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Predicting Atmospheric Refraction with Weather Modeling and 

Machine Learning  

Wardeh Al-Younis,a Christina Nevarez,a David Voelz,a Steven Sandoval,a Sukanta Basub  

 aNew Mexico State Univ. (United States); bTechnische Univ. Delft (Netherlands) 

ABSTRACT 

This work details the analysis of time-lapse images with a point-tracking image processing approach along with the use of 

an extensive numerical weather model to investigate image displacement due to refraction. The model is applied to create 

refractive profile estimates along the optical path for the days of interest. Ray trace analysis through the model profiles is 

performed and comparisons are made with the measured displacement results. Additionally, a supervised machine learning 

algorithm is used to build a predictive model to estimate the apparent displacement of an object, based on a set of measured 

metrological values taken in the vicinity of the camera. The predicted results again are compared with the field-imagery 

ones. 

Keywords: Atmospheric refraction; Time-lapse imaging; Remote mobile station; Machine learning algorithms; Weather 

modeling. 

1. INTRODUCTION

The Earth’s atmosphere includes several features that affect the propagation of light. While scattering and absorption by 

clouds, fogs, and aerosols primarily affect the received intensity of the radiation, the clear atmosphere can affect the 

propagation trajectory. Refractive index gradients that occur in the atmosphere can steer or bend light rays and are 

responsible for the two processes known as refraction and turbulence. The index gradients are associated with changes in 

air density, which for optical wavelength is primarily a function of temperature gradients in the air. Turbulence causes 

image shimmering and blurring and is stochastic in nature with fluctuations over short time scales. On the other hand, 

atmospheric refraction tends to cause more deterministic, larger scale effects (e.g., image displacement) and the effects 

can persist from minutes to days.1-4 Our interest here is refraction effects in the lower atmosphere which can cause 

distortion of objects when viewed in imaging systems or beam steering in laser systems. 

At New Mexico State University, we have developed a low-cost, mobile camera system to study atmospheric refraction. 

One system was recently deployed at White Sands Missile Range (WSMR), New Mexico (NM) and a second system was 

set up at the Jornada Experimental Range (JER), NM. Both systems collect time-lapse images of distant natural targets, 

such as mountain ridges. A time-lapse system was previously used in Las Cruces, NM with a building as a target to study 

apparent diurnal image displacement due to refraction.5 A similar system in Dayton, OH was used by Basu et al. to 

investigate temporal variations of the refractive index gradient.4  Time-lapse imagery has also been used to investigate the 

apparent stretch and compression of objects due to atmospheric refraction lensing effects6 and the approach has also been 

applied  to the estimation of turbulence strength.7 

The prediction of atmospheric refraction effects can be advantageous for many terrestrial optical applications where prior 

knowledge of the light’s trajectory can improve the speed and accuracy of pointing and tracking functions. The goal of 

this paper is to investigate a numerical weather modeling method and a machine learning (ML) method for predicting 

image displacement due to atmospheric refraction. Numerical weather prediction is an attractive approach for our 

application as it is a physics-based approach and it leverages tremendous research and resources. However, it is 

computationally extensive and the results are subject to initial conditions and terrain characteristics. A less intensive, more 

empirical tactic is to apply a ML algorithm to build a predictive model based on local meteorological data. In this paper, 

we describe our application of numerical weather modeling and ML methods to image displacement due to refraction and 

compare the results with our time-lapse camera measurements. 
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2. METHODS

2.1 Time-lapse Image Collection and Processing 

We have recently conducted sets of experiments with a time-lapse camera located at White Sands Missile Range (WSMR) 

in New Mexico that is pointed generally north at a natural desert landscape and a mountain range (Oscura Mountains) on 

the horizon. Images were collected from January 2018 to February 2018. Another camera was set up at the Jornada 

Experimental Range (JER) near Las Cruces, NM and was pointed west to image a mountain range (Dona Ana Mountains) 

and a desert valley. This system began collecting images in May 2018 and is still operating. The mountain ridgelines 

observed were at a distance of about 20km for JER and over 100km for WSMR. 

The battery powered camera systems are easily transported and consist of a weatherproof case on a tripod that contains a 

Nikon D5200 camera operated in a time-lapse mode. A zoom lens is set at its maximum focal length of 400mm for the 

WSMR measurements and at 300mm for the JER observations. The camera is typically programmed to collect images in 

5-minute intervals with a fixed 5.6 aperture F/# and automatic shutter speed. Figure 1 shows example frames of the

mountain targets and valleys for the WSMR and JER experiments.

(a)                                                                                               (b) 

     Figure 1. Example frames showing the target mountains: (a) WSMR experiment and (b) JER experiment. 

Weather data is also collected for the two experiments. For the WSMR experiment, online metrological data from a weather 

station near the target mountain were downloaded. A Davis weather station next to the camera was utilized for the JER 

experiment. Weather has a significant effect on the vertical temperature gradients that are primarily responsible for the 

atmospheric refraction effects. The weather data of interest includes the temperature, humidity, pressure, and solar 

radiation. These measurements are interpolated in time to align with the time-lapse image frames. 

