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Featured Application: Lattice fracture analysis for various loading and boundary conditions,
calibration and validation approaches for numerical modeling.

Abstract: The lattice fracture model is a discrete model that can simulate the fracture process of
cementitious materials. In this work, the Delft lattice fracture model is reviewed and utilized for
fracture analysis. First, a systematic calibration procedure that relies on the combination of two uniaxial
tensile tests is proposed to determine the input parameters of lattice elements—tensile strength,
compressive strength and elastic modulus. The procedure is then validated by simulating concrete
fracture under complex loading and boundary conditions: Uniaxial compression, three-point bending,
tensile splitting, and double-edge-notch beam shear. Simulation results are compared to experimental
findings in all cases. The focus of this publication is therefore not only on summarizing existing
knowledge and showing the capabilities of the lattice fracture model; but also to fill in an important
gap in the field of lattice modeling of concrete fracture; namely, to provide a recommendation for a
systematic model calibration using experimental data. Through this research, numerical analyses
are performed to fully understand the failure mechanisms of cementitious materials under various
loading and boundary conditions. While the model presented herein does not aim to completely
reproduce the load-displacement curves, and due to its simplicity results in relatively brittle post-peak
behavior, possible solutions for this issue are also discussed in this work.

Keywords: lattice fracture model; fracture process; concrete; slenderness; size effect

1. Introduction

Understanding the fracture behavior of cementitious composites is important when assessing
material properties and ensuring structural safety [1,2]. In the past decades, a growing number
of robust and reliable models, focused on fracture analysis, have been used in the literature [3,4].
These models can be briefly grouped as the continuum, piece-wise continuum, and discrete models [5].
Continuum models, such as finite element models, usually regard the displacement field as continuous
and differentiable and simulate cracks in an average or smeared sense [6]. Limited by a small number
of discontinuities assumption, this numerical method cannot encompass the entire fracturing process,
i.e., crack initiation and propagation [7,8]. Based on the linear elastic fracture mechanics, piece-wise
continuum models are proposed to simulate the crack propagation process through a pre-existing
stress-free crack. However, in such models, the cracks are always aligned with the inter-element lines.
Also, both the continuum and piece-wise continuum models have difficulties in the singularity-related
issue since fracture patterns comprise various cracks, including the main crack with different branches,
secondary cracks, and micro-cracks.
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As an alternative method, discrete models with full discontinuity have emerged for fracture
analysis of cementitious materials [7]. Lattice model is one of such discrete models in which
both heterogeneity and discontinuity in cementitious materials can be incorporated [9] as well as
avoidance of singularity-related issues [10]. The lattice numerical method dates back to the work
of Hrennikoff [11]. Successive developments for this method can be found in the literature [12–20].
In general, three categories of the lattice model can be distinguished [14–18,21–27]:

(1) The lattice beam network model (LBM), also known as Delft lattice fracture model, was
proposed by Schlangen and van Mier [18] to overcome the drawbacks of discrete and smeared crack
finite element models and explain the fracture mechanism for cementitious materials.

(2) The lattice discrete particle model (LDPM), developed by Cusatis et al. [14,15,22], is a synthesis
of the confinement shear model and discrete particle model. This model simulates the fracture process
by modeling the mechanical interaction of adjacent coarse aggregate pieces; it can explicitly represent
a coarser fraction of aggregate in large structural applications.

(3) The lattice spring model (LSM), which is based on the concept of a rigid-body-spring model [28],
simulates the interaction between pairs of particles, or the motion of the particles by springs. The LSM
has been applied to modeling three-dimensional cementitious materials and structural systems [29–31]
under static, fatigue, and dynamic loadings.

After the pioneering work by Schlangen [32], a series of 2D numerical analyses were performed
for fracture analysis of cementitious materials using LBM, including the uniaxial tensile test, uniaxial
compressive test [32,33], three-point bending test [34], four-point shear test [32], Nooru-Mohamed test
and Pull-out test [18,32]. Owing to the wide application of LBM for fracture analysis, a comprehensive
summary work on the lattice model is necessary. Recently, two literature studies [35,36] reviewed
the different types of lattice model with regards to theory, development, application and perspective,
clearly showing that some coefficients in LBM are user-defined and inconsistent under different
numerical analysis. It is therefore not surprising that numerical analyses through the use of consistent
input parameters are still necessary.

