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Abstract

While the success of improving direction of arrival (DOA) estima-
tion with linear coded covers using a single acoustic vector sensors
(AVS) has been established, the extension of this theory to array-
based systems remains unexplored. To address this gap, we employ a
specially designed coded cover and leverage compressed sensing (CS)
and compressed covariance sensing (CCS) methods, extending their
application from single AVS systems to an array-based acoustic mea-
surement system. Our results demonstrate that a 14 x 10 coded cover
with 12 PU probes enables accurate localization of 100 sound sources
in 3D, even at a signal to noise ratio (SNR) as low as 10 dB, show-
casing the scalability and robustness of this approach.

To further enhance localization accuracy, we implement a self-
calibration method in the covariance domain to correct phase and
gain errors in each receiving channel. Additionally, we combine self-
calibration with CCS to improve resolution and reduce side lobes. For
geometric mismatch, we first investigate the sparsity-cognizant to-
tal least-squares (STLS) with multiple measurement vectors (MMV)
variant of the fast iterative shrinkage-thresholding algorithm (FISTA)
method. Then a grid-searching strategy is employed to compensate for
these mismatches, ensuring better estimation accuracy. Experimental
validation confirms that these techniques significantly enhance DOA
estimation under non-ideal conditions, contributing to the advance-
ment of acoustic sensing and localization methodologies.
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Abstract

While the success of improving direction of arrival (DOA) estimation with linear coded
covers using a single acoustic vector sensors (AVS) has been established, the extension
of this theory to array-based systems remains unexplored. To address this gap, we
employ a specially designed coded cover and leverage compressed sensing (CS) and
compressed covariance sensing (CCS) methods, extending their application from single
AVS systems to an array-based acoustic measurement system. Our results demonstrate
that a 14 x 10 coded cover with 12 PU probes enables accurate localization of 100 sound
sources in 3D, even at a signal to noise ratio (SNR) as low as 10 dB, showcasing the
scalability and robustness of this approach.

To further enhance localization accuracy, we implement a self-calibration method
in the covariance domain to correct phase and gain errors in each receiving channel.
Additionally, we combine self-calibration with CCS to improve resolution and reduce
side lobes. For geometric mismatch, we first investigate the sparsity-cognizant total
least-squares (STLS) with multiple measurement vectors (MMV) variant of the fast
iterative shrinkage-thresholding algorithm (FISTA) method. Then a grid-searching
strategy is employed to compensate for these mismatches, ensuring better estimation
accuracy. Experimental validation confirms that these techniques significantly enhance
DOA estimation under non-ideal conditions, contributing to the advancement of acous-
tic sensing and localization methodologies.
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Introduction

The capability of capturing all acoustic information at any point within a sound field
provides a detailed view of sound propagation [1]. This allows for precise identification
and quantification of sound outputs from various sources. By measuring both the am-
plitude and direction of sound waves, the technology enhances the accuracy of acoustic
analysis. It results in more detailed and reliable acoustic data.

1.1 Acoustic Sound Field Measurements

Acoustic sound fields are made up of both pressure variations and particle velocity.
While acoustic pressure is a scalar quantity, particle velocity has both a magnitude and
a direction, making it a vector quantity.

Microphones, which are the most commonly used devices to measure sound, oper-
ate by detecting changes in air pressure. The pressure quantity is measured by the
movement of an internal membrane, which responds to pressure fluctuations. As the
pressure force acts on the membrane, it moves back and forth, and this motion is then
converted into an electrical signal by a transducer.

Acoustic particle velocity sensors [2], which are transducers used to measure particle
velocity in air, operate on the same principles as hot-wire anemometers. In this system,
a wire is heated by an electrical current and cools when exposed to airflow. As the
temperature of the wire changes, its resistance also varies, generating an electrical
signal that is proportional to the flow. To measure acoustic particle velocity, two heated
wires are placed close to each other, and the temperature difference between them is
monitored. This allows for an accurate measurement of particle velocity. Thanks to
their compact design, these sensors can be arranged in three orthogonal directions,
enabling the characterization of the acoustic particle velocity vector in the sound field.
Figure 1.1 provides a close-up view of the particle velocity transducer, which operates
on the principles of hot-wire anemometry.

1.1.1 PU probe

Unlike an acoustic vector sensor (AVS), which measures both acoustic pressure and two
or three particle velocity channels, the PU Probe is a sound intensity probe that inte-
grates two sensing technologies: a traditional microphone (P) and a Microflown sensor
(U) [3]. By simultaneously measuring acoustic particle velocity and sound pressure, it
overcomes many of the limitations typically associated with conventional sound inten-
sity PP probes. This allows sound intensity measurements to be performed directly in
real-world conditions, without the need for an acoustically treated environment. Due
to this flexibility, PU sound intensity probes are ideal for use in a wide variety of



Figure 1.1: Hot-wire anemometer principle-based particle velocity transducer.

challenging settings, such as highly reverberant areas or confined spaces like vehicle
interiors.

The Microflown PU probe provides a distinctive capability to simultaneously cap-
ture all acoustic information at any point within a sound field. With its broadband
response spanning from 20 Hz to 10 kHz, the probe enables direct measurement of
sound pressure, particle velocity, and sound intensity. This comprehensive data collec-
tion is achieved without relying on assumptions or introducing computational errors,
ensuring exceptional precision and accuracy in acoustic analysis. The appearance of
the PU Regular from Microflown is shown in Figure 1.2.

<y

Figure 1.2: PU Regular

When a plane wave impinges on a PU probe, the model can be described using a
three-dimensional spherical coordinate system. This system uses azimuth 6 € [0, 27)
and elevation ¢ € [0, 7], as illustrated in Figure 1.3a.
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(a) Configuration of a single PU probe (b) Configuration of a single PU probe
and one sound source in R3. and one sound source in R2.

Figure 1.3: Configuration of a single PU probe and one sound source

In this coordinate system, the unit vector in the direction of the incoming wave is
defined as:

Da cos(0) sin(v))
p=|p, | = [ sin(f)sin(¢y)
p- cos(1)

For the special case of a two-dimensional spherical coordinate system where the
elevation angle 1 is 7, the unit vector simplifies to:

p= (1) = (i)

This reduction to two dimensions occurs because, with ¢ = 7, the wavefront is
confined to the horizontal plane, making the elevation angle irrelevant.

The orientation of the PU probe & can be set randomly. Here, we set it along with
x-axis. Since a PU probe measures only one component of particle velocity, we can
define the angle between p and & as ¢.

From the Euler equation of motion under the assumption of a far-field narrow band
source signal [1], the sound pressure P(r,t) and the acoustic particle velocity v(r,t) at
position r corresponding to the sensor and time ¢ are linearly related as:

v(r,t) = —pBCP(r,t),

where p represents the density of the medium, and c¢ is the speed of sound in the
medium. The product term pc represents the characteristic acoustic impedance of the
medium.

Due to the linear relationship between sound pressure and acoustic particle velocity,
the wave phase delay relative to the reference point, e/*P)_can be factored out. Here,
k= 27” is the spatial frequency of the source signal, also called the wave number. This
leaves only a difference in scaling by pc. By adjusting for this scaling, the element-space



measurement data at time instant ¢ is [5]:

1

— oJik(rp)
y(t) =e [COS(

s(t) +n(t), 1.1
NECRRTG (L
where s(t) represents the source signal, and n(¢) denotes the measurement noise.

1.1.2 Array grids

While individual sensors, such as the PU probe and an AVS, provide valuable data on
acoustic pressure and particle velocity at a single point, scaling this approach to array
grids offers enhanced capabilities.

First, we consider a PU based array randomly placed in the 3D space. The array
contains the K sensors located at arbitrary positions indicated by the position vectors
ri,To,...,rx and N far-field sound sources S, ..., Sy. Since the sources are transmitted
from the far field, it can be approximated as plane waves. The nth source is located
in the direction of the unit vector p,,, which is parameterized by two angles in the 3D
case: 0, (azimuth) and v, (elevation). The orientations of sensors can be arbitrary
and are indicated by d,. The angle between the nth source and the orientation of the
kth sensor is ¢y ,,. For convenience, we collect all ¢y, ,, terms corresponding to the same
source into a vector. Specifically, we define

¢n:[¢1,n7¢2,n7---,¢[(,n], nzl,...,N.

The measurement data y(¢) at time ¢ of the measured snapshot corresponding to
frequency f (wavelength A) can be modeled as:

y(t) = [a(01,¢n) ou(e,)... a(by,dn)ou(ey)ls(t) +n(t), (1.2)

where a(@m wn) = ap(emwn) ® |}:| = [ejk(rl'Pn) . ejk(rK'Pn)]T ® |i{| represents the

extended response vector of an APS array, u(¢,) = [1 cos(¢r,) --- 1 cos(gbK,n)]T
is the weighting vector containing directional information of the far-field source with
respect to the vector sensor for the nth source. The o denotes the Hadamard (element-
wise) product. Further, s(t) = [s1(t) so(t) ... sn(t)]? is the source signal vector
and n(t) is the additive noise vector present in the measurement data. In the further
discussion, we refer to this general setup as a PU array, as indicated in Figure 1.4.
When the orientations of all the sensors are aligned in the same direction, the far-
field model can be further simplified, since ¢y, = ¢2, = -+ = ¢k, for the same n.
We denote this common value as ¢,. The modified weighting vector u can be written

as u(¢,) = [1 cos(¢n)]T. Then, the simplified data model can be written as:

y(t) = [ap(el, wl) & ll(¢1) ap(eN,QﬁN) ® u(qu)]s(t) + n(t), (13)

Multiple sensors can be arranged in a fixed layout. One of the planar array product
series from Microflown is the Hand-Held Array. It includes the RECT-7.5, RECT-1.8,
and BiHex models. The first two arrays both feature a 3 x 4 configuration with 12 PU



PUs

Figure 1.4: Measurement model of a PU array

Mini or PU Match sensors. The key difference is the inter-sensor spacing. As the names
indicate, the RECT-7.5 has 75 mm inter-sensor spacing, while the RECT-1.8 has an
18 mm distance. Figures 1.5a and 1.5b show their appearances. Additionally, there is
another design optimized for near-field acoustic holography, which features a hexagram
layout, as shown in Figure 1.5¢. In our work, we focused only on the RECT-7.5, where
the orientation of each probe is perpendicular to the array plane. This corresponds to a
special case of the general PU array model described earlier, where the sensor positions
T, lie on a 2D plane and the orientation vectors d, are all aligned along the same axis
(e.g., the z-axis), orthogonal to the array plane. This structured configuration allows
simplification of the general model by fixing both the spatial distribution and sensor
orientation.

(a) RECT-7.5 (b) RECT-1.8 (c) BiHex

Figure 1.5: Family of Hand-Held Array with PU Probes

1.2 Motivation of the project

Current systems that employ a single AVS with a coded cover [6] have shown improved
detection accuracy through compressed sensing (CS) and compressed covariance sensing



(CCS) methods [7]. The model of the considered cover to improve the performance of
a 2D AVS is shown in Figure 1.6. As the wave encounters the cover, it passes through
each channel independently. At the exit of each channel, we assume the presence of a
point source. The sound then propagates from this point source to the position of the
AVS in the near field. Notably, the CCS method has extended the ability to detect
multiple sound sources with a single AVS. However, there remains a lack of evidence
regarding the scalability and performance of these methods in more complex conditions.

\\\Q\Source

|

= Uy

Figure 1.6: The model of a single 2D AVS with a specially designed coded cover [(]

To address these challenges, this project investigates the potential of extending these
advantages by employing an array of PU sensors. By leveraging the combined capa-
bilities of multiple sensors, we aim to further enhance DOA estimation accuracy and
detection capabilities, surpassing the limitations of single-sensor systems. This investi-
gation seeks to explore how the integration of a PU sensor array can provide significant
improvements, offering a more robust solution for complex acoustic environments.

Furthermore, this project investigates calibration within the framework of com-
pressed sensing. Since compressed sensing methods rely on an accurate system model,
even small mismatches in the geometric configuration or sensor responses can degrade
performance. By integrating calibration techniques into the compressed sensing process,
we aim to correct these mismatches and enhance the accuracy of source localization.

1.3 Outline

This thesis explores advanced methods for sound source localization, focusing on the
investigation of compressed sensing, self-calibration, and sparsity-cognizant total least-
squares (STLS) with multiple measurement vectors (MMV) variant of the fast iterative
shrinkage-thresholding algorithm (FISTA) method for improved DOA estimation in



3D. The structure of the thesis is as follows:

Chapter 2: This chapter extends the CCS method from a single AVS system to a
planar PU array. The feasibility of 1D DOA estimation is first analyzed, followed by
an extension to 2D DOA estimation. Experimental results demonstrate that a 14 x 10
coded cover enables localization of up to 100 sources in 3D, even in low SNR conditions.

Chapter 3: This chapter introduces a self-calibration method for planar PU arrays
with coded cover, addressing per-channel receiving errors. The theoretical identifiability
conditions are derived, followed by a joint estimation framework for signal recovery and
calibration. An improved approach integrating CCS and self-calibration is proposed to
enhance resolution and reduce side lobes.

Chapter 4: The feasibility of STLS-MMV-FISTA in compressed sensing is evaluated,
revealing its localization limitations due to geometric errors. To address this, a grid-
search-based correction is applied, with different calibration strategies for calibrated
and uncalibrated sensors. The method is first validated in 2D simulations, and then
extended to 3D cases, showing its effectiveness in mitigating geometric mismatches.

