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ABSTRACT
GNSS-based positioning plays an important role in safety-critical applications (e.g., automotive, aviation, shipping, rail) where
positioning safety is paramount. Safety analyses typically include a probability-based formulation, such as calculating the
probability that the position estimator falls outside a safety region (probability of positioning failure). Once this probability is
being computed, it can be compared to an application specific requirement to decide whether or not this requirement is met. In
this context, we carry out a component-wise analysis of the probability of positioning failure for the Detection, Identification,
and Adaptation (DIA) estimator. The probability of positioning failure is formulated based on the DIA estimator’s probability
density function (PDF) which accounts for the dependence between parameter estimation and statistical hypothesis testing. The
probability of positioning failure can be further expressed in terms of its conditional components via the law of total probability
which enables the assessment of the Most Impactful Components (MICs). Knowledge about the MICs can be useful to determine
the main contributors to the probability of positioning failure. Using a dual GNSS (GPS and Galileo) positioning model for an
automated vehicle, we compute the MICs based on the conditional PDFs components of the DIA estimator. Furthermore, we
determine the worst-case scenario by computing the maximum total probability of positioning failure over a range of magnitudes
for the outliers in the observables and over different orientations of the vehicle. These types of analyses can be useful during
the design stage of DIA estimators to verify whether the safety requirements for positioning are met. Lastly, we summarize our
contributions and provide an outlook on future work.

I. INTRODUCTION
Global Navigation Satellite Systems (GNSS) are used in several safety-critical applications, including automotive, aviation,
shipping, and rail (Teunissen and Montenbruck, 2017; Morton et al., 2020). For a position estimator x ∈ Rn and an application-
dependent safety-region B ⊂ Rn centered at the true position, the event of positioning failure can be expressed as (based on the
definition provided on page 15 in (RTCA-Special Committee 159, 2020))

F = {x /∈ B} = {x ∈ Bc}, (1)

where Bc = Rn\B is the failure-region and the contour of B ⊂ Rn defines the Alert Limit (e.g., ellipse in Rn=2). Having access
to the probability density function (PDF) of the position estimator x, denoted fx (x ), the probability of positioning failure is

PF = P(x ∈ Bc) =

∫
Bc

fx (x ) dx . (2)
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On the basis of (2), positioning safety-analyses can be conducted, and the results obtained can be used to verify compliance
with respect to (w.r.t.) application-specific requirements or guidelines (e.g., for automotive (Reid et al., 2019), for aviation
(RTCA-Special Committee 159, 2020)). The computation, analysis, and validation of the results based on (2) align with the
scenario-based safety assessment framework used for automated and autonomous vehicles (Riedmaier et al., 2020; U.N.E.C.E.,
2023; de Gelder et al., 2024). Following this framework, we conduct positioning safety-analyses at the design stage, when
choices are to be made regarding (i) measurement models, (ii) parameter estimation algorithms, (iii) statistical hypothesis testing
procedures for model misspecifications (e.g., outliers or faults in measurements), and (iv) positioning scenarios for vehicles,
among other considerations. The computation and analysis of (2) rely on numerical simulations due to the complexity of the
multiple integral(s) and the impracticality of collecting the necessary measurements or data (e.g., for automotive applications
it would require millions or even billions of kilometers of driving (Kalra and Paddock, 2016)). Once compliance with the
application-specific requirements is demonstrated on the basis of the probability of positioning failure in the scenarios of inter-
est, the resulting parameter estimation and statistical hypothesis testing procedure can be implemented for real-time positioning.

As the position estimator x is often the outcome of parameter estimation and a statistical hypothesis testing procedure for
model misspecifications (e.g., a Detection, Identification, and Adaptation-DIA procedure (Baarda, 1968; Gillissen and Elema,
1996; Teunissen, 2017) or a Fault Detection and Exclusion-FDE procedure (Hwang and Brown, 2006; Blanch et al., 2015;
Yang et al., 2013)), it is important to account for the dependence between these two statistical inference concepts in the PDF
fx (x ). By neglecting this dependence in fx (x ), one may obtain unrepresentative (e.g., over-optimistic) results when assessing
the quality of x (Zaminpardaz and Teunissen, 2022). The importance of accounting for this dependence has been recognized
in various fields, including mathematical statistics, econometrics, and signal processing (Bancroft, 1944; Danilov and Magnus,
2004; Routtenberg and Tong, 2016).

A theoretical framework addressing the dependence between parameter estimation and statistical hypothesis testing has been
introduced in (Teunissen, 2018). In this framework, the expressions for x (referred to as the DIA-estimator) and fx(x ) are
derived. Considering a multiple hypothesis testing procedure, where a null hypothesis H0 is tested against multiple alternative
hypotheses Hi for i ∈ {1, ..., k}, the PDF of the DIA-estimator can be decomposed via the rule of total probability

fx(x ) = P(H0)fx(x |H0) +

k∑
i=1

P(Hi)fx(x |Hi), (3)

where P(H0) and P(Hi) are the a-priori probability of occurrence of the hypotheses. A further decomposition of fx(x |H0)
and fx(x |Hi) gives

fx(x |H) =

{
PCAfx|CA(x|CA) +

∑k
j=1 PFAj

fx|FAj
(x|FAj) if H = H0

PMDi
fx|MDi

(x|MDi) + PCIifx|CIi (x|CIi) +
∑k

j ̸=0,i PWIjfx|WIj (x|WIj) if H = Hi ,
(4)

where (a) under H0: fx|CA(x|CA) and fx|FAi
(x|FAi) are the conditional PDFs on the testing decisions of Correct Acceptance

(CA) when H0 is accepted and of False Alarm (FA) when H0 is rejected and Hi is accepted; PCA and PFAi
are the probabilities

of the events of CA and of FA per Hi, (b) under Hi: fx|MDi
(x|MDi), fx|CIi (x|CIi), and fx|WIj (x|WIj) are the conditional PDFs

on the testing decisions of Missed Detection (MD) when H0 is accepted, Correct Identification (CI) when H0 is rejected and
Hi is accepted, and Wrong Identification (WI) when H0 is rejected and Hj is accepted for j /∈ {0, i}; PMDi

, PCIi , and PWIj are
the probabilities of the corresponding events. Based on (3) and (4) the probability of positioning failure can be expressed as

PF = P(H0)

(∫
Bc

fx (x |H0) dx

)
+

k∑
i=1

P(Hi)

(∫
Bc

fx (x |Hi) dx

)
= P(H0)PF |H0 +

k∑
i=1

P(Hi)PF |Hi, (5)

where,

PF |H =

{
PCAPF |CA +

∑k
j=1 PFAjPF |FAj if H = H0

PMDi
PF |MDi + PCIiPF |CIi +

∑k
j ̸=0,i PWIjPF |WIj if H = Hi .

(6)

One can use (6) to determine which components (or terms) are the most or least influential to PF |H. Knowledge about the
Most Influential Components (MICs) and/or Least Influential Components (LICs) of PF |H can be valuable at the design stages
of the algorithms for parameter estimation and statistical hypothesis testing (e.g., a DIA-estimator). Note that at this stage,
the MICs and LICs are intrinsic to the designed DIA-estimator and do not depend on the ’weighting’ given by the a priori
probabilities. Having determined the values of PF |H, the total probability of failure PF can then be calculated using the a
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priori probabilities P(H) and used to verify compliance with application-specific requirements or guidelines. In this contribu-
tion, we quantify the MIC/LICs, PF |H, and PF in a GNSS-based (decimeter level) positioning scenario of an automated vehicle.

This article is organized as follows: In Section II we review the main principles of the DIA-estimator x ∈ Rn and its
PDF fx(x ). Section III presents the probability of positioning failure and its conditional components based on the PDF fx(x ).
Section IV contains two examples in which we apply the principles outlined in this contribution. The first example is intended
to illustrate the integration regions involved in computing the probability of positioning failure via a simple one-dimensional
positioning problem. In the second example, we carry out a positioning safety analysis for an automated vehicle whose position
vector is determined, at the decimetre level, based on GNSS (GPS and Galileo). In both examples, the MICs/LICs, PF |H, and
PF are quantified. Also, the probability of positioning failure is computed for a worst-case scenario based on which conclusions
can be drawn whether the results are compliant with positioning safety targets or requirements. In Section V we summarize our
contribution and provide an outlook on future work.

Throughout the paper we make use of the following notation: an underscore denotes a random quantity (e.g., the random
vector x ∈ Rn), fx(x) is the PDF of x ∈ Rn, Efx (x) =

∫
Rn xfx(x)dx is the expectation of x ∈ Rn, and Qxx ∈ Rn×n is

the variance-covariance matrix of x ∈ Rn. The joint PDF of two random vectors x ∈ Rn and y ∈ Rm is denoted fx,y(x, y).
The PDF of a random vector x conditioned on an event E is written as fx|E(x|E). The probability of an event E is denoted
PE = P(E). A projection matrix is expressed as QA and it projects orthogonally (w.r.t. some metric) onto the range space of
the matrix A ∈ Rm×n (R(A)). For the weighted squared norm of a vector we use the notation ||.||2Q = (.)TQ−1(.). If the
squared norm is w.r.t. the identity matrix then it is denoted ||.||2.

