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Abstract
This paper investigates how standard 3D re-
construction techniques can be adapted to
work with orthographic projections of pixel
art images. Reconstructing 3D models from
2D images is typically done with real world
objects. However, little work has explored this
problem in the context of pixel art, which has
a lower resolution, and uses stylistic colors and
shading, making it a problem that requires
different or adapted techniques. We implement
three reconstruction algorithms based on some
common practices in the field: silhouette-based
intersection, spatial carving using color con-
sistency, and gradient-based depth estimation.
Results show that silhouette intersection is an
effective method for simple models, but fails
to capture concave regions. Spatial carving
addresses this limitation, although it also fails
in some use cases. An adapted depth estimation
technique is also used, which most accurately
captures these regions, although it does not fill
in the model as well. We implement a custom
Blender plugin to support user annotations and
improve accuracy in some ambiguous areas.
We conclude that a hybrid approach, where
silhouette intersection is combined with depth
estimation, gives the most accurate results, and
we suggest future work that can be done on the
topic, including better color merging principles,
adding custom viewpoint orientations, adding
support for multiple object reconstruction and
using perspective projections.

I. Introduction
The topic of reconstructing 3D models from a set of 2D im-
ages is a well-known and well-defined problem in Computer
Graphics, and it has been relevant in the field of Computer
Vision for the last thirty years. The topic is especially
relevant in the fields of medicine, robotics, architecture and
game media [1]. One area that has not been explored in
formal research is the reconstruction of models using 2D
pixel art images.

Pixel art is a digital art form that uses simplified, low-
resolution visuals. It is often used in stylized digital art and
video game development [2]. Unlike 2D images of real life
models, pixel art has flat colors, and shading is represented
artistically, rather than in a realistic manner.

There have been many different algorithms developed for
approximating a 3D object from its 2D projections that
use vastly different approaches. They can be categorized
in terms of the types of image cues that are used in the
reconstruction process [3], i.e. the information that can
be derived from each 2D image. Although many different
reconstruction methods exist, there has, to our knowledge,
not been any attempt made to examine how they perform
when using pixel art. Pixel art has a considerably lower

amount of information compared to real-life objects, and it
lacks features that traditional 3D reconstruction techniques
rely on, such as lighting, texture gradients, or perspective
distortion.

Fig. 1: Six input images (on the left), and the resulting 3D model
(on the right).

The aim of this paper is to fill in this knowledge gap,
by examining how three different algorithms that rely on
different image cues perform on 2D pixel art inputs. The
algorithms are: silhouette-based intersection, spatial carving
using color consistency, and gradient-based depth estima-
tion. These methods use three types of image information:
shape or silhouette boundaries, surface color consistency,
and intensity changes, respectively.

The methods are adapted to work with orthographic
projections of the pixel art images taken from multiple
viewpoints. An example of our results is illustrated in Figure
1. The final results are analyzed using a wide collection
of images, representing both concave and convex shapes.
Additionally, in some cases fully automatic reconstruction
is not possible. To address this, the proposed solution is
implemented using a simple voxel editor, which supports
user annotations for correcting the final shapes.

The main question this paper answers is how multiple
orthographic 2D pixel art images from different viewpoints
can be used to construct a 3D voxel representation using
various fill methods. The problem of reconstruction accuracy
will be further examined, as what determines the quality
of the resulting model needs to be defined as a basis of
comparison between different methods. Another aspect that
is worth examining is whether the fill methods are influenced
by different independent variables, such as the number of
2D images used in the final reconstruction, or the angles of
the projections. Additionally, due to well-known limitations
in the proposed approaches, certain characteristics of 3D
shapes cannot possibly be reconstructed without some user
input. The limitation of automatic reconstruction will be



examined in further detail, as well as the benefits of using
user input for a complete reconstruction.

To assess the quality of all three methods, two evaluation
strategies are used. The first method uses existing voxel
models to test reconstruction accuracy. The second method
uses 2D input images to test how well the algorithms gen-
eralize unknown viewpoints. We conclude by analyzing the
results and their implications, where combining silhouette
intersection with depth map estimation is chosen as the most
accurate reconstruction method.

II. Related Work
Early work in 3D reconstruction was focused mostly on
using stereo correspondence [4]–[6] and structure-from-
motion [7], [8], both matching corresponding pixels in two
images from slightly different viewpoints to estimate their
depth. Over time, different image cues were introduced as a
basis for new reconstruction algorithms, such as silhouettes,
shading and texture consistency.

One early approach was based on object silhouettes. This
involves extracting the outer contours of an object from
different views and intersecting the resulting silhouette cones
to approximate the object’s shape. Intersecting the volumes
obtained from different viewpoints based on orthographic
projections was first described by Martin and Aggarwal [9].
Subsequently, some attempts were made to generalize the
approach of using silhouette information and examining the
limitations in the reconstructed results. Attempts were made
using both orthographic and perspective projection [10],
[11]. However, Laurentini [12] was the first to introduce the
concept of a visual hull and to fully formalize the extent to
which objects can be reproduced from silhouettes alone. The
visual hull, as defined in the work, is the maximum volume
that can be reconstructed from a set of images, such that
adding new viewpoints does not add any more information.
While it is effective at representing the outer shape, the
visual hull cannot reconstruct concavities or internal features
that are not visible in any silhouette. This limits the results
of this approach, as it is expected to not perform well
at addressing concavities and overlaps in shapes from the
silhouette. A silhouette intersection method will be further
examined in this work based on the approaches taken by
Martin and Aggarwal [9] and Laurentini [12].