A point-tracking algorithm is implemented to measure the apparent motion of the mountain ridges in the images.8 An area 

containing the far-field target in each frame is cropped, then the algorithm detects the N “best” features in the target, stores 

them in a feature list in descending order of “goodness” (determined by a threshold setting), and tracks them in consecutive 

frames. A near-field reference close to the camera is also selected and point-tracking of this feature is applied in the 

analysis to remove shifts in the far-field images that are due to camera platform motion. Figure 2(a) shows some selected 

points associated with the far-field target for the JER experiment and Fig. 2(b) shows the positions of these points in the 

next consecutive frame. It is apparent that the point-tracking algorithm is essentially selecting the same points in each 

frame. The positions of the multiple points are averaged to give a measurement of the ridge position. 

After point-tracking, the near-field average pixel coordinates are subtracted from the far-field coordinates frame-by-frame 

to obtain the apparent position of the far-field target. Displacement of the target from frame to frame is attributed to 

changes in atmospheric refraction. The most significant shifts occur in the vertical direction. 
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(a) (b) 

     Figure 2. Selected tracking points for JER far-field target: (a) initial frame and (b) the following frame. 

2.2 Numerical Weather Modeling and Ray Tracing 

Numerical weather prediction (NWP) is a discipline where governing equations and parameterizations that describe fluid 

flow and other physical processes are applied to current (or previous) weather conditions to provide a future forecast. For 

our purposes, the model results can be used to predict the structure of the refractive index in the atmosphere. Although, an 

extension of the established models is required to provide higher spatial resolution along our paths of interest.9-10 In this 

section, we describe our approach for using refractive index gradient data generated by numerical weather modeling and 

the application of ray tracing to determine corresponding image shifts. The results of the approach are compared with time-

lapse measurements in section 3. The numerical weather model (called the Weather Research and Forecasting – WRF 

model) uses initial and boundary conditions from global-scale reanalysis datasets and topographic effects to generate the 

refractive gradient data for a particular location at particular time corresponding.10 Figure 3 illustrates the refractive index 

gradient model results for the WSMR experiment time-lapse imaging path in the morning on February 6, 2018. The camera 

site is on left and the mountain ridge is on the right.  

     Figure 3. Example refractive index gradient results from numerical weather modeling for the WSMR experiment on February 6, 

2018 at 14:50 UTC. The white area is the ground; the time-lapse camera is located in the basin on left side and a peak in the Oscura 

Mountains is on the right. Example ray tracing paths are shown between a position on the peak and the area near the camera. 
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We use ray tracing through the gradient profiles to determine the image displacements predicted by the model. Ray tracing 

techniques are often applied for refraction analysis over near-ground horizontal paths assuming diffraction effects are not 

significant. For this analysis, we apply a second-order ray tracer in a similar format as a linear ray trace analysis of optical 

systems, but a quadratic term is added to the transfer equation to correct the discrepancy introduced due to the linear 

approximation when light propagates in a graded index medium. The transfer equation describes the ray height ( z ) while 

the bending equation describes the ray angle ( ) and these are written as:   

2

0 0( )
2

x
z x x z


= + + (1) 

and 

0( )x x  = + . (2) 

where 0 and 0z are the initial ray angle and height, respectively. x is the propagation distance and  is the gradient of 

the refractive index. Equations (1) and (2) are used in succession, to bend the ray and then provide the transfer height 

between planes that are within the propagation volume. Iteratively, they become,  

2

1 1

( )

2
j j j

x z
z x z


 − −


= + + (3) 

and 

1( )j jx z   −=  + . (4) 

where ∆𝑥 is the distance between adjacent planes and κ(𝑧) is the gradient value that exists between the planes. This 

approach assumes that the gradient value is constant between each plane.  

Our ray tracing analysis approach is illustrated in Fig. 3. Rays are launched from the image target (mountain ridge on right 

side, elevation ~2200 m) for a range of initial angles and the ray trajectories are traced through the model gradients until 

they reach the ground in the basin (elevation ~ 1300 m). The specific ray that strikes the ground at the camera location is 

identified and we back-project a line at the ray arrival angle. The height of this line at the mountain plane indicates the 

apparent peak position as seen by the camera.  The apparent positions are calculated for successive model frames and the 

relative shifts are determined. 

2.3 Machine Learning Predictions 

In this section, we present a ML approach to predict image displacement due to atmospheric refraction based on a set of 

measured metrological values. The input variables we used for prediction are temperature (T), humidity (H), pressure (P), 

and solar radiation (S). The predicted output is the image displacement (𝑦̂) due to refraction. Our weather station provides 

measurements of these variables at 15-minute intervals. Additionally, we utilize other local measurements available on-

line at 1-hour intervals. The measurement values are normalized prior to input to the algorithm. 

