

energy storage in parkstad

jornt walsweer annebregje snijders marcel bilow

student design tutor research & bt tutor

content

introduction

phenomenon - problem statement – context – design question – research question - objective

research

context – storage demand – storage methods – possible methods

design

masterplan – concept – architecture – building technology – system technology

conclusion

context - parkstad

former mining region

currently a shrinkage region without identity

phenomenon

climate change & energy independence

transition towards sustainable energy

phenomenon

massive implementation of solar and wind

renewable intermittency strains the grid

phenomenon

energy storage pops up in built environment

is this the appearance for energy storage?

problem statement

"The massive implementation of intermittent renewable energy sources asks for the realization of energy storage. The architectural possibilities of such artefacts have not yet been studied."

research question

"Which local conditions in Parkstad can be utilized for visible energy storage and what are the spatial requirements that flow from these possibilities?"

objective

"Creating an energy storage building/facility which uses a visible method of storage adding a building which influences the landscape"

research

research

storage demands

daily demand inter seasonal demand incidental demand

Iocal conditions

natural and artificial hills little surface water mining relicts

storage methods

matrix of methods method assessment possible methods

hilly landscape of natural and artificial hills

mines spread across the area

extensive high voltage grid

height differences

subterranean mine relics

extensive high voltage grid

mechanical storage

- caes compressed air storage
 - flywheel storage

- gravitational storage
- hydraulic storage
- pumped hydro storage

rechargeable battery

ultra battery

capacitor storage

- hydrated salts
- power to hydrogen

steam accumulation

- caes compressed air storage
 - 🛛 🛞 flywheel storage
 - gravitational storage
 - hydraulic storage
 - 🥿 pumped hydro storage
- elektrochemical storage
 - flow flow battery storage
 - 📩 rechargeable battery

🥖 ultra battery

superconducting magnetic energy storage

electromagnetic storage

capacitor storage

super capacitor storage

- hydrated salts
- 2 power to hydrogen

method assessment

ability for long term energy storage

can the system store energy for a long period without significant energy losses?

visible dynamic component

does this method have a component which shows whether the system is charged?

scalability for bulk storage

can this method be a scaled to provide central storage for a region?

maturity

is the technique established, which doesn't require technological breakthroughs?

suitability

can it materialize in parkstad?

method assessment

Method assessment analysis	Electricty storage for hours	Visible dynamic component	Scalability for bulk storage	Maturity	Applicability in Parkstad
Mechanical storage					
Compressed air	Y	Y	Y	Y	Y
Flywheel	Ν	Ν	Y	Y	Y
Gravitational	Y	Y	Y	Y	Y
Hydraulic	Y	Y	Y	Ν	Y
Pumped hydro	Y	Y	Y	Y	Y
Electrochemical					
Flow battery	Y	N	Y	Y	Y
Rechargeble battery	Y	N	Y	Y	Y
Ultra battery	Y	N	Y	Ν	Y
Thermal					
Molten salt storage	Y	Y	Y	Y	Ν
Steam accumulation	Y	Ν	Y	Y	Y
Chemical storage					
Biofuels	Ν	Ν	Y	Y	Y
Hydrated salts	Y	Y	Y	N	N
Power to hydrogen	Y	Y	Y	Ν	N
Power to methane	Y	Y	Y	Ν	N

method assessment

caes compressed air storage

pumped hydro storage

gravitational storage

gravitational storage by raised mass

design

design question

"How can visible energy storage be applied in Parkstad, while using local conditions and defining the landscape?" site

masterplan

masterplan

concept

using the deep shafts for gravitational storage

combining with secondary function as viewing tower

functionality

functionality

building technology

facade cladding

bracing structure

steel core

reciprocating gear

one more thing

more than 400.000 households daily

any questions?

image sources

- http://www.nenedirvikipedi.com/ingilizce/glob al-warming-ile-ilgili-ingilizce-cumleler-24770.html
- https://www.magnuscmd.com/spain-road-toenergy-transition-prequel/
- https://www.milieucentraal.nl/klimaat-enaarde/energiebronnen/zonne-energie/
- https://www.studentenergy.org/topics/electrica l-grid
- https://www.gizmodo.com.au/2017/07/all-thedetails-on-teslas-giant-australian-batteryt/
- https://www.duurzaambedrijfsleven.nl/energie /26027/haarlemmermeer-verwelkomt-eerstebuurtbatterij-van-nederland
- Palet, Parkstad Limburg
- https://www.e-

education.psu.edu/eme807/node/667