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Layman’s summary

In this research, we looked at a version of a branching process. A branching
process is, similar to a family tree, a process consisting of individuals that
reproduce. Every individual has a certain chance to get an amount of children.
For instance, they might have a 6% chance to get one child, a 3% chance to
get two children, and so on. Assuming that we know what those chances are,
we are going to find how big every generation of individuals is. Once we know
that, we can find a constraint on the birth times of the children, so that an
explosion takes place. An explosion is an event where there are infinitely many
individuals in a finite amount of time.

1



Summary

We provide sufficient criteria for explosion in an age-dependent branching pro-
cess. For this, we assume the offspring distribution has a certain form. Given
this form, we will construct a lower bound on the generation sizes. After we
obtained this lower bound, we will start a process in which we will thin the tree.
We will do this by pruning the children of an individual if that individual is born
after its assigned time. Doing this for all generations gives rise to a thinned tree,
with infinitely many non-empty generations in a finite time. Because of that,
there are infinitely many individuals at a finite time, and thus the tree exploded.
There is a constraint needed, dependent on the offspring distribution, for the
thinned tree to survive. The goal of this thesis is to find that constraint.

2



Contents

1 Introduction 4

2 Model definition 7

3 Lower bound for generation sizes 9
3.1 Creating recursive equation . . . . . . . . . . . . . . . . . . . . . 9
3.2 Solving for sk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 The other slowly varying function . . . . . . . . . . . . . . . . . . 15

4 Thinned Tree 19
4.1 New model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Explosion in thinned tree . . . . . . . . . . . . . . . . . . . . . . 19

5 Conclusion 27

3



Chapter 1

Introduction

Branching processes have been studied for a long time in probability theory,
with papers from before 1950 [11] [5]. Lots of research has been done since then
and a lot of advancements have been made.

In this thesis we will study branching processes with birth times as described
in [12] or [15]. This means that the distribution of birth times for individuals is
independent and identically distributed (i.i.d.), so every individual will have the
same distribution for when their children are born. There are no assumptions
made on the dependency of birth times of consecutive children of the same
person. In these processes, we look for explosion, i.e. we look for a criterion so
that there are infinitely many individuals at a finite time.

If an individual is expected to get a finite number of children, then the
population grows exponentially in time. That is, the population size at time t is
of the order exp (λ · t), with λ being the Malthusian parameter [14]. Under the
assumption that the Malthusian parameter exists, the population is expected
to grow exponentially [13], and thus explosion doesn’t occur.

This thesis will focus on a branching process where explosion might occur.
For that, the order of the population size can’t be written as as exp (λ · t), as
that indicates a finite population. Therefore we will need that the expected
number of children of an individual is infinite. This is however not sufficient for
explosion, as the birth times can be quite high and thus only result in infinitely
many individuals at an infinite time. In this thesis we will focus on finding a
constraint on the birth times so that explosion occurs.

There are currently two kinds of branching processes with infinite mean.
The first kind is the Galton-Watson branching process. This is a branching
process where all children of an individual are born after one unit of time [9].
These types of branching processes do not have a lot of freedom, as their birth
times are already set. Galton-Watson branching processes have been researched
in the 70’s by Schuh and Barbour [17], and Bingham and Doney [6].
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The other kind of branching process is the age-dependent branching process.
An age-dependent branching process is a process where each individual has an
i.i.d. distributed lifetime, and they produce all their children when they die
[19]. Around the 70’s, Sevast’yanov and Grey gave a sufficient criterion for
explosion[18, 10]. In 2013, [1] gave a sufficient condition for explosion using
branching random walks.

This was done by starting with one individual at the origin and walking a
random length in a direction. Upon arriving, the individual died and produced
children, who underwent the same process and so on. This is very similar to a
branching process, as the length and direction can be mapped as birth time in
a branching process. The number of children that the individual produced is
the same as in the branching process.

