
Delft Center for Systems and Control

Development of a 2D Lidar SLAM
algorithm for localization on the
building construction site

H. van Bavel

M
as

te
ro

fS
cie

nc
e

Th
es

is





Development of a 2D Lidar SLAM
algorithm for localization on the

building construction site

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

H. van Bavel

January 31, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



The work in this thesis was supported by Hilti Corporation. Their cooperation is hereby
gratefully acknowledged.

Copyright ©
All rights reserved.



Abstract

In order to improve the autonomy of construction robots, a Simultaneous Localization And
Mapping (SLAM) solution is needed that localizes the robot using solely on-board sensing
with sub-5 mm accuracy. As pointed out by the results of the Hilti SLAM Challenge, the state-
of-the-art in SLAM currently does not offer a solution that comes close to this requirement.
The winning algorithm FAST-LIO2 achieved an accuracy typically around 4-10 cm. When
considering the literature, it can be noted that the state-of-the-art SLAM algorithms are
designed with generality in mind, and limited attention has been paid to SLAM that focuses
on increasing accuracy by targeting a specific scene structure.
In order to improve SLAM accuracy, this thesis proposes a novel 2D Lidar SLAM algorithm fo-
cused on indoor environments, hereafter called Ray-SLAM. The algorithm is centered around
the assumption that walls are available, which is valid in many cases on the building construc-
tion site. Ray-SLAM introduces several novelties which are (1) a sparse map representation
to facilitate a joint pose-map optimization scheme, (2) observation-to-map alignment using
a non-iterative procedure (contrary to the Iterative Closest Point algorithm) and (3) a stop-
and-go strategy to prevent Lidar motion distortion to corrupt the map.
The algorithm was extensively tested using six real-world indoor datasets recorded with the
Ouster OS0 Lidar in rooms with various shapes and sizes and with a total trajectory length
of 307 m. The motion was constrained to the horizontal plane and a stop-and-go motion
pattern was applied. Ground-truth was recorded at static points to evaluate the accuracy.
In the majority of the test cases, Ray-SLAM was able to estimate the trajectory successfully.
Failure cases led back to either a lack of unoccluded walls in the scene or violated model
assumptions about these walls (e.g. incorrect referencing to clutter close to the wall or to a
door being opened).
Ray-SLAM’s accuracy was compared with two 3D Lidar SLAM algorithms, LOAM and FAST-
LIO2 respectively. The compared algorithms solved a harder 6DOF estimation problem, but
had access to 64 Lidar scan rings instead of one and (optionally) the Inertial Measurement
Unit (IMU). An overall Mean Absolute Error of 5.7 mm is reported by Ray-SLAM in the
successful cases, which is 5.0× more accurate than LOAM and 2.4× more accurate than
FAST-LIO2. Further research is suggested to improve the robustness of Ray-SLAM and
extend it to a full 3D SLAM algorithm.
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Chapter 1

Introduction

1-1 Research motivation

Robotics is widely applied nowadays in sectors such as health care, agriculture and manu-
facturing, to name just a few. Also in the building construction sector, robots are used for
off-site prefabrication of building materials. In these processes, robots are located next to
assembly lines and the environment is highly controlled in order to mass produce the product
of interest. Automation can thrive in this context, because the robots and workpieces are on
fixed locations and the conditions remain constant over time. It can be seen, however, that
this trend of automation using robots has still not diffused into in-situ fabrication as of today.
Robotization for in-situ fabrication on the building construction site is a much more chal-
lenging topic. In-situ fabrication poses a variety of new challenges: the environment is large
and complex, the environment changes over time, clutter may be present and the real-world
building is inherently different from the designed building (as-built errors). There are many
unsolved problems that need to be addressed in order for a robot to act ‘sensibly’ and ‘get
things done’ under such circumstances. A more in-depth analysis about the progression and
challenges ahead for automation on the building construction site is given by Buchli et al. [4].
In general, an autonomous in-situ fabrication robot has to solve three high-level algorith-
mic steps [4]: (1) localization of the robot itself, the destination and potential obstacles, (2)
planning the optimal action(s) and (3) execution of the actions in a robust and predictable
manner. Several attempts for (semi) automated in-situ fabrication can be found in the lit-
erature, for example in [5] where accurate autonomous brick laying is demonstrated, and [6]
shows the construction of a steel reinforced concrete wall with a complex curved shape. In
[7], a wheeled robotic platform with a manipulator arm is demonstrated. Under the right
circumstances, this robot can localize itself on the building construction site and navigate
autonomously to destinations to perform tasks such as drilling holes.
This thesis research was conducted at the robotics research department of the company Hilti1.
Hilti develops, manufactures, and markets products for the construction industry. Hilti is pur-

1https://www.hilti.com/
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2 Introduction

Figure 1-1: The Hilti Jaibot drilling robot in action. Localization is done using a Total Station,
which is shown in the right.

suing the goal to increase productivity and improve job site safety by automating dangerous
and heavy construction tasks by automating in-situ labor. As a first step towards realizing
this goal, Hilti released the Jaibot in late 2020, see Figure 1-1. The Jaibot is a semi-automated
tracked drilling robot aimed to alleviate workers from overhead drilling. Doing this work man-
ually is strenuous, challenging, and time-consuming. The Jaibot needs to be steered manually
to a location from which the robot arm can reach the target, after which the robot can carry
out the drilling task by itself. The interested reader can view a YouTube2 video to see the
set-up and operation of the Jaibot.

In this thesis study, the focus lies on the localization part of a robot such as the Jaibot.
In order to comply to the strict metric architectural requirements, a localization accuracy
of sub-5 mm is required. Currently the Jaibot uses a Total Station (Hilti PLT-300) [8] for
localization. The Total Station is shown in the right of Figure 1-1. This expensive device
needs to be set up manually near the Jaibot by an operator by detection of reference points
in the building, which is a tedious and time consuming procedure. The Total Station can
then detect a reflective prism on the Jaibot and reliably localize the robot with sub-5 mm
accuracy. The Total Station needs to be repositioned every time the line-of-sight is broken
between the robot and the Total Station.

For the purpose of increasing autonomy and reducing cost of the Hilti Jaibot drilling robot,
a solution is required that solely relies on on-board sensing, and as such eliminate the depen-
dency on a Total Station or any other external infrastructure. This means that the position
and orientation (together referred to as pose) are to be estimated. Existing methods in the
literature for robot localization using on-board sensing can be divided into two strategies: (1)
building model based localization, where the architectural building model acts as the primary

2https://www.youtube.com/watch?v=yi5jBeMQkwg
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1-1 Research motivation 3

Figure 1-2: Left. The Ouster OS0 Lidar generates 131072 distance measurements per scan,
which together form a point cloud. This Lidar scans at 10 Hz (see Appendix B). Middle. A
visualization of the point cloud measurement of a Lidar. Right. An Inertial Measurement Unit
(IMU).

Table 1-1: The top ten contenders of the Hilti SLAM challenge. The table was adapted from
[2]. For each contender, six trajectory estimates were compared with ground truth at 82 waypoint
locations using a Total Station. Available sensors were two Lidars (L), three IMU’s (I) and five
cameras (C).

# Team Algorithm Sensors <1 cm <10 cm <100 cm >100 cm

1 Megvii FAST-LIO2 [11] L+I 2 67 13 0
2 Bosch Research Proprietary L+I 1 68 13 0
3 Vision & Robotics Proprietary L+I 1 51 30 0
4 GeoSLAM Proprietary L+I 2 55 13 12
5 Oxford Robotics VILENS [13] L+C+I 0 44 38 0
6 Nanyang University VIRAL SLAM [14] L+C+I 1 32 48 1
7 Tsingsens CMU DOOM L+I 0 37 37 8
8 ETH Zürich Maplab, OKVIS [15] L+C+I 0 22 52 8
9 NPM3D Team CT-ICP [16] L+I 0 30 31 21
10 UC San Diego Proprietary L+I 0 37 12 0

reference and (2) Simultaneous Localization And Mapping (SLAM) where an observation-
based map is constructed on-the-go, assuming no prior map information is available.

When considering the literature, it can be seen that building model based localization is not
able to realize the required sub-5 mm accuracy [7, 9], and SLAM is typically not designed
and/or tested with use cases in mind that require sub-cm accuracy [10, 11]. Hilti’s need
for a solution to this problem is highlighted by the Hilti SLAM Challenge [12] which was
held during September 2021. A total of twelve datasets were published that represent the
challenges of a building construction site to review the state-of-the-art and push this field of
research forward. The robot was equipped with five vision (camera) sensors, three Inertial
Measurement Unit (IMU) sensors and two Light Detection and Ranging (Lidar) sensors.
An IMU sensor consists of a gyroscope and accelerometer, and the Lidar generates a large
amount of range measurements within its field of view, see Figure 1-2. Accurate ground-
truth information at static points was recorded but only published for six datasets, the other
six datasets were used to evaluate and rank the competitors. No architectural model of
the environment was provided as reliance on such a model is considered a limitation; the
model may be inaccurate or not available at all. Contenders were therefore required to utilize
the SLAM strategy. A total of 30 contenders worldwide, both companies and universities,
submitted their trajectory estimates. The results of top ten contenders are shown in Table
1-1.
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Based on these results, the following conclusion can be drawn about the state-of-the-art in
SLAM: (1) the best performing SLAM algorithms typically obtain an absolute position error
between 1 cm and 10 cm at most waypoints, with some outliers between 10 and 100 cm
and (2) localization using Lidar and IMU dominate the top ten. A possible explanation for
(2) is that the Lidar sensor measures distance directly and reliably, whereas pixel intensities
from cameras are subjected to complex processing pipelines before geometric relations can
be established [17], potentially increasing localization errors. This observation was also made
during the literature review that was conducted prior to this thesis, and it is for this reason
that cameras are not considered in this thesis. The Lidar and/or cameras are often com-
bined with the IMU because the IMU can accurately detect motion at a high sampling rate,
which helps to increase both accuracy and robustness in scenarios with aggressive motion.
Furthermore, when taking a closer look at the methods that have been deployed, there is
the general trend that Lidar-centric SLAM algorithms are designed with generality in mind,
rather than of aiming for improved accuracy in a specific scenario. Altogether, it becomes
clear that there is a significant gap between the performance of the state-of-the-art and the
sub-5 mm accuracy requirement that a construction robot needs to meet, which motivates
the need for further research. As more accurate laser-based sensing hardware comes with
significant increase of cost, this thesis will focus on algorithmic improvements instead. The
main question of this thesis is therefore formulated as:

How can the state-of-the-art in Lidar-centric SLAM be improved to achieve sub-5
mm accuracy on a building construction site?

With many Lidar-centric SLAM algorithms being available as open-source implementations,
an important strategic choice for the thesis project is as follows. Should one:

(A) take an existing open-source SLAM algorithm as basis and improve it. Advantages:
build on top of existing functionality. Disadvantages: inherit (some of) the assumptions
and/or limitations tied to the algorithm’s overall design philosophy.

(B) build a SLAM algorithm from the ground-up. Advantages: no imposed restrictions
and/or prior assumptions. Achieve a high level of control in all parts of the algorithm.
Disadvantages: the scope of the final algorithm is to be reduced significantly.

A SLAM algorithm consists of many parts that coherently work together as we will see in
Chapter 2, together forming the SLAM pipeline. The approach of this thesis project is to
develop a Lidar SLAM algorithm that introduces multiple interdependent novelties at various
levels of this pipeline, and as such building on top of an existing implementation would be
cumbersome. This thesis therefore pursues strategy (B), with the goal of realizing a full
SLAM pipeline with carefully designed components that work together in synergy. It will
therefore be important for this project to simplify the research question in acceptable ways,
make assumptions and focus on a limited amount of sensor modalities. Since fusing the IMU
and Lidar sensor data is a complex process that requires a significant amount of effort, it was
chosen to focus only on the Lidar sensor. With this in mind, the following sub questions are
defined to answer the main research question:

• How can a Lidar SLAM algorithm exploit the specific scene structure that
can be expected on a building construction site?
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Rather than focusing on general scenes, an algorithm is to be developed that is tailored
at one specific scene type. The algorithm should work on real-world datasets. The
algorithm may be simplified in certain ways, such that the results of this thesis serve as
a proof-of-concept of the novelties that it introduces.

• How robust is the novel algorithm in representative real-world scenarios with
various levels of complexity and moving obstacles?
The complexity of the real world is not to be underestimated, and potential problems
may arise in unexpected ways that cause the SLAM process to fail. Realizing a SLAM
method that has the ability to act robustly to the many challenges that arise in the real
world is therefore considered paramount to its usability. Investigating the robustness of
the novel algorithm is one key questions to be answered.

• What is the accuracy of the novel SLAM algorithm, and how does it compare
with other state-of-the-art Lidar-centric SLAM algorithms?
Similar to the Hilti SLAM Challenge, the accuracy of the novel SLAM algorithm is to
be evaluated and compared against the state-of-the-art.

1-2 Contributions

Prior to this thesis work, a literature survey was conducted. The results of this survey, and
later confirmed by the results of the Hilti SLAM Challenge, show that Lidar-centric SLAM
yields the most accurate results when compared to camera-centric SLAM. It was furthermore
found that at the core of these Lidar-centric algorithms, several assumptions were made about
what the world looks like and how the robot’s observations relate to its internal representation
of this world. These assumptions were put in place for general environments, and introduce
multiple (small) sources of error. It was hypothesized how a different approach with more
accurate assumptions about the scene structure of a building construction site can yield better
results. The main contributions of this thesis are presented as follows:

• Development of a novel 2D Lidar SLAM algorithm that focuses on indoor
scenes and accuracy.
In this thesis, a novel 2D Lidar SLAM algorithm is proposed, hereafter called Ray-
SLAM. Various novelties are introduced by the algorithm that have the common goal of
improving the localization accuracy on indoor scenes similar to a building construction
site. Figure 1-3 provides a high-level overview of the algorithm.

• Extensive testing and performance evaluation of the proposed algorithm on
representative real-world datasets.
Real-world datasets have been recorded with an Ouster OS0 Lidar in scenes that rep-
resent locations where Hilti envisions deployment of construction robots. The datasets
were less complex with respect to the Hilti SLAM Challenge datasets such that (1) the
motion was restricted to the horizontal plane, (2) the robot moved in a stop-and-go
manner and (3) outdoor areas were avoided. The five indoor scenarios were selected
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Figure 1-3: A high-level flow chart description of the novel Ray-SLAM algorithm that is proposed
in this thesis. The steps ‘Optimize the map’ and ‘Extend the map’ (marked in green) are carried
out only if the robot is perceived to be stationary.

with rooms of various shapes and sizes in order to get an understanding of how Ray-
SLAM performs under various real-world circumstances. Ground-truth positions were
recorded to assess the accuracy. In-depth analysis of the failure cases was conducted to
asses the algorithm’s robustness.

• Comparison of the proposed algorithm’s accuracy with the state-of-the-art.
The performance of Ray-SLAM was compared with state-of-the-art algorithms, i.e.,
LOAM [18] and FAST-LIO2 [11] by comparing the accuracy of these algorithms on the
same datasets. Similar to the Hilti SLAM Challenge, the accuracy was only evaluated
at static waypoint locations. The ground-truth information was obtained using either
the Total Station (Hilti PLT-300) or a motion capturing system (OptiTrack). The
Mean Absolute Error (MAE) error metric is used to obtain an overall performance
metric. In order to obtain a measure of resilience to outliers, the Maximum Absolute
Errror (Max-AE) metric is used.

1-3 Thesis Outline

Having defined the research questions and thesis contributions, Chapter 2 will focus on the
related work in the fields of sensor fusion, processing of Lidar sensory data and SLAM. For
completeness, also several localization algorithms are discussed that utilize the architectural

H. van Bavel Master of Science Thesis



1-3 Thesis Outline 7

building model. This chapter will introduce the concept the algorithm’s back-end and front-
end, which will help to get a better understanding of how the lower level building blocks of a
localization algorithm are related.

Chapter 3 will consequently propose the Ray-SLAM algorithm that was developed during
this thesis. The simplifications and assumptions are detailed on which the algorithm builds,
followed by the novelties that Ray-SLAM introduces. Chapter 3 then continues with a detailed
description of the individual components that together form the SLAM algorithm.

In Chapter 4, the real-world experiments are described that have been conducted in order to
assess the accuracy and robustness of the Ray-SLAM algorithm. The pose estimates of Ray-
SLAM will be compared against the ground-truth positions that have been measured with
a Total Station or motion capturing system. The algorithm’s accuracy is compared against
two state-of-the-art Lidar-centric SLAM algorithms in order to assess if the novelties bring an
improvement. Special attention will be paid in this Chapter to failure cases and cases where
the accuracy degraded significantly.

Chapter 5 will conclude this thesis. The research questions that have been posed in this
chapter will be answered, and the strengths and limitations of the algorithm will be pointed
out. As this thesis presents a proof-of-concept for a novel strategy in SLAM, this chapter will
detail the next steps that need to be taken to transform the ideas of Ray-SLAM into a full
3D SLAM algorithm that can potentially be among the top performers in the Hilti SLAM
Challenge.
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Chapter 2

Related Work

This chapter will familiarize the reader with the related work on the topic of Lidar-centric
localization algorithms. The limitations and questions left unanswered by the existing work
are emphasized to motivate the need for the novel approach that this thesis proposes. Based
on the limitations that have been found, the design goals are introduced that this thesis will
pursue in order to realize a highly accurate localization algorithm.

General notation. Unless stated otherwise, small letters represent a scalar, bold letters a
vector, capital letters a matrix, small Greek letters an angle and calligraphy letters a set. The
ith element in a set is denoted in superscript. The notation t in subscript denotes the time
point of a time-variant variable, relative to the time that the estimation process was started
at t = 0. The time points t = 0, 1, 2, ... coincide with the Lidar scan time points, which are
time-stamped roughly 0.1 sec apart since the Lidar scans at typically 10 Hz. Reference frames
are denoted by capital letters in superscript. Descriptive terms about a quantity are written
in subscript where needed. As a fictitious example, the Cartesian point vector pL,iref,0 ∈ R3

denotes the ith point in the set of points PLref,0 at t = 0 in the L frame, with the description
‘ref’. Furthermore ·̂ describes an estimate, ·̌ a one step ahead prediction and ·̃ a measurement
prediction. The transpose operation is denoted by (·)>.

2-1 Existing work on sensor fusion algorithms for pose estimation

In the context of SLAM, the literature often distinguishes the front-end and back-end parts
of the algorithm [19, 20]. The front-end is considered the part of the algorithm that has
access to the sensor information. It interprets this information to establish relationships
between the sensor information, map and robot pose(s). These relationships form the basis
of the optimization problem. The back-end is consequently responsible for estimating the
actual state(s) by solving the optimization problem that incorporates these constraints. This
thesis uses the principle of front-end and back-end separation to explain the functioning of
localization algorithms in a more general sense.
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First, we consider the state-of-the-art in general back-end sensor fusion algorithms. A general
framework to model a dynamic system such as a robot is the state space [21] representation.
The state vector xt contains e.g. the robot’s position and some parameterization of its
orientation [22] at time t. In 3D, the orientation is often expressed by the quaternion or
Euler angles while in 2D one can simply use the heading angle. Often the robot’s velocity
and the Inertial Measurement Unit (IMU) biases are also included. A nonlinear dynamics
model f(·) uses input measurements ut to relate the state xt to the next state xt+1. The
dynamics are affected by the process noise term wt. The nonlinear observation model h(·)
on the other hand relates the robot state to the update measurements yt at a specific time
instance and is affected by the noise term et. These models together form the state space
representation of the system and are denoted by

xt+1 =f(xt,ut,wt), wt ∼ N (0, Q), (2-1a)
yt =h(xt, et), et ∼ N (0, Py), (2-1b)

where the noise parameters wt, et are modeled as zero mean Gaussian noise with covariances
Q and Py respectively. The state estimation algorithms that are described below share the
common objective of estimating xt, making use of available sensory information u and y up
until time point t and the initial state prior x̆0.

