
 
 

Delft University of Technology

On distributed wavefront reconstruction for large-scale adaptive optics systems

de Visser, Coen; Brunner, Elisabeth; Verhaegen, Michel

DOI
10.1364/JOSAA.33.000817
Publication date
2016
Document Version
Accepted author manuscript
Published in
Journal of the Optical Society of America A: Optics and Image Science, and Vision

Citation (APA)
de Visser, C., Brunner, E., & Verhaegen, M. (2016). On distributed wavefront reconstruction for large-scale
adaptive optics systems. Journal of the Optical Society of America A: Optics and Image Science, and
Vision, 33(5), 817-831. https://doi.org/10.1364/JOSAA.33.000817

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1364/JOSAA.33.000817
https://doi.org/10.1364/JOSAA.33.000817


On Distributed Wavefront Reconstruction for Large

Scale Adaptive Optics Systems

Cornelis C. de Visser1,∗, Elisabeth Brunner2, and Michel Verhaegen2

1Department of Control & Simulation, Delft University of Technology,

Kluyverweg 1, 2629 HS, Delft, The Netherlands

2Delft Center for Systems and Control, Delft University of Technology,

Mekelweg 2, 2628 CD, Delft, The Netherlands

∗Corresponding author: c.c.devisser@tudelft.nl

The D-SABRE (Distributed Spline based ABeration REconstruction)

method is proposed for distributed wavefront reconstruction with application

to large scale adaptive optics systems. D-SABRE decomposes the wavefront

sensor domain into any number of partitions and solves a local wavefront re-

construction problem on each partition using multivariate splines. D-SABRE

reconstruction accuracy is within 1% of a global approach with a speedup that

scales quadratically with the number of partitions. The D-SABRE is com-

pared to the CuRe-D method in open-loop and closed-loop simulations using

the YAO adaptive optics simulation tool. D-SABRE reconstruction accuracy

exceeds Cure-D for low levels of decomposition, and D-SABRE proved to be

more robust to variations in the loop gain.

c© 2016 Optical Society of America

OCIS codes: 010.1080, 010.7350, 010.1285, 000.3860, 000.4430, 350.1260.

1. Introduction

In the coming decade, a new generation of extremely large scale optical telescopes will see

first light. It is well known that increasing the size of the telescope aperture is only beneficial

if the adaptive optics (AO) system, which compensates for turbulence induced wavefront

aberrations, scales accordingly [16]. In particular, the total number of wavefront sensors

(WFS) and deformable mirror (DM) actuators required in an AO system to obtain a given

image quality is determined by the telescope diameter and the Fried coherence length [6]. To
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update the DM actuator commands such that the incoming aberrated wavefront is corrected

the global wavefront phase has to be reconstructed from the WFS measurements at kHz

range frequencies.

Most conventional wavefront reconstruction (WFR) methods, like the finite difference

(FD) method [6, 10, 19], can be formulated as a matrix vector multiplication (MVM) in

which a reconstruction matrix is first constructed offline, and then multiplied online with

a vector of WFS measurements to obtain the unknown wavefront phase. The computation

of the reconstruction matrix in its most naive form is an O(N3) operation, where N is the

number of unknown phase samples. Applying the real-time MVM scales with O(N2). For

the extreme-AO (XAO) system of the future European Extremely Large Telescope (E-ELT)

the number of unknowns N is in the range of 104 − 105. Current real-time performance of

standard methods fails to meet the required update frequency for such systems. Hence, there

has been a focus on improving the computational efficiency of the WFR operation.

Currently, one of the most computationally efficient zonal reconstruction methods is the

Cumulative Reconstruction (CuRe) method, which is of complexity order between O(12N)

and O(19N), depending on the implementation [17]. Fourier domain methods are an efficient

alternative to the MVM methods discussed above, because the partial differential equations

that relate the wavefront slopes to the wavefront itself can be reduced to division schemes in

the complex plane. The Fourier domain method presented by Poyneer et al. in [13] has a time

efficiency of O(N logN). The Haar wavelet based reconstruction method by Hampton et al.

reach efficiencies of the order O(10N) [9]. In the class of iterative methods, the complexity

of a multigrid PCG algorithm presented by [7] scales with O(N logN). The Fractal Iterative

Method (FrIM) by Thiébaut and Tallon [20] provides a minimum variance solution of linear

complexity with the computational cost depending on the number of iterations.

While the state of the art in high performance WFR methods reach linear computational

complexity orders, it is important to note that these numbers are WFS-array wide, or global,

numbers. Even with a linear complexity order, the limit in single CPU core performance will

be reached at some point. The disadvantage of current wavefront reconstruction methods

is that they have not been designed specifically for parallel processing architectures. While

certain computational operations can be parallelized straightforwardly (e.g. MVM multipli-

cations can easily be distributed over multiple CPU cores), their underlying construction is

that of a non-distributed global method. As a direct result of this, the reconstructor can only

be calculated at a single central point at which all WFS measurements must be gathered

and at which the DM influence matrix is calculated. A tell-tale sign of any non-distributed

global method is that the global reconstruction matrix is a dense matrix.

Recently, an extension of the CuRe algorithm [18] was proposed which combines the orig-

inal line integral approach with domain decomposition to tackle the high noise propagation
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of the centralized algorithm. This distributed version of CuRe, called CuRe-D, scales with

O(20N) and has been shown to be suitable for parallel implementation.

The main contribution of this paper is a distributed wavefront reconstruction method

which is designed in particular for use in XAO systems. This new method is the Distributed

Spline Based Aberration Reconstruction (D-SABRE ) method. The D-SABRE method is an

extension of the recently introduced SABRE method which firstly used multivariate simplex

B-splines to locally model wavefront aberrations on non-rectangular WFS arrays [5]. The D-

SABRE is based on a decomposition of the global wavefront sensor domain into any number

of triangular partitions, where each partition supports a local SABRE model which depends

only on local WFS measurements.

The D-SABRE method is a two-stage method in which each stage is a distributed oper-

ation. In the first stage, a local wavefront reconstruction problem is solved in parallel on

each triangular partition using local WFS slopes, resulting in a local SABRE model. Each

SABRE model has an unknown piston mode, and as a result, there is no continuity between

SABRE models on neighboring partitions. In the second stage of the D-SABRE, a continuous

global wavefront is reconstructed by equalizing the piston modes of the local SABRE models

using a new distributed piston mode equalization (DPME) algorithm. Additionally, the dual

ascent method from [1] is reformulated into a new efficient distributed form by exploiting

the inherent sparseness of the D-SABRE reconstruction and constraint matrices.

The advantages of the D-SABRE over current distributed wavefront reconstruction meth-

ods can be summarized as follows:

1. D-SABRE is based on a local least-squares estimates and has in this sense locally

optimal noise rejection.

2. D-SABRE does not suffer from noise propagation, and the accuracy and noise resilience

actually improve on a global scale as the size of the partitions increases and as the global

WFS array increases in size.

3. Certain parallel hardware such as a GPU fulfill their potential speedup only for a

sufficiently large computational task per processor i.e. partitions cannot be chosen too

small. This requirement is completely in line with the fact that D-SABRE accuracy

and noise resilience increases with increasing partition size.

4. The D-SABRE wavefront is an analytic solution to the wavefront reconstruction prob-

lem. Without any further interpolation leading to additional approximation errors

phase estimates are available at any location in the WFS domain. This is an advantage

in case of misalignments between the actuator and subaperture arrays or if a different

actuator distribution is given.
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The D-SABRE currently presented should be seen as a baseline, or simplest possible

version. Future versions will include higher degree (e.g. cubic) splines which will require

fewer subapartures and further increase accuracy, more advanced sensor models like that

presented in [8], and more advanced estimators such as the minimum variance estimator

that exploit a-priori knowledge of the turbulence and wavefront statistics.