II. REVIEW OF DETECTION, IDENTIFICATION, AND ADAPTATION (DIA) ESTIMATOR
In this section we review the principles of the Distributional theory for the DIA-method as introduced in (Teunissen, 2018).
Consider a random vector of observables y ∈ Rm which it is assumed to be normally distributed y ∼ N (Ax,Qyy), where: (i)
A ∈ Rm×n is the design matrix with rank(A) = n, (ii) x ∈ Rn is the vector of unknown parameters (e.g., receiver coordinate
increments, receiver clock bias), and (iii) Qyy ∈ Rm×m is a symmetric positive definite variance-covariance matrix of y ∈ Rm.
It is common that in practice model misspecifications of the mean of y (e.g., due to outliers) occur (Teunissen, 2017). On this
basis, the following multiple statistical hypothesis testing problem is formulated,

H0 : Efy

(
y
)
= Ax vs. Hi : Efy

(
y
)
= Ax + Cibi for i ∈ {1, ..., k}, (7)

where Ci ∈ Rm×qi models the type of model misspecification, rank([A,Ci]) = n+ qi, bi ∈ Rqi is the model misspecification
(e.g., outlier(s) in the observable(s)), and 1 ≤ qi ≤ r for i > 0 (to allow for parameter estimation underHi) with r = m−rank(A)
being the redundancy of H0. The expressions of the Best Linear Unbiased Estimators (BLUEs) of the unknown parameter
vector x ∈ Rn are

x̂0 = A+ y (under H0) and x̂i = Ā+
i y (under Hi), (8)

where A+ = Qx̂0x0
ATQ−1

yy is the BLUE-inverse of A, Qx̂0x0
= (ATQ−1

yy A)−1 is the variance-covariance matrix of x̂0,
Ā+

i = Qx̂ix̂iĀ
T
i Q

−1
yy , Qx̂ix̂i = (ĀT

i Q
−1
yy Āi)

−1 is the variance-covariance matrix of x̂i, Āi = Q⊥
Ci
A, and Q⊥

Ci
= Im −

Ci(C
T
i Q

−1
yy Ci)

−1CT
i Q

−1
yy is the orthogonal projector (w.r.t. the metric of Q−1

yy ) that projects onto R (Ci)
⊥ (the orthogonal

complement of R (Ci)). A realized value of the estimator x̂i, for i ∈ {0, ..., k}, is called an estimate and its notation is x̂i. To
build test statistics for the decision problem in (7) one can use the vector of misclosures or misclosure vector (Teunissen, 2024b)

t = BTy, Qtt = BTQyyB, (9)

with B ∈ Rm×r of rank(B) = r and BTA = 0r×n. The vector of misclosures provides a measure of inconsistency between
the model under H0 and the observations. Furthermore, the vector of misclosures can be used to link the BLUEs in (8) via the
following invertible transformation[

x̂i
t

]
=

[
In −Li

0r×n Ir

] [
x̂0
t

]
, with Li =

{
0n×r , i = 0

A+CiC
+
ti , i > 0

, (10)

and C+
ti = (CT

tiQ
−1
tt Cti)

−1CT
tiQ

−1
tt the BLUE-inverse of Cti = BTCi. The PDF of

[
x̂Ti tT

]T
, under a Ha, is

Ha :

[
x̂i
t

]
∼ N

([
x + A+RiCaba

Ctaba

]
,

[
Qx̂0x̂0

+ LiQttL
T
i −LiQtt

−QttL
T
i Qtt

])
, (11)
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where Ri = Im − Ci

(
BTCi

)+
BT projects along R(Ci) and onto R(A,QyyB(B

TCi)
⊥) with (BTCi)

⊥ being a basis matrix

of the null space of CT
i B (Teunissen, 2018). We emphasize two important cases regarding the PDF of

[
x̂Ti tT

]T
,

fx̂i,t
(x, t)

{
= fx̂0

(x)ft(t) , if i = 0

̸= fx̂i
(x)ft(t) , if i ∈ {1, ..., k}, (12)

which shows that, for i = 0, the BLUE x̂0 and the misclosure vector t are independent while for i ∈ {1, ..., k} the BLUEs x̂i
and t are dependent.

It is possible to capture the hypothesis testing problem in (7) in the misclosure vector space Rr by applying partitioning
principles. A partitioning of Rr can formulated based on Pi ⊂ Rr, for i ∈ {0, ..., k}, such that ∪k

i=0Pi = Rr and Pi∩Pl = {0}
for i ̸= l. Note that an undecided region Ω ⊂ Rr could also be included to accommodate for situations when it would be difficult
to discriminate between hypotheses. In this article, we consider that an estimator x̂i is selected regardless of the outcome of the
testing decision (i.e., no Ω ⊂ Rr is included). The hypothesis Hi, for i ∈ {0, ..., k}, is selected as the most likely one if and
only if t ∈ Pi, which leads to x̂i to be provided as the output of the procedure. The partitions can be defined as follows

P0 =
{

t ∈ Rr | ||t||2Qtt
≤ χ2

α(r, 0)
}
, Pi =

{
t ∈ Rr | t /∈ P0, Ťi = max

l∈{1,...,k}
Tl

}
for i ∈ {1, ..., k}, (13)

where ||t||2Qtt
is the overall model test statistic, χ2

α(r, 0) is the critical value for a level of significance α, and Tl is the result of
the following transformation (Robert and Casella (1999); Teunissen (2017); Zaminpardaz and Teunissen (2023))

Tl = CDFχ2(ql,0)

(
||QCtl

t||2Qtt

)
, (14)

where CDFχ2(ql,0)(.) is the cumulative distribution function (CDF) of χ2(ql, 0), ||QCtl
t||2Qtt

H0∼ χ2(ql, 0), QCtl
= CtlC

+
tl

,
and Tl has a uniform distribution on the interval [0, 1] under H0. This transformation is done such that all Tl’s have the same
PDF under H0, since the dimension of the model misspecification bl ∈ Rql generally differs across the alternative hypotheses.
The maximum among them (Ťi) corresponds to the most likely Hi for i ∈ {1, ..., k} (Teunissen, 2017). Note that if the
dimension of the model misspecification is the same across the alternative hypotheses (e.g., all equal to 1 when testing for
single outliers), then the transformation step in (14) is not needed and the maximum across ||QCtl

t||2Qtt
can be found directly to

obtain Ťi. An example of partitioning is shown in Figure 1 for a simple datasnooping example when Rr=2 (Baarda, 1968). The
statistical hypothesis testing procedure can be formulated, equally, based on the BLUE’s residual vector ê0 = y − Ax̂0, which
gives ê0 = QyyBQ−1

tt t leading to the equality of the quadratic forms ||ê0||2Qyy
= ||t||2Qtt

H0∼ χ2(r, 0) (Teunissen, 2024b).

Figure 1: Partitioning of the misclosure space Rr=2 when x ∈ R, A = [1 1 1]T , Qyy = I3, and BT =

[
−1 1 0
−1 0 1

]
. The following types

of 1D model misspecifications are considered: c1 = [1 0 0]T , c2 = [0 1 0]T , and c3 = [0 0 1]T ; (a) Acceptance region P0 and the ranges of
cti = BT ci for i ∈ {1, 2, 3}; (b) Partitions Pi = {t ∈ Rr | t /∈ P0, |wi| = max

l∈{1,...,k}
|wl|} with |wl| = ||Qctl

t||Qtt being the w-test

statistic (Baarda, 1968); (c) Projections of a t ∈ R2 onto the R(cti) as part of constructing the w-test statistics (in this case |w1| is largest).
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Having defined the partitions, the Detection (D) Identification (I) and Adaptation (A) procedure is{
if t ∈ P0 (no Detection) → output x̂0,
if t /∈ P0 (Detection) → t ∈ Pi̸=0 (Identification) → output x̂i (Adaptation).

(15)

It is clear that the selection of the BLUEs is dependent on where the misclosure vector t lands in the partitioned Rr. The
estimator that captures any procedure of the form shown in (15) is the DIA-estimator (Teunissen, 2018)

x =

{
x̂0, if t ∈ P0

x̂i, if t ∈ Pi
−→ x =

k∑
i=0

x̂i pi(t) = x̂0 −
k∑

i=1

Li t pi(t), (16)

where the indicator function pi(t) = 1 if t ∈ Pi and 0 otherwise. The uncertainty of parameter estimation is carried by the
BLUEs and the one of statistical testing is carried by pi(t). Note that pi(t) is a nonlinear function of t, which causes the PDF of
the DIA-estimator x to be non-Gaussian, even though the PDFs of the BLUEs are Gaussian. Before giving the expressions for the
PDF of x, let us consider a ’thought experiment’ to illustrate the behavior of a DIA-estimator. Consider the models from Figure 1,
and assume we have access to N independent and identically distributed (i.i.d.) random samples generated from the PDF of
the observables fy(y). Next, we execute the procedure in (15) for each random sample (see Appendix V-A for the steps to be
followed). Due to the uncertainty of statistical testing carried by pi(t), a possible outcome of this experiment is shown in Table 1.