Kalman filtering
A SLAM algorithm becomes increasingly useful if it can be deployed on a robot that is able
to run the algorithm in real-time. Estimating the entire map and trajectory at once, known
as the smoothing problem, quickly becomes unfeasible in real-time as time progresses and
the mapped area grows larger. Under the assumption of the Markov property (i.e. all the
system’s information up to the current time t is contained in the state xt), one can use (a
version of) the Kalman Filter (KF) [23] to solve SLAM incrementally, significantly reducing
the computational demand of a SLAM algorithm. The Kalman filter is a powerful state
estimation algorithm that has withstood the test of time since it was introduced in 1960. It
can be understood as a two-step process: a time update that uses the model of (2-1a) to
predict xt at time step t − 1, and a measurement update that updates the predicted state
estimate using the newly available measurement yt, resulting in x̂t.

For linear state space models and assuming Gaussian additive noise, the Kalman filter gives
an unbiased minimum variance estimate of the state xt. Many variants and improvements
over the traditional Kalman filter exist in the literature, mainly focusing on improving the
performance for nonlinear state space models [21, 24]. The Extended Kalman Filter (EKF)
linearizes the state space model using a first order Taylor expansion around the current
estimate, and takes one Gauss-Newton optimization step with a step length of one to obtain
the estimate x̂t for the measurement update [25]. Iterating this process until convergence
leads to the Iterated Extended Kalman Filter (IEKF). Variations of the Kalman Filter can
be found as the basis of various localization and SLAM algorithms such as [11, 21, 26]. The
main benefit of Kalman Filter based methods is their relative low computational overhead,
low memory requirements and ease of implementation.

Moving horizon estimation
Moving Horizon Estimation (MHE) is a more advanced state estimation strategy over Kalman
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Filtering and is considered as the state-of-the-art in general sensor fusion frameworks. The
main benefit of MHE is the flexibility to re-linearize of past states based on new informa-
tion, which improves the accuracy and robustness to measurement outliers. An example of a
state-of-the-art MHE-based algorithm is ConFusion [27]. ConFusion provides a sensor fusion
framework where any sensor modality can be incorporated in a modular fashion. It provides
the flexibility to (1) add static parameters to the estimation problem to optimize parameters
such as extrinsic calibrations, (2) use the built-in implementation of the IMU measurement
model that is based on the preintegration1 technique and (3) jointly estimate the entire state
trajectory as a smoothing problem. ConFusion is found for example in the autonomous con-
struction robot as described in [7]. ConFusion, however, is a large code base and requires
increased computational resources with respect to a Kalman Filter based approach. ConFu-
sion is furthermore designed for more general sensor fusion problems rather than SLAM in
specific. It does not contain a Lidar measurement model, and the current implementation of
cameras is restricted to detection of QR codes that need to be placed in the scene manually.

Factor graph optimization
Formulating the state estimation and SLAM problems as a factor graph [19, 29] has received
significant attention lately and is representative of the state of the art in SLAM. The most
popular open-source factor graph back-end algorithms are GTSAM [30] and g2o [31]. The
factor graph provides a flexible structure well suited to SLAM such that the user is free
to define how the robot poses and observed landmarks (variables) are connected through
process and update measurement constraints or prior information (factors). The factor graph
algorithm then estimates the poses of the robot and landmarks by solving an optimization
problem. Benefits of pose graph optimization are (1) a convenient abstraction layer to model
and visualize the SLAM problem, (2) ability to solve loop closures in round-trip trajectories
and (3) ability to optimize the complete state trajectory in real-time using the technique of
incremental smoothing and mapping. The downside of a factor graph is that the user is now
forced to work on a higher level of abstraction by the use of the graph structure.

2-2 Existing work on point cloud handling

This section takes a closer look at the existing work in the front-end of Lidar based localization.
The problem of localization with the Lidar has a strong focus on geometry. The Lidar device
observes the world from the constantly changing perspective of the robot, and one needs to
make assumptions about the large and complex outside world in order to obtain a simplified
representation of this world that a robot can cope with for the purpose of localization. Figure
2-1 takes a closer look at the structure of the Lidar observations, and clarifies which collection
of observations form the scan line and scan ring respectively.
We will now consider the state-of-the-art techniques for handling point cloud data that form
the basis of the assumptions that the robot makes when perceiving the world. Small error
sources introduced by such techniques eventually add up over time and cause the SLAM
algorithm to drift [10].

1IMU preintegration is an advanced technique to reduce the high-rate IMU output to lower rate relative
pose information, taking into account the IMU biases and the full manifold SO(3) of transformations in R3

[28].
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Figure 2-1: In this toy-Lidar example, five individual laser range measurement sensors are located
inside the Lidar with different fixed pitch angles. The five measurements at a single azimuth angle
αt are carried out at the same time and considered a scan line. The five range sensors rotate
internally within the Lidar and generate 80 scan lines sequentially over time in this example. A
scan ring is the collection of observed points resulting from one range sensor during one rotation.
The observations from all range sensors during one rotation are referred to as a scan. The
Ouster OS0 Lidar was used for the experiments in this thesis, which has 64 scan rings and 2048
observations per ring (see Appendix B).

The following techniques are now discussed that form the back bone of many Lidar-centric
localization algorithms in the literature, respectively (1) normal estimation and local cluster
analysis, (2) edge- and planar feature point extraction (3) the Iterative Closest Point (ICP)
algorithm to align two point clouds. Special attention is paid to potential error sources that
can be introduced by these techniques.

2-2-1 Normal estimation and local cluster analysis

We start by introduction of the point cloud, which is the collection of Cartesian point co-
ordinates pi ∈ R3 such that the point cloud P = {p1,p2, ... ,pN}. Since the points in the
Lidar’s observed point cloud are ordered by azimuth- and pitch angles (see Figure 2-1), one
can easily extract a local set of observed points centered around pi in order to analyze the
geometry of the locally observed scene. This local set of Nclust points around pi is denoted
by P̆i ⊆ P. The covariance tensor G [32] is defined by

G = 1
Nclust

∑
pj∈P̆i

(
pj − pi

) (
pj − pi

)>
, pi = 1

Nclust

∑
pj∈P̆i

pj . (2-2)

The point pi is the mean point coordinate of cluster P̆i. Let the eigenvectors e1, e2, e3
correspond to the eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 of G. The Plane PCA method as discussed
in [33] takes Nclust between 10 and 50 in order to obtain the surface normal ni = ei3 that
corresponds to the point pi. The eigenvalues λ can be utilized to calculate useful properties
such the cluster’s linearity, planarity and curvature [32].
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Figure 2-2: Many Lidar-based SLAM algorithms use LOAM-based feature points. On the left
the planar feature point is shown, where the arrow points in the normal direction of the local
surface. On the right, the edge feature point is shown, where the arrow points into the principal
direction of the line that represents the edge.

2-2-2 Edge- and planar feature point extraction

A very influential technique in Lidar SLAM is the concept of an edge- and planar feature
point extraction as introduced by the LOAM [18] algorithm, which has since then become
the de-facto standard of how the front-end of a Lidar centric SLAM algorithms handle point
cloud data, resulting in popular follow-up works such as [10, 34, 35, 36].

The key concept is that instead of considering a full Lidar scan, only a limited number of
feature points is kept that carry the most important information. The approach considers a
collection of points on two adjacent scan rings and is further explained below together with
Figure 2-2. The smoothness c of point pi on one scan ring is considered by the (simplified)
expression

c =

∥∥∥∥∥∥
∑

pj∈P̆,j 6=i

(
pi − pj

)∥∥∥∥∥∥
2

, (2-3)

where P̆ is a collection of j points, with both half of the points in P̆ lying on each side of
pi. The smoothness c tends to go to zero when pi lies in the middle of P̆, which is the case
when P̆ represents a line. Points are sorted by c, and edge points can be chosen with the
highest c and planar points with the lowest c. A planar patch P̆p is formed by three planar
points on two adjacent scan rings such that P̆p = {p1

p,p2a
p ,p2b

p }. The local surface normal
can now be determined. One of these three points, together with the surface normal, is kept
as the planar feature. The edge patch P̆e is found by considering two close edge points on
two adjacent scan rings, such that P̆e = {p1

e ,p2
e}. The principal direction of the edge patch

can now be determined. The edge feature contains one of the two points and the direction
vector. This process is repeated for all scan lines to collect features in the whole scan. Voxel
grid discretization2 is used to reduce the amount of feature points.

Three important limitations of the LOAM feature extraction principle are (1) the direction of
2A voxel grid is a grid of cube-shaped volumes (cells) in R3 with an identical size, and can be understood

as the 3D generalization of square pixels on the 2D plane. Voxel grid discretization is the process of reducing
the amount of points in P such that each cell contains up to one point.
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the planar feature point’s normal is sensitive to measurement noise because only three points
are used that are relatively close together, (2) the edge feature points represent a surface close
to the edge, not the edge itself and (3) objects with a complex geometry, e.g. trees, often
generate a lot of edge features. The select amount edge features representing such an object
are a very incomplete description of this object. As such, the point cloud containing LOAM
feature points is only a coarse approximation of the actual underlying geometry, reducing the
overall accuracy of a SLAM algorithm that uses these features. Errors resulting from this
coarse description are typically neglected.

2-2-3 Point cloud registration using the ICP algorithm

In order to explain the point cloud registration problem, let us consider the following example.
Let the collection of points PW represent a map of the scene in the world frame W . Now
let QL be a set of points in the Lidar frame L that was collected by a Lidar sensor located
somewhere in this particular scene. The registration problem is concerned about finding the
transformation TWL by alignment of the two sets of points, effectively localizing the Lidar
in the map. See Appendix A for the definition of the transformation matrix and the related
mathematical operations. Besides localization of the Lidar in a map, one could also infer
relative motion by registration of QLt+1 to QLt . As such, point cloud registration is often a
central part in a Lidar-centric localization algorithm. It is a substantial problem to which
many authors have contributed.

A robust way of solving the registration problem was proposed by Besl et al. [37] in 1992, using
the ICP algorithm. Lidar-centric localization algorithms typically rely on some variant of the
ICP algorithm to compare the latest Lidar scan either with a (local) map or with a previous
scan to infer the pose. ICP is generally considered as a robust and accurate method for this
purpose [38]. One iteration of the algorithm can be described by executing the following 3
steps:

1. Establish correspondences: every point in set Q is matched with its nearest neighbour
in set P based on the Euclidean distance.

2. Outlier rejection: correspondences with a distance larger than a certain threshold value
dmax are considered outliers and are removed.

3. Optimization: find the transformation that minimizes the cost function using

T̂ = argmin
T

N∑
i=1

∥∥∥eipo→po

∥∥∥2

2
(2-4)

where T ∈ SE(3) represent the relative transformation between the sets of points. The
term eipo→po = pi − Tqi represents the point-to-point error metric.

The process above is repeated until a termination condition is satisfied, resulting in a trans-
formation that aligns Q to P.

Because the points in both sets are often sampled differently (the Lidar points to different
parts of the scene when e.g. slightly rotated), more accurate results can be achieved using the

H. van Bavel Master of Science Thesis



2-2 Existing work on point cloud handling 15

point-to-line and/or point-to-plane error metrics. As can be seen in Figure 2-2, the LOAM
feature points attempt to locally approximate the structure of the scene by planes and lines.
Rather than minimizing the Euclidean distance between qi and pi, one can minimize the
projection distance of the observed point qi to the feature point pi using

eipo→li = viP ×
(
pi − Tqi

)
, (2-5a)

eipo→pl = ni>P
(
pi − Tqi

)
, (2-5b)

in the optimization step of ICP. The vectors viP and niP represent the principle and normal
directions of the edge and planar feature points in P respectively as visualized in Figure 2-2.
The SLAM algorithms based on the LOAM feature point extraction technique rely on an ICP
process that minimizes the point-to-plane and point-to-line errors for all the corresponding
features that have been found.

A relevant adaptation of the ICP algorithm for indoor localization is presented in the work
of Blum et al. [9]. An ICP-based method is proposed to localize the robot directly in the
architectural building model by sampling the available 3D building model to a point cloud
with normal directions attached to each point. The point-to-plane ICP method is used to
localize the robot.

Nearest Neighbor detection. The step of establishing correspondences in ICP requires
special attention because a brute force search strategy quickly becomes computationally too
expensive for larger point clouds [39]. Approximate search techniques have therefore been
developed to speed up this process. Most notably the kD-tree and octree structures are well
established techniques for this purpose [40, 41]. These tree structures organize the 3D point
cloud by splitting space hierarchically into smaller subspaces until each subspace contains
one point. The search for a nearest neighbor can now be done by starting at the root of
the tree and systematically going up the tree, significantly reducing the search space. This
approach imposes a risk of returning a sub-optimal neighbor, but the redundancy between
points typically prevents large accuracy degradation.

Limitations of the ICP process. As this thesis aims to bring improved accuracy in
localization, we will take now a closer look at potential error sources in the ICP algorithm:

• Because of high point densities in both P,Q, small initial misalignments between the sets
can result in a large amount of both false positive and false negative correspondences,
pulling the transformation estimate away from its true value. Iteratively re-establishing
these correspondences reduces these errors, but its success can be unpredictable and
depends on the sensor resolution, type of scene and initial transformation guess.

• The nearest neighbor detection step using an approximate search technique may result
in sub-optimal correspondences.

• Point coordinates in both P,Q are often extracted directly from the Lidar’s point cloud
and therefore corrupted with noise, limiting the accuracy of ICP.

• In the particular case of LOAM [18], the ICP process is based of edge- and planar
feature points that both contain errors as explained in §2-2-2.
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Undistorting a Lidar scan
Due to the rotating nature of a Lidar sensor, the scan output (typically 10 Hz) contains
motion distortion when the robot moves because the scan does not originate from a single
robot pose. Undistorting the Lidar scan is the process of adjusting the position of the points
in the point cloud such that the points are congruent with a singular robot pose. The state-
of-the-art technique to overcome this problem is to establish tightly coupled sensor fusion
between the Lidar and IMU, and use the trajectory estimate of the IMU to undistort the
Lidar scan. LIO-SAM [10] and FAST-LIO2 [11] are examples of such tightly coupled Lidar-
IMU SLAM algorithms. The IMU trajectory estimate can be very accurate on the short
term if the gyroscope and accelerometer biases are known. These SLAM algorithms therefore
estimate the biases online and apply the technique of preintegration to transform high-rate
IMU measurements (often 200-1000 Hz) to Lidar-rate (10 Hz) relative pose transformations
[28]. Limitations of such an undistortion process are the added complexity and risk of errors
due to saturation of the IMU signal and incorrect subtraction of the gravity vector.

2-3 Existing work on Lidar-centric localization algorithms

Now that both the back- and front end parts of Lidar based localization algorithms have been
discussed, we proceed to take a closer look at state-of-the-art localization algorithms and see
how these works implement these principles. For completeness, this chapter discusses both
building model based localization algorithms and SLAM algorithms.

2-3-1 Building model based localization

Several works in the literature leverage the availability of a preexisting map, either in the
form of a 2D floor plan or a full 3D model. Boniardi et. al. [42] present a hybrid 2D Lidar
localization algorithm that overlays a SLAM map (occupancy grid) on top of the building
floor plan under the assumption that the actual building’s cross section and floor plan are
identical. The occupancy grid is used to model objects that are not included in the floor
plan such as clutter. The algorithm demonstrates to cope with increased amounts of clutter,
but fails when the as-built errors get too large. In the best test case, the algorithm reports
an impressive average error of 12 mm ± 10 mm. An average error of 42 mm ± 32 mm
was reported in a scenario with increased clutter. No open-source implementation of this
algorithm is available.

The work of Gawel et al. [7] shows a method where a construction robot first localizes itself
roughly by comparing the Lidar observations with the building model using ICP, and fusing
the respective output with the IMU and wheel odometry using ConFusion [27]. Since this
process is of limited accuracy, the robot then refines its pose estimate by a measurement
procedure using three laser range meters with mm-level accuracy mounted on the end of the
robot’s arm. The range meters were aimed at building features that were considered relevant
to the task, i.e. walls close to the robot. This work obtains an accuracy of sub-4 cm. It was
found that the accuracy was highly dependent on the robot’s location. Errors were introduced
due to an inaccurate orientation estimate of the laser range meter due to either (a) errors in
their extrinsic calibration, magnified by the large (>10 m) distance measurements or (b) an
inclined floor that was not captured in the building model.
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Blum et al. [9] improve the matching between the Lidar and building model by using visual
information to filter out Lidar observations that do not directly observe the building structure.
The localization procedure then selects three surrounding walls near the building task to which
the robot references itself using the point-to-plane ICP algorithm. Special attention is paid to
as-built errors and cluttered environments. The method demonstrates an accuracy of around
20 cm.

An inherent limitation of relying on the building model is that this model is never perfect
due to as-built errors and clutter present on the scene. As-built errors in practice can be in
the order of 10 cm. These aspects limit the accuracy and robustness of such methods.

2-3-2 Simultaneous localization and mapping

The field of Lidar-centric SLAM is a very active field of research, with many works being
published every year. The use cases for SLAM can vary significantly (e.g. search and rescue,
autonomous driving, domestic robots), and as such it can be seen that existing SLAM algo-
rithms are designed with different design goals in mind. The interested reader is referred to
[43] for a more in-depth background on SLAM. In this section, a selection of works is high-
lighted which stand out in terms of performance and/or unique features. Special attention
is payed to works that utilize a novel map representation, because this is at the core of how
the robot assumes that the world looks like. Different map types may be better suited for
different purposes, and as such the ideal map representation of a SLAM algorithm depends
on the use case. It was found that significantly less works have recently been published in
the field of 2D Lidar-centric SLAM algorithms with respect to 3D methods. For these 2D
methods, the literature has largely consolidated on the application of occupancy grid map
types. Popular works such as Hector-SLAM, KartoSLAM, GMapping [44] and Cartographer
[45] all use such a map type.

A natural place to start with Lidar-centric SLAM algorithms is LOAM [18]. This work was
published by Zhang et al. in 2014 and is still considered the benchmark algorithm today
by newer SLAM works. The feature point extraction technique of the LOAM algorithm was
already discussed in detail in §2-2, including its limitations. The LOAM algorithm achieves
an efficient way of compressing the point cloud, resulting in a favorable trade-off between
computational efficiency, robustness and accuracy. This is the primary reason why the LOAM
feature point selection technique is at the core of many follow-up SLAM algorithms.

The Cartographer [45] 2D SLAM algorithm by Hess et al. is a very popular work for use on
ground robots with a 2D Lidar. The occupancy grid map type is well suited for tasks such as
obstacle avoidance. The accuracy of the algorithm, however, is inherently limited by the grid
size. A grid size of 5 cm is proposed to enable real-time performance and reasonable accuracy.
Reducing the grid size to below 5 mm increases the map density by more than two orders of
magnitude, indicating the limitations in scalability of computational needs of this approach.
The 3D generalization of such a map is proposed in [46], but this map representation is rarely
used in 3D SLAM algorithms, also due to limited scalability.