This paper is outlined as follows. First, we provide brief preliminaries on the SABRE

method for wavefront reconstruction in Sec. 2. We introduce the new D-SABRE method

in Sec. 3, and also provide analyses of algorithm convergence and computational complex-

ity. Additionally, we present a tutorial example of the D-SABRE in Sec. 3. In Sec. 4, we

present the results from a numerical validation where we compare the D-SABRE to the

global SABRE method and the distributed CuRe-D method [18] in open- and closed-loop

simulations. Finally, conclusions are provided in Sec. 5.

2. Preliminaries on the SABRE method for wavefront reconstruction

The D-SABRE method is an extension of the recently introduced SABRE method for wave-

front reconstruction. In order to aid the reader in the understanding of the theory, pre-

liminaries on the SABRE method will be provided in this section. The SABRE was first

introduced in [5], to which we refer for a more in-depth coverage of the matter.

2.A. Wavefront reconstruction from slopes and curvature

The relationship between the slopes of the wavefront phase and the wavefront phase can be

described in the form of the following system of first order partial differential equations [10]:

σx(x, y) =
∂φ(x, y)

∂x
, (1a)

σy(x, y) =
∂φ(x, y)

∂y
, (1b)

with φ(x, y) the unknown wavefront, and with σx(x, y) and σy(x, y) the wavefront slopes at

location (x, y) in the directions x and y, respectively.

2.B. The SABRE method on a single triangle

The local model elements of a SABRE model are defined on individual triangles, rather than

on the rectangular elements used by FD methods. In [5] it is shown that on a single triangle,

denoted t, the wavefront phase φ(x, y) is approximated with a SABRE model of degree d as

follows:

φ(x, y) ≈ Bd(b(x, y)) · ct, d ≥ 1, (x, y) ∈ t (2)

with Bd(b(x, y)) the vector of basis polynomials and with ct the vector of B-coefficients.

The values in the vector of basis polynomials Bd(b(x, y)) depend only on the geometry of
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the sensor array and the polynomial degree d. Therefore, at any given time instant, the

particular form of the SABRE model is determined by the B-coefficients ct. Consequently,

wavefront reconstruction with the SABRE essentially consists of estimating the values of the

B-coefficients given a set of WFS measurements.

It is shown in [5] that (2) leads to the following SABRE slope sensor model on a single

triangle:

σx(x, y) =
d!

(d− 1)!
Bd−1(b(x, y))Pd,d−1(ax) · ct + nx(x, y), (3a)

σy(x, y) =
d!

(d− 1)!
Bd−1(b(x, y))Pd,d−1(ay) · ct + ny(x, y), (3b)

with d ≥ 1 the degree of the SABRE model, with Bd−1(b(x, y)) the basis polynomials of

degree d− 1, with ct the vector of B-coefficients from (2), and with nx(x, y) and ny(x, y) in

(3) residual terms which contain both sensor noise and modeling errors.

The matrices Pd,d−1(ax) and Pd,d−1(ay) in (3) are the de Casteljau matrices in the (Carte-

sian) directions ax and ay which are essential to the SABRE method [4]. In essence, the

de Casteljau matrices allow a reformulation of the PDE’s from (1) into a set of algebraic

equations in terms of the B-coefficients ct.

A number of possible sensor geometries were introduced in [5]. In this work we use the

Type-1 and Type-2 sensor geometries, which should be seen as baseline geometries. Recently,

a more advanced sensor model for the SABRE was introduced by Guo et al in [8]. This sensor

model is better suited for use with real-world SH sensors which provide a spatial average of

the wavefront slopes instead of point-wise local spatial derivatives of the wavefront.

2.C. The SABRE method on a complete triangulation

The SABRE method can be used with large scale wavefront sensor arrays by combining any

number triangles into a triangulation. The full-triangulation, or global, SABRE model has

a predefined continuity order r between the local models which means that the rth order

directional derivatives of neighboring local SABRE models match exactly on the triangle

edges. In [5] it is shown that the wavefront phase can be approximated at any point (x, y)

in the WFS domain with a SABRE model as follows:

φ(x, y) ≈ Bdc, (4)

with Bd the global B-form regression matrix and with c the global vector of B-coefficients [5].

Given (4), the global WFR problem is constructed from rows of the form (3) as follows:

σ = Dc+ n, (5a)

0 = Ac, (5b)
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with σ = [σ⊤

x σ
⊤

y ] ∈ R
2K×1 the vector of measured wavefront slopes, with n a residual noise

vector, and with A the gloal constraint matrix. The spline regression matrix D in (5a) is

constructed as follows:

D = dBd−1Pd,d−1
u

, (6)

with Bd−1 the global basis function matrix of degree d − 1, and with Pd,d−1
u

the full-

triangulation de Casteljau matrix which is constructed as shown in. Note the slight difference

in notation of D in (6) compared to that presented in [5]; it will become apparent in following

sections why this change was made.

The global constraint matrix A in (5b) is constructed as follows:

A :=

[

H

h

]

∈ R
(EV+1)×Jd̂, (7)

with H ∈ R
(EV )×Jd̂ the full-rank smoothness matrix. The vector h = [1 0 · · · 0] ∈ R

1×Jd̂ is

the anchor vector which was first introduced in [5], and which is used to fix the piston mode

(the unknown integration constant) to a predetermined constant.

For low degree (d ≤ 2) basis polynomials , the resulting system (5) will be fully determined

given a Type-1 or Type-2 SH sensor geometry and the constraints in (7). However, when

moving towards higher degree (d ≥ 3) basis polynomials (5) will be underdetermined, and

will not lead to a unique solution. Future work on obtaining higher degree D-SABRE models

will therefore be focused on imposing specific (e.g. ”do-nothing” boundary conditions [14])

boundary conditions on the external edges of the D-SABRE submodels.

In [5] it was shown that the global wavefront reconstruction problem can be formulated

as an equality constrained least squares optimization problem:

argmin
1

2
||σ−Dc||22 subject to Ac = 0, (8)

with σ the slopes from the wavefront sensor, with D from (6), with c the global vector of

B-coefficients, and with A the smoothness matrix from (7).

This constrained optimization problem can be reduced into a unconstrained problem by

introducing the Lagrangian for (8):

L(c,y) = 1

2
||σ−Dc||22 + y⊤Ac, (9)

with y a vector of Lagrangian multipliers.

The minimum of (9) is:

∂L(c,y)
∂c

= −D⊤ (σ−Dc) +A⊤y
!
= 0, (10)
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with which the following B-coefficient estimator is derived:

ĉ = (D⊤D)−1
(

D⊤
σ−A⊤y

)

. (11)

The problem with (11) is that the undefined piston mode causes D⊤D to be rank deficient,

and therefore not invertible. In [5] this issue was solved by immediately projecting the spline

regressors on the nullspace of the constraint matrix A.

Here we require a more explicit formulation:

ĉ = NA(N⊤

A D⊤DNA)
−1N⊤

A D⊤
σ,

= RND
⊤
σ,

= QNσ, (12)

with NA a basis for null(A), with RN = NA(N⊤

A D⊤DNA)
−1N⊤

A and with QN = RND
⊤ the

SABRE reconstruction matrix from [5].

3. Distributed WFR with simplex B-splines

In this section the D-SABRE distributed wavefront reconstruction method is introduced. The

D-SABRE consists of 2 stages; with Stage-1 the distributed local WFR stage, and Stage-2 the

combined distributed piston mode equalization and distributed dual ascent post-smoothing

stage. A schematic of the D-SABRE algorithm is shown in Fig. 1.

3.A. D-SABRE Stage-1: Distributed local WFR

The first stage of D-SABRE involves the decomposition of the global WFR problem from (8)

into a set of local sub-problems. For this we make use of the domain decomposition method

from [12]. First, we decompose the global triangulation T into a set of G sub-triangulations

as follows:

T =
G
⋃

i=1

Ti (13)

with each Ti containing Ji triangles.

