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Abstract

Graph Neural Network holds significant impor-
tance in various applications. Pioneering research
has demonstrated state-of-the-art performance in
practical applications such as Fraud Detection,
Recommender Systems, or Traffic Forecasting by
utilizing various Graph Neural Networks (GNNs)
architectures. For these applications, one of the
most important properties that needs to hold is the
stability of GNN under stochastic perturbation as
real-life networks undergo changes in topology on
a frequent basis. However, it remains unclear how
different architectures preserve this property under
different perturbations. In this research, we aim
to shed light on if this stability property undergoes
drastic changes in the graph underlying topology,
and if it affects the overall performance of the GNN
in Traffic Forecasting problems. We demonstrate
that the architectures differ in the stability property
measured by different metrics, while some archi-
tectures retains their state-of-the-art performance,
providing useful insight on the analysis of stability
property on different graph neural network archi-
tectures in Traffic Forecasting problem.

1 Introduction

Background. Graph neural networks (GNNs) have become
the state-of-the-art tool for extracting meaningful patterns
from network-based data. Network-based data is pervasive
and exists in many shapes and forms, arising from simple to
intricate structures, prevalent in social networks, brain net-
works, finance, and more. They excel in tasks such as node
classification, link prediction, and graph classification, driv-
ing advancements in major tech companies like Twitter (now
X) for fake news detection [10], Pinterest for pin recommen-
dations [21], while researchers are picking up pace on urban
planning for complicated traffic forecasting.

Current GNN models assume a perfectly known network
structure, overlooking practical issues like estimation errors,
adversarial attacks, or network changes. For example in traf-
fic analysis, road structures can undergo discrepancies like
traffic accidents, road maintenance, and re-routing plans, ef-
fectively means changes in the network topology. This shift
between training and testing networks leads to performance
degradation for real-world applications of traffic forecasting,
raising the importance of GNN stability analysis under do-
main perturbations.

In recent years, the interest in going deeper into the re-
search field of graph stability property has been on the rise,
work done by [8] researched the stability of Graph Convolu-
tional Networks (GCN) to stochastic perturbations, [12] on
GCN to edge rewiring and [6] on the general stability proper-
ties of GCN with Lipschitz filter.

Prior studies have focused on specific perturbations of a
specific architecture, or specific types of perturbation such
as edge rewiring. However, despite these advancements, a
fundamental question remains unanswered: How stable do

different GNN architectures perform in the face of stochastic
perturbation?

Research questions and main contributions. This re-
search aims to deepen the understanding of GNN stability
in stochastic perturbations for various of architectures for
perturbation techniques, mimicking the practical events of
topology shifts in road networks. We will explore various
GNN models and their performance practically for the node
regression tasks, as it is one the most used tasks to capture the
relationship of spatio-temporal in the network, accounting
for uncertainties in the network structure under topology
shift.

Roadmap. This paper includes the following sections.
Section 2 provides an overview of relevant literature. Section
3 explains the research approach for analyzing the stability
properties of different graph architectures. Section 4 presents
the conducted experiments and their results. Section 6
discusses and interprets the findings. Section 5 addresses the
study’s ethical implications. Finally, Section 7 summarizes
the results, limitations, and future improvements.

2 Related Work

This section provides an overview of relevant research on
the stability property of graph neural network architectures
under perturbation. The relevant researches can be divided
into two sub-sections: controlled perturbation - which retains
small and controlled perturbation rate, assuming the topology
shift in the underlying graph embeddings have small changes.
Stochastic perturbation - our focus, with random mode of
changing the graph topology from small to large perturbation.

2.1 Controlled Perturbation

In recent times, there has been a focus on analyzing the sta-
bility of Graph Convolutional Neural Networks (GCNNs)
to topological perturbations. Graph wavelet filters [9] were
used in [25] to investigate the durability of graph scatter-
ing transformations in non-trainable graph neural networks
in response to changes in the graph topology. Expanding
on this, [7] examined stability to graph deformations mea-
sured by diffusion distance [2] and concentrated on diffusion
wavelets [3]. By switching to trainable designs, [14] showed
that GCNN s keep their stability in the face of topological per-
turbations, producing consistent representations for graphs
that describe the same thing. In contrast, [6], [18] inves-
tigated the stability of GCNNs under relative perturbations
and discovered that GCNNs can be efficient in discriminat-
ing high-frequency graph information while also being robust
to perturbations. Building on these discoveries, [19] investi-
gated stability in the graphon neural network, in which the
graphon is the limit of graph sequences that converge. More-
over, studies have examined how resilient GCNNs are against
focused attacks on the underlying graph. While [4] used re-
inforcement learning to construct attacks on both node-level
and graph-level classification tasks, [26] focused on creating
adversarial attacks on graph edges and node signals to mis-
classify target node labels. Simultaneously, [1] investigated



the resilience of GCNN against attacks on a subset of graph
edges, proving that node labels do not change in node classi-
fication tasks.