Table 1: Example of possible outcome of a combined parameter estimation and statistical hypothesis testing procedure (Appendix V-A).

Nb. 1 2 3 4 ... N

Statistical testing decision t ∈ P3 t ∈ P1 t ∈ P0 t ∈ P2 ... t ∈ P1

Outcome of x x̂3 x̂1 x̂0 x̂2 ... x̂1

In positioning safety analyses one should consider the distribution of x instead that of the individual BLUEs x̂i. If we
would consider only the BLUEs x̂i and their PDFs in positioning safety analyses we would wrongfully discard the uncertainty
associated to statistical testing. The PDF of x follows from Theorem 1 in (Teunissen, 2018)

fx (x) = fx̂0
(x)
∫
P0

ft(t)dt +
k∑

i=0

∫
Pi

fx̂i,t
(x, t) dt = fx̂0

(x)
∫
P0

ft(t)dt +
k∑

i=1

∫
Pi

fx̂0
(x + Li t) ft(t)dt, (17)

where use has been made of the equality fx̂0,t
(x, t) = fx̂0

(x)ft(t) for i = 0 from (12). In (17) we see that the number of total
hypotheses k + 1, the partitions Pi ⊂ Rr, and the joint PDFs fx̂i,t

(x, t), for i ∈ {0, ..., k}, constitute the required elements
to construct fx (x). Therefore, changes in any of these elements will be reflected in fx (x). Considering the statistical testing
decisions H0, such as CA and FA, use can be made of the rule of total probability to decompose (17) as follows

fx (x|H0) = PCAfx|CA(x|CA) +

k∑
j=1

PFAj
fx|FAj

(x|FAj) with fx|FAj
(x|FAj) =

∫
Pj

fx̂j ,t
(x, t|H0) dt

PFAj

, (18)

where fx|CA(x|CA) = fx̂0
(x|H0) with fx̂0

(x|H0) = N (x, Qx̂0x̂0
), and PCA = P(t ∈ P0|H0), PFAj

= P(t ∈ Pj |H0) are the
probabilities of the respective events. The summation term in (18) causes fx (x|H0) to be a nonnormal PDF. Similarly, under
an alternative Hi for i ̸= 0, the decomposition of (17) gives

fx (x|Hi) = PMDifx|MDi
(x|MDi) + PCIifx|CIi (x|CIi) +

k∑
j ̸=0,i

PWIjfx|WIj (x|WIj) , (19)

where fx|MDi
(x|MDi) = fx̂0

(x|Hi) with fx̂0
(x|Hi) = N (x + A+Cibi, Qx̂0x̂0), and PMDi = P(t ∈ P0|Hi), PCIi = P(t ∈

Pi|Hi), PWIj = P(t ∈ Pj |Hi) are the probabilities of the respective events. The expressions of the individual components
under CIi and WIj are

fx|CIi (x|CIi) =
∫
Pi

fx̂i,t
(x, t|Hi) dt
PCIi

, fx|WIj (x|WIj) =

∫
Pj

fx̂j ,t
(x, t|Hj) dt

PWIj
. (20)
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In (19) the PDF fx (x|Hi) is nonnormal due to the second and third terms. To compute fx (x|Hi), and/or its components, one
would need to set or make assumptions on the size of the model misspecification bi ∈ Rqi . The PDFs discussed in this section
form the basis for expressing the probabilities of positioning failure in the next section.

III. PROBABILITY OF POSITIONING FAILURE AND ITS COMPONENTS
The probability of positioning failure is formulated based on the event of positioning failure F = {x ∈ Bc} (page 15 in
(RTCA-Special Committee 159, 2020)) and on the DIA-estimator’s PDF from (17). The expression for the probability of
positioning failure and its components is provided below

PF (b) = P(H0)PF |H0 +

k∑
i=1

P(Hi)PF |Hi(bi)

= P(H0)

∫
Bc

fx(x |H0)dx+

k∑
i=1

P(Hi)

∫
Bc

fx(x |Hi)dx

= P(H0)

 k∑
j=0

∫
Bc

∫
Pj

fx̂j ,t
(x, t|H0) dt dx

+

k∑
i=1

P(Hi)

 k∑
j=0

∫
Bc

∫
Pj

fx̂j ,t
(x, t|Hi) dt dx


= P(H0)

 k∑
j=0

Efx̂j ,t
(1j(x, t)|H0)

+

k∑
i=1

P(Hi)

 k∑
j=0

Efx̂j ,t
(1j(x, t)|Hi)

 ,

(21)

where the dependence on the model misspecifications is accounted in the notation of PF (b) with b = {b1, ...,bk}, Bc = Rn\B
is the failure-region (complement of the safety-region B ⊂ Rn), and the joint indicator function 1j(x, t) = 1 if [xT tT ]T ∈
(Bc ∩ Pj), and 0 otherwise. The summation terms in parentheses in the last line of (21) are denoted below, taking into account
the statistical testing decisions in the notation,{∑k

j=0 Efx̂j ,t
(1j(x, t)|H0) = PF |CAPCA +

∑k
j=1 PF |FAj PFAj

,∑k
j=0 Efx̂j ,t

(1j(x, t)|Hi) = PF |MDi PMDi
+ PF |CIi PCIi +

∑k
j ̸=0,i PF |WIj PWIj .

(22)

The decompositions from (21) and (22) are illustrated schematically in Figure 2. By computing (22) one can obtain a complete
picture over the components that are the most or least influential to PF |H0 and/or to PF |Hi(bi). Knowledge about the MICs
and/or LICs of PF |H0 and/or of PF |Hi(bi) can be valuable at the design stages of the algorithms for parameter estimation and
statistical hypothesis testing. Note that at this stage, the MICs and LICs are intrinsic to the designed DIA-estimator and do not
depend on the ’weighting’ given by the a-priori probabilities.

Figure 2: Schematic representation of the conditional components of PF (b).

For positioning safety analyses, the maximum of (21) can be compared against an application specific requirement to decide
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whether the requirement is met,

max
b

PF (b) = P(H0)PF |H0 + max
b1,...,bk

k∑
i=1

P(Hi)PF |Hi(bi). (23)

The positioning safety-analyses in the next section are based on constructing the ’failure-tree’ shown in Figure 2.

IV. POSITIONING SAFETY ANALYSES
1. One-dimensional positioning example
To illustrate the principles from the previous sections, we make use of a simple one-dimensional positioning example where we
assume y = [y

1
y
2
]T ∈ R2, y ∼ N (Efy(y),Qyy), and the to-be-estimated unknown scalar x ∈ R in [m]. This choice is made

such that the integration regions in the joint-vector space R(n+r) can be visualized. In this case m = 2 and n = r = k = 1
based on which the following statistical hypothesis testing problem is formulated

H0 : Efy

(
y
)
= Ax vs. H1 : Efy

(
y
)
= Ax + c1b1, (24)

with Qyy = σ2
yI2 [m2], A = [1 1]

T , BT = [1 −1], c1 = [1 0]
T , ct1 = BT c1 = 1, and b1 ∈ R in [m]. It follows that

Qx̂0x̂0 = σ2
x̂0

= 0.5σ2
y [m2] and Qtt = σ2

t = 2σ2
y [m2]. The PDF of [x̂i t]

T ∈ R2 under H0 and H1 is

H0 :

[
x̂i
t

]
∼ N

([
x
0

]
,

[
σ2
x̂0

+ L2
iσ

2
t −Liσ

2
t

−Liσ
2
t σ2

t

])
, H1 :

[
x̂i
t

]
∼ N

([
x + A+Ric1b1

b1

]
,

[
σ2
x̂0

+ L2
iσ

2
t −Liσ

2
t

−Liσ
2
t σ2

t

])
(25)

for i ∈ {0, 1}, where L0 = 0, L1 = A+c1c
+
t1 = 0.5, A+ = [0.5 0.5], R0 = I2, and R1 =

[
0 1
0 1

]
. The correlation coefficient

between x̂1 and t is

ρx̂1,t
= − L1σt√

σ2
x̂0

+ L2
1σ

2
t

= −
√
2

2
. (26)

If different models would have been chosen (e.g., different A, Qyy, c1), then ρx̂1,t
would be different (see Appendix V-B). The

partitioning of the misclosure space in R for a chosen α = PFA gives,

P0 =
{

t ∈ R | − τα
2
σt ≤ t ≤ τα

2
σt

}
, P1 = R/P0, (27)

where τα
2

is the critical value. When k = 1 there are four hypothesis testing decisions: CA (t ∈ P0|H0), FA (t /∈ P0|H0),
MD1 (t ∈ P0|H1), and Correct Detection-CD1 (t /∈ P0|H1). Next we define the safety-region in the parameter space R to be
an interval centred at the true value x,

B = {x ∈ R | x− β ≤ x ≤ x + β} , (28)
for a chosen positive value β.