Every sub-triangulation Ti in turn consists of two parts; a core part Ωi and an overlap

part Πi:

Ti = Ωi ∪ Ξi, Ωi ∩ Ξi = ∅ (14)

with Ωi containing JΩi
triangles and Ξi containing JΞi

triangles such that Ji = JΩi
+ JΞi

.

The purpose of Ξi is to overlap neighboring sub-triangulation core parts Tj in order to

increase numerical continuity between neighboring partitions, see Fig. 2. In this paper we use

the term ‘Overlap-Level ’ (OL) to define the size of Ξi. The OL is a scalar, which determines

how many layers of simplices from the core partition are included in Ξi, see Fig. 2.
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replacemen

Stage-1 Stage-2: step 1 Stage-2: step 2

Stage-2

(A) (B) (C)

Distributed WFR DPME DDA

(Sec. 3.A) (Sec. 3.B) (Sec. 3.C)

Fig. 1: Outline of the D-SABRE algorithm.

We can now introduce the overlap overhead ρ as follows:

ρ =
Ji
JΩi

, ρ ≥ 1 (15)

with ρ = 1 indicating no overlap. It is not trivial to provide a relation between overlap level

and overlap overhead because it strongly depends on the geometry of the triangulation and on

the location of a partition within the global triangulation. Nevertheless, for a simplex Type-

1 geometry, the minimum and maximum ρ can easily be determined using basic geometry

rules:

ρType−1 =







1 +
OL(6OL+8

√
JΩi/2

JΩi
(max overhead),

1 +
OL(OL+4

√
JΩi/2

JΩi
(min overhead),

(16)

with OL ≥ 0 the overlap level.

We now assume that the wavefront can be approximated locally on each sub triangulation

Ti as follows:

φi(x, y) ≈ sdri(x, y) = Bd
i ci, 1 ≤ i ≤ G (17)

with φi(x, y) the local wavefront phase, with sdri(x, y) a D-SABRE partition, with Bd
i the

local matrix of B-form regressors, and with ci the set of local B-coefficients.

The goal now is to determine ci for all G local models. For each sub-triangulation Ti we
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4 Partitions with OL-2 overlap (gray)4 Partitions with OL-0 overlap

Ξ4

Ω4

Ξ3

Ω3

Ξ2

Ω2

Ξ1

Ω1

Ω4Ω3

Ω2Ω1
Fig. 2: An OL-0 partitioning without overlap (left) and an OL-2 partitioning with 2 levels

of overlap between partitions (right) using the same initial triangulation containing 200

triangles. In this case JΩi
= 50 for all partitions, while JΞ1 , JΞ4 = 44 and JΞ2 , JΞ3 = 48 for

the OL-2 partitioning

can decompose (8) into a set of local sub-problems as follows:

argmin ||σi −Dici||22 subject to Aici = 0, 1 ≤ i ≤ G (18)

with σi local WFS slopes, and with Ai a local constraint matrix, and with Di the local

version of (6) as follows:

Di = dBd−1
i Pd,d−1

ui
(19)

with Pd,d−1
ui

the local de Casteljau matrix.

Note that the local constraint matrix Ai cannot be obtained by decomposing the global

constraint matrix A into G blocks because it is not block diagonal. Instead, Ai is constructed

from a new local smoothness matrix Hi and a new local anchor constraint hi:

Ai :=

[

Hi

hi

]

∈ R
(EiVi+1)×Jid̂, (20)

where it is important to note that Hi does not contain any smoothness conditions linking a

partition i to any other partition. For the anchor vector we have hi = [1 0 · · · 0] ∈ R
1×Jid̂.

The local WFR problem (18) can be solved in the same fashion as (12):

ĉloci = NAi
(N⊤

Ai
D⊤

i DiNAi
)−1N⊤

Ai
D⊤

i σi,

= RNi
D⊤

i σi,

= QNi
σi, (21)
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with NAi
a basis for null(Ai), and with RNi

= NAi
(N⊤

Ai
D⊤

i DiNAi
)−1N⊤

Ai
.

Note that (21) does not depend on information from any other partition, and as a result,

each of the G local reconstruction problems can be solved in parallel. In Fig. 3 an example is

shown of the results of the first distributed stage of the D-SABRE. Clearly, the local models

are disconnected and do not accurately approximate the global wavefront. This is a direct

result of the anchor constraint in each partition being independent from that of neighboring

partitions.

3.B. Distributed piston mode equalization

In order to equalize the phase offsets (i.e. unknown integration constants) between neighbor-

ing D-SABRE partitions, a process called piston mode equalization (PME) is introduced.

PME effectively resolves the difference between the estimated per-partition (unknown) inte-

gration constants. PME offsets an entire D-SABRE partition with a single constant ki such

that the maximum phase offset between it and a neighboring partition is minimized:

s̃dri(x, y) = Bd
i ci + ki, 1 ≤ i ≤ G, k1 = 0. (22)

where the tilde indicates that an offset ki as been applied to sdri(x, y).

The first partition (i.e. sdr1(x, y)) has k1 = 0 per definition. This partition is indicated as

the master partition, relative to which all other partitions are equalized. The D-SABRE user

is free to choose the location of the master partition, but a smart choice is a partition that

is located as close as possible to the center of the global triangulation.

In order to calculate ki a definition of the concept of neighboring partitions is required.

For this, we define the neighbors of sdri(x, y) as all partitions s
d
rm(x, y) with 1 ≤ m ≤ G which

share at least one vertex vi,m in the core parts of their triangulations. We then define Mi

as the set that contains the indices of all neighbors of partition i, with Gi = |Mi| the total

number of neighbor partitions.

The phase offset between partition i and m is calculated from the phase offset at the

shared vertex vi,m. A unique property of the simplex B-splines is that spline function value

on a vertex is equal to the value of the B-coefficient located at that vertex [5, 11]. On the

shared vertex vi,m we have sdri(vi,m) = cΩi
and sdrm(vi,m) = cΩm . Hence, the estimated phase

offset k̂i,m between partition i and m is:

k̂i,m = cΩi
− cΩm , m ∈ Mi. (23)

Note that in the presence of noise, the estimate of ki,m can easily be improved by taking the

average of the phase offsets at any number of shared vertices. If partition i has a total of Gi

direct neighbors, the PME constant ki for partition i is determined as follows:

ki = max {k̂i,m}, ∀(m > i) ∈ Mi (24)
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Spline reconstruction on 9 partitions after Local WFR

φ
(x
,y
)
[r
a
d
]

y
x

Original Wavefront

φ
(x
,y
)
[r
a
d
]

y
x

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0
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0
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0
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1

Fig. 3: Original wavefront (top); The D-SABRE model after completion of the distributed

local reconstruction stage.
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G1G1

G1G1

G2G2

G2G2

G3

G3

G3G3

G4G4

G4G4

G5

G5

G5G5

G6
G6

G6G6

(A) (B)

(C) (D)

Fig. 4: 4-step (A,B,C,D) DPME operation on 6 partitions with G1 the master partition. Gray

& black arrows indicate information flow, with black arrows the actual information used in

a DMPE step.

where it should be noted that ki is the maximum offset between partition i and m with

m > i; this asymmetry is required for the PME operation to converge.

In the form of (23), PME is a sequential operation. However, it is straightforward to

modify (23) into a distributed consensus problem form we indicate as distributed piston

mode equalization (DPME):

k̂i,m(l + 1) = c(l)Ωi,m
− c(l)Ωm,i

, m ∈ Mi, l = 1, 2, . . . , L, (25a)

ki(l + 1) = max {k̂i,m(l + 1)}, ∀(m > i) ∈ Mi, l = 1, 2, . . . , L. (25b)

which converges when l = L.

In Fig. 4 the concept of D-PME is demonstrated. In essence, each partition continuously

adapts its offset based on data obtained from its direct neighbors which are themselves

continuously adapting their offsets.