The branching process we will consider in this thesis is an age-dependent
branching process, as there are more applications for age-dependent branching
processes. We assume the lifetime is i.i.d. for all individuals and we do not
assume anything about the dependency of lifetimes of consecutive births.

One application of these age-dependent branching processes, are random
graph models. Random models are locally often similar to trees, i.e. there are no
cycles in the process, and so they can locally be graphed as a branching process.
These random graph models can be used to model a spreading epidemic. To fully
understand how that works, random graph models will first need to be studied
locally. Examples of this are the configuration model [16] and inhomogeneous
random graphs [8].

A lot of real life networks can be modelled using power-law degree distribu-
tions with exponent in (2, 3). Some examples are the world wide web [2] and
citation networks. If a model has an exponent between (2, 3) for the degrees
in the graph, can be modelled by a branching process with exponent between
(1, 2). That means that the expectation of the offspring is infinite, but the sec-
ond moment is finite. For networks with these power-law degree distributions,
it is very important that the branching processes are understood, and thus they
can be researched.

So it is very important to research branching processes, as it helps under-
standing random graphs. More specifically, it helps understanding spreading
events on random graphs. For example, very little is known about nondeter-
ministic but non-explosive information diffusion on random graphs with infinite
variance degrees [4].There is also not much known when we assume dependencies
between the transmission times from a vertex to its neighbors[14]. This is very
useful when researching an epidemic, where every individual has an incubation
time. That is very crucial to know, as explosion in epidemics should be avoided,
especially for deadly diseases.
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In this thesis, we will find a sufficient criterion for explosion. There, we
assume that we know the offspring distribution, and eventually gain a constraint
on the birth times so that the branching process explodes. We will research two
families of distributions, and we will arrive at a constraint for both for explosion.
First, in Chapter 2 we will define the model we are working with. In Chapter
3 we will calculate a lower bound on the generation sizes for both offspring
distributions. Finally in Chapter 4 we will define a thinned tree, which is a
subset of the original tree. We will define this thinned tree in such a way, that
existence of this tree immediately implies an explosion. Then we will arrive at
a constraint for which the tree will survive and we can thus have explosion.
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Chapter 2

Model definition

First, we use N := {1, 2, . . .}. Individuals are considered to be labeled as el-
ements of the infinite Ulam-Harris tree U∞ :=

⋃
n≥0 Nn, where N0 := {∅}

contains the root, which is the first element of the tree. Elements u ∈ U∞ are
denoted as a tuple, such that u = (u1, . . . , uk) ∈ Nk, k ≥ 1. For simplicity,
this is written as u = u1 . . . uk. This is to be interpreted as the ukth child
of the individual u1 . . . uk−1. For instance, 1 represents the first child of the
root and 2 represents the second child of the root. We use | · | to measure the
length of a tuple u, such that, if u = ∅, then |u| = 0, and if u = u1 . . . uk,
we have |u| = k. We say p(u) is the parent of u, so if u = u1 . . . uk, then we
have p(u) = u1 . . . uk−1. Conversely, u is the child of p(u). We use generations,
where generation k is defined as Gk := {u : |u| = k}, and |Gk| is the size of the
generation.

The birth interval T (u) of an individual u is a random variable and is defined
as the time between the birth of individual u and its parent p(u). For instance,
if p(u) is born at time 1 and u is born at time 3, than T (u) = 2. Furthermore
we define T (∅) := 0. The birth time B(u) of an individual is defined as

B(∅) := 0 and for u ∈ U∞, i ∈ N, B(ui) := B(u) + T (ui).

We also define FT (x) := P
(
T ≤ x

)
. The population size of the tree at time t is

defined as
P (t) := |u ∈ U∞ : B(u) < t|.

We speak of explosion if there is a time t < ∞ such that P (t) = ∞, so if there
is a finite time where there are infinitely many individuals.

We say a tree survives, when there is no empty generation, so there are
infinitely many non-empty generations.