To address some of the limitations of silhouette-based
methods, space carving was introduced by Kutulakos and
Seitz [13]. In contrast to purely geometric reconstruction,
space carving evaluates the photo-consistency of voxels
across multiple images. A point is retained only if it is
consistent in color across all viewpoints. Due to this, features
like concavities and other internal features are also recon-
structed. Their approach introduced the concept of a photo
hull - an extension of the visual hull that also takes into
account photometric constraints to better approximate the
3D shape. Broadhurst et al. [14] improved on this idea by
introducing a probabilistic model for space carving, where
each point is assigned an occupancy probability. This was an
improvement because the algorithm could handle uncertainty
from image noise and occlusions. Further advancements on

the original idea have since been proposed that improve
performance on noisy or texture-rich scenes [15], [16].
A method for spatial carving based on the approach by
Kutulakos and Seitz [13] is used in this work to create a
photo hull and improve upon the limitations of silhouette
intersection.

Techniques based on estimating depth are also quite
common. They are typically applied to single input images
in methods such as shape-from-shading [17], where the
depth is calculated from changes in illumination across
the surface of the image. However, because this project
focuses on pixel art images that have flat shading and have
no light source affecting the image, such approaches are
adapted. In this work, instead of relying on a full shading
model, a simplified grayscale-based approach is used. In-
put images are converted to grayscale, and local intensity
gradients are computed to identify changes in intensity.
Similar approaches using gradient or edge information to
infer structure have been proposed in prior work [18], [19].
Although this method is not standard in 3D reconstruction, it
is an adjusted approach that works on pixel art image input
specifically, while also addressing some of the limitations
that the other approaches have.

Recent research focuses on using deep learning for recon-
structing models from both single or multiple input images.
These methods typically learn 3D representations by training
on large datasets of image-shape pairs and learning view-
consistent priors for shape reconstruction [20], [21]. Such
approaches were, however, deemed to be too complex for
our work due to requiring a high amount of training data
and computational resources, and are hence out of the scope
for our research.

III. Methodology
The goal of the research is to reconstruct 3D voxel models
using a set of 2D pixel art images. The images are sampled
at every pixel and projected orthographically onto the grid
as shown in Figure 2. Different standard approaches in
3D reconstruction algorithms are used in order to examine
the limitations of automatic reconstruction. Additionally,
we examine the validity of relying on user input where
automatic generation fails.

Fig. 2: Example of how input images are projected into the final
shape.



A set of 2D images with their corresponding viewpoint
directions are given as input to all three algorithms. Further-
more, only images containing single objects are considered,
therefore no attempt is made to address object occlusions.
At least two images are required as input to be able to
reconstruct a valid shape. Each algorithm also has a set of
parameters that have to be specified manually, and have an
effect on the final result. The resulting output is a 3D grid
containing the color information of each voxel. Colors are
determined using two different merging techniques based on
overlapping points in the 3D space.

A. Reconstruction Methods
Using different information from the input images allows for
generating various results that may capture different aspects
of the 3D shape. Three algorithms that rely on different
image cues are implemented: silhouette intersection, spatial
carving, and depth estimation. In Figure 3 we show the three
algorithms generates different outputs.

Fig. 3: Results for running the three algorithms using the same
images. The object is expected to have a concavity in the top view.

Silhouette Intersection
Silhouette intersection is a technique where the overlap of
the silhouettes of different 2D projections is taken as a basis
for filling in the model. A silhouette of an image encapsu-
lates all the visible, i.e. non-transparent pixels that the image
contains. Typically, the silhouette of the object in a scene

is determined using a mask to split the captured image into
foreground and background components, however, because
we are using single objects this step is not necessary.

In order for a voxel to be filled in the grid at any position
in the 3D space it needs to have at least a certain amount of
overlapping projections. At each voxel v, let there be a set
of overlapping projections V , and let Pv denote the subset
of visible views. Then v is filled if:

|Pv|
|V |

≥ Ts

where Ts ∈ [0, 1] is the user-defined overlap threshold.
Table I lists all the user-specified parameters for silhouette
intersection.

Name Description Range of Val-
ues

Color Merging
Technique

Determines the color
merging technique, as
specified in section
III-B

Nearest
projection,
Majority vote

Threshold

Determines the number
of overlapping projec-
tions that are consid-
ered enough to fill in a
point.

[0.0 - 1.0]

TABLE I: Silhouette intersection input parameters.