With the development of computational techniques, the LBM has also been extended to 3D [37,38],
thereby providing a more realistic representation of the fracture analysis. Producing realistic crack
patterns is crucial to analyze the material physical and mechanical properties over the service life. In this
research, 3D numerical analyses were conducted to simulate realistic fracture processes. Specifically, a
systematic calibration procedure using experimental data was conducted for parameter determination
in LBM and the corresponding validations were then performed to simulate fracture of cementitious
materials subjected to various loading and boundary conditions.

This study firstly reviews model discretization, element type and failure criterion of LBM. Next,
a systematic calibration procedure using two uniaxial tensile experiments is utilized for parameter
determination. Then, the procedure is validated by simulating concrete fracture under complex
loading and boundary conditions: uniaxial compression, three-point bending, tensile splitting, and
double-edge-notch (DEN) beam shear. For simplicity of the calibration and the validation process,
two assumptions are made: The material is regarded as homogeneous and brittle-linear constitutive
relationship is utilized.

2. Modeling

In the LBM used herein, the continuum is first discretized by a network of Timoshenko beam
elements. Timoshenko beam was utilized to account for shear deformation, considering the ratio
between length and cross-section of the beam element to be low. Specifically, the domain was divided
into several cubic cells. Then, a sub-cell was defined within each cell and the lattice nodes were
randomly placed in each sub-cell using a random number generator. A parameter, defined as the ratio
between the length of sub-cell and cell, was used to represent the randomness of the mesh. In order
to avoid large variations in element length and introduce geometry disorder of material texture,
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randomness of 0.2 was adopted in the following analyses in this paper. The final lattice network was
generated through Delaunay triangulation, see Figure 1.
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Figure 1. (a) Schematic view of LBM (lattice beam network model) generation; (b) node and mesh
generation procedure using Delaunay triangulation. Reproduced from [20]. Copyright 2018, Elsevier.

Then, a series of linear elastic calculations were conducted for the stress distribution among lattice
elements under prescribed loading and boundary conditions. Normal force and bending moment were
taken into account for the element stress calculation.

σ = αN
F
A

+ αM

(
|Mi|,

∣∣∣M j
∣∣∣)

max

W
(1)

W = πD3/32 (2)

where F is the normal force for the lattice beam element, A is the element cross-sectional area, and W
is the cross-sectional factor for bending resistance, as indicated in Equation (2) (D is the diameter of
the lattice element). The coefficients αN and αM are the normal force factor and the bending influence
factor, determining the final failure mode in which either normal force or bending moment play a
dominant role.

The αN is commonly adopted as 1.0 [21,39,40]. However, publications on bending influence factor
determination are scarce. Several researchers use the aforementioned fracture criterion but the αM

value varies from the material type and experimental conditions in their publications [19,32,38,39,41].
Because of the inconsistency of αM, the value was determined through a systematic calibration approach
in this work.

In LBM, for each step of the analysis, loading was increased until exactly one element reached
a stress equivalent to the assigned compressive/tensile strength. This element was defined as the
critical element and removed from the system. The removed element determined crack initiation and
propagation as well as load-displacement response. Then, the lattice network was updated and relaxed
and the loading procedure was repeated until the system reached the pre-determined failure criterion
(e.g., load or displacement).

In terms of computational effort, parallel computing technique, operating on multicore computer
or clusters was integrated into the LBM, which significantly decreased computation efforts, making
its application to model large-scale structures and/or when a considerable number of elements is
needed possible.

More details on the lattice fracture model are available in the literature [41]. Building upon this
literature, the 3D lattice fracture model was revisited here and relevant fracture analyses can then be
implemented by using the input parameters proposed in this study.
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3. Calibration

In order to simulate the crack initiation and propagation during fracture of cementitious materials,
attention should be paid to the determination of input parameters. Recently, research concerning
the calibration and validation in LDPM [42,43] shows great success in lattice modeling. LBM input
parameters necessary for fracture simulation are described below, together with their effect on the
macroscopic model response.

• Elastic modulus, E, and shear modulus, G, govern the response in the elastic regime. In LBM,
the Poisson’s ratio is determined by the randomness. Based on the 0.2 randomness, the Poisson’s
ratio of 0.18 is derived in the study.