We considered a ML approach based on curve fitting and assumed a linear model of the form, 

10 11 12 13 14 15

2 2 2 2
5 71 2 3 4 6 8 9( , , , ; )ˆ T H P S

TH TP TS HP HS PS

y w w T w T w H w H w P w P w S w S

w w w w w w+ + + + +

= + + + + + + + +

+

w
(5) 

where 1 15[ ]Tw w=w are the coefficient weights. Linear, square, and pairwise products of the meteorological 

parameters are used as non-linear kernel functions. This choice of these non-linear Kernel functions was based on 

experimentation. 
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The coefficient values w  are determined by fitting Eq. (5) to training data. This can be done by minimizing an error 

function or cost function that measures the misfit between y for any w and the training data. Our choice of error function 

is the regularized squared error, 

22

1

1
ˆ( ) [ ( , , , ; ) ]

2 2

N

n n n n n

n

E y T H P S y


=

= − +w w w (6) 

where 1[ ]T

Ny y=y are the measured target values; i.e training data, and the term 
2

( / 2) w is a penalty 

(regularization) term to avoid over-fitting. The value λ governs the relative importance of the regularization term compared 

with the squared error term. 

Given N data points, ( , , , ; )n n n n nT H P S y , the coefficients w that minimize the cost function in Eq. (6) are obtained in 

closed form by differentiating ( )E w with respect to w , setting the result to zero, and solving for w : 

1( )H H −= +w I y   (7) 

where I is the identity matrix and 
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(8) 

As illustrated in Eq. (8), the input variables are arranged as column vectors. The algorithm steps are: (1) build the matrix 

 , (2) build the vector y , and (3) apply Eq. (7) to compute the weights w.  

3. RESULTS

Weather model data results were computed for 10-minute intervals and the ray tracing procedure was applied. The data is 

interpolated in time to align with the time-lapse image frames. Figure 4 shows comparative result for the WSMR 

experiment as a function of time-of-day where the red curve is the apparent shift (in radians) of the mountain ridge as 

derived from ray tracing through the weather model data. The black curve is the predicted shift by the ML algorithm where 

we trained the algorithm on about 500 data points of displacement and meteorological measurements collected over four 

days prior to the date shown. The blue curve is the shift measured in the actual camera frames.  Measurements are only 

available for the daytime hours as the ridge cannot be seen at night. 

The general downward drift throughout the daytime hours in Fig. 4 is an effect we commonly observe in clear weather 

and this corresponds to a reduction in the average refractive index gradient of the atmosphere along our line-of-sight. 

Clearly, the image shift results from the camera measurements, the weather model data, and the ML model agree 

particularly well in amplitude and phase, although there are differences in the short-time variations. By manually 

evaluating the time-lapse images, we verified that the measured variations in this case are real as opposed to noisy tracking 

results. These short-time excursions probably represent local fluctuations in the refractive index that are not completely 

captured by the weather model and it is not possible to predict these short variations by the ML model due to the differences 
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in sampling frequencies where the time intervals for the metrological data (1 hour) are much longer than the time-lapse 

intervals (5 min). 

     Figure 4. Data from February 2018 displaying apparent shift of the mountain peak as determined for time-lapse image data (blue), 

the shift as determined by ray tracing through the weather model data (red) and the shift predicted by the ML model (black). 

Figure 5 presents an example ML model result for the JER experiment on a clear-day. The ML predicted result again 

follows a time-averaged version of the measurement. Note that the overall shift for the JER result is significantly smaller 

that the results for WSMR (Fig. 4). This is because the WSMR ridgeline is much further from the camera (>100 km) than 

for JER (20 km). Numerical weather simulation results were not currently available for the JER experiment as the mountain 

range is too small in width to be resolved adequately by the mesoscale model with the same resolution (~1 km) used in the 

WSMR experiment. For future work, we are investigating the weather simulation with at least 200 m resolution. Figure 6 

presents example results for a cloudy-day for the JER experiment. Here we see the apparent shift is much smaller than for 

Fig. 4. However, the prediction result in Fig. 6 again is consistent with the general trend of the measurement 

     Figure 5. Clear day at JER: measured and predicted mountain ridge apparent displacement. 
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     Figure 6. Cloudy day  JER: measured and predicted mountain ridge apparent displacement. 

4. CONCLUSIONS

We found that numerical weather simulation along with a ray tracing technique can be used for refractive effects prediction. 

The ray tracing approach that we applied to determine the effect of the gradients produced by the model was 

straightforward to implement and provided credible results. The model results of target displacement were consistent with 

field imagery in amplitude and phase. However, the model could not predict some of the short-time variations in field 

measurements, which may be due to localized events that are not completely captured by the numerical model grid or 

simulation process. As an alternative to numerical weather modeling, we explored the use of a ML algorithm to build a 

predictive model based on meteorological collected near the camera location. We found that our ML model was successful 

in making predictions over different weather conditions within the same meteorological season. Similar to the weather 

model result, the ML model prediction also could not follow the short time excursions of the field results. In this case the 

slow sample rate of the meteorological data compared to the time-lapse image frame rate is an aggravating factor. We are 

now working to determine if the model can be improved, extended and generalized so it can be applied across different 

seasons. We also are investigating our ability to apply image point-tracking and machine learning prediction for natural 

features in scenes other than ridgelines. 
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