Kimera [47] was designed primarily for depth-camera sensors, and stands out by its use of
a triangular mesh to represent the world. A mesh can describe the world continuously by
connected triangular surfaces. A potential benefit is that large planar surfaces, as often
found on a construction site, can be effectively modeled. Limitation of the mesh structure
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are (1) non-flat structures can only be approximated and (2) complex topology related to the
interconnections between triangles.

The LIO-SAM [10] algorithm takes the LOAM feature point extraction technique as a basis
of the front-end, and implements a modern factor graph back-end in order to facilitate tightly
coupled fusion between the Lidar and IMU and loop closures. The IMU is used to (1) undistort
the Lidar scan, (2) provide an initial guess of the pose at the next time point and (3) provide
a relative pose constraint between two successive time points in the factor graph. Many works
exists that, similar to LIO-SAM, add extra features on top of the principles of LOAM. As
such, these works inherit the same limitations as described in §2-2.

LIC-FUSION 2.0 [48] proposes an interesting addition on top of the LOAM principles. Plane
features using the 3DOF closest point parameterization are tracked within the state vector of
the Multi-State Constraint Kalman Filter. Contrary to the other discussed works, no open-
source implementation of this algorithm is available. The work claims improved accuracy
over LOAM. As can be seen in the YouTube video3, the tracked planes are only short-lived
by a few seconds, and typically no more than two planes are tracked simultaneously.

The FAST-LIO2 [11] algorithm breaks the trend of using the LOAM feature point extraction
technique by using the raw point cloud directly to construct a dense map. Two main im-
provements are implemented such that this dense point cloud map can be accommodated. A
more efficient ikd-tree is proposed to structure the point cloud map such that correspondence
finding process can be done with more points in the cloud. Furthermore, a novel strategy for
calculating the IEKF’s Kalman gain is implemented such that the (larger) ICP optimization
problem of (2-4) can be solved efficiently. The result is a SLAM strategy that maintains a
dense global map to which new points are directly registered. The FAST-LIO2 algorithm is
the highest ranking algorithm of Hilti SLAM Challenge.

The different map representations are visualized in Figure 2-3. The selection of existing works
in SLAM is summarized in Table 2-1. A key observation is that the existing works attempt
to model largely the entire scene. This can be cumbersome from an accuracy perspective, as
a construction site is often cluttered with objects that have complex geometry (e.g. a pile of
pallets). Accurately describing such complex geometry is challenging due to noisy sensor data
and a limited map resolution. The resulting coarse representation of such complex geometry
may consequently reduce localization accuracy.

Table 2-1: A selection of SLAM algorithms.

Name Back-end Map type Highlight

LOAM [18] Custom Feature points Highly influential work in Lidar SLAM.
Cartographer [45] Custom 2D occupancy grid Popular 2D SLAM work.
Kimera [47] Factor graph Mesh Unique map representation.
LIO-SAM [10] Factor graph Feature points Tight IMU coupling, loop closure.
LIC-FUSION 2.0 [48] KF-based Feature points, planes Integration of plane tracking.
FAST-LIO2 [11] KF-based Dense point cloud Hilti SLAM Challenge winner.

3https://www.youtube.com/watch?v=waE5nepxD-Q
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Mesh Feature points Feature points and planes 2D occupancy grid

Figure 2-3: Different map representations that can be found in existing SLAM works.

2-4 Design goals of the proposed localization algorithm

We have now taken a closer look at the state-of-the-art in Lidar centric localization algorithms,
their components and limitations. It is concluded that currently no method exists that comes
close to meeting the requirement of sub-5 mm accuracy. The algorithms discussed in this
chapter typically achieve an accuracy of around 5-10 cm, and this level of accuracy can
only be maintained in certain scenarios. The localization strategies that utilize the building
model are inherently limited by as-built errors and cluttered environments. Altogether, this
motivates the need to explore how the accuracy of a localization algorithm can be improved.
The main design goals of the novel localization algorithm are summarized below.

• Ability to work independent of an existing building model. Building model
based localization methods suffer from as-built errors and increased amount of clutter
in the scene, or such a model may not be available. Therefore this thesis aims to rely
on a map which is built from observations (SLAM) that is independent of this model.

• Focus on improved accuracy in indoor scenes. Existing works in Lidar SLAM
design their algorithm in such a way that these algorithms can be deployed in general
scenes. Limited attention is paid in the literature to a SLAM strategy that is specifically
targeted at indoor scenes in order to leverage the specific structure that can be expected
at such a scene to improve accuracy.

• Static accuracy is prioritized over accuracy while the robot is in motion.
A construction robot for tasks such as drilling holes will carry out this task while
stationary. Therefore, accurate localization while the robot is stationary is prioritized.

• Use sequential estimation to keep the size of the problem tractable. This
thesis sets the goal to utilize a sequential estimation technique such as the Kalman filter
to solve the SLAM problem incrementally, rather than estimating the entire trajectory
and map at once (i.e. smoothing).

• Ability to cope with moving obstacles and cluttered environments. People
may be present on a construction site and various amounts of clutter can be expected.
The localization algorithm should be robust enough to cope with such challenges.

With these design goals stated, Chapter 3 will propose the novel Lidar SLAM algorithm that
is aimed at eliminating the limitations of the related work mention in this chapter and realize
these design goals.
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Chapter 3

A novel 2D Lidar SLAM algorithm:
Ray-SLAM

This chapter proposes the Ray-SLAM algorithm, a 2D Lidar Simultaneous Localization And
Mapping (SLAM) algorithm. Since the SLAM problem is large and complex, this chapter
starts by introducing several simplifications. Then, the state-space model of the system is
introduced, with special attention paid to the map. The SLAM problem is introduced formally,
which is split-up in several subproblems. Then, the Ray-SLAM algorithm’s components are
described that aim to solve each of these subproblems such that these components work together
for the purpose of simultaneous localization and mapping.

General notation. Tuning parameters are denoted by the letter s, e.g. svel represents a
velocity threshold that can be set by the user. Boolean variables are denoted by the letter b.

As stated in Chapter 1, the SLAM problem is concerned about estimation of the robot’s
trajectory and constructing a map of the scene, and no prior information is assumed to be
available (e.g. an existing map). For clarity, this chapter refers to the Lidar’s trajectory as
an actual robot is not present. To reduce the scope of the problem, we start by stating which
simplifications are put in place.

Simplification 1: reduce the 3D problem to 2D. This work establishes an algorithm
that focuses on the 2D simplification of the 3D problem. In other words, we care about the
Lidar’s 2D position and its heading in the horizontal plane. An accurate pose estimate in the
horizontal plane can be an effective solution for many use cases for robots such as the Jaibot.

Furthermore, this thesis study can be considered as a proof-of-concept and a first step towards
3D SLAM. The design choices for the Ray-SLAM algorithm are made with 3D generalization
in mind. If the 2D algorithm shows to be successful, then 3D generalization can be considered
as a follow-up project. Generalization to 3D is discussed further in Section 5-2.

Simplification 2: repetitive static conditions are present the Lidar motion. Due
to the rotating nature of a Lidar sensor, the 10 Hz scan output contains motion distortion
when the Lidar moves because the scan does not originate from a single pose (see §2-2-3).
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Undistorting the Lidar scans can be done using an IMU, but is considered outside the scope
of this thesis. The algorithm therefore does SLAM when the robot is stationary, and localizes
only within the latest map when the robot moves. This ensures that errors due to motion
distortion are not incorporated into the map. However, the Lidar is now required to be
stationary during initialization and stop on a regular basis in order to extend the map. It is
therefore not recommended to deploy the algorithm on e.g. a drone, where zero velocity is
harder to accomplish.

3-1 State space model and map representation

This section builds up the state space model of the system by defining the state vector,
dynamic model and the Lidar measurement model. Special attention is paid to the map
which is an integral part of the SLAM problem. The parameterization of the map, how
the map is built and maintained, and how the map interacts with the state vector are key
ingredients of the Ray-SLAM algorithm that will be explained in detail this chapter.

State vector. The state description of the system xt contains the Lidar’s pose and its linear-
and angular velocities. The pose xpose,t ⊆ xt at time point t contains the position-heading
parameterization of transformation of the Lidar frame L to the SLAM frame S, denoted by
TSLt ∈ SE(2) (see Appendix A for the definition of a transformation matrix and the related
mathematical operations). The location of SLAM frame is chosen at t = 0 using TSL0 . It can
be placed at an arbitrary location by the SLAM algorithm: expressing the map and trajectory
from different reference frames yield equally valid solutions to the SLAM problem [19]. The
user-provided initial transformation TSL0 is denoted by x̆pose,0. The SLAM frame is often
placed at the starting pose of the Lidar such that x̆pose,0 = 0. As such, the initial pose is
defined rather than estimated. Throughout this thesis, when the reference frame is omitted
from the notation, the SLAM frame S is assumed as reference frame for the Lidar pose and
map features, and the Lidar frame L is assumed for the observations made by the Lidar.

It was chosen to include the Lidar’s linear- and angular velocities into the state vector. An
estimate of these quantities is helpful to (1) detect static conditions and (2) predict the Lidar’s
pose at time t+ 1 more accurately. The state vector can now be defined as

xt = (px,t py,t θt vx,t vy,t ωt)> (3-1)

where px,t, py,t denote the robot’s Cartesian coordinates, θt the heading angle in radians,
vx,t, vy,t the robot’s linear velocity in m/s, and ωt the robot’s angular velocity in rad/s.

In construction, the world frameW is typically attached to a specific part of the architectural
building model, such as the corner of a room. The rigid transformation between the SLAM
frame and a world frame is denoted by TWS . Estimating this transformation is referred to as
the global registration problem and is considered outside the scope of this thesis [49], as this
work does not utilize an a-priori known map.

3-1-1 Dynamic model

The dynamic model relates the robot state xt to xt+1 using the inputs of the system ut. Such
input measurements can come from an Inertial Measurement Unit (IMU) or wheel odometry
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for example. In order to reduce the scope of this thesis, a constant velocity model is used
instead, which is a simpler model that uses no input measurements. The continuous-time
constant velocity model is

ẋt = Actxt, Act =
(

03×3 I3
03×3 03×3

)
, (3-2)

and follows from the fact that the state elements vx,t, vy,t, ωt are the derivatives of state ele-
ments px,t, py,t, θt respectively. Using the zero-order hold discretization method, the discrete-
time dynamics matrix A is obtained which is denoted by

A =
(
I3 cdtI3

03×3 I3

)
, (3-3)

where cdt denotes the time between each Lidar scan, which is 0.1 sec in this thesis. We model
the Lidar’s velocity as a random-walk process by adding the noise term wt to the velocity in
order to accommodate for model inaccuracies. The discrete-time dynamic model can now be
defined as

xt+1 = Axt + wt, wt ∼ N (0, Q) , (3-4a)

Q =
(

03×3 03×3
03×3 Qvel

)
. (3-4b)

The process noise covariance matrix Qvel is a tuning parameter that describes how much
the constant velocity assumption is trusted. The model becomes inaccurate when the Lidar
undergoes acceleration, but this is not considered a problem as pose estimation accuracy at
static waypoints is the primary focus of this thesis. Note that the model is linear.

3-1-2 Map representation

The process of building and maintaining a map is an integral part of SLAM. The map repre-
sentation plays a vital role in the Lidar measurement model, and is therefore discussed first.
The core idea of Ray-SLAM is to add information about the scene to the SLAM problem by
assuming that walls are available. This work attempts to realize improved accuracy by focus-
ing on indoor scenes specifically rather than on general scenes. Figure 3-1 shows an indoor
scene where a construction robot could be deployed to give the reader a general sense of the
considered use cases. Typical challenges become visible such as the large amount of clutter in
the scene and (partly) obscured walls. Furthermore, we let go of the need to model the scene
in its entirety, and only model enough parts (i.e. walls) of the scene to enable localization. As
such, we can avoid to attempt modeling objects in the scene with complex geometry (e.g. a
pile of pallets). This is beneficial, because inaccurate models of such objects inevitably intro-
duce errors in the localization process. This design philosophy differentiates Ray-SLAM from
other SLAM algorithms, as other algorithms aim for applicability to general scenes where the
assumption that walls are present may not hold (e.g. any natural environment), and try to
capture mostly the entire scene in its map (see §2-3-2).

To further specify the 2D map representation that is suitable for the design objective of
accurate indoor localization, the following considerations were made: (1) Walls can easily
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Figure 3-1: A typical scene where a construction robot could be deployed to automate taks such
as drilling holes [1]. Walls are available that the robot can use as reference for localization. The
environment is cluttered with construction materials. In this scene particular since, a 2D SLAM
algorithm can be an appropriate solution since the floor is flat and the walls are upright.

be modeled by line segments in 2D. It was chosen therefore to build the map from 2D line
segments. (2) Walls may have discontinuities that interrupt the flat surface (e.g. due to a fire
extinguisher mounted onto the wall) and slight curvature may exist on a cm-level. To localize
accurately using walls as reference, it is chosen to use disjoint line segments with a fixed length
(for example 0.5 m) to represent the walls. A large wall can now be modeled by multiple
line segments to capture potential curvature. The line segments are to be placed away from
discontinuities such as the edge of the wall or objects attached onto the wall. The modeling
of walls by such line segments is illustrated in Figure 3-2. (3) In order to optimize the line
segment that represents the wall, the line segment should be parameterized in a minimal way
such that these parameters can be estimated by solving an optimization problem.

Geometry of the wall
Fire extinguisher
Map element

Figure 3-2: A toy example of a building’s cross section. A wall may have curvature and the flat
surface can be interrupted by e.g. a fire extinguisher. Line segments (green) are used to model
the wall and are referred to as map elements. The map elements are placed away from the edge
of the wall, the fire extinguisher and each other such that only the (nearly) flat surfaces are used
as a references for localization.
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Based on these considerations the map element is now introduced, which is the main feature
in the map representation used by the Ray-SLAM algorithm. One map element Mi

t is a
line segment that is parameterized by (1) a fixed initial pose (position and heading), (2) a
time varying heading deviation and (3) a time varying position deviation in the direction
of the map element’s heading. These deviations are referred to as the map element offsets.
The map element’s length is fixed to 2sr, where radius sr is a tuning variable. The time
invariant initial pose is denoted by Mi

pose = (piM,x piM,y ϕi) and can be interpreted as a
coarse initial estimate of the wall’s local geometry based on the observations in a single Lidar
scan. The heading- and position offsets are denoted by dipos,t, d

i
ϕ,t. The total heading of the

map element is equal to ϕi + diϕ,t such that diϕ,t remains close to zero. The map element is
visualized in Figure 3-3.

𝑝ℳ,𝑥
𝑖 ,0

φi + 𝑑𝜑,𝑡
𝑖

sr

y

x

𝑑pos,𝑡
𝑖

𝑝ℳ,𝑦
𝑖 0

Map element

Figure 3-3: Parameterization of the map elements. The ith map element Mi
t is shown as a

green line segment. The element has a fixed origin piM,x, p
i
M,y and heading ϕi. The position

offset dipos,t and heading offset diϕ,t in blue are (unknown) model parameters. All map elements
have the same radius sr for simplicity.

The heading- and position offsets of the map elements are considered (unknown) model pa-
rameters, and the objective of the estimation algorithm will be to estimate these offsets as
accurately as possible given the available sensor data. Only two out of three degrees of free-
dom are captured as model parameters such that the map element cannot move parallel to
the wall. The uncertainty of the estimates d̂ipos,t, d̂

i
ϕ,t are denoted by σid,pos,t, σ

i
d,ϕ,t.

The notationMd,t is used to denote all map offsets dipos,t, d
i
ϕ,t ∈Mt. Similarly,Mσ,t denotes

all map offset uncertainties σid,pos,t, σ
i
d,ϕ,t ∈ Mt. The Gaussian posterior distribution of the

map element offsets is written as p(Mi
d,t). To collect all information of one map element, we

denote it by

Mi
t = (piM,x piM,y ϕi︸ ︷︷ ︸

Mi
pose

dipos,t diϕ,t︸ ︷︷ ︸
Mi

d,t

σid,pos,t σid,ϕ,t)︸ ︷︷ ︸
Mi

σ,t

. (3-5)

The mapMt can now be defined as a collection of NM map elements, i.e.

Mt =
{
M1

t ,M2
t , ... ,M

NM
t

}
. (3-6)

A visual overview is given in Figure 3-4, showing the Lidar’s trajectory, map elements and
geometry of the building.
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Robot trajectory
Rigid transformation
Building
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Figure 3-4: Schematic overview of the reference frames of the SLAM problem and their connec-
tions. An example indoor scene is displayed.

It should be noted that the map representation can be generalized to 3D, see Section 5-2.
The hypothetical 3D map element could for example be a disc-shaped surface with radius sr
and origin p ∈ R3, and would have three degrees of freedom: roll, pitch and position offset in
the direction of the surface normal.

3-1-3 Lidar measurement model

Since the SLAM problem is simplified to the 2D case, only the Lidar’s scan ring is used which
has its pitch angle closest to zero (see Figure 2-1). Each range measurement has associated
azimuth angle. We define the set of range measurements and azimuth angles from a single
scan rotation by

Yt =
{
y1
t , y

2
t , ... , y

Nl
t

}
, (3-7a)

At =
{
α1
t , α

2
t , ... , α

Nl
t

}
, (3-7b)

where Nl denotes the number of Lidar observations in a scan. Note that the time stamp t is
identical for each observation, neglecting ‘rolling shutter’ effect of the rotating Lidar, which is
common practice in Lidar SLAM where no process is implemented to undistort a scan. The
azimuth values are obtained directly from the rotary encoder of the Lidar sensor, and may
change over time due to a slight shift in sampling within the interval of 0 ≤ αit < 2π. The
Lidar’s pose together with the Lidar observations are illustrated in Figure 3-5 (left).

Contrary to existing works that typically compare two point clouds using the Iterative Closest
Point (ICP) algorithm to infer a pose, the approach was chosen to model each range mea-
surement from the Lidar directly in order to prevent ICP related errors (see §2-2-3). Making
use of the map representation from §3-1-2, we can introduce the range measurement model
as

yit = h(xt, αit,M
j
t ) + eir,t, eir,t ∼ N (0, σ2

r ), (3-8)

where j represents the index value of the map element that was detected by the ith range
measurement a time point t (matching i and j is discussed in the next section). Recall that
αit is the azimuth angle of the Lidar. The noise term eir,t is modeled as zero-mean additive
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Lidar pose: 
𝐱pose = (𝑝𝑥, 𝑝𝑦, 𝜃)

T

𝜃

𝛼1𝛼2
𝑦2

𝑦1

y

x
𝐱ray = (𝑝𝑥, 𝑝𝑦, 𝜃 + 𝛼)T
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Figure 3-5: Left. Schematic representation of the Lidar observations. Right. Visual represen-
tation of the ray casting function, which provides the measurement prediction ỹ by taking the
Euclidean distance between the Lidar’s position and the predicted intersection point between the
laser beam and map element.

Gaussian noise with a standard deviation of σr. In reality, the measurement error eir,t may have
a bias and covariance that depend on e.g. the objects shape, reflectivity and measurement
inclination angle. It is standard practice in Lidar SLAM however to assume that the error
signal is a zero mean Gaussian noise signal with a standard deviation of σr, and it is up to
the sensor manufacturer to calibrate the Lidar device such that the bias is minimized. The
validity of the Gaussian noise assumption is studied in Appendix C. It is shown that the range
measurement noise indeed follows a Gaussian distribution, but the experiment was unable to
reveal the mean of the error (biasedness).