Spatial Carving
Spatial carving uses a photometric consistency method,
whereby the color information of the input images is used
as a basis for reconstruction. Carving refers to a process
where the grid is initially completely filled in with a solid
color. By looking at the 2D projections, the areas that are
determined to be empty are ’carved out’ or removed from
the grid in a step-by-step procedure. The color information
is used to further expand upon this initial idea. Rather than
looking at the silhouettes alone, which would generate the
same shape as silhouette intersection, and likewise omit
any information contained within the shape, the colors of
overlapping projections are further examined based on their
variance. If the variance of overlapping colors at a point
is too high (above the defined threshold), the point is
considered inconsistent and is carved out. For a voxel v,
the color variance is defined as:

σ2
v =

1

n

n∑
i=1

∥ci − µv∥2

where {c1, c2, . . . , cn} is the set of all projected colors onto
the voxel for a total of n projections. Then the voxel is
carved out if:

σ2
v > Tc

where Tc ∈ [0, 1] is the user-defined variance threshold.
The resulting method is a further expansion upon the simple
silhouette-based one because it is able to successfully carve
out concave shapes. However, the results do depend on



setting the correct variance threshold, as well as using input
images that have some shading cues within them, such as
using darker colors than the base ones to denote shadows,
where the concavities may fall. The user-specific parameters
that influence the final output are listed in Table II.

Name Description Range of Val-
ues

Color Merging
Technique

Determines the color
merging technique, as
specified in section
III-B

Nearest
projection,
Majority vote

Variance
Threshold

Determines the amount
of color variance that is
allowed at a point.

[0.0 - 1.0]

Concavity
Depth
Threshold

Influences how much
the concavity is carved
out along its depth axis.

[0.0 - 1.0]

TABLE II: Spatial carving input parameters.

Gradient Depth Estimation
Gradient depth estimation is a custom third technique that is
implemented for the reconstruction process. What makes it
distinct from silhouette intersection or spatial carving is that
it relies on shading cues directly, and has more flexibility
in handling concavities. It was inspired by techniques from
shape-from-shading, but adapted to work better for pixel art,
as pixel art has flat colors and stylized shading (no lighting
cues).

This method is implemented by analyzing the input
images and creating their corresponding depth maps. A
depth map is a 2D array, where each entry contains the
depth of the pixel at position (x, y) along its corresponding
projection axis. For example, in a top-view image that has
coordinates (x, y), the projected points influence coordinates
(x, y, z) in the 3D space, where z corresponds to the height
of the model. Here, the depth map would store only its
z-coordinates explicitly, as the other two can be directly
inferred from the 2-dimensional image. The depth maps are
intersected to create the final model.

Depth estimation is performed by calculating the image
gradients, which highlight the areas of intensity changes,
and which we interpret as areas of interest where concavities
may appear. Input images are first converted to grayscale.
The gradients are calculated using the Sobel operator, which
is applied in the horizontal Gx and vertical Gy directions:

Gx =

[−1 0 +1
−2 0 +2
−1 0 +1

]
, Gy =

[−1 −2 −1
0 0 0
+1 +2 +1

]

The operator is convolved over the grayscale image. The
magnitude of the gradient at each pixel is then computed
as:

∥∇I(x, y)∥ =
√

Gx(x, y)2 +Gy(x, y)2

The result is a 2D grayscale image of gradient magnitudes,

where the highest values correspond to areas of high in-
tensity change, such as edges or concavities. The image is
eroded with a 3x3 kernel that removes edge details. Then a
binary mask is generated based on regions of interest (where
the gradient magnitudes are higher above the specified
threshold). The mask is filtered a final time, in order to
remove regions where their area is too small. This step
is done in order to prevent noise from being treated as a
concave region. For each valid identified concave region,
the area is ’carved’ into the depth map, using the projection
direction and the pixel intensity, as well as the parameters
specified in more detail in Table III.

Name Description Range of Val-
ues

Intensity
Threshold

Determines the inten-
sity value that is fil-
tered above in the algo-
rithm.

[0.0 - 1.0]

Concavity
Depth
Threshold

Influences how much
the concavity is carved
out along its depth axis.

[0.0 - 1.0]

Depth Factor

Multiplier that affects
offset between concave
regions. Because con-
cavities are generated
based on image inten-
sity,

[-5.0 - 5.0]

Minimum Re-
gion Size

Filter for determining
the minimum size a re-
gion has to be to be
carved out.

[0.0 - unspeci-
fied]

TABLE III: Depth estimation input parameters.

The Hybrid Approach
Silhouette intersection can be combined with depth estima-
tion to create a shape that is fully filled in with no gaps, and
that is able to reflect finer details reflected as changes in the
image shading. This method was implemented by combining
the two: depth maps are precomputed, after which silhouette
intersection is performed as described in subsection III-A.
If the voxel falls out of predicted range, i.e. if it is ’closer’
to the projection image than what was calculated in the
depth map, it is not filled in. The parameters for this method
include all of the parameters for silhouette intersection and
depth mapping.

B. Color Merging Techniques
Different color merging approaches are used to determine
the final color at each position in the voxel grid. Two
different methods are used: calculating the color based on
the nearest projection plane to the voxel point and using
a voting system to determine the most frequent color at a
point. The merge strategies are implemented as options in
the user editor to allow further model customization and to
observe their effects on color accuracy for the reconstruction
process.

Choosing colors from the nearest projection is done by
finding the minimum distance from the overlapping point



to each face of the bounding volume, i.e. the sides of the
enclosing cube. The color is then taken from the projection
corresponding to the closest face. In the majority voting
approach, the system selects the color that appears most
frequently among the overlapping values. Ties are broken
arbitrarily, by always selecting the first color that has the
maximum amount of overlap.