We look at random trees with the offspring distribution defined by the fol-
lowing distribution

P(D ≥ k) =
l(k)

k
(2.1)

where D is the random variable that indicates the number of children of an
individual. Every individual is assumed to have the distribution as stated in

7



Equation 2.1. The distribution of individual i is denoted asDi, and it is assumed
that D,D1, D2, . . . are i.i.d. Furthermore, l(k) is any slowly varying function.

Definition 2.0.1. Let l be a positive measurable function, defined on some
neighbourhood [X,∞) of infinity, and satisfying

l(λx)/l(x) → 1 (x → ∞) ∀λ > 0

then l is said to be slowly varying.

In this paper we will look at two slowly varying function, namely l1(x) =
c · log(x)α and l2(x) = c · exp

(
logγ(x)

)
where α > −1 and γ ∈ (0, 1).

First we will show that l1(x) is a slowly varying function.

lim
x→∞

l1(λx)

l1(x)
= lim

x→∞

log(λx)α

log(x)α
(2.2)

= lim
x→∞

(
log(λ) + log(x)

)α
log(x)α

(2.3)

= 1 (2.4)

And l2(x) is a slowly varying function as well, as we have that

lim
x→∞

l2(λx)

l2(x)
= lim

x→∞

elog(λx)
γ

elog(x)γ
(2.5)

= lim
x→∞

e

(
log(λ)+log(x)

)γ
elog(x)γ

(2.6)

= lim
x→∞

e(log(λ)+log(x))γ−log(x)γ (2.7)

As seen in Equation 2.3, dividing the differences in the power results in 1 in
the limit, therefore they are equal and so their difference is equal to zero, which
results in

= e0 (2.8)

= 1. (2.9)

We will use both these functions later and for each of them we will look for a
criterion for explosion.
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Chapter 3

Lower bound for generation
sizes

3.1 Creating recursive equation

We want to find explosion and for that we will look at the generation sizes. We
will do that by finding a lower bound sk for the generation sizes. Let |Gk| > sk.
Then we know that E

[
|Gk|

]
= E

[
D
]
· |Gk−1|, as every individual in |Gk−1| gets

an expected number of E
[
D
]
children. We then let sk grow slower than Gk, so

we set sk = (1− δ)E
[
D
]
· sk−1 for some δ > 0. We do this, as we expect the size

of the k’th generation to be a little less than the size of the previous generation
times the expected number of children of an individual. Later we will need that
E
[
D
]
< ∞, but E

[
D
]
= ∞, so we decrease the expected value by setting some

higher values to zero. We get sk = (1− δ)E
[
D1(D≤dk)

]
· sk−1, where dk is some

finite series.
We want to find a dk for which the expectation is finite, so we can obtain

a recursive formula for sk. To calculate this, we want that it’s very likely that
|Gk| > sk, so we want that

∞∑
k=1

P
(
|Gk| ≤ sk

∣∣|Gk−1| ≥ sk−1

)
< ∞. (3.1)

We can then bound this, as

P
(
|Gk| ≤ sk

∣∣|Gk−1| ≥ sk−1

)
≤ P

(sk−1∑
i=1

Di ≥ sk
)

(3.2)

To further bound this, we need Bernstein’s inequality [3], which states If Xi are
i.i.d. with E[X] < ∞ and E[X2] < ∞, then

P

(
sk−1∑
i=1

Xi ≥ (1− δ) · sk−1 · E[X]

)
≤ exp

(
−δ2 · E[X]2

E[X2]
· sk−1

)
. (3.3)
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As we chose sk = (1− δ)E
[
D1(D≤dk)

]
· sk−1, we have finite expectation, so

we can apply Bernstein’s inequality. Setting Xi := Di1(Di≤dk) and m(dk) =

E
[
D1(D≤dk)

]
, we then have

P

(
sk−1∑
i=1

Di ≥ (1− δ)sk−1 ·m(dk)