2.2 Stochastic Perturbation

Advancing from the well-studied controlled perturbation, [8]
investigated the GCNN architecture and its GCNConv filter
under stochastic perturbation to discover the stability prop-
erty is disproportionate with the complexity of constant in
Lipschitz filter, and with GCNN having more layers and fil-
ters in its hidden state. While [13] investigated stability
of GCNN under stochastic perturbation with random input
graphs to conclude that GNN efficiently and reliably per-
formed under random large input graph. Both of these pertur-
bations method however only analyze the stability of a partic-
ular subset of filters with mathematical methods.

3 Methodology

In this section, we propose the following experiment proce-
dure as shown in Figure 1 to investigate the stability prop-
erty of GNN architectures. It aims to thoroughly identify and
investigate how important the architecture is to graph topol-
ogy perturbation, as well as to pick out the best-performing
architecture (if any) and to raise hypotheses to them. The ex-
perimental methodology is divided into several sub-sections,
each addressing a specific stage of the research process. Sub-
section 3.1 provides comprehensive details regarding inves-
tigating practical problems to solve. This practical problem
will serve as the foundation to decide the subset of architec-
tures we would investigate on. Subsection 3.2 focuses on
deciding the subset of architectures under investigation, re-
lying on the aforementioned defined practical problem. This
section is a significant decider as we would avoid assessing
under-performing models in this practical problem. Subsec-
tion 3.2 will conduct evaluation metrics for each of the mod-
els, its specifications, and statistical details about the under-
lying structure. This assessment aims to quantify the per-
formance of each architecture, a stepping stone for the next
sub-section, 3.3. Subsection 3.3 will investigate methods to
compile and conclude the performance between architectures,
furthermore analyze, explain, and compare the performance
of each architecture among themselves.

Methodology

Practical
Application
Investigation

Architectures
under
Investigation

Performance
Analysis

_ | _
 Comparison
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Figure 1: The research methodology employed to investigate the
stability property between different GNN architectures.

3.1 Practical Application Investigation

Graph neural networks can solve a variety of practical prob-
lems, such as fraud detection on platforms like Twitter (or
X), recommendation systems, and image processing. How-
ever, most of these applications are already well-researched.
Traffic prediction, on the other hand, remains a challenging
problem because it typically involves a two-step model (Fig-
ure 2) that first captures spatial information and then passes
it to another model to capture temporal information, and this
relationship demonstrated great complexity. According to a
comprehensive study done by [11], the notable problem with
Traffic forecasting arises in the spatial captured domain of
GNN. Although numerous solutions have been suggested to
address the issue of time dependency, such as recurrent neu-
ral networks and temporal convolutional networks, the chal-
lenge of capturing and modeling spatial dependency remains
unresolved as spatial dependency involves the complex and
nonlinear relationship between the traffic state at a specific
location and those at other locations, displaying the heteroge-
neous nature of this problem.

Examples of such incidents include road construction, acci-
dents, or the addition of new roads to the road-wide network.
These changes can perfectly be mapped to link deletion, node
deletion, or link addition in topology perturbation, further-
more supporting the understanding of the stability property
of GNN under perturbation in the traffic prediction field, and
of GNN architectures as a whole in the future.