• Tensile strength, f t, and compressive strength, f c, of lattice elements govern the macroscopic
strength of the model. In this paper, the compressive strength of the lattice element is assumed as
10 times higher than the tensile strength, considering the fact that cementitious materials have a
higher resistance to the compressive loading than tensile loading [3].

• Normal force factor, αN, and bending influence factor, αM, govern the crack pattern.
The macroscopic model response, including the elastic regime and softening part, is also influenced
by these two factors. In this paper, the αN is set to 1, which is in line with the literature [18,32,44].
The αM is determined through the calibration procedure that follows.

A calibration procedure that relies on a combination of two uniaxial tensile tests is proposed
to determine input parameters of lattice elements—tensile strength, compressive strength, elastic
modulus, and αM. The calibration procedure proposed in Figure 2 was used for determining these
input parameters. Herein, the uniaxial tensile test performed by van Vliet and co-authors [45] was used
for parameter calibration. In their experiments, uniaxial tensile tests of dog-bone specimens of different
sizes with rotating boundaries were performed. A special hinge construction was developed to ensure
the free rotations of specimens in two orthogonal directions and the point of rotation is situated exactly
at the glue layer between the specimen and the loading platen. To model this loading boundary,
the displacement in the vertical direction was fixed and applied as prescribed displacement in the
simulation. Detailed information about the sample size can be found in Figure 3a and Table 1. In the
experiment, linear variable displacement transducers (LVDTs) with a measuring length of 60 mm were
placed on both the front and the back sides of the two specimens specified in Table 1. In the numerical
analysis, the measured displacement can be obtained by recording the vertical displacements of node
A and node B (see Figure 3b).

Table 1. Detailed information about the specimens.

Model D (mm) R (mm) t (mm) Cell Size (mm)

No.1 50 36.25 100 2.5
No.2 100 72.5 100 2.5

Following the calibration flowchart, the local mechanical property E, f c, f t and αM can be calibrated
by fitting the load-displacement curve for these two models. The best-fitting results are shown in
Table 2. Figure 3b,c show the numerical and experimental crack patterns for the final failure mode
with regards to the uniaxial tensile test in dog-bone shape and Figure 3d shows a comparison between
the experimental and numerical results. The numerical results agree well with the experimental results
before the peak load. After the peak load, the numerical results show more brittle behavior compared
to the experimental data. Concerning the crack patterns, a typical failure mode can be found and the
main crack occurs in the middle of the specimen, which agrees well with the experimental results [45].
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Table 2. Values of input parameters in the numerical analyses.

E (GPa) f c (MPa) f t (MPa) Cell Size (mm) αM αN Poisson’s Ratio

45 45 4.5 2.5 0.05 1 0.2
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After calibration, the value of the bending influence factor (αM = 0.05) was derived based on
two computational uniaxial tensile tests. This calibrated value for αM is the same as the frequently
utilized value in the previous research [32,39,44]. In the next section, validation was performed to
verify whether this value can provide correct crack patterns and load-displacement response under
different loading and boundary conditions [46].

4. Validation

In this section, other loading configurations namely, uniaxial compressive test [47], splitting tensile
test [48], three-point bending test [49], and DEN beam shear test [32] are simulated to validate the
obtained αM and evaluate the LBM performance for fracture analysis.

4.1. Uniaxial Compression Test

Uniaxial compressive test conducted by Shafieifar et al. [47] was used for the validation of fracture
analysis under compressive loading. In the experiment, cubic samples with size 50 mm× 50 mm× 50 mm
were subjected to compressive loads actuated by two steel plates at opposite faces of the cube. To model
this loading boundary, x and y displacement were restrained and the prescribed displacement was
applied along with z-direction (Figure 4a,b). The element mechanical properties E, f c, and f t can also
be calibrated by fitting the experimental stress-strain curve, as shown in Table 3.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 27 

4. Validation 

In this section, other loading configurations namely, uniaxial compressive test [47], splitting 

tensile test [48], three-point bending test [49], and DEN beam shear test [32] are simulated to validate 

the obtained M  and evaluate the LBM performance for fracture analysis. 

4.1. Uniaxial Compression Test 

Uniaxial compressive test conducted by Shafieifar et al. [47] was used for the validation of 

fracture analysis under compressive loading. In the experiment, cubic samples with size 50 mm × 50 

mm × 50 mm were subjected to compressive loads actuated by two steel plates at opposite faces of 

the cube. To model this loading boundary, x and y displacement were restrained and the prescribed 

displacement was applied along with z-direction (Figure 4a,b). The element mechanical properties E, 

fc, and ft can also be calibrated by fitting the experimental stress-strain curve, as shown in Table 3. 

