monte Carlo method from
Section 4.5. The exact column shows the lower and upper bounds of the value. The runtime of the exact
computation only includes the time to compute S1 to Sk . The Monte Carlo approximation is obtained by

performing 50,000 Monte Carlo simulations with stopping condition P̂ (N ≥ n) ≤ 0.0001
exp(−λD R)

1−exp(−λD R) .

Exact Monte Carlo

E [N ] 1.0850 - 1.0851 1.0851

P (N > 1) 0.0763 0.0763

P (ATTRmin ≤ 0.5) 0.3834 - 0.3834 0.3825

P (ATTRmin ≤ 0.1) 0.0021 - 0.0022 0.0021

E [Ttotal] (days) 19.4576 - 19.4674 19.4816

1-Threaded Computation Time (s) 1,556.7398 120.1504

To compute exact lower and upper bounds of the properties of interest, we con-
struct the DTMC up to 5 successive disasters. By applying the methods from Section
4.4 and limiting ourselves to 5 successive disasters, we obtain lower bounds of E [N ],
P (ATTRmin ≤ m), and E [Ttotal]. By computing the upper bound on the error, applying
Theorems 3, 4, and 5, we can obtain the upper bounds on these values as well.

We approximate the lower bounds of these properties with our Monte Carlo met-
hod from Section 4.5. We set the number of simulations η to 50,000, and choose β

such that the difference between the approximation of the lower and upper bounds
of E [N ] is smaller or equal to ϵ = 0.0001. That is, the method stops if P̂ (N ≤ n) ≤ β =
0.0001 exp(−λD R)

1−exp(−λD R) . The resulting values can be found in Table 4.1.

The computation time of the Monte Carlo method is much lower than that of the ex-
act bounds. In addition, the Monte Carlo approximations are quite accurate. Thus, this
method can be a good alternative to the exact approach, especially when the network or
repair times are very large.

The probability of a second disaster striking the network during repair of a previous
disaster has a low, yet still significant, probability (0.0763), but a very high impact. It is
disastrous to the network if more than 90% of all node pairs lose their connection. While
this outcome is not even considered feasible when only considering a single disaster, our
successive disaster model shows that it is possible, although with low probability.

4.7. RELATED WORK
The amount of research into assessing the impact of multiple regional failures on com-
munication networks is rather sparse. In [104], disaster occurrences were characterized
by independent Poisson processes. However, in contrast to our framework, the methods
of [104] did not consider the difference between single or multiple disaster occurrences
in a short period of time.

When the possibility of more than one regional failure is considered, it is often in the
form of deliberate, simultaneous attacks. In this case, the goal is to find a set of attack
locations where the damage to the network is maximized [22, 23, 170] or to compute the
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minimum number of regional failures required to disconnect two nodes [19, 20, 171].
In [60], Neumayer and Modiano showed how to compute the average two-terminal

reliability after a randomly located disk or line cut. They briefly discussed how to extend
their approach to multiple simultaneous events.

Regional failures can be modeled as Shared-Risk Link Groups (SRLG). SLRGs reflect
possible combinations of links that can fail simultaneously, for example due to disasters
or cable cuts. Yang et al. considered the problem of finding a set of at most k paths with
an availability of at least δ under, potentially multiple simultaneous, single link failures
and SRLG failures [75]. As this problem is NP-hard, they provided both a heuristic and
an integer non-linear program formulation to find these paths.

Rahnamay-Naeini et al. proposed a model for multiple correlated random disasters,
based on spatial point processes [69]. Using their model, Monte Carlo simulations can
be performed by randomly generating a fixed number of disaster events and their effects.
The model from [69] does not account for network repair and does not consider disaster
processes over time.

Heegaard and Trivedi considered the recovery of a network after a single pre-selected
disaster [82]. They proposed a detailed model of the performance of a network directly
after the failure event and during subsequent recovery operations.

To the best of our knowledge, none of the work on multiple regional failure events
considers time or network repair.

4.8. CONCLUSION
Recently, natural disasters have struck the same area shortly after one another on a num-
ber of occasions. Successive disasters like these are rare, but can inflict a massive amount
of damage on the network. Consequently, the risk of successive disasters is significant
and should be considered when assessing the resilience of a network.

To this end, we have composed a network and disaster model capable of modeling a
sequence of disasters in time and applied this model to construct a discrete-time Markov
chain of the network state after one or more successive disasters. We have shown how to
adopt this Markov chain to compute with arbitrary precision (1) the probability of more
than one successive disaster, (2) the expected number of successive disasters, and (3)
the expected time to fully recover from these disasters. Analogously to the survivability
metrics in single-disaster models, we considered the minimum value of a metric during
the disaster-and-recovery process.

Building upon these results, we have developed a Monte Carlo method that can com-
pute the vulnerability of networks to successive disasters in a matter of minutes. Since
these types of analyses only need to be conducted sporadically and can be done well in
advance, this computation time can be considered to be very fast.

We have applied our model to empirical disaster data. Our experiments show that
when considering successive disasters, the expected time to complete recovery grows
exponentially in the time it takes to repair a network component. Additionally, the prob-
ability of a second disaster striking the network during recovery can be significant, even
for short repair times. Combined, our single-disaster and multi-disaster frameworks give
stakeholders the ability to efficiently conduct extensive, data-driven assessments of the
resilience of their networks to natural disasters.
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A MOMENT OF WEAKNESS:

PROTECTING AGAINST TARGETED

ATTACKS FOLLOWING A NATURAL

DISASTER

By targeting communication and power networks, malicious actors can considerably dis-
rupt our society. As networks are more vulnerable after a natural disaster, this moment of
weakness may be exploited to disrupt the network even further. The potential impact and
mitigation of such a follow-up attack have yet to be studied.

In this chapter, we extend our multi-disaster framework to analyze the impact of a com-
bination of a natural disaster followed by a targeted single node failure. We apply this
framework on empirical disaster data and two network topologies. Our experiments show
that even small targeted attacks can significantly augment the already grave network dis-
ruption caused by a natural disaster. We further show that this effect can be greatly mi-
tigated by adopting a repair strategy that actively takes the possibility of targeted attacks
into account.

Parts of this chapter have been published in SIGMETRICS Perform. Eval. Rev. 47, 4 (March 2020) [172].
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5.1. INTRODUCTION
Communication and power networks are critical to our society. This makes them a prime
target for malicious actors trying to destabilize or terrorize a country. In fact, in 2016, the
director of the NSA, warned, “It’s only a matter of the when, not the if, you are going
to see a nation state, a group or an actor engage in destructive behavior against critical
infrastructure of the United States” [173].

For many of these actors, the exact timing of their attack may not be essential. Their
focus is to inflict as much damage as possible, preferably using only a small amount of
resources. A strategy they might adopt is to delay their attack until the network is most
vulnerable, such as after a natural disaster. By attacking the network at its weakest mo-
ment, a bad actor can multiply the damage he, or the disaster by itself, could otherwise
inflict.

As it takes time to prepare and execute an attack, a network operator has a limited
window to try to reduce the impact of any potential attack. However, to the best of our
knowledge, while there is a large body of research on the resilience of networks to natural
disasters and targeted attacks (e.g. [174–176]), the potential combination of a disaster
followed by a targeted attack has yet to be studied.

In this chapter, we propose a framework to analyze the impact of a combination of a
natural disaster and targeted single node failure1. Our main contributions are as follows:

• We extend our successive disaster framework from Chapter 4 to incorporate tar-
geted attacks.

• We apply our framework to empirical disaster data and show that a small follow-up
attack can significantly increase the impact of a natural disaster.

• We study the effect of changing the repair strategy to prepare for potential follow-
up attacks, and demonstrate that the impact of follow-up attacks on networks can
be greatly mitigated, at almost no cost to network performance, by making calcu-
lated modifications to the order in which network components are repaired.

5.2. FRAMEWORK
In Chapter 4, we introduced a model and framework for assessing the resilience of net-
works to successive disasters, taking into account network recovery. In this chapter, we
extend this framework to include the risk of targeted attacks.

As a reminder, we model the network as a directed multigraph G = (V ,E ,ψ) with
nodes v ∈ V connected by links e ∈ E , where ψ : E → V ×V and e ∈ E connects v1 to v2

if and only if ψ(e) = (v1, v2). We define the network state s of this network by its failures:
network component c ∈ V ∪E is functioning if and only if c ∉ s.

Now, to be able to assess the resilience of this network to follow-up attacks, we first
need to model the impact of a disaster itself. We assume disaster occurrences are Pois-
sonian, and we are given a multiset D∗ of disaster processes d = (ad ,λd ), where ad ⊆
V ∪E are the components affected by d and λd is the rate of d . Thus, if disaster d ∈ D∗
occurs at time t , when the network state is s, the new network state at time t will be

1Be it through physical means or cyber attacks.
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s∪ad . As the combination of multiple Poisson processes is itself Poissonian, the disaster
processes in D∗ can be combined as follows:

D = {(ad ,λd )|ad ̸= ;∧λd = ∑
(ad ,λd∗ )∈D∗

λd∗ > 0} (5.1)

In this chapter, we only consider attacks after a single disaster. In other words, we as-
sume a single disaster occurs and is then followed by an attack on the network. However,
by applying the techniques of Chapter 4, our model can be easily generalized to capture
an attack after an arbitrary number of successive disasters or any other mix of natural
disasters and attacks. We fix the time of the initial disaster (D1) at T1 = 0. Now, we can
compute the distribution of the network state at T1, S1, by

P (S1 = s) = ∑
d∈D|ad=s

P (D1 = d) = ∑
d∈D|ad=s

λd

λD
(5.2)

where λD is
∑

d∈D
λd .

A follow-up attack after a disaster can be pre-planned or opportunistic. In either
case, it will take some time to react to the disaster and execute the attack. We consider
two different attack models: (1) the attack occurs after a fixed amount of time tattack,
or (2) the time between the disaster and attack is exponentially distributed with rate
λattack. In both cases, if the network has been fully repaired before the attack has been
executed, we assume the attack will be canceled and the network will not suffer any
further damage.

Let Tattack be the time of the attack, and let M(s) be a measure over network state s.
We assume the attacker has perfect knowledge of the network at all times, and will always
take down the node that minimizes M at Tattack. In other words, an attack is modeled as
a worst-case node failure.

The target and impact of this attack greatly depend on the progress of network repair
at Tattack. We consider a deterministic repair model. That is, we assume that, given a
certain starting state, the recovery of the network is fixed (until the attack occurs). For
each possible starting state s, we define a repair function rs :R+ → V ∪E . r (t )s ∈ V ∪E is
the state of the network at time t ≤ Tattack, given that the state of the network after being
struck by the initial disaster was S1 = s. Thus, the state of the network just before the
attack is rS1 (Tattack).

Let Rs := min{t ≥ 0|r (t )s =;} be the time it takes to fully repair the network (assum-
ing no attack occurred beforehand). Given M , we can consider the follow-up attack as a
function at t : V ∪E → V ∪E from the network state just before the attack to the network
state just after the attack:

at t (s) =
; if s =;

s ∪argmin
v∈V

M(s ∪ v) otherwise (5.3)

By combining our disaster, repair, and attack models, we can now directly compute the
distribution of the state Sattack of the network just after the attack. In the fixed attack
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Figure 5.1: Impact of a follow-up attack. The disaster occurs at t=0, and is followed by a targeted attack after 0
to 16 days (even if the network is already repaired). One node is repaired every day.

time case, the distribution of Sattack is given by

P (Sattack = s) = ∑
d∈D|s=at t (rad

(tattack))

λd

λD
(5.4)

while in the random attack time case the distribution of Sattack is given by

P (Sattack = s) = ∑
d∈D

λd

λD
P (Sattack = s|D1 = d)

= ∑
d∈D

λd

λD
(exp(−λattack min(Mad ,s ,Rad ))

−exp(−λattack min(Sad ,s ,Rad )))

(5.5)

where [Mad ,s ,Sad ,s ) is the period of time during which an attack would result in network
state s2.

Given the distribution of Sattack, we can directly compute the distribution of any per-
formance metric after the follow-up attack, such as the number of remaining connec-
tions, M(Sattack). In addition, our framework allows network operators to assess the im-
pact of different repair strategies or network configurations by simply exchanging repair
functions or modifying the initial network.

5.3. EXPERIMENTS
In this section, we apply our framework to two slightly modified3 versions of undirected
networks from the topology zoo [156]: Sinet and Deltacom. Sinet is a Japanese network
of 47 nodes connected by 49 links, and Deltacom is a US network of 99 nodes connected
by 151 links.

2Mad ,s is the first time t at which at t (rad (t )) = s (or ∞ if no such time exists), and Sad ,s is the first time t after
Mad ,s at which at t (rad (t )) ̸= s (or ∞).