For this reason, this research will focus on investigating dif-
ferent architectures under domain perturbation in the spatial
capturing layer of different spatial-temporal GNN.
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Figure 2: Spatial (purple) - Temporal (green) Graph Neural Network

3.2 Architectures under Investigation

Overall, there are 4 notable mechanisms (Convolution lay-
ers) for capturing spatial relationships in a road network ac-
cording to [17], and their respective architecture: DiffConv
! in DCRNN architecture [15], GCNConv 2 in A3TGCN ar-
chitecture [24], and GATConv ? in GMAN architecture [23].
Furthermore, with the promising TAGConv * from [5] which
adapts to the topology of the graph when they scan the graph
for computation, this TAGConv layer will be included in
A3TGCN to replace its GCNConv layer since TAGConv was
developed based on GCNConv, with different K (K = 1 for

'Diffusion Convolution Layer

2Graph Convolution Network Convolution Layer
3Graph Attention Network Convolution Layer
“Topology Adaptive Graph Convolution Layer



GCNConv and K > 2 for TAGConv). However, since traffic
dataset is often massive, requiring a large training time with
dedicated equipment (such as a high-performance GPU), for
this, we concluded the 3 architectures under investigation:

1. A3TGCN
2. A3TTagConv
3. GMAN

Since three of these are state-of-the-art architectures with
good running time, in additionally, the implementation of
these three models are straight forward as per [17]. We will
address the investigation of more architectures under discus-
sion to improve the result of this work.

3.3 Performance Analysis

We only consider to capture the spatial nature of the archi-
tecture, hence we will implement a hook to capture the result
after forwarding the input through the convolution layers (this
will be called graph embedding from hereon) after data passes
through the spatial layer. The algorithm for the perturbation
of the input can be described by the following pseudo-code:

Algorithm 1 Perturb Adjacency Matrix by Percentage

Require: the adjacency matrix,
removing edge percentage
1: number_of_edges < (count from the adj_matrix)
2: num_add < int(current_edges x add_percentage)
3: num_remove < int(current_edges X remove_percentage)

adding edge percentage,

4: add_edges(adj_matrix, num_add)
remove_edges(adj_matrix, num_remove)

w

The retained result after passing the input through the feed-
forward of the spatial layer will be a tensor in the following
format, corresponding to the size of the output argument in

the convolution layer:
Shape(X) = [N, Foutput]

where N stands for number of nodes, and F' stands for num-
ber of output layer in the convolution layer.

/\//\

H = ReLU(AXW)

G=F(H)

Figure 3: Hook to capture graph embedding

Overall, we represent A as graph embedding before the in-
put graph being perturbed, while B is the graph embedding
of the perturbed input graph (further discussion and algorithm

can be found in 4. With this, we have two options to compute
the similarity score between embeddings:

1.
A-B
Cosine Similarity = cos(f) = —————
¥ =0 = T
Where: - A - B is the dot product of vectors (graph em-
bedding) A and B. - ||A|| is the magnitude (or norm) of
vector A. - ||B|| is the magnitude (or norm) of vector B.
The result will range from -1 to 1, with 1 means two em-
beddings are identical (¢ = 0), 0 means no similarity and
-1 indicates exact opposite between two embeddings.

2.
d(A,B) = Z(Ai — B;)?
i=1
Where: - A = (Ay, A, ..., A,) is the first point. -
B = (B;,Bs, ..., B,) is the second point. - A; and B;

are the coordinates of A and B respectively. The result
will not be normalized as we are also interested in the
difference of scales between different architectures. The
larger the result, the greater the difference between two
embeddings.

Each metric provides distinct information about the graphs.
Cosine similarity captures the angular similarity between vec-
tors, Euclidean distance measures the positional difference in
the embedding space. Each metric has its own advantages
and disadvantages. Therefore, we will include both to com-
prehensively assess the stability properties of the graph em-
bedding before and after perturbation.

After capturing the stability property of each architecture,
the data then passes through the pipeline to compute the eval-
uation RMSE score as traffic forecasting problem has learn-
ing task as node regression

Where: - n is the number of observations. - y; represents
the actual values. - g; represents the predicted values.

3.4 Comparison Analysis

The end result will be compared with the achieved RMSE
score, and the increased percentage of the perturbation ratio
to baseline models to determine which model can perform
better under stochastic perturbation.

4 Experiments

In the following section, we display a series of experiments
based on the methodology outlined in Chapter 3. Our aim
is to describe the experiment process further to estimate the
performance of all architectures under investigation. The fol-
lowing diagram shows the visualisation for the pipeline used
in this experiment.
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Figure 4: Visualisation of the experiment pipeline

4.1 Dataset

We conduct experiments on the real-world large-scale
datasets collected by California Transportation Agencies
(CalTrans) Performance Measurement System (PeMS) called
PEMS-BAY. 325 sensors were selected in the Bay Area and

collected 6 months of data ranging from Jan 1st 2017 to May
31th 2017 for the experiment.
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Figure 5: PEMS-BAY visualization [16] of 325 sensors distributed
across California

In this dataset, the data preparation varies for each model
due to the different data shapes required by each architec-
ture. Despite these variations, we consistently employ the
same methodology for sanitizing and normalizing the data, as
outlined by [15], which serves as a standard procedure across
all models. The total number of observed traffic data points
is 16,937,179.