 
 

(a) (b) 

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

S
tr

es
s 

(M
P

a)

Strain (‰)

 Experiment

 Simulation

a b

 
(c) 

Figure 4. Uniaxial compressive test (a) crack pattern at a point, (b) crack pattern at b point (red-

cracked element), (c) stress-strain response. 

Table 3. Values of input parameters in the numerical simulation of the uniaxial compressive test. 

E (GPa) fc (MPa) ft (MPa) Cell Size (mm) M  N  Poisson’s Ratio 

15.7225 90 9 2.5 0.05 1 0.2 

Figure 4. Uniaxial compressive test (a) crack pattern at a point, (b) crack pattern at b point (red-cracked
element), (c) stress-strain response.



Appl. Sci. 2020, 10, 4822 8 of 25

Table 3. Values of input parameters in the numerical simulation of the uniaxial compressive test.

E (GPa) f c (MPa) f t (MPa) Cell Size (mm) αM αN Poisson’s Ratio

15.7225 90 9 2.5 0.05 1 0.2

Figure 4a,b show the crack patterns under uniaxial compressive loading in different stages and
Figure 4c shows a comparison between the experimental and numerical results. Due to the local
confinement near the boundaries provided by friction of the loading platens (zones 1 and 2 in Figure 4a),
the cone-shaped inner part of the specimen remained uncracked. A majority of cracks initiated from
areas marked as 3 and 4. This numerical result shows the same tendency as experiments [47].

According to previous research [4,50], the slenderness and boundary conditions significantly
influence the crack pattern and load-displacement curve of concrete subjected to uniaxial compressive
loading. To understand their influence, the relevant numerical analyses were performed. The input
parameters used are listed in Tables 3 and 4. Figure 5 shows the typical crack patterns for the specimens
under uniaxial compressive loading from the experimental and numerical perspectives. For the
high friction boundary condition, the cone shape inner parts of the specimens remained uncracked.
For taller specimens, the boundary restraint influenced less. As a result, the cracks mainly occured in
the middle zone of the specimen and less cracking occured in the area close to the top and the bottom
surface. This explains the fact that simulations of samples with decreasing slenderness show higher
load-carrying capacity.

Table 4. Values of input parameters in the numerical analyses about slenderness and
boundary conditions.

Mode Size (mm ×mm ×mm) Slenderness Boundary Condition

No.1 50 × 50 × 25 0.5
high frictionNo.2 50 × 50 × 50 1

No.3 50 × 50 × 100 2

No.4 50 × 50 × 25 0.5
low frictionNo.5 50 × 50 × 50 1

No.6 50 × 50 × 100 2
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For the low friction boundary condition, the failure mode was characterized by localized cracks
which were almost parallel to the applied load. Specifically, a large number of elements in the upper
and lower surfaces were broken. In contrast, for the high friction boundary condition, the failure
mode was characterized by inclined cracks that left the simulated sample ends almost undamaged.
Furthermore, for low friction boundary conditions, many micro-cracks occured on the top and bottom
area during the fracture process. This is in agreement with experimental observations [4].

In Figure 6a,b, the stress-strain curves with different slenderness and boundary conditions are
plotted. For the high friction boundary condition, the slenderness significantly influenced the peak
load. Specifically, increasing slenderness resulted in lower strength and lead to more brittle softening
behavior. For the low friction boundary condition, increasing slenderness showed less influence on the
peak load but resulted in a more brittle softening part behavior. According to the numerical results,
high friction boundary condition provided a higher bearing capacity than the low friction boundary.
This can be explained by the cohesion in the boundary which constrains the lateral deformation and
improved the load-bearing capacity. The numerical results are in accordance with the literature [4].
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boundary. This can be explained by the cohesion in the boundary which constrains the lateral 
deformation and improved the load-bearing capacity. The numerical results are in accordance with 
the literature [4]. 
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Figure 6. (a) Stress-strain curve for high friction boundary condition, (b) stress-strain curve for low 
friction boundary condition. 