3We have removed all nodes without a geographical location or with degree 0.



5.3. EXPERIMENTS

5

67

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time of attack (days)

E
xp

ec
te

d
AT

T
R

Attack

Disaster

Disaster + Attack

(a) Deltacom

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time of attack (days)

E
xp

ec
te

d
AT

T
R

Attack

Disaster

Disaster + Attack

(b) Sinet

Figure 5.2: Impact of a follow-up attack on Deltacom (Sinet) if the attacker waits for a disaster that damages at
least 5 (10) nodes. The disaster occurs at t=0, and is followed by a targeted attack after 0 to 16 days (even if the
network is already repaired). One node is repaired every day.

We make use of the same disaster set as was used in Chapter 4: a set of earthquake
scenarios and historical tropical cyclones. For Sinet, we consider both types of disasters,
while for Deltacom, we only consider tropical cyclones. We assume only network nodes
are affected by these disasters and all network links remain functioning. This gives us a
yearly disaster rate λD of 1.5974 for Sinet and 1.342 for Deltacom.

For ease of reading, we make the assumption that one node is repaired every day.
However, by scaling both the attack and repair time, our results can easily be transformed
to any other repair time.

5.3.1. IMPACT

We first compare the impact of follow-up attacks to those of a disaster or attack by itself.
We assume both networks use a greedy repair function that continuously chooses the
node with the largest impact on ATTR to repair. To make a fair comparison, we modify
the attack function at t by continuing the follow-up attack even if the network has been
fully repaired.

Fig. 5.1 shows the expected ATTR after a targeted attack, disaster, or disaster and
follow-up attack. Sinet is clearly more vulnerable to both targeted attacks and disasters
than Deltacom. However, for both networks, a follow-up attack can significantly increase
the impact of a disaster. For Sinet, the combination of disaster and follow-up attack
disconnects more than half of all node pairs on average.

We have assumed that a malicious actor strikes after the first natural disaster that hits
the network. On average, such an opportunity occurs more than once per year. However,
he could also decide to wait for a larger disaster, which would allow him to inflict even
more damage to the network. We consider an attacker that waits for a disaster that da-
mages at least 5 (10) of Deltacom’s (Sinet’s) nodes5. Fig. 5.2 shows the impact of this
more patient follow-up attack. Waiting for larger events allows the attacker to inflict

4Lower than in Chapter 4, since we now exclude disasters that only strike links.
5An opportunity that occurs around once every 2 years on average.
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Figure 5.3: Cumulative Distribution Function of the ATTR after the follow-up attack for different repair strate-
gies. The disaster occurs at t=0, and is followed by a targeted attack after 3 days. If the network is repaired
before the attack, the attack is canceled (and ATTR = 1).

much more damage. In the case of Sinet, the expected impact of the follow-up attack is
the disconnection of around half of the remaining node pairs.

5.3.2. REPAIR STRATEGIES

After a disaster, the network operator will typically try to restore as much functionality as
quickly as possible. The impact of the follow-up attack greatly depends on the progress
of these repair operations at the time of the attack. Although speeding up repair would
have the largest effect, the network operator can also change the order in which compo-
nents are repaired to try to minimize the impact of any attacks. While this might lower
the speed at which network functionality is restored, it could be a worthy trade-off if the
network is under threat.
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Figure 5.4: Cumulative Distribution Function of the ATTR after the follow-up attack for different repair strate-
gies. The disaster occurs at t=0, and is followed by a targeted attack after a random exponentially distributed
delay of on average 3 days. If the network is repaired before the attack, the attack is canceled (and ATTR = 1).

In this section, we consider the effect of changing the node repair order on the impact
of the follow-up attack. We compare 5 different repair strategies:

• Betweenness Repair: Repair nodes in the order of their betweenness centrality [177].

• Greedy Repair: Every day, repair the node with the highest impact on the ATTR.

• Optimal Unprepared Repair Strategy: Maximizes the ATTR at the time of attack.

• Greedy Prepared Repair: Every day, repair the node that would increase the ATTR
the most if the network would be attacked immediately afterwards.

• Optimal Prepared Repair Strategy: Maximizes the ATTR immediately after the at-
tack.
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Figure 5.5: Cumulative Distribution Function of the ATTR 3 days after the initial disaster (without follow-up
attack) for different repair strategies.

Fig. 5.3 shows the Cumulative Distribution Function (CDF) of the ATTR after a follow-
up attack with a fixed tattack of 3 days. The large spikes at ATTR = 1 show the probability of
completely repairing the network within 3 days (0.340 for Sinet and 0.588 for Deltacom).
In these cases, the attack is canceled and the repair strategy has no impact. However,
in most other cases the repair strategy does significantly impact the ATTR after a follow-
up attack. In particular, there is a large gap between the strategies that try to maximize
the ATTR by itself compared to those that try to maximize the ATTR after the attack. Ex-
periments on randomly delayed follow-up attacks show similar, albeit less pronounced,
results to those of fixed-time attacks (see Fig. 5.4).

Since changing the order of repair can reduce the impact of follow-up attacks, one
might wonder what the impact of these prepared repair strategies is on the performance
of the network during repair without an attack. Or in other words, what does preparing
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for a follow-up attack cost us if no such attack occurs? Fig. 5.5 shows the CDF of the
ATTR 3 days after the initial disaster (without any follow-up attack). For the considered
networks, the difference between the different repair strategies is extremely small and
even the prepared strategies perform close to optimally.

5.4. CONCLUSION
Critical infrastructure networks are prime targets for malicious actors trying to desta-
bilize or terrorize a country. As part of their attack strategy, they might delay their at-
tack until critical infrastructure is significantly more vulnerable, for example right after
a natural disaster has struck. However, current disaster vulnerability frameworks do not
consider the potential risk of these follow-up attacks to a network.

We have extended our successive-disaster framework from Chapter 4 with the ability
to analyze the impact of follow-up attacks. The extended framework can take into ac-
count a variety of natural disasters and two kinds of attacks: a worst-case node failure
after (1) a fixed amount of time or (2) an exponentially distributed random delay after an
initial disaster.

In our experiments, we have shown that small targeted attacks can significantly aug-
ment the impact that a natural disaster has on the network. Fortunately, our results
also reveal that the right choice of repair strategy allows network operators to reduce the
threat of follow-up attacks at almost no cost to network performance compared to other
repair strategies. Our framework aids in determining the efficacy of repair strategies.





6
EVALUATING LOCAL DISASTER

RECOVERY STRATEGIES

Whereas in the previous chapters we focused on assessing disaster resilience, in the re-
mainder of this thesis we study how to improve the resilience of networks to disasters. Our
methods for improving disaster resilience build upon our single-disaster framework. In
this chapter, we extend our framework with the ability to evaluate various repair strate-
gies, with the goal of improving the ability of the network operator to quickly restore net-
work connectivity after a disaster.

We specifically focus on the possibility of temporarily replacing damaged nodes by emer-
gency nodes. We prove that computing the optimal choice of nodes to replace is an NP-
hard problem and propose several simple strategies. We evaluate these strategies on two
U.S. topologies and show that a simple greedy strategy can perform close to optimal.

Parts of this chapter have been published in SIGMETRICS Perform. Eval. Rev. 46, 2 (September 2018) [178].
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6.1. INTRODUCTION
Repairing a network can take days to months, during which functionality is only slowly
restored. Thus, there is a need for a simultaneous quick response to recover a bare
amount of network functionality in the affected areas as quickly as possible.

In this chapter, we consider the possibility of temporarily replacing some of the failed
network components by emergency equipment, such as Movable and Deployable Re-
source Units (MDRUs) [179]. We extend our framework from Chapter 3 with the ability
to evaluate recovery strategies. The evaluation only considers the effect of the recovery
on the network area enclosing the disaster region, as the focus of these recovery efforts
is to restore vital network functionality to the affected area.

Using our framework, network operators can decide beforehand which strategy they
want to employ, such that after a disaster the strategy can be implemented immediately.

Our main contributions are as follows:

• We propose a model (Section 6.2) and algorithm (Section 6.4) for evaluating the
effectiveness of a recovery strategy.

• We describe an optimal strategy as an optimization problem (Section 6.3.1), and
prove that it is NP-hard.

• As the time to determine a repair strategy is limited, and communication within
and from a disaster region is disrupted, we propose alternative, simple strategies
that facilitate quick, local decision-making (Section 6.3.2).

• We demonstrate our framework on two topologies, and evaluate our strategies
(Section 6.5). In our example use case, a simple greedy strategy gives close to opti-
mal results.

While there has been other work on network recovery strategies after a large-scale
disaster, to the best of our knowledge we are the first to propose an evaluation framework
for different strategies, as well as the first to focus on a local area enclosing the disaster
region.

6.2. EVALUATION MODEL
We model a telecommunications network as an undirected graph G = {V ,E } of nodes V

connected by links E . The nodes of the network are the routing and computing nodes
of the network, as well as its base stations, while the edges are the cables (or radio links)
connecting them.

To evaluate different strategies to a wide range of possible situations, we work with
a representative set of disaster scenarios D, as was introduced in Chapter 3. These can
for example be historical disasters, randomly sampled disasters, or specific scenarios
created by experts.

Each disaster d ∈ D affects a region of the network, called the disaster region. We
assume all nodes in the affected region fail. Links remain unaffected in our model, but
our methodology is easily extended to other damage patterns as well.
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We assume exactly one disasters occurs and that we are given the occurrence proba-
bility P (d) of each disaster d ∈D. We use these probabilities to weigh the relative impor-
tance of each disaster to the overall evaluation of a recovery strategy.

To quickly recover the functionality of the network, damaged nodes can be replaced
by temporary emergency nodes, such as MDRUs [179]. The exact functionality (e.g. base
station, router, edge computing) of these nodes would depend on the node it replaces.
To connect the emergency node to the rest of the network, the cable to the old node will
be digged up, spliced, and connected to the emergency node. The emergency nodes can
have a smaller capacity as the node they replace, as long as it at least takes over some
bare minimum of its functionality.

In the case of a disaster, large amounts of manpower will be made available to re-
cover the network. However, the number of other resources available might be more
limited. As such, we assume that only K temporary nodes can be placed, but the process
of placing these K nodes can be worked on simultaneously.

The time it takes to place and connect an emergency node depends on both the
reachability of its intended location, as well as the properties of the area and soil around
it. For example, it could take much more time to place a device on top of a mountain
than on farmland. We assume we are given a cost(v) for each v ∈V , where cost(v) is the
time it takes to replace node v .

Let S(d) be all nodes affected by disaster d ∈D. The choice to be made after a disas-
ter, using a recovery strategy, is the set of at most K nodes out of |S(d)| to replace.

Given such a choice of actions, the state of the network after a disaster d can be
described by a vector

[Sk (d)]K+1
k=1 = [(G1,0), (G2, t2), . . . , (GK+1, tK+1)] (6.1)

of length K +1. Where G1 is the topology of the network directly after the disaster, i.e. the
graph G minus the affected nodes. G2 is the topology of the network at time t2, directly
after the first recovery action has been completed, G3 is the topology of the network at
time t3, directly after the second recovery action has been completed, etc.

6.2.1. LOCAL AREA

The focus of recovery efforts is to restore vital network functionality to the local affected
area. However, it is also important to consider those nodes that are disconnected by
the disaster, but are not in the disaster region, and are thus still functioning. The most
effective method to reconnect these nodes will be through the disaster region.

As such, we only consider the placement of emergency equipment and the effect
of this equipment in a local area around the disaster region. By limiting ourselves to a
smaller area, we also limit the size of the graph we need to consider when determining
where to place the emergency nodes and when evaluating the effectiveness of the ap-
proach, thus reducing the amount of processing time required, and increasing the level
of network details that can be considered.

Specifically, we define the local nodes VL ⊆ V after a disaster as the nodes of the net-
work that are struck by the disaster (S(d)), or are distanced only 1 hop from such a node.
Thus the local network of interest is {VL ,EL}, where EL = {(v, x) ∈ E |v, x ∈ VL}.
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Figure 6.1: A disaster (in red) takes down nodes 0, 1 and 5. The local nodes VL consists of the nodes in blue

As an example, consider the network and disaster region in Fig. 6.1. The disaster
damages nodes 0, 1 and 5. The local nodes are VL = {0,1,2,4,5,6}. Nodes 2, 3, 6 and 7
have been cut of from the giant connected component.

6.2.2. EVALUATION METRICS
Nodes that are cut off by the disaster, but are not part of the local area, still need to
be reconnected to the rest of the network. This is taken into account by increasing the
weights of nodes on the border in proportion to the portion of the network they connect
to the local area.