The PDF fx (x|H0), its conditional components (fx|CA(x|CA) and fx|FA(x|FA)), and the interval B are shown in Figure
3(a). From (18) and (25) it follows that fx|CA(x|CA) = fx̂0

(x|H0) = N
(
x, σ2

x̂0

)
. The shape of fx|FA(x|FA) can be explained

starting from its expression in (18)

fx|FA(x|FA) =
1

PFA

(∫ −τα
2
σt

−∞
fx̂0

(x + L1t|H0) ft(t|H0)dt+

∫ ∞

τα
2
σt

fx̂0
(x + L1t|H0) ft(t|H0)dt

)
, (29)

where the two terms in the sum give two modes due to the symmetry of ft(t|H0) w.r.t. the origin and P0. Assuming σy is
fixed, if PFA ↓ then the interval P0 ↑ and the distance between the two modes increases which leads to fx (x|H0) to approach
fx|CA(x|CA). Conversely, if PFA ↑, then P0 ↓ and the distance between the two modes decreases which results in a fx (x|H0)
with heavier tails. For a fixed PFA and an increasing precision of the observables y (σy ↓), and consequently a higher precision
of t (σt ↓) and x̂0 (σx̂0

↓), the modes would become narrower and get closer to one another. Conversely, with poorer precision
(σt ↑, σx̂0

↑), the modes would be wider and further apart. In these situations the width of fx (x|H0) and its two components
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Figure 3: The following parameters have been used for illustration purposes: x = 0, β = 3.5 [m], σ2
y = 0.250 [m2],

σ2
x̂0

= 0.125 [m2], σ2
t = 0.500 [m2], and for (a) H0 : α = PFA = 0.1, PCA = 0.9; (b) H1 : b1 = 0.300 [m], bx̂0 = A+c1b1 = 0.150 [m],

bt = b1, PMD1 = 0.8696, and PCD1 = 0.1304.

would vary in accordance to σy.

For fx (x|H1) one would need to make assumptions on the value of the model misspecification, in this case the outlier
b1, to carry out a similar analysis. An example is shown in Figure 3(b) for b1 = 0.3 [m]. From (19) and (25) it follows
that fx|MD1

(x|MD1) = fx̂0
(x|H1) = N

(
x + A+c1b1, σ

2
x̂0

)
. The shape of fx|CD1

(x|CD1) can be explained starting from its
expression

fx|CD1
(x|CD1) =

1

PCD1

(∫ −τα
2
σt

−∞
fx̂0

(x + L1t|H1) ft(t|H1)dt+

∫ ∞

τα
2
σt

fx̂0
(x + L1t|H1) ft(t|H1)dt

)
, (30)

where the smaller mode corresponds to the first term in the sum since ft(t|H1) is not symmetric w.r.t. the origin and P0, which
means that, in the misclosure space R, there is less density on the interval

(
−∞,−τα

2
σt

]
than on

[
τα

2
σt,∞

)
. The larger mode

corresponds to the second term in the sum. By keeping b1 and σy fixed, and reducing PFA ↓, the two modes would increasingly
diverge in location, with the smaller one progressively diminishing as P0 ↑. This behavior will cause fx (x|H1) to approach
fx|MD1

(x|MD1), while for PFA ↑ it would approach fx̂1
(x|H1). In terms of a higher or poorer precision of the observations

(σy ↓↑ → σx̂0
↓↑, σt ↓↑ ), the width of fx (x|H1) and its two components would vary accordingly. If b1 ↑, when PFA and σy

are fixed, the smaller mode would diminish, which would cause fx (x|H1) to approach fx̂1
(x|H1). For negative values for the

model outliers, the shape and behaviour of the two modes would have been the other way around.

We now decompose the total probability of the one-dimensional positioning failure

PF (b1) = P(H0)PF |H0 + P(H1)PF |H1(b1)

= (PCAPF |CA + PFAPF |FA)P(H0) + (PMD1
PF |MD1 + PCD1

PF |CD1)P(H1)

=
(
Efx̂0,t

(10(x, t)|H0) + Efx̂1,t
(11(x, t)|H0)

)
P(H0) +

(
Efx̂0,t

(10(x, t)|H1) + Efx̂1,t
(11(x, t)|H1)

)
P(H1).

(31)
The expected values in (31) are the integrals of fx̂i,t

(x, t) (under H0 and H1), for i ∈ {0, 1}, over the regions

Bc ∩ P0 =
{
[x t]T ∈ R2 | x ∈ Bc, t ∈ P0

}
, Bc ∩ P1 =

{
[x t]T ∈ R2 | x ∈ Bc, t ∈ P1

}
, (32)

which are illustrated in Figure 4. The region (Bc∩P0) ⊂ R2 has two unbounded and disjoint components, while (Bc∩P1) ⊂ R2

has four. The contour lines in Figure 4(a) and (c) correspond to the joint PDF fx̂0,t
(x, t) under H0 and H1 while in Figure 4(b)

and (d) correspond to fx̂1,t
(x, t) under H0 and H1.

The results of the computed terms PCAPF |CA, PFAPF |FA, PMD1
PF |MD1, and PCD1

PF |CD1 are shown in Figure 5. Fig-
ure 5(a) shows the results over Nsim = 100 (number of independent simulation repetitions) of PCAPF |CA and PFAPF |FA,
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Figure 4: The grey areas illustrate the regions of integrating: (a) fx̂0,t(x, t|H0) over Bc ∩ P0; (b) fx̂1,t(x, t|H0) over Bc ∩ P1; (c)
fx̂0,t(x, t|H1) over Bc ∩ P0, and the dashed line is the trajectory along which fx̂0,t(x, t|H1) moves as a function of b1; (d) fx̂1,t(x, t|H1)

over Bc ∩ P1, and the dashed line is the trajectory along which fx̂1,t(x, t|H1) moves as a function of b1.
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Figure 5: The following parameters have been used: x = 0, β = 3.5 [m], σ2
y = 0.250 [m2], σ2

x̂0
= 0.125 [m2], σ2

t = 0.500 [m2], and
PFA = 0.1. (a) The computed PCAPF |CA over Nsim = 100 with µsim = 3.75 · 10−23 and σsim = 1.33 · 10−25 and of PFAPF |FA with

µsim = 2.57 · 10−12 and σsim = 1.32 · 10−14; (b) The µsim and its σsim based on Nsim = 100 of PMD1PF |MD1 as a function of b1; (c) The
µsim and its σsim based on Nsim = 100 of PCD1

PF |CD1 as a function of b1.

while Figures 5(b) and (c) are showing the curves based on the average of the results over Nsim = 100 (µsim) and the standard
deviation of µsim’s (denoted σsim) of PMD1

PF |MD1 and PCD1
PF |CD1 as a function of the outlier b1. In Figure 5(a) the large

separation between the two components is due to fx̂1,t
(x, t|H0) having significantly more probability density over Bc ∩P1 than

fx̂0,t
(x, t|H0) over Bc ∩P0 (see Figure 4(a) and (b)). The amount of probability density of fx̂1,t

(x, t|H0) over Bc ∩P1 is driven
by |ρx̂1,t

|, which in this case is 0.7071. To decrease the separation between the two components in Figure 5(a) one would need
to decrease |ρx̂1,t

| (i.e., changing the underlying models in (24)). If |ρx̂1,t
| → 0, the separation decreases and if |ρx̂1,t

| → 1, it
increases (see Appendix V-B). In this case the MIC of PF |H0 is PFAPF |FA and the LIC is PCAPF |CA.

Figure 5(b) displays the behaviour of the result of the integration of fx̂0,t
(x, t|H1) over Bc∩P0 as |b1| is varied (see Figure 4(c)).