Figure 6. (a) Stress-strain curve for high friction boundary condition, (b) stress-strain curve for low
friction boundary condition.
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4.2. Tensile Splitting Test

Brazilian splitting tests conducted by Bažant et al. [48] were simulated in this section. In their
experiments, cylindrical specimens with different diameters D (19 mm, 38 mm, 76 mm, 152 mm) are
tested. The thickness of the specimens was kept constant (B = 51 mm), as shown in Figure 7a. Since the
loading condition is not specified in this publication, an assumption that the specimens are loaded
through steel loading platens is made herein. In the numerical analysis, the prescribed displacement
was applied to the vertical direction and the displacements in other directions were set to 0 to model
the experimental loading condition, as shown in Figure 7b. In this section, the input parameters in
Table 5 were calibrated by fitting the peak load of the experimental sample with a diameter of 38 mm.
Specimens of other sizes were utilized to evaluate the LBM ability on tensile splitting fracture analysis.
Furthermore, since the publication only provides tensile splitting strength rather than the whole stress
displacement curve, the elastic modulus was assigned as 25 GPa without calibration.
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Table 5. Values of input parameters in the numerical analyses about the tensile splitting test.

E (GPa) f c (MPa) f t (MPa) Cell Size (mm) αM αN Poisson’s Ratio

30 100 10 2.5 0.05 1 0.2

Figure 8a reports the nominal stress, defined as 2P/(πBD), versus displacement curves obtained
by the numerical analyses. The peak load of the nominal stress was the tensile splitting strength.
The peak nominal stress for splitting tensile test decreased as the size increased. It can be observed
from Figure 8b that the numerical results agree well with experimental results for specimens with
diameters ranging from 19 to 152 mm. Note that the numerical result for the digital specimen with a
diameter of 19 mm showed lower strength than the experiment, which is attributed to the relatively
large element size compared to specimen size and boundary condition. Specifically, the cell size
(2.5 mm) was utilized to avoid size effect, nevertheless mesh size was not enough to produce accurate
calculations. To model the loading condition of the experiments, a displacement was prescribed in the
vertical direction at the nodes belonging to the loading area in the simulation. Due to the influence of
cell size, for the smallest digital sample, with diameter of 19 mm, it was difficult to apply the load with
the same width as others. Therefore, stress concentration may have occurred in the smallest modeled
sample, resulting in a lower simulated strength. For the specimen with a diameter equal to 152 mm,
LBM overestimated the experimental strength, which was induced by the different failure mechanisms.
Specifically, in the experimental campaign, most samples failed due to a splitting crack initiating in the
center of the specimen, while for the specimen with a size of 152 mm, there was significant damage
underneath the loading platen [48]. For the numerical procedure, all models followed a comparable
crack pattern. Yet accurately, some micro-cracks occured within the loading area, and then a splitting
crack initiated in the center of the model and propagated to the top and bottom boundaries. Finally,
the modeled sample gradually lost the capacity to bear the load. Thus, the deviation for the largest
model can be well explained by the different types of dominant cracking modalities.
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Figure 8. (a) Comparison between numerical results and experimental results, (b) typical stress-
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Figure 8. (a) Comparison between numerical results and experimental results, (b) typical
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4.3. Three-Point Bending Test

4.3.1. Size Effect

Three-point bending tests performed by Xu et al. [49] are simulated in this section to evaluate the
LBM ability on flexural fracture analysis. Their research examines the size effect on the fracture response
of concrete. These experimental samples, defined as large, medium, and small, are characterized by the
span equal to 160 mm, 280 mm, and 400 mm, respectively, and the height equal to 40 mm, 70 mm, and
100 mm, respectively. All specimens have the same thickness and notch length to beam depth ratio
equal to 0.4. During the experiment, the crack mouth opening displacement (CMOD) was measured to
record the crack width. The mesh used in LBM is given in Figure 9a.
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Figure 9. (a) Geometry of three-point bending test specimen, (b) the comparison between 
experimental results with numerical results for three-point bending test, (c) crack pattern for the 
three-point bending test (red-cracked element; deformations have been scaled for clarity) 

The input parameters including E, fc, and ft were calibrated by the best fitting of the Load-CMOD 
curve for the medium specimen and can be found in Table 6. Regarding crack patterns, a typical 
failure mode for a three-point bending test can be found in Figure 9b. A single localized crack started 
from the notch and propagated to the upper surface, which is the same as the crack pattern observed 
in the literature [49]. The crack pattern for the three model sizes was almost identical. This is in 
agreement with the experiments performed by Nallathambi et al. [52]. Also, Figure 9c shows that the 
numerical results agree well with the experimental ones before the peak load and are less satisfactory 
during the softening part. This deviation together with potential approaches are discussed in Section 
5. 
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Figure 9. (a) Geometry of three-point bending test specimen, (b) the comparison between experimental
results with numerical results for three-point bending test, (c) crack pattern for the three-point bending
test (red-cracked element; deformations have been scaled for clarity).