At each iteration, the set K(l)
i (m) combines all Gi phase offsets between partition i and

partitions m for iteration l:

K(l)
i (m) = {k̂i,m(l)}, 1 ≤ i ≤ G, ∀m ∈ Mi. (26)

This set will prove to be instrumental during the distributed dual ascent stage of D-SABRE.

In Fig. 5 the DPME method has been applied to the discontinuous reconstructed wavefront

from Fig. 3.
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Spline reconstruction on 9 partitions after DPS

φ
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Spline reconstruction on 9 partitions after D-PME
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Fig. 5: D-SABRE model after completion of DPME stage, with remaining discontinuities

exaggerated (top), see also Visualization 1; D-SABRE model after completion of the dis-

tributed post-smoothing stage (bottom), see also Visualization 2.
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3.C. Distributed post-smoothing

DPME minimizes the unknown phase offsets between local D-SABRE partitions, but in

general this does not result in a smooth reconstruction of the wavefront, especially in the

presence of (sensor) noise. Smoothness can be improved by increasing the overlap level as

discussed in Sec. 3.A, but only up to some point and at the cost of reduced computational ef-

ficiency. In order to obtain a smooth reconstruction a distributed dual ascent (DDA) method

is used to enforce smoothness between local D-SABRE partitions.

The derivation of the DDA smoother starts with the decomposition of the global La-

grangian from (9) into sub-Lagrangians according to [1]:

L(c,y) =
G
∑

i=1

Li(ci,y),

=
G
∑

i=1

(

1

2
||σi −Dici||22 + y⊤Gici

)

, (27)

with y the global vector of Lagrange duals, ci a sub-vector of local B-coefficients, and with

with Gi a naive partitioning of the global constraint matrix A:

A =
[

G1 G2 · · · GG

]

. (28)

Dual decomposition of (27) leads to the following algorithm [1]:

ci(l + 1) = argmin
ci
Li(ci,y(l)), (29a)

y(l + 1) = y(l) + α(l)Ac(l), (29b)

with α(l) an iteration dependent constant and with l the dual decomposition iterator.

The dual update step in (29b) clearly is a centralized operation as it requires a gathering

and then broadcasting of global variables (i.e. y(l) and c(l)).

By exploiting the sparseness structure of the global constraint matrix A a more efficient

formulation can be obtained. The structure of A is as follows [2, 3]:






















A1,1 0 0 · · · A1,⋆ 0 0 · · · 0 0 · · · 0

0 A2,2 0 · · · A2,⋆ 0 0 · · · 0 0 · · · 0

A3,1 0 0 · · · 0 A3,⋆ 0 · · · 0 0 · · · 0
...

. . . · · · 0

0 0 0 · · · 0 0 0 · · · AEQ,⋆ 0 · · · AEQ,J

h 0 0 · · · 0 0 0 · · · 0 0 · · · 0







































c1

c2

c3
...

cJ

















= 0, (30)

with each block Aq,j ∈ R
Q×d̂ containing all the smoothness conditions for a single edge q and

triangle j. Note that for each edge q, there are exactly two blocks Aq,j; one for each triangle

j containing the mutual edge q.
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By exploiting the sparseness of A we can derive two new submatrices Hi and Hi,M for

each partition i. The submatrix Hi contains all smoothness conditions that define continuity

inside partitions i. The submatrix Hi,M on the other hand contains all smoothness conditions

that govern not only continuity inside partition i, but also all continuity between partitions

i its neighbors. In Appendix 6 the details of both decompositions are presented.

Using the submatrices Hi and Hi,M a local distributed version of (29) is obtained:

ci(l + 1) = ĉloci +RNi
H⊤

i yi(l) (31a)

yi(l + 1) = yi(l) + α(l)Hi,Mci,M (l + 1) (31b)

with ĉloci the locally estimated B-coefficients from (21) which during the iteration are con-

stant, with RNi
the matrix from (21), and with yi the local dual vector. The dual update

step (31b) uses ci,M which is the vector of all B-coefficients in sdri as well as all B-coefficients

in sdrm that are subject to continuity conditions on Ti ∩ Tm, ∀m ∈ Mi.

The resulting method is fully distributed in the sense that each model partition only shares

information with its direct neighboring model partitions.

3.D. D-SABRE Stage-2: Merging DPME with DDA smoothing

Both the DPME and DDA operations introduced in the previous sections are iterative. These

operations could be executed sequentially, starting with DPME to remove the unknown phase

offsets, and ending with DDA to post-smooth the wavefront. This would, however, defeat the

purpose of D-SABRE as a distributed WFR method because it would require all partitions to

complete the DPME operation before starting the DDA operation. The reason for this is that

if DDA is naively merged with DPME the DDA smoother will blend neighboring partitions

regardless of convergence of the DPME operation. This results in significant undesirable and

unphysical artifacts in the reconstructed wavefront.

The solution to this is a new concept indicated as virtual DPME (V-DPME). The idea is

that even though DPME has not yet converged, each partition has at all times exact infor-

mation on the phase offset between it and its direct neighbors. In V-DPME this information

is used to virtually minimize all piston modes between a partition i and its Gi neighbors.

After V-DPME, the DDA algorithm can safely smooth the locally piston mode equalized

partitions without introducing artifacts into the reconstructed wavefront.

The information required for V-DPME is obtained during the DPME operation in the

form of the set K(l)
i (m) from (26) which contains all phase offsets between partition i and its

neighbors. For V-DPME a new vector of virtual offsets is created from elements of K(l)
i (mj):

µi,M(l) = [ 01×JΩi
d̂ K(l)

i (m1) · 11×Jm1 d̂
K(l)

i (m2) · 11×Jm2 d̂
· · · ]⊤,

1 ≤ i ≤ G, ∀mj ∈ Mi. (32)
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with Jmj
the total number of triangles in Ωi ∩ Ωmj

.

Substitution of (32) in (31b), together with the DPME from (25b) results in the final

formulation of Stage-2 of the D-SABRE :

ci(l + 1) = ĉloci +RNi
H⊤

i yi(l) (33a)

yi(l + 1) = yi(l) + α(l)Hi,M (ci,M(l + 1) + µi,M(l)) (33b)

which converges when l = L, after which time the actual PME value is added resulting in

the final B-coefficient estimate:

ci = ci(L) + ki(L) (34)

3.E. Algorithm Convergence

The distributed piston mode equalization (DPME) and distributed dual ascent (DDA) steps

of D-SABRE Stage-2 are both iterative in nature. In this section we provide an analysis of

convergence of Stage-2 as a whole. It is important to note that all parallel operations in

Stage-2 are allowed to run asynchronously, i.e. the parallel processors do not require a global

clock-tick.

However, optimal convergence of the DPME operation does depend on synchronicity be-

tween neighboring partitions in the sense that failure of one parallel processor to calculate

an initial local WF reconstruction in Stage-1 or an accurate PME update in Stage-2 at a

specific global clock-tick will influence all partitions that through inter-partition continuity

depend on these results. The DDA step on the other hand can be run completely asyn-

chronously, because V-DPME negates any inter-partition offsets. For this analysis, we will

assume that local wavefront reconstruction and DPME iterations run synchronously on the

parallel processors.

DMPE convergence depends solely on the maximum distance, counted in number of par-

titions, between the master partition and any other partition. If this distance is R, then

DPME converges in exactly R iterations because it takes at most R steps for information

from the master partition to reach the partition furthest away from the master partition.

Each step requires a single DPME iteration leading to exactly R iterations. Note that the

’max’ operation in (25b) only influences the path the information follows, and not the total

number of steps.

We base our analysis of convergence of the DDA step on the theory presented in [1]. First,

let ǫ⋆ be the optimal value of the optimization problem (18):

ǫ⋆i = min ||σi −Dici||22 subject to Aici = 0, 1 ≤ i ≤ G, (35)

also, let

ri(l + 1) = Aici(l + 1) (36)
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be the primal residual at iteration l + 1.