)
≤ exp

(
−δ2

E[D1(Di≤dk)]
2

E[D21(Di≤dk)]
· sk−1

)
(3.4)

We then want to calculate the expectations, so we can find a dk for which the
infinite sum converges. First we calculate E

[
D1(D≤x)

]
:

E[D1(D≤x)] =

∞∑
k=1

k · 1(D≤x) · P
(
D = k

)
(3.5)

=

x∑
k=1

k · P
(
D = k

)
(3.6)

(3.7)

We can rewrite this as

E[D1(D≤x)] =

x∑
n=1

x∑
k=n

P
(
D = k

)
(3.8)

=

x∑
k=1

(
P
(
D ≥ k

)
− P

(
D > x

))
(3.9)

Writing this in an integral form gives

E[D1(D≤x)] =

∫ x

1

P
(
D ≥ u

)
du− x · P

(
D > x

)
(3.10)

=

∫ x

1

l(u)

u
du− l(x) (3.11)

=: L(x)− l(x) ≤ L(x). (3.12)

Then, calculating the second expectation:

E[D2
1(D≤x)] =

∞∑
k=1

k2 · 1(D≤x) · P
(
D = k

)
(3.13)

=

x∑
k=1

k2 · P
(
D = k

)
(3.14)

As the difference of two consecutive squares is x2− (x−1)2 = x2−x2+2x−1 =
2x− 1, we can rewrite this as

=

x∑
n=1

(2n− 1) ·

(
x∑

k=n

P
(
D = k

))
(3.15)

=

x∑
k=1

(2k − 1)
(
P
(
D ≥ k

)
− P

(
D > x

))
(3.16)
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Further simplifying gives

≤
x∑

k=1

2k
(
P
(
D ≥ k

)
− P

(
D > x

))
(3.17)

≤
x∑

k=1

2kP
(
D ≥ k

)
(3.18)

(3.19)

Writing this in an integral form gives

E[D2
1(D≤x)] ≤ 2

∫ x

1

u · P
(
D ≥ u

)
du (3.20)

= 2

∫ x

1

l(u)du (3.21)

≤ Cxl(x), (3.22)

for some constant C. The last equation holds because of Karamata theory [7].
Now that we have bound for those expectations, we can substitute them into

Equation 3.4, we get

P

(
sk−1∑
i=1

Di ≥ (1− δ)sk−1 ·m(dk)

)
≤ exp

(
−δ2 · L(dk)

2

l(dk) · dk
· sk−1

)
(3.23)

Now that we have that bound, combining Equation 3.1, Equation 3.2 and Equa-
tion 3.23, we get

∞∑
k=1

exp

(
−δ2 · L(dk)

2

l(dk) · dk
· sk−1

)
< ∞. (3.24)

We have l1(x) = c · logα(x), and we defined L(x) :=
∫ x

1
l(u)
u du, we get

L1(x) =

∫ x

1

c · log(u)α

u
du (3.25)

Using the substitution y = log(u), dy = 1
udu, we get

= c ·
∫ log(x)

0

yαdy (3.26)

= c ·
[ 1

α+ 1
yα+1

]log(x)
0

(3.27)

=
c

α+ 1
logα+1(x) (3.28)

Filling in the formulas for l1(x) and L1(x) into Equation 3.24 and summing
them gives

∞∑
k=1

exp

(
−δ2 ·A log(dk)

2α+2

log(dk)α · dk
· sk−1

)
=

∞∑
k=1

exp

(
−δ2 ·A log(dk)

α+2

dk
· sk−1

)
,

(3.29)
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for constant A = c
(α+1)2 . Our recursive equation is sk = (1 − δ)E

[
D1(D≤dk)

]
·

sk−1 = (1− δ)L(dk) · sk−1. Filling in the equation for L(x), we get

sk = (1− δ) · sk−1 ·
c

α+ 1
· logα+1(dk). (3.30)