Chapter 5: This chapter presents real-world tests using CS, STLS-MMV-FISTA, and
self-calibration methods. Despite experimental constraints, results confirm the effec-
tiveness of sparsity-based approaches in side lobe suppression, leading to improved
localization accuracy under non-ideal conditions.

Chapter 6: 'The final chapter summarizes the key findings and highlights future re-
search directions. Potential improvements include the use of irregularly shaped coded
covers, alternative 3D sensor arrangements (e.g., spherical arrays), and enhanced self-
calibration techniques for handling multiple error types.






CCS-Based Localization on
RECT-7.5 with a Coded Mask

As mentioned in Section 1.2, the benefits of a specially designed coded cover can poten-
tially be extended to sensor arrays. In this section, we first validate the model of a PU
array with a linear coded cover. Figure 2.1 shows the general model, in which the array
can be placed in an arbitrary position in 3D space beneath the linear coded cover. To
ensure good sensitivity, the PU sensors are oriented along the z-axis, allowing them to
primarily receive signals from the front of the mask, where acoustic power is typically
strongest. This configuration enhances the effective aperture of the array by exploiting
spatial modulation introduced by the coded pattern. Then, we extend the study to a
planar coded cover for 3D sound source localization.

The total array response with coded cover can be divided into two parts as explained
below, and also illustrated in Figure 2.1:

A(0)

‘\g”// -
h P 5 Lkm
’M Py Ib‘ o o

PUs PUk

.
PU:

Figure 2.1: Measurement model of a PU array with coded cover

From sources to coded cover

Assume the width of each channel is same, which is denoted as A measured in wave-
lengths A = ¢/f with ¢ the speed of sound and f the transmitted signal frequency.
The entry point of the mth channel can be viewed as the mth sensor in a virtual ULA.
The ith signal received at this point has m — 1 phase shifts related to the first channel,
which can be represented by the term e/27(m=1Asin(%:)  Note that there also should be
the complex attenuation « related to the distance between the source and virtual ULA,
which depends on the frequency and the volume velocity of the far field source. It can
be considered as 1 without loss of generality if we adapt the noise variance accordingly.
The virtual array response vector of the ith signal is:



1
e]QWAsin(Gi)

eﬂﬂ'(M—l)Asin(G,-)

Thus the virtual ULA response of all N signals can be stacked as the M x N matrix:

A(6) = [a(th) a(y) ---a(fn)] (2.1)
6]27rAsin(€1) 6]27rAsin(92) . ej27rAsin(9N)
~ | | | | BT
6]27r(M—i)Asin(61) e]QW(M—l.)Asin(Gz) ‘ 6327r(M—1.)Asin(9N)

The signals received at the entrance of M channels can be expressed as:
x(t) = A(0)s(t)

From coded cover to sensors

Assume the length of the m-th channel is d,,, and the distance between the exit of the
m-th channel and the k-th PU sensor is Ly, ,,,. Since the distance from the coded mask to
the PU array is far shorter than 10 times the wavelength, the signal attenuation model
from the exit of the channels should be considered in the near-field. The attenuation
from the exit of the m-th channel to the k-th PU sensor can be represented as:

Bk,m

1 27'f(Lk7m+dm)
—= e_] c
Lk,m

We group the attenuation coefficients 8y ,,, k = 1,2, ..., K, that correspond to the same
channel m, into a matrix:

Em = diag(ﬁkvm, k= ]_, 2, ce K) & 12><2

for later use. Note that we used the Kronecker product here to indicate the linear
relation between pressure and the single particle velocity measurement used in the PU
probe.

From Section 1.1.2, we have already derived the PU array response of multiple sig-
nals. Now we can consider the current situation where there are M sources transmitted
from M channels and received by an array of K PU sensors. With the weighting vector
u(¢,,) defined in section 1.1.2, the compression matrix is therefore written as a 2K x M
matrix :

® = [Eiu(¢;) Esu(e,) ... Enu(gy)] (2.3)
5171 ﬁl,Z e ﬁl,M
51,1005(¢1,1) 51,2005((?1,2) T @1,M003(¢1,M)
= : : : : : (2:4)
6[(,1 6K,2 e ﬁK,M
Bracos(dr1) Brocos(pra) -+ Brmcos(Pr )

10



As a result, the total array response matrix is

B(0) = ®A(0) = [@a(f)) ®a(f) ---Pa(fy)] = [b(61) b(62) ---b(QNﬂ(é .

The received signals in the PU array can be expressed as:

y(t) = ®A(0)s(t) + n(t) = B(0)s(t) + n(t)
= ®x(t) + n(t) € C*HF*

where x(t) = A(0)s(t) is the measurement vector of the noiseless measurements at the
virtual ULA.
This model equation can be extended to T measurements:

Y = [y(1),y(2),...y(T)] = ®A(0)S+ N =B(0)S + N (2.8)
= PX + N e C2xT

where S, N and X are similarly defined as Y.
The measurement covariance matrix R, can thus be calculated as:

R, = PA()R;A(0)"®" + R, = B(O)R:B(0)" + R, (2.10)
= ®dR, " + R, € C*FK (2.11)

where Rg = E{s(t)s(¢)?}, R, = E{n(t)n(t)} and R, = E{x(t)x(t)} are the covari-

ance matrices of corresponding signals.

2.1 1D DOA Estimation Using Compressed Sampling

We already observed the difference of the covariance representations in (2.10) and
(2.11). We first examined the advantage gained from implementing MUSIC algorithm
with the compressive measurement based on (2.10).

Compressive sensing (CS) is a method used to acquire sparse signals and reconstruct
them from a small number of measurements [3]. The core concept behind CS is that
certain signals can be recovered using far fewer samples than traditional methods [9]-
[10]. This is made possible by two key principles: sparsity, meaning the signal can be
represented using only a few non-zero elements, and incoherence, which ensures that
these signals can be accurately reconstructed from the compressed data.

In our design, the coded cover can be seen as compressive sampling in the spatial
domain, compressing or transforming the virtual ULA into an array of fewer sensors.

According to (2.5), a matched filter can be implemented using w(#) = b(#). How-
ever, since the compression matrix ¢ does not preserve the energy, it is better to
normalize the beamformer. This ensures that the noise energy will also not depend on
0. The normalized beam pattern for the model with a coded cover can be expressed as:

5 _ [pO)DE)] _ [a(0)" B Da(t))
(b(0)[? [b(6)[?

11



Figure 2.2 shows the beam patterns of 12 PUs for both ULA and RECT-7.5 arrange-
ments with a coded cover. The number of channels used is 90, with each channel
spaced at half-wavelength. The 12 PUs are placed 15 cm away from the coded cover.
The length of each channel ranges from 1 cm to 10 cm. For the ULA, the sensor spacing
is 7.5 cm. The signal frequency is 10 kHz.

From Figure 2.2, we can see that the highest peaks of the ULA plot and planar
plot pointed towards the target. But there is a common issue: due to the presence of
multiple high side lobes in the beam pattern, the beamforming algorithm cannot be
used effectively to localize multiple sources.

12 Beam pattern of 12 PUs with coded cover

ULA
-===-Planar(RECT-7.5)
1F N source

08

&
2 0.6

04

02

0

0 20 40 60 80 100 120 140 160 180
angles

Figure 2.2: Beam pattern of an array with 12 PUs with coded cover

Traditional matched filter-based methods fail to provide satisfactory performance
under the given conditions. This necessitates the use of covariance-based DOA estima-
tion methods, such as the MUSIC algorithm and the MVDR algorithm. Since we have a
perfect knowledge of the whole propagation model, including the virtual ULA response
of the mask A and the compression matrix ®, we can leverage these techniques. Re-
search has shown that angle-spectrum-based methods like MUSIC and MVDR, perform
comparably to CS reconstruction methods [11, 12], while avoiding the high complexity
associated with iterative algorithms [13].

MUSIC, in particular, takes advantage of the fundamental property that the signal
subspace and the noise subspace are orthogonal, enabling it to perform high-resolution
DOA estimation. In contrast to MUSIC, which relies on subspace decomposition,
MVDR directly minimizes the interference from all directions except the target di-
rection, thus enhancing DOA estimation while effectively suppressing noise and inter-
ference.

We choose to implement the MUSIC algorithm. From (2.10), we perform an eigen-
value decomposition:

Ry = US(AS + U2IN)USH + Un(0'212K7N)UnH
Then by scanning b(#), at most 2K — 1 sources can be localized. The CS MUSIC

12



spectrum can be expressed as follows:

_[UDOF _ b()"U,U. b(s)
Puse® = g = b))

The peaks of the MUSIC spectrum correspond to the estimated DOAs.

Compared to the traditional matched filter method, CS can achieve its full potential
when combined with MUSIC, as shown in Figure 2.3. It successfully recovers up to
2K — 1 sources. Specifically, when using 12 PUs, whether arranged in a ULA or a
planar array, 23 sources can be accurately localized. This demonstrates that our coded
cover enables high-accuracy localization of sources.

CS-Localzation of sources by MUSIC 42107 CS-Localzation of sources by MUSIC

,,,,,,,,

(a) ULA (b) Planar array

Figure 2.3: MUSIC Localization of 23 2D-sources by using CS method with 12 PUs at SNR
= 20dB

2.2 1D DOA Estimation Using Compressive Covariance Sens-
ing

In this part, we investigate the benefit of localizing as much sources as possible with
estimating Ry from Ry through compressive covariance sensing (CCS) [14]. Specifically,
we exploit the setting where the sources are stationary in the spatial domain, which,
in this context, is equivalent to assuming uncorrelated sources. Different from the CS
method, which requires the original signal to be sparse, CCS focuses on recovering the
second-order statistics of a signal from its compressed measurements without imposing
any sparsity constraints.

First, we need to obtain the compressed data. Then we recover the estimated Ry
from Ry. The compression stage is done by compressive sampling of the coded mask, as
explained in Section 2.1. Following this, we analyze the specific structure of the original
covariance matrix of x. In this way, we can handle the over-determined problem by
transforming the original under-determined problem.

Since the cover has a virtual ULA structure and sources are uncorrelated, Ry is a
positive semi-definite Hermitian Toeplitz (HT) matrix. It should lie in the subspace
formed by the intersection of the set of positive semi-definite matrices and the set of

13



HT matrices. This subspace can be characterized by the following basis:

8 = {20,21,...22]\/],2} (212)
- {IM}U{Tla---;TMfl}U{Tla--'aTMfl}> (213)

where T, denotes the HT matrix with all zeros except for the entries on the diagonals
+m and —m, which have ones, and T,, represents the HT matrix with all zeros except
for the entries on the diagonal +m, which have the imaginary unit j, and those on the
diagonal —m, which have —j.

Therefore, Ry can be represented by the scaled summation of all entries in the
subspace, which is:

2M—2
Re= Y . (2.14)
m=0

The number of unknown scalars «,, is decided by the cardinality of the subspace,
which is 2M — 1.
Plugging this into (2.11), we get:

2M—2

R, = 0, ®E,, 7 + R, (2.15)
m=0
2M—2

= B + Ry, (2.16)
m=0

Now we can define a set related to S, with all entries being Hermitian, but not Toeplitz:
S=1{%0.%1,..Toy 2} with I, =%,

If the compression matrix ® is able to preserve all the second order statistical infor-
mation of x, it is called an S-covariance sampler. They are able to preserve the linear
independence among matrices in the set of S and knowing a, is exactly equivalent to
knowing the Ry. The fewer the unknowns, the higher the compression ratio achieved
by the compressive covariance sensing method.

A necessary condition for this is that (2.16) defines an over-determined system. The
number of unknowns is 2M — 1, while the number of equations is equal to the number
of independent real values in Ry, — R,,, which is (2K)? = 4K?%. Hence, a necessary
condition for obtaining an S-covariance sampler is

2M — 1 <4K? <= M < (4K* +1)/2 <= M., = 2K*.

And now we can recover at most 2K? — 1 sources. When 12 PU sensors are used,
i.e., K = 12, the maximum number of channels becomes 288. This means that up to
287 sources can be recovered in our case. This shows a significant improvement in the
number of localizable sources compared to the CS method, which can resolve only up
to 23 sources.

14



To estimate the oy, values, we can use either a maximum-likelihood (ML) approach
or a least square method. ML involves high computational costs and requires an accu-
rate statistical characterization of the observations. For these reasons, it is customary
to rely on geometrical considerations and project the sample covariance matrix onto
the span of S. We consider a simple linear least squares cost based on (2.16):

2

2M—2
@ = min Ry - R, — Z Qo Xim,
m=0 2
The solution is described in [7]. First, we need to vectorize Ry, Ry, Rx and X,

as vectors o, 0, 0, and o,,, respectively. From Equation (2.14), we get the relation
between o, and o,,:

2M -2

o, = Z ;0 = S (2.17)
i=0

, where S = [0, 01, ..., Tanr_a], & = [ag, vy, ..., aopr o] T
Then, after vectorizing (2.11), we can get:

o, — 0= (D" @ B)o, = (B ® B)Sav. (2.18)

Now, & can be estimated by solving the above equation with LS: [(®*@®)S]" (o, —0,),
where T denotes the pseudoinverse operation. Finally, we can obtain the estimated

R, = vec {S[(®* @ ®)S]* (o, — 7))}

Any ULA-based DOA estimation algorithm can be applied to localize sources with Ry.
We will focus on MUSIC for this.

2.3 Simulation Results of 1D DOA Estimation with CCS

In this section, we will demonstrate the effectiveness of CCS in DOA estimation. First,
we need to initialize the parameters. The number of channels in the coded mask is set
to 90. The signal frequency is 10 kHz, so the channel spacing is chosen to be 1.7 cm to
ensure it is half the wavelength. Twelve PUs are placed 50 cm away from the entry of
the coded cover. The length of each channel varies between 1 and 10 cm. For the ULA,
the spacing between the sensors is set to 7.5 cm, which is the same as for RECT-7.5.
We take 500,000 snapshots for the estimation process.