C. User Input
User input is used to further extend the editor and allow the
user to change parts of the model that are not consistent with
expected results. The user is able to draw a selection over
any input image, effectively a mask to select which pixels
in the input should be used to construct the final model. The
mask acts as a filter for the reconstruction methods, allowing
the user to prevent unwanted artifacts. Only the selected
pixels are used further by the four algorithms, meaning
calculations such as gradient estimation may be affected by
the mask. Additionally, users can select specific projection
images to exclude from processing or manually adjust voxel
colors after reconstruction. This allows the user to address
the limitations of the three algorithms.

IV. Implementation
The solution is implemented using Python 3.0. A Blender
plugin is added in order to facilitate easier user input
for testing purposes. It supports loading 2D pixel images,
selecting their viewpoints (from a predefined list), selecting
the desired reconstruction algorithm and color merging tech-
nique, as well as support for adjusting some parameters that
are given as inputs to the algorithms. An overview of what
the plugin looks like is shown in Figure 4.

Fig. 4: Final Blender plugin overview

The models are represented using a simple dense 3D grid
that stores color information at each point. Voxel cubes are
then generated at the points where the color values are non-
transparent. Additionally, we hollow out the final grid to
improve performance and ensure a more fair comparison
between the methods. This is done by removing any voxel
that is not visible from any of the six orthogonal directions,
i.e. it is fully enclosed by other occupied voxels.

V. Experimental Setup and Results
We evaluate three aspects of the algorithms: accuracy,
generalization ability and effectiveness of user input to
disambiguate shapes with excess geometry. To test accuracy,
we compare our generated models with existing ones. Gen-
eralization is tested by using a subset of 2D input images,
then comparing how well unseen views correspond to our
images from the opposite viewpoints. We also give a brief
assessment of how using user annotations improves the
overall shape quality in some cases.

For the first evaluation method we use a set of exist-
ing voxel models that are permitted for free use under
the Creative Commons license. For the second, we use a
custom set of 2D images created specifically for this study.
All evaluation methods are conducted using RGBA pixel
images with maximum size 32x32, which we choose for
performance reasons. However, the conclusions we make can
be generalized to larger pixel images as well.

A. Comparison with Existing Voxel Models
In order to compare the results of our algorithms with
existing voxel models, we calculate reconstruction accuracy.
Point-based and color-based accuracy are measured. The
reference models are sampled at six viewpoints correspond-
ing to six faces of a cube, which gives a comprehensive
overview of the model’s shape. The samples are rendered
and used as input images for the four algorithms. The models
were created by artists Sona-Sar [22] and Kyrise [23] on
Itch.io. Some are also taken from the free package in the
MagicaVoxel [24] editor.

Point-based accuracy is measured using intersection-over-
union, where:

IoU =
|Prediction ∩ Ground Truth|
|Prediction ∪ Ground Truth|

Results are shown in Table IV. When running the algorithms,
we vary the parameters using sets of possible values, and the
ones that produce the best IoU are selected. The full list of
parameters was too extensive to be included in the report,
however it can be found in the Github repository [25] of this
project.

For color-based accuracy, only the voxels occupying the
same positions in both grids are considered, and their color
similarity is computed. To account for minor variations in
the color values due to rendering artifacts, a small tolerance
threshold is used when comparing color values. We measure
color similarity using Mean Squared Error as:

MSE =
1

|V |
∑
i∈V

∥∥∥c(i)pred − c
(i)
gt

∥∥∥2
2

where V =
{
i : α

(i)
pred > Ttol or α

(i)
gt > Ttol

}
Here, c(i)pred is the predicted color at voxel i, c(i)gt is the ground
truth color at voxel i, α(i)

pred and α
(i)
gt are the predicted and

ground truth alpha values at voxel i, Ttol is the transparency
threshold below which a voxel is considered fully transparent
and V is the set of voxels where at least one of the alpha



Model Silhouette Carve Depth Hybrid

bone 0.94 0.94 0.56 0.94
box 0.23 0.23 0.42 0.43
box2 0.20 0.20 0.40 0.41
box3 1.00 1.00 0.91 1.00
box4 0.92 0.92 0.82 0.92
bush 0.90 0.90 0.79 0.90
cactuss 0.56 0.56 0.44 0.56
castle 0.72 0.78 0.45 0.78
chr knight 0.60 0.61 0.47 0.60
chr sword 0.68 0.70 0.48 0.68
coin 0.41 0.41 0.42 0.45
covjek 0.66 0.66 0.55 0.66
fence 1.00 1.00 0.79 1.00
rock 0.81 0.81 0.72 0.81
skull 0.87 1.0 0.81 0.91
smallguy 0.92 0.92 0.70 0.92

Average 0.714 0.740 0.608 0.750

TABLE IV: IoU scores for the first experiment. The best results
are highlighted.

values is greater than Ttol. Both color merging techniques
are considered separately. Table V shows the results for each
algorithm and color merging combination.