Then [1] proves that

ǫ⋆i − ǫi(l + 1) ≤ (y⋆)⊤r(l + 1), l → ∞, (37)

with ǫi(l+ 1) the optimal value of (18) at iteration l+ 1, and with y⋆ the optimal Lagrange

dual. The right-hand side of (37) approaches zero as l → ∞ since r(l) approaches zero when

the constraints are met. Therefore, we have liml→∞ ǫi(l + 1) = ǫ⋆i implying convergence.

In practice we find that our DDA algorithm converges in at most a few tens of iterations,

with adequate continuity achieved in L = 10 iterations, which agrees with the rules of thumb

provided in [1]. In this case the norm of the residual of the smoothness constraints (see (7))

is ||Hc||22 < 1e− 3 for SNR ≥ 0dB and reaches ||Hc||22 < 1e− 8 for SNR ≥ 20dB.

We also find that initializing the DDA iteration with a smooth initial estimate for ĉloci

significantly improves convergence of the DDA step. Finally, the rate of convergence of the

DDA stage depends strongly on the value of α(l) in (33). In our algorithm, a value of

α(l) = 0.5 leads to fast convergence.

3.F. Computational complexity analysis

Key to the utility of the D-SABRE method is its computational performance. In this section,

the results from a theoretical analysis of computational complexity of the D-SABRE method

are presented. The scope of this analysis is limited to theoretically required compute perfor-

mance per parallel processor. Specific hardware dependent issues such as transport latency,

cache size, and available instruction sets are not included in this analysis. In our analysis we

focus on the real-time reconstruction operation, and not on algorithm initialization. In the

analysis, we indicate R and L as the total number of iterations in respectively the DPME

and DDA steps of Stage-2. We compare our results to that of the global SABRE method.

The results are summarized in Table 1.

For the global SABRE we find for the complexity of the matrix-vector operation in (12):

USABRE = O
(

2NJd̂
)

, (38)

with N the total number of WFS, and with d̂ and J respectively the total number of B-

coefficients and triangles in the global SABRE model.

For Stage-1 of the D-SABRE we find for the complexity of the matrix-vector operation in

(21):

Ustage−1 = O
(

2NiJid̂
)

, (39)

with Ni the total number of WFS in partition i, with Ji = JΩi
+ JΞi

the total number of

triangles (including the overlap triangles) in partition i.
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Determining the complexity of Stage-2 is somewhat more involved because it is an iterative

algorithm consisting of a number of operations. In the following, we shall assume that all

necessary simplifications in terms of static matrix pre-calculation have been made. We then

find for the complexity of the matrix-vector and vector-vector operations associated with

DPME and DDA in (33):

Ustage−2 = O
(

RJΩi
d̂+ L

(

JΩi
d̂(1 + rH) + cH(1 + rH)

))

, (40)

with R the total number of DPME iterations, JΩi
the total number of triangles in the core

triangulation of partition i (see (14)) and with rH = row(Hi,M) and cH = col(Hi,M). It

should be noted here that the complexity of calculating of the V-DPME and DPME offsets

is negligible compared to the matrix-vector and vector-vector operations in (40).

In general (for OL > 0), we have rH >> 1, cH >> 1, rH < JΩi
d̂ < cH < Jid̂ = ρJΩi

d̂

with ρ from (15). Additionally, we can assume that 2Ni = Ji = ρJΩi
for a Simplex Type-I

WFS geometry [5]. With these (conservative) assumptions and under the introduction of ρ,

we can simplify and combine (39) and (40):

UDSABRE = O
(

ρ2J2
Ωi
d̂+RJΩi

d̂+ L
(

(JΩi
d̂)2 + ρ(JΩi

d̂)2
))

,

= O
(

ρ2J2
Ωi
d̂+RJΩi

d̂+ L(1 + ρ)(JΩi
d̂)2

)

,

= O
(

JΩi
d̂(ρ2JΩi

+R + Ld̂(1 + ρ)JΩi
)
)

, (41)

from which it can be concluded that the contribution of DPME to the total computational

complexity can be neglected for as long as R is small compared to the other terms in brackets,

which holds for most realistic partitionings.

If all parallel processors operate synchronously, and no transport latency is present, the

speedup factor over the global SABRE is obtained by combining (38) with (41):

SDSABRE = O
(

2N ·Jd̂

JΩi
d̂(ρ2JΩi

+R+Ld̂(1+ρ)JΩi
)

)

. (42)

If all partitions have the same number of triangles in the core of the partition (which is

desirable), we have G = J/JΩi
with G the total number of partitions.

In addition, if we assume that use is made of a Simplex Type-I geometry (in which case

N = J/2) then using the result J = GJΩi
reduces (42) to:

S̃DSABRE = O
(

2J/2GJΩi
d̂

JΩi
d̂(ρ2JΩi

+R+Ld̂(1+ρ)JΩi
)

)

,

= O
(

JG

ρ2JΩi
+R+Ld̂(1+ρ)JΩi

)

,

= O
(

G2

ρ2+R/JΩi
+Ld̂(1+ρ)

)

, (43)
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From (43) it can be concluded 1) the influence of the DPME step on the computational

complexity is negligible as long as R/Ji << ρ2; 2) the overlap overhead reduces the speedup

by a factor ρ2; and 3) that the DDA step is the dominant term in the computational efficiency

if Ld̂ > ρ.

As a rule of thumb, a partitioning can (and should) be designed such that the overlap

overhead 1 < ρ < 2. For that overlap level, L = 10 produces adequate results in most cases,

showing that the DDA step in the form of the variable L indeed has a dominant influence on

the speedup factor. In fact, when the DDA step is not used, and if we (reasonably) assume

R/Ji << ρ2, we obtain a speedup factor of 1
ρ2
G2 for the linear D-SABRE . In Table 1 the

results of the complexity analysis are summarized.

Finally, it must be noted here that the efficiency of DDA step can be improved significantly

when only inter-partition smoothness is enforced in (33) instead of full-partition smoothness.

In that case rH and cH will be significantly smaller to the point that the overlap overhead

will have a dominant contribution to the complexity.

Global SABRE D-SABRE (per core) Speedup (per core)

WFR O(d̂J2) O(ρ2J2
Ωi

d̂) O(G2/ρ2)

DPME 0 O(RJΩi
d̂) O(1/(RJΩi

d̂))

DDA 0 O(L(1 + ρ)(JΩi
d̂)2) O(1/(L(1 + ρ)(JΩi

d̂)2))

Total O(J2d̂) O(JΩi
d̂(ρ2JΩi

+R+ Ld̂(1 + ρ)JΩi
)) O

(

G2

ρ2+R/JΩi
+Ld̂(1+ρ)

)

J : number of triangles in global triangulation; Ji number of triangles per partition

G: total number of partitions; d̂: B-coefficients per triangle (d̂ = 3 for linear D-SABRE )

R: DPME iterations (R << d̂Ji); L: DDA iterations, ρ = Ji/JΩi

Table 1: Comparison of theoretical computational complexity of global SABRE and D-

SABRE , where a Simplex Type-1 WFS geometry (i.e. N = J/2) is assumed. All partitions

run on a separate (perfect) parallel processor.

As an example of Table 1, consider first a 64 × 64 WFS array such that N = 4096, and

assume that a linear spline model (i.e. d̂ = 3) is used on a Type-1 sensor geometry. In this

case, the global SABRE would require O(J2d̂) = O(2 · 108) flops for a single reconstruction.