The dataset is aggregated traffic speed readings into 5 min-
utes windows, and apply Z-Score normalization. 70% of data
is used for training, 20% are used for testing while the re-
maining 10% for validation. To construct the sensor graph,
we compute the pairwise road network distances between

sensors and build the adjacency matrix using thresholded
Gaussian kernel.

exp (
0

where W;; represents the edge weight between sensor v; and
sensor v, dist(v;, v;) denotes the road network distance from

sensor v; to sensor v;. o is the standard deviation of distances
and « is the threshold.

diSt(’Ui ,Vj )2
-

) if dist(v;, v;) < K,
otherwise

Wij =

4.2 Experimental Setup

Each of the architecture required a separate way for preparing
the input dimension for the learnable components, as well as
different ways to interpret the stability score. Consequently,
we will present the results in various formats (e.g., graphs,
box plots) with different shapes and sizes, however, with the
end goal of ensuring that the results are comprehensible.

A3TGCN and A3TTAG

The architecture has a spatial capturing mechanism at every
time step X; through a T-GCN model [22] that first capture
both the spatial and temporal information of the data, then
leverage the use of attention mechanism to detect pattern in
the concatenated temporal and spatial space. Within the T-
GCN model, we can place a hook at the GCN layer which
handles the spatial capturing information.

GRU —» GRU —» GRU —» GRU

i Temporal Feature 31

e

Prediction

Figure 6: TGCN architecture [22], we will concentrate on the GCN
layer, which is responsible for capturing spatial information.
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Figure 7: A3T-GCN architecture [24] visualisation, with concatena-
tion of TGCN layers before passing through the attention model

The difference between A3TGCN and A3TTAG is in the
spatial feature capturing mechanism, as we will replace GCN
with TAGNET to evaluate the difference between these two
architectures.

The data is prepared using the pytorch geometric temporal
library, with the shape of the input described as

X ¢ R45000><325><212

, and the output (prediction or ground truth) as

45000%x325x 12
Yprediction or ground truth ER



GMAN

Graph Multi-Attention Network [23] leverages the use of at-
tention mechanism in GATConv in both spatial and tempo-
ral capturing domain. It follows a encoder-decoder structure,
which consists of L (L € N*) Spatial-Temporal Attention
Block (STAtt). Each of this STAtt block contains gated fu-
sion of spatial and temporal attention layers. A transform
attention layer is implemented between the encoder and de-
coder to convert the encoded traffic features for the decoder.
Spatio-temporal embedding (STE) is used to integrate the in-
put graph and time information into multi-attention layers.
More detail can be found below with the inlustration of the
architecture.
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Figure 8: We will focus on the spatial capturing mechanism of the
model [23], which happens in a STAtt block. A hook will be im-
plemented to extract the spatial attention described here, in both en-
coder and decoder. The result will be averaged over 12 time steps
and visualized.

GMAN is different than A3TGCN and A3TTAG especially
in the data prepration step, as the architecture requires to
perform node2vec approach to learn the vertex representa-
tions. In additionally, to simultaneously train the pre-learned
vectors (obtained after applying node2vec) with the whole
model, they will be fed into two-layer fully-connected neural
network to concatenate the initial spatial and temporal em-
bedding. Only then we obtain the STE input for the architec-
ture, the input can be represented as e, € RP. Hence, for
the data prepration step, we will first perturb the input graph
using the algorithm specified in 3, then perform the node2vec
incorporating with the two-layer fully connected neural net-
work to attain STE. The reason why we will not study the
effect of node2vec result (the initial Spatial Embedding) is
the perturbation property of this graph embedding technique
is well studied in [20], hence our main interest will be spatial
attention mechanism in the inner structure of GMAN archi-
tecture.

4.3 Result

Peformance Analysis

Both A3TGCN and A3TTAG architectures show a high per-
sistent to stochastic perturbation, while it is not the case for

GMAN. The outcomes will be demonstrated by applying per-
turbations of 1% and 10%, as we can demonstrate meaningful
observation with only two perturbation ratios as shown below.
The similarity scores are depicted using both a histogram and
abox plot, illustrating the overall distribution in the histogram
and showing the similarity score for each of the 12 time steps
in the boxplot.