Model SilNP SilMV CarvNP CarvMV Depth HybridNP HybridMV

bone 0.037 0.012 0.037 0.012 0.260 0.037 0.012
box 0.201 0.194 0.203 0.194 0.182 0.162 0.165
box2 0.343 0.315 0.354 0.315 0.282 0.270 0.283
box3 0.070 0.075 0.067 0.075 0.071 0.070 0.075
box4 0.066 0.063 0.063 0.063 0.072 0.067 0.064
bush 0.077 0.091 0.072 0.091 0.078 0.089 0.091
cactuss 0.159 0.170 0.167 0.170 0.184 0.160 0.171
castle 0.179 0.181 0.145 0.145 0.359 0.147 0.145
chr knight 0.175 0.173 0.173 0.173 0.180 0.175 0.173
chr sword 0.187 0.191 0.215 0.212 0.302 0.187 0.191
coin 0.265 0.258 0.262 0.258 0.270 0.262 0.258
covjek 0.211 0.210 0.198 0.210 0.235 0.211 0.210
fence 0.079 0.086 0.080 0.086 0.104 0.079 0.086
rock 0.090 0.098 0.072 0.098 0.073 0.090 0.098
skull 0.063 0.072 0.021 0.040 0.155 0.066 0.074
smallguy 0.146 0.133 0.131 0.133 0.174 0.146 0.133

Average 0.147 0.145 0.141 0.142 0.186 0.139 0.139

TABLE V: MSE scores for the first experiment. The best results
are highlighted. MV = Majority Vote, NP = Nearest Projection

The results indicate that the hybrid technique is the most
accurate in terms of voxel overlap. Spatial carving produces
results that are almost as accurate, and in the majority of
cases, both these methods are selected as the most optimal
ones. Depth mapping gives the worst results, indicating that
this technique fails to fill in the shape exactly. Figure 3
highlights some of the results of running this experiment
which highlight some of the key differences between the four
algorithms. In terms of color accuracy, the methods overall
have a low MSE score for both color merging techniques,
indicating a higher reconstruction quality. The hybrid meth-
ods perform the best, however not by a large margin. Depth
mapping by itself gives the worst results, as is never chosen
as the best technique for color mapping. Additionally, the
choice of merge technique is highly dependent on the object
itself, as there is no clear distinction between why nearest
projection might be chosen over majority voting.

B. Varying the Amount of Input Images
To examine the effect of reducing the number of input
views, reconstructions are also performed using a subset of
the available input images. The results are re-projected into
known 2D viewpoints, and the amount of overlap with the
ground-truth projections is evaluated. This helps assess how
the algorithms extrapolate missing information, and how
consistent the results are for unseen viewpoints. Parameters
are kept the same for each algorithm, and were chosen based
on the values that were most repeated in experiment one. We
measure IoU and MSE as was already outlined, the results
of which are presented in Table VI and VII respectively. A
full overview of intermediate values is given in Appendix A.
Figure 5 shows an example of outputs for this experiment.

Average Silhouette Carving Depth Hybrid
Two views 0.995 0.995 0.988 0.979

Three views 0.993 0.993 0.974 0.888

TABLE VI: Averaged IoU scores for the second experiment. The
best results are highlighted.

Silhouette Carving Depth Hybrid
Average NP MV NP MV - NP MV

Two views 0.0283 0.0362 0.0283 0.0362 0.0280 0.0284 0.0363

Three views 0.0174 0.0193 0.0174 0.0193 0.0243 0.0178 0.0204

TABLE VII: Averaged MSE scores for the second experiment. The
best results are highlighted. MV = Majority Vote, NP = Nearest
Projection

The results show that both silhouette intersection and
spatial carving achieve high voxel overlap, both when using
two and three input images, suggesting that these methods
work really well when only a subset of images is available
for reconstruction. In contrast, the hybrid approach performs
slightly worse, especially when three views are used. In
terms of color, MSE is overall reduced when using more
inputs, which is to be expected. Using nearest projections is
also slightly favored by all algorithms.

Fig. 5: Example results of running the experiment, with expected
outputs (on the left) and the full set of outputs that were generated
for each algorithm and merge technique (right).



C. Adding User Annotations
Some artifacts in the reconstruction process could not be
resolved using automatic methods alone, particularly in
cases where a part of the object might be adding excess
information. To address this, select input images are masked
to exclude the unwanted regions during reconstruction. Fig-
ure 6 shows such a case for the models of a chair and a
bear. Using unmasked images creates extra geometry and the
shapes get overfilled. While we do not evaluate this method
quantitatively, visual results show that applying the mask
significantly improves the clarity of the shapes.

Fig. 6: Comparison of using unmasked and masked input images
on two objects to refine the shape. The created masks are shown
on the left.

VI. Responsible Research
Ethical concerns are fully taken into account. We acknowl-
edge that this tool can be used to automate a part of the
artistic process, which may not be in line with what artists
would do to create their art. However, we emphasize that our
intention is to support rather than replace artistic input. The
tool is designed such that the created models can be used
as a baseline for making original voxel models, especially
because the tool itself requires 2D pixel images that artists
can create themselves.