For the D-SABRE with 64 partitions OL = 2, R = 4 and no DDA (L = 0), we have JΩi
= 128

and subsequently 1.53 ≤ ρ ≤ 2.19 with (16). In this case, the contribution of DPME can be

neglected (R/JΩi
<< 1), and we have as a worst case O(ρ2J2

Ωi
d̂) = O(2 · 105) = O(57N)

flops per D-SABRE core per reconstruction. For a 200×200 array and a 20×20 partitioning

(N = 40000), OL = 2, R = 10 and no DDA (L = 0) we have JΩi
= 200 and subsequently

1.42 ≤ ρ ≤ 1.92. Again, the contribution of DPME can be neglected, and we find for the

worst case O(4 · 105) = O(11N) flops per D-SABRE core per reconstruction.
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Even though hardware dependent issues are not scope of this paper, we want to mention

that commmunication latency between the partitions for the iterative, distributed Stage-

2 of the D-SABRE method is not considered to be an issue in a planned parellel GPU

implementation. For the reference case of a 200 × 200 SH array and a 20 × 20 partitioning

and a standart of the shelf GPU, all necessary data, e.g. reconstruction matrices, of the

D-SABRE method can be stored directly on the GPU memory and no communication over

the slow GPU to CPU connection will be necessary.

4. Simulations with the D-SABRE

In this section, the results from numerical experiments with the D-SABRE are presented.

These experiments are aimed at validating the D-SABRE method by a simulation study.

First, the reconstruction accuracy and noise resilience of the D-SABRE are compared to

that of the centralised SABRE method in Sec. 4.A and Sec. 4.B. As in [5], a von Karman

turbulence model was used to simulate phase screens which are then measured by a Fourier

optics based Shack-Hartmann (SH) WFS simulator which generates wavefront phase slopes

for a square grid of varying numbers of subapertures. Slope measurements of different signal

to noise ratio (SNR) levels are created by adding gaussian distributed white noise.

The second part of this chapter contains a comparison of D-SABRE to the distributed

Cumulative Reconstructor (CuRe-D ) method which provides like D-SABRE parallelizable

wavefront reconstruction of linear complexity and was published in [18]. Both methods were

implemented for YAO [15], a Monte-Carlo simulation tool for astronomical AO systems, to

test their reconstruction performance on a reference simulator. The main goal of this study

was to obtain a comparison of the two methods under equal conditions to understand if

the D-SABRE in its most basic form reaches the same level of performance as the CuRe-D

method for different decomposition levels. This baseline version of the D-SABRE applies a

spline model of polynomial degree d = 1 and continuity order r = 0; it further performs

only the D-PME step in Stage-2. After an open-loop analysis of reconstruction accuracy

and noise resilience under the influence of additive white noise, we tested both methods in a

closed-loop environment for a SCAO setting considering different levels of photon-shot noise.

Herefore, an additional projection step of the reconstructed phase onto the deformable mirror

was implemented to allow the correction in combination with a simple integrator control

provided by YAO.

4.A. Validation of D-SABRE reconstruction accuracy

The first experiment is aimed at comparing the D-SABRE with the global SABRE method

from [5]. For this a Fourier optics based SH lenslet array is used to obtain wavefront slopes

from a set of 100 simulated wavefronts observing at a wavelength of 699 nm. For the von
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Fig. 6: Comparison of average Strehl ratio of the global SABRE method with that of various

D-SABRE variants as function of the signal to noise ratio where 0dB corresponds with equal

magnitudes of noise and signal. All D-SABRE variants use a decomposition of the global

50×50 WFS grid (2500 WFS) into 25 partitions.
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Fig. 7: Left: Average Strehl ratio as a function of the total number of WFS and a fixed

number of 100 partitions. Right: Average Strehl ratio as a function of signal to noise ratio

for a varying partition count on a fixed 50 × 50 WFS grid where 0dB corresponds with equal

magnitudes of noise and signal. In both cases an OL-1 overlap with DDA smoothing is used.

Karman turbulence model a Fried coherence length of 0.2m was used with a turbulence outer

scale of 50 m and the telescope diameter is assumed to be 2 m. The SH lenslet array consists

of 2500 lenslets, laid out in a 50×50 grid with full illumination of all subapertures. Noise

affecting the SH wavefront sensor measurements is simulated through white noise added to

the slope measurements, with the signal-to-noise ratio (SNR) provided by the ratio of the

slope and noise variance in the logarithmic decibel scale, where a SNR of 0dB implies that

the magnitude of the noise is equal to that of the signal.

In Fig. 6, the average Strehl ratio is plotted as a function of SNR for different variants of

the D-SABRE and compared to that of the global SABRE method. For the D-SABRE the

global WFS domain is decomposed into 25 partitions. For each SNR setting a total of 100

reconstructions are performed. The results show that the D-SABRE with OL-4 and DDA

approximates the global SABRE reconstruction within 1% in terms of the Strehl ratio for

signal to noise ratio’s (SNR) ≥ 20dB, within 5% for SNR’s ≥ 10dB, and within 10% for

SNR ≥ 5dB. In addition Fig. 6 shows that including the DDA step significantly improves

D-SABRE reconstruction accuracy for higher noise cases.
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4.B. Investigation of D-SABRE PME error propagation

An important issue with current state-of-the-art distributed WFR methods is the increase

of the reconstruction error as the total size of the WFS array increases [18]. In contrast to

these methods, D-SABRE is not subject to noise propagation within partitions because an

optimal least-squares estimator is used. However, D-SABRE is subject to inaccuracies in the

least squares estimates of the piston mode offsets that are propagated between partitions.

In principle, these inaccuracies will only occur if the model residue is non-white or if the

sample of the piston offset on shared vertices is too small. In fact, as the absolute size of the

partitions increases (i.e. more triangles per partition), the piston mode offset estimation will

become more accurate as the total number of shared vertices used to calculate the offset will

increase.

In this paragraph, we present the results of an investigation into PME error propagation

issues with the D-SABRE using numerical simulations.

In the left plot of Fig. 7, the results from the simulations of WFS array sizing are shown.

In this case, the WFS array size is increased from 102 to 104 sensors, while the total number

of partitions is fixed at 100. For each WFS array a set of 100 reconstructions are conducted

at a low SNR of 6.67 dB and a high SNR of 30 dB. From Fig. 7 it can be observed that

the Strehl ratio actually increases with increasing WFS array size for both the SABRE and

D-SABRE method for all SNR values. Also, it demonstrates that when the absolute size of

partitions increases, the propagation of PME errors decreases.

In the right plot of Fig. 7, the results from simulations with different partitionings of a 50

× 50 grid are shown. In this case, the global WFS array is decomposed into 25, 100, and 625

local partitions. At each SNR level 100 reconstructions are performed after which the result

is averaged. This time, there is a clear positive influence on the Strehl ratio of reducing the

total number of partitions on the fixed 50×50 WFS array.

From Fig. 7 it can be concluded that the D-SABRE is subject to propagation of PME

errors between partitions, but is not subject to noise propagation. Also, the PME error

actually reduces in size as the total number of shared vertices is increased.

4.C. Comparison with CuRe-D in YAO open-loop simulations

The linear D-SABRE method is compared with the distributed Cumulative Reconstructor

(CuRe-D) in terms of reconstruction accuracy and noise propagation for an open-loop con-

figuration.

4.C.1. Open-loop configurations

The AO simulation tool YAO was used to create 100 wavefront realizations with a Fried

parameter r0 = 0.18 cm and simluate the corresponding diffraction based slope measurements
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Fig. 8: Triangulation and partitioning example for D-SABRE. Left: Global Type II triangu-

lation for a 32×32 SH array constructed with vertices located on SH center locations (cyan)

and added vertices (blue) to form the regular Type II triangulation and to cover the entire

pupil domain. Center: Partitioning of the global triangulation in 16 partitions on a 4×4

partition array. Right: Partitioning in 16 partitions with applied overlap level of OL=2.

of a Shack Hartmann wavefront sensor with a 64 × 64 subaperture array on a circular

telescope pupil of 30 m diameter. In YAO, the slope measurements are computed, after full

propagation and subaperture image formation, on a 10 × 10 pixel array using the center

of mass algorithm. Subapertures of illumination higher or equal than 50 % were taken into

account. In this section, zero noise is assumed in the simulation of the slope measurements

and an observation wavelength of 650 nm is considered.