Let p(x) be the weight of node x in G . For any local node v ∈ VL , define

C (v) := {x ∈ V |h(v, x) ≤ h(y, x),∀y ∈ VL} (6.2)

as the nodes closest to v , where h(v, x) is the smallest number of hops from v to x in G .
Now, the weight of node v ∈ VL is set to

w(v) = ∑
x∈C (v)

n(x)p(x) (6.3)

where

n(x) = 1

|{v ∈ VL |x ∈C (v)| (6.4)

Note that w(v) = p(v) for all nodes in the disaster region itself. These weights can be
seen as representative for the amount of traffic demand we expect to/from the nodes.

Functioning nodes in the giant connected component will have a much higher weight
than other functioning nodes, which in turn generally have a higher weight than the
nodes in the disaster area. Thus, by setting these weights, we prioritize connecting areas
to the core network and connecting the smaller components to the giant connected
component.



6.2. EVALUATION MODEL

6

77

For example, if all nodes v in Fig. 6.1 have p(v) = 1, then the weight of nodes 0, 1 and
5 would be 1. However, nodes 2 and 6 would have weight 2, and node 4 weight 9. Thus,
one of the first priorities would be reconnecting nodes 2 and 6 to node 4.

Our framework can be used with any network metric. In this chapter we consider a
weighted version of the Average Two-Terminal Reliability (ATTR).

Definition 2. Weighted Average 2-Terminal Reliability (WATTR)
Let

I (v, x) =
{

1 if node v is connected to node x
0 otherwise

The weighted average 2-terminal reliability (WATTR) is defined as

WATTR := 1

W

∑
v∈VL

∑
x∈VL−{v}

w(v)w(x)I (v, x) (6.5)

where W := ∑
v∈VL

∑
x∈VL−{vi }

w(v)w(x).

WATTR can be seen as a measure of the proportion of potential connections in a
network that are still functioning.

If we let C ⊆ VL be the set of all connected components of the network in VL , and
define sum(c) := ∑

v∈c
w(v) for all c ⊆ VL . Then

W = ∑
v∈VL

w(v)∗ (sum(VL)−w(v)) (6.6)

and

WATTR = 1

W

∑
c∈C

∑
v∈c

w(v)∗ (sum(c)−w(v)) (6.7)

The metric evaluates the network at a specific state. To evaluate the complete emer-

gency recovery process, we use a weight function W :R+ →R+ such that
∞∫
0

W (t )d t = 1

We then evaluate the vector [Sk (d)]K+1
k=1 after the disaster as

M(d) =
K+1∑
k=1

M(Gk )−M(G1)

1−M(G1)

tk+1∫
tk

W (t )d t , (6.8)

where M(Gk ) is the value of the metric (in our case WATTR) on the graph Gk , t1 := 0 and

tK+2 :=∞. The value M(Gk )−M(G1)
1−M(G1) measures the effect of the recovery operations in the

local network and ranges from 0 (no effect) to 1 (full recovery). In case s(d) =;, i.e., the
disaster does not affect the network, we define M(d) = 1.
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6.3. RECOVERY STRATEGIES

6.3.1. OPTIMAL STRATEGY
If we let V = {v1, v2, . . . , v|V |}, and describe the choice of nodes as a vector of binary values
x such that xi = 1 if and only if vi is replaced, then an optimal strategy is the solution to
the problem

max M(d |x) (6.9)

s.t.
|V |∑
i=1

xi ≤ K (6.10)

xi = 0 ∀ vi ∉ S(d) (6.11)

xi ∈ {0,1} ∀ i (6.12)

where M(d |x) is the value of M(d) given the choice x of nodes to replace.

Theorem 6. When using WATTR as the evaluation metric, computing the optimal strategy
is strongly NP-hard even for the 0 cost case. i.e., when repair time is not considered.

Proof. Our proof is inspired by the proof of theorem 1 in [180].
We prove theorem 6 by giving a reduction from the well-known NP-complete SET

COVER problem to the decision version of the optimization problem (with costs 0).
Note that the weight function W is irrelevant if all replacement costs are 0, thus, we

will not include further mentions of the weight function in the proof.
The SET COVER problem can be described as follows: given a set U = {u1,u2,3 , . . . ,un},

a family F = {F1,F2,F3, . . . ,Fm} of subsets of U s.t. ∪m
i=1Fi = U and an integer k ≤ m, is

there a cover C ⊆F such that ∪c∈C c =U and |C | ≤ k?
Given an instance of the SET COVER problem, we construct a (local) graph with

nodes VL = {b}∪U ∪F . That is, VL consists of a base node b, a node for each element in
U and a node for each set in F .

We directly connect b to all nodes in F . In addition, for all nodes Fi ∈F we add the
links {{Fi ,u j }|u j ∈ Fi } to EL . More formally, EL = ({b}×F )∪ {{Fi ,u j } ∈F ×U |u j ∈ Fi }.

The weight of all nodes in F is set to 0, and the weight of all other nodes to 1. We let
S(d) =F , i.e., a node Fi is in the disaster region of the disaster iff Fi ∈F .

Note that this is a valid local selection of nodes and links, as all nodes in VL are
within 1 hop of the failed nodes. Now, let K = k, the decision problem will be to de-
termine if there exists a choice of at most K nodes of S(d) to be replaced such that
M(d) = WATTR(GK ) will be greater or equal than 1.

Suppose there is a solution to the problem instance of SET COVER. That is, there
exists a C ⊆ F such that ∪c∈C c = U and |C | ≤ k. By replacing all corresponding nodes
Fi ∈C , all nodes with a weight greater than zero will be connected to each other (through
b). Thus, C is also a solution to the optimal strategy instance.

Conversely, suppose there is a solution to the optimal-strategy instance. That is, we
have a set C of at most K nodes in S(d), such that when these nodes are replaced, the
WATTR of the local network will be 1. So every node Ui ∈ U must be connected to b
through at least 1 node F j ∈ C . That is, ∀ui ∈ U ∃F j ∈ C s.t. ui ∈ F j . Or alternatively,
∪c∈C c =U . So C is also a solution to the SET COVER instance.



6.3. RECOVERY STRATEGIES

6

79

We have provided a (polynomial) reduction from the strongly NP-complete SET COVER
problem to the decision variant of the optimal-strategy problem with costs 0. As a result,
we can conclude that the optimal strategy problem for the 0 cost case is strongly NP-
hard.

As computing the optimal strategy is an NP-hard problem and there might only be a
limited amount of resources available after a disaster due to the destruction and chaos,
computing the optimal choice of nodes might take too much time. In addition, the
choice of which nodes to replace has to be made as quickly as possible after a disaster, at
which point the complete state of the network might not be known. As such, it might be
preferable to make some quick decisions based on a simple rule of thumb instead.

These rules of thumb, or simple strategies, might be suboptimal for the specific sit-
uation, but give good results in general, whatever state the network might be in. In the
following section, we propose several simple strategies.

6.3.2. SIMPLE STRATEGIES
We use R ⊆ S(d) to indicate the nodes that will be replaced.

The basic idea of these strategies is as follows. Choose some node-metric M , then
iteratively select nodes to replace with the highest value of M :

1. R ←;
2. Let B ⊆ S(d) be all nodes v ∈ S(d) such that v is at most 1 hop away from (i.e., di-

rectly connected to) at least one node in VL −S(d). That is, B is the intersection of
the neighborhood of VL −S(d) and S(d). We want to limit ourselves to only replac-
ing nodes in B, as otherwise we would replace nodes without connecting them to
a connected component.

3. Pick a v ∈B−R such that M (v) ≥M (y)∀y ∈B−R.

4. R ← R ∪ {v}

5. B ←B∪ {y ∈ S(d)|{v, y} ∈ EL}

6. If |R| < K and |R| < |S(d)|, repeat steps 3-6

We consider 4 node-selection strategies:

• Greedy, that is, pick the node that has the largest effect on M : M (v) := M(d |R ∪
{v})−M(d |R).

• Pick the node with the highest weight-to-cost ratio: M (v) := w(v)
cost(v)

• Pick the node with the highest neighbors-to-cost ratio: M (v) := |y∈VL |{v,y}∈EL |
cost(v)

• Pick a node randomly. This strategy might not perform very well, but is very easy
to execute after a disaster.

If M(d) can be computed in polynomial time, the node-metrics can also be compu-
ted in polynomial time. As such, the simple node-selection strategies are all of polyno-
mial complexity.
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1: input: undirected graph G = {V ,E }, disaster set D, recovery strategy function R : V →
V

2: output: P (M = m) ∀m ∈R
3: O ←;
4: for all d ∈D do
5: Determine S(d) ⊆ V

6: if S(d) ∈O then
7: P (S(d)) ← P (S(d))+P (d)
8: else
9: P (S(d)) ← P (d)

10: O ←O ∪ {S(d)}
11: end if
12: end for
13: for all o ∈O do
14: G1 ←G −o ▷ o ⊆ V

15: VL ← {v ∈ V |∃x ∈ o h(x, v) ≤ 1}
16: Compute R(o)
17: Order [v1, v2, . . . ] = R(G1) such that
18: cost(v1) ≤ cost(v2) ≤ cost(v3) ≤ ·· ·
19: t1 ← 0
20: for i ← 1, |R(G1)| do
21: Gi+1 ←Gi + vi ▷Where {Vi ,Ei }+ vi = {Vi ∪ {vi },Ei ∪ {(x, y) ∈ E |x, y ∈ Vi ∪ {vi }}
22: ti+1 ← cost(vi )
23: end for
24: s ← [(G1, t1), (G2, t2), . . . ]
25: Compute M(s)
26: M(o) ← M(s)
27: end for
28: ∀m ∈R P (M = m) = ∑

o∈O|M(o)=m
P (o)

Figure 6.2: Recovery strategy evaluation algorithm.

6.4. ALGORITHM
Let M be the random value of the evaluation metric after one of the disasters in D ran-
domly occurs. Given a general recovery strategy, we want to compute the distribution
over all possible values of M . Then, by comparing these distributions and the compara-
tive effort to implement each strategy, a general recovery strategy can be chosen by the
network operator and other involved parties. When a disaster actually occurs, this strat-
egy can then be implemented immediately, thus wasting no time on deciding on how to
best recover the network.

For the purpose of our evaluation algorithm, we consider each possible recovery
strategy as a function R : V → V from the damaged nodes S(d) to a choice of nodes to
replace with emergency nodes. Our algorithm is given in Fig. 6.2. We start by compu-
ting the set of affected nodes (the outcome) S(d) for each disaster. As the state vector
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[Sk (d)]K+1
k=1 will be the same for each disaster affecting the same nodes:

S(d1) = S(d2) ⇒ [Sk (d1)]K+1
k=1 = [Sk (d2)]K+1

k=1 ∀d1,d2 ∈D (6.13)

we can compute these states, and M , for each possible outcome instead of for each pos-
sible disaster to reduce the computation time.

Next, we go over each possible set of affected nodes and compute the corresponding
local network, choose the nodes to recover, create the final state vector [Sk (d)]K+1

k=1 and
compute the value of M .

Using these properties, we can easily compute P (M = m) for each m ∈R by taking the
sum of the probabilities of all disasters/outcomes resulting in this value of M . Compu-
ting all possible outcomes requires us to iterate over each disaster and each node, which
takes O (|D||V |) time (assuming we can determine if a node is in the disaster region in
constant time).

Creating the local network takes O (|V |+ |E |) time. However, computing the weights
of the local nodes takes more time, as we need to find the closest nodes in VL of each
node in V . This can be accomplished by doing |VL | breadth-first searches, and thus takes
O (|VL ||V |+ |VL ||E |) time.

The time it takes to compute the choice of nodes to recover depends on the strategy
that is used. For example, the weight-to-cost ratio strategy takes O (|K ||VL |+|K ||EL |) time
to compute R(G1).

Finally, assuming the weight function can be integrated in constant-time, and the
metric used is the WATTR, computing M takes O (|K ||VL |+ |K ||EL |) time.

Thus, the time complexity of the algorithm is

O (|D||V |2 +|D||V ||E |+ |D|F (|V |, |E |, |K |)) (6.14)

where F (|V |, |E |, |K |) is the time-complexity of the strategy.

6.5. EXPERIMENTS
We apply the framework to two U.S. topologies from the Topology Zoo [156]: ITC Delta-
com and Kentucky Datalink. We ignore all nodes without any geographical coordinates.

ITC Deltacom consists of 101 nodes connected by 151 links, while Kentucky Datalink
consists of 726 nodes connected by 822 links. Both networks are concentrated in the
eastern half of the United States.

For each node v of these networks, we set p(v) to the population of the county con-
taining this node, according to the 2010 US Census [181].

The replacement costs cost(v) of each node are set randomly to a value between 6
hours and 120 hours (5 days). We use a weight function that decreases linearly to 0 at t =
120 hours, and is constant from then on. After 5 days the emergency recovery operations
should be over, and repair operations should be in full swing.