To make the methods and their results accessible and
reproducible, the entire code-base is made public in a Github
repository [25]. The code is well-documented, and includes
a Read Me entry that details how to set up the Blender
plugin, as well as some input examples to get started. In the
repository, we also include the intermediary results of our
experiments, as well as the full outputs and all parameters
that were selected. Additionally, the voxel models as well as
some 2D input images that were not created by us are fully
attributed to their authors, and only open-source material was
used in the experimental process. The 2D art was created
partly by us, and partly by Demetra Carata Dejoianu [26],
solely for the purposes of the project.

VII. Discussion
Results show that silhouette intersection is very effective at
capturing simple convex shapes, without necessarily being

able to reproduce the internal features contained in the
silhouettes of the projection images. This idea is in line with
previous research on silhouette-based methods and the visual
hull.

Spatial carving addresses this somewhat successfully.
However because a strict variance threshold is defined, there
are cases where the model ’over-carves’, and removes details
that happen to meet the variance threshold criteria, even
when they are not actual concavities.

The gradient-based depth estimation technique was devel-
oped throughout the research by observing some early results
from the other two methods, and attempting to address their
fail-cases. As such, it most accurately captures details on
concavities, although it does not completely fill in the shape
and produces some gaps as a result. This is because each
depth map holds only one layer of data, meaning if a shape
is extruded from the surface only the nearest points are
captured.

The hybrid method of combining silhouette intersection
with estimated depth maps produces the best results, as con-
cavities are identified efficiently without also misclassifying
smaller details, and the shape is filled in correctly, resulting
in no gaps in the model.

These observations are consistent with the results of the
experiments. When measuring accuracy, the hybrid method
outperforms all others, while spatial carving is also almost
as effective. This is because the hybrid method is able to
capture both the overall shape structure, but also the finer
details provided by depth estimation. Spatial carving further
refines the visual hull produced by silhouette intersection by
creating the photo hull of the object, and removes further
ambiguities, particularly for simpler or more uniformly col-
ored objects. The results of assessing color-based accuracy
were somewhat inconclusive, as they seemed to depend
more on the object itself, and both color merge techniques
produced results that were reasonably good, with no single
method consistently outperforming the other.

When considering how using a subset of views affects
reconstruction, silhouette intersection and spatial carving
outperform the other methods in terms of both point-based
and color-based accuracy. This is because both methods rely
primarily on the shapes of the silhouettes themselves, rather
than attempting to estimate the shape structure. Silhouette
intersection is especially reliable in this use-case because
it does not make assumptions about the shape beyond the
silhouette itself, and is able to give a good conservative
estimate of the shape even when fewer views are available.
Spatial carving also fundamentally relies on the silhouette
information to carve out the general shape.

VIII. Conclusions and Future Work
In this paper, we presented a study on reconstructing 3D
voxel models form 2D pixel art images using pre-existing 3D
reconstruction techniques that were adapted to our pixel in-
puts. Three algorithms: silhouette-based intersection, spatial
carving using color consistency, and gradient-based depth
estimation, were implemented and evaluated in different
ways to test their accuracy in reconstructing existing models



Input Views Reference Silhouette Carving Depth Hybrid

Fig. 7: Results of running the four reconstruction algorithms for various input images. The images on the left show the input that was
used (the existing models were sampled at the same six predefined viewpoints). The second column shows the rendered reference models.

and extrapolating information when missing some of the
input images.

A major contribution of this work is demonstrating that
silhouette intersection can be combined together with depth
estimation, in order to both produce a full shape and
correctly identify regions with varying depths. This hybrid
approach is not considered in existing studies because they
focus on real-world objects and use different, more complex
shading models. However, our slightly simplified approach
was proven to be meaningful in the context of stylized digital
art using flat colors.

As part of our work, we also developed a custom Blender
plugin that uses our reconstruction methods. The plugin
provides an interface for users to load 2D pixel images,
select viewpoints, apply reconstruction algorithms, and make
manual annotations to improve the final model quality. This
also provides artists with a starting point for converting their
2D pixel art into editable 3D models.

We have identified a few possible areas of future work
that our implementations can be extended with. First, in
this paper we make the assumption that the inputs should
be projected onto the grid orthographically, however pixel



art is also drawn with perspective depending on the use
case. The system should be extended to allow the user
to specify which camera position and angle they want to
use, and allow them to generate models from perspective
2D projections. Additionally, the system currently supports
only a predefined set of viewpoints, however this can be
further expanded upon to allow the user to specify the input
image orientations manually. Currently, our solution handles
only single object reconstruction. Support for reconstructing
multiple objects can be added, and visibility maps can be
added as a parameter that determines which objects occlude
which others. Other than this, our suggested color merging
strategies can be further expanded upon. Currently, we only
consider the color overlap at a single point. However, the
surrounding colors around the point could be used to, for
example, break ties more meaningfully in the majority vote
color merging scheme. Although we are able to make some
conclusions about our methods, we acknowledge that our
datasets are quite small, and that future studies should focus
on testing these methods on larger amounts of data. We also
note that, although our methods were able to produce results
that are reasonably accurate, further work needs to be done
to produce methods where the accuracy is even higher.