The input parameters including E, f c, and f t were calibrated by the best fitting of the Load-CMOD
curve for the medium specimen and can be found in Table 6. Regarding crack patterns, a typical failure
mode for a three-point bending test can be found in Figure 9b. A single localized crack started from
the notch and propagated to the upper surface, which is the same as the crack pattern observed in the
literature [49]. The crack pattern for the three model sizes was almost identical. This is in agreement
with the experiments performed by Nallathambi et al. [52]. Also, Figure 9c shows that the numerical
results agree well with the experimental ones before the peak load and are less satisfactory during the
softening part. This deviation together with potential approaches are discussed in Section 5.

Table 6. Values of input parameters in the numerical analyses about three-point bending test.

E (GPa) f c (MPa) f t (MPa) Cell Size (mm) αN Poisson’s Ratio αM

20 75 7.5 2.5 1 0.2 0.05
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4.3.2. The Influence of Notch Ratio

Three-point bending tests investigating the effect of notch length to beam depth ratio [52] are
simulated to evaluate the LBM ability to predict the flexural fracture behavior with respect to the
final crack patterns and load-displacement curve. The mechanical properties of lattice elements are
calibrated using the sample with the notch equal to 0.1 (Table 7). These specimens are characterized by
a span of 400 mm, height of 100 mm, and depth of 100 mm, respectively. The models with different
notch ratios used in their experiments are 0.05, 0.1, 0.3, and 0.5, respectively. The load is applied in the
middle of the top side and the vertical displacement is measured (see Figure 10a).

Table 7. Values of input parameters in the numerical analyses about notch ratio on three-point
bending test.

Model
Size Local Mechanical Property

Cell Size
(mm)

Notch
RatioSpan

(mm)
Height
(mm)

Depth
(mm) E f c f t

No.1

400 mm 100 mm 100 mm
E = 40 GPa
f c = 65 MPa
f t = 6.5 MPa

2.5 0.05
No.2 2.5 0.1
No.3 2.5 0.3
No.4 2.5 0.5

Figure 10b shows the final crack patterns for the numerical models with different notch ratios.
Regardless of the notch ratio, the same fracture behavior can be found, in which the initial crack occurs
from the top of the notch and propagates throughout the ligament until the system loses the bearing
capacity. A good agreement, in terms of the load-displacement curve before the peak load, was found
between the experimental and numerical results in Figure 10c. A clear deviation during the post-peak
still exists, with the model showing much more brittle behavior compared to the experiments.
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Figure 10. (a) Crack patterns for the smallest notch ratio, (b) crack patterns for the model with
different notch ratio (red-cracked element) (c) load and displacement curve for the models with different
notch ratio.

It is also worth mentioning that for models with different notch ratios, the crack patterns and the
corresponding displacement for the peak load did not change significantly, which is in accordance
with the experimental data [52].

4.4. Double-Edge-Notched Beam Shear Test

The DEN beam shear tests performed by Schlangen [32] were analyzed to simulate the pure shear
zone and produce a shear crack. An experimental sample with span of 400 mm, depth of 37.5 mm,
and height of 150 mm was simulated. The experiments were performed under two different boundary
conditions (fixed-supported and freely-rotating), which was achieved by mounting diagonal bars
to the loading frame in the experiments. The value of crack mouth opening displacement (CMOD)
and the crack mouth sliding displacement (CMSD) at the top and the bottom notch on the front of
the specimen was used as a feedback signal for displacement in the experiment (see Figure 11a,b).
In numerical analyses, the fixed-support was modeled with a constrain in x, y and z directions for
nodes on the lower surface, and in z-direction for the nodes on the upper surface while in x and y,
a prescribed load was applied with the ratio of 1:15 (Figure 11a). For freely-rotating supports, nodes in
the left support were constrained with respect to x, y and x directions, and nodes in the right support
were fixed in z-direction. Furthermore, the prescribed load was applied to the nodes on the upper
surface without any other constraints (Figure 11b). Furthermore, the loading area was utilized in the
numerical analyses to avoid stress concentrations below the loading points.
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double-curved cracks were arrested due to the new configuration of the horizontal forces in the 
model and stop from propagating further; then a splitting crack arose at the center of the beam and 
the system eventually failed, in which the final crack pattern in Figure 12a is the same as that observed 
in the experiment (see Figure 12b). Figure 12c shows the final crack patterns for the sample with free 
rotating supports. At the beginning, two cracks occurred and grew at both notches and propagated 
towards the respective opposite specimen sides. Then, one crack stopped propagating and the other 
one became dominant and continued until reaching the lower surface. The formed crack was a 
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Figure 11. Setup for DEN (double-edge-notch) beam shear test (a) fixed supports, (b) freely rotating.