As shown in Figure 2.4, both the ULA pattern and the RECT-7.5 placement suc-
cessfully recover 61 sources. This represents a significant improvement over the CS
method in terms of source recovery capability.

If all PU probes are replaced with simple P or U sensors, where only one mea-
surement is collected per sensor, the number of channels decreases to 70. All other
parameters remain unchanged. As shown in the MUSIC spectrum plots in Figure 2.5,
with either a single pressure or particle velocity measurement per sensor, the CCS
method can successfully recover 41 sources in all cases. However, achieving the same

15
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Figure 2.4: MUSIC Localization of 61 2D-sources by using CCS method with 12 PUs at SNR
= 20dB
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Figure 2.5: MUSIC Localization of 41 2D-sources by using CCS method with 12 P/Us at
SNR = 20dB

performance as when 12 PUs are used to recover 61 sources is not feasible, as demon-
strated by the results in Figure 2.6. It is clear that equivalent performance cannot be
obtained with less data.

2.4 2D DOA Estimation Using CS method

We now transition from 2D to 3D sources. To estimate both elevation and azimuth
angles, the mask must also be configured in 3D. The form of the coded cover mask

16
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(b) Planar array with 12 U sensors

Figure 2.6: MUSIC Localization of 61 2D-sources by using CCS method with 12 P/Us at
SNR = 20dB

is changed to a planar arrangement of channels, as shown in Figure 2.7. The PU
array used behind the planar mask is the RECT-7.5 model, and for all further analysis,
K = 12 is used. The mask is composed by M channels with J rows and I columns.
The localization includes the elevation, which is based on the deviation from the z-axis
6 € [0°,90°) and azimuth from the x-axis ¢ € [0°,360°).

The signal direction is represented by the wunit vector ¢ =
(sinf cos®,sinfsine, cosf). The channel block in the position of (i,7) is also
represented by the position vector m;; = ((: — 1) x 6, (j — 1) x 6,0). Here ¢ is the side
length of each square channel entry area. Also, it equals the spacing between channels.

For each source, the coded cover can be viewed as a virtual block array response
with a recursive structure:
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Figure 2.7: 3D source localization model
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1 1

6]27rAsin93inw 6]2#Asin9cosw
= . ® . : (2.20)
ejZW(J—l)Asinﬁsim/) 6]277(]—1)Asin9008¢
ay(0,9) az(9,9)

where A = ‘%f (we set it as 1/2 wavelength to avoid aliasing problem). The order of
the terms a,(0,v) and a,(6, 1) is not important. Changing the order only affects the
stacking order of the shifts for each channel in a(f, ).

Now define the virtual array response matrix along with the row and column direc-
tions separately, as follows:

Ay(97¢):[a’y<01’¢1) T a’y(QNawN)}GCJXNa

and

Aév(e?”vb) = [ax(gla"l}l) y T ) a’x(eNy’(/)N)} € (CIXN.

We can note that both of them are Vandermonde matrices.
The virtual planar array matrix for all sources can thus be written as a column-wise
Kronecker product, which is a Khatri-Rao product, denoted as ® :

A(0,9) = [a(b1,%1) | -+ | a(On,¢n)] (2.21)
= lay(01,¢1) ® az(61,¢91) | -+ | ay(On,¢n) ® a(On,¥n)]  (2.22)
= A,(0,9)® A,(0,v) € CTT*N. (2.23)

The compression matrix ® can be constructed by calculating the distance from the
exit of each channel to each sensor. After obtaining A(60,1) and ®, the total array
response matrix is:

B(6,¢) = ®A(0,¢) (2.24)
= [®a(01,¢1) Pa(bs,v2) ---Pa(On,vn)] (2.25)
= [b(f1,%1) b(0,¢) -+ b(Ox,vn)]. (2.26)
The received signals in the PU array can be expressed as:
y(t) = PA(0,¢)s(t) +n(t) = B(O,1)s(t) + n(t) (2.27)
= ®x(t) +n(t) € C, (2.28)

where x(t) = A(0,1)s(t) is the measurement vector of the noiseless measurements at
the virtual ULA.

The matched filter beamformer for the CS method in the 2D case is done by scanning
both elevation and azimuth together:

‘b(@, ¢)Hb(007 2bo)| _ ’a(07 1/})H(I)H(I)a(‘907 ¢0)|
[b(0, 4)? LICRDIE ’
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Beampattern by CS method
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Figure 2.8: Beam pattern of CS method with the target at (70°,140°)

where we assume 6 is the elevation of the single source, and the azimuth is localized
at the direction of ).

We test the case when a 10 x 14 planar coded cover is used, with 12 PU sensors
positioned 15 cm behind the entry plane of the coded cover. The length of the coded
cover channels ranges from 1 cm to 10 em. The target is located at 6y = 70° and Yy =
140°. As shown in Figure 2.8, the beamformer fails to accurately focus on the target.
The presence of multiple side lobes further complicates localization, especially when
additional sources exist. This limitation makes the traditional beamformer unsuitable
for the CS method.

CS-Localization of sources by MUSIC

Specirum peak value

Figure 2.9: MUSIC localization of 23 sources with CS method when SNR = 20dB

When the MUSIC algorithm is applied, Figure 2.9 shows that 23 sources can be
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Figure 2.10: The details of localization results from the CS method

successfully localized. A detailed examination in both the elevation and azimuth di-

mensions, shown in Figure 2.10, reveals that the localization result is highly accurate.

Thus, the CS method demonstrates its full capability in localizing sound sources.

Further, we validate the effectiveness of the CS with MUSIC method by comparing

its localization performance with and without the coded cover.

For a fair compari-

son, the signal frequency in the case without the cover is adjusted to satisfy the half-
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wavelength spacing condition. From Figure 2.11, we observe that although the target
at 6y = 70° and 1y = 140° can be successfully localized in both scenarios, the result
with the coded cover exhibits significantly lower side lobes and a much sharper peak.
This further validates the advantage of using a coded cover in enhancing localization
accuracy.

CS-Localization of MUSIC method with coded cover
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(a) MUSIC localization with CS method using coded cover
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(b) MUSIC localization with CS method without coded cover

Figure 2.11: Comparison of MUSIC-based localization using the CS method with and without
a coded cover at SNR = 20 dB.
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2.5 2D DOA Estimation Using CCS method

We have derived the virtual planar array response of the coded cover in Section 2.4,
which can be expressed as the Kronecker product of the Vandermonde vector for each
source separately. For a single source, the covariance matrix of x(t) = a(6,1)s(t) is
thus can be decomposed as

Ry = a(0,¥)R.a(0, )"
= (a’y(ea ¢) ® aft(e? w))<a’y(67 7/J) ® ax(ea w))HRs
- (a'y<87 Way(@a WH & a’m(ev sz)a'z(e? ¢)H)Rs
Since both a,(6,v) and a,(f, ) exhibit a ULA response structure, the two multi-
pliers in the Kronecker product, a,(6,v)a,(0,%)? and a.(0,v)a.(0,9)?, also follow
an HT structure. Consequently, the subspace defined in (2.12) is no longer a simple HT
subspace. Instead, it belongs to a smaller subspace that consists of matrices formed as
the Kronecker product of an HT matrix of size J x J and an HT matrix of size I x I.
For the case with multiple sources: x(t) = A(6,1)s(t), assume each source is

independent, i.e., the covariance matrix of s(¢) has diagonal structure. Therefore, the
covariance matrix of x can be written as

R«

A(0,9)R.A(6, )"

[
WE

a(On, Vn)a (nﬂ/’n) sn

3
Il
_

Il
WE

(ay (O, V) @y (On, ¥n) " ® Ga(On, )@ (0, 9n) )2,

3
Il
—

where 02 is the unknown signal power of the nth source. It turns out to be a positive

semldeﬁmte (PSD) (I, J), 2-level Toeplitz (2LT) matrix, as defined in [15]. The rank
of this matrix is N. According to Theorem 2 in [15], if such a decomposition of the
covariance matrix with N > min(/, J) exists, it can be uniquely found under the weak
condition:

N <IxJ—max(l,J). (2.29)

This provides a theoretical upper bound on the maximum number of sources that can
be uniquely recovered using the CCS method.
The subspace of the HT matrix of size J x J is:

S = (S T, 5, ) (2:30)
:{IJ}U{Tlla"'aT/J—l}U{Tlla'-wa]—l}' (231)
And

2J-2

( mwn)ay na@z)n Z Oz 2/».
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The subspace of the HT matrix of size I x [ is:

S// = {Ega 2,1/7 "'2/2/1—2} (232)
= {II}U{Tlllvv /I/—I}U{Tllla"') ~/],—1}' (233)
And
21-2
Ao (O, V) (O, ) = > S
1=0

To estimate the spatial covariance matrix Ry, we consider structured recovery ap-
proaches based on matrix decomposition in a specific subspace. Our goal is to express
R, in terms of a known basis and estimate the unknown coefficients. We propose two
different methods: one utilizing independent observations from HT submatrices, and
the other relying on full data collection.

2.5.1 Structured Recovery Using Two Independent Observations

The first method estimates Ry using data collected from two different Rys, under the
assumption that the signal power is normalized to 1, which will be explained later. The
two Rys are obtained from the first row and the first column of the coded mask, which
can be treated as two separate ULA responses.

By leveraging these two observations, we can separately obtain of from the first
row and «} from the first column. Since o reflects the signal power from the first
observation and o reflects the signal power from the second observation, it is not
possible to directly extract the individual signal powers from them.

If the signal powers are not normalized to 1, the two observations become incon-
sistent and cannot be combined to estimate Ry. However, when the signal power is
normalized to 1, all necessary unknowns for estimating Ry are resolved. Specifically,
the estimated covariance matrix is given by:

21—22J—2
R, = Z Z o 5] @ X
i=0 j=0
The advantage of this method is that if only I+ .J — 1 channels are used, the number
of resolvable sources is I x J —max(I, J). The constraints on I and J also become less
strict compared to the second method, allowing more sources to be localized:

Ax 12241
2[-1§4K2=>[§%=>1W=288,
4% 122 41
0] — 1 <AK2<d4K?—s J< X220 g 988,

2

However, in practical scenarios, this method has significant limitations. First, real-
world signals rarely have exactly equal power, making the assumption unrealistic. Sec-
ond, source signals may fluctuate over time, leading to inconsistencies when collecting
data in separate measurements. Due to these drawbacks, we mainly focus on the second
method in the following analysis.
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2.5.2 Full Data-Based Recovery

The second method utilizes all data directly collected in R, to estimate Ry. From the
deviation above, for a single source s,,, we have:

21-22J— (2I-1)(2J-1)
a0, Yn)a(0n, )02, ZZ Ao @ = Y (0, 1) S
=0 j=0 m=1

Here, &,, contains all unknown scalar information in the two HT subspaces and the

unknovvn signal power, defined as oj'a’; 02 The basis matrices 3, form the subspace

of Ry:
- MxM _
S={¥,eC™M%, =3'® E;-, eds, Z; e S’} (2.34)

The cardinality of S'is (2J — 1)(2] —1).
For multiple sources, since each independent source shares the same subspace, the
sum of the covariance matrices equals the sum of the scalars for each subspace entry:

N

Rx = a’<0n?¢ﬂ) ( THwTL) sn

n=1
(2I-1)(2J-1) N

= Z Zam n7¢n

m=1

where «,,, is the unknown scalar that contains all source information.
To keep the system overdetermined, constraints on I and J must be satisfied:

2%x122 1
2 —1)(2J — 1) < 4K? I< Z
( J2J—1) SAR" =T 55—+
144 J
:>]><J_2J +§+144:Mma$:(l><J)ma$:12><13:156.

Since one of the main objectives of CCS is to recover more sources than the CS method,
N should be larger than the upper limit of the CS method, which is 23 when 12 PUs
are used. This implies that the rank of R, will exceed 23, which is greater than the
maximum of I and J. Thus, at most 156 — 13 sources could be localizable in the 3D
scenario. Here, we choose I = 14 and J = 10. According to (2.29), this results in a
recovery guarantee of 140 — 14 sources, which still allows for the recovery of a large
number of sources.

If only one acoustic pressure or particle velocity measurement is used in each of 12
sensors, the condition should be changed to

(21 —1)(2J = 1) < K? = Mypae = (I X J)pae = 6 X 7 = 42.
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So, then at most 35 sources could be localizable in the 2D scenario, which is not large
enough.
If a 2D-AVS is used for each sensor, the condition should be changed to

(2 —1)(2J = 1) K 9K? = My = (I X J)ppaz = 18 x 19 = 342.

Now, 323 sources could be localizable in the 3D scenario. Considering the trade-off
between data processing load and the requirement for the number of identifiable targets
in real applications, using a planar AVS array is not necessary in this case. Additionally,
when the number of targets is too large, meaning more targets are getting closer, it
requires a very high resolution for DOA estimation. This implies that there will be a
compromise in improving the number of identifiable sources. So, in our settings, using
a PU probe is a suitable choice. Note in this context, that the less measurements we
take per sensor, the cheaper the sensor becomes.