The measurement prediction function h(·) used in this thesis is defined by the 2D simplification
of the Ray/Triangle Intersection algorithm [50], and is referred to as ray casting. Ray casting
can intuitively be interpreted as the Euclidean distance between the Lidar’s position and the
predicted intersection point between the laser beam and map element, see Figure 3-5 (right).
Let pjs,t,p

j
e,t represent the Cartesian start- and end point coordinates of map elementMj

t and
let xpos,t represent the Lidar’s Cartesian coordinates in the SLAM frame S. Furthermore let
rit represent the normalized direction vector of the laser beam using

rit =
(
cos(αit + θt) sin(αit + θt)

)>
(3-9)

in the SLAM frame. The predicted range measurement ỹit of a single laser beam can now be
modeled by

h(xt, αit,M
j
t ) =

(pjs,t − xpos,t)× (pje,t − pjs,t)
rit × (pje,t − pjs,t)

(3-10)

where × denotes the two-dimensional cross product. Note that the function h(·) is non-linear.

3-1-4 Finding correspondences between the Lidar observations and the map
elements

It can be seen that the model of (3-8) introduces a challenge: it is not known a-priori which
observation i detects which map element j. This problem is referred to as correspondence
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28 A novel 2D Lidar SLAM algorithm: Ray-SLAM

finding. Some of these measurements may detect a map element, and others may detect
clutter in the scene or a part of a wall that is not represented by a map element. The result
of the correspondence finding process yields the following three sets:

YC,t =
{
y1
C,t, y

2
C,t, ... , y

NC
C,t

}
⊆ Yt, (3-11a)

AC,t =
{
α1
C,t, α

2
C,t, ... , α

NC
C,t

}
⊆ At, (3-11b)

NC,t =
{
n1
C,t, n

2
C,t, ... , n

NC
C,t

}
. (3-11c)

where YC,t,AC,t only contain Lidar measurements that detected a map element. The amount
of correspondences is denoted by NC . The integer variable niC,t ∈ NC,t represent the map
element index that was detected by the ith Lidar observation respectively, and as such NC,t
acts as a link table. The correspondence object Ct is furthermore defined by

Ct = {YC,t,AC,t,NC,t} (3-12)

as the collection of the correspondence information. The function k(·) is introduced which
has the objective of finding the correspondences and has the form of

Ct = k(xt,Mt,Yt,At). (3-13)

The implemented solution of the correspondence finding function k(·) is detailed in §3-2-5.

3-2 Problem formulation and algorithm implementation details

The previous section has laid the foundation of the Ray-SLAM algorithm by introducing
the state-space model and map representation. For the SLAM algorithm to function, we
need the following three sub-problems to be solved: (1) estimation of the state and map
element offsets, (2) spawning new map elements and (3) finding correspondences between the
Lidar observations and map elements. The implemented solutions to these sub-problems are
referred to as Ray-SLAM’s components. Components (2) and (3) have direct access to the
raw Lidar measurements and are considered the front-end of Ray-SLAM, while component
(1) is considered the back-end. In order to get a better overview of how these components
work together, a flow chart description is given in Figure 3-6, which is closely related to the
flow chart of Figure 1-3. This section now proceeds with formalizing these sub-problems and
describes the algorithmic components to solve them in detail.

Parameter initialization. The stationary indicator boolean variable bstat is introduced to
specify whether the Ray-SLAM algorithm should switch to SLAM or localization only. This
variable is initialized by bstat = True. The state initializes by setting x0 = (x̆>pose,0 0 0 0)>
based on the assumption that the Lidar is stationary during start-up. The initial pose x̆pose,0
is provided by the user.

3-2-1 Loosely coupled estimation of the map and state

We now consider the problem of estimating the state trajectory x1:t and map M given the
sensory data Y0:t and initial robot pose x0. This thesis assumes the Markov property between
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𝒞𝑡 = 𝑘(𝐱ු𝑡, ෡ℳ𝑡−1, 𝒴𝑡, 𝒜𝑡)

෡ℳ0 ← 𝑚init 𝐱0, 𝒴0, 𝒜0 ,
𝐱ු1 = 𝐱0

𝑝 𝐳𝑡,ℳd,𝑡 𝒞𝑡, ෱ℳd,𝑡−1,ℳpose ~𝒩
ො𝐳𝑡
෡ℳd,𝑡

,
𝑃𝐳,𝑡 𝟎

𝟎 ℳ𝜎,𝑡
∗

𝑝 𝐱𝑡 𝐱ු𝑡, 𝐳𝑡 ~𝒩(ො𝐱𝑡, ෠𝑃𝑡)

෡ℳ𝑡 ← ෡ℳ𝑡 ∪𝑚(ො𝐱𝑡, ෡ℳ𝑡 , 𝒴𝑡 , 𝒜𝑡)

𝑝(𝐱𝑡+1|ො𝐱𝑡)~𝒩(𝐱ු𝑡+1, ෘ𝑃𝑡+1)

Establish correspondences 
between the map elements 
and Lidar observations.

Optimize the map and Lidar pose.

Create the initial map.

Estimate the state using the Lidar 
pose as virtual measurement. 
Determine if the robot is stationary.

Add new map elements to the 
existing map.

Predict the state at the next 
time step.

10Hz 
loop

𝑡 ← 𝑡 + 1

𝒴𝑡 , 𝒜𝑡

𝐱0, 𝒴0, 𝒜0

𝑡 ← 1

Figure 3-6: A flow chart description of the Ray-SLAM algorithm using the algorithmic compo-
nents. Once the initial map is constructed, the algorithm carries out SLAM in a 10 Hz loop. The
color green indicates steps that are carried out only if the Lidar is considered to be stationary.
The front-end functions minit(·), m(·) and k(·) have direct access to the raw sensor data Yt. The
estimation problems indicated by p(·) are the back-end of Ray-SLAM. The asterisk at M∗σ,t is
placed to indicate a diagonal matrix approximation.
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30 A novel 2D Lidar SLAM algorithm: Ray-SLAM

successive states xt−1:t, which is common practice in pose estimation [21], such that the
problem can be solved incrementally. The map offset estimates at t− 1 are used as a prior in
order to incrementally improve these estimates based on new observations. The map offset
prior is denoted by M̆d,t−1.

The incremental pose- and map estimation problem is now introduced as the following con-
ditional probability density function:

p
(
xt,Md,t | Ct,xt−1,M̆d,t−1,Mpose

)
∼ N

((
x̂t
M̂d,t

)
,

(
Pt 0
0 PM,t

))
(3-14)

where the posterior is approximated by a Gaussian distribution. Note that Ct represents the
encapsulated Lidar observations. Rather than considering the optimization problem of (3-14),
this thesis decouples the problem into two subproblems:

p
(
zt,Md,t | Ct,M̆d,t−1,Mpose

)
, (3-15a)

p (xt | xt−1, zt) , (3-15b)

where zt is introduced as a placeholder variable that is directly related to xpose,t. Subproblem
(3-15a) uses the Lidar observations in Ct and the prior map offsets M̆d,t−1 to jointly estimate
the Lidar pose zt as a virtual measurement and map offsets Md,t while disregarding the
temporal relation between xt−1 and xt. The virtual pose measurement is distributed as
zt ∼ N (xpose,t, Pz,t) and is part of SE(2). Subproblem (3-15b) consequently estimates the
full state xt using xt−1 and zt of (3-15a) while considering the system’s dynamics.

Such a decoupled approach for state estimation is often referred to in the literature as loosely
coupled. Using this approach, it is important that when summarizing the measurement- and
map information into zt in (3-15a), no information gets lost that is relevant for estimating
xt in (3-15b). Since the Lidar range measurements can only measure distance (and not
velocity), this is assumed to be the case. The decoupled approach furthermore assumes
that the subproblems are statistically independent, which is believed to be true since the
measurement noise eir,t acting on (3-15a) and the process noise wt acting on (3-15b) are
unrelated processes.

This loosely coupled approach was chosen for several reasons. First, we note that the virtual
pose measurement model takes the shape of

zt = Cxt + ez,t, ez,t ∼ N (0, Pz,t), (3-16)

with the observation matrix C = (I3 03×3), which is a linear model. This observation ma-
trix follows from the fact that zt and xpose,t are directly related. Since the dynamics of the
system in (3-4) are also described by a linear model, we can now use a linear Kalman filter
[23] to solve the estimation problem of (3-15b). The linear Kalman filter is well understood,
computationally efficient and easy to implement. Furthermore, solving the nonlinear estima-
tion problem of (3-15a) may rely on a solver that implements automatic (analytical and/or
numerical) differentiation. As such, implementation of e.g. an iterated extended Kalman
filter can be avoided, and there is no need to manually establish the Jacobian matrix of the
optimization problem.
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3-2-2 Nonlinear estimation of the virtual pose measurement and map.

Problem formulation. We now establish the derivation of the nonlinear least squares form
of the estimation problem of (3-15a). The nonlinear least squares problem is a widely studied
problem class, and efficient solver algorithms are available to solve such a problem [25, 51].
First, we use the conditioning rule to establish that

p
(
zt,Md,t | Ct,M̆d,t−1,Mpose

)
= p

(
Md,t | M̆d,t−1

)
p (zt | Ct,Md,t,Mpose) . (3-17)

Independent conditioning terms have been dropped. We now split up the set of correspon-
dences Ct into its three components YC,t,AC,t,NC,t. Using Bayes rule on the probability term
of zt, we can establish that

p(zt | YC,t,AC,t,NC,t,Md,t,Mpose) ∝ p (YC,t | zt,AC,t,NC,t,Md,t,Mpose) (3-18)

where ∝ denotes proportionality. We now expand the statistically independent range mea-
surements in YC,t to obtain that (3-17) is proportional to

p
(
Md,t | M̆d,t−1

) NC∏
i=1

p

(
yiC,t | zt, αiC,t,M

niC,t
d,t ,M

niC,t
pose

)
. (3-19)

Recall that NC denotes the amount of correspondences, and the term niC,t ∈ NC,t in superscript
contains the index value of the map element to which the ith Lidar range measurement
corresponds. We can now see the probabilistic Lidar measurement model of (3-8) on the
right-hand side respectively. In practice, rather than maximizing the probability of (3-19),
we typically minimize the negative log likelihood [21], resulting in the optimization problem
of {

ẑt,M̂d,t
}

= arg min
zt,Md,t

− log p
(
Md,t | M̆d,t−1

)
− log

NC∑
i=1

p

(
yiC,t | zt, αiC,t,M

niC,t
d,t ,M

niC,t
pose

)
.

(3-20)
Since the range measurement noise eir,t and the map offset prior M̆d,t have a Gaussian dis-
tribution, the optimization problem (3-20) reduces to a nonlinear least squares problem. By
denoting the measurement prediction ỹiC,t = h(zt, αiC,t,M

niC,t
d,t ,M

niC,t
pose) and using the previous

map offset estimates d̂it−1 and their uncertainties diσ,t as the map offset prior, this nonlinear
least squares optimization problem is formulated as

{
ẑt,M̂d,t

}
= arg min

zt,Md,t

∑
dit∈Md,t

(σid,t−1)−2(dit − d̂it−1)2 + σ−2
r

NC∑
i=1

(yiC,t − ỹiC,t)2. (3-21)

The compact notation dit, σid,t refers to both the position- and heading offsets in M̂i
t together.

Note that the squared map prior and observation residuals are weighted by their inverse
variance (σid,t−1)−2, σ−2

r respectively. The Lidar scan may be corrupted by motion distortion.
When the estimated velocity ||x̂vel,t||2 exceeds some threshold, the optimization problem of
(3-21) is reduced to pose estimation only using

ẑt = arg min
zt

σ−2
r

NC∑
i=1

(
yiC,t − ỹiC,t

)2
(3-22)

Master of Science Thesis H. van Bavel



32 A novel 2D Lidar SLAM algorithm: Ray-SLAM

with the modification that the measurement prediction ỹiC,t in (3-22) is based on M̂d,t−1. Note
that the optimization problems of (3-21) and (3-22) are not the final optimization problems
implemented by Ray-SLAM, this will follow in the next section.

Implementation details. In order to arrive at the specific nonlinear least squares opti-
mization problem as implemented in Ray-SLAM, the following steps are carried out: (1)
Introduction of the beam angle discount factor. (2) Reduction of the optimization problem’s
size by introduction of the map optimization vector.

Introduction of the beam angle discount factor. In model based optimization, it is
important to define the error term (such as yiC,t − ỹiC,t in (3-21)) accurately to describe the
mismatch between the data and the model. The optimization algorithm relies on this error
term to find the unknown parameters zt,Md,t that minimizes the sum of squared error terms,
resulting in ẑt,M̂d,t with the least model mismatch. Depending on how properly the error
term is modeled, the (local) minimum at ẑt,M̂d,t can be either close or far away from its true
value. This section takes a closer look at different error terms related to Lidar SLAM.

Conventional Lidar SLAM algorithms project the observed laser point {yit, αit} onto the feature
to which it is associated, resulting in the point-to-feature error term [18]. Depending on the
3D feature type the point-to-plane or point-to-line error is obtained. Since this thesis is
concerned with the 2D case, we now take a closer look at the point-to-line error term ep2l,
which is shown in Figure 3-7. This error term implicitly assumes an orthogonal beam angle
βit = 0 for each Lidar observation, where the beam angle βit is defined as the angle of the laser
beam with respect to the map feature normal. This assumption is not true in general, as each
measurement comes in at a different angle up to βit < 90◦ depending on the orientation of the
feature with respect to the Lidar’s position.

𝐱ray,𝑡 = {𝑝𝑥,𝑡, 𝑝𝑦,𝑡, 𝜃𝑡 + 𝛼𝑡
𝑖}

෤𝑦𝑡
𝑖 = ℎ(ℳ𝑡

𝑗
, 𝐱ray,𝑡)

𝑦𝑡
𝑖

y

x

Laser observation
Laser-map projection point 

Ray-casting error: 𝑦𝑡
𝑖 − ෤𝑦𝑡

𝑖

Point-to-line projection point

Point-to-line error: 𝑒p2l,𝑡
𝑖

𝑒p2l,𝑡
𝑖

𝛽𝑡
𝑖

Figure 3-7: The ray casting laser beam error model vs. the conventional point-to-line error
model. The difference between these error terms depend on the beam angle βit .

This thesis uses a different formulation of the error term, which is based on ray casting
respectively and is denoted by

eirc,t = yiC,t − ỹiC,t (3-23)

which is defined as the difference between the measurement and the prediction based on (3-10).
Note that the error term eirc,t is different from eip2l,t, and this difference depends on βit. As can
be seen in Figure 3-7, the ray-casting and point-to-line error terms are geometrically related
using

eip2l,t = cos(βit)eirc,t. (3-24)
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3-2 Problem formulation and algorithm implementation details 33

Figure 3-8: The weighting function cos(β)sβ allows the user to reduce or increase the weight
of observations with a steep inclination angle β using the tuning parameter sβ . Setting the
weighting factor sβ = 1.0 results in the point-to-line error metric, where each measurement
residual is weighted such that an observed point results the same residual regardless of incidence
angle β.

In order to implement both the ray-casting and point-to-line error metrics into Ray-SLAM,
the generalized laser beam error term eigen,t is introduced as

eigen,t = cos(βit)sβ (yiC,t − ỹiC,t) (3-25)

where sβ is introduced as the beam angle discount factor tuning parameter. Raising the term
cos(βit) to the power of sβ sets the error term eigen,t to ray-casting for sβ = 0, and to point-
to-line for sβ = 1 respectively. It should be noted that sβ is not restricted to just 0 or 1,
see Figure 3-8. This thesis will investigate which sβ ∈ R results in pose estimation with the
highest accuracy with respect to the ground-truth.

Introduction of the map optimization vector. The nonlinear optimization problem of
(3-21) attempts to optimize all the map offsets (position offsets and/or heading offsets) dit ∈
Md,t. In practice, however, not all of the map element offsets need to be optimized because
map elements may not be observed due to occlusion. Also, map elements can be excluded
from optimization by setting σid,t = 0 as a flag to reduce the size of the optimization problem
(see the next paragraph for more details). Therefore, we introduce the map optimization
vector dopt,t, which the subset of all map offsets that take part in optimization such that

dopt,t ⊆ (d1
pos,t d1

ϕ,t ... dNM
pos,t dNM

ϕ,t )>. (3-26)

The resulting length of vector dopt,t is denoted by Nd,opt. The full optimization vector consists
of both the virtual pose measurement zt and dopt,t. Map offsets that are excluded from
optimization are: (1) map offsets with a standard deviation σid,t = 0 as stored in M̂t and
(2) map offsets related to map features without any correspondences as indicated by bM,t.
Furthermore, if movement was detected by bstat = False, all map offsets are excluded such
that Nd,opt = 0. This reduces the optimization problem from SLAM to localization only. The
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optimization problem as implemented in Ray-SLAM is{
ẑt, d̂opt,t

}
= arg min

zt,dopt,t

∑
dit∈dopt,t

(σid,t−1)−2(dit − d̂it−1)2 + σ−2
r

∑
Cit∈Ct

(
cos(βit)sβ (yiC,t − ỹiC,t)

)2
.

(3-27)
As initial guess, we use the predicted pose x̌pose,t and the map element offsets M̂d,t−1. The
Levenberg-Marquardt method is selected as the solver algorithm of MATLAB’s lsqnonlin(·)
function to find {ẑt, d̂opt,t} that minimizes the cost of (3-27). The solver uses numerical
differentiation to obtain the required Jacobian matrices.

Extract the pose- and map covariance matrices and update the map. Besides the
solution of (3-27), we are also interested in the uncertainty (covariance) of this solution,
which is extracted using a standard procedure from the literature [21, 51] and works as
follows. The function lsqnonlin(·) provides the Jacobian matrix J at the (local) minimum
of the cost function (3-27), which is calculated using numerical differentiation. We now take
the upper-left 3×3 block of J>J and invert it to obtain the pose covariance matrix Pz,t. The
lower-right block J>J of size Nd,opt × Nd,opt is inverted to obtain the covariance matrix of
the map optimization vector Pd,opt,t.

The map element offsets and their uncertainties in M̂t−1 are overwritten by d̂opt,t and the
diagonal values of Pd,opt,t respectively in order to obtain the improved map offset estimates
M̂d,t and their uncertaintiesMσ,t. It was chosen to neglect the off-diagonal covariance values
of Pd,opt,t because this allowed the code to be simplified. During the SLAM process, quite
often the Lidar is at a position where not all the map elements are observed. Using a full
covariance matrix to describe the uncertainty of the map variables would mean that only
specific parts of this covariance matrix need to be extracted and updated, depending on
which of the map elements are observed. Implementing the full covariance matrix to describe
the map variable uncertainties is suggested as future work.

As a way to keep the size of the optimization problem tractable, Ray-SLAM provides the
option to set threshold values on σid,pos,t, σ

i
d,ϕ,t. The map offsets in d̂opt,t always have a lower

(or equal) uncertainty than those in M̂t−1 because information was added to the map. If
the newly obtained map offset uncertainties have dropped below the user-defined thresholds
sσ,pos, sσ,ϕ then the respective map variable uncertainty will be set to zero. This has the effect
that at the next time step t+ 1 the corresponding map element offset will not become a part
of the map optimization vector dopt,t+1.

3-2-3 Linear estimation of the state.