Starting from near the value 0, as |b1| ↑ there will be progressively more probability density over Bc ∩ P0 until a maximum
is reached, in this case at |b1| = 4.1 [m] with µsim = 3.37 · 10−10 ± 6.08 · 10−13. After this point, the values of µsim of
PMD1

PF |MD1 decreases as |b1| ↑ due to the less probability density over Bc ∩ P0. The behaviour of σsim depends on the
respective probability density coverage as for a range of |b1| it does not cover well both sides of Bc, compared to the case where
|b1| is larger and it needs to cover only the right-side component of Bc. In Figure 5(c) one can notice the variation of µsim of
PCD1

PF |CD1 in the range of |b1| starting from about 2 [m] to about 5 [m], and an almost constant behaviour elsewhere. From
the value 0, as |b1| ↑ the probability density of fx̂1,t

(x, t|H1) over Bc ∩ P1 remains almost constant until (approximately) ≈
2 [m] where the probability density over Bc ∩ P0 starts to be higher, and consequently lower over Bc ∩ P1. This behaviour
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is driven by |ρx̂1,t
| as for a large correlation there will be a higher probability density over Bc ∩ P0 in a certain range of |b1|,

while for lower |ρx̂1,t
| there will be less probability density. The minimum of PCD1

PF |CD1 is reached at |b1| = 3.6 [m]

where µsim = 1.31 · 10−12 ± 9.32 · 10−15, after which the probability density of fx̂1,t
(x, t|H1) over Bc ∩ P1 increases and

stabilizes after |b1| ≈ 5 [m]. The simulation standard deviation σsim is nearly constant since the respective probability density
function consistently covers the four disjoint components of Bc ∩ P1 regardless of the variation of |b1|. The MIC of PF |H1

for |b1| ∈ [0, 2.5)[m] and |b1| ∈ (5.7, 7.0][m] is PCD1
PF |CD1 (and the LIC PMD1

PF |MD1) while for |b1| ∈ [2.5, 5.7][m]
the MIC is PMD1

PF |MD1. By summing the µsim’s from Figure 5 the components PF |H0 and PF |H1(b1) are obtained (see
Figure 6(a) and Figure 6(b)).

If one would have a-priori knowledge about P(H0) or make some assumptions on its values (e.g., 1 − 10−3, 1 − 10−4,
1 − 10−5), then PF (b1) can be computed from its components ’weighted’ by these a-priori probabilities. The computed
total probability of positioning failure PF (b1) is shown in Figure 6(c) for the three assumptions on P(H0). The behaviour of
PF (b1) is driven by PFAPF |FA (the MIC of PF |H0) until |b1| ≈ 2.2 [m], after which the µsim of PCD1

PF |CD1 takes over
until |b1| ≈ 2.5 [m] (MIC of PF |H1(b1)) and then that of PMD1

PF |MD1 until |b1| ≈ 6.3 [m] (MIC of PF |H1(b1)). Past
|b1| ≈ 6.3 [m], the influence of PFAPF |FA is again larger. The value of PF (b1) depends on how likely H0 is considered or
assumed to be. If P(H0) ↑ then the influence of the maximum of the µsim of PMD1

PF |MD1 is decreased, while if P(H0) ↓ its
influence increases. If only the maximum value of PF (b1) is of interest, then one can use the results from Table 2.

Figure 6: (a); Computed PF |H0 over Nsim = 100; (b) Computed µsim of PF |H1(b1); (c) Computed total probability of positioning failure
PF (b1) for the chosen values for P(H0) (1− 10−3, 1− 10−4, and 1− 10−5).

Table 2: Maximum values of PF (b1) and their standard deviations (σsim) from the results in Figure 6(c).

P(H0) Max. PF (b1) σsim |b1| [m] MIC of PF |H0 MIC of PF |H1(b1) at Max.
1− 10−3 2.88 · 10−12 1.66 · 10−14 4.1

PFAPF |FA PMD1
PF |MD11− 10−4 2.58 · 10−12 1.66 · 10−14 4.1

1− 10−5 2.55 · 10−12 1.66 · 10−14 4.1

At this stage one may ask ”What would be the difference in results by ignoring the dependence between parameter estimation and
statistical hypothesis testing?”. To quantify these differences we can ignore the aforementioned dependence by assuming that
the second inequality in (12) becomes an equality: fo

x̂1,t
(x, t) = fx̂1

(x)ft(t) (the superscript [.]o indicates that the dependency
is not accounted for). On the basis of this equality the computation of Po

F (b1) can be done to quantify the ’over-optimism’ by
computing the ratio PF (b1)/P

o
F (b1). Figure 7 shows that PF (b1)/P

o
F (b1) > 1, hence relying on Po

F (b1) can be potentially
dangerous. Moreover, Po

F (b1) is around 10 times lower than PF (b1) in the intervals where the component under H0 dominates.
The ratio starts to decrease when the component under H1 starts to drive the behaviour of Po

F (b1) and of PF (b1). At the
maximum, Po

F (b1) is : (i) 4.85 times lower than PF (b1) when P(H0) = 1 − 10−3; (ii) 8.93 times lower than PF (b1) when
P(H0) = 1− 10−4; (iii) 9.86 times lower than PF (b1) when P(H0) = 1− 10−5. Therefore, ignoring the dependence between
parameter estimation and statistical hypothesis testing in the above example leads to significantly over-optimistic results.
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2. Differential GNSS-based positioning example
In this GNSS-based positioning safety analysis, we consider a scenario involving an automated vehicle which coordinates are
determined in a local East-North-Up (ENU) coordinate system using, single-frequency, code-based pseudorange observables
in a Differential GNSS (DGNSS) setup. The GNSS constellations we consider are GPS (G) and Galileo (E), at L1/E1 radio-
frequency (1575.42 MHz). Decimeter-level positioning precision for the rover receiver (installed in the automated vehicle) can
be achieved, depending on the distance between the reference station and the rover receiver (Kealy and Moore, 2017). The
(linearized) DGNSS positioning model is (Odijk, 2017)

Efy

([
yG
yE

])
︸ ︷︷ ︸

y

=

[
UG uG
UE uE

]
︸ ︷︷ ︸

A

[
∆p
c∆t

]
︸ ︷︷ ︸

∆x

, Qyy = blkdiag[QyGyG
,QyEyE ] with y ∼ N (A∆x,Qyy) . (33)

In (33), the entries of y
[.]

∈ Rm[.] , where [.] ∈ {G or E}, represent the observed pseudoranges from which the Euclidean
distances between a chosen linearization point and the satellites are subtracted, and the pseudorange corrections are applied by
addition. The application of the pseudorange corrections remove most of the satellite orbit errors and remove the satellite clock
error and satellite code hardware bias. For distances between the reference and rover receiver up to 10 km, the differential delays
due to the troposphere and ionosphere can be considered negligible (Odijk, 2002). The DGNSS positioning model in (33)
considers that both the reference and rover receivers have calibrated the GPS-Galileo Inter System Bias by applying it as an addi-
tional correction to their pseudoranges (Odijk, 2017). The matrix U[.] ∈ Rm[.]×3 contains the unit direction vectors between the
rover receiver and the satellites (with the minus sign from the linerization accounted for), and u[.] = [1 1 ... 1]

T ∈ Rm[.] .
The unknown parameters are the rover’s ENU coordinate increments ∆p ∈ R3 and ∆t ∈ R which represents the combined
differential receiver clock and hardware delay. The c term is the speed of light in a vacuum. The design matrix A ∈ Rm×n has
rank(A) = n = 4, where m = mG +mE. The variance-covariance matrix Qy[.]y[.]

= 2σ2
y[.]

W−1
[.] ∈ Rm[.]×m[.] is diagonal with

W[.] = diag[ω1[.] , ..., ωm[.]
] ∈ Rm[.]×m[.] being the weight matrix which components are the elevation-dependent weighting

functions as given in (Euler and Goad, 1991). In Qy[.]y[.]
, σy[.]

is the standard deviation of the pseudorange observables, in [m],
and the factor 2 is due to the application of the pseudorange corrections to the observed pseudoranges by the rover receiver
(assuming the same σy[.]

at both reference and rover receivers (Hauschild, 2017)). For the analysis in this section, we aim for a
horizontal positioning precision of about 0.5 meters (95% circular probability radius). To achieve this, we set

√
2σyG

= 0.3 [m]

and
√
2σyE = 0.2 [m], which correspond to achievable positioning precisions based on DGNSS (Kealy and Moore, 2017).

The redundancy of the model in (33) is r = m− rank(A) = (mG +mE)− 4. The estimate x̂ is obtained from a Gauss-Newton
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iteration scheme once the stop criterion is met for ∆x̂ (Teunissen, 1990). We account for individual outliers in the observations
and assume that only one observation outlier occurs at a time. This is the case of datasnooping (Baarda, 1968) with

H0 : Efy

(
y
)
= A∆x vs. Hi : Efy

(
y
)
= A∆x + cibi for i ∈ {1, ..., k}, (34)

where k = m, ci =
{
0m, if i = 0

[0 ... 0 ... 1 ... 0]T ∈ Rm, if i > 0
is the canonical unit vector, bi ∈ R is the unknown outlier with

its size in meters, and rank([A, ci]) = 5. The resulting partitions of Rr, given a level of significance α = PFA, are

P0 =
{

t ∈ Rr | ||t||2Qtt
≤ χ2

α(r, 0)
}
, Pi =

{
t ∈ Rr | t /∈ P0, |wi| = max

j∈{1,...,k}
|wj |

}
for i ∈ {1, ..., k}, (35)

where |wj | = ||Qctj
t||Qtt

is the w-test statistic (Baarda, 1967; Teunissen, 2024b). The skyplot in Figure 8(a) shows the
positions of the GNSS satellites, as observed by the rover receiver. The satellite geometry consists of mG = 8 GPS satellites
(blue) and mE = 7 Galileo satellites (orange) with an elevation cut-off angle of 10◦.
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Figure 8: (a) Skyplot view of the rover receiver (vehicle)-satellite geometry. The blue dots are representing the GPS satellites, while the
orange ones represents the Galileo satellites and the corresponding Hi’s, for i ∈ {1, ..., 15}; (b) Shape that bounds the vehicle and the shape

of the safety-region B ⊂ R2.