2.6 Simulation Results of CCS in 3D source localization

We perform source localization using the estimated covariance matrix of x(t), rather
than directly using Ry as the CS method does. First, we analyze the beam pattern for
the CCS method, which is simply the beam pattern of the coded mask response:

Bees = |a(8,v)"a(by, vo)]-

Beampattern by CCS method

P
/ f =

Spectrum peak value

Figure 2.12: Beam pattern of CCS method with the target at (70°,140°)

The parameter settings are identical to those used in the CS method. Figure 2.12
shows that the beamformer of the CCS method can accurately focus on the target.
Additionally, no side lobes are present, as there is no compression ® from the mask
that alters the shape of the beam pattern, unlike in the CS method. Therefore, this
beamformer is well-suited for the CCS method. However, given the advantages of the
MUSIC algorithm, we will focus on MUSIC next.

Figure 2.13 shows that when 100 sources are present, the CCS method combined
with the MUSIC algorithm is able to localize them effectively.
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400 CCS-Localization of sources by MUSIC
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Figure 2.13: MUSIC localization of 100 sources with CCS when SNR = 20dB

400 — CCS-Localization of sources by MUSIC

Elevation

Figure 2.15: MUSIC localization of 100 10kHz sources with CCS when SNR = 10dB
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(a) 100 random sources
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Figure 2.14: MUSIC localization of 100 8kHz sources with CCS when SNR = 20dB

We also examined the operating frequency range of the coded mask. When the
signal frequency is reduced from 10 kHz to 8 kHz, the channel spacing is no longer half
a wavelength. Figure 2.14 shows that the CCS method can still localize 100 sources
effectively. This is attributed to the velocity gain modulation (VGM) of the beampat-
tern from the array of sensors incorporating acoustic particle velocity measurements
[16]. VGM is independent of the frequency of the source signal and the number of
sensors in the array, which extends the effective operating frequency range of the array.
This indicates that the method is not strictly limited by the half-wavelength spacing
condition. Additionally, when the SNR is reduced to 10 dB, Figure 2.15 demonstrates
that the algorithm remains robust against noise.
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2.7 Conclusion

In this chapter, we extended the CCS method from a single AVS system to an array-
based acoustic measurement system. We first analyzed the feasibility of extending DOA
estimation for the 1D case. We then extended it to 2D DOA estimation.

Our study demonstrates that using a 14 x 10 coded cover, it is possible to accurately
localize 100 sound sources in three-dimensional space, even under challenging conditions
with an SNR as low as 10 dB. This advancement provides valuable insights into the
scalability and efficiency of advanced acoustic sensing technologies, paving the way for
future improvements in DOA estimation and sound source localization methodologies.
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Self-Calibration of Planar PU
Array with Compression

Based on previous improvements in DOA estimation achieved by applying a coded
mask in front of a PU sensor array, we are now considering the impact of perturbations
within the system. To enhance source localization accuracy under these conditions, an
additional calibration step should be integrated into the current model. Prior researches
highlight the significant advantage of combining calibration with DOA estimation, and
we aim to develop a similar approach tailored to our specific model.

The configuration of our model includes:

e A 3 x4 PU sensor array with a spacing of 7.5 cm,
e A 14 x 10 planar coded cover with 1.7 cm channel spacing,

e The distance between the coded cover and array is 15cm and the length of each
channel ranges from 1cm to 10 cm,

e 10kHz signals are transmitted.

The proposed data model is described as:

y(t) = ®A(0,)s(t) + n(t) = B(0,9)s(t) + n(t) (3.1)
= ®x(t) + n(t) € C*K*, (3.2)

where 0 collects elevation angles from N sources and ) denotes the corresponding N
azimuth angles. ® € C*(*M represents the compression matrix, with M denoting
the number of channels and K the number of sensors. A(0,1) € CM*N is the mask
response matrix, s(t) € CV*! is the signal vector, and N denotes the number of sources.
n(t) € C*!*! is the noise vector.

The approach presented here allows for accounting for perturbations in individual
sensor channels. While numerous studies have addressed sensor calibration, they can
generally be categorized into blind and non-blind methods. In the non-blind calibration

approaches [17], [18], [19], [20], calibration is performed with the assistance of reference
information. On the other hand, blind calibration methods [21], [22], [23], [24], [25] rely
on redundant data rather than reference signals to perform the calibration. Although
the paper [20] investigated a calibration method without requiring additional received

data, it does not consider the compressed sensing framework, and the acoustic sensor
used is a ULA AVS rather than a PU planar array.

Our novel contribution to calibration lies in performing calibration within the con-
text of compressed sensing, while simultaneously exploring the sparsity pattern of the
signal to enhance localization. The validity of this method is demonstrated under the
assumption that only the signal part is perturbed in the received data. However, the
method can be extended to scenarios where both signal and noise are affected simulta-
neously.
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3.1 Data Model with Uncalibrated Sensors

When perturbations arise from sensor-related factors, such as uncertainties in analog
electronics, sensor elements, or errors in gain, phase, or orientation within the array,
these errors can affect the performance of tasks like phase retrieval and DOA estimation

[27],[25].

We can express these issues using

oy IV
gq = Ng™"

to represent the ¢-th channel’s unknown gain and phase mismatch. In our model, there
are () = 2K channels in total. We collect the receiving errors in the diagonal matrix
diag(g) with g = [g1,92,...,90]". Let us also define the vectors

n=[,n,...,n0]" and v =|v,1,...,vg] .
With the assumption that the unknown errors only affect the signal component of

the data first, the uncalibrated received signal can be modeled as :
yolt) = diag(g) [B(6, ¥)s(t)] +n(t) € CO. (3.3)

Since both A(60,%) and s(t) are unknown, we construct the DOA finding matrix
A(0,7) € CM*C to leverage the sparsity in the signal pattern. Here G is the grid
size corresponding to the total number of pixels in the scanning grid. Specifically,
the dictionary length for 8 is Gy, and the dictionary length for 1) is G5. There is an
equivalence among these variables: G = GG; x G3. The g-th pixel in the scanning area
can be represented by d, = (0,,,,,) with index g = (g1 — 1) x G2 + ga.

The data matrix is modified as follows:

y(t) = ®A(0.4)s(1) +n(t) = B(6,9)s(t) + n(1), (3.4)

where s is a length-G vector containing the source signals associated with the corre-
sponding directions in the grid. Note that (3.3) can be expressed using the sparsity-
revealing model as well by:

yo(t) = diag(g)[B(0,%)s(t)] +n(t) € Co*'. (3.5)

Since the signal data is non-zero only in the directions corresponding to the sources,
and the grid size is typically much larger than the number of sources, that is N < G,
the vector s exhibits a sparse structure. The non-zero elements indicate the source
directions corresponding to the angles in the grid matrix A.

3.1.1 Self-calibration

If we collect L snapshots in the element space data matrix Yg, we have:

Yo = diag(g) [B(6,v)S] + N € C¢*~. (3.6)
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Then, the covariance domain model can be written as

Ro = diag(g) (B(9, v)diag(c,)B" (6, %)) diag" (g) + Ry (37)

The covariance matrix of the uncalibrated receiving data can be represented as

R, = B(0, @)diag(o‘s)EH(é, ) + R,,. Substituting it in (3.7), we obtain:

Ro = diag(g)(R, — Ry)diag" (g) + R, (3.8)

Here, we assume that the source signals S(¢) are uncorrelated and have a diagonal
covariance matrix E{s(¢)s” (t)} = diag(o), which is not known. Similarly, the noise
vector has a diagonal covariance matrix, given by E{n(¢)nf (t)} = 0,14.

Let 1o = vec(Rg), and define the co-array manifold matrix as Beo(6,v) =
B'(0,v9) ©B(6,%). The covariance model can then be rewritten as:

ro = diag(g* ® g)(Eco(é, P)o,) + anvec(I). (3.9)
In practice, the sample covariance matrix is computed as:
N 1
Ro = ZY@Yg’ (3.10)

where L is the number of snapshots. For simplicity, we use Rg instead of ﬁ@ while
acknowledging that only an estimate is available.

We aim to jointly estimate the ) complex (i.e., 2Q) real) receiver gains g and N
directions (@, ¢) from the received uncalibrated vector rgp. Before addressing the esti-
mation problem, we first analyze the feasibility of this approach by investigating the
ambiguity and identifiability of the solution.

3.1.2 Ambiguity and Identifiability

We need to determine the identifiability conditions under which a unique solution for
both the calibration parameters and the source DOAs can be obtained. The identifia-
bility conditions for APS arrays, based on the element-space model in (3.6) with any
geometry placements, have been studied in [28]. In [20], both the element-space model
and the co-array data model are examined for APS and AVS ULAs. However, one
issue that has not been addressed is that the aforementioned studies primarily focus
on the far-field 2D case, where the structure of the array manifold is relatively simple
to analyze. In contrast, when a considering compression matrix and unknown far-field
3D sources, the problem is getting more complicated.

A fundamental challenge arises because neither diag(g)B(@,v) nor S (or o) is
known a priori, making it impossible to determine them uniquely due to an inherent
complex (or real) scaling ambiguity. To resolve this ambiguity, we adopt a calibration
reference sensor, located at p; = 0. Specifically, we set g; = 1.

The first condition about how well-posed the problem is, is a necessary but not
sufficient condition for a unique solution to exist.

1) The element-space data model: From the element-space data model (3.6), we
have 2Q) L nonlinear equations in N unknown 2D DOAs (each source is characterized
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by 2 unknown real valued angles), 2(Q) — 1) unknown calibration parameters, and 2N L
unknown amplitudes of source signals. Hence, for well-posedness of the calibration
problem, we require

2QL > 2N +2Q — 2+ 2NL, (3.11)
which simplifies to
N+(@Q-1)
EA A 3.12
@- (312

This condition is only meaningful when ) > N. However, in CCS, the goal is
to recover more sources than the number of compressed measurements, i.e., N > Q.
Therefore, this condition contradicts the fundamental design principle of CCS.

2) The co-array data model: In the covariance domain (3.7), the number of nonlin-
ear equations is determined by the number of parameters required to characterize the
covariance matrix. The covariance matrix is completely characterized by N + 1 real
eigenvalues and 2Q N — N2+ N real parameters related to the orthonormal eigenvectors
associated with the signal subspace.

As aresult, we have 2Q N — N24+2N +1 nonlinear equations in N unknown 2D DOAs,
2(Q — 1) unknown calibration parameters, and N unknown source powers. Hence, for
well-posedness, we require

2QN — N? + 2N +1 > 3N 4 2Q — 2. (3.13)
This can be simplified to

N?24+ N -3

0> ST (314

In our model, we have 24 receiving channels across 12 PUs. After solving (3.14),
the maximum N we can get is 46. This allows a maximum recovery of 46 signals.

Due to the non-linear nature of the estimation problem, it is not straightforward
to derive the identifiability conditions based on the element-space data model (3.6) or
co-array data model (3.7). Therefore, to begin with, we derive sufficient conditions
for uniquely estimating g and (@, ) based on the assumption that diag(g)B(6,1)) or
(diag(g* ® g)Beo(0, 1)) is given, with the knowledge that in practice only the column
span of it is available from the measurement data.

For convenience in analysis, we explicitly write out the structure of each individual
matrix. The total received array manifold is:

B(0,¢) = ®A(0,¢) = [®a(0,11) Pa(f,12) - Pa(dy,vy)] (3.15)
= [b(61,¢1) b(ba,12) - b(On,Yn)] (3.16)

and the known compression matrix ®:
P = [Elu(cﬁl) Eou(g,) .. EMu(q,’)M)] (3.17)
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Here, [ is the distance from the entrance of the coded cover to the PU array, d,, is
the length of each channel and Ly, is the distance from the exit of the mth channel
to the kth PU, which is decided by the first two values and the position of the sensor:

Lim = [P (2) + PR (9) + (1 — )2,
where pk,m<x) = mm(x) - ’f’k<l') 5 pk,m(y) = mm(y) - Tk(y)
The structure of the virtual planar array response is
N 1 ,
ejQTrAsinﬁcosw

ewa(I—l)Asin@cosw
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e]ZWAsin@sinw . ej?TrAsichosw
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egQW(J—I)Asinﬁsimb -1
e]Zﬂ(Jfl)AsinHSimp . 6]27rAsinecosw
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Through the analysis of their product, we see that it is difficult to extract individual
DOA information from B(6,1)) directly because of the existence of the compression
matrix. The DOA information is embedded in the phase of the elements of B(8, ),
but we can not extract single DOA information simply from the phase of B(8, ). Due
to this nonlinearity, the condition discussed below is necessary but not sufficient for the
uniqueness of DOA estimation with the assumption of diag(g)B(0,) or (diag(g* ®
8)Beo (6, 9)) is given.

1) The element-space data model: For deriving the sufficient conditions, let us define

the phase of diag(g)B(0,v) as

paln) = o amgle(g, (B0, )]gr) = - angle(by (6, 00)) +v (3:21)

forq=1,...,Q and n = 1, ..., N. Further, if we collect the above equations compactly
with the introduction of the phase vector p,, = [p1(n), p2(n), ..., pg(n)]*, we have
L angle(b(6,, ¥,
p.=llg Io) |2 &bt (3.22)

Since even though v = 0, the angle of [B(0,)],, is generally non-zero, there are @
equations in () + 1 unknowns.

When N = 1, it is possible to solve (3.22) with one more channel’s phase error.