Problem formulation. Recall p (xt | xt−1, zt) as the linear estimation problem of (3-15b).
The linear Kalman filter decouples this estimation problem further into a measurement update
and a time update respectively by

p (xt | x̌t−1, zt) ∼ N
(
x̂t, P̂t

)
, (3-28a)

p (xt+1 | x̂t) ∼ N
(
x̌t+1, P̌t+1

)
(3-28b)

where x̌t+1 denotes the one-step-ahead prediction of the time update.
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Implementation details. The estimation problems of (3-28) are solved using the linear
Kalman filter equations following [23]. The Kalman filter in Ray-SLAM serves two purposes,
which are: (1) estimation of the Lidar’s velocity to reliably detect stationary conditions and
(2) predict the pose at t+ 1 using the time update of the Kalman filter. The pose prediction
accuracy is of significant importance for the robustness of the correspondence function k(·)
of (3-13), and hence Ray-SLAM’s overall robustness.
A less important byproduct is that the pose estimate x̂pose,t can be more accurate than ẑt
when the Lidar is stationary by adding the constant velocity assumption. This effect is only
small however because of the high process noise Q assigned to the constant velocity model. We
now proceed to describe the linear Kalman filter implementation using the dynamics models
of (3-4) and the (virtual) observation model of (3-16) to solve the linear state estimation
problem.
Measurement Update. The virtual measurement ẑt and the associated covariance Pz,t
from (3-27) are used to update the predicted state x̌t using

Kt = P̌tC
>(CP̌tC> + Pz,t)−1, (3-29a)

x̂t = x̌t +Kt(ẑt − Cx̌t), (3-29b)
P̂t = (I −KtCt)P̌t, (3-29c)

where Kt represents the time-varying Kalman gain, P̌t the predicted state covariance and P̂t
the updated state covariance.
Check if the Lidar is stationary. After establishing the state estimate x̂t using (3-29), it
is now estimated if the Lidar is stationary using

bstat = ‖(v̂t,x v̂t,y ω̂t)‖2 < svel (3-30)

where svel is a threshold value set by the user. If bstat = True, then the map optimization
vector dopt,t+1 of (3-26) is set to a length of Nd,opt = 0 at the next time step.
Time Update. The time update simply extrapolates the Lidar’s pose at the current time
step by using the constant velocity assumption by

x̌t+1 = Ax̂t, (3-31a)
P̌t+1 = AP̂tA

> + s2
QI (3-31b)

where sQ is a tuning parameter that dictates how much the linear velocity assumption is to
be trusted.

3-2-4 Spawning new map elements.

Problem formulation. Recall that one map element is denoted by

Mi
t = (piM,x piM,y ϕi︸ ︷︷ ︸

Mi
pose

dipos,t diϕ,t︸ ︷︷ ︸
Mi

d,t

σid,pos,t σid,ϕ,t)︸ ︷︷ ︸
Mi

σ,t

, (3-32)

and the mapMt as a collection of NM map elements, i.e.

Mt =
{
M1

t ,M2
t , ... ,M

NM
t

}
. (3-33)
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As no prior map of the scene is available, the SLAM problem start with an empty set of map
elementsM0 = ∅ at t = 0. Therefore, we need a map initialization function minit(·) at t = 0
in the form of

M̂0 ← minit(x0,Y0,A0) (3-34)

to spawn the initial map elements. Furthermore, an important part of the SLAM problem is
that the robot discovers new areas as it traverses the scene. This can be seen in Figure 3-4,
where the robot can observe map elementsM1:7 at t = 0, but not (yet)M8. At time point
t,M8 becomes visible. It should be noted that while we write M̂ to indicate that the map is
being estimated, the ‘true’ mapM does, strictly speaking, not exist because walls are never
perfectly straight, which is suggested by the linear map element. At t > 0, we need to add
new map elements to the map that do not overlap existing map elements. The map extension
function using m(·) at t > 0 is therefore in the form of

M̂t ← M̂t ∪m(x̂t,M̂t,Yt,At). (3-35)

Implementation details. We start by establishing an intermediate single-scan map M̄t

from the Lidar scan {Yt,At}, populated with map elements from this scan only. This map
M̄t is used in both functions minit(·) and m(·). The following three steps describe the process
of extracting the single-scan map M̄t from {Yt,At}: (1) determine for each Lidar observation
if it lies on a line, (2) extract lines from the scan and (3) establish the map elements based
on these lines. The textual explanation that follows goes together with Algorithm 1 and 2.

Extract M̄t from Yt. (1) Determine for each Lidar observation if it lies on a line.

We start by converting a Lidar scan {Yt,At} from polar coordinates to Cartesian coordinates
using basic trigonometry to obtain the point cloud Qt = {q1

t ,q2
t , ... ,q

Nl
t } in the Lidar frame L

(see Figure 3-5). The points qit are transformed to the SLAM frame using the transformation
TSLt which is obtained from xpose,t or x̆pose,0.

The local cluster Q̆t,i is introduced as a set of Nclust point coordinates. For a particular point
qit ∈ Qt, its local cluster the set of Nclust = 13 points, six of each side of qit by leveraging
the fact that the points in Qt are ordered in clockwise direction. The cluster size Nclust is a
tuning parameter1. Similar to other works in SLAM such as [52], the PCA method is used to
analyze the the shape of the local cluster. As we can recall from (2-2), a cluster’s covariance
tensor Gt,i [33] is calculated as

Gt,i = 1
Nclust

∑
qjt∈Q̆t,i

(
qjt − qit

) (
qjt − qit

)>
, qit = 1

Nclust

∑
qjt∈Q̆t,i

qjt , (3-36)

where q̄it denotes the mean coordinate of the cluster. The linear descriptor value lt,i associated
with point qit is defined by the smallest eigenvalue ofGt,i, and as such lt,i represent the cluster’s
variance in minimum-variance direction (i.e. the cluster’s flatness). This process is carried
out for every point qit ∈ Qt. The linear descriptor value lt,i is visualized in Figure 3-9. It can
be seen that lt,i increases when the local cluster of points do not lie on a line.

Extract M̄t from Yt. (2) Extract lines from the scan. The linear cluster Q̄t,j is now
introduced, which is a set of at least Nclust points. This collection of points is considered to

1Tuning of Nclust was done empirically. Large Nclust results in less false positives, while small Nclust increases
the algorithm’s ability to place map elements far away (>5 m) where observations are more spread out.
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Lidar

Observation 𝐪𝑡
𝑖

Observation with lt,i < sl

Observation with lt,i≥ sl

Local cluster ෰𝒬𝑡,𝑖

Linear cluster ത𝒬𝑡,𝑗 by the union 

of three drawn local clusters

Figure 3-9: Visual representation of the linear descriptor value lt,i, which can be intuitively
interpreted as the width of the smallest oval shape that fits around the local cluster of adjacent
points. A cluster size of Nclust = 5 is used in this example. The example Lidar scan shows two
walls meeting in a corner point, with the north-sided wall being partly occluded.

lie on a line, and we therefore assume that these points represent a wall in the scene. Starting
with lt,1, we look for observed points qit with an associated lt,i < sl, where sl is introduced as
a tuning variable. When a point qit is found that meets this criterion, the first linear cluster
Q̄t,j with index j = 1 is initialized by adding Nclust points to it by Q̄t,j ← Q̆t,i. Adjacent
points in the local clusters {Q̆t,i+1, Q̆t,i+2, ...} are added to the set Q̄t,j until lt,i > sl. This
process is repeated to find all linear clusters j = 1, 2, ... in one scan Qt. Figure 3-9 shows an
example of a linear cluster.
For each cluster, a line is then fitted through the set of points using the total least squares
method of [53]. This results in an unbounded line, parameterized by its normal direction
φlin,j and orthogonal distance to the origin rlin,j . The outer two points in Q̄t,j are projected
onto this unbounded line, resulting in two points {ps,j ,pe,j} that describe the line segment
that fits through this linear cluster.
Extract M̄t from Yt. (3) Establish the map elements of M̄t.
The final step of the map element extraction is to create line segments in the format of (3-32).
Zero, one or two map elements are placed on each line based on the line’s length (Algorithm 2
only describes the process of placing one map element for brevity). Here, an important aspect
is that Ray-SLAM places the map elements with a margin of 0.25sr towards the end of the
line, which can only be done if the length of the line ‖ps,j − pe,j‖2 > 2.5sr. Recall that sr is
the map element radius (see Figure 3-3). This prevents association of the adjacent non-linear
structure to this respective line in correspondence function k(·) due to a slightly incorrect
initial guess of the Lidar’s pose. Contrary to existing works, iteratively re-establishing the
correspondences at a single time point is therefore not necessary.
The map offsets dipos,t, d

i
ϕ,t ∈ M̄d,t are initialized at zero and their uncertainty parameters

σid,pos,t, σ
i
d,ϕ,t ∈ M̄σ,t are initialized at 1 (zero would fix the map offsets permanently). As

soon as the map offsets are optimized, their uncertainty parameters will follow naturally from
the solution of the optimization problem that is discussed later in this chapter (§3-2-2).
Construct the initial map M̂0.
Initializing the Ray-SLAM algorithm starts with constructing the initial map M̂0 using
minit(·), a process which requires special attention. As studied by [54], the SLAM prob-
lem is not per se a well-posed problem due to the lack of absolute information that places the
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Algorithm 1: Extract map M̄t

Input : Lidar pose x̂pose,t, Lidar scan Yt,At, tuning variables sl, sr, Nclust
Output: Intermediate map M̄t

1. Convert Yt,At to Cartesian point coordinates Qt in the Lidar frame.

2. Transform all qit ∈ Qt from the Lidar frame to the SLAM frame using qS,it = TSLt qit,
where TSLt is the transformation matrix of x̂pose,t using (A-4). The SLAM frame S is
dropped onwards for notational convenience.

3. Calculate the linear descriptor value lt,i for all Nl points qit ∈ Qt:
for i = 1, 2, ... , Nl do

(a) Collect the local cluster Q̆t,i around qit of size Nclust.
(b) Calculate the local cluster covariance tensor

Gt,i = 1
Nclust

∑
qjt∈Q̆t,i

(
qjt − qit

) (
qjt − qit

)>
, qit = 1

Nclust

∑
qjt∈Q̆t,i

qjt . (3-37)

(c) Set lt,i = smallest eigenvalue of Gt,i.

end for

4. Set i = 1 (measurement index), j = 1 (linear cluster index).

5. Extract linear clusters of points Q̄t,j :
while i ≤ Nl do

(a) if lt,i > sl then set i← i+ 1, continue
(b) Add points to the linear cluster Q̄t,j :

if Q̄t,j = ∅ then
Add all the points in Q̆t,i using Q̄t,j ← Q̆1:Nclust

t,i .
else

Add only the last point in Q̆t,i using Q̄t,j ← Q̄t,j ∪ Q̆Nclust
t,i .

if lt,i+1 > sl then set j ← j + 1.
end if

(c) Set i← i+ 1.

end while

6. Set Nlin = j − 1 (the amount of linear clusters), k = 1 (map element index).
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Algorithm 2: Extract map M̄t (continued)
Input : Lidar pose x̂pose,t, Lidar scan Yt,At, tuning variables sl, sr, Nclust
Output: Intermediate map M̄t

7. Extract line segments from the linear clusters:
for j = 1, 2, ... , Nlin do

(a) {rlin,j , φlin,j} ← Fit the unbounded total least squares line [53] to Q̄t,j .
(b) {ps,j ,pe,j} ← Project the outer two points in Q̄t,j onto the line of {rlin,j , φlin,j}.

end for

8. Establish the map M̄t:
for j = 1, 2, ... , Nlin do

(a) Calculate the line segment’s center by pc,j = 0.5(ps,j + pe,j).
(b) Add a map element to M̄t only if the line is long enough:

if ‖ps,j − pe,j‖2 > 2.5sr then

M̄k
t = (pc,j,x pc,j,y φlin,j︸ ︷︷ ︸

M̄k
pose

0 0︸ ︷︷ ︸
M̄k

d,t

1 1︸ ︷︷ ︸
M̄k

σ,t

), (3-38)

Set k ← k + 1.
end if

end for
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Map element
Anchor map element (fixed position offset)
Observation
Robot pose

Figure 3-10: The selection of three anchor map elements is shown. These elements have a
position offset that is fixed to zero. As a result, the SLAM problem becomes anchored in the
global reference frame.

robot and map in a global reference frame. As argued by [55], at least two a-priori known
reference point observations are needed for the planar SLAM system to be locally weakly ob-
servable. These reference points eliminate the three degrees of freedom of the system where
the robot pose and map move together.
In order to improve the observability of the SLAM problem, Ray-SLAM implements a process
of defining a set of anchor map elements during initialization. The user sets three map ele-
ment position offsets σid,pos,t = 0 as a flag to exclude these map offsets from an optimization
procedure, and as a consequence the corresponding map position offset is fixed to dipos,t = 0.
As a result, the local reference frame in which the Lidar perceives its environment becomes
anchored within the global reference frame or world frame W . Defining the anchor map ele-
ments is implemented as a manual step, shown in Figure 3-10. In order to properly constrain
the SLAM system, the three map elements should be chosen such that the elements are not all
parallel to constrain translation and their normals do not line up in a single point to constrain
rotation.
In summary, the function minit(·) carries out the following steps to obtain M̂0: (1) extract
M̄0 from Y0 and (2) fix the position offset of three anchor map elements.
Append the map M̂t.
We introduce xM ∈ R2 as the last Lidar location where map elements have been added. In
order to save computational resources, appending the map is only carried out if the Lidar has
moved more than the threshold distance sM with respect to the last map update location
xM ∈ R2 by checking the condition

‖x̂pos,t − xM‖2 > sM. (3-39)

If this condition holds, we update xM using xM ← xpos,t and proceed with appending the
map. We start by extracting M̄t from Yt. The map M̄t is likely to contain map elements at
locations that had already been mapped in M̂t. Therefore, in order to prevent overlapping
and/or duplicate map elements in M̂t, we remove the map elements in M̄t where the condition
holds of ∥∥∥(piM̄,x

piM̄,y
)− (pjM,x pjM,y)

∥∥∥
2
< 2.2sr. (3-40)

The remainder of M̄t now represents new parts of the scene, which is the result of the function
m(·). Removing these duplicate/overlapping map elements also prevents mapping the same
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area twice after a loop closure. Recall that map is now appended by

M̂t ← M̂t ∪m(x̂t,M̂t,Yt). (3-41)

To provide more context on the map building technique of Ray-SLAM, we now briefly explain
other commonly used map building strategies by Lidar-centric SLAM algorithms. The LOAM
algorithm executes a mapping step at 1 Hz continuously, where new feature points are added
to the map and voxel grid binning is applied such that only one point is kept per voxel. Such
a map is considered a global map, as the entire map is considered each time ICP-based scan
alignment is carried out. LIO-SAM takes a different approach by the use of key-frames. Key-
frames are defined at Lidar poses after a certain amount of movement was detected, which
is set either 1 m or 10◦ in the work. Only the edge- and planar feature points at key-frames
are kept as the map. To increase the computational efficiency, a moving-horizon of the last
N key-frames is considered during the ICP-based scan alignment, the collection of these key-
frames is considered a local map. Key-frames that fall outside the horizon of the local map
are kept in the growing factor graph to facilitate loop closures.

3-2-5 Finding correspondences between the Lidar observations and the map
elements.

Problem formulation. Recall that in §3-1-4, the correspondence finding function k(·) was
introduced as

Ct = k(xt,Mt,Yt,At) (3-42)

where Ct contains the subset of Lidar observations YC,t ⊆ Yt,AC,t ⊆ At that have detected a
map element, and the linking table NC,t with the respective map element index values:

Ct = {YC,t,AC,t,NC,t} . (3-43)

Obtaining accurate correspondences is critical to the performance of the SLAM algorithm
because the algorithm will assume onward that the observation actually represents the struc-
ture to which a correspondence has been established. If the observation represents something
close to this structure instead, an error is introduced that pulls the pose estimate away from
its true value.

Implementation details. The first step of establishing correspondences is to identify the
map elements that face away from the Lidar’s position and exclude these from the process since
the face of a wall cannot be observed from behind. This prevents erroneous correspondences
with thin walls after the Lidar has traversed around this wall. Then, the following process
is executed for each map element that faces towards the Lidar, which is also illustrated in
Figure 3-11:

• Angles γj1,t, γ
j
2,t are determined, which are the heading angles of the start- and end

points of map element M̂j
t with respect to the Lidar in the SLAM frame. Only Lidar

measurements where the measurement direction θt + αit falls in the interval of γj1,t <
θt +αit < γj2,t could detect this map element, these measurements are thus selected as a
correspondence candidates.
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Lidar

Observation
Succesful correspondence
Unsuccesful correspondence
Map element facing towards 
the robot
Map element facing away 
from the robot

γ1

γ2

Figure 3-11: Visualization of the process to establish correspondences. Map elements facing away
from the Lidar are excluded. The angles γ1, γ2 are used to pre-select correspondence candidates.
The correspondences in green are accepted with |ỹ − y| < scorr.

• For each correspondence candidate, the ray casting measurement prediction ỹit is sub-
tracted from the actual measured distance yit. Only if the magnitude of ỹit− yit does not
exceed the threshold scorr, the correspondence is accepted.

Furthermore, not all map elements may be detected by the Lidar due to occlusion. The
boolean vector bM,t ∈ RNM is collected that indicates for each of the NM map elements if
at least one correspondence has been established. Using bM,t, we can eliminate undetected
map elements from the pose- and map estimation process.

It is interesting to note how this process differs from correspondence finding methods in other
state-of-the-art Lidar SLAM algorithms, where correspondence finding is typically integrated
into an ICP process. As explained in §2-2-3, ICP relies on the Euclidean distance between
points in the map and the observed point cloud respectively. All points in the observed point
cloud need to find their nearest neighbor in the map, and since both sets of points can be
large, this problem can be expensive to solve. Ray-SLAM reduces the required computational
efforts for correspondence finding by (1) reducing the density of the map and (2) pre-selection
of correspondence candidates using the heading angles γ1, γ2 of the map elements to reduce
the search space. It is hypothesized that this technique will become increasingly valuable in
a potential 3D generalization of Ray-SLAM.

3-2-6 Summary of the Ray-SLAM algorithm

So far in this chapter, the state space model of the SLAM system has been established in
combination with the map representation. Detailed descriptions were given about the sub-
problems of Ray-SLAM’s approach to 2D Lidar SLAM, including the implementation of their
solutions. We now summarize Ray-SLAM’s assumptions and novelties that were introduced
in this chapter, and provide an algorithmic overview.

Assumptions. In summary, the Ray-SLAM algorithm assumes that: (1) The Lidar range
measurements are corrupted by zero mean Gaussian noise signals. (2) Walls are present in the
scene. (3) The Lidar motion is constrained to the horizontal 2D plane and does not exhibit
roll, pitch and heave motion. (4) Repetitive static conditions are present in the robot motion.
(5) The state description of the SLAM system possesses the Markov property.
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Map feature (line)
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Figure 3-12: Left. A visualization of the ICP algorithm. It can be seen that 3 incorrect
correspondences (red) are made due to an incorrect initial pose guess (see §2-2-3). Right. The
proposed NICP observation-to-map alignment procedure considers the Lidar’s perspective using
ray casting and aligns the Lidar observations with sparse linear map features using (3-19). These
features are placed away from edges and irregularities in order to avoid incorrect correspondences.
No iterations are required in this alignment process.