As a use case, we consider a scenario where the network operator knows a hurricane
will make landfall in a few days, but not the exact path it will take. Thus, his goal will be to
decide on both a strategy and the number of emergency nodes to prepare. We generate a
disaster set based on the 5 AM EDT THU AUG 25 2005 hurricane Katrina track prediction
of the National Hurricane Center (NHC) [182].
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K=1 K=2 K=3 K=6 K=10
Optimal 0.067 0.098 0.127 - -
Greedy 0.067 0.095 0.122 0.180 0.215

Weight/Cost 0.022 0.043 0.063 0.134 0.191
Neighbors/Cost 0.035 0.064 0.083 0.128 0.189

Random 0.006 0.013 0.020 0.041 0.082

(a) ITC Deltacom

K=1 K=2 K=3 K=6 K=10
Optimal 0.076 0.101 0.123 - -
Greedy 0.076 0.099 0.118 0.149 0.161

Weight/Cost 0.064 0.088 0.105 0.138 0.153
Neighbors/Cost 0.063 0.082 0.096 0.130 0.151

Random 0.030 0.038 0.046 0.074 0.101

(b) Kentucky Datalink

Table 6.1: Expected value of M for different strategies, and different number K of temporary nodes, after hur-
ricane Katrina, based on the 5 AM EDT THU AUG 25 2005 hurricane Katrina track prediction.

To predict potential storm surge flooding, and to assess the probability of wind sur-
face probabilities, the NHC performs Monte Carlo simulations based on the predicted
hurricane track and historical errors in their predictions. We propose using these Monte
Carlo simulations as representative disaster set. As we do not have access to these simu-
lations, and to demonstrate our approach, we use a simpler hurricane model, based on
the NHC Track Forecast Cone. The “Tropical Cyclone Track Forecast Cone” shows the
probable path of the center of a tropical cyclone. The cone is formed by simply placing
a circle around each predicted track position and connecting them. The size of each cir-
cle is set so that two-thirds of historical official forecast errors over a 5-year sample fall
within the circle.

We assume the actual track positions (in 2D projected coordinates) are distributed
around the predicted positions according to a bivariate Normal distribution. This dis-
tribution is composed of normal distributions for the horizontal and vertical positions,

each with a standard deviation of
p

( r 2

ln(10000/1225) ), where r is the radius of the correspon-
ding circle, to ensure 65% of samples lie inside the cone.

We can randomly sample hurricane tracks for our own Monte Carlo approach by
sampling the track positions and then connecting them with a straight line segment.
This only leaves us with the problem of computing the disaster region based on a hurri-
cane track. The strike circle of a hurricane, based on the typical extent of hurricane force
winds, is a circle with diameter 231.5 km, centered 23.15 km to the right of the hurricane
center (based on its motion) [169]. In our approach we take this circle as the disaster
region. Because the hurricane moves through the network area, the complete disaster
region of each sampled track takes the form of a union of hippodromes.

Thus the complete approach to generating D is as follows:

1. Sample N sets of track positions.
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2. For each track: compute the resulting disaster region.

3. Set all occurrence probabilities to 1
N .

The potential hurricane realizations affect between 5 and 38 nodes of the ITC Del-
tacom network, and between 0 and 89 nodes of the Kentucky Datalink network, depen-
ding on their track through the network. On average, around 16 ITC Deltacom nodes
and around 18 Kentucky Datalink nodes fail.

Table 6.1 shows the expected values of M utilizing each strategy for different values
of K . Due to its high computation cost, we did not compute the expected values of the
optimal strategy for K > 3. The randomized node selection was evaluated by taking the
average of 20 random recovery choices for each possible disaster outcome.

Selecting nodes at random performs very badly compared to the other strategies,
especially on the ITC Deltacom topology. This shows how much of a difference it can
make to recover nodes according to a suitable strategy.

In this use case, and for these topologies, the greedy strategy performs very close to
optimal (at least for K ≤ 3). As this strategy has polynomial complexity, it seems like a
suitable choice.

6.6. RELATED WORK
In this chapter, we aim to restore connectivity in an area by rapidly replacing a selection
of network nodes. This approach is essentially equivalent to repairing these nodes (albeit
much quicker, but with reduced capacity). Besides replacing or repairing existing net-
work components, connectivity in an area can also be restored by setting up an ad-hoc
emergency network. For an overview of this approach, we refer the reader to a survey by
Miranda et al. [183].

Want et al. were the first to consider the repair of a network after a disaster, and pro-
posed the progressive network recovery model [180]. Under progressive network reco-
very, the time spend repairing the network is divided into several stages. In each stage,
all available repair resources (e.g., repair crews) are divided among broken network com-
ponents. This process continues until the network is fully repaired, or we have run out of
stages. Want et al. studied the problem of optimizing the assignment of repair resources
in each stage, as to maximize the weighted sum of maximum flow over the entire reco-
very process. They proved this problem is NP-hard, and provided heuristics as well as an
MIP formulation for solving it.

A number of variants of the progressive network recovery model have been proposed.
Genda and Kamamura modified the objective function to provide a balance between
total network flow and the division of bandwidth between different logical flows [184].
Al Sabeh et al. applied the progressive network recovery model to opaque, transparent,
and elastic optical networks [185]. Pourvali et al. proposed several progressive network
recovery schemes for network virtualization services [186]. Mazumder et al. studied the
progressive recovery of interdependent, multi-layer networks [187]. Ferdousi et al. pro-
posed coordinating datacenter and network repair [188]. Ciavarella et al. considered
progressive network recovery under uncertainty of the state of the network [189]. In their
model, the state of the network is gradually uncovered as more and more network com-
ponents are repaired.
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Ishigaki et al. applied machine learning to progressive network recovery [190]. They
formulated the progressive network recovery of an interdependent network of infra-
structure and virtual network function nodes, and proposed a deep reinforcement le-
arning algorithm for solving it. Note that the algorithm is trained after the network has
been damaged, using the state of the network as its initial state.

The progressive network recovery model does not take into account the travel time
of repair crews (instead, it considers repair crews as abstract resources it needs to as-
sign). To help operators create repair schedules that do take travel time into account,
Ma et al. proposed the multiple traveling repairmen problem and gave two heuristics to
solve it [191]. The objective of this problem is to find an optimal schedule for teams of
repairmen, taking into account network virtualization, as well as the travel time between
locations.

Bartolini et al. did not study the creation of an optimal schedule, but instead intro-
duced the problem of finding a minimum-cost selection of components to repair that
satisfied all required demands [192]. This more closely resembles the optimization prob-
lem discussed in this chapter, with the main difference being that we aim to maximize
performance, while Bartolini et al. aim to minimize cost.

Zad Tootaghaj et al. extended the work of Bartolini et al. by introducing uncertainty
about the state of the network [193]. Since in their problem formulation, the state of
some network components is unknown, they propose an iterative approach: compo-
nents are selected for repair, their repair provides the operator with more knowledge,
which in turns helps in selecting more components to repair. While this approach is
progressive, since components are essentially repaired in stages; the objective is still to
minimize total repair cost.

Xu et al. proposed an SDN-based system that allows different carriers to collabo-
rate by connecting their networks together after a disaster [194]. Setting up this inter-
connection-based emergency network still requires carriers to repair network compo-
nents. Thus, Xu et al. formulated optimization problems for selecting which compo-
nents to repair [195]. Xu et al. also proposed another scheme, in which carriers can
sell lightpaths to one another [196]. By collaborating, carriers can reduce the number of
repair operations (and repair cost) required to restore network connectivity.

The commonality among all approaches described thus far is that they are reactive:
Once a disaster has damaged the network, repair schedules are setup and the network is
slowly restored. In contrast, we propose a more pro-active approach, where the network
operator already evaluates and decides on a repair strategy before a disaster has even
struck the network.

While our repair model is simpler than the progressive network recovery model (due
to our focus on the quick replacement of nodes), our approach for systematically evalu-
ating repair strategies and algorithms based on a large set of representative disasters can
be applied to any repair model and strategy.

6.7. CONCLUSION
In the period shortly after a natural disaster, the need for communication networks only
increases. Unfortunately, repairing the network and restoring network functionality to
the affected area can be a long process. Thus, in this chapter, we have studied strategies
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for strategically replacing a number of nodes with emergency equipment. This emer-
gency equipment can temporarily take over some of the functionality of these nodes,
and restore connectivity within the local area.

We have proposed an extension to our single-disaster framework for evaluating any
potential node replacement strategy. One of the main ideas behind our approach is to re-
duce computation time by only considering the local area that has been directly affected
by the disaster, as this is the area we want to reconnect to the network. Since finding the
optimal repair strategy is an NP-hard problem, we have proposed that network operators
pro-actively select a simple repair strategy, which they can then immediately implement
after a disaster has struck the network. We have demonstrated this concept by applying
our evaluation framework to two U.S. topologies and a selection of strategies. By eval-
uating, selecting, and preparing a repair strategy before a disaster has even struck the
network, operators can increase their ability to adapt to and recover the network from a
disaster, which improves its disaster resilience.





7
GOING THE EXTRA MILE WITH

DISASTER-AWARE NETWORK

AUGMENTATION

Network outages have significant economic and societal costs. While network operators
have become adept at managing smaller failures, this is not the case for larger, regional
failures such as natural disasters. Although it is not possible, and certainly not econo-
mic, to prevent all potential disaster damage and impact, network operators can reduce
their impact by adding cost-efficient, geographically redundant, cable connections to the
network.

In the previous chapter, we considered strategies for restoring network performance after
the network has been struck by a disaster. In contrast, adding new, geographically redun-
dant connections to the network improves the ability of the network to absorb the impact
of a disaster, by reducing the initial loss in network performance.

In this chapter, we provide algorithms for finding cost-efficient, disaster-aware cable routes
based on empirical hazard data. In contrast to previous work, our approach finds disaster-
aware routes by considering the impact of a large set of input disasters on the network as
a whole, as well as on the individual cable. For this, we propose the Disaster-Aware Net-
work Augmentation Problem of finding a new cable connection that minimizes a function
of disaster impact and cable cost. We prove that this problem is NP-hard and give an ex-
act algorithm, as well as a heuristic, for solving it. Our algorithms are applicable to both
planar and geographical coordinates. Using actual seismic hazard data, we demonstrate
that by applying our algorithms, network operators can effectively raise the resilience of
their network and future cable connections.

Parts of this chapter have been published in IEEE INFOCOM 2021 [197].
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7.1. INTRODUCTION
In 2006, an earthquake of the coast of Taiwan damaged 8 submarine cable systems, se-
verely disrupting communications in the region [113]. In 2008 and 2009, new cable sys-
tems were installed that deliberately avoided this earthquake region. Thus, when a simi-
lar event damaged the same 8 cable systems again in 2009, network operators were able
to restore service much quicker [198]. Numerical simulations suggest disaster-aware
submarine cable deployments could potentially save society billions of dollars [73].

By installing a new cable connection, a network operator can introduce geographic
redundancy. In case of a disaster, connections can be routed through the new cable
instead of through the disaster region. As a simple example, consider the new cable
connection depicted in Fig. 7.1. By avoiding D1, the new link ensures that nodes 2 and
3 remain connected. Note that avoiding D1 forces the new cable to either go through
disaster D2 or make a large detour. Designing disaster-resilient topologies requires op-
erators to make these kinds of compromises for hundreds of disaster regions, taking into
account cable laying costs, disaster probabilities, the impact of disasters on the network
as a whole, as well as the impact of a disaster on the new cable itself. Taking into ac-
count all possible combinations of failures and disaster regions manually would be too
time-consuming. Thus, to create truly disaster-resilient network topologies, we need an
automated system that can suggest potential cable routes based on actual hazard data.

Although there is a large body of work on finding disaster-resilient cable connec-
tions, none of the previous work considers, simultaneously, the impact of a large class of
disasters on the cable route itself, as well as on network connectivity as a whole. To fill
this gap, we propose a set of algorithms for finding cost-efficient, disaster-aware cable
connections based on a large set of representative disasters. The main idea behind our
algorithms is to separate the decision of which disaster regions to avoid from the design
of the route itself. This allows us to develop exact and heuristic algorithms that search
through the problem space and are able to incorporate any pathfinding algorithm for
computing the actual routes.

Of course, the final decision on the design of a network or cable must be made by
the stakeholders, and not by an automated system. By varying an input parameter, our
algorithms can quickly generate multiple routes that are Pareto-optimal in cable cost
and expected disaster impact. In addition, because our algorithms assign a specific cost
to each disaster, and specifically select a set of regions to avoid, they can provide detailed
information on why a proposed cable connection takes a certain route. Armed with this
data, network operators, governments, and other stakeholders can make an informed,
disaster-aware decision on any new cable connection.