When N > 2, we can use the vector difference to eliminate the phase error:

pu— Py = 5 angle(b(0,, 1)) — 5 angle(b(6, ) (3.23)

= - angle(b(0,, ) © b(@l, o)), (3.24)
where @ means element-wise division.
Now, there are Q(NN — 1) linearly independent equations in 2N unknown angles.
Since Q(N — 1) > 2N can be easily satisfied, the system is typically overdetermined.
2) The co-array data model: First, the phase of diag(g* ® g)Beo(80, %) is

i) = - angle(5:0,([B*(8, %)} © (B0, %)) (325)
= (5 angle(By (6, v0)) — 5 angle(by(6 0:)) — (v — 1)) (320)
= lan e by Ons ) y v, — U
= (5 smgle( GE0") — (v, = ) (327)

forp,g=1,...,0Q, Withp#qandn—l,...,N.
Defining p,, = [p12(n), p13(n), ..., por1(n), ..., pog-1)(n)], we can compactly express
(3.27) as

p,=[D -D]|2 angle(dwm%)) | (3.28)

where D € R(@*~@x*Q g the difference matrix with only three types of entries:{-1,0,1}.
The rank of D is always Q —1. Multiplying both sides of the (3.28) by the pseudoinverse
of D yields the following system of equations:

1

D*p, = Py angle(b(0,,,1,)) —
™
There are () equations but Q41 unknowns when N = 1. To determine two unknown

angles, at least two phase errors must be known.
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If N > 2, we can eliminate the phase errors d by difference again:

pu— Py =D angle(b(6, 1)) — o angle(b(6h, 1)) (3.29)

_ D(% angle(b(6,, vn) @ b6y, 1), n =2, ., N (3.30)

Compared to (3.23) we derived in the element space model, we found that the two
equations have a similar structure and both form an overdetermined system. But in
the covariance domain, we have more equations, so in the covariance domain, we can
obtain more constraints on the solution, leading to potentially improved estimation
accuracy.

Since there are @ X (@ — 1) sub-equations with 4 unknowns, if Q > 3, the system can
potentially be solved without known sources. However, due to the strong nonlinearity
of directional information, i.e., (0,%), in the function b(#, ), knowing some pairs of
source DOAs can help identify the remaining DOAs more accurately. For example, if
(01,11) is unknown and the solution obtained from other equations is inaccurate, then
solving,

1 1
% angle<b(6m wn)) = D+(pn - pl) + % angle(bwl’ 7/}1))

would lead to a more inaccurate solution for (6,,,,).
In summary, in 2D DOA estimation with compressed sensing, we need at least one

reference channel and possibly some known source directions for uniquely estimating g
and (0, 1)).

3.1.3 Self-Calibration Algorithm

From the previous derivation, we know that applying the DOA estimation method in
the covariance domain still preserves the compressed sensing framework and provides
more accurate results. From the model equation defined in (3.9), we can introduce the
calibration matrix diag(c* ® ¢) = diag™'(g* ® g) to correct receiving data through:

diag(c* ® ¢)(rg — o,vec(Iy)) = diag(ro — o, vec(Ip))(c* @ ¢) = Boo(0, ), (3.31)
To simplify notation, we can write (c* ® c) as vec(C) with C = cc’. Then (3.31) can
be written as

/

\[diag(r@ —onvec(Ig)) —Beo(6,)] [vec(C)] =0.

GCO
’YCO

The above problem transforms the original non-linear problem into a linear one. But
if we further explore the rank one structure of C and the sparsity of o, the problem
can be further reformulated as:

it [|Goryvel} + Moo (332
st. C=cc” (3.33)
o, =0 (3.34)
(1) =1 (3.35)
o k) =1kek (3.36)
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where o4(k) = 1,k € K represents the constraint with the knowledge of the known
source indices collected in K.

To transform the optimization into a convex problem, we relax it into an SDP
problem:

min |[Geyol 3+ Al (337)
C c

s.t. |:CH 1} =0 (3.38)

o, -0 (3.39)

c(l)=1 (3.40)

oisk)=1kek (3.41)

For the choice of the regularization parameter A, we can use any standard method
adopted in sparse signal recovery [29]. In practice, for the finite snapshot scenario,

C obtained after solving the above problem might not be rank one and the closest
estimates of the calibration parameters can be obtained from the first dominant singular
vector of C.

Remark 1: If the phase and gain errors affect both the signal and noise compo-
nents, they will influence the total received signal. Such distortions may arise from
imperfections in sensor analog elements, front-end electronics, or other hardware non-
idealities.

In this case, the corresponding convex optimization problem should be modified
accordingly as below:

ding(ro) —Bu0.9)] "] = oyvectto

. - AN
GCO

FYCO

min |Gy, — vl + Alle (3.42)
C c

s.t. |:CH 1] =0 (3.43)
o, -0 (3.44)
c(l)=1 (3.45)
osk)=1kek (3.46)

However, in our case, we will further focus on perturbations in the compression
matrix ®. Therefore, the initially proposed problem formulation remains more suitable
for our study.

3.1.4 Simulation Results of Self-calibration Algorithm

In this section, we first verify the accuracy of the proposed method in recovering DOAs
with unperturbed simulated data. Then, we evaluate the performance of the proposed
method for the joint estimation of the DOAs and calibration parameters using a de-
signed experimental model. The test environment is set at SNR of 20 dB. In the 2D
case, the one-dimensional scanning angle ranges from 20° to 160° with a resolution of
1°. In the 3D case, the elevation angle 6 is uniformly sampled from 0° to 60° with a
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resolution of 2°, while the azimuth angle v is uniformly sampled from 0° to 350° with
a resolution of 10°. The narrowband far-field sources are randomly placed on the grid.

Without loss of generality, we select the first channel of the first PU in the array as
the reference channel, with a fixed gain of 1 and a phase of 0°.

Without perturbations in the received data To validate the proposed method,
we first evaluate its performance using unperturbed data before considering perturba-
tions. This approach allows us to establish a baseline and ensure that the method can
work for unperturbed data as well. By confirming its effectiveness in a perturbation-free
scenario, we can better assess the impact of perturbations in later experiments.

The algorithm is first tested in the 2D case using a linear array consisting of 4 PUs
with equal sensor spacing of 7.5 cm. A linear coded cover with 14 channels is used, the
linear mask design matches that of the planar coded cover. The front of the coded cover
is positioned 15 cm away from the array. The 12 sources are distributed at uniformly
spaced angles between 40° and 140° with an interval of 9°.

Figure 3.1 shows the localization result for 12 unknown sources. The peaks
match the real targets accurately. This demonstrates the initial feasibility of the self-
calibration algorithm in the covariance domain.
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Figure 3.1: DOA estimation using unperturbed data for 12 unknown sources with 9° spacing.

However, when the spacing between sources is reduced, the recovery ability is lim-
ited. For example, when the target spacing is 8° with the same number of sources, the
result in Figure 3.2 shows a limitation due to resolution. This also suggests that, in
the 3D case, the scanning of the elevation angle would be further constrained.

With the planar coded cover placed in front of the Rect-7.5 array, as previously set,
we randomly placed 33 sources in a 3D space. This scenario simulates the case where
the source directions are completely unknown and no prior information is available
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about them. The results for this case are presented in Figure 3.3a, where it can be
observed that the estimated peaks closely correspond to the actual target directions.
However, there are small side peaks. These side peaks, while not significantly affecting
the estimation accuracy, indicate that the algorithm might have some sensitivity to
noise or ambiguity about the DOA localizations.

Next, we introduce one known source to examine its effect on estimation accuracy,
with results shown in Figure 3.3b. The addition of a known source improves localization
by reducing side peaks and refining the estimation of unknown sources. As shown in
Figure 3.3c, introducing two more known sources further enhances accuracy, with a
greater reduction in side peaks. This demonstrates that incorporating prior knowledge
about known sources helps mitigate uncertainties, improving both the precision and
robustness of the source localization.

From another perspective, to investigate the influence of prior knowledge, we com-
pare the optimized vector ¢ with the true g=!. Three types of error are used to evaluate
the accuracy of the reconstructed calibration parameters, as shown in Table 3.1.

Error Type Formula

Relative Error (L2 norm) ”ﬁ;_T“CQHQ
Mean Gain Error > Z?il ‘ gt — |l ‘
Mean Phase Error i ?il Iégi_l — Zci‘

Table 3.1: Error Metrics
The results are shown in Table 3.2. As the number of known sources increases, all

of the errors decrease, except for the mean phase error in the case of 2 known sources.
This also implies recovering exact phase value is more challenging since there might be
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Figure 3.3: DOA estimation using unperturbed data with 33 sources in 3D case
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an issue of phase ambiguity.

Degree of prior knowledge | Relative Error | Mean Gain Error | Mean Phase Error
0 known source 0.0163 0.0148 0.0031
1 known source 0.0126 0.0109 0.0029
2 known sources 0.0118 0.0098 0.0032
10 known sources 0.0110 0.0094 0.0025

Table 3.2: Errors in the estimated correction vector compared to the true values in unper-
turbed data case.

In conclusion, the proposed method has been shown to work effectively for unper-
turbed data. Furthermore, it has been demonstrated that incorporating additional
prior knowledge leads to improvements in localization accuracy. Specifically, the re-
sults indicate that as the number of known sources increases, the estimation accuracy
enhances, further validating the robustness of the method.

Perturbation from gain and phase errors We investigate the performance of
the algorithm under perturbed data conditions. We manually introduce errors in the
sensor-received signals through a diagonal matrix g, which represents gain and phase
errors. The gain errors are drawn from a uniform distribution within the range [—3, 3]
dB, while the phase errors are selected from a uniform distribution over [—20°,20°].

For the 2D case with a linear array, Figure 3.4 shows the result for 12 unknown
sources with equal spacing of 9°. The peaks are still very clear even with randomly
perturbed data. This demonstrates the efficiency of our algorithm. It establishes the
foundation for feasibility with perturbed data in the 3D case.
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Figure 3.5: DOA estimation with self-calibration using uniformly perturbed data for 34
sources
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Figure 3.5 shows the top view of the estimation results for varying numbers of known
sources in 3D case: (a) 0 known source, (b) 2 known sources, and (c¢) 10 known sources.
In comparison, Figure 3.6 shows the corresponding localization result with the classical
CCS method. We can see that even without prior knowledge, the localization result
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Figure 3.6: Top view of DoA result using CCS method with uniformly perturbed data

from the self-calibration method is already good enough. Without exact knowledge
of the receiving compression matrix, the classical CCS method can not work well.
Further, taking more known sources into consideration in the self-calibration method,
the peaks are getting sharper. The effect of increasing the number of known sources
on the localization accuracy and reduction of side lobes is clearly visible.

Table 3.3 shows that with 10 known sources, the calibration matrix becomes closer

to the ground truth, which explains why the DOA estimation result is significantly
better compared to the other cases.

Degree of prior knowledge | Relative Error | Mean Gain Error | Mean Phase Error
0 known source 0.0269 0.0263 0.0031
2 known sources 0.0107 0.0099 0.0025
10 known sources 0.0096 0.0090 0.0021

Table 3.3: Errors in the estimated correction vector compared to the true values in uniformly
perturbed case.

Remark 2: The results shown above can be improved by increasing the scanning
angular resolution. However, this also leads to a higher computational load. Moreover,
there is a limit to the computational load that MATLAB can handle. Therefore, I
present the results with a moderate resolution that balances accuracy and feasibility.
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Figure 3.7: Recovered DOAs after applying the self-calibration method.

3.2 Resolution-Enhanced Self-Calibration with CCS Method

From the results of the self-calibration method with compression, we observed that the
estimated DOAs are still not sharp enough, and side lobes persist despite the presence
of multiple known sources. To address this issue, we propose an improved method.
First, the self-calibration method is applied to estimate the correction matrix C based
on the covariance of the received data. Then, the CCS method is performed on the
corrected data to achieve higher resolution.

To test the feasibility of this method, the same setting is chosen as the case described
in Section 3.1.4. We consider 28 sources, including 2 known sources. After applying
the self-calibration method in the covariance domain, the recovered DOAs are shown
in Figure 3.7. Then, the obtained correction matrix is used to adjust the data. The
result after applying the CCS method is shown in Figure 3.8. It can be observed that
the resolution is significantly improved after CCS, demonstrating the feasibility of the
proposed method.

3.3 Conclusion

In this chapter, we explored a self-calibration approach for a planar PU array within
the framework of compressed sensing. This method integrates calibration and signal
recovery by leveraging the inherent sparsity of the signals, leading to improved DOA
estimation accuracy in the presence of per-channel receiving errors.

We first analyzed the ambiguity and identifiability of the problem, establishing the
theoretical conditions for self-calibration in compressed sensing. A methodology was
then introduced to jointly estimate the correction matrix and recover the DOAs, en-

45



CCS Music Localization with coded cover

400

350

300

100

0 20 40 60 80 100
Elevation

Figure 3.8: Final DOA estimation after applying the CCS method.

suring improved robustness against calibration errors. Simulation results demonstrated
the effectiveness of this approach, though challenges such as insufficient DOA resolution
and residual side lobes remained.

To further enhance resolution, we proposed an improved method by integrating
self-calibration with the CCS approach. The correction matrix was estimated from
the received data covariance, followed by CCS-based signal processing on the corrected
data. This method significantly improved resolution and reduced side lobes, demon-
strating its potential for more accurate source localization under practical conditions.
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Geometric Mismatch
Correction

In the previous chapter, we addressed sensor-related calibration issues, such as phase
and amplitude mismatches. However, accurate DOA estimation also depends on the
precise geometric configuration of the sensing system. Small deviations in the geometry,
such as sensor positions or array rotations, can significantly distort the compression
model and degrade performance. In this chapter, we examine the impact of geometric
mismatches and propose a method for compensating these distortions.

4.1 The Impacts and Categories of Geometric Mismatch

To illustrate the severity of geometric errors, we consider a case where the actual
distance between the planar PU array and the front of the coded mask is 16 cm,
instead of the nominal value of 15 cm. Figure 4.1 presents the DOA estimation results
using both the CCS method and a self-calibration method with 34 sources, including
10 known ones. Despite the use of known sources, neither method yields satisfactory
localization results, highlighting the need for a robust geometric correction strategy.
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(a) Top view of DOA result with CCS method. method with 10 known sources.