Due to its hierarchical structure, the CuRe-D method is limited to partition arrays of size

Np×Np withNp as powers of two, and it provides wavefront estimates at the corners of the SH

subapertures. Though such partitioning is not necessary for D-SABRE, in order to compare

the two methods, the D-SABRE was configured accordingly and the obtained spline estimate

of the wavefront is evaluated at the subaperture corner positions located within the pupil

domain. Note that the D-SABRE method computes an analytical solution of the wavefront

reconstruction problem providing phase estimates at any point in the triangulation which

covers the telescope pupil. In Fig. 8, we show the example of a Type II triangulation for a

32×32 SH subaperture array. The two graphics on the right depict a decomposition of the

global partition on the left into a 4×4 partitioning with an overlap level of OL=2.

Analogous to Sec. 4.A and Sec. 4.C, noise effects in the sensing process are simulated

with additive white noise on the slope measurements provided by YAO. Low signal to noise

ratios of SNR < 12 dB are considered in this section to investigate noise resilience as well as

reconstruction accuracy of the two distributed methods. To do so, the relative RMS values of
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Fig. 9: Reconstruction accuracy and noise resilience for different levels of decomposition on

a 64 × 64 SH array of D-SABRE and CuRe-D . In the D-SABRE case different levels of

partition overlap are considered.The average relative residual RMS is plotted as a function

of signal to noise ratio.
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the residual wavefronts are compared for varying signal to noise ratios. The data provided is

the mean and its standard deviation computed from RMS errors of wavefront reconstructions

for 100 phase realizations.

4.C.2. Open-loop results

In Fig. 9, the results from simulations with different partitionings of the 64×64 SH array are

shown. For both methods, we consider Np ×Np partition arrays for Np = 2, 4, 8 resulting in

square partitions each containing 32×32, 16×16 and 8×8 subapertures respectively. In case

of D-SABRE, a Type-II triangulation was used and overlap levels of 1, 2, 64/2Np and 64/Np

applied.

In comparison with CuRe-D, the D-SABRE shows an advantage in reconstruction accuracy

for lower levels of decomposition. For the example of a 2×2 partitioning of the domain, D-

SABRE clearly outperforms CuRe-D even for minimal amount of partition overlap. For

higher level of decomposition, equal or better accuracy can only be achieved by increasing

the overlap level. For the 4×4 partitioning, OL = 2 leads to performance comparable to that

of CuRe-D, whereas for 8×8 partitioning an overlap of OL=64/Np is necessary to achieve

better results than CuRe-D.

In terms of noise resilience, a similar trend can be observed. For lower levels of decom-

position, D-SABRE proves more resilient to an increase in the amount of additive white

noise than CuRe-D. We considered the intervals between SNR values at which relative RMS

errors are provided in Fig. 9 and computed the average rate of change of the relative RMS

error over these SNR intervals for both methods through finite differences. Averaged over

the different SNR intervals, the rate with which the accuracy of D-SABRE for the 2×2 par-

titioning decreases for increasing noise is only 56% of the rate observed for CuRe-D. For the

4×4 partitioning, the rate of accuracy decay for D-SABRE increases to 70%, for the 8×8

partitioning to 98% of the rate observed for CuRe-D. These values were obtained for an

overlap level of OL=64/2Np in case of the D-SABRE method.

The results presented in this section can be explained with the very different noise propa-

gation behaviors of the two methods. It has been shown in [17] and [18], that the cumulative

approach of the CuRe-D algorithm leads to accumulation of noise for larger numbers of

subapertures per partition. Hence, increasing the level of decomposition for the distributed

CuRe-D improves the noise propagation properties of the method. It can be seen in Fig. 9

that this reduction of noise propagation within partitions outweighs the negative effect of

piston mode estimation errors introduced through the decomposition. Contrary, as discussed

in Sec. 4.C, the D-SABRE does not suffer from noise propagation within partitions which

contain a large number of subapertures. However, D-SABRE is subject to PME error prop-

agation between partitions, which results in loss of performance for an increased level of
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decomposition given a fixed size WFS array. This effect can be counteracted by increasing

the overlap level OL, or increasing the size of the WFS array. For strong decomposition, the

D-SABRE in the tested baseline version meets the performance of CuRe-D only for sufficient

amount of overlap OL, which decreases the speed up as shown in (43).

As discussed in Sec. 2.B, more advanced sensor models can further improve the quality

of the local D-SABRE reconstructions and reduce the inaccuracies in the piston mode es-

timate which are currently propagated between partitions. This would allow higher levels

of decomposition and less partition overlap. Current work on a C-implementation of the D-

SABRE method will make it feasible to test the method for larger WFS arrays of ≈ 104−105

subapertures as will be found in XAO system.

4.D. Comparison with CuRe-D in YAO closed-loop simulations

To conclude this chapter, D-SABRE and CuRe-D are compared in a closed-loop environ-

ment regarding their response to photon shot noise. Since D-SABRE and CuRe-D provide

estimates of the residual phase and not directly actuator commands for its correction, an

additional step mapping the phase onto the deformable mirror had to be implemented which

was then combined with the simple integrator control law provided by YAO.

4.D.1. Closed-loop configurations

As in Sec. 4.C, we evaluate the D-SABRE phase estimates at the subaperture corners, i.e.

the locations where phase values are provided by CuRe-D. We want to stress at this point

that D-SABRE provides an analytical solution to the wavefront reconstruction problem and

therefore phase estimates over the whole pupil plane. Missalignements between subaperture

and actuator grid can be taken into account without additional approximation error e.g.

introduced through further interpolation. Further, the B-spline basis function matrix intro-

duced in (4), which evaluates the D-SABRE phase estimates, can be precomputed. This

allows to apply the deformable mirror fit as a direct mapping between the B-coefficients and

the acutator commands.

We consider a SCAO system with a stackarray deformable mirror defined through the

shape of the actuator influence functions which are provided by YAO. Based on the influence

function values at the subaperture corners, the actuator commands were computed in order

to fit the deformable mirror optimally in a least-squares sense to the phase values. This fitting

step is performed in a centralized manner and was not optimized for speed. To allow the

computation of meaningful results which require a certain number of closed-loop iteration

for several turbulence realizations, the density of the actuators is set lower than the density

of the 64×64 subaperture array. We opted for a 32×32 actuator grid where the actuator

positions are conjugated to every second subaperture corner in the SH array. Again the
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Fig. 10: Long exposure Strehl ratio comparing closed-loop performance and noise resilience

of D-SABRE and CuRe-D for different of levels photon shot noise in a system with a 64× 64

SH array and a 32× 32 actuator array. Left: Turbulence with Fried parameter r0 = 18 cm;

right: r0 = 25 cm. A 4×4 partitioning is constructed for both distributed methods. Two loop

gains are considered for each method respectively optimized for low (solid) and high (dashed)

noise levels. In the D-SABRE case OL= 64/(2Np) is used. The Strehl ratio is averaged for

10 turbulence realizations and plotted as a function of the guide star magnitude.
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focus was to compare the behavior of the methods for changes in parameters, like photon-

shot noise and loop gain, under identical circumstances, rather than aiming for a simulation

of a XAO dimensioned system. The coupling between the actuators is set to 20% and the

normalized response threshold (in WFS signal) below which an actuator will not be kept as

valid to 30%.