Novelties. The outlined approach to Lidar SLAM differs with respect to the state-of-the-art
on various levels. Existing works in Lidar SLAM often build the map of dense (feature) points
[18, 56] in an attempt to model the scene in its entirety. The map is appended when new areas
are explored, and no attempt is made to improve the existing map features by accumulating
statistical information about these features. Some form of the ICP method [39] is typically
used to align new Lidar observations with this map for localization. The ICP algorithm
is required to iteratively re-establish the correspondences because small misalignments in
the initial pose guess lead to a large amount of false positive and negative correspondences.
Contrary to this approach, this thesis proposes: (1) Ray-SLAM adds additional knowledge
about the scene’s structure to the SLAM problem by using a sparse map representation where
walls are used as primary reference. Since walls can easily be modeled in 2D by line segments,
a poor map quality is avoided at parts of the scene with complex geometry. (2) Since the map
elements are placed away from non-flat objects in the scene (see Figure 3-2), correspondence
errors due to small misalignments in the initial pose guess can largely be avoided. Hence,
the steps of correspondence finding (3-13) and pose estimation (3-19) need to be carried out
only once, contrary to the ICP algorithm that is often used in Lidar SLAM. This process is
introduced therefore as Non-Iterative Closest Point (NICP). Aligning the observations to the
map using ICP and NICP is compared in Figure 3-12. (3) The map accuracy is improved
over time in a probabilistic fashion.

Algorithm summary. The Ray-SLAM algorithm is summarized in Algorithm 3.
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Algorithm 3: Ray-SLAM
Input : Initial pose x̆pose,0 ∈ SE(2), measurements Y0:T ,A0:T and all tuning variables s
Output: Trajectory estimate x̂1:T and map M̂T

1. Set x0 = (x̆>pose,0 0 0 0)>, x̌1 = x0, M̂0 = ∅ and bstat = True.

2. Extract the initial map using M̂0 ← minit(x0,Y0,A0) as described in §3-2-4. Three
map elements are selected by the user as anchor map elements by setting σid,pos,0 = 0,
resulting in initial map M̂0.

3. for t = 1, 2, ... , T do

(a) Establish correspondences between the observations and the map elements using
Ct = k(x̌t,Mt−1,Yt,At) as described in §3-2-5. Obtain map element observation
boolean vector bM,t, which indicates if the map elements have been observed.

(b) if bstat = False then set bM,t ← 0 such that the map is not optimized when
motion is detected.

(c) Define the map optimization vector dopt,t ⊆ (d1
pos d1

ϕ ... dNMpos dNM
ϕ )> using

bM,t as described in §3-2-2. Solve the optimization problem{
ẑt, d̂opt,t

}
= arg min

zt,dopt,t

∑
dit∈dopt,t

(σid,t−1)−2(dit − d̂it−1)2

+σ−2
r

NC∑
i=1

(
cos(βit)sβ (yiC,t − ỹiC,t)

)2
(3-44)

where the measurement prediction ỹiC,t depends on zt, αit,M̂t and is obtained by
(3-10). Extract Pz,t and σid,t ∈Mσ,t at the local minimum of (3-44) and update
the map M̂t−1 to M̂t as described in §3-2-2.

(d) Measurement update

Kt = P̌tC
>(CP̌tC> + Pz,t)−1, (3-45a)

x̂t = x̌t +Kt(ẑt − Cx̌t), (3-45b)
P̂t = (I −KtCt)P̌t. (3-45c)

(e) Set bstat ← (‖(v̂t,x v̂t,y ω̂t)‖2 < svel).
(f) Time update

x̌t+1 = Ax̂t, (3-46a)
P̌t+1 = AP̂tA

> + s2
QI. (3-46b)

(g) if bstat = True then append the map using M̂t ← M̂t ∪m(x̂t,M̂t,Yt),At) as
described in §3-2-4 to obtain the appended map M̂t.

end for
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Chapter 4

Results

This chapter describes the real-world experiments that have been conducted to evaluate the
performance of the Ray-SLAM algorithm. The measurement setup was deployed in multiple
indoor scenes with various shapes and sizes in order to get a realistic perspective on the
algorithm’s strengths and limitations. Special attention is paid to the accuracy, robustness
and influence of various tuning parameters. The algorithm’s performance is furthermore
compared to two state-of-the-art open source SLAM algorithms.

4-1 Measurement setup

All experiments have been carried out with the Ouster OS0-64 Lidar device. It has a specified
range accuracy of ±3 cm for diffusely reflecting (matte) surfaces and ±10 cm for reflective
surfaces. The measurement precision ranges between σ = 1.0 cm and σ = 5.0 cm depending
on the measurement distance and surface reflectivity. The Lidar has a vertical resolution of 64
beams spread equally over 90◦. Because of the even number of beams, the two central beams
have an angle of −0.7◦,+0.7◦ with respect to the horizontal axis, of which the upper one was
used. The Lidar rotates internally at 10 Hz with a horizontal resolution of 2048 measurements
per rotation. The Lidar has an integrated IMU of the model InvenSense ICM-20948 with a
sampling rate of 100 Hz. The IMU clock is synchronized with the Lidar clock up to 1 ms.
More detailed specifications can be found in Appendix B.

The measurement setup consists of the Lidar device mounted onto a wheeled tripod to ensure
that the device moves within the horizontal plane, see Figure 4-1. A water level meter was
used to ensure that the Lidar was leveled.

For use with a motion capture system, five reflective markers were attached for tracking. A
rigid body is attached to the five markers in order to track the device (Figure 4-1, right).
The x, y coordinates of the top reflective marker is combined with the heading θ of the rigid
body in order to obtain the Lidar’s pose in SE(2). Since the top marker is above the optical
center, the extrinsic calibration between the Lidar and motion capture frame consist only of a
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Figure 4-1: Left. The Ouster OS0 Lidar device is mounted rigidly onto a wheeled tripod. Five
reflective markers are attached for tracking. Right. The reflective markers are detected by the
motion capturing system. A rigid body is attached to the five markers.

Figure 4-2: The setup with a reflective prism mounted on the top of the Lidar. This prism is
detected by the Hilti PLT-300 Total Station (left) and is able to record coordinates of stationary
points as a ground-truth source.

heading difference. The OptiTrack motion capture system is a reliable source of ground-truth
information with sub-mm accuracy.

At scenes other than the motion capture lab, the PLT-300 Total Station was used as a source
of ground-truth. The reflective prism is mounted on top of the Lidar as shown in Figure 4-2.
The prism is carefully aligned centrally above the Lidar so that there is no extrinsic calibration
required between the two in a 2D simplification. The PLT-300 has sub-3mm accuracy and
measures only the position of the reflective prism in stationary conditions.

4-2 Datasets

Six data sets with ground truth information have been recorded at five different locations at
the Hilti campus located in Schaan, Liechtenstein. The locations were selected to represent
a wide variety of room shapes and sizes in order to get an understanding of how Ray-SLAM
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performs under various real-world circumstances. The large rooms in particular are scenarios
in which the Jaibot could be deployed for operation. As discussed in Chapter 1, utilizing
Ray-SLAM on the Jaibot is one of the primary use cases.

Lidar and windows. Most buildings contain a significant amount of windows in them, and
windows were not avoided when seeking suitable locations to test Ray-SLAM in real-world
scenarios. Windows are typically not detected directly, but act more like a mirror (depending
on how clean the window is). Lidar SLAM algorithms, Ray-SLAM included, consequently
create a mirrored version of the room in their map behind the window. This is typically not
a problem because the mirrored features behave consistently as the Lidar is moved. Errors
can be introduced however when the windows are not coplanar, causing the mirrored feature
to behave inconsistent across different windows. Addressing this potential error source is
considered outside the scope of this thesis. Section 5-2 will go into more detail about possible
ways to eliminate this error source.

Motion capture lab.
The motion capture lab at the Innovation Center building on the Hilti campus is a relatively
small room of approximately 60 m2. The room has a rectangular shape and no obstacles in
the middle of the room that can occlude parts of this room, see Figure 4-3. The measurement
setup stays within this room during data capture, and as such no new areas are discovered.
The dataset Motion capture lab was recorded at this scene. Challenging aspects are several
reflective surfaces (whiteboards) that are used as reference and the large amount of windows.
The available OptiTrack motion capture system provides a reliable source of ground-truth
information.

Figure 4-3: Motion Capture Lab.

VGN floor 1.
The VGN building is a large office building on the Hilti campus. It was emptied at the time
of writing since it was put out of use. The large office spaces make an ideal environment to
carry out testing, as a building construction site is often relatively empty as well. The first
floor office section is roughly 350 m2, see Figure 4-4. A part of this office section was found
cluttered with a large amount of scrapped office materials (left in the image). Two data sets
were captured, VGN floor 1(a) contains a trajectory in the non-cluttered part and VGN floor
1(b) contains a trajectory through the clutter. A large amount of windows is present.
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Figure 4-4: VGN office floor 1.

VGN floor 2.
The office at the 2nd floor of the VGN building is similar in shape of the 1st floor but is
smaller (220 m2), more open and less cluttered as can be seen in Figure 4-5. One data set
was captured with a trajectory that covers most of the scene.

Figure 4-5: VGN floor 2.

VGN central.
The central part of the VGN building contains a meeting room that is connected to several
small neighboring rooms via door openings, see Figure 4-6. Some clutter is present next to
the door openings, providing a challenging scenario for Ray-SLAM that will need to connect
the rooms at both side of the door openings. The recorded data set contains a trajectory that
connects four different rooms.

Figure 4-6: VGN building central.
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VGN top.
The top floor of the VGN building is a large room of roughly 250 m2. The majority of the
room periphery consist of windows as can be seen in Figure 4-7. A significant section of the
room periphery is very irregular due to three elevator entrances and four doors without large
planar surfaces in between. The recorded data set covers a trajectory though the room and
exits the room into an adjacent hallway at the right of the image.

Figure 4-7: VGN building top.

The datasets are summarized in Table 4-1.

Table 4-1: Overview of datasets.

Scene Room size Traj. length Waypoints

Motion capture lab 60 m2 21 m 8
VGN floor 1(a) 350 m2 65 m 15
VGN floor 1(b) 350 m2 45 m 13
VGN floor 2 220 m2 85 m 20
VGN central 120 m2 39 m 11
VGN top 250 m2 52 m 15

4-3 Experiment results and robustness analysis

This section discusses the map and trajectory reconstruction processes of Ray-SLAM using
the datasets as discussed in §4-2. Failures and large errors (> 10 cm) are investigated in
detail in order to assess the robustness of the Ray-SLAM algorithm.

4-3-1 Parameter tuning

An overview of the tuning parameters that have been used during the experiments is given in
Table 4-2. The author had access to the ground-truth information during the tuning process,
and no strict separation between tuning- and evaluation datasets was applied. Therefore a risk
exist that the tuning parameters are overfitted to the datasets. The tuning process employed
by the author was mainly focused on prevention of failures cases, rather than minimizing the
localization error statistics. It was found that in particular the parameters sr, Nclust, sl and
scorr required careful tuning. The tuning was carried out for the most part on dataset VGN
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Table 4-2: Overview of tuning parameters.

Parameter Unit Value Description

σy meter 0.025 Lidar range noise standard deviation
svel m/s 0.05 Velocity threshold
sr meter 0.18-0.35 Map element radius
sβ 1.0 Beam angle discount factor
Nclust 13 Map element extraction cluster size
sl 0.01 Map element extraction linearity threshold
scorr meter 0.25 Correspondence distance threshold
sQ 0.025 Process noise standard deviation
sσ,pos 0.0004 Map element position offset uncertainty threshold
sσ,ϕ 0.0015 Map element heading offset uncertainty threshold
sM meter 0.5 Map extension distance threshold

floor 1(a), which generalized to most other datasets but resulted in failure on datasets VGN
central and VGN top. Changing the map element radius from sr = 0.35 to sr = 0.18 allowed
successful processing of VGN top. After that, only minor tuning was carried out such that
both small (sr = 0.18) and large (sr = 0.35) map elements worked robustly. This chapter
considers the results of both the small and large map elements, and the other parameters
were kept constant.

The Lidar’s initial position always starts at (px,0 py,0)> = 0. The initial heading θ0 was
chosen such that the map aligns with the plot axes. The beam angle discount factor sβ was
set to 1.0 by default such that the error metric represents the point-to-line distance. Tuning
of sβ is investigated in detail in §4-5.

4-3-2 Analysis of the experiment results

Dataset VGN floor 1(a) and VGN floor 1(b). In Figure 4-8 the reconstruction of dataset
VGN floor 1(a) and VGN floor 1(b) are shown using the large r = 0.35 m map elements. At
three locations it can be seen that map elements have been placed on windows. Ray-SLAM
succesfully reconstructed the map and trajectory of dataset VGN floor 1(a) for both map
element sizes. In dataset VGN floor 1(b), only 11 out of 13 waypoints were successfully
estimated as the algorithm failed just before reaching the 12th waypoint. The waypoint
estimate where the Lidar was stopped can often be recognized by a sharp corner in the
continuous trajectory. The ground truth positions were transformed to the SLAM frame (see
§4-4-1) to visualize that the estimate typically aligns closely with the ground truth. Due to
the scale of the plots, the mm-level errors are often not visible.
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VGN floor 1(a) – map and trajectory VGN floor 1(b) – map and trajectory

Map element

Trajectory estimate

PLT ground-truth

Reflected map elements

Waypoint 12

Figure 4-8: The estimated map and trajectory of datasets VGN floor 1(a) and VGN floor 1(b)

The cause for failure is shown in Figure 4-9, highlighting the SLAM process just before failure.
The green circle illustrates the last location where the map was updated. At this location,
two horizontally oriented walls at the left were not yet visible to the Lidar, and Ray-SLAM
was unable to place map elements there. A little later, the algorithm runs out of horizontally
oriented correspondences and fails.

Last map 

update location

Wall with no 

map element

Wall with no 

map element

Occluded map 

element with incorrect 

associations

Map element

Unobserved map element

Observation

Associated observation

Figure 4-9: Left. Just before failure at waypoint 12 of dataset VGN floor 1(b) the Lidar is
running out of local horizontally oriented map elements. Right. The algorithm starts to diverge
due to incorrect correspondences and lack of map elements.

Failure could probably have been prevented in this scenario if the measurement setup had
stopped more often. An identical failure occured when using the small map elements of
r = 0.18 m.

Dataset VGN floor 2 and VGN Top. In Figure 4-10, the reconstruction of dataset VGN
floor 2 and VGN top are shown. Ray-SLAM placed several map elements on walls that were
reflected through the windows, these are marked in red. In dataset VGN floor 2 all waypoints
were successfully estimated with both map element sizes. Processing of dataset VGN top only
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succeeded using the smaller r = 0.18 m map elements because of the lack of large walls in the
majority of the scene as seen in Figure 4-7.

Map element

Trajectory estimate

PLT ground-truth

Reflected map elements

VGN floor 2 – map and trajectory VGN top – map and trajectory

Figure 4-10: The estimated map and trajectory of datasets VGN floor 2 and VGN top.

Dataset Motion capture lab and VGN central. In Figure 4-11 the reconstruction of
datasets Motion capture lab and VGN central are shown.

Map element

Trajectory estimate

PLT ground-truth

Rotated room

Motion capture lab – map and trajectory VGN central – map and trajectory

Figure 4-11: The estimated map and trajectory of datasets Motion capture lab and VGN central.

Ray-SLAM successfully reconstructed a map and trajectory with the Motion capture lab
dataset for both map element sizes. It can be seen that Ray-SLAM encountered problems in
VGN central with small map elements when entering the small room that is marked in red.
The trajectory estimate in this room contain significant errors of almost 40 cm. When using
large map elements, the small room was reconstructed successfully but the algorithm failed
later when successively entering the hallway. Both cases are discussed now in detail.
The VGN central dataset with small map elements was problematic due to correspondence
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errors. A correspondence error occurs when a map element that represents a wall is linked to
an observation of something else than this wall. This association introduces an error in (3-27)
that pulls the pose estimate away from its true value because the algorithm now assumes
that the observation actually represents the wall. Figure 4-12 shows how the correspondence
error originated in detail. The three legs of the PLT-300 tripod and the person standing in
front of the wall (eleven observations in total) are wrongly associated with the map elements
representing this wall. As a result, the newly discovered room in the bottom-right corner was
rotated counter clockwise.

3 PLT legs
Person

Wall
Door

Map element

Unobserved map element

Observation

Associated observation

Room geometry

Figure 4-12: An example of a situation with multiple correspondence errors. The Lidar observes
a wall in the room with the PLT tripod and a person in front of it. Two of the three PLT legs and
the person were associated with the map element that represent the wall, introducing a significant
error in the SLAM process.

When the large map elements were selected in the VGN central dataset, the association errors
as shown in Figure 4-12 did not occur when the Lidar entered the small room. This room
was reconstructed successfully without the rotation. However, map reconstruction problems
occurred when the Lidar entered the hallway as shown in Figure 4-13. Because the straight
wall in the newly discovered area was interrupted by clutter in front of it, the linear descriptor
value of the local clusters exceeded the threshold (see §3-2-4).

Next, the algorithm runs out of horizontally oriented correspondences as illustrated in Figure
4-14. This Figure shows the last SLAM iteration before failure. The existing horizontally
oriented correspondences are occluded, and no new ones have been found in the uncharted
area.
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Clutter interrupts 

the linear 

surface

Straight wall

Optimized map element

Fixed map element

Unobserved map element

Observation

Associated observation

Figure 4-13: The clutter in front of the wall prevents map elements to be found at the wall.

Lack of 

horizontal 

features

Lack of 

horizontal 

features Map element

Unobserved map element

Observation

Associated observation

Figure 4-14: Only vertically oriented map elements are visible to the Lidar. The Lidar’s pose
is not properly constrained due to the lack of horizontally oriented map elements, causing the
algorithm to fail.

4-3-3 Opening a door

A separate dataset was recorded with no ground truth information in the basement of the
Innovation Center building at the Hilti campus to evaluate the scenario of opening a door in
front of the Lidar. It was found that Ray-SLAM has a high probability of failure when a door
is opened in front of the Lidar, and the measurement setup next moves through the doorway.
This process is illustrated in Figure 4-15.

In the figure it can be seen that one map element represents the the door in closed position.
The map element is unable to follow the movement of the door because the algorithm had
already accumulated confidence in map element parameters over the last few seconds and the
assumption was made that there is no movement in the structure. Correspondence errors can
be observed with both the partially opened door and the person in front of the door who
opens it. Ray-SLAM’s ability to remain accurate when moving through such a door opening
depends highly on the amount of available map elements around the Lidar to prevent the
SLAM process from collapsing.
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Observation
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Door being 
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Figure 4-15: A door is opened during the recording of a dataset. A map element was placed at
the closed position of the door, and starts to introduce errors as the door is being opened.

4-3-4 Conclusions of the experiment results and robustness analysis

In summary, a total of six datasets with ground-truth have been processed by the Ray-SLAM
algorithm using both small and large map elements, resulting in twelve test cases. In seven
of these cases, Ray-SLAM reconstructed the map and trajectory successfully. In two cases,
Ray-SLAM was partially successful and estimated 11 out of 13 waypoints. Three test cases
resulted in failure. One additional dataset was recorded to specifically assess the scenario of
opening a door in front of the Lidar. The causes for failure that were observed, including
potential improvements, are listed as follows:

• Map building errors. Ray-SLAM requires a multitude of map elements to be observed
in the scene for localization. Whenever these map elements become unavailable, Ray-
SLAM is likely to fail. There can be different reasons for why the map elements become
unavailable, which are (1) the scene contains too few walls to which map elements
can be attached. Alternatively the walls may be irregular or cluttered, preventing
the map element extraction process to generate the map elements. (2) The repetitive
static conditions are not sufficiently present in the Lidar’s motion (note that the SLAM
algorithm does not control the movement of the measurement setup). When the Lidar is
moved into an uncharted area, existing map elements may become occluded due to the
room’s geometry. Adding new map elements is therefore necessary. The Lidar should
be stopped at locations where current map elements and potential areas for new map
elements are visible at the same time, so that the map elements of the new area can be
properly connected to the existing map. Potential solutions to these problems would be:
(1) increase the map density, (2) establish closed-loop control, i.e. Ray-SLAM actively
stops the robot when needed, (3) undistort Lidar scans using the IMU such that static
conditions are not needed and (4) initialize the map M̂0 using the architectural building
model.