Local mechanical properties of lattice elements were calibrated by the experiment with fixed
supports; the properties are given in Table 8. For fixed supports, both cracks continued to propagate
until they were arrested in the compression zone. Due to the limitation of horizontal support,
the double-curved cracks were arrested due to the new configuration of the horizontal forces in the
model and stop from propagating further; then a splitting crack arose at the center of the beam and the
system eventually failed, in which the final crack pattern in Figure 12a is the same as that observed in
the experiment (see Figure 12b). Figure 12c shows the final crack patterns for the sample with free
rotating supports. At the beginning, two cracks occurred and grew at both notches and propagated
towards the respective opposite specimen sides. Then, one crack stopped propagating and the other
one became dominant and continued until reaching the lower surface. The formed crack was a typically
curved crack that grew outside the shear zone and ended at the outer side of the middle support (see
Figure 12c), which is close to the experimental results (see Figure 12d).

Table 8. Values of input parameters in the numerical analyses about DEN beam shear test.

E (GPa) f c (MPa) f t (MPa) Cell Size (mm) αN Poisson’s Ratio αM

20 60 6 2.5 1 0.2 0.05
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Figure 12. (a) Crack pattern for fixed supports in numerical analysis, the deformation is enlarged for
better observation, (b) crack pattern for fixed supports in the experiment [32]. Reproduced from [32].
Copyright 1993, Delft University of Technology. (c) crack pattern for freely rotating in numerical
analysis, the deformation is enlarged for better observation (red-cracked element; deformations have
been scaled for clarity), (d) crack pattern for freely rotating in the experiment [32]. Reproduced from [32].
Copyright 1993, Delft University of Technology.

A comparison between the numerical and experimental load-displacement curve is plotted in
Figure 13 with high and low friction. The agreement between experimental and numerical results
is good up to the peak load. For the post-peak branch in the numerical analysis, the load increased
with the increased displacement, opposite to the experimental result for fixed boundary condition.
This can be explained by the fact that ideal (i.e., high friction) boundary conditions cannot be achieved
in the real experiments so that the load-displacement curve shows the decreasing tendency for the
softening part.
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5. Discussion

While the LBM is capable of simulating the fracture process of cementitious materials under
various loading and boundary conditions, relatively brittle post-peak behavior exists. Several potential
approaches for overcoming the post-peak brittleness have been proposed in the past [3]: (1) Considering
the material mesostructured explicitly in the simulations, as shown in Figure 14a; (2) using a multi-linear
constitutive relationship (instead of the typical elastic-brittle one), essentially considering material
softening at the elemental level, as shown in Figure 14b; (3) changing the removal mechanism of
“failed” lattice beams (i.e., not removing the element altogether in a single step, but first removing
its bending stiffness, essentially making it a truss element, and then the axial stiffness), as shown in
Figure 14c.
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Herein, these potential methods quantitively reflect the influence on post-peak behavior through
numerical analyses and the detailed input parameters can be found in Table 9. The model No.1 is
regarded as the reference model; in the model No.2, one element is removed by two steps as explained
before. Accurately, in the first step, the critical element degrading from a Timoshenko beam element
into a truss element loses the capacity to bear the torque and bending; in the second step, the truss
element is thoroughly removed and a crack path is recorded. The second step can simulate the friction
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of crack faces in a way; the model No.3 investigates the effect of a multi-linear constitutive relation.
To be specific, a multi-linear curve (in black) with five segments is utilized standing for the constitutive
relation and capturing its characteristics. The points are taken at: (1) Peak load; (2) point for which
stress is 70% peak load; (3) point for which strain is 0.5%; (4) point which the strain reaches 1.25%;
and (5) point for which the stress is 10% peak load. After the last point, the element is removed
from the system, representative for the crack in the system; model No.4 includes the mesostructured
procedure, in which coarse aggregate and interface elements are introduced for a realistic sample.
The corresponding material properties for different phases are listed in Table 9. The high friction
boundary condition is applied to all simulations.