In this setup, the misclosure vector t = BTy belongs to Rr=11. We focus the analysis on the 2D position of the vehicle as the
horizontal domain is most relevant: h = HTx where HT = [I2 02×2] and x = x̂0 −

∑k
i=1 Li t pi(t) is the n-dimensional

DIA-estimator. The PDF of h is

fh (h) = fĥ0
(h)

∫
P0

ft(t)dt +
k=15∑
i=1

∫
Pi

fĥ0

(
h+HTLi t

)
ft(t)dt, (36)

with fĥ0
(h)

H0= N
(
h, Qĥ0ĥ0

= HTQx̂0x̂0H
)

and ft(t)
H0= N

(
0r, Qtt = BTQyyB

)
. When determining the shape and size of

the safety-region B ⊂ R2, several factors should be considered, such as: (i) vehicle’s dimensions, (ii) road geometry to ensure
that all the elements h ∈ R2 inside the set B ⊂ R2 are such that the vehicle is within its lane, (iii) minimum required braking
distance as a function of the vehicle’s speed, (iv) proximity w.r.t. other traffic participants, among other considerations. Several
approaches have been proposed in terms of shapes of the safety-region that bound the vehicle (e.g., elliptical, rectangular) in
several studies (Kigotho and Rife, 2021; Reid et al., 2019; Feng et al., 2018). As an example, and for consistency with existing

2239



approaches in the literature, we choose an ellipse to inscribe the vehicle which has a length of 4.5 [m], a width of 1.8 [m], and
an orientation of 0◦ relative to the vertical axis. For a single-epoch in time, the safety-region is defined as

B = {h ∈ R2 | ||h− htrue||2QB
≤ 1}, (37)

where Q−1
B =

[
0.6173 0

0 0.0988

]
[m−2] and htrue ∈ R2 is the true location of the vehicle (set at 02 for this example). The

safety-region B ∈ R2, which inscribes the vehicle, has a major axis length of 6.36 [m] and a minor axis length of 2.55 [m]
(Figure 8(b)). In the following two subsections we discuss the resulting PDFs and probabilities of positioning failure.

a) Probability density functions of h ∈ R2 under H0 and a Hi ̸=0

The components of fh (h|H0) are displayed in Figure 9. Under the event of CA, the precision of the horizontal position
components is σĥ0,east = 0.17 [m], σĥ0,north = 0.23 [m], and the correlation coefficient is ρĥ0

= 0.16.
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Figure 9: Components of fh (h|H0) for PFA = 10−3.

The properties of fh|FAi
(h|FAi) (e.g., orientation, multimodality) are driven by the averaged shifted functions fĥ0

(
h+HTLi t|H0

)
.

Examining HTLi t will provide insights about the properties of fh|FAi
(h|FAi). If we express

HTLi t = HTA+cic
+
ti t = HTQx̂0x̂0

ATQ−1
yy ci (c

+
ti t) = gi (c

+
ti t) for i ∈ {1, ..., k}, (38)
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where gi ∈ R2 and (c+ti t) ∈ R. The angle of R(gi) w.r.t. the horizontal axis is driven by the design matrix A and by Qy[.]y[.]

through Qx̂0x̂0
. The rows of (HTQx̂0x̂0

) ∈ R2×n (variances of the components on East and North directions, the covariance
between them, and their covariances with the Up component and ∆t) are influencing the orientation of R(gi) by transforming
the scaled rows of A obtained from (ATQ−1

yy ci) ∈ Rn. As a result, R(gi) drives the orientation of fh|FAi
(h|FAi). The

multimodality is driven by how the term (c+ti t) varies across R(gi) for t ∈ Pi. One can relate the shape of the safety-region B
from Figure 8(b) with the components of fh (h|H0) in Figure 9 to identify which ones have a large or small probability density
outside B. For example, the components fh|FA10

(h|FA10), fh|FA12
(h|FA12), and fh|FA14

(h|FA14) are oriented transversely with
respect to B and have their mode the furthest apart. This indicates that these components have the largest probability density
outside of B when compared with the other components.

The PDF of h ∈ R2 under any Hi ̸=0 depends on the size of the outlier bi. For this reason one needs to choose or make
assumptions on the size of bi. As an example, we show the components of fh (h|H10) for b10 = 1 [m] in Figure 10. When
b10 ̸= 0 there is no symmetry of ft(t|H10) w.r.t. the origin of Rr and w.r.t. the partitions Pi. The shape and modes of
the conditional components is driven by the outcome of the averaged shifted functions fĥ0

(
h+HTLi t|H14

)
for t ∈ Pi with

t
H10∼ N

(
ct10b10, Qtt = BTQyyB

)
and i ∈ {0, ..., k} (see (36)).
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Figure 10: Components of fh (h|H10) for b10 = 1 [m] and PFA = 10−3.
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b) Probability of positioning failure for a fixed safety-region B ⊂ R2

The next step is to compute PF |H0 =
∑k=15

j=0 Efx̂j ,t
(1j(x, t)|H0) and PF |H10(b10) =

∑k=15
j=0 Efx̂j ,t

(1j(x, t)|H10) (see (21))
using the safety-region B ⊂ R2 defined in (37). A similar route is followed for the components under the other Hi ̸=0’s. The
components of the computed PF |H0 are displayed in Table 3 and those of PF |H10(b10) in Figure 11.

Table 3: Components of PF |H0 for PFA = 10−3. The results are obtained over Nsim = 50 based on which the mean values (µsim) and the
standard deviations of the mean values (σsim) were computed.

Component of PF |H0 µsim σsim of µsim

PCAPF |CA 2.29 · 10−13 7.19 · 10−16

PFA1
PF |FA1 1.18 · 10−14 4.04 · 10−16

PFA2
PF |FA2 2.71 · 10−17 1.41 · 10−18

PFA3
PF |FA3 1.86 · 10−14 4.66 · 10−16

PFA4
PF |FA4 1.22 · 10−13 2.01 · 10−15

PFA5
PF |FA5 3.30 · 10−16 1.06 · 10−17

PFA6
PF |FA6 1.19 · 10−16 4.21 · 10−18

PFA7
PF |FA7 4.40 · 10−14 7.92 · 10−16

PFA8
PF |FA8 3.46 · 10−13 6.05 · 10−15

Component of PF |H0 µsim σsim of µsim

PFA9
PF |FA9 8.34 · 10−17 4.55 · 10−18

PFA10
PF |FA10 4.32 · 10−12 4.82 · 10−14

PFA11
PF |FA11 1.84 · 10−13 3.06 · 10−15

PFA12
PF |FA12 4.96 · 10−13 7.34 · 10−15

PFA13
PF |FA13 4.37 · 10−16 1.82 · 10−17

PFA14
PF |FA14 8.92 · 10−11 8.41 · 10−13

PFA15
PF |FA15 3.53 · 10−16 1.48 · 10−17

PF |H0 9.50 · 10−11 8.42 · 10−13
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Figure 11: Components of PF |H10(b10) for range of outliers |b10|, and PFA = 10−3. Curves are mean values (µsim) obtained based on
Nsim = 50. Mean values of components are: (a) under MD10 and CI10; (b) under WIj corresponding to GPS satellites (for j ∈ {1, ..., 8});

(c) under WIj corresponding to Galileo satellites (for j ∈ {9, 11, ..., 15})
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From Table 3 we observe that the MIC of PF |H0 is PFA14
PF |FA14 with µsim = 8.92 · 10−11 ± 8.41 · 10−13. This result is due

to the two modes of fh|FA14
(h|FA14) being most distant from each other along the principal axis (see Figure 9), which is also

approximately diagonal to the safety-region B. Conversely, fh|FA2
(h|FA2) (corresponds to the highest elevation satellite) does

not show multimodality or elongations which leads to the LIC ofPF |H0 to bePFA2
PF |FA2 withµsim = 2.71·10−17±1.41·10−18.

Regarding the components of PF |H10(b10), Figure 11(a) shows the ones under MD10 and CI10 where the maximum of the µsim
of the former is reached at 1.33 · 10−6 ± 7.74 · 10−9 for |b14| = 1.82 [m] and that of the latter at 6.65 · 10−11 ± 2.97 · 10−12 for
|b10| = 2.68 [m]. As the outlier |b10| → ∞, the probability density of fh|MD10

(h|MD10) increases in Bc, while PMD10
goes to

0, and the latter will drive the entire component PMD10PF |MD10 towards 0. After PMD10PF |MD10 reaches its maximum, the de-
crease is driven byPMD10 as its value is significantly smaller than that ofPF |MD10. From Figures 11(b) and 11(c) we observe that
the component under WI14 is the MIC of PF |H10(b10) for |b10| < 0.70 [m]while for |b10| > 0.70 [m] the MIC is the component
under WI4. The value of the µsim of PWI4PF |WI4 at the maximum is 4.20 · 10−5 ± 2.86 · 10−6 for |b10| = 2.10 [m]. A similar
type of analysis applies for the LICs as a function of |b10| (e.g., µsim ofPWI2PF |WI2, µsim ofPWI5PF |WI5, µsim ofPWI9PF |WI9).