We want our lower bound to big as big as possible, so we choose dk in such a
way that Equation 3.30 grows as quickly as possible, but still satisfies Equation
3.29. Therefor we look specifically at the terms dependent on k in the exponent,
so

logα+2(dk)

dk
· sk−1. (3.31)

We will search for dk of the form dk = sk−1 · logβ(sk−1). Equation 3.31 then
becomes

logα+2(sk−1 · logβ(sk−1))

sk−1 · logβ(sk−1)
· sk−1 =

logα+2(sk−1 · logβ(sk−1))

logβ(sk−1)
(3.32)

=

(
log(sk−1) + β log(log(sk−1))

)α+2

logβ(sk−1)
(3.33)

Rewriting this gives

(
log(sk−1) + logβ(sk−1)

)α+2

logβ(sk−1)
=

logα+2(sk−1) · (1 + β log(log(sk−1))
log(sk−1)

)

logβ(sk−1)
(3.34)

= logα+2−β(sk−1) ·

(
1 +

β log(log(sk−1))

log(sk−1)

)α+2

(3.35)

≤ logα+2−β(sk−1) · 2α+2 (3.36)

To then obtain summability, we need α+2−β > 0, therefore we need β < α+2.
If we choose β < α + 1, we then have 1 < α + 2 − β. We can write this as
1 + ε ≤ α + 2 − β for some ε > 0. In the power of the exponent we now have
− log1+ε(sk−1). Then we have

exp

(
−δ2 ·A log(dk)

α+2

dk
· sk−1

)
∼ exp

(
− log1+ε(sk−1)

)
(3.37)

= exp

(
− log(sk−1) · logε(sk−1)

)
(3.38)

=

(
1

sk−1

)logε(sk−1)

. (3.39)
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As the exponent tends to infinity, the sum over all k converges, so

∞∑
k=1

(
1

sk−1

)logε(sk−1)

< ∞. (3.40)

So now that we have found a dk for which Equation 3.24 holds true, we can
substitute that value of dk into the recursive formula, which gives

sk = (1− δ) · sk−1 ·
c

α+ 1
· logα+1(dk) (3.41)

= (1− δ) · sk−1 ·
c

α+ 1
·
(
logα+1(sk−1) + β log(log(sk−1))

)α+1

(3.42)

= (1− δ) · sk−1 ·
c

α+ 1
· logα+1(sk−1) ·

(
1 +

β log(log(sk−1))

log(sk−1)

)α+1

(3.43)

As log(x) grows much faster than log(log(x)), therefore their fraction is o(1).
Filling that in and simplifying constants gives

= (1− δ) · sk−1 ·
c

α+ 1
· logα+1(sk−1) ·

(
1 + o(1)

)α+1

(3.44)

= (1− δ̂) · sk−1 ·
c

α+ 1
· logα+1(sk−1) (3.45)

= M · sk−1 · logα+1(sk−1), (3.46)

for some constant M . Now we have a recursive equation for sk, which we want
to solve.

3.2 Solving for sk

Lemma 1. Let ak be a series satisfying the differential equation

ak = N · ak−1 · logα+1(ak−1)

for some constant N > 0 and some α+ 1 > 0. Then the solution of ak is

exp

(
αk log(k)

)
≤ ak ≤ exp

(
αk log(k) log(log(k))

)
Proof. Let ak be a series satisfying the differential equation, with N > 0 and
α+ 1 > 0 constants. Then, dividing by ak−1 gives

ak
ak−1

= N · logα+1(ak−1) (3.47)

Taking the logarithm on both sides gives

log(ak)− log(ak−1) = log(N) + (α+ 1) · log(log(ak−1)) (3.48)
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Substituting yk = log(ak) gives

yk − yk−1 = log(N) + (α+ 1) · log(yk−1) (3.49)

This gives the differential equation

y′(k) = log(N) + (α+ 1) · log(y(k)) (3.50)

Removing the constant gives

y′(k) ≥ (α+ 1) · log(y(k)) (3.51)