Table 9. The input parameters for the numerical analysis.

Model Size mm Material Constitutive
Relation

Removal
Mechanism

Local Mechanical
Property Others

No.1 75
×

75
×

75

homogeneous brittle one step
Mortar: E = 30 GPa

f c = 270 MPa
Aggregate: E = 70 GPa

f c = 700 MPa
Interface: E = 3.5 GPa

f c = 20 MPa

Cell size: 2.5 mm;
Poisson’s ratio: 0.2;

αN = 1;
αM = 0.05;

No.2 homogeneous brittle two steps
No.3 homogeneous nonlinear one step
No.4 heterogeneous brittle one step

Figure 15 showcases the influence of material heterogeneity, multi-linear constitutive relationship,
and removal mechanism, clearly showing that their influence can contribute to the ductility and
completely reproduce the load-displacement curve of the experiments [3,54–56]. However, since these
factors significantly complicate the calibration process, the brittle-linear mechanical properties and
homogeneous material are utilized during the calibration and validation process. For completely
reproducing the load-displacement curves, an experimentally validated multi-scale modeling scheme
has recently been proposed by Zhang [57]. In his work, the constitutive relation of lattice elements is
derived from lower-scale (i.e., micro-scale) simulations or measurements. Based on the experimental
measurements of micro-scale sized specimens, micromechanical models for both the bulk cement
paste and the interfacial transition zone have been calibrated and validated under various loading
conditions [39,44,53,58]. This can offer reliable constitutive relations of local elements for mesoscale
models [40,59]. Together with the current work, it is possible to extend the multi-scale modeling scheme.
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6. Conclusions

In this paper, a systematic calibration procedure that relies on a combination of two uniaxial
tensile tests is proposed to determine input parameters of lattice elements—tensile strength, elastic
modulus, and αM. The procedure is then validated by simulating concrete fracture under different
complex loading and boundary conditions: Uniaxial compression, three-point bending, tensile splitting,
and double-edge-notch (DEN) beam shear. Simulation results are compared to experimental findings
in all cases and show the LBM capacity to simulate the fracture process of cementitious materials under
various loading and boundary conditions. While the post-peak behavior is brittle due to the simplicity
of the model used, potential solutions have been provided for a complete load and displacement
curve. Based on this calibration and validation work, parametric analyses including the size effect,
slenderness, notch ratio, and boundary condition are performed to give further explanations on the
fracture mechanisms in cementitious materials.

Based on the results obtained in this study, the following conclusions can be formulated.

• The calibration method with a combination of two uniaxial tensile tests is utilized to get the value
of the bending influence factor (αM = 0.05), which can be used to simulate the fracture process of
cementitious materials under different boundary conditions.

• The LBM can simulate the fracture process of concrete under uniaxial compression and tension.
The model captures the effect of high friction boundary and low friction boundary conditions on
compressive strength well. Also, the LBM can reproduce the differences in crack patterns and the
load-displacement curve for different boundary conditions and slenderness.

• The LBM can reproduce the fracture process accurately and analyze the size effect on the
load-displacement curve for concrete subjected to a three-point bending test. Furthermore,
the LBM is also able to capture the influence of the notch size and the size effect on the
load-displacement response.

• The LBM can simulate the fracture process in the Brazilian splitting test. Furthermore, it predicts the
size effect on the splitting test and produces the same crack patterns observed in the experiments.

• The LBM can simulate the fracture process during a DEN beam shear experiment. It does not only
predict the crack nucleation and propagation accurately but also shows the influence of different
boundary conditions.

At present, the LBM has been extensively developed as an efficient numerical model to simulate
the fracture process of cementitious materials. Based on this summary, systematic calibration and
validation as guides for the determination of input parameters is proposed for future research. Also,
the multiscale research suggestion provides a promising choice for further research about mechanical
properties and fracture processes for cementitious materials.
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