Our main contributions are as follows:

• We define the Disaster-Aware Network Augmentation Problem of finding a new ca-
ble connection that minimizes a cost-function of expected disaster impact and ca-
ble cost (Section 7.2). By varying a parameter,α, in the objective function we make
it possible for network operators to find various different Pareto-optimal connec-
tions for cable cost and expected impact.
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3

D1
D2

Figure 7.1: Example disaster-aware network augmentation. Node 3 is connected to node 2 through node 1.
However, if disaster D1 were to occur, this connection would fail. To increase the resilience of this network, we
can add a cable connecting nodes 3 and 2 (dotted line), avoiding disaster D1.

• Since the Disaster-Aware Network Augmentation Problem is NP-Hard (Section 7.3),
we propose both an exact branch & bound algorithm (Section 7.4), as well as a
heuristic (Section 7.5). Our algorithms are applicable to both the plane, as well as
geographical coordinates.

• We demonstrate our approach by augmenting a real network topology based on
actual seismic hazard data (Section 7.6). Given a representative disaster set of
100,000 disasters, our algorithms are able to compute cost-efficient network aug-
mentations within 3 minutes.

7.2. PROBLEM STATEMENT
We model the network as a directed multigraph G = (V ,E ,ψ), with nodes v ∈ V con-
nected by links e ∈ E , where ψ : E → V ×V and e ∈ E connects v1 to v2 iff ψ(e) = (v1, v2).
We model the physical structure and location of network nodes as points in R2 and de-
note these points as p(v) for all v ∈ V . Any link e ∈ E between v1 and v2 is model-
led as a finite sequence of line segments or geodesics connecting v1 to v2, seg (e) =
(s1, s2), (s2, s3), . . . , (sl−1, sl ) where s1, . . . , sl ∈R2, s1 = p(v1), and sl = p(v2).

To determine how to optimally augment this network, we assume we are given a fi-
nite set of representative disasters1 to protect against, D: We model each potential disas-
ter d ∈D as a disaster region A(d) in the plane or on the globe, with associated probabil-
ity P (d), and assume exactly one of these disasters occurs (i.e.

∑
d∈D

P (d) = 1) and destroys

all network components intersecting its disaster region. We denote this random disaster
by D .

Representative sets of disasters are similar to the stochastic event sets used in cata-
strophe modeling [111] and should be easily obtainable by network operators. In con-
trast to many approaches that make use of stochastic event sets, we do not assign struc-
tural failure probabilities to network components, but instead assume a more pessimis-
tic outcome where every component inside an affected region fails. For network aug-
mentation, such a worst-case perspective should result in more resilient and less over-
fitted cable connections among the many uncertainties involved in disaster modeling.

If a node lies in a disaster region, all its incident links also intersect this region. Thus,
we do not need to explicitly consider node failures, as the failure of all incident links

1Our disaster model is based on the model introduced in Chapter 3.
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would disconnect nodes from the network as well. We define the failure state, S(d) ⊆ E ,
of a disaster d to be the set of links intersecting the disaster region A(d), where we say a
link e ∈ E intersects A(d) if and only if one or more of its line segments, seg (e), intersects
A(d).

Before augmenting the network, we first need an impact metric over these failure
states to optimize towards. For this purpose, we construct the set E+

G
(d) ⊆ V × V of all

node pairs that are still directly connected by a functioning link:

E+
G (d) :=ψ[E \ S(d)] (7.1)

We allow any function M : P (V ×V ) → R over these sets of node pairs as an impact
metric, as long as

∀B ⊆C ⊆ V ×V , M(B) ≥ M(C ) (7.2)

7.2.1. CABLE COSTS
When suggesting the addition of new links to the network, it is imperative to take the
costs of installing these links into account. A simple measure of this cost is cable length.
However, costs can vary greatly depending on the specific path of the cable; e.g., if it
crosses less accessible areas. To take these factors into account, we divide a rectangular
area encompassing the network into a grid of w ×h cells and assume we are given the
costs of laying a cable from the center of each cell to the centers of all 8 of its neighbors.

We formulate the route of a new link e from node v1 to v2 as a sequence of grid cells,
r (e) = cx1,y1 , . . .cxl ,yl , where any successive cell cxi ,yi is a neighbor of the previous cell
cxi−1,yi−1 , v1 ∈ cx1,y1 , and v2 ∈ cxl ,yl . The cost of this route is

C (r (e)) =
l−1∑
i=1

C (cxi ,yi ,cxi+1,yi+1 ), (7.3)

where C (cxi ,yi ,cxi+1,yi+1 ) is the cost of laying a cable between cells cxi ,yi and cxi+1,yi+1 .
The exact path of the fiber, seg (e), can now be constructed by connecting the centers of
the grid cells in r (e):

seg (e) = (p(v1),ctr (cx2,y2 )), . . . , (ctr (cxl−1,yl−1 ), p(v2)), (7.4)

where ctr (cxi ,yi ) is the center of cell cxi ,yi .
Note that the existing links E of G do not need to adhere to this grid system, and we

solely use the grid and C as a means of computing the path and cable cost of new links.
Furthermore, our algorithms are also applicable to any other system for computing cable
costs, as long as it allows us to compute a shortest path avoiding a given set of disaster
regions.

7.2.2. DISASTER-AWARE NETWORK AUGMENTATION PROBLEM
Any augmentation can now be defined by three properties: (1) the source node, v1; (2)
the destination node, v2; and (3) the route of grid cells connecting these two nodes, r .
Given such a link triple, we define a network augmentation as follows:
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Figure 7.2: Example of a reduction from a 3-SAT instance ((x1∨x2∨¬x3)∧(¬x1∨x2∨¬x2)) to a Disaster-Aware
Network Augmentation Problem instance.

Definition 3 (Network Augmentation). Given a link triple (v1, v2,r ), where v1, v2 ∈ V and
r is a valid route of cells connecting these nodes,

(V ,E ,ψ)+ (v1, v2,r ) = (V ,E ∪ {e},ψ′) (7.5)

where

ψ′(e ′) =
{

(v1, v2) if e ′ = e

ψ(e ′) otherwise
(7.6)

and seg (e) is given by Eq. 7.4.

Any impact metric M for G is also applicable to G + (v1, v2,r ), giving us a straight-
forward way of computing the benefit of augmenting the network with any link triple.

Definition 4 (Disaster-Aware Network Augmentation Problem). Given a directed multi-
graph G , node locations p, link segments seg , cable costs C , metric M, and α > 0, find a
link triple (v1, v2,r ) that minimizes

cost(v1, v2,r ) :=
αE [M(E+

G+(v1,v2,r )(D))]+C (r )
(7.7)

Remark 6.1. By varying α, we can find different Pareto-optimal link triples for expected
impact and cable cost. If possible, one should choose α such that αE [M(E+

G
(D))] roughly

represents the expected future cost of the class of disasters taken into consideration.

This problem can be divided into two sub-problems:

1. Given two nodes v1, v2 ∈ V , find a route, r , that minimizes cost(v1, v2,r );

2. Find the optimal source and destination nodes v1, v2 ∈ V .

7.3. NP-HARDNESS
Theorem 7. The Disaster-Aware Network Augmentation Problem is NP-hard, even if we
restrict ourselves to a single node pair.

Proof. We will provide a polynomial-time reduction from the NP-complete 3-SAT prob-
lem [199] to the decision variant of the Disaster-Aware Network Augmentation Problem.
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Suppose we are given a Boolean formula f in conjunctive normal form, where each
clause contains exactly three literals:

f =C1 ∧C2 ∧·· ·∧Ck (7.8)

with

C1 = l1,1 ∨ l1,2 ∨ l1,3,C2 = l2,1 ∨ l2,2 ∨ l2,3, . . . (7.9)

The 3-SAT problem is to determine if this formula is satisfiable. Let V be the set of all
variables in the formula. To reduce f to an instance of the Disaster-Aware Network Aug-
mentation Problem, we first create a grid of (1+2k +2|V |)×3 cells and assign the same
cost of 1

3(1+2k+2|V |) to each of the possible connections from a cell to its neighbors. We
then create a graph G = {V ,E ,ψ} of two nodes (V = {s, t }) and no links (E =;) and place
s in the middle cell of the left-most column, and t in the middle row of the right-most
column.

We form a disaster set D by combining all possible literals, i.e., D = ⋃
x∈V

{x,¬x}. Fig. 7.2

demonstrates how we construct the disaster regions:

1. We create a column of 3 disaster sub-regions for each clause Ci of f that fills up
exactly one column of cells: the disaster region of li ,1 fills up the first cell of this
column, the region of li ,2 the second cell, and the region of li ,3 the third cell.

2. We also create a column of 2 disaster sub-regions for each variable x ∈V , where x
fills up the first two cells of the column, and ¬x the third cell.

3. We then place all these columns directly to the right of the column containing s,
and put a spacing of 1 cell between each successive column.

We set P (d) = 1
D for all d ∈D and choose α= |D|. Finally, we assign an impact of 0 if

s is connected to t , and an impact of 1 otherwise:

M({(s, t ), (t , s)}) = 0, M({(s, t )}) = 0,

M(;) = 1, M({(t , s)}) = 1
(7.10)

Note that this means that a solution that connects t to s instead of s to t will always have
a cost of at least |D|.

Now, suppose there is a route r from s to t with cost

αE [M(E+
G+(s,t ,r )(D))]+C (r ) < 1

2
D+1 (7.11)

This would mean that r intersects at most 1
2 D = |V | disasters, as otherwise

αE [M(E+
G+(s,t ,r )(D))] ≥ 1

2 D + 1. To reach t from s, the route must intersect x or ¬x for
each variable x ∈ V . Because the number of intersected disasters is at most |V |, this
means that for all x ∈V , the route can not intersect both x and ¬x. In addition, the route
must also intersect at least one disaster region of the literals of each clause. Thus, the
selection of literals intersected by r form a satisfying assignment for f .
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Vice versa, suppose f is satisfiable. In other words, there is an assignment of TRUE
and FALSE to each variable v ∈V such that each of the clauses of f (and thus f itself) is
satisfied. We will construct a route r from s to v such that

αE [M(E+
G+(s,t ,r )(D))]+C (r ) < 1

2
D+1 (7.12)

First, our route will need to cross all the columns of clauses. Because each clause is
satisfied by the assignment, at least one literal of each clause must evaluate to TRUE.
Thus, we construct the route in such a way that we only intersect this literal of the clause.
Note that due to the spacing between successive clauses, this is always possible. Next,
the route will need to cross the columns of variables as well. Here, as with the clauses,
we intersect the literal that evaluates to TRUE. This way, we can construct a route r from
s to t that only intersects the |V | literals that evaluate to TRUE. Furthermore, because we
pass through each cell at most once,

αE [M(E+
G+(s,t ,r )(D))]+C (r ) <

1

2
D+ 3(1+2k +2|V |)

3(1+2k +2|V |) =
1

2
D+1

(7.13)

We thus have a polynomial-time reduction from the 3-SAT problem to the decision
variant of the Disaster-Aware Network Augmentation Problem, and can conclude that
the Disaster-Aware Network Augmentation Problem is NP-hard.

Remark 7.1. This proof also applies to sub-problem 1 by itself. Thus, determining the
optimal route between a given source and destination node is already NP-hard.

7.4. BRANCH AND BOUND
In this section we describe an exact algorithm for sub-problem 1 based on the branch
and bound paradigm. Suppose we are given two nodes v1, v2 ∈ V , our goal is to find a
route r of cells from v1 to v2 that minimizes cost(v1, v2,r ). This might seem similar to
the shortest path problem. However, the difficulty lies in that, unlike for the shortest
path problem, where the sub-path of a shortest path is itself a shortest path, in our case
a sub-route of a minimum-cost route is not necessarily a minimum-cost route itself.

The key insight behind our approach is that if we decide on a specific set of disas-
ters to avoid, R ⊆ D, the problem of finding a route with minimum cable cost between
v1 and v2 that does not intersect any disaster in R is a shortest path problem. In the
rest of this chapter, we call these subsets of representative disasters restrictions, and the
minimum-cable-cost route avoiding a restriction a restricted shortest route. As we show
in this section, we can quickly compute the cost of any given route between v1 and v2

as a sum of pre-computed disaster penalties and cable costs. Thus, to determine the
cost associated to a given restriction R, we simply find a restricted shortest path for R,
and compute the cost of this path. This allows our algorithm to search for the optimal
restriction R instead of the optimal route, greatly simplifying the problem.
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1: input: G , v1, v2, M ,C ,D,α
2: output: optimal route from v1 to v2, r
3: compute M(d)+ ∀d ∈D ▷ Equation 7.15
4: W ←α

∑
d∈D

P (d)I (d ,r )M(d)++C (r ) ▷ Equation 7.17

5: W (;) ←∞
6: D ← {d ∈D|M(d)+ > 0, p(v1) ∉ A(d), p(v2) ∉ A(d)}
7: r ← SEARCH(D,;,;,;)

8: function SEARCH(D,R,D−,r∗)
9: cutoff ←W (r∗)−α ∑

d∈D−
P (d)M(d)+

10: try to find a restricted shortest route sp(R) from v1

to v2 with a cutoff cost of cutoff
11: if sp(R) not found then
12: r ← r∗
13: else
14: if W (sp(R)) <W (r∗) then
15: r ← sp(R)
16: else
17: r ← r∗
18: end if
19: for all d ∈D \ (D−∪R) intersected by sp(R) do
20: r ← SEARCH(D,R ∪ {d},D−,r )
21: D− ←D−∪ {d}
22: end for
23: end if
24: return r
25: end function

Figure 7.3: Pseudocode for the exact depth-first branch and bound algorithm for finding the minimum-cost
route from node v1 to node v2.