A3TGCN
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Figure 9: Perturbation score of cosine similarity with 1% removing
and adding edges
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Figure 10: Perturbation score of cosine similarity with 10% remov-
ing and adding edges

As it can be seen from several perturbation iterations, the
graph embedding similarity scores of cosine similarity are
consistent, with the fluctuations are shown to be minor, rang-
ing from 0.98 to 1 (highly stable)

This conclusion also comes with the euclidean distance:
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Figure 11: Perturbation score of euclidean distance with 1% re-
moving and adding edges
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Figure 12: Perturbation score of euclidean distance with 10% re-
moving and adding edges

The similarity score of eucledian distance following with
cosine similarity fluctuates only around 0.75 and 1.5, display-
ing a high stability property in both metric scores.

A3TTAG
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Figure 13: Perturbation score of cosine similarity with 1% remov-
ing and adding edges
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Figure 14: Perturbation score of cosine similarity with 10% remov-
ing and adding edges

The graph embedding similarity scores of cosine similarity
are pertained, with the fluctuations are shown to be minor,
ranging from 0.994 to 1 (highly stable). This conclusion how-
ever, differs with the euclidean distance, unlike to A3TGCN:
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Figure 15: Perturbation score of euclidean distance with 1% re-
moving and adding edges
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Figure 16: Perturbation score of euclidean distance with 10% re-
moving and adding edges

The similarity score of euclidean distance differs signifi-
cantly for A3TTAG, which fluctuates around the region of
5 and 23, following with cosine similarity fluctuates only
around 0.75 and 1.5, displaying a high stability property in



only cosine similarity metric scores. The result shows a dis-
parity in the stable property of A3TTAG, and can be inter-
preted as the domain capturing of A3TTAG is different in how
the scale (as shown in the eucledian score above) of graph
embedding passing through the spatial feature.

GMAN

GMAN, compares to the first two architectures, displays a
high unstable property in both metrics

Histogram for Esch Time Step re step.

Figure 17: Perturbation score of cosine similarity with 1% remov-
ing and adding edges
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Figure 18: Perturbation score of cosine similarity with 10% remov-
ing and adding edges

In the case of 1% perturbation, the result ranges between
0.25 and 0.45, while for 10% perturbation, it ranges from
0.25 to 0.35. This significant difference in cosine similarity
scores highlights substantial disparities in the spatial embed-
dings between perturbed and non-perturbed graphs within the
GMAN architecture.

Figure 19: Perturbation score of euclidean distance with 1% re-
moving and adding edges

Figure 20: Perturbation score of euclidean distance with 10% re-
moving and adding edges, the histogram result is truncated for the
scale is above 100, hence the y column should be ranging from 100
to 600, correspondingly with the boxplot result.

For the Euclidean similarity score, the disparity increases
notably, and the variance among the time steps also differ.
With 1% perturbation, the scores vary from 50 to 250 across
different time steps, indicating highly unstable scaling output.
In contrast, with 10% perturbation, the scores range from 300
to 600, showing a significant increase compared to the 1%
perturbation. These frequency ranges highlight the unstable
nature of the spatial attention mechanism within the GMAN
architecture

Comparison Analysis

To improve the illustration of the connection between the per-
turbation ratio and each model’s final output performance, we
add a 5% perturbation to the equation. The results show that
A3TGCN and A3TTAG perform better than GMAN under
stochastic edge perturbation. On the other hand, GMAN per-
forms better at baseline than these two architectures. An il-
lustration can be found in figure 21

Performance Comparison

—e— GMAN
—8- A3TGCN

—a— A3TTAG

--- Baseline (GMAN)

--- Baseline (A3TGCN)
--- Baseline (A3TTAG)

performance
=
5

6

/(__

1% perturbation

4

5% perturbation
Iterations

10% perturbation

Figure 21: Performance comparison with RMSE scores between 3
architectures

Concluding from the Performance Analysis and RMSE
score, we can show that for which architecture stable under
which metric.