On the basis of the previous step we compute the probabilities of positioning failure under H0 and under each alternative
hypothesis Hi ̸=0 by summing the corresponding µsim’s (e.g., ones from Figure 11 for H0 and H10), and show the results in
Figure 12. It is noticeable that PF |H4(b4), PF |H8(b8), PF |H10(b10), and PF |H14(b14) are dominating when |bi| > 1.60 [m].
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Figure 12: Probabilities of positioning failure under H0 and under each alternative hypothesis Hi̸=0 for ranges of outliers. (a) PF |H0 over
Nsim = 50; (b) PF |Hi(bi) corresponding to GPS satellites (for i ∈ {1, ..., 8}); (c) PF |Hi(bi) corresponding to Galileo satellites (for

i ∈ {9, 11, ..., 15})

Based on the receiver-satellite geometry (Figure 8(a)) and the elevation-based weighting, satellites 4, 8, 10, and 14 have a large
influence on the horizontal-axis (east-component) of the 2D position solution. Relating this aspect to the shape of the safety-
region B from Figure 8(b), variations across the East-component of the PDFs fh (h|H4), fh (h|H8), fh (h|H10), and fh (h|H14)

are driving the respective probabilities of positioning failure. Satellites at low-elevations have a reduced contribution to the
2D position solution (e.g., 6, 9, and 13) which leads to low probabilities of positioning failure under the respective alternative
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hypotheses. The computed PF |H0 and the maximum of each PF |Hi ̸=0(bi) are shown in Table 6 of Appendix V-C. We also
present the results in Table 7 of Appendix V-C for the case where the dependence between parameter estimation and statistical
hypothesis testing is ignored when computing Po

F |H0 and the maximum of each Po
F |Hi ̸=0(bi).

Finally, to compute the maximum PF (b), assumptions are needed for the a-priori P(Hi)
′s for i ∈ {0, ..., 15}. Since the

alternative hypotheses account for outliers in the pseudoranges at the rover-receiver (automated vehicle), it is assumed that
they primarily occur due to different signal reflections caused by the surrounding environment (e.g., nearby infrastructure).
For this analysis we make three sets of assumptions ranging from conservative to optimistic cases: (i) P(H0) = 0.98500 and
P(Hi) = 10−3 for i ∈ {1, ..., 15}, (ii) P(H0) = 0.99850 and P(Hi) = 10−4 for i ∈ {1, ..., 15}, (iii) P(H0) = 0.99985 and
P(Hi) = 10−5 for i ∈ {1, ..., 15}. The obtained results for the maximum PF (b) (see 23) in the three cases are shown in
Table 4. The results from this subsection correspond to the receiver-satellite geometry shown in Figure 8(a) and to the fixed
safety-region B depicted in Figure 8(b). However, in practice, the vehicle’s orientation will change. Therefore, in the next
section, we determine the maximum PF (b) at the worst orientation of the vehicle with respect to the satellite geometry from
Figure 8(a).

Table 4: Maximum values of PF (b) and their standard deviations (σsim).

Cases P(H0) Max. PF (b) σsim

1 0.98500 2.14 · 10−7 5.20 · 10−9

2 0.99850 2.15 · 10−8 5.20 · 10−10

3 0.99985 2.23 · 10−9 5.20 · 10−11

c) Probability of positioning failure for different orientations of the safety-region Bθ ⊂ R2

A vehicle will change its orientation while moving (e.g., when making a U-turn, exiting a highway, taking a left/right turn).
For a short time window (e.g., few minutes), it can be assumed that the receiver-satellite geometry from Figure 8(a) is constant,
allowing us to base our next analysis on the vehicle’s change in orientation. We re-express the safety-region from (37) to account
for the dependence on the orientation angle θ, measured clockwise w.r.t. the vertical axis,

Bθ = {h ∈ R2 | ||h− htrue||2QBθ
≤ 1}, (39)

where Q−1
Bθ

now depends on θ and θ ∈ [0◦ 180◦]. Next, we compute the maximum PF (b) as a function of θ from its components
PF |H0 and max

b1,...,bk

∑15
i=1 PF |Hi(bi). Figure 13(a) shows the variations of PF |H0 as a function of θ. As θ approaches 10◦, Bθ

captures most of the probability density of fh(h|H0) reaching a minimum value of 9.54 · 10−12 ± 8.41 · 10−14 for θ = 10◦

(see Figure 9). Once θ > 10◦ the values of PF |H0 starts to increase as some of the components of fh(h|H0) will have a larger
density outside Bθ (see Figure 9), the maximum being reached at a value of 3.13 · 10−7 ± 2.11 · 10−9 for θ = 110◦. A similar
reasoning can be applied to the behaviour of max

b1,...,bk

∑15
i=1 PF |Hi(bi) in Figure 13(b).

By combining the results from Figures 13(a) and 13(b) with the assumptions regarding the a-priori probabilities P(H0)
and P(Hi) for i ̸= 0, as discussed in the three cases presented in the previous section, the results in Figure 13(c) are obtained.
In the most conservative case (Case 1), the maximum PF (b) at θ = 110◦ is 1.84 · 10−5 ± 2.16 · 10−9 while for the most
optimistic (Case 3) is 4.94 · 10−7 ± 2.16 · 10−9. Given that we are in a snapshot positioning scenario of an automated vehicle at
decimeter-level with a horizontal positioning precision of about 0.5 meters (95% circular probability radius), while accounting
for one-dimensional outliers in the observables, the result in Case 1 is rather high.

Table 5: Maximum values of PF (b) at the worst-orientation of the vehicle w.r.t. the satellite geometry from Figure 8(a).

Cases P(H0) Max. PF (b) at θ = 110◦ σsim

1 0.98500 1.84 · 10−5 2.16 · 10−9

2 0.99850 2.12 · 10−6 5.07 · 10−9

3 0.99985 4.94 · 10−7 2.16 · 10−9

These results help determine whether the target requirements or guidelines for positioning safety are met at a particular time
instant. This assessment is based on the assumed functional and stochastic models in (33), the receiver-satellite geometry in
Figure 8(b), the safety-region Bθ defined in (39), and the statistical hypothesis testing procedure in (34). If the requirements or
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Figure 13: (a) Computed PF |H0 over the angles θ; (b) Computed max
b1,...,bk

∑k
i=1 PF |Hi(bi) over the angles θ; (c) Computed maximum

total probability of positioning failure PF (b) over the angles θ for the three cases: (i) Case 1 when the a-priori P(H0) = 0.98500 and
P(Hi) = 10−3 for i ∈ {1, ..., 15}, (ii) Case 2 when the a-priori P(H0) = 0.99850 and P(Hi) = 10−4 for i ∈ {1, ..., 15}, and (iii) Case 3

when the a-priori P(H0) = 0.99985 and P(Hi) = 10−5 for i ∈ {1, ..., 15}.

guidelines are not satisfied, then appropriate changes in any of these elements, such as those related to the measurement setup
(functional and stochastic models), safety-region, or the combined parameter estimation and statistical hypothesis testing proce-
dure, may be necessary. For instance, the new theoretical framework introduced in (Teunissen, 2024a) shows how fit-for-purpose
statistical hypothesis testing improves the performance of DIA-estimators.

V. SUMMARY AND FUTURE WORK
In this contribution we have presented an approach for positioning safety-analyses studies that can be carried out at the design
stage, when choices are to be made regarding (i) measurement models, (ii) parameter estimation algorithms, (iii) statistical
hypothesis testing procedures for model misspecifications (e.g., outliers in measurements), and (iv) positioning scenarios for
vehicles, among others. At the design stage numerical simulations are needed to be able to deal with the complexity of the
involved multiple integrals and also with the impracticability of collecting necessary data by having to drive millions or even
billions of kilometers, as it would be the case for automated and autonomous driving (Kalra and Paddock, 2016)). Such an
approach is in line with the scenario-based safety assessment framework used in studies for automated and autonomous vehicles
(Riedmaier et al., 2020; U.N.E.C.E., 2023; de Gelder et al., 2024). Once compliance with the application-specific requirements is
demonstrated on the basis of the probability of positioning failure in the scenarios of interest, the resulting parameter estimation
and statistical hypothesis testing procedure can be implemented for real-time positioning.