Appendix
A. Experiment 2: Full Overview
Here, we give the intermediate values that were used to
compute the final average IoU and MSE scores in the second
experiment.

input views view silhouette carving depth hybrid

front, left back 0.995 0.995 0.993 0.988
right 0.998 0.998 0.991 0.991

front, top back 0.996 0.996 0.985 0.972
bottom 0.992 0.992 0.990 0.985

top, left bottom 0.992 0.992 0.986 0.971
right 0.998 0.998 0.984 0.966

Average using two views 0.995 0.995 0.988 0.979

front, top, left
back 0.991 0.991 0.970 0.897
bottom 0.992 0.992 0.981 0.904
right 0.997 0.997 0.972 0.863

Average using three views 0.993 0.993 0.974 0.888

TABLE VIII: IoU calculations for each set of input views, averaged
over all the objects.

Silhouette Intersection Spatial Carving Depth Mapping Hybrid method
input views view NP MV NP MV - NP MV

front, left back 0.0388 0.0348 0.0388 0.0348 0.0187 0.0390 0.0349
right 0.0404 0.0380 0.0404 0.0380 0.0097 0.0404 0.0381

front, top back 0.0203 0.0197 0.0203 0.0197 0.0220 0.0205 0.0198
bottom 0.0239 0.0517 0.0239 0.0517 0.0508 0.0238 0.0517

top, left bottom 0.0251 0.0505 0.0251 0.0505 0.0522 0.0249 0.0505
right 0.0216 0.0224 0.0216 0.0224 0.0105 0.0218 0.0228

Average using two views 0.02835 0.03618 0.02835 0.03618 0.02798 0.0284 0.0363

front, top, left
back 0.0161 0.0192 0.0161 0.0192 0.0159 0.0163 0.0193
bottom 0.0182 0.0234 0.0182 0.0234 0.0447 0.0198 0.0266
right 0.0179 0.0152 0.0179 0.0152 0.0124 0.0173 0.0153

Average using three views 0.0174 0.0193 0.0174 0.0193 0.0243 0.0178 0.0204

TABLE IX: MSE calculations for each set of input views, averaged
over all the objects. MV = Majority Vote, NP = Nearest Projection

B. Use of Generative AI Models
ChatGPT was used to generate code to run both experiments.
For the first experiment, the prompt that was used is:
i want to write a script to automate my testing process;

i have a set of reference photos for each object
from 6 view directions
(top,bottom,left,right,back,front) and a txt file
that is my ground truth; i want to run three
algorithms on the reference photos and get the best
iou values for all of them; the algorithms all have
different parameters , and i guess i wanna predefine
possible values for them, then run my comparison
script multiple times on each one and save the best
iou and the corresponding parameter values; can you
give me a simple python script as follows: assume i
have a subfolder with all of my txt files that
represent the ground truth; assume i have subfolders
with all of my model references for each viewpoint;
also assume for each object that the name of the txt
file is the same as the name of the subfolder
containing the reference images; give me a python
script that, for each matching pair (txt and
subfolder name) uses the method i already have def
generate_comp(ref_file, gen_model) which outputs iuo
and mse, and runs it on a predefined set of
parameter values, and in the end, for each model
prints the best iuo and its corresponding
parameters; additionally , export the final(best)
results to a csv file

The corresponding output:
import os
import csv
from itertools import product

# Import your methods
# from your_module import generate_comp , run_algorithm_1 ,

run_algorithm_2 , run_algorithm_3

# === Mock functions to replace ===
def run_algorithm_1(ref_images , param1, param2):

return DummyModel() # replace with actual logic

def run_algorithm_2(ref_images , paramA):
return DummyModel()

def run_algorithm_3(ref_images , flag):
return DummyModel()

class DummyModel:
def __init__(self):

self.colors = None # Should be the predicted
voxel RGBA array

# Paths
ground_truth_dir = "ground_truth"
references_dir = "references"

# Parameter grids
algorithm_configs = {

’algorithm_1 ’: {
’function ’: run_algorithm_1 ,
’params ’: {

’param1 ’: [0.1, 0.2],
’param2 ’: [5, 10]

}
},
’algorithm_2 ’: {

’function ’: run_algorithm_2 ,
’params ’: {

’paramA ’: [’low’, ’medium’, ’high’]
}

},
’algorithm_3 ’: {

’function ’: run_algorithm_3 ,
’params ’: {

’flag’: [True, False]
}



}
}

results = []

for gt_filename in os.listdir(ground_truth_dir):
if not gt_filename.endswith(’.txt’):

continue

model_name = gt_filename[:-4] # Strip .txt
ref_folder = os.path.join(references_dir , model_name)
gt_path = os.path.join(ground_truth_dir , gt_filename)

if not os.path.isdir(ref_folder):
print(f"Skipping {model_name}: reference folder

missing")
continue

# You may want to actually load and pass the images
here

ref_images = os.listdir(ref_folder) # Placeholder

for algo_name , config in algorithm_configs.items():
func = config[’function ’]
param_keys = config[’params ’].keys()
param_values =

list(product(*config[’params ’].values()))

best_iou = -1.0
best_mse = None
best_params = None

for values in param_values:
param_dict = dict(zip(param_keys , values))
gen_model = func(ref_images , **param_dict)

try:
iou, mse = generate_comp(gt_path,

gen_model)
except Exception as e:

print(f"[{model_name}][{algo_name}] Error
with params {param_dict}: {e}")

continue

if iou > best_iou:
best_iou = iou
best_mse = mse
best_params = param_dict

results.append({
’model’: model_name ,
’algorithm ’: algo_name ,
’best_iou ’: best_iou ,
’mse’: best_mse ,
’params ’: best_params