Figure 4.1: DOA estimation using geometrically perturbed data with 34 sources, including
10 known sources.

The geometric parameters can be categorized into three main types:
e [: The distance between the coded mask entry and the sensor array.

e ¢: The positional deviation of the first sensor.
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e (: The rotation angle of the planar array relative to the plane parallel to the
coded mask.

To better illustrate, Figure 4.2 depicts these types of errors from an x-z plane perspec-
tive.

C+ Cn Cums1 I Cu

Figure 4.2: Visualization of geometric errors in the x-z plane.

Unlike receiver-based errors, which are typically row-wise and uniform per channel,
geometric mismatches cause element-wise phase and gain distortions. As a result,
the calibration matrix loses its diagonal structure, necessitating modifications to the
optimization approach.

To address the problem caused by geometric mismatches, we first analyze the
element-wise correction of the compression method and then propose a practical ap-
proach based on our compression model.

4.2 STLS-MMYV Method with Perturbation in the Compres-
sion Matrix

When geometric mismatches occur, element-wise corrections in the compression matrix
are required. To address this, we introduce a perturbation matrix A® to model errors
in the compression matrix. Since these perturbations affect individual elements, we
consider two cases: (i) additive perturbation and (ii) multiplicative perturbation. The
actual compression matrix can then be expressed as

D+ AP, or PoAP.

By incorporating this perturbation model, we can not only correct geometric errors
but also mitigate receiver errors and other unparameterized distortions. These unmod-
eled errors can be treated as noise within the perturbation matrix, compensating for
the incomplete prior knowledge of the compression matrix in a real scenario.

Apart from the above, we observe that in most real-world cases, the perturbation
matrix AP exhibits a full-rank property. In addition, imposing a rank constraint on
A® would introduce non-convexity into the problem. Consequently, it is not a suitable
constraint.

We avoid performing calibration directly in the covariance domain because the per-
turbation introduced becomes intertwined in the covariance computation. Instead, we
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adopt the sparsity-cognizant total least-squares (STLS) method [30], which minimizes
the norm of the error, providing a more practical and computationally efficient solution.

To jointly minimize the noise in the received data and the perturbation in the com-
pression matrix while leveraging the sparsity of the signal matrix for DOA estimation,
we formulate the following optimization problems:

Additive perturbation model

1 o _
minimize = |[Y — (@ + A®)AB, %) S| + V| ARZ + A[Slar. (A1)
S, A®cCxM 2

Multiplicative perturbation model

minimize  [|Y — (® 0 A®)A(B, %)S|%. + Y| A®|% + Al[S||21- (4.2)

S APCOXM

where the /5 ;-norm serves as the sparse regularizer, promoting joint sparsity of the
signals across different time instants. In the matrix S, sparsity is enforced solely in
the gridded spatial domain, as the signal is not sparse in the time dimension. Given
that the sources at different time instants are similar, we expect all columns to exhibit
the same sparsity pattern. Therefore, we leverage the temporal correlation to achieve
better spatial resolution. This approach is known as joint (or group) sparsity in the
literature, and it can be enforced using the ¢5;-norm. To begin, we compute the /-
norm of each row in S. Then, we construct the §2) vector, which stacks the f5-norms
of the rows of S. Finally, ||S||21 = [|5?|); is computed.

Since the minimization problem involves a bilinear product of the optimization
variables A® and S, it is inherently non-convex. To address this, we follow the approach
in [30] and apply the alternating descent suboptimal algorithm.

The first step of the iterative block coordinate descent algorithm is to estimate S;
while keeping A®; fixed in the ith iteration. The solution is similar for both additive
and multiplicative cases, since with a known perturbation matrix, the total transmission
matrix is determined.

Specifically, we define

B, = (®+A®)A

for the additive case, and

B, = (®oAd®)A
for the multiplicative case. Under this formulation, the minimization problem takes
the same form: B . o B
S; = arggnin §HY—BiSH%—|—)\HSH2’1. (4.3)
Then with A®; available, A®;,; for the ensuing iteration is found by setting the

first-order derivative of the cost wrt A® equal to zero.

4.2.1 First step to update signal matrix

The optimization problem in the first step can be solved using inverse-free sparse
Bayesian learning (SBL), alternating direction method of multipliers (ADMM), and
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the fast iterative shrinkage-thresholding algorithm (FISTA). These methods avoid the
computation of a large matrix inverse, enabling a faster solution.

In this work, we adopt FISTA. Specifically, we use the multiple measurement vector
(MMV) variant of FISTA. To reduce the computational complexity of the MMV model
in (4.3), we project Y into an N-dimensional subspace with the fact that N < L.

To identify this subspace, we first compute the singular value decomposition (SVD)
of Y, yielding:

Y =UxV".

Next, a reduced matrix that captures most of the signal power is constructed as:
Y = UESDy = YVDy,
where Dy = [IN O}T.
Similarly, the matrices S and N are transformed using these matrices, resulting in:
S=SVDy, N=NVDy.
With this, instead of solving the large problem described in (4.3), we now solve the
following reduced problem:

1 - 3
minimize §||Y—B1»S||?;+)\||S||2,1. (4.4)
S

MMV-FISTA is a two-step method. The first step is solving the minimization prob-
lem associated with the proximity operator. This is similar to the iterative shrinkage-
thresholding algorithm (ISTA) method.In ISTA, the proximal operator is directly ap-
plied at the vth step to the previous estimate gl(v — 1). However, in FISTA, the
proximal operator is applied to a matrix Z(v), which is a specific linear combination
of the two previous iterates, S;(v — 1) and S;(v — 2). The proximal problem of FISTA
can be formulated as:

~ 1 —7 ~ —
Si(v) = proxy, . (Z(v) + L—fo(Y ~B.Z(v))), (4.5)
where Ly is the Lipschitz constant, which is given by Hﬁfﬁiﬂz (spectral norm which
corresponds to the largest singular value). The solution of the proximity operator
involves alternating between minimizing the Frobenius quadratic term using a small
gradient step and the computation of the proximal operator associated with [y ; term
[31]. The update steps for solving (4.4) are outlined in Algorithm 1. Note that S can
be easily computed from S through a simple matrix multiplication.

For the step of updating the perturbation matrix, we discuss each case separately
as follows.

STLS-MMYV with element-wise additive perturbation For the additive case, we
can derive the update formula directly from the original form of the minimization
problem:

1 — —
APy =argmin _|[Y — ®AS; - A®A Sill% + v A®]%. (4.6)
AN
The optimal solution to this quadratic problem is obtained in closed form as:
S — — —H—m\t
Ay =Y - ®AS]S/ A" (210 + ASSIA) (4.7)
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Algorithm 1 MMV FISTA method

1: Input: Y, N, B; ,A, Dy, V, coefficient: A and the number of iterations: V

2: Output: S;

3: Initialize A > 0, Ly = HE?E-HQ, t(1) =1, S;(0) = Z(1) = Opsun

4: forv=1,...,.V do

5: calculate Q(v) = Z(v) — L%(Efﬁ,-Z(v) — EZHY)

6: compute 5’1-(9’") (v) = QY™ (v)(1 — Hq(‘”)\( T )T where Q9™ (v) is the (g,n)th element

of the matrix Q(v) and q'9)(v) is the gth row of matrix Q(v). The function ()T is defined
as (a)™ = maz(a,0) and we use the convention 0/0 = 0.

7: update t(v 4+ 1) = 0.5(1 + /1 + 4t(v)?)

8.

update Z(v + 1) = 8;(v) + 525 (Si(v) — Si(v — 1))

9: end f9r
10: §z = SAV)D%VT

Since v can be zero in the unperturbed case, we use the pseudoinverse instead of the
direct inverse.

STLS-MMYV with element-wise productive perturbation Since A® is difficult to
extract directly from the problem, we first vectorize all the terms:

min |[vec(Y) — (AS;)" @ Ip)diag(vec(® ¢H2 + 7]l l5- (4.8)

PeCMx1
Then it can be solved by equalizing the first derivative to 0, i.e.
—2(F(vec(Y) — F;0) + 27¢ = 0.

Here, for simplicity, we introduce a matrix F; = ((A'S;)T ®1)diag(vec(®)) € COL*QM,

From this, we get:

b1 = (29Iguxoum + F'Fi) "Flvec(Y). (4.9)
After the unvectorization process, we obtain:
A®iyy = vee ().

The whole process iterates between these two steps until convergence.

The whole process of the MMV FISTA based S-TLS solver is tabulated as Algorithm
2.

Algorithm 2 STLS with MMV FISTA method

1: Input: Y, ®, A, coefficients: A, v and the number of iterations: iter

2: Output: A®; and S; upon convergence

3: Initialize A®1 = Oy« s for additive case and AP = 1ox«as for additive case

4: Perform SVD: Y = UXV7', and compute Y = UXDy = YVDy with Dy = [IN O]T
5: for i =1,....iter do

6: Solve minimization problem of (4.3) using Algorithm 1

7 Update A®(; 11y as in (4.7) or (4.9)

8: end for

Comparing the computational load of the two methods, we notice that for the multi-
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plicative case, the pseudoinversion is involved with a larger matrix due to vectorization.
Especially in the 3D case, this significantly slows down the speed of computation com-
pared to the additive case with the same number of iterations. Therefore, we first test
the algorithm in the linear array case and then move on to the case with a planar array.

4.3 Simulation Results for STLS with the MMV-FISTA
Method

(1) ULA with a Linear Coded Cover in the 2D Case We consider the setting where
a ULA with four PU probes is spaced at 7.5 cm. A half-wavelength spaced linear coded
cover with 14 channels is applied, and the SNR is set to 20 dB.

One source: We first test the case where a single source is present at an angle of
72°. The data consists of 1000 time snapshots, with regularization parameters set to
A = 0.2 and v = 0.5. Each MMV-FISTA algorithm runs for 300 iterations, while the
compression matrix is updated over 50 iterations.

The introduced errors are as follows: the actual distance [ is 14.5 cm instead of
15 cm, the rotation ( is 2 degrees closer to the mask, and the first sensor is shifted
by 0.2 x ¢ from the origin. The scanning range for the STLS method with additive
perturbation optimization spans from 30° to 150°, with a resolution of 1°.

When only geometric error is present, Figure 4.3 shows that STLS calibration en-
ables the source to be localized with an error of 1°. Applying CCS afterward, as
illustrated in Figure 4.4, further improves the accuracy, reducing the error to 0.9°. In
contrast, without calibration, the DOA estimated using CCS deviates more from the
true direction compared to the calibrated result.

When uncertainties in the compression matrix are introduced, we first use an addi-
tive complex Gaussian noise with a variance of 0.1. Figure 4.5 presents the localization
results after applying the STLS method with additive perturbation optimization. The
target is accurately recovered at the correct source direction. In contrast, Figure 4.6
illustrates the result without calibration, where the peak deviates slightly (by approxi-
mately 0.2°) from the true target direction. This deviation is expected, as the optimiza-
tion is performed over QM entries. The MUSIC algorithm requires precise knowledge
of the compression matrix, and recovering the perturbation accurately is challenging
due to the large number of unknowns.

Further, we analyze the effect of increased additive noise in the compression matrix.
The geometric mismatching is same as before. Suppose the variance of the perturbation
increases to 1. The new target is now located at 130°.

Due to the increased perturbation in the compression matrix, a stronger regulariza-
tion is required to constrain its norm. Therefore, we adjust the regularization parame-
ter from 0.5 to 5. The localization results, shown in Figure 4.7, demonstrate that our
proposed method remains effective despite the increased noise.

For comparison, Figure 4.8 presents the CCS localization result with and without
calibration. As expected, the uncalibrated data leads to a slight deviation from the
true target direction. This further highlights the necessity of the proposed optimization
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Figure 4.3: Localization result using STLS with additive perturbation optimization under
geometric mismatch in compression matrix, showing accurate source recovery at 72°.
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Figure 4.4: CCS localization results with and without STLS calibration, showing improved
accuracy with STLS calibration.

approach for handling perturbations in the compression matrix.

Then we also tested the recovery performance of geometric mismatch correction with
uncalibrated sensors. Here, the geometric mismatch is the same as before. The random
receiving errors in gain are drawn from a uniform distribution within the range [—3, 3]
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Figure 4.5: Localization result using STLS with additive perturbation optimization under
geometric mismatch and small perturbation in compression matrix, showing accurate source
recovery at 56°.
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Figure 4.6: CCS localization results with and without STLS calibration under small pertur-
bations, showing improved accuracy with STLS calibration.

dB, while the phase errors are selected from a uniform distribution over [—20°,20°].

We observed that, with the same phase and amplitude receiving errors introduced
earlier, the STLS MMV-FISTA method was able to recover the target with some de-
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Figure 4.7: Localization result using STLS with additive perturbation optimization under
geometric mismatch and larger perturbation in compression, showing accurate source recovery
at 130°
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Figure 4.8: CCS localization results with and without STLS calibration under larger pertur-
bations, showing improved accuracy with STLS calibration.

viation, as shown in Figure 4.9. In contrast, the uncalibrated case failed to locate any
source, demonstrating the effectiveness of the STLS correction method. The improved
localization after applying STLS calibration can be seen in Figure 4.10.
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MMV-FISTA STLS method with lambda = 4.0e-01

45

351

251

Spectrum peak value

05 1

0 L L 1 1 1 1
20 40 60 80 100 120 140 160

angles

Figure 4.9: Localization result using STLS MMV-FISTA under geometric mismatch with
uncalibrated sensors

12 CCS Music Localization with coded cover

—+—— MMV-FISTA STLS method
— Without calibration

|
|
|
8t | E

é

IS
T
.
L

Log-scaled spectrum amplitude
(s3]

i

|
0 Va PN ’
0 20 40 60 80 100 120 140 160 180
angles

Figure 4.10: Localization result with and without STLS correction under geometric mismatch
with uncalibrated sensors, showing improved target recovery.