We have accounted for the dependence between parameter estimation and statistical hypothesis testing via the DIA-estimator
x ∈ Rn and its PDF fx(x) as introduced in (Teunissen, 2018). In this context, the event of the positioning failure F = {x ∈ Bc}
(page 15 in (RTCA-Special Committee 159, 2020)) and its probability PF (b) are studied for a positioning scenario, at the
decimetre-level, of an automated vehicle at a time instant (snapshot). On the basis of (i) a dual-constellation (GPS and Galileo)
DGNSS positioning model, (ii) a horizontal positioning precision of about 0.5 meters (95% circular probability radius), (iii)
a Detection, Identification, and Adaptation procedure for individual outliers in the observables, and (iv) an ellipticaly-shaped
safety-region B ⊂ R2 that inscribes the vehicle whose length is 4.5 [m] and width 1.8 [m], we have quantified the probability
of positioning failure and its conditional components. Additionally, we have quantified these probabilities as a function of the
vehicle’s orientation w.r.t. the GNSS satellite geometry showing that the maximum PF (b) varies across 2 orders of magnitude
(Figure 13). It was also shown that for a conservative assumption on the a-priori probabilities of the occurrence of the hypotheses
(Case 1), the maximum PF (b) at the worst orientation of the vehicle (θ = 110◦ measured clockwise w.r.t. the vertical axis) is
1.84 ·10−5±2.16 ·10−9 (Table 5), which can be regarded as a high value when safety requirements or guidelines would demand
it to be 10−7 or lower (at a particular time instant). While our positioning scenario was focused on the automotive domain, the
approach to positioning safety analysis is also applicable to other safety-critical applications, such as aviation, shipping, and rail.

A topic for future work is the quantification of the probability of positioning-failure over a time-horizon ∆τ (e.g., sec-
onds, minutes, hours) within a scenario-based safety-assessment framework and using numerical simulation. The objective is
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to capture time-dependent effects, such as: (i) time-correlated measurement noise, (ii) time-dependent model misspecifications,
(iii) variation of the satellite geometry, etc. The probability of positioning failure over a time horizon ∆τ that also accounts for
time-dependent failure-region Bc

θτ
⊂ Rn and time-dependent PDF fx (x , τ) can be expressed as,

PF (b∆τ ,∆τ) =

∫
∆τ

∫
Rn

fx (x , τ)1Bc
θτ
(x , τ) dx dτ. (40)

where the elements of b∆τ are accounted for in fx (x , τ).
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APPENDIX
V-A. Simulation procedure for the DIA-estimator
Parameter estimation and any statistical hypothesis testing procedure can be simulated by following the steps below:

1. Generate N i.i.d. pseudo-random samples of observations y(1) ∈ Rm, ..., y(N) ∈ Rm from fy(y).

2. Compute the BLUEs under H0 and the misclosure vectors ∀l ∈ {1, ..., N}[
x̂
(l)
0

t(l)

]
=

[
(ATQ−1

yy A)−1ATQ−1
yy

BT

]
y(l). (41)

3. Compute the indicator functions given the partitions Pi ⊂ Rr for ∀i ∈ {0, ..., k} and ∀l ∈ {1, ..., N}

pi(t
(l)) =

{
1, if t(l) ∈ Pi

0, otherwise
. (42)

4. Formulate the DIA-estimate ∀l ∈ {1, ..., N}

x(l) =

k∑
i=0

x̂
(l)
i pi(t

(l)) = x̂
(l)
0 −

k∑
i=1

Li t
(l)pi(t

(l)). (43)

V-B. Correlation coefficient from Section IV.1 for a general structure of the variance-covariance matrix of the observables
The same models in (24) are kept, except Qyy. We consider a more general structure

Qyy =

[
σ2
y1

ρ σy1σy2

ρ σy1
σy2

σ2
y2

]
. (44)

The correlation coefficient can be obtained for the cases below.

• Case 1: ρ = 0, σ2
y1

= σ2
y2

→ ρx̂1,t
= −

√
2
2 ,

• Case 2: ρ = 0, σ2
y1

̸= σ2
y2

→ ρx̂1,t
= − σy2√

σ2
y1

+σ2
y2

,

• Case 3: ρ ̸= 0, σ2
y1

= σ2
y2

→ ρx̂1,t
= −

√
2
2

√
(1− ρ) ,

• Case 4: ρ ̸= 0, σ2
y1

̸= σ2
y2

→ ρx̂1,t
= − σ2

y2
−ρσy1σy2√

σ2
y1

σ2
y2

(1−ρ2)+(σ2
y2

−ρσy1σy2 )
2

.

V-C. Tables with maximum probabilities of positioning failure per hypotheses
The results in Table 6 (when the dependence between parameter estimation and statistical hypothesis testing is accounted for)
show several cases for which there are significant differences w.r.t. the ones in Table 7 (when the dependence is ignored).
Some examples are: (i) Po

F |H0 is 341 times lower than PF |H0, (ii) Po
F |H1(b1) is ≈127 times lower than PF |H1(b1), (iii)

Po
F |H5(b5) is ≈373 times lower than PF |H5(b5), (iv) Po

F |H9(b9) is ≈586 times lower than PF |H9(b9), and (v) Po
F |H15(b15)

is ≈203 times lower than PF |H15(b15). These differences indicate a significant deviation of fh (h|H0) and of fh (h|Hj),
for j ∈ {1, 5, 9, 15}, from Gaussian PDFs. Conversely, for j ∈ {4, 10, 12, 14}, we have that (i) Po

F |H4(b4) is ≈6 times
lower than PF |H4(b4), (ii) Po

F |H10(b10) is ≈3 times lower than PF |H10(b10), (iii) Po
F |H12(b12) is ≈3 times lower than

PF |H12(b12), and (iv) Po
F |H14(b14) is ≈2 times lower than PF |H14(b14). In these cases, the corresponding PDFs fh (h|Hj),

for j ∈ {4, 10, 12, 14} do not show a deviation as significant as the previous cases and hence the differences in the results being
less severe.
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Table 6: When the dependence is accounted for: Computed PF |H0 and PF |Hi ̸=0(bi), their maximum value, simulation standard deviation,
and the magnitude of the model outlier where the maximum occurs

Component Max. value σsim |bi| [m]
PF |H0 9.50 · 10−11 8.42 · 10−13 -

PF |H1(b1) 4.65 · 10−7 1.62 · 10−8 2.66
PF |H2(b2) 3.18 · 10−9 1.40 · 10−10 1.73
PF |H3(b3) 2.78 · 10−6 5.06 · 10−8 1.79
PF |H4(b4) 3.19 · 10−5 2.15 · 10−6 2.17
PF |H5(b5) 5.87 · 10−9 2.33 · 10−10 1.39
PF |H6(b6) 1.37 · 10−9 4.43 · 10−11 3.82
PF |H7(b7) 1.79 · 10−7 1.10 · 10−8 3.06
PF |H8(b8) 3.77 · 10−5 2.96 · 10−6 3.12

Component Max. value σsim |bi| [m]
PF |H9(b9) 2.16 · 10−9 1.98 · 10−11 4.12
PF |H10(b10) 4.35 · 10−5 2.86 · 10−6 2.10
PF |H11(b11) 1.83 · 10−6 2.41 · 10−7 1.66
PF |H12(b12) 3.67 · 10−7 8.58 · 10−9 2.90
PF |H13(b13) 3.46 · 10−9 1.45 · 10−10 4.91
PF |H14(b14) 9.83 · 10−5 2.72 · 10−6 1.83
PF |H15(b15) 2.67 · 10−8 4.36 · 10−9 1.45

Table 7: When the dependence is ignored: Computed Po
F |H0 and Po

F |Hi ̸=0(bi), their maximum value, simulation standard deviation, and
the magnitude of the model outlier where the maximum occurs.

Component Max. value σsim |bi| [m]
PF |Ho

0 2.78 · 10−13 2.78 · 10−15 -
Po
F |H1(b1) 3.66 · 10−9 1.86 · 10−10 3.15

Po
F |H2(b2) 5.93 · 10−11 1.65 · 10−12 2.05

Po
F |H3(b3) 8.20 · 10−8 2.37 · 10−9 2.13

Po
F |H4(b4) 5.28 · 10−6 1.23 · 10−7 2.51

Po
F |H5(b5) 1.58 · 10−11 2.40 · 10−13 1.39

Po
F |H6(b6) 1.61 · 10−11 2.74 · 10−13 3.82

Po
F |H7(b7) 5.54 · 10−9 9.15 · 10−11 3.63

Po
F |H8(b8) 2.90 · 10−6 6.88 · 10−8 3.12

Component Max. value σsim |bi| [m]
Po
F |H9(b9) 3.69 · 10−12 7.18 · 10−14 4.12

Po
F |H10(b10) 1.28 · 10−5 2.70 · 10−7 2.10

Po
F |H11(b11) 5.83 · 10−8 1.52 · 10−9 1.66

Po
F |H12(b12) 1.18 · 10−7 8.29 · 10−10 2.90

Po
F |H13(b13) 6.79 · 10−11 2.45 · 10−12 4.91

Po
F |H14(b14) 5.08 · 10−5 2.39 · 10−7 1.83

Po
F |H15(b15) 1.31 · 10−10 9.41 · 10−12 1.99
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