We first introduce an indicator value I (d ,r ):

I (d ,r ) =
{

1 if seg (r ) intersects A(d)

0 otherwise
(7.14)

Regardless of our choice of route r , the impact of any disaster d ∈D is M(E+
G

(d)) if r
intersects it, and M(E+

G
(d)∪{(v1, v2)}) otherwise. If we take the difference of these values,

we get a measure of the benefit of adding a connection from v1 to v2 in case of a disaster
d :

M(d)+ := M(E+
G (d))−M(E+

G (d)∪ {(v1, v2)}) (7.15)
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Now, for any route r ,

E [M(E+
G+(v1,v2,r )(D))] =∑

d∈D

P (d)(M(E+
G (d)∪ {(v1, v2)})+ I (d ,r )M(d)+) =

E [M(E+
G (D)∪ {(v1, v2)})]+ ∑

d∈D

P (d)I (d ,r )M(d)+
(7.16)

If we subtract any constant from our objective function the resulting optimization prob-
lem is equivalent to our old one. Thus, we subtract αE [M(E+

G (D)∪ {(v1, v2)})] to obtain
the new objective function

W (r ) :=α
∑

d∈D

P (d)I (d ,r )M(d)++C (r ) (7.17)

As P (d)M(d)+ does not depend on the route of the link itself and can be pre-calculated,
W (r ) can be seen as the sum of the cable cost, C (r ), and a pre-computed penalty,
αP (d)M(d)+, for every intersected disaster region A(d).

We denote a restricted shortest route by sp(R), where R ⊆ D is the set of disasters this
route should avoid. Our exact algorithm is a depth-first search for the optimal restriction
R. The algorithm starts at R =;, and tries to find the optimal restriction and route from
there. The algorithm is provided in pseudocode in Fig. 7.3. For readability, the algorithm
is formulated as a recursive function call. However, our implementation uses an iterative
approach.

7.4.1. BRANCHING

The number of possible restrictions (2|D|) grows exponentially in |D|. Thus, to keep com-
putation times manageable, reducing the number of considered disasters is essential.
Fortunately, it is likely that for many of the representative disasters d ∈D, connecting v1

to v2 will not bring any benefit and M(d)+ = 0. In addition, disasters that intersect p(v1)
or p(v2) might have a positive benefit M(d)+) > 0, but can not be avoided. These two
sets of disasters do not need to be considered by our algorithm and are excluded.

After computing sp(R), we can limit the number of potential branches even more. If
sp(R) does not intersect a disaster d ∈D, adding d to the restriction will not change the
restricted shortest route. Thus, for any restriction R, we only consider extending R with
disasters intersected by sp(R), where we say a route sp(R) intersects a disaster d ∈ D if
and only if any of the line segments seg (sp(R)) intersect A(d).

We choose to branch on individual disasters: If sp(R) intersects k disasters with
positive benefit, d1, . . . ,dk ∈ D from large to small benefit, we create k branches, R ∪
{d1}, . . . ,R ∪ {dk }. If the optimal solution avoids R ∪ {di }, our approach will find this so-
lution in branch R ∪ {di }. Thus, after having visited branch R ∪ {di }, we remove di from
consideration in branches R ∪ {di+1}, . . . ,R ∪ {dk }. This both prevents the algorithm from
visiting the same restriction twice and further limits the number of considered restric-
tions.

7.4.2. BOUNDING
Throughout our algorithm, we keep track of the best route encountered so far, r∗, and
its objective value, W (r∗). Once we know that all further restrictions on R would lead
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to a worse solution than r∗, we can stop exploring branch R. For every restriction R,
C (sp(R)) is a lower bound on the objective value W for any further restrictions. How-
ever, by taking into account the disasters we explicitly removed from consideration in
our branching approach, we can improve upon this bound.

Let D− be the set of all disasters removed from consideration. If the optimal route
avoids a disaster d ∈D−, it has already been found previously and r∗ is the optimal route.
Thus, we can stop exploring a branch when

C (sp(R)) ≥W (r∗)−α ∑
d∈D−

P (d)M(d)+ (7.18)

7.4.3. SHORTEST ROUTE COMPUTATIONS
Our algorithm needs to compute a new route sp(R) for every considered restriction R. To
speed up computations, we pre-compute the minimum distance between each cell and
v2 using Dijkstra’s Algorithm, and then use A∗ to compute restricted shortest routes from
v1 to v2. Furthermore, we immediately stop computing a route once the cost to reach
the current cell and the minimum distance between the current cell and v2 exceeds the
cutoff value given in Eq. 7.18.

While computing restricted shortest routes, we constantly need to check if a line seg-
ment between two adjacent cells does not intersect any disaster d ∈ R. To reduce the
computation time spent on these checks, we use caches to keep track of which line seg-
ments intersect which disasters.

7.4.4. GLOBAL OPTIMIZATION
To find the optimal link triplet (v1, v2,r ), we apply our branch & bound algorithm to
every pair of nodes in the network. In this context, we make some small adjustments to
the algorithm to further reduce computation times. First, we propose pre-computing the
failure state S(d) and impact M(E+

G
(d)) of all disasters d ∈D. This allows us to compute

penalties for each failure state instead of for each disaster. As the number of failure states
tends to be much smaller than the number of disasters, this significantly speeds up the
pre-computation phase of each node pair.

Second, we keep track of the minimum-cost route r∗ and the corresponding upper
bound across all node pairs and pass this global upper bound to the branch and bound
algorithm. This requires us to transform the global upper bound (on cost) to a local
upper bound (on W ). Let uglobal be a global upper bound, we can transform uglobal to a
local upper bound by

ulocal = uglobal −α(E [M(E+
G (D)∪ {(v1, v2)})]) (7.19)

We apply this bound as an initial upper bound for our search function, as well as a limit
on the cells we pre-compute A∗ heuristics for. Note that the transformed local upper
bound might be negative. In this case no possible route from v1 to v2 could improve
upon our current global best route, and we can skip node pair (v1, v2).

The global upper bound is essential in reducing computation times. However, de-
pending on the order we traverse node pairs in, it might take a long time before we have
obtained a low upper bound. Thus, to obtain a reasonable upper bound a priori, we
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initially compute the shortest route for each node pair. We then select the route with
minimum cost and use it as the initial value for r∗.

7.5. HEURISTIC
Although our branch & bound algorithm is fast enough for many practical use cases,
its runtime is still exponential in the number of representative disasters, D. Since the
Disaster-Aware Network Augmentation Problem is NP-hard, we propose a heuristic for
sub-problem 1 that can find near-optimal solutions for larger disaster sets in a fraction
of the runtime of the branch & bound approach.

In the previous section, we have reduced the problem of finding the optimal route
between two nodes to the problem of determining which regions to avoid. We use this
same concept to create a heuristic and apply simulated annealing to find an approximate
solution for the following optimization problem:

min
R⊆D

W (sp(R)) =
α

∑
d∈D

P (d)I (d , sp(R))M(d)++C (sp(R)),
(7.20)

where sp(R) is a restricted shortest route from v1 to v2 avoiding R. To find the global link
triple, we use the same approach as described in Section 7.4.4, and simply replace the
branch & bound approach with our heuristic.

7.5.1. SIMULATED ANNEALING
A simulated annealing algorithm searches for an optimal solution by randomly selecting
and evaluating neighboring solutions. If the neighbor has a lower cost, the algorithm
directly switches to this solution. If not, it does so with a probability depending on the
current temperature as well as the difference in costs [200]. By starting with a high tempe-
rature and slowly decreasing it over time, simulated annealing initially searches through-
out the problem space and then gradually “locks in” to a local minimum.

An important consideration when applying simulated annealing to any problem is
the selection of neighbors. We take the same approach as described in Section 7.4.1 (but
do not exclude D−). The neighbors of a restriction R are

{R ∪ {d}|d ∈D \ R ∧ sp(R) intersects A(d)} (7.21)

and
{R \ {d}|d ∈ R} (7.22)

For our experiments, we have made the following implementation choices for our
simulated annealing algorithm.

• Initial solution: As in the branch & bound approach, we start at the empty restric-
tion R ←;, and compute sp(;).

• Transition probability: Let δ be the increase in cost of the neighboring solution.

We transition to this solution with probability 1 if δ < 0 and with probability e
−δ
T

otherwise, where T is the current temperature.
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• Temperature T : We set the initial temperature to
−α ∑

d∈D
P (d)I (d ,sp(;))M(d)+

ln0.25 .

• Temperature Reduction: Every 10 “repetitions” of considering a neighboring so-
lution we reduce the temperature by T ← 0.9T .

• Freezing Point and Stopping Condition: If none of the 10 repetitions resulted in
a move to a different solution, we set the temperature T to 0 (thus switching to
hill climbing). If none of the repetitions resulted in a move, and the temperature
is already 0, we submit the restricted shortest path with the lowest cost we have
encountered up till this point as the solution.

We make the following modification to the standard simulated annealing implemen-
tation: If the cable cost of a restricted shortest path sp(R) exceeds W (r∗), where r∗ is the
best route we have found up till this point, we outright reject R as a potential solution
and set δ=∞. As discussed in Section 7.4.2, this prevents the algorithm from moving to
restrictions that are too restrictive to improve upon r∗, while not cutting off the optimal
solution from the search space. More importantly, it allows us to save computation time
by setting an upper bound on the maximum cable cost and cutting of the pathfinding
algorithm if this upper bound is exceeded.

7.6. EXPERIMENTS
We demonstrate our methods on the undirected Italian sub-topology of Interoute, a 25-
node, 35-link network traced and made publicly available by the authors of [109]. All
experiments were conducted on commodity hardware: an AMD Ryzen 7 3700X 3.6 GHz
processor with 32 GB of available RAM.

We augment Interoute with respect to a publicly available earthquake dataset [109].
This dataset was purpose-built by seismologists for analyzing the resiliency of communi-
cation networks. It essentially consists of a set of 1,196,037 disk disasters, which together
represent all possible earthquakes that can strike Italy.

To demonstrate the applicability of our algorithms to geographic coordinates, we do
not transform coordinates to the plane. Instead, we construct a grid of cells of around
0.05 x 0.05 degree covering the longitude-latitude coordinates of all nodes padded by
0.05 degrees on all sides (resulting in a 232 by 194 grid). To compute cable costs and
determine which network components are affected by a disaster, we use the great circle
distance for a sphere with radius 6,371 km.

We filter out all disasters that do not damage any network components and reweight
the remaining probabilities to make them sum to 1, as it is not necessary to protect the
networks against these events and they would be filtered out at the penalty computation
stage. This leaves us with 454,433 out of 1,196,037 disasters.

Our impact metric, M , is the number of disconnected node pairs, divided by the total
amount of node pairs (i.e., 1− the ATTR). Thus, M = 0 if all node pairs are connected,
and M = 1 if all node pairs are disconnected. The expected impact of earthquakes on
Interoute is approximately 0.0141. This might seem small, but the disaster set is simply
so extensive that it also contains many disasters that barely affect the network. In fact,
the total disaster rate is 1.6006 per year. This means that on average, more than 2% of
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Figure 7.4: Mean computation time of a route between two random nodes (using simulated annealing).
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Figure 7.5: Mean expected impact after adding a route between two random nodes divided by the expected
impact on the initial network topology. The routes were computed based on a sampled set of 50,000 disasters,
and evaluated on the full set of 454,433 disasters.
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Figure 7.6: Mean cable cost of a route between two random nodes (v1, v2) computed by simulated annealing
divided by the cable cost of the shortest route between v1 and v2.

connections fail due to earthquakes per year. In practice, there will be some events where
a large part of the network is disconnected at once, and in most years none or nearly
none of the connections are affected.