Two sources: We set one source at 66° and the other at 125°. Initially, we only
account for geometric mismatches, which remain the same as previously described. The
regularization parameters are set to A = 0.075 and v = 0.5. The number of iterations
for updating the compression matrix is 40, with 100 updates for the signal matrix in
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each iteration.
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Figure 4.11: Localization result using STLS, successfully recovering both targets.
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Figure 4.12: CCS localization result after STLS calibration. Due to an inaccurate perturba-
tion matrix, performance degrades, but STLS already provides accurate localization.

As shown in Figure 4.11, after all iterations, the STLS method successfully recovers
both targets. However, in Figure 4.12, the CCS result after calibration is significantly
degraded due to the use of an inaccurate perturbation matrix. Despite this, as previ-
ously mentioned, the STLS result already provides accurate localization of both targets

o7



and outperforms the uncalibrated scenario. Therefore, with the STLS method, applying
further correction via CCS is unnecessary, as it may lead to degraded results.

When additional perturbation noise is introduced, we analyze the impact on local-
ization accuracy. Figure 4.13 presents the results after adding noise with a variance of
0.5 to the perturbation matrix, in addition to the geometric mismatches.
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20 40

Figure 4.13: Localization result using STLS with added perturbation noise (variance = 0.5).
The first target is exactly recovered, while the second peak has a mismatch of 3 degrees.

As shown in Figure 4.13, the first target is correctly localized, but the second peak
exhibits a mismatch of 3 degrees. However, compared to the CCS localization results
in Figure 4.14, where only the first peak is roughly matched and the second target
is missing, the STLS method still demonstrates a superior ability to recover multiple
sources despite increased perturbation noise.

Three sources: Figure 4.15 illustrates the localization results when geometric mis-
matches occur. The STLS method can still roughly recover three sources. The true
source locations are at 66°, 83°, and 125°, while the recovered sources are at 66°, 81°,
and 122°.

As shown in Figure 4.15, the STLS method successfully estimates the target lo-
cations with small deviations. In contrast, Figure 4.16 illustrates that without proper
calibration, only the first source is roughly estimated, while the other sources are poorly
matched.

(2) RECT-7.5 with a Planar Coded Cover in the 3D Case Now, we move on
to the 3D case. The introduced geometric mismatching is described as follows: [ is 14.5
cm instead of 15 cm, the rotation is 2 degrees, and the deviation of the first sensor is
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Figure 4.14: CCS localization result after STLS with added perturbation noise. Only the
first peak is roughly matched, and the second target is missing.

MMV-FISTA STLS method with lambda = 7.5e-02
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Figure 4.15: Localization result using STLS under geometric mismatches. Three sources are
roughly recovered.

0.2 times the channel length away from the origin. The SNR is set to 20 dB, and the
number of time instances is 10000.

Due to the high computational load in 3D space, we reduce the resolution of the
scanning grid. Specifically, the elevation angle is scanned from 0° to 50° with a 2°
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Figure 4.16: CCS localization result after STLS under geometric mismatches. Only the first
source is roughly estimated, while the others are poorly matched.

resolution, while the azimuth angle is scanned from 0° to 350° with a 10° resolution.

When a single source is located at (20°,30°), Figure 4.17 shows the recovery result
using A = 0.04 and v = 0.5 after 20 updates of the compression matrix and 30 iterations
of signal matrix updates per compression matrix update. Compared to Figure 4.18, we
observe that with perturbations in the compression matrix, the CCS method fails to
recover the single target, whereas the STLS method successfully localizes it. There is
some spread of the target point due to the lower resolution of the scanning grid.

STLS MMV-FISTA with A = 4.0e — 02 (Top view
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Figure 4.17: STLS recovery result for a single source at (20,30).

When three sources are randomly placed in the 3D case, Figure 4.19 shows the
result of the STLS MMV-FISTA method. The located area is divided into four regions,
each corresponding to one target source. Some deviation is observed at the center of
the regions, which is expected, as similar phenomena were observed in the linear array
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Figure 4.18: CCS recovery result without calibration, failing to recover the single target.

case. In contrast to the complete failure of the CCS method shown in Figure 4.20, our
algorithm is able to at least identify the regions where the targets are located.

STLS MMV-FISTA with X = 4.0e — 02 (Top view)
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Figure 4.19: STLS MMV-FISTA recovery result for four sources in the 3D case.
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Figure 4.20: CCS recovery result without calibration, showing complete failure to recover the
sources.

Next, we introduce some unexpected noise into the compression matrix. In this case,
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four sources are randomly placed in 3D space. In addition to the geometric mismatching
introduced previously, we also add noise to the compression matrix with a variance of
0.1. Figure 4.21 shows the recovered result using the STLS-MMV-FISTA method,
where the four sources are located near the center of the targeted areas, demonstrating
successful recovery. In contrast, Figure 4.22 shows the result without any calibration,
where no sources are properly located.

STLS MMV-FISTA with A = 3.0e — 02 (Top view)

0 25
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Figure 4.21: Recovered result with STLS-MMV-FISTA method after adding noise to the
compression matrix (variance 0.1).

400CCS Music Localization with coded cover without calibration

0.16
350

 —— 0.14
0.12

0.1
)y 0.08
0.06
0.04
0.02

0 20 40 60 80 100

Elevation

Figure 4.22: Recovery result without calibration, showing poor performance due to the added
noise in the compression matrix.

Remark 3: In the simulation, we ran both algorithms with either additive or
multiplicative perturbations. The results show no significant difference between the
two. However, since the multiplicative case requires more computational effort, we
only present the results from the additive case. In addition, compared to the self-
calibration method in the element space domain, our proposed method is more suitable
for cases involving compression matrix perturbation. This is because our method does
not require any known source for DOA estimation. Additionally, it does not rely on
prior knowledge of the noise power, making it more flexible and applicable in scenarios
where such information is unavailable. However, due to the inherent limitations of the
original STLS algorithm in recovering sources without compression [30], calibrating and
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estimating multiple sources simultaneously becomes more challenging after applying
compressed sensing. That’s why we considered the case with no more than five sources.

4.4 Grid Search Method for Geometric Mismatching with cal-
ibrated sensors

From the simulation results with the STLS method, we observed the limited perfor-
mance of the STLS method in compressed sensing. This limitation arises because the
method requires the optimization of many parameters. Therefore, when considering
perturbations solely due to geometric mismatching, we propose using a grid search
method to optimize the parameters accordingly. The main geometric parameters that
need to be optimized have been introduced in the beginning. They are [, € and (.

For each parameter configuration, the corresponding compression matrix ®° is com-
puted. The CCS method is then applied to recover the covariance matrix by construct-

mg:
R = vec™! {s (@ @) S]" (ro — rn)} .

The corresponding reconstruction error is computed as:
e; = Hr@ —-r, — (@Z* ® <I>Z) a':pr2 .
Then the best set of geometric parameters is selected by finding the minimum error.

4.5 Simulation Results of Grid Search Method for Geometric
Mismatching with Calibrated Sensors

In this section, we apply the Grid Search Method for geometric mismatching with
calibrated sensors. We consider two cases: one with a ULA and the other with a planar
array. Geometric errors are introduced in both cases to demonstrate the effectiveness
of our proposed method.

(1) ULA with a Linear Coded Cover in the 2D Case Consider a scenario where
there are 4 PU probes, with a half-wavelength spaced linear coded cover containing 14
channels, and an SNR of 20 dB. 13 sources are randomly distributed between 30° and
150°. The simulation introduces human-induced mismatching, described as follows: the
actual distance between the coded cover and the PU array is 14.6 cm instead of the
intended 15 cm. Additionally, the first channel is not exactly aligned with the first
sensor as initially set. Instead, it is offset by 0.5 times the channel length § from the
original position.

The search range for the distance is set between 14.5 cm and 15.5 c¢m, with a
resolution of 0.1 cm. The deviation for the origin is searched from —¢ to 4, also with a
resolution of 0.14.

Through comparing Figure 4.23 and Figure 4.24, we can clearly see that after the
best-fit parameters are identified through grid search, the targets are exactly matched
by the algorithm. The search results show that the best-fitting value for the distance
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CCS Music Localization with coded cover without calibration
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Figure 4.23: CCS localization result using ideal compression matrix, where all peaks do not
correspond to the true target positions.
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Figure 4.24: CCS localization result after applying grid-search calibration, where the targets
are exactly matched by the algorithm.

parameter [ is 14.6 cm, and the origin mismatch is 0.5, which corresponds exactly to
the introduced error.
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(2) RECT-7.5 with a Planar Coded Cover in the 3D Case The proposed algorithm
is evaluated using 40 randomly placed sources in 3D space, with an SNR of 20 dB. The
introduced geometric mismatching is defined as follows: the actual distance between
the coded cover and the array is 15.3 c¢m instead of the nominal 15 cm. Additionally,
the array experiences a rotational deviation around the y-axis of 2°, resulting in non-
parallel alignment between the two planes.

The search range for [ spans from 14.5 cm to 15.5 cm, with a resolution of 0.1 cm.

For the rotational deviation, the search range extends from —5° to 5° with a resolution
of 1°.
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Figure 4.25: CCS localization result using the ideal compression matrix in the 3D case, where
the detected peaks do not align with the true source positions.

A comparison between Figure 4.25 and Figure 4.26 demonstrates the effectiveness of
grid-search calibration in the 3D scenario. Once the optimal parameters are identified,
the algorithm accurately localizes the sources. The best-fitting distance [ is found to be

15.3 ¢m, and the rotation adjustment corresponds precisely to the introduced deviation
of 2°.

4.6 Self-Calibration integrated Grid Search Method for Geo-
metric Mismatching with uncalibrated sensors
The previous geometric calibration assumes fully calibrated sensors without channel-

specific reception errors. When sensor calibration is incomplete, a joint optimization
approach can be applied to simultaneously calibrate the data and search for the optimal
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Figure 4.26: CCS localization result after applying grid-search calibration in 3D, showing
precise alignment between the detected peaks and the true source positions.

compression matrix.

For the i-th set of geometric parameters, the self-calibration problem with the cor-
responding compression matrix ®° is formulated as:

[dins 0 ) B, 0.9)] |“0] ~o.

Yeo
The optimization problem is defined as:

min - ([GLL2+ Al (110
st. C=cc?, (4.11)
ol =0, (4.12)

c(1) =1, (4.13)
(4.14)

ol(k)=1, kek.

S

4.14

The corresponding reconstruction error is then computed as:
i A
€ = ||Gc07c0H2'

The optimal geometric parameter and correction matrix C are determined by finding
the smallest error. Using the appropriate compression and correction matrices, the CCS
method can then enhance the accuracy of DOA estimation.
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4.7 Simulation Results of Self-Calibration integrated Grid
Search Method with uncalibrated sensors

(1) ULA with a Linear Coded Cover in the 2D Case In the ULA case, pertur-
bations are introduced by distance mismatching and rotation of the linear array along
the y-axis. Although the linear array and the linear coded mask lie in the same plane,
they are not exactly parallel. The distance [ is set to 15.2 cm instead of 15 c¢cm, and
the rotation is 2° instead of being exactly parallel (0° rotation). The search range
for [ spans from 14.5cm to 15.5cm with a resolution of 0.1cm. The rotation angle is
searched from —5° to 5° with a 1° resolution.

The receiving error per channel follows the same uniform distribution introduced
earlier. Thirteen unknown sources are randomly selected from a one-dimensional scan-
ning range of 30° to 150° with 5° spacing, considering only one reference channel for
self-calibration.

Figure 4.27 presents the localization outcome after applying the proposed method.
By integrating self-calibration with the grid search approach, the method effectively
mitigates geometric mismatches and improves source localization accuracy in 2D space.
The optimization process determines the best distance parameter as [ = 15.2 cm and
the optimal rotation correction as 2°, demonstrating successful geometric mismatch
compensation. The high localization precision underscores the robustness and effec-
tiveness of the proposed method in the linear mask case.

CCS Music Localization with coded cover
T

Log-scaled spectrum amplitude

Figure 4.27: Localization result in 2D space using grid searching and self-calibration under
SNR = 20 dB.

(2) RECT-7.5 with a Planar Coded Cover in the 3D Case With the consideration
of mismatches from the distance [, we introduce a mismatch where [ is set to 14.8 cm
instead of the previous 15 cm.

Due to the high computational demands of 3D space optimization, the scanning
range has been reduced. Specifically, [ is scanned from 14.7cm to 15.3cm with a
resolution of 0.1 cm. The SNR is set to 20dB, and the first receiving channel is used
as the reference channel. A total of 33 sources are randomly distributed in 3D space.
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Figure 4.28 illustrates the recovery result under these conditions. The grid search-
ing method combined with self-calibration effectively compensates for geometric mis-
matches, achieving accurate source localization in 3D space. Despite the increased
spatial complexity, the approach maintains high localization accuracy, highlighting its
robustness and effectiveness in three-dimensional environments. After grid searching,
the best obtained distance parameter for [ is 14.8 cm, demonstrating the feasibility of
recovering geometric mismatching.
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(a) Localization result in 3D space without
calibration.
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(b) Localization result in 3D space using grid
searching and self-calibration.