5 Responsible Research

This study utilizes traffic information through sensors that
only capture speed and number of vehicles, without further
information. Our findings are ensured to be reproducible with
a functional personal computer (regardless of running time).
In Section 5.1, we discuss the ethical considerations involved



Metric A3TGCN A3TTAG GMAN
Cosine Similarity Y Y N
Euclidean Distance Y N N
RMSE score Y Y N

Table 1: Interpretation and Comparison of the result achieved from
analyzing three architectures. [Y] means Yes, indicating that the
score is stable under 10% of max perturbation, while [N] means No,
indicating that the score is unstable under 10% of max perturbation.

in the usage of traffic dataset such as PEMS-BAY. Addition-
ally, Section 5.2 elaborates on the reproducibility of our re-
search results and implementation. Furthermore, all models
and codes have been cited, and credits have been given to the
authors of the original works under Creative Copyrights.

5.1 Scientific Integrity

The PEMS-BAY dataset [15] only captures the speed and
number of vehicles with 325 sensors, the data is anonymous
hence poses no risk of leaking personal information, as the
sensors did not capture datas in videos format nor personal
vehicles’ license plates. Furthermore, the data of the PEMS-
BAY is a standard traffic forecasting dataset that contain no
subjective metadata of traffic passing through 325 sensors,
hence it is assumed that there exists no bias in the dataset.

5.2 Reproducibility

The methodology and algorithm in Section 3 are descrip-
tive for the approach that we derived for the results, and,
we publicly open-source the code on Github. In addition-
ally, the architecture of A3TGCN and A3TTAG are imple-
mented with the standard pytorch geometric temporal library,
which is well documented and intuitive to understand and fol-
low, more information can be found at [17]. The results have
been achieved by running the experiments 10 times to detect
if there is any significant change.

6 Discussion

This chapter discusses the findings as well as author’s inter-
pretation of the result, furthermore made some hypothesis as
intitial step for further research in this field.

6.1 Possible explanation for why A3TGCN and
A3TTAG performed better than GMAN

This finding in figure 21 implies that the A3T-GCN/TAG
models successfully preserve the spatial-temporal embed-
dings of node features by using multi-layer perception to pro-
duce context vectors, as shown in Figure 7. As a result, when
assessing new inputs, the vector data of the input is the only
thing that is considered, making the graph’s topology infor-
mation unimportant for evaluation after training. To com-
pute the final result, however, GMAN heavily depends on
both spatial and temporal embeddings at each input step (see
figure 8), indicating its dependency on node feature proper-
ties and graph topology. This argument can be made to re-
search a multi-model that can perform well under both normal
conditions and fault-prone environment, as the base score of

GMAN is superior compared to A3STGCN and A3TTAG, but
deteriorate significantly after a small percentages of stochas-
tic perturbation.

6.2 Interpretation of the relationship between
similarity metrics

The result from Table 1 however draws no correlation be-
tween spatial embedding between cosine similarity and eu-
clidean distance to RMSE score. We argue that cosine simi-
larity of the spatial embedding is a better metric to determine
the final performance of the model under perturbation as both
A3TGCN and A3TTAG display a superior performance com-
pare to GMAN under stochastic perturbation. However, fur-
ther research may be needed as more architectures should be
investigated to conclude with a higher confidence level. This
raises up a better investigation into multi-model traffic fore-
casting, as some model can perform significantly better under
stochastic perturbation, and can be a mean to better increase
the prediction of fault-prone data.s

7 Conclusions and Future Work

We have summarized the importance of stability research and
examined the body of work that has already been done in
this area. Our conversation emphasizes the necessity of cre-
ative methods in stability analysis to fill in the gaps and over-
come the difficulties that the field is currently facing. We
then looked into the stability of various architectures’ spatial
embeddings under stochastic edge perturbation for node re-
gression, solving Traffic Forecasting problem through PEMS-
BAY dataset. In conclusion, we presented a comparative
analysis of each model’s overall performance and made pre-
liminary findings regarding the connection between spatial
graph embeddings and overall graph performance following
the stochastic perturbation. Although there is a lack of prior
research on the relationship between spatial embedding and
overall graph performance, our analysis has revealed signifi-
cant differences in model performance, and display that some
models are superior under stochastic perturbation. For fu-
ture work, to fully comprehend the relationship between spa-
tial embedding and overall graph performance, more models
and settings should be investigated. Finally, future research
could investigate possibilities of a multi-model traffic fore-
casting architecture, as real-data is fault-prone, if the respon-
sible person detects there exists a failure in sensor, or stream-
ing data which passing through experiences data corruption
after a certain threshold, a more fault-tolerance model should
be used instead.
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