})

print(f"{model_name} | {algo_name} | Best IOU:
{best_iou:.4f} | Params: {best_params}")

# Save results
csv_path = "best_results.csv"
with open(csv_path , ’w’, newline=’’) as f:

writer = csv.DictWriter(f, fieldnames=[’model’,
’algorithm ’, ’best_iou ’, ’mse’, ’params ’])

writer.writeheader()
for row in results:

row_copy = row.copy()
row_copy[’params ’] = str(row_copy[’params ’]) #

convert dict to string
writer.writerow(row_copy)

print(f"Results saved to {csv_path}")

For the second experiment the prompt was:
i want to do another experiment; i have a set of 13

objects, all are represented by 2D pixel art from
the same 6 predefined viewpoints; i wanna run my
algorithms on a subset of the pixel images, render
the resulting model, then compare the 2d render to

the reference for the same viewpoint to see how well
the algorithms estimate missing information and how
well the color merging techniques work; i first need
a pipeline to run the algorithms on a subset of
images and render them using an orthographic camera
in blender; imagine i have a subfolder for each
object in the ./exp2 directory; for each one i want
to import a subset of images (2: top, left; top,
front; front, left, 3: top, front, left) then render
the results from the opposite views (i have to
rotate the model, but assume i can have a reference
to the camera i want to use and i might wanna adjust
the camera’s orthographic scale here), i wanna save
the renders from each object in
./exp2/subfoldername_extrapolated or sth like this

The corresponding output is:
subset_to_render_views = {

("TOP", "LEFT"): ["BOTTOM", "RIGHT"],
("TOP", "FRONT"): ["BOTTOM", "BACK"],
("FRONT", "LEFT"): ["BACK", "RIGHT"],
("TOP", "FRONT", "LEFT"): ["BOTTOM", "BACK", "RIGHT"],

}

def load_subset_images(obj_folder , views):
images = {}
for view in views:

img_path = os.path.join(obj_folder , view.lower()
+ ".png")

image = bpy.data.images.load(img_path)
w, h = image.size
pixels_np = np.array(image.pixels[:]).reshape((h,

w, 4))
pixels_np = np.round(pixels_np , 3)
images[view] = pixels_np

return images

def voxel_grid_to_mesh(voxels, name="voxel_model"):
import bmesh
import mathutils

mesh = bpy.data.meshes.new(name)
obj = bpy.data.objects.new(name, mesh)
bpy.context.collection.objects.link(obj)

bm = bmesh.new()
for x in range(voxels.shape[0]):

for y in range(voxels.shape[1]):
for z in range(voxels.shape[2]):

if voxels[x, y, z]:
bmesh.ops.create_cube(

bm,
size=1.0,
matrix=mathutils.Matrix.Translation((x,

y, z))
)

bm.to_mesh(mesh)
bm.free()
return obj

def render_from_view(obj, view_name , save_path ,
ortho_scale=30):
cam = bpy.data.objects.get("OrthoCamera")
if cam is None:

cam_data = bpy.data.cameras.new("OrthoCamera")
cam_data.type = ’ORTHO’
cam = bpy.data.objects.new("OrthoCamera",

cam_data)
bpy.context.collection.objects.link(cam)

cam.data.ortho_scale = ortho_scale

# Set rotation based on view
view_rotations = {

"FRONT": (0, 0, 0),
"BACK": (0, 0, math.radians(180)),
"LEFT": (0, 0, math.radians(90)),
"RIGHT": (0, 0, math.radians(-90)),
"TOP": (math.radians(-90), 0, 0),
"BOTTOM": (math.radians(90), 0, 0),



}
cam.rotation_euler = view_rotations[view_name]
cam.location = (0, 0, 100) # You can refine based on

grid size

bpy.context.scene.camera = cam
bpy.context.view_layer.update()

bpy.context.scene.render.filepath = save_path
bpy.ops.render.render(write_still=True)

def run_experiment2(base_dir , subset_views):
for obj_name in os.listdir(base_dir):

obj_dir = os.path.join(base_dir, obj_name)
if not os.path.isdir(obj_dir): continue

subset_key = tuple(sorted(subset_views))
render_views = subset_to_render_views[subset_key]

images = load_subset_images(obj_dir, subset_views)
size = size_map.get(obj_name , 20)

# Choose algorithm here:
voxel_grid = your_voxel_method(

images, size, size, size, # w, h, d
concavity_depth=0.2,
factor=0.5,
min_region_size=2,
keep_concave_regions=True

)

mesh_obj = voxel_grid_to_mesh(voxel_grid)
output_dir = os.path.join(base_dir ,

f"{obj_name}_extrapolated")
os.makedirs(output_dir , exist_ok=True)

for view in render_views:
render_path = os.path.join(output_dir ,

f"{view.lower()}.png")
render_from_view(mesh_obj, view, render_path ,

ortho_scale=size)
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