• Correspondence errors. One example with eleven prominent correspondence errors
was highlighted in Figure 4-12. Cases where only one or two correspondence errors are
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made locally happened more often, but typically go unnoticed because the redundant
amount of map elements around the Lidar prevent large errors. Correspondence errors
could be mitigated in various ways. Tighter tuning of scorr is one option. Recall that
observations with a prediction error above y− ỹ < scorr are rejected as correspondences.
However by doing so, problems can be introduced elsewhere, e.g. in larger scenes a
higher scorr may be needed to prevent missing correspondences. A more robust way
would be to add object recognition using visual information to the SLAM pipeline,
similar to the work of Blum et al. [9]. This work utilizes camera images and a robust
neural segmentation network to distinguish structure from clutter on a construction
site. The classification is then attached to Lidar observations in order to robustify the
process of establishing correspondences.

• Moving objects. It was noted that moving objects within the Lidar’s line of sight were
often not a problem for Ray-SLAM, because (1) moving objects such as persons do not
have a linear shape and their observations therefore do not spawn new map elements,
and (2) moving objects are typically further away than scorr from a map element such
that no correspondence will be established. All datasets recorded in the VGN building
contain up to three persons that continuously walk around the scene within the line
of sight of the Lidar. Moving objects do become a problem when the object is of
linear shape, because then Ray-SLAM will attach a map element to this object and
consequently assume that this object does not move. Such a situation occurs when
opening a door for example. Dealing with such problems could be done by disabling
certain map elements when the residuals associated with this element become too high.

As discussed in Chapter 2, a SLAM engine can be divided into a front-end and a back-end.
In the case of Ray-SLAM, it was found that errors were only introduced by the front-end as
a result of challenging geometry of the scene. Once the front-end part of the problem was set
up correctly, the back-end part consistently generated estimates of the pose and map with a
high degree of accuracy.

A different approach to increasing the robustness of a SLAM algorithm is to adapt the back-
end side of the algorithm in such a way that the impact of errors in the optimization problem
is smaller, by introduction of robust loss functions to model more heavy-tailed distributions
with respect to the normal distribution. A state-of-the-art method for doing so is proposed in
[57]. This work proposes an adaptive robust kernel for nonlinear least squares optimization
that is specifically designed to deal with outliers in the context of Lidar SLAM.

4-4 Accuracy analysis

In this section, the accuracy of Ray-SLAM is analyzed and compared with other state-of-the-
art algorithms.

Comparing Ray-SLAM with 2D SLAM works. As pointed out in §2-3-2, the state-
of-the-art in 2D Lidar SLAM is based on coarse (typically 5 cm) occupancy grid type maps
that have limited ability to scale the map resolution. The accuracy of such an algorithm is
limited to its grid size. The six datasets were processed with both Cartographer [45] and
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Hector SLAM1. In summary, it was found that: (1) Cartographer was able to estimate a
trajectory and map using the default 5 cm grid size. Rotation of the measurement setup
often resulted in mapping errors, such as a duplicate of a wall 20 cm behind it, even though
the IMU was utilized. (2) Cartographer failed on all datasets when the grid size was reduced
to 2 cm. (3) Hector SLAM failed on five out of six datasets using the default 5 cm grid size.
Failure typically happened when the measurement setup was rotated. Given these results, the
2D algorithms were not considered relevant for comparison in the context of high-accuracy
SLAM.

Comparing Ray-SLAM with 3D SLAM works. Instead, the 2D Ray-SLAM algorithm is
compared directly with two 3D SLAM algorithms. The LOAM [18] and FAST-LIO2 [56] were
selected for accuracy comparison. LOAM is one of the most influential works in Lidar SLAM
as discussed in Chapter 2, which was renamed to ALOAM in an open-source implementation2.
FAST-LIO2 was chosen because it is the highest ranking competitor on the Hilti SLAM
Challenge data sets[12].

It is important to be aware of the limitations of the 2D-to-3D comparison, because the re-
spective 3D algorithms were designed to solve an extended problem under a different set of
assumptions using additional sensor data:

• The 3D SLAM algorithm needs to estimate three more degrees of freedom of the Lidar’s
pose: height, roll and pitch.

• The 3D SLAM algorithms do not assume repetitive static conditions.

• The 3D SLAM algorithm has access to the full 3D point cloud of 64 horizontal scan
rings instead of 1 scan ring for 2D SLAM.

• The 3D SLAM algorithm may optionally use the IMU data.

Despite these differences, both 2D and 3D SLAM methods generate a trajectory using Li-
dar and (optionally) IMU sensor recordings. The comparison of these trajectories is still
considered meaningful if the Lidar’s motion is constrained to the 2D plane.

ALOAM was configured using the recommended settings for indoor scenes, which feature an
increased map resolution. For FAST-LIO2, the default configuration was used for Ouster
Lidars. The ‘blind’ parameter was changed from 4 m to 2 m. This parameter specifies
the Lidar cropping distance, i.e. only measurements with a distance larger than the blind
parameter are kept. This was done to allow FAST-LIO2 to work better in small rooms.

4-4-1 Trajectory/waypoint alignment procedure

Ray-SLAM provides an estimate of the Lidar’s trajectory in the SLAM frame, denoted by
T̂SL0:T , as was illustrated in Figure 3-4. Similar to the Hilti SLAM Challenge [12], the ground-
truth information was recorded at static points only using the PLT-300 Total Sation, which
was shown in Figure Figure 4-2 (except for the Motion Capture Lab dataset). The PLT
measures only the position of the reflective marker, and not its orientation. We denote the

1http://wiki.ros.org/hector_slam
2https://github.com/HKUST-Aerial-Robotics/A-LOAM
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marker by M , and the ith waypoint position of the marker in the PLT’s world frame W by
pWM

wp,i . To align the Ray-SLAM trajectory estimate with the ground-truth marker positions
of the PLT, we use the 2D simplification of the method that was used in the Hilti SLAM
Challenge [12]. This method is explained now in detail.

We start with extracting the waypoint transformations of the Ray-SLAM trajectory estimate
by averaging the pose estimates x̂pose,t at locations where bstat = True. By use of (A-4), Ray-
SLAM’s waypoint estimates T̂SLwp,i at the waypoints are obtained. The waypoint estimates are
now transformed to the world frame W in which the ground-truth waypoints were recorded
using

T̂WM
wp,i = TWST̂SLwp,iT

LM (4-1)

where TLM = I3 since the marker/prism is positioned above the optical center of the Lidar.
Finding TWS that aligns the two trajectories3 is done by solving the optimization problem

{x̂, ŷ, θ̂} = arg min
x,y,θ

Nwp∑
i=1

∥∥∥pWM
wp,i − (TWS(x, y, θ)T̂SLwp,iT

LM )pos
∥∥∥2

2
(4-2)

where (·)pos represent the linear translation components of the transformation matrix and
T (x, y, θ) represents the conversion (A-4) from position/heading to a transformation matrix
in SE(2). The problem is solved using MATLAB’s lsqnonlin(·). The estimation error at a
waypoint ewp,i ∈ R is now given by the residual of (4-2):

ewp,i =
∥∥∥pWM

wp,i − (T̂WM
wp,i )pos

∥∥∥
2
. (4-3)

4-4-2 Accuracy results

In order to analyze the accuracy of the estimate, the Mean Absolute Error (MAE) and the
Maximum Absolute Error (Max-AE) metrics at the waypoint locations are obtained from
(4-3). These error metrics are compared against those of ALOAM and FAST-LIO2. The
MAE gives a general metric on the accuracy of the SLAM algorithm, while the Max-AE
describes the largest error in the error sequence, quantifying the algorithm’s robustness to
estimate outliers. Table 4-3 summarizes these error metrics that were obtained from the
6 experiments. AL represents ALOAM, FL2 represents FAST-LIO2, RS(L) represents Ray-
SLAM with map elements of r = 0.35 m and RS(S) represents Ray-SLAM with map elements
of r = 0.18 m. Tuning of sβ was set to 1 for the point-to-line error metric.

3In §4-3, several plots were shown of Ray-SLAM’s trajectory estimate alongside the ground-truth marker
positions. The reverse transformation TSW was used to transform the marker positions to the SLAM frame
to be able to generate these plots.
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Table 4-3: Error comparison at the static waypoint locations. Failure cases are marked red.
Two cases of dataset VGN floor 1(b) were partially successful (see §4-3) and are marked purple.
The errors of these datasets are based on the first 11 out of 13 waypoints. The values between
brackets (·) indicate the Max-AE, i.e. the largest outlier in the waypoint error sequence.

Dataset
MAE (Max-AE) [mm]

AL FL2 RS(L) RS(S)

Motion capture lab 16.5 (31.4) 10.2 (22.1) 2.8 (3.8) 4.4 (9.3)
VGN floor 1(a) 35.6 (64.3) 15.1 (45.2) 6.7 (14.3) 6.2 (13.7)
VGN floor 1(b) 28.0 (81.9) 11.3 (18.4) 6.9 (13.3) 7.4 (11.9)
VGN floor 2 24.2 (53.7) 15.4 (43.0) 4.9 (8.9) 4.2 (11.2)
VGN central 36.3 (62.6) 25.7 (67.0) fail 111.9 (389.3)
VGN top 38.2 (84.1) 16.6 (44.8) fail 6.2 (8.8)

As indicated in §4-3-1, no strict separation was applied between tuning- and evaluation
datasets. Therefore it should be noted that overfitting the algorithm to the datasets can-
not be ruled out. In order to quantify the potential increase in accuracy, Table 4-4 compares
only the (partially) successful cases of Ray-SLAM with small map elements with ALOAM
and FAST-LIO2.

Table 4-4: Error comparison summary, considering only the (partially) successful cases of Ray-
SLAM using small map elements. These cases contain 69 out of 82 waypoints that were recorded
over the six trajectories. The values between brackets (·) indicate the largest outlier in the error
sequence (Max-AE).

Metric
MAE (Max-AE)

AL FL2 RS(S)

[mm] 28.5 (63.1) 13.7 (34.7) 5.7 (11.0)
Relative 5.0× (5.7×) 2.4× (3.2×) 1.0×

The following conclusions can be drawn from the accuracy analysis:

• The overall trend is that in the (partially) successful cases, Ray-SLAM outperforms
ALOAM and FAST-LIO2 with a significant margin. In these (partially) successful
cases, the overall improvement with respect to FAST-LIO2 is ×2.4 for the MAE and
×3.2 for the Max-AE. With respect to ALOAM, the overall improvement is ×5.0 for
the MAE and ×5.7 for the Max-AE.

• It depends on the dataset whether the small or large map elements result in higher
accuracy. Small map elements seem more robust against challenging scenes where large
walls are not available.

• Although the (partially) successful cases show a significant increase in accuracy, the
proposed solution is not yet accurate enough for applications such as the Jaibot that
require consistent sub-5 mm accuracy. Outliers with an error > 10 mm were typically
present.
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4-4-3 Ablation study

In order to gain a better understanding of why the results of Ray-SLAM show an increase in
accuracy with respect to the compared algorithms, an ablation study was carried out. Such
a study comprises of systematically disabling certain functionality the algorithm in order to
gain insight into which parts contributed to the end result, and in what extent. The study
was limited to the (partially) successful datasets. The following ablation cases are considered:

1. No map optimization. The optimization vector contains only the Lidar’s pose and no
map variables, and as such the map element poses are not fine tuned over time.

2. Disregard the map building strategy that only appends the map when the robot is
stationary. Instead, do continuous map extension: attempt to add new map elements
every 2.0 seconds (typical Lidar SLAM algorithms append the map continuously). The
map variables are optimized at every SLAM loop iteration.

3. Continuous map extension (similar to case 2), but with no map optimization.

One novelty that could not be a part of the ablation study is the map representation us-
ing line segments, as this feature is hard to adapt to the commonly used point-cloud map
representation. The results are shown in Table 4-5 below.

Table 4-5: Ablation study results. The relative error increases over the available datasets are
shown with respect to the original Ray-SLAM algorithm in three ablation cases. RS(L) represents
Ray-SLAM with map elements of r = 0.35 m and RS(S) represents Ray-SLAM with map elements
of r = 0.18 m. The values between brackets (·) indicate how much the largest outlier in the error
sequence has increased (Max-AE).

Ablation case
MAE (Max-AE)

RS(L) RS(S)

1. No map optimization. 1.3× (1.4×) 2.9× (2.9×)
2. Continuous map extension. 1.8× (3.1×) 2.2× (2.6×)
3. Continuous map extension + no map optimization. 1.8× (1.7×) 2.6× (2.5×)

The following conclusions can be drawn from the ablation study:

• Both the map optimization strategy and extending the map at waypoints only bring an
overall improvement in the accuracy of Ray-SLAM. Map optimization successfully im-
proves the map accuracy by using more observations, and the map extension procedure
at static waypoints successfully prevents motion distorted observations to corrupt the
map.

• Small map elements suffer significantly more from disabling the map optimization than
large map elements. This can be explained by the fact that only few observations are
used to spawn these elements due to their limited length, and the placement is therefore
more sensitive to noise. Enabling map optimization filters out this noise by using more
measurements to determine the map element poses.
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The overall trend that can be observed is that using more (undistorted) observations to
establish the map brings a higher accuracy.

4-4-4 Remainder of the error on successful datasets

In the robustness analysis (§4-3) the error sources have been discussed that caused either a
failure or a large (> 10 cm) error. This section takes a closer look at potential error sources
during processing of the successful datasets that did not lead to large errors or failure. Only
for some of these error sources it was possible to carry out a specific experiment to quantify
its impact. The list of error sources in this section should be considered non-exhaustive.

Imperfect Lidar range measurements. The range measurements produced by the Lidar
are corrupted with noise and may be biased. Both the bias and noise of the sensor may
depend on the beam angle β and surface type of the detected object. These aspects were not
modeled by the Ray-SLAM algorithm.

Imperfect ground-truth information. The PLT-300 Total Station is specified to have
an accuracy of sub-3 mm, and the motion capturing system sub-0.5 mm. Furthermore the
optical center of the reflective prism/marker may not be perfectly above the optical center of
the Lidar, resulting in errors in the ground-truth information.

Violation of the 2D assumption. The setup of Figure 4-2 may exhibit small amounts of
roll, pitch and heave motion due to an uneven floor or slight misalignment in the leveling.
During the experiments, ±5 mm heave and ±0.5◦ was typically observed by the Motion
Capturing system and by ground plane estimation of the Lidar data. Another violation of the
2D assumption is that the Lidar scan ring is oriented 0.7◦ upwards, meaning that a different
height of the wall is detected as the Lidar is moved away from this wall. In the search for
evidence of the violated 2D assumption, we consider the evolution of map variables dpos,i, dϕ,i
over time as shown in Figure 4-16. This figure shows that at different static waypoints, the
map variables want to converge to different values. This is most prominent in dpos,2 between
t = 5 sec and t = 55 sec, showing 10 mm difference. This can be interpreted as disagreement
about where the wall is perceived to be from different viewpoints, which could originate from
a (small) violation of the 2D assumption.

Placement of map elements on reflective surfaces. Ray-SLAM does not distinguish
between matte and reflective surfaces. Matte surfaces are detected with 3 cm accuracy, and
reflective surfaces with 10 cm accuracy as specified by the manufacturer. Map elements placed
on windows or whiteboards for example are currently weighted equally as map elements placed
on walls in the optimization problem of (3-27), which is cumbersome. When adding additional
information about the type of object that the map element represents, each measurement
residual could be weighted appropriately.

The dataset Motion capture lab has a large amount of reflective surfaces present, allowing to
quantify the effect of the reflective surfaces on the accuracy. In order to do so, processing
of this dataset was carried out whilst excluding certain map elements in the SLAM process.
The algorithm was modified for this experiment such that only the map elements were used
that had been found during initialization as shown in Figure 4-17, and no new map elements
were added.
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Figure 4-16: Plot of 5 map variables dpos,i, dϕ,i over time of dataset Motion capture lab with
small map elements. Only five out of nine map elements are shown to keep the figure readable.
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Figure 4-17: Left. The 16 map elements with r = 0.18 m of dataset Motion capture lab are
shown that were found during initialization. Right. Accuracy comparison when excluding various
reflective planes from the SLAM process.

Map element 6, 7, 8, 11, 12, 13 and 14 represent a concrete wall. Map element 4, 5, 15 and
16 represent a reflective whiteboard. Map element 9 and 10 represent the partially reflective
calibration poster. Map element 2 and 3 represent a TV, and map element 1 represents a
painted door respectively. Map elements 8, 11 and 14 were chosen as anchor map elements.
The table in the right of Figure 4-17 shows the MAE and Max AE after excluding different
sets of reflective surfaces.

Based on these results, it can be concluded that only excluding the TV as reference improves
the accuracy. The data suggests that the reflective whiteboards act as reliable references.
Exclusion of whiteboards from the SLAM process results in increased errors. It should further
be noted that the original algorithm has an increased error over the version that only used
the initialization map elements, suggesting that errors were introduced by map elements that
were added after initialization. This error source was not further investigated.
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Near-flat surfaces. Ray-SLAM’s ability to distinguish flat from non-flat surfaces depends
highly on the tuning parameter sl as described in §3-2-4. Recall that sl represents a threshold
value on the linear descriptor value l, which represents the flatness of a local cluster of points.
The threshold sl was set slightly higher than a typical linear descriptor value l for an observed
flat wall with normal sensor noise levels. This has the effect that uneven surfaces can only be
distinguished from walls if the irregularity of the surface is larger than the noise level of the
sensor. Objects such as closed drawers and transitions between a wall and a closed door or
poster may therefore mistakenly be interpreted as a wall. Such errors were common during
the processing of various successful datasets.

4-5 Tuning of beam angle discount factor

This section takes a closer look at the tuning of the Beam Angle Discount Factor sβ. Only
three datasets were considered and only large map elements were used to limit the amount
of processing time required for this study. The tuning parameter sβ was changed from 0 to
2 with 0.2 increments. Increasing sβ results in down weighing the Lidar observations with a
steep beam angle β as shown in Figure 3-8 in the optimization problem of (3-27). Tuning of
sβ = 0 represents the ray casting error term, and sβ = 1 represents the point-to-line error
term which is typically used in the literature. The result of this process is shown in Figure
4-18.

Figure 4-18: Effect of tuning the Beam Angle Discount Factor sβ .

The data suggests that there does not seem to be a particular value of sβ that performs
consistently better on the given datasets, and the trend between the datasets contradict to a
certain extent. Depending on the dataset, a different sβ might be more favorable, resulting
in only a small improvement of the error. In practice, however, one does not have the ground
truth available and choosing the right sβ for the particular scene is not an option. The point-
to-line configuration of sβ = 1.0 seems a good all-round performer. Further investigation of
the beam angle discount factor is suggested to see if using sβ other than 1 can be justified.
For example, one could investigate (1) if there is correlation between the scene type and the
effect of sβ, by considering the histogram of the inclination angle β of all observations, or (2)

Master of Science Thesis H. van Bavel



64 Results

consider the largest waypoint estimate outlier, and try to identify the reason how sβ affects
the accuracy of this estimate. These topics are considered outside the scope of this thesis.