7.6.1. CONNECTING NODE PAIRS
We first consider sub-problem 1: finding the optimal route between two given nodes
v1, v2 ∈ V . To decrease computation times, we sample 10 sets of 50,000 disasters and use
these as representative disaster sets. We randomly select 20 node pairs, and then use our
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simulated annealing heuristic to compute a route between these nodes for each sam-
pled disaster set:

• on a cost grid where cost is equal to the distance in km (uniform cost case);

• and on grids where the cost of traversing a cell is a random uniformly distributed
value from [0,2) times the traversed distance (in km) (random cost case).

We repeat this experiment (for the same disaster sets and node pairs) for different α
and evaluate all routes on the full disaster set. We do not consider the time required
to compute the initial failure states and impacts2, and compute these separately before
running any experiments.

The lowest α we consider is α = 103. For such an α, a network operator would only
be willing to install up to around 14 km of additional cable to completely mitigate the
impact of all potential disasters. The maximum α we consider is 108. Here, an operator
would be willing to install around 100,000 times as much cable to achieve the same goal.

As can be seen in Fig. 7.4, computation times increase with α, but stay within 30
seconds even for an α as high as 108. At lower α, our approach only needs to test a few,
small restrictions, but for higher α the number and size of considered restrictions, and
thus the runtime, rises.

In Fig. 7.5, we compare the mean reduction in expected disaster impact due to the
routes computed by our simulated annealing heuristic to that of the shortest route. As
we are connecting random node pairs, we can not expect a major decrease in expected
impact. Nevertheless, the improvement of a disaster-aware route over the shortest route
is quite impressive. For random costs, the mean reduction in disaster impact due to ad-
ding a new route to the network is improved by more than 50% just by adding a small
detour to the cable route. This is on top of any planned benefits of the cable in terms of,
e.g., capacity. For lower α, the mean cost of connecting two random nodes is negative,
and it is not worth it to deviate from the shortest path (see Fig. 7.6). However, as α incre-
ases, the simulated annealing solution starts outperforming the shortest path. Note that
in practice, network operators will have enough time to compute routes based on the
full representative disaster set, which would result in an even larger improvement over
the shortest route.

7.6.2. GLOBAL SOLUTION
Next, we consider the Disaster-Aware Network Augmentation Problem itself and try to
find optimal link triples across all node pairs. We run 10 experiments on the full disaster
set: 5 for the uniform cost case, and 5 for the random cost case. In each experiment, we
add new cable connections to the network in a greedy fashion (i.e., we iteratively com-
pute and add the next solution for the Disaster-Aware Network Augmentation Problem
to the network) until doing so would not be worth it anymore (cost ≥αE [M(E+

G
(D))]. As

before, we exclude the time required to compute initial failures.
Fig. 7.7 shows the mean computation times of the first link triple. Again, computa-

tion times increase with α. Using simulated annealing, we manage to find a solution

2Roughly 310 (26) seconds for the full Interoute disaster set on 1 thread (all cores), and around 35 (3) seconds
on the smaller disaster sets.
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Figure 7.8: Mean expected impact after greedily augmenting the network using simulated annealing divided
by the expected impact on the initial topology, against the total cable cost.

within 20 minutes, even for α= 108. This is fast enough for network operators to vary α
and compare different potential routes.

By repeating the same experiment for differentα, we can get an idea of how much we
can reduce the expected impact given a certain cable budget. Fig. 7.8 shows the mean
normalized reduction in impact against the mean total cable cost of greedily augmenting
Interoute. By adding new cable connections to the network, we greatly reduce the ex-
pected impact of disasters. The biggest reduction in impact comes from some cheaper,
very effective cable connections. If we want to reduce the expected impact even further,
we need to invest progressively more for smaller reductions in impact.

7.6.3. RESILIENCE AGAINST NEW DISASTERS

Our algorithms extend network topologies based on a set of representative disasters, D.
This raises the question of how our new routes perform on disasters that are not included
in this input set D. Does our approach actually increase the resilience of the network to
a whole class of disasters, or does it overfit routes to the set of input disasters?

To answer this question, we take an approach that is similar to 10-fold cross-validation:
(1) We randomly split our disaster set, D, into 10 groups, or folds, of disasters; (2) For
each of these groups, D∗, we greedily augment Interoute by applying our simulated an-
nealing algorithm to D \D∗ until there is no improvement in cost anymore and (3) com-
pute the expected impact of D∗ on this augmented network (re-weighting probabilities
where required). For the purpose of this experiment, we assume uniform cable costs and
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Figure 7.10: Mean total cost of a greedily computed set of new Interoute cable routes divided by the cost of not
augmenting the network ((αE [M(E+

G
(D))])) against the number of considered disasters. α= 5,000,000.

set α= 5,000,000.
If we take the full set of 454,433 disasters into account, the greedy simulated anne-

aling approach reduces the expected impact from around 0.01411 to 0.00916 by adding
3 new cable connections with a total length of around 1235 km. In comparison, the
average expected impact over all 10 folds is around 0.00917. This is achieved by adding
3 new connections with an average total length of around 1232 km. We conclude that as
long as the set of input disasters is representative of the disasters we want to protect the
network against, the routes we compute based on D also manage to effectively reduce
the impact of disasters that were not included in D.

7.6.4. NUMBER OF REPRESENTATIVE DISASTERS
We have shown that by increasing the resilience of a network to a set of representative
disasters, we also increase its resilience to disasters that were not explicitly considered.
But how many representative disasters should a network operator include in their input
set D? In this section, we study the effect of |D| on the reduction in expected impact, as
well as on the computation time of our approaches.

We start with the set of 454,433 disasters, D, and will treat this as the set of all poten-
tial disasters that can affect the network. Clearly, if we sample disasters from D, the set
of sampled disasters is representative of D. Thus, we can create a representative disaster
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set of any size simply by sampling disasters from our initial disaster set.
To be more precise, to create an input set D∗ of N disasters, we sample N disasters

from D with replacement (where the probability of sampling a disaster d ∈D is P (d)) and
assign each disaster a probability of 1

N . We then apply our algorithms on D∗ to greedily
extend Interoute with new cable connections until there is no benefit in cost. Finally, we
compute the expected impact of the full set D on this augmented network to check how
well we have managed to increase the resilience of the network. We set α = 5,000,000
and repeat this process 20 times for each N .

As can be seen in Fig. 7.9, the runtime of both algorithms increases with the number
of considered disasters. Remarkably, at these representative disaster set sizes, the branch
& bound algorithm is faster than the simulated annealing algorithm, and both manage
to find the initial link triple in less than 3 minutes. In comparison, even if α = 100,000,
the branch & bound algorithm takes more than an hour to compute a link triple for the
full 454,433 disasters input set.

Fig. 7.10 shows the relative improvement in total cost3 over not augmenting the net-
work against the number of considered disasters. We see that the costs of the link triples
found by simulated annealing lie very close to that of the link triples found by the branch
& bound algorithm. Importantly, we confirm that we do indeed need approaches that
work for larger disaster set sizes (of at least 1,000 disasters), as the total cost drastically
decreases as we increase the size of the representative disaster set. However, we also
spot some opportunities: by reducing the disaster set size from 454,433 to 100,000 or
even 10,000 we significantly reduce computation times, while not sacrificing much of
the cost of the final result.

7.7. RELATED WORK
For an overview of overall strategies for increasing the survivability of communication
networks to disasters, we refer the reader to a survey conducted by Gomes et al. [201].

Variations of what we call sub-problem 1, finding an optimal cable path while taking
into account potential disasters, have been studied extensively [202–209]. As these works
focus entirely on the path or topology of a single cable connection, they do not take into
account the network-wide impact of disasters and solely consider the damage disasters
can do to this single cable. Because our algorithms decouple path planning and finding
the optimal restriction, approaches such as [204, 205] can be straightforwardly incorpo-
rated and used for finding restricted shortest routes. This would extend our approach
by allowing network operators to include costs that depend on the length of the cable
segment intersecting disaster regions, such as repair rates or even shielding [205].

Building upon the spine concept introduced in [210], Garrote et al. gave a heuristic
for the obstacle-avoiding Euclidean Steiner tree problem [211]. In contrast to our ap-
proach, Garrote et al. aim to design a high-availability spine that avoids disaster-prone
areas, and do not explicitly consider the impact of disasters on network connectivity
metrics.

Cao et al. gave a heuristic for optimizing cable costs of a planar N -node topology un-
der constraints on the disconnection probability of any node in the network [71]. The

3The expected impact on the augmented network multiplied by α plus the total cable cost of all link triples.
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main difference with our work is that we consider the augmentation of an existing net-
work, while C. Cao et al. considered the design of an entirely new submarine network
topology. Furthermore, where their heuristic only considered uniformly distributed disk
disasters and simplified cable costs, our disaster and cable cost models are more general.

Given a desired topology, pre-computed set of candidate cable routes, and the prob-
abilities of failure of each of these routes, Msongaleli et al. formulated the optimization
of submarine cable deployments under disasters as an integer linear optimization prob-
lem [73]. Their simulations suggest that disaster-aware submarine topologies could po-
tentially save society billions of dollars.

Tran and Saito proposed an interesting heuristic for optimizing a weighted set of end-
to-end disconnection probabilities under cable length constraints by either recompu-
ting the routes of existing links [86] or augmenting the network by adding new links [87]
based on actual seismic hazard data. To compute a set of link triples, they first compute
a set of potential candidate routes for each considered link, and then feed these to a dy-
namic programming algorithm for the global optimization problem. Compared to our
approach, their earthquake disaster model is more detailed and takes into account link
failure probabilities. This does come at a cost, as their approach does not scale well to
larger network sizes or disaster sets. In particular, computing the end-to-end discon-
nection probabilities in their evaluation metric is a well-known NP-hard problem for
even a single disaster [18]. Furthermore, although the authors did limit the paths a cable
was allowed to take to streets, their approach is based on a uniform cable-cost scenario.

In contrast to our approach, none of the previous work can be applied to a large set
of disaster inputs and optimize cable routes for a network-wide impact metric, let alone
incorporate detailed cable laying costs.

7.8. CONCLUSION
In this chapter, we have presented the Disaster-Aware Network Augmentation problem
of finding a cost-efficient link triple (pair of nodes and a route between these nodes) to
increase the resilience of networks to a large set of representative disasters. The solutions
to this problem are Pareto-optimal for expected disaster impact and cable cost.

As the Disaster-Aware Network Augmentation Problem is NP-hard, we have provided
both an exact algorithm, as well as a heuristic. The main idea behind our algorithms
is to split the problem of finding a disaster-aware route into the problem of deciding
which disasters to avoid (a restriction) and finding a restricted shortest route avoiding
these disasters.

We have demonstrated the effectiveness of our algorithms by computing disaster-
aware cable connections for a real topology using actual seismic hazard data. Using
our approach, operators “going the extra mile” can increase the disaster-resilience of
their network by adding a cost-efficient selection of new cable connections. By making
disaster-aware design decisions, instead of planning based on cable costs only, network
operators can simultaneously increase the capacity and disaster resilience of their net-
work.
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CONCLUSION

In this thesis we addressed the disaster resilience of communication networks. In par-
ticular, we considered the following problem statement:

How to create scalable, data-driven methods for assessing and improving the resilience of
communication networks to natural disasters.

8.1. DATA-DRIVEN DISASTER RESILIENCE ASSESSMENT
In Chapter 2, we assessed the risk of earthquakes to Internet Exchange Points (IXPs). We
found that a large number of IXP facilities are under threat of earthquakes. However, we
showed that by selectively peering at multiple facilities, network operators can greatly
increase the resilience of both their own networks, as well as that of the Internet as a
whole. While the rest of our thesis is more general, this chapter can be seen as more
of a case study in data-driven disaster resilience assessment, and showcases both the
global availability of earthquake data, and how this data can be applied to the study of
communication networks.

We provided both a single-disaster (Chapter 3) and successive disasters (Chapter 4)
framework for assessing the resilience of communication networks to natural disasters.
While these frameworks differ in both disaster model and algorithms, they both incorpo-
rate disaster data by relying on the same main principle: assessing the disaster resilience
of a network based on a large set of representative disaster scenarios. The aim of this
approach was to be flexible, and be applicable to a wide variety of different disasters
and datasets. In this thesis, we have demonstrated the applicability of our approach to
various datasets, with different properties:

• A set of 655 earthquake scenarios, obtained through J-SHIS [88] (chapters 3, 4, 5).
Each scenario is provided as a map of grid cells and the intensity of shaking at
each of these grid cells. We generated disaster regions by applying a threshold on
the shaking intensity. The resulting disaster regions can be quite complex, and can
even contain holes.
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• A set of 1,649 tropical cyclone tracks from IBTrACS [168] (chapters 4, 5). Due to
a lack of data, the disaster regions were estimated by mapping the strike circle
to each hurricane track. The resulting disaster regions are essentially unions of
hippodromes.

• A single hurricane track prediction [182] (Chapter 6). The disaster set was created
by a simplified Monte Carlo process.