Figure 4.28: Comparison of 3D localization results with and without grid-searching integrated
self-calibration under SNR = 20 dB.

4.8 Conclusion

In this section, we evaluated the feasibility of the STLS-MMV-FISTA method in the
context of compressed sensing. Simulation results revealed that its localization capa-
bility is significantly limited, with deviations in source estimation that are sometimes
unavoidable. To address this issue, we introduced a grid search method to correct
geometric errors.
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To address this, we adopted different grid search approaches for calibrated and un-
calibrated sensors: CCS for the former and self-calibration for the latter, aiming to
minimize estimation errors. The proposed methodology was first validated in 2D simu-
lations before being extended to the 3D case. The results demonstrate the effectiveness
of our approach in correcting reception errors and mitigating geometric mismatches.
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Experimental Results

In this chapter, we describe the process of 3D printing the coded cover and assembling
the protective enclosure. The experimental setup consists of the RECT-7.5 array, a
planar coded cover, and a protective enclosure designed to fully cover the planar ar-
ray. Using this configuration, we can conduct experiments to evaluate the localization
capability of the RECT-7.5 array with the designed planar coded cover.

Due to the limitations of the available facilities, the experiments were conducted
in a constrained near-field environment, resulting in spherical waves impinging on the
channels of the coded mask. To make the results applicable for comparison with far-
field theoretical models, necessary corrections were applied, which will be discussed in
the following sections.

The CCS method could not be applied in this case, as the Toeplitz structure of the
covariance matrix is lost in the near-field scenario. However, through the experiments,
we were still able to validate the localization results based on the STLS with MMV-
FISTA method and the self-calibration integrated grid-searching method.

5.1 3D Printing of the Coded Cover and Assembly of the Pro-
tective Enclosure

For this project, we ideally aimed to use plastic glass (also known as acrylic or Plexiglas)
to construct both the coded cover and the protective enclosure. Plastic glass is highly
favored in acoustic engineering due to its relatively high density, which effectively blocks
sound waves. This material is particularly useful for creating structures that isolate
sound and control its propagation.

Given the precision required for the 1.7 cm spacing between each hole, handcrafting
is not ideal due to the potential for errors and the labor-intensive nature of the pro-
cess. To address this challenge, we opted for 3D printing technology. Specifically, we
selected Polylactic Acid (PLA) material, which is known for its rigidity. PLA enhances
the structural integrity of the model, ensuring a secure fit while minimizing noise in-
terference, making it an excellent choice for applications that demand precision and
stability. The channel thickness was set to 2.5 mm. The model was first designed in
SolidWorks, as shown in Figure 5.1, and the final 3D-printed product is displayed in
Figure 5.2.

To prevent sound from bypassing the coded cover and reaching the planar array,
we designed a protective enclosure, with the coded cover serving as one side. This
design ensured that sound could only reach the array through the 140 channels on
the coded cover. However, there were still multiple reflections within the box, which
could cause incorrect source detection due to the reflected directions. To mitigate this,
we applied sound-absorbing materials to the four sides of the box, excluding the side
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(a) Front view of 3D printed coded cover (b) Back view of 3D printed coded cover

Figure 5.2: 3D printed coded cover in two diffrent views

with the coded cover. The design of the enclosure box, including all required length
specifications, is illustrated in Figure 5.3.

The box itself was constructed from wood, with a thickness of 1.8 cm. We chose
wood as the material for its excellent balance of durability and sound-damping prop-
erties. The relatively thick wood walls help isolate sound effectively while maintaining
structural integrity. The physical object is shown in Figure 5.4. The inside view of the
enclosure with the RECT-7.5 inside is shown in Figure 5.5.

Due to the unavailability of an anechoic chamber, the experiment was conducted
in a corner where two adjacent walls were covered with sound-absorbing materials.
However, the ceiling, floor, and the remaining two walls were left uncovered, resulting
in an environment that was not fully anechoic. Despite these limitations, the setup still
provided sufficiently controlled conditions to validate the proposed methods.
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bottom:

Figure 5.4: The physical box constructed from wood with a thickness of 1.8 cm.

5.2 Experimental Setup

The array was placed inside a designated enclosure, ensuring that it followed the in-
tended geometric configuration. It was carefully adjusted until the first channel was
precisely aligned with the first sensor at a distance of 15 ¢m, while maintaining parallel
alignment between the array and the coded cover. Figure 5.6 illustrates the actual
experimental setup in the anechoic corner.

The experiment utilized a 10 kHz signal. The source was allowed to move within
the x-z plane, which was aligned with the fifth row of the coded cover, as illustrated in
Figure 5.7.

Since wave propagation in the near-field follows spherical wavefronts, the transmit-
ted signal was modeled as a spherical wave. The distance between the m-th channel and
the source is represented by r,,, and the propagation from the source to each channel
in the coded cover is determined by these distances:

Tm, m=1,...,M.

The source direction 6 is defined as the angle of arrival at the middle points of the
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Figure 5.5: Inside view of the enclosure with the RECT-7.5 inside.

coded cover. Since the positions of all channels are known, the distance between the
source and each channel can be computed directly. The corresponding scanning vector
is then given by:

Tlejk'rl
iejk'r2
af)=| " . ;
M
where k is the spatial frequency of the source signal, also called the wave number.
With this, we can construct a dictionary matrix A(f) to further implement STLS
with MMV-FISTA method and the self-calibration integrated grid-searching method.

5.3 Measurement Results

In this section, we implement the self-calibration integrated grid-searching and STLS-
MMV-FISTA methods to estimate the source location. For comparison, we also apply
the CS method to evaluate whether leveraging the sparsity of the signal leads to any
improvement. This is particularly relevant since residual high side lobes may still
be present due to reflections within the enclosure. We aim to mitigate these effects
using sparsity-based methods. To obtain a preliminary comparison between calibrated
and uncalibrated data, we performed a rough calibration of the sensors in an office
environment.
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Figure 5.6: Experimental setup with the coded cover

Figure 5.7: Near-field propagation setup modulation

Before processing the received data, a short time Fourier transform (STFT) prepro-
cessing is necessary to extract the target frequency component. The sampling frequency
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is set to 25 kHz, and the applied time-frequency analysis window is a Hanning window
of length 4096, with a 3072-point overlap.

The scanning resolution is set to 1°, covering an angular range from 1° to 179°. The
grid-searching method is applied to optimize the correction parameters: the search
range for [ is from 14.8 cm to 15.2 cm with a resolution of 0.1 c¢m, while the search
range for the rotation angle ¢ spans from —4° to 0°, with a resolution of 1°. This
refinement is motivated by the observation that the array may be slightly twisted in
one direction due to uneven weight distribution.

In each iteration of grid-searching, self-calibration for phase and gain errors is per-
formed alongside DOA estimation, and the recovered signal is selected based on the
minimum error criterion.

5.3.1 Calibrated Sensors

We first examine the scenario where all sensors are calibrated. The source is positioned
30 cm away from the planar coded cover and aligned with the 9th channel of the 5th
row. The true source direction is 93.24°.

After applying the CS with MUSIC method, a peak is observed at 92°, deviating
by 1.24° from the actual source direction, as shown in Figure 5.8. Despite the sensors
are calibrated, the target cannot be precisely localized, and multiple high side lobes
introduce ambiguity, potentially leading to the false detection of additional sources. For
instance, there are high side lobes peaking at 70° and 124° in the MUSIC spectrum.

The STLS-MMV-FISTA method produces a better result, with a single sharp peak
at 92°, as shown in Figure 5.9. This slight deviation is expected, as observed in the
simulation results from Section 4.3. STLS in compressed sensing may introduce minor
localization errors due to the optimization of a large number of unknowns. However,
compared to the CS method, it significantly improves localization sharpness and effec-
tively mitigates side lobes.

CS Music Localization with coded cover with calibration
T

Figure 5.8: Localization result using the CS method with calibrated sensors.

Figure 5.10 presents the DOA estimation result using the self-calibration integrated
grid-searching method. After self-calibration, the peak shifts closer to the actual target,

76



STLS-based method with A = 8.0e-02, ~ = 5.0e-01
I T

Figure 5.9: Localization result using the STLS-MMV-FISTA method with calibrated sensors.

with an error of only 0.24°. The optimal geometric parameter set obtained is [ = 15.0
cm and ¢ = —2.0°.

To further refine the estimation, CS with the MUSIC method can be applied using
the corrected received data and the updated compression matrix incorporating the best
geometric parameter set. The enhanced estimation result is shown in Figure 5.11. It
is evident that the peak is significantly sharper compared to the previous cases.

Localization result of grid-searching calibration with \ = 8.0e-02
T T

Figure 5.10: DOA estimation result using self-calibration with grid-searching.

5.3.2 Uncalibrated Sensors

Building upon the previous case, we now evaluate the performance of the proposed
calibration with the DOA estimation algorithm using uncalibrated sensors. The source
signal was positioned 25 cm away from the coded cover, aligned with the 6th channel
of the fifth row. The true source direction is 82.25°.

Figure 5.12 presents the DOA estimation result obtained using CS with the MUSIC
localization method. The estimated direction is 84°, with noticeably higher side lobes
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T [ i i T

x93 !
Y 125858 |

Figure 5.11: Enhanced DOA estimation result using CS with MUSIC after self-calibration.

compared to the calibrated case. In contrast, the STLS method, as shown in Figure
5.13, also estimates the target at 84°, but with a significantly sharper peak and no side
lobes.

When applying self-calibration, the estimated peak is located at 81°, bringing it
closer to the true source direction, as illustrated in Figure 5.14. Further improvement
is achieved by incorporating the optimal calibration and geometric parameter set. The
final enhanced result, obtained after applying the CS method, is shown in Figure 5.15.

CS Music Localization with coded cover without calibration
T T

Figure 5.12: DOA estimation result using CS with MUSIC for uncalibrated sensors.

5.4 Conclusion

In this study, we conducted real-world experiments using the CS method, the STLS-
MMV-FISTA method, and the self-calibration method. Despite certain experimental
constraints, the results demonstrate the effectiveness of the proposed approach. In
particular, under non-ideal conditions, methods leveraging signal sparsity effectively
mitigate side lobes, leading to improved localization accuracy.
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Figure 5.13: DOA estimation result using STLS for uncalibrated sensors.
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Figure 5.14: DOA estimation result after self-calibration.
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Figure 5.15: Enhanced DOA estimation result using CS with optimized calibration parame-
ters.
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Conclusions and Future
Directions

6.1 Conclusion

This thesis investigates the application of advanced acoustic sensing technologies for
DOA estimation and sound source localization, utilizing novel techniques such as CS,
CCS, self-calibration, and STLS-MMV-FISTA methods.

In Chapter 2, we explored the extension of the CCS method from a single AVS
system to an array-based system, demonstrating that a 14 x 10 coded cover can effec-
tively localize 100 sound sources in three-dimensional space, even with an SNR as low
as 10 dB. This chapter emphasizes the scalability and robustness of the CCS method
in large-scale localization tasks, offering a foundation for further advancements in DOA
estimation techniques.

Chapter 3 introduced a self-calibration approach within the framework of com-
pressed sensing. We discussed the challenges of phase and gain errors in the receiving
channels and presented a solution by leveraging the sparsity of the signals for self-
calibration. A theoretical analysis of the ambiguity and identifiability was also investi-
gated. The integration of self-calibration with CCS was shown to significantly improve
localization resolution and reduce side lobes, demonstrating its potential for enhancing
DOA estimation accuracy.

In Chapter 4, we investigated the use of the STLS-MMV-FISTA method to address
geometric mismatches and estimation errors. We explored the effectiveness of grid-
searching methods for calibrating and correcting geometric errors. The grid-searching
approach, when applied to both calibrated and uncalibrated sensors, helped improve
localization accuracy and robustness, especially in 3D scenarios.

Finally, Chapter 5 focused on real-world experiments where we tested the CS
method, STLS-MMV-FISTA, and self-calibration techniques under practical condi-
tions. Despite experimental constraints, the results demonstrated that leveraging the
sparsity of the signals effectively mitigated side lobes and improved localization accu-
racy. These experimental results confirmed the applicability of the proposed methods
in real-world settings, showing promising performance under non-ideal conditions.

6.2 Future Directions for Research

In the preceding sections, we have demonstrated the benefits of extending the CS and
CCS methods with a single AVS to an array of acoustic measurement sensors. Moreover,
we have shown that with a specially designed coded cover, source localization can be
extended from 2D to 3D. In our simulation, with a 14 x 10 coded cover, 100 sources
in 3D space can be localized effectively using the CCS method when SNR is only
10dB. Moving forward, it is necessary to conduct real-world experiments to validate
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the theoretical simulations.

Additionally, several aspects warrant further investigation. For instance, exploring
the use of irregularly shaped coded covers could potentially enable the localization of
more sources. However, such modifications may alter the subspace structure of the
covariance matrix, necessitating further analysis.

Another consideration is the impact of sensor placement. What if the sensors were
arranged in a 3D configuration, such as a spherical or other geometric shape? For
example, Microflown’s Scan&Paint 3D system [32] utilizes a spherical array with 12
sensors, as shown in Figure 6.1. Possibly we could design a cover which could localize
sources across the entire 3D space rather than just in the forward direction. Addressing
these questions could further enhance the applicability of the proposed methods.

Figure 6.1: Scan&Paint 3D system from Microflown

Regarding calibration, further research is needed to identify methods that are well-
suited for compressed sensing frameworks, particularly for cases where multiple types
of errors need to be calibrated. Another important direction is investigating potential
extensions of the STLS method to enhance its localization capabilities. Based on our
research findings, both MMV-based and covariance-based models show promise for
future exploration.
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