4-6 Effect of the anchor map elements

This section investigates the impact of the anchor map elements on the performance of Ray-
SLAM using the dataset Motion capture lab as an example. For the purpose of improving the
system’s observability, the manual step of defining three anchor map elements was introduced
in §3-2-4. The observability of the state xt together with the identifiability of the map offsets
dopt,t of the estimation problem (3-27) will be further analyzed. Since xt and dopt,t are
jointly optimized, the observability/identifyability4 study is combined. This section proceeds
with the term observability whilst referring to both properties. It should be noted that the
measurement model of (3-10) is nonlinear. Therefore, instead of studying the observability
directly, the local observability [58] is studied by considering the linearized version of (3-27),
making use of the Jacobian J . If J is full rank, the optimization vector is considered to be
locally observable.

Singular Values – no anchor map elements Singular Values – 3 anchor map elements

Figure 4-19: Left. Singular values of the Jacobian matrix J on a logarithmic scale when no
anchor map elements were selected. The Lidar remained stationary over the 5 second period.
Right. Singular values when selecting 3 independent anchor map elements.

Figure 4-19 shows the rank analysis of J by considering its singular values over time. An
interval of 5 seconds is shown starting at t = 0. On the left, the SLAM problem without
any defined anchor map elements is shown. It can be seen that three singular values are
significantly lower (roughly ×20) at t = 0. However the singular values remain far away from
zero, which would indicate a rank deficiency. By applying the technique of defining three
anchor map elements, it can be seen on the right that at t = 0 the lowest singular value
is increased by a factor of roughly 20, significantly improving the local observability of the
estimation problem. However, when not defining the anchor lines, the low singular values

4As pointed out in §3-1-2, the SLAM system may have unobservable modes where the Lidar pose and map
move together. These unobservable modes would not be revealed when the study of state observability is
decoupled from map parameter identifyability.
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increase quickly such that after 0.8 second the local observability is similar to the starting
condition of the case with three anchor map elements.

In practice it was found that processing the datasets with and without defining the anchor map
elements resulted in similar (±2%) pose estimation accuracy. It can therefore be questioned
whether the process of defining anchor map elements is necessary.
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Chapter 5

Conclusions and Recommendations

This concluding chapter answers the research questions that have been posed in the introduc-
tory chapter. Furthermore, the recommendations for future work are given.

5-1 Conclusions

The main goal of this thesis was to develop a SLAM algorithm that would improve the
localization accuracy for construction robots such as the Jaibot, preferably to sub-5 mm
accuracy. The algorithm was required to work independently of an architectural building
model and rely solely on on-board sensing. As demonstrated by the Hilti SLAM Challenge
[12], the state-of-the-art in SLAM currently provides an accuracy of around 5 cm with outliers
that vary per scene, which motivates the need for further research. The main question of this
thesis was therefore formulated as:

How can the state-of-the-art in Lidar-centric SLAM be improved to achieve sub-5
mm accuracy on a building construction site?

To answer this research question, three sub-questions were posed in the introductory chapter.
This thesis project led to the following answers.

How can a Lidar SLAM algorithm exploit the specific scene structure that can be
expected on a building construction site?

This thesis proposes Ray-SLAM, a 2D Lidar SLAM algorithm which is centered around
the assumption walls are available in the scene, which is typically the case on a building
construction site. The algorithm builds and maintains a novel sparse map representation
that consists of line segments, and uses this map consequently for navigation. The position-
and heading offset parameters of the map are optimized jointly with the Lidar’s pose, in such
a way that the map accuracy is increased over time. This sparse map representation allows
the introduction of a novel Non-Iterative Closest Point (NICP) observation-to-map alignment
procedure, which yields reduced correspondence errors and increased computational efficiency
with respect to traditional Iterative Closest Point (ICP). A novel stop-and-go strategy is
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Table 5-1: Error comparison summary, considering only the (partially) successful cases of Ray-
SLAM with small map elements of sr = 0.18. These cases contain 69 out of 82 waypoints that
were recorded over the six trajectories. The values between brackets (·) indicate the largest outlier
in the error sequence (Max-AE).

Metric
MAE (Max-AE)

AL FL2 RS(S)

[mm] 28.5 (63.1) 13.7 (34.7) 5.7 (11.0)
Relative 5.0× (5.7×) 2.4× (3.2×) 1.0×

utilized to only improve the map while the Lidar remains stationary to prevent motion-
distorted Lidar scans corrupting the map. These novelties together (joint pose-and-map
optimization scheme, NICP, stop-and-go strategy) distinguish Ray-SLAM from related works
in Lidar-centric SLAM such as LOAM [18] and FAST-LIO2 [11] (winner of the Hilti SLAM
Challenge). Such works are based on dense point cloud maps and the ICP algorithm.

How robust is the novel algorithm in representative real-world scenarios with
various levels of complexity and moving obstacles?

The algorithm was extensively tested using real-world datasets. Data was recorded using the
Ouster OS0 Lidar and InvenSense ICM-20948 IMU. A total of six indoor trajectories were
captured with a total traveled distance of 307 m, covering rooms of various shapes and sizes,
and each with different amounts of clutter. The trajectories were compared at 82 waypoint
locations. Each dataset was processed with a map element radius of both sr = 0.18 m and
sr = 0.35 m, resulting in twelve experiments. It was observed that Ray-SLAM was successful
in seven out of twelve cases, and partially successful in two cases where Ray-SLAM was only
able to estimate 11 out of 13 waypoints. Failures of Ray-SLAM can be traced back to either
(1) limited ability to add new map elements appropriately, resulting in lack of references later
on, (2) correspondence errors due to complex scene geometry or (3) opening a door in front
of the Lidar. The algorithm did not suffer from people who moved around the scene. Section
§5-2 provides recommendations on what steps can be taken to further improve Ray-SLAM’s
robustness. The compared algorithms ALOAM [18] and FAST-LIO2 [11] were successful on
all datasets.

What is the accuracy of the novel SLAM algorithm, and how does it compare
with other state-of-the-art Lidar-centric SLAM algorithms?

The accuracy of Ray-SLAM was evaluated and compared with ALOAM and FAST-LIO2
by analyzing the absolute position error at static waypoint locations. Ground-truth positions
were recorded at these waypoints using a Total Station (Hilti PLT-300) or a motion capturing
system (OptiTrack). Both ALOAM and FAST-LIO2 estimate a 3D trajectory and map using
all 64 Lidar scan rings and (optionally) an IMU, whereas Ray-SLAM estimates a 2D trajectory
and map using only one Lidar scan ring. The comparison should therefore be considered of
limited validity. An overall Mean Absolute Error of 5.7 mm is reported by Ray-SLAM in the
(partially) successful cases, which is 5.0× more accurate than LOAM and 2.4× more accurate
than FAST-LIO2. The accuracy comparison considering only these (partially) successful
cases is shown in Table 5-1. No strict separation between tuning- and evaluation datasets
was applied, therefore a risk exist that the tuning parameters are overfitted to the datasets.
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In summary, it can be concluded that the proposed SLAM algorithm obtains an increased
localization accuracy in indoor scenes with respect to the state-of-the-art, given that the
scene does not pose major difficulties. Despite the improvement, Ray-SLAM does not provide
consistent sub-5 mm accuracy in the successful cases. More research effort will be required
to realize this target accuracy. Since the Lidar that was used has a specified range accuracy
of ±3 cm, it is recommended to also seek for improvement of the sensing hardware.

5-2 Future Work

When considering the opportunities for future work, it should be noted that both 2D and 3D
SLAM algorithms have their value and potential applications. This section therefore discusses
both further improvements of Ray-SLAM as a 2D SLAM algorithm and the generalization of
Ray-SLAM to a full 3D SLAM algorithm.

5-2-1 Improve Ray-SLAM as 2D SLAM algorithm

Improve the robustness.

Improving the robustness of Ray-SLAM can be done using various strategies. The following
three suggestions are made to improve the robustness:

1. Increase the map density. Multiple failure cases of Ray-SLAM were traced back to
an inability to place map elements at walls in certain scenarios, resulting in a lack of
references at a later point. It is recommended to investigate how the map density can be
increased such that the algorithm is less likely to run out of references, for example by
implementing map elements of variable size. Introduction of additional shape primitives
such as an edge feature would also help to increase the map density. Alternatively, the
map could be initialized using the architectural building model.

2. Down-weigh the impact of outliers and errors. Use the technique of robust adaptive loss
functions as proposed by Chebrolu et. al. [57] to accommodate for outliers and errors.
This work establishes a novel strategy to accommodate for outliers that is specifically
targeted at the ICP algorithm in the context of SLAM.

3. Integrate cameras. Estimate for each Lidar observation if structure or clutter is observed
using cameras in order to filter out correspondence errors [9].

Quantify the reliability of the estimate.

In practice, one is not only interested in the estimated pose, but also in the reliability of
the respective estimate. Some quantification of the reliability could be established based on
e.g. the residuals and covariance matrices of the optimization problem of (3-27) [59]. Such
functionality would allow the user to know when to trust the algorithm.

Ability to allow 6DOF motion.

To be able to model violations of the 2D assumption, it is recommended to extend Ray-SLAM
to 6DOF pose estimation whilst using the 2D map. This means that the height, roll and pitch
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need to be estimated, which can be done for example by Lidar ground plane detection [60]
and (optionally) an IMU [21].

Ability to function without repetitive static conditions.

To allow the algorithm to remain more accurate when in motion, it is recommended to
implement tightly-coupled IMU fusion [28] such that the motion estimate of the IMU can be
used to undistort the Lidar scan [10]. This would enable the algorithm to not require static
conditions to perform accurate SLAM.

C++ implementation.

In order to allow Ray-SLAM to run seamlessly on existing hardware platforms and increase
the computational efficiency, it is recommended to port the algorithm to the C++ language
and implement it as a ROS node [61]. This would allow integration of Ray-SLAM into the
modular ROS framework. A high-performance nonlinear least-squares solver algorithm such
as Ceres [51] is recommended.

5-2-2 Extend Ray-SLAM to a full 3D SLAM algorithm

The design choices for the 2D Ray-SLAM algrotithm have been made with 3D generalization
in mind. In order to do this, it is recommended to take a modern 3D sensor fusion or
SLAM algorithm as a basis and implement the 3D generalization of Ray-SLAM as additional
functionality. The 3D generalization of the map elements would consist of planar segments
(e.g. discs or rectangles) with 3 degrees of freedom per map element: position offset and two
degrees of rotational offset freedom. Two suggested basis algorithms are discussed below on
which 3D Ray-SLAM can be built on top:

• Use a factor-graph SLAM algorithm such as LIO-SAM [10]. The factor graph structure
allows convenient modeling of the planar map elements using landmarks. Functionality
such as IMU preintegration, undistorting the Lidar scan and real-time smoothing are
incorporated already within the algorithm. LIO-SAM uses an ICP process based on the
LOAM [18] feature extraction module, which may serve as useful additional constraints
in the SLAM problem in the case that the Ray-SLAM planar map elements become too
sparse.

• Use a more general moving-horizon estimator back-end algorithm such as ConFusion
[27]. Such an approach would require additional efforts with respect to the first option,
as ConFusion does currently not have any functionality specific to SLAM. Modules
for undistorting the Lidar scan and loop closure detection for example would have to
be developed from scratch. In return, the user will gain the increased flexibility of
ConFusion to incorporate static parameters into the optimization problem.

It is hypothisized that such a generalized version of Ray-SLAM can potentially be among
the top performers in the Hilti SLAM Challenge, based on the 2D proof-of-concept that this
thesis provides.
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Appendix A

Rotations and transformations

In this appendix the notation is established to describe the position and orientation of points
and rigid bodies in 2D space, and formalize the concepts of rotation and transformation
[22, 59].

First, the position vector pA ∈ R2 is introduced which describes the relative position of point
p with respect to the origin of frame A in 2D space. Figure A-1 (left) shows the Cartesian
x, y and polar r, α representation of point p in frame A, where point a is at the origin of this
frame. The unit vectors eAx , eAy represent the orthonormal basis of frame A in R2.
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Figure A-1: Left. Cartesian and polar coordinates. Middle. Two rotated frames. Right. Two
frames with relative rotation and translation are related through transformation.

Rotations can have two different interpretations: passive and active rotations. A passive
rotation will represent point p from a current frame to a new frame (the observer rotates),
while an active rotation rotates the point p within the same reference frame. For this thesis
only passive rotations are relevant. An example is shown in Figure A-1 (middle), where
point p is expressed in frame B, which is rotated by angle θ with respect to frame A. The
Cartesian coordinates of p in the rotated frames are related through the rotation matrix RBA
that rotates the point from B to A and is defined by

RAB =
(

cos(θAB) − sin(θAB)
sin(θAB) cos(θAB)

)
. (A-1)
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The rotation of p from frame B to A can now be expressed by

pA = RABpB. (A-2)

Note that the origin of frame A and B coincide. The rotation matrix has the properties

det(R) = 1, RR> = R>R = I2, R−1 = R>. (A-3)

Rotation matrices in 2D space belong to the Special Orthogonal group (SO) of SO(2).

When two frames A and B have a relative rotation and a position offset, they are related
through their relative transformation, see Figure A-1 (right). Transformation matrix TAB is
defined as

TAB =
(
RAB rBab
01×2 1

)
, (A-4)

and point p can be transformed from frame B to A using(
pA
1

)
= TAB

(
pB
1

)
. (A-5)

The transformation matrix in 2D space is part of the Special Euclidean Lie group (SE) of
SE(2). Both rotation matrices and transformation matrices can be chained conveniently. The
position and orientation together is referred to as the pose of the rigid body. Generalizations
of rotation and transformation to 3D are detailed in [22].

Alternatively to the transformation matrix, a transformation from B to A can be parameter-
ized using the more compact position-heading parameterization using

tAB = (rBab,x rBab,y θAB)>. (A-6)
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Appendix B

Ouster OS0 technical specifications

Table B-1: Ouster OS0 Lidar technical specifications, adapted from [3].

Range (80% diffuse reflectivity) 45 m with > 90% detection probability
Range (10% diffuse reflectivity) 15 m with > 90% detection probability
Minimum range 0.3 m
Range accuracy, diffusely reflective target ±3 cm
Range accuracy, non-diffusely reflective target ±10 cm
Precision, 0.3-1.0m σ = 2.0 cm
Precision, 1-10m σ = 1.0 cm
Precision, 10-15m σ = 1.5 cm
Precision, > 15m σ = 5.0 cm
Vertical resolution and field of view 64 channels from −45◦ to 45◦
Horizontal resolution 2048
Points per second 1310720
Angular sampling accuracy, horizontal ±0.01◦
Angular sampling accuracy, vertical ±0.01◦
False positive rate 1/10000
Rotation rate 10 Hz
Laser wavelength 865 nm
Data per point Range, signal, reflectivity, near-infrared,

channel, azimuth angle, timestamp

Table B-2: Ouster OS0 IMU technical specifications, adapted from [3].

IMU type InvenSense ICM-20948
Sampling rate 100 Hz
Data per sample 3 axis gyroscope, 3 axis accelerometer
Accelerometer range ±16 g
Gyroscope range ±200◦/s
IMU/Lidar clock synchronisation error < 1 ms
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Appendix C

Ouster OS0 noise properties

This appendix takes a closer look at the noise properties of the Ouster OS0 Lidar. For this,
this thesis relies on an internal study that was carried out at Hilti by Michael Helmberger.
An experiment was conducted by placing the Lidar 1 m away from a flat wall and recording
measurement data for a duration of two hours. The point-cloud data is cropped such that
only the points that represent the wall are left over. A plane is now fitted through this set
of points by finding the plane that minimizes the squared point-to-plane projection distance
[53]. The result of the plane fitting process is seen in Figure C-1 (left), and the distribution
of the residuals in Figure C-1 (right).

Noise distribution – 1m distance

Point-to-plane projection distance (mm)

N
u
m

b
e

r 
o

f 
p

o
in

ts

y (m)x (m)

z (m)

Plane fit through OS0 Lidar data

Figure C-1: Left. Least-squares plane fitted through a point cloud that represents a straight
wall. Right. Distribution of the point-to-plane projection distance. The distance between the
Lidar and the wall was 1 meter.

This experiment was repeated for distances of 5 m and 9 m between the Lidar and the wall.
The results can be seen in Figure C-2.
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Noise distribution – 9m distanceNoise distribution – 5m distance
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Figure C-2: Left. Noise distribution, Lidar-to-wall distance of 5 m. Right. Noise distribution,
Lidar-to-wall distance of 9 m.

It can be seen that the distribution of the point-to-plane projection distance follows the
typical shape of a Bell curve. Therefore, it can be concluded that the assumption of normally
distributed noise is reasonable.

Determination of the bias was not included in this experiment, because obtaining a ground-
truth value for each measurement direction requires a significantly harder and more time-
consuming experiment. For this, it would be required to know the ground-truth Lidar position
and orientation with respect to the wall with very high accuracy. Interpretation of the error
in such an experiment would be hard, because it is difficult to know if the error comes from
sensor bias or misalignment.
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List of Acronyms

EKF Extended Kalman Filter
ICP Iterative Closest Point
IEKF Iterated Extended Kalman Filter
IMU Inertial Measurement Unit
KF Kalman Filter
Lidar Light Detection and Ranging
MAE Mean Absolute Error
MHE Moving Horizon Estimation
Max-AE Maximum Absolute Errror
NICP Non-Iterative Closest Point
SE Special Euclidean Lie group
SLAM Simultaneous Localization And Mapping
SO Special Orthogonal group
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84 Glossary

List of Symbols

α Laser beam measurement direction
β Laser beam incidence angle
γ Map element end point angle
λ Laser beam heading
ω Robot angular velocity
σ Standard deviation
θ Robot heading
ϕ Map element heading

C Set of correspondences
M Set of map elements
Q Set of points
Y Set of measurements
A Dynamics matrix
B Body frame
b Boolean variable
C Observation matrix
c Smoothness characteristic of a point
d Map element offset parameter
e Error term
e Measurement noise
G Cluster covariance matrix
i Index value
J Jacobian matrix
K Kalman gain matrix
l Linearity descriptor value
N Number of elements in a set
n Map element index value
P Covariance matrix
p Cartesian position vector
p Probability density function
Q Process noise covariance matrix
q Cartesian coordinate vector of a point observation
R Rotation matrix
r Map element radius
S SLAM frame
s Tuning parameter
T Transformation matrix
v Velocity vector
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W World frame
w Process noise
x Cartesian coordinate in the x-direction
x State vector
y Cartesian coordinate in the y-direction
y Distance measurement

(·)−1 Inverse
(·)> Transpose
(·)◦ Degrees
x̆ Prior on x
x̌ One-step-ahead prediction of x given a transition model
x̂ Estimate of x
x̃ Prediction of x given a prediction model
Rn Set of real numbers in n dimensions
In Identity matrix of size n by n
0n×m Matrix of zeros of size n by m
N (0, P ) Zero-mean Gaussian noise with covariance P
± Plus minus
Σ Summation
∼ Is distributed as
∝ Is proportional to
sin Sine
cos Cosine
⊆ Is a subset of
∈ Is an element of
× Cross product
← Is overwritten by
RAB Rotation matrix expressing the orientation of frame B in frame A
TAB Transformation defining frame B measured from and expressed in frame A
| · | Absolute value
‖·‖2 Magnitude
‖·‖2P Squared Mahalanobis distance
< Less than
≤ Less than or equal to
= Equal to
≥ Larger than or equal to
> Larger than
, Is defined by
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