To avoid initial transient, the long exposure Strehl ratio is accumulated starting with the

50th iteration and the loop is evaluated for 1 s with a sampling time of 2 ms. The results

are given for a wavelength of 650 nm and 10 turbulence realizations. The loop gain of the

integrator control was tuned for both methods to perform optimaly averaged for the same set

of turbulence realizations used in the following experiment. Pairs of optimal loop gains for

D-SABRE and CuRe-D were computed for two different noise levels: for a low noise scenario

simulated with a high flux guide star of magnitude 5 and for a high noise scenario simulated

with a low flux guide start of magnitude 11. The distributed methods D-SABRE and CuRe-

D were applied for a 4×4 partitioning of the 64×64 SH array; in the case of D-SABRE, an

overlap level OL=8 was chosen. As in the previous section, the D-SABRE was performed in

its baseline version.

4.D.2. Closed-loop results

In Fig. 10, the mean of the closed-loop Strehl ratios is provided with the standard deviation

of the mean for different levels of photon shot noise indicated by the magnitude of the guide

star. The solid lines show the Strehl ratios obtained by the respective method if applying loop

gains optimized for guide star magnitude 5 (i.e. high flux), the dashed lines show the results

obtained for loop gains optimized for guide star magnitude 11 (i.e. low flux). The closed-loop

expirement was performed for the set of turbulence realizations with Fried parameter r0 =

18 cm used for the open-loop tests in Sec. 4.C. For the loop gains 0.7 and 0.3 obtained by

tuning D-SABRE and CuRe-D respectively for high flux, the D-SABRE outperforms CuRe-

D for all considered guide star magnitudes. The advantage which the applied configuration

of D-SABRE has shown for the open-loop environment with additive white noise (see Fig. 9)

is preserved in the closed loop experiment under exposure of photon shot noise, despite not

with the same margin. Decreasing the loop gain for CuRe-D to 0.2, the optimal loop gain for

low flux, boosts its performance for guide star magnitudes > 9. The analog adjustment of the

D-SABRE loop gain to 0.6, results in a less significant improvement for the low flux range and

D-SABRE does not reach the performance of CuRe-D for the resulting levels of photon shot.

However in the high flux range, D-SABRE proves in this experiment greater robustness to

the variaton of the loop gain. D-SABRE preserves its performance for guide star magnitudes

< 7, whereas CuRe-D is more sensitive to changes of the loop gain and suffers a significant

drop in Strehl ratio. The experiment was repeated for a set of 10 turbulence realizations with
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Fried parameter r0 = 25 cm. The results are depicted in the right plot of Fig. 10 and confirm

the findings made in this section. For sufficient amount of overlap and a moderate level of

decomposition, the baseline D-SABRE meets the performance of the CuRe-D method also

in a closed-loop setting and under the impact of photon shot noise.

5. Conclusions

In this paper a new distributed multivariate spline based wavefront reconstruction method

is introduced. This new method, the D-SABRE (Distributed Spline based ABeration RE-

construction), is an extension of the SABRE method for wavefront reconstruction. The D-

SABRE is aimed at large scale wavefront reconstruction problems (e.g. 200x200 WFS grids)

where global reconstructions are not realistic.

The D-SABRE method partitions the global WFS domain into any number of partitions,

and then solves the local reconstruction problem in 2 distributed stages. In the first stage the

the local wavefront reconstruction problem is solved for every partition; this stage is com-

pletely distributed in the sense that no communication between partitions is necessary. In

the second stage, the local partitions are smoothed into a single continuous global wavefront.

This stage requires only communication between direct partition neighbors. The blending

consists of 2 operations; the distributed piston mode equalization (D-PME) and the distrib-

uted dual ascent (DDA) operation. D-PME is aimed at equalizing the unknown piston modes

between partitions, DDA is aimed at post-smoothing the resulting partitions. Both opera-

tions are iterative, and convergence of the operations is proved. Without D-PME no accurate

global wavefront can be obtained. The DDA operation on the other hand can be considered

optional, and should only be applied when a continuous global wavefront reconstruction is

desired because of its significant negative influence on computational complexity.

An analysis of computational complexity showed that a speedup factor over the SABRE

can be obtained that is quadratically proportional to the total number of partitions. The

most dominant factor for the complexity is the local reconstruction stage (State-1) and the

optional distributed post-smoothing (DDA) step in Stage-2. The D-PME step in Stage-2 is

cheap in terms of computational complexity.

Numerical experiments with the D-SABRE shows that reconstruction accuracy approxi-

mates the global wavefront reconstruction within 1% in terms of the Strehl ratio for signal

to noise ratio’s (SNR) ≥ 20dB, within 5% for SNR’s ≥ 10dB, and within 10% for very low

SNR ≥ 5dB. The most important factors determining reconstruction accuracy are the over-

lap level between partitions, and the absolute partition size, where a larger partition leads

to more accurate results.

The D-SABRE is not subject to noise propagation in the same sense as the CuRe and

CuRe-D methods. Instead it is subject to propagation of piston mode offset estimations
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between partitions. The magnitude of this PME error propagation decreases as the absolute

size of the partitions increases. In that sense, the D-SABRE favors very large WFS arrays,

that are partitioned into partitions that are as large as possible given a particular hardware

setup.

Finally, a comparison of the D-SABRE with the CuRe-D method is given through open-

and closed-loop simulations which are performed with the AO simulation tool YAO. The

open-loop analysis of the performance under the influence of additive white noise shows a

clear advantage of D-SABRE for low levels of domain partitioning. If the number of partitions

is increased and the size of the partitions decreases, overlap between the partitions has to

be applied in order to outperform CuRe-D. In the tested closed-loop SCAO configurations,

D-SABRE and CuRe-D showed comparable behavior for increasing levels of photon shot

noise. D-SABRE has proven to be more robust to variations in the gain of the control loop.

We conclude the D-SABRE will be most useful on very large scale (> 200 × 200) WFS

arrays, where the computational hardware favors low levels of domain partitioning resulting

in partitions that are as large as possible. This is in contrast with CuRe-D , which is useful

on large scale WFS arrays but which requires an as high as possible domain partitioning to

prevent noise propagation.

Future work on the D-SABRE method will be focused on extending the approach 1) to

higher degree polynomials (i.e. d ≥ 3), which requires imposing explicit boundary conditions

on the local models; 2) by implementing more advanced sensor models such as that intro-

duced in [8] that exploit the integrative nature of the SH sensors; 3) by implementing more

advanced estimation schemes that exploit knowledge of turbulence statistics; and finally 4)

by implementing D-SABRE on a real-world parallel hardware (GPU) setup.

6. Appendix

By exploiting the sparseness of A in (30) we can derive two new submatrices Hi and Hi,m

for each partition i. For this we first introduce E = 1, 2, . . . , E as the global index set of all

triangle edges in the global triangulation T , and C = 1, 2, . . . , J · ĉ as the global index set of

all B-coefficients in the global spline model sdr .

The first submatrix of A, indicated as the inner constraint matrix Hi, contains blocks that

only influence B-coefficients inside the partition i:

Hi := A(EΩi
, CΩi

). (44)

with EΩi
⊂ E the set of indices of all triangle edges inside the core part Ωi of the sub-

triangulation Ti from see (13), and with CΩi
⊂ C the set of all B-coefficient indices in Ωi.

The second submatrix Hi,m contains all blocks in A that influence B-coefficients inside

the partition i as well as B-coefficients in neighboring partitions m through the action of
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the continuity conditions:

Hi,m := A(Ei,m, Ci,m). (45)

with Ei,m = EΩi
∪ Ei→m the indices of all edges in Ti that influence sdri . Finally, we define

Ci,m ⊂ C as the indices of all B-coefficients in sdri as well as all B-coefficients in sdrm that are

subject to continuity conditions on Ti ∩ Tm.

We define yi = y(EΩi
) as the local dual vector, with yi,m = y(Ei,m) the inter-partition

dual vector, with ci = c(CΩi
) the local B-coefficient vector, and with ci,m = c(Ci,m) all B-

coefficients in sdri as well as all B-coefficients in sdrm that are subject to continuity conditions

on Ωi ∩ Ωm.
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