• A set of 1,196,037 disk-shaped regional failures, that was custom-built by seismolo-
gists for analyzing the resiliency of communication networks to earthquakes [109]
(Chapter 7).

Our single-disaster framework can quickly compute the distributions of both the
state of the network after and the impact of a random disaster, given an input set of
disaster regions. These distributions give a wealth of information about the resilience
of the network, and can be fed to visualization tools and used as input for other algo-
rithms. In Chapter 4, we showed that the probability of successive disasters (a disaster
that strikes the network while it is still being restored from a previous disaster) can be
significant, and that successive disasters can be much more detrimental to the perfor-
mance of a network than any single disaster. Our successive-disaster framework takes
up more computation and memory resources than our single-disaster framework, but
can provide essential information on the probability and impact of successive disasters
on the network.

After a disaster, a network is much more vulnerable to failures. In Chapter 5, we
considered the possibility of a follow-up attack after a disaster. We extended our suc-
cessive disaster framework to incorporate attacks, and demonstrated that even a single
targeted node failure can greatly exacerbate the impact of a natural disaster. Fortunately,
our experiments indicated that network operators can protect themselves against such
attacks by applying repair strategies that take potential follow-up attacks into account.
This greatly reduces the impact of potential follow-up attacks, with almost no impact on
network performance.

8.2. DATA-DRIVEN DISASTER RESILIENCE IMPROVEMENT
By itself, assessing the disaster resilience of a network is of limited use. To improve re-
silience, stakeholders also need to take action based on these assessments. Resilience
assessments can help stakeholders prepare for potential disasters, and to spot any weak
points in the network. Furthermore, resilience assessments can be used to evaluate and
compare the effect of changes to the network, as well as compare different strategies for
improving resilience.

One example of how a resilience assessment can help improve resilience is selecting
a repair strategy. In chapters 4, 5, and 6, we demonstrated how one can adapt our as-
sessment frameworks to evaluate and compare different repair strategies. Essentially, by
computing the impact of a random disaster under different repair strategies or under dif-
ferent conditions (e.g. the number of repair crews), stakeholders can evaluate the effects
of different strategies and decisions before a disaster has even struck the network.



8.3. SCALABILITY

8

107

Some decisions, however, are simply too complex to rely solely on resilience assess-
ment. In Chapter 7, we addressed the problem of network augmentation. In particular,
we studied the problem of finding cost-efficient, disaster-aware cable routes. Our aim
was that, by adding these kind of connections to a network, the network would become
more resilient to disasters by adding geographical redundancy. Given the enormous va-
riety of disasters that could potentially strike a network, finding such routes manually is
challenging. Thus, we proposed algorithms that, given a metric of disaster impact and
cable cost, automatically find optimal disaster-aware cable routes. These algorithms
take disaster data into account in the same way as our assessment frameworks do: by
basing their decisions on a large set of representative disaster scenarios.

Since the final decision on adding new cable connections to a network still needs to
be made by stakeholders, and not by an automated system, our algorithms can compute
multiple different routes (adjusting the trade-off between cost and disaster resilience)
and provide both the cable route itself, as well as an explanation of why the cable takes
a specific route. In this manner, our algorithms can be seen as automated advisors,
which, together with resilience assessment tools, can help stakeholders make informed,
disaster-aware decisions.

8.3. SCALABILITY
Our approach for assessing the impact of a single disaster on the network (Chapter 3)
and assessing repair strategies (Chapter 6) scales well with both the number of disasters,
as well as the size of the network itself. In fact, it is used as an optimization step in the al-
gorithms we proposed in Chapter 7. One of the key insights behind this approach is that
the number of failure sets (i.e., the unique combinations of failed network components)
tends to be much smaller than the number of considered disasters. This has proven to
be true for all disaster sets we considered in this thesis.

The runtime and memory usage of the exact algorithms proposed in Chapter 4, for
computing the probability and impact of successive disasters, potentially grows expo-
nentially with the size of the network and the number of disasters. Thus, we also pro-
posed a Monte Carlo method for estimating the probability and impact of successive
disasters. The Monte Carlo method scales well with the number of disasters and the size
of the network. However, both the exact algorithms and the Monte Carlo method do
share one weakness: Runtime grows quickly with the probability of successive disasters.
This should be of limited concern, since disasters, and by extension successive disasters,
are relatively infrequent.

In Chapter 7, we proved that the Disaster-Aware Network Augmentation Problem is
NP-hard. Nevertheless, our exact algorithm for this problem was successfully demon-
strated on a disaster set of 10,000 disasters. For cases where the exact approach is too
time-consuming, we also proposed a heuristic based on simulated annealing. Techni-
cally, the search space of this heuristic increases exponentially with the number of con-
sidered disasters. However, the heuristic has been successfully applied to the full set of
1,196,037 disasters1.

1Of which 454,433 (38%) disasters were explicitly considered by the algorithm, since all other disasters did not
inflict any damage to the network.
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Overall, for each problem we addressed in this thesis, we either proposed an exact
algorithm or a heuristic that can be applied to large disaster sets.

8.4. FUTURE WORK
Resilience Assessment A limitation of our work is that we assume that a disaster is a
static, instant event. This is not an unreasonable assumption, as the timescale at which a
disaster damages a network tends to be much smaller than the timescale of network re-
pair. However, it does limit the incorporation of potential follow-up disasters that strike
the network much later than the main disaster, such as some after-shocks. After the
earthquake with magnitude 9.0 of the coast in Japan in 2011, the area was still struck by
earthquakes with a magnitude of above 7 for up to a month later (and by smaller after-
shocks for even longer).

Not all regional failures can be modeled as static. During a power outage, for exam-
ple, network components may fail one by one as backup power runs out - and may re-
cover one by one as power is gradually restored. During extreme weather, network com-
ponents may be turned off as a precaution (e.g., to prevent fire during flooding), and can
then be turned on again when the weather passes. Since weather gradually moves over
the network region, this may be seen as a dynamic regional failure. Assessing the impact
of dynamic regional failures on a network will require novel approaches that consider
the hazard and the state of the network over time.

Resilience Improvement Our experiments in Chapter 5 demonstrate that the right
choice of repair strategy can greatly reduce the impact of follow-up attacks. If this also
applies to successive disasters, a disaster-aware repair strategy, which anticipates poten-
tial successive disasters (including after-shocks), could mitigate the impact of successive
disasters on a network. Potentially, such a repair strategy would remove any need to take
successive disasters into account when designing the network.

The framework we proposed in Chapter 7 only finds one cable connection at a time;
collections of cable connections can only be calculated in a greedy fashion. More re-
search is required on how to extend this approach to be able to effectively compute an
optimal (or near-optimal) selection of multiple cable connections. An interesting exten-
sion to the framework would be the addition of nodes. Adding more nodes to a network
does not necessarily improve its resilience, but could reduce costs when adding multiple
disaster-aware cable connections (and repeaters might even be required when adding
longer connections).

Scalability In this thesis, we did not address the data structure used to store disasters.
Iqbal and Kuipers proposed storing disaster regions in an R-tree (a tree data structure
of minimal bounding rectangles) [104]. More generally, one could store disaster regions
in a Bounding Volume Hierarchy (BVH). A BVH is a tree structure, where each node of
the tree is a bounding volume of all its children. The objects stored in the BHV form the
leaves of the tree. Using a BHV, one can quickly retrieve all objects that intersect a given
object, since, if a node does not intersect the object, neither do its children. Storing dis-
aster regions (or network components) into a BHV could speed up the computation of
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failure sets (but might make efficiently parallelizing this operation more complex). In ad-
dition, early experiments indicate that storing all disasters of interest into even a naively
implemented BHV can speed up the computation of cable routes (in both algorithms
proposed in Chapter 7) by around 20%.

Self-Protecting Network Lately, there is more and more interest into so-called self-
driving networks [212, 213]. Analogous to self-driving cars, researchers and industry en-
vision a network where traffic control is completely automated and tightly integrated
with network measurement, relying on machine-learning and large-scale data analytics.
While disaster resilience involves many actions outside the control of an automated net-
work (such as network design itself), we envision a disaster-aware self-protecting net-
work, which continuously anticipates potential disasters; adapts to changing circum-
stances; and advices network operators on current risks, network design, and disaster
recovery. The methods introduced in this thesis form an early step towards this vision.
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D. Pezaros, S. Jouet, S. Secci, and M. Tornatore, “A survey of strategies for com-
munication networks to protect against large-scale natural disasters,” in 2016 8th
International Workshop on Resilient Networks Design and Modeling (RNDM), 2016,
pp. 11–22.

[202] C. Cao, Z. Wang, M. Zukerman, J. H. Manton, A. Bensoussan, and Y. Wang, “Op-
timal cable laying across an earthquake fault line considering elliptical failures,”
IEEE Transactions on Reliability, vol. 65, no. 3, pp. 1536–1550, 2016.

[203] M. Zhao, T. W. S. Chow, P. Tang, Z. Wang, J. Guo, and M. Zukerman, “Route se-
lection for cabling considering cost minimization and earthquake survivability via
a semi-supervised probabilistic model,” IEEE Transactions on Industrial Informa-
tics, vol. 13, no. 2, pp. 502–511, 2017.

[204] Z. Wang, Q. Wang, M. Zukerman, J. Guo, Y. Wang, G. Wang, J. Yang,
and B. Moran, “Multiobjective path optimization for critical infrastructure
links with consideration to seismic resilience,” Computer-Aided Civil and

https://doi.org/10.1007/s11107-020-00898-5
www.submarinenetworks.com/en/news/cables-cut-by-taiwan-earthquake-and-typhoon-morakot
www.submarinenetworks.com/en/news/cables-cut-by-taiwan-earthquake-and-typhoon-morakot
https://doi.org/10.1007/978-3-540-92910-9_49
https://doi.org/10.1007/978-3-540-92910-9_49


REFERENCES 135

Infrastructure Engineering, vol. 32, no. 10, pp. 836–855, 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12287

[205] Z. Wang, Q. Wang, B. Moran, and M. Zukerman, “Application of the fast marching
method for path planning of long-haul optical fiber cables with shielding,” IEEE
Access, vol. 6, pp. 41 367–41 378, 2018.

[206] Q. Wang, J. Guo, Z. Wang, E. Tahchi, X. Wang, B. Moran, and M. Zukerman, “Cost-
effective path planning for submarine cable network extension,” IEEE Access,
vol. 7, pp. 61 883–61 895, 2019.

[207] Z. Wang, Q. Wang, B. Moran, and M. Zukerman, “Terrain constrained path
planning for long-haul cables,” Opt. Express, vol. 27, no. 6, pp. 8221–8235, Mar
2019. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-
27-6-8221

[208] Z. Wang, Q. Wang, B. Moran, and M. Zukerman, “Optimal submarine cable path
planning and trunk-and-branch tree network topology design,” IEEE/ACM Trans-
actions on Networking, pp. 1–11, 2020.

[209] T. Tsubaki, M. Ishizuka, and S. Yasukawa, “A new algorithm of route design against
large-scale disasters,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium, 2018, pp. 1–5.

[210] A. Alashaikh, T. Gomes, and D. Tipper, “The spine concept for improving
network availability,” Computer Networks, vol. 82, pp. 4 – 19, 2015, robust
and Fault-Tolerant Communication Networks. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1389128615000687

[211] L. Garrote, L. Martins, U. J. Nunes, and M. Zachariasen, “Weighted euclidean
steiner trees for disaster-aware network design,” in 2019 15th International Con-
ference on the Design of Reliable Communication Networks (DRCN), 2019, pp. 138–
145.

[212] W. Kellerer, P. Kalmbach, A. Blenk, A. Basta, M. Reisslein, and S. Schmid, “Adapt-
able and data-driven softwarized networks: Review, opportunities, and chal-
lenges,” Proceedings of the IEEE, vol. 107, no. 4, pp. 711–731, 2019.

[213] N. Feamster and J. Rexford, “Why (and how) networks should run themselves,”
arXiv preprint arXiv:1710.11583, 2017.

https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12287
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-6-8221
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-6-8221
http://www.sciencedirect.com/science/article/pii/S1389128615000687
http://www.sciencedirect.com/science/article/pii/S1389128615000687

	Summary
	Samenvatting
	Introduction
	A Global Study of the Risk of Earthquakes to IXPs
	Computing the Impact of Disasters on Networks
	The Risk of Successive Disasters: A Blow-by-Blow Network Vulnerability Analysis
	A Moment of Weakness: Protecting Against Targeted Attacks Following a Natural Disaster
	Evaluating Local Disaster Recovery Strategies
	Going the Extra Mile with Disaster-Aware Network Augmentation
	Conclusion
	Acknowledgements
	Curriculum Vitæ
	List of Publications
	References