We want to see if the solution ŷ(k) = (α+1)k · log(k) is a valid solution. There-
fore, we have to calculate both sides of the equation and see if the inequality
holds. We get that

ŷ′(k) = α ·
(
1 + log(k)

)
(3.52)

and

(α+ 1) · log(ŷ(k)) = (α+ 1) ·
(
log(α) + log(k) + log(log(k))

)
(3.53)

= (α+ 1) log(k) ·
(
1 +

log(α)

log(k)
+

log(log(k))

log(k)

)
(3.54)

= (α+ 1) log(k) ·
(
1 + o(1)

)
(3.55)

Simplifying Equation 3.55, we see

(α+ 1) · log(ŷ(k)) = (α+ 1) log(k) ·
(
1 + o(1)

)
(3.56)

≥ (α+ 1) log(k). (3.57)

Then, for k > exp
(
α
)
we have

(α+ 1) log(k) > α
(
log(k) + 1

)
(3.58)

= ŷ(k) (3.59)

So we do not satisfy Equation 3.51, so the function y(k) that does satisfy the
equation is greater than ŷ(k) = αk log(k). Now that we have a lower bound, we
want to find an upper bound that is as close as possible to this lower bound. We
will try ỹ(k) = αk log(k) log(log(k)). Computing both sides of Equation 3.51
we get

ỹ′(k) = 2α+ α log(k) · log(log(k)) (3.60)

and

(α+ 1) · log(ỹ(k)) = (α+ 1)
(
log(α) + log(k) + log(log(k)) + log(log(log(k)))

)
.

(3.61)
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If we set

K(k) :=

(
log(α)

log(k) log(log(k))
+

1

log(log(k))
+

1

log(k)
+

log(log(log(k)))

log(k) log(log(k))

)
,

we get that

(α+ 1) · log(ỹ(k)) = (α+ 1) log(k) log(log(k)) ·K(k) (3.62)

We can see that K(k) = o
(

1
log(k)

)
, so substituting that in Equation 3.62 gives

(α+ 1) · log(ỹ(k)) = (α+ 1) log(k) log(log(k)) · o
(

1

log(k)

)
(3.63)

≤ (α+ 1) log(k) log(log(k)) · 1

log(k)
(3.64)

= (α+ 1) log(log(k)) (3.65)

We then get the inequality

(α+ 1) log(log(k)) ≤ (α+ 1) log(k) · log(log(k)) (3.66)

≤ (α+ 2) log(k) · log(log(k)) (3.67)

= ỹ′(k). (3.68)

So we have shown that for ỹ′(k) = αk log(k) · log(log(k)) it holds that ỹ′(k) ≥
(α+1)·log(ỹ(k)), and thus satisfies Equation 3.51. As ỹ(k) is only slightly greater
than ŷ(k), we see that ŷ(k) = αk log(k) is a lower bound for y(k) that cannot
be improved much further. We now know that y(k) ≥ αk log(k), and as we took
y(k) = log(sk), we have exp

(
αk log(k)

)
≤ ak ≤ exp

(
αk log(k) log(log(k))

)
.

Using Lemma 1 on our differential equation, we get an upper and lower
bound on our sk. We now know that |Gk| ≥ sk ≥ exp

(
αk log(k)

)
.

Now that we have a good lower bound on the generation sizes for this slowly
varying function, we will now calculate a lower bound for the other slowly vary-
ing function.

3.3 The other slowly varying function

We already calculated sk for l1(x), but now we will calculate it for l2(x). We
have Equation 3.24, so we want to calculate L2(x). We get

L2(x) = c ·
∫ x

1

exp
(
logγ(u)

)
u

du. (3.69)

Using the substitution y = log(u), dy = 1
udu, we get

= c ·
∫ log(x)

0

exp (yγ)dy. (3.70)
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We can bound this integral from above by c · log(x) · exp
(
logγ(x)

)
, as it is the

maximum value of the integral times its width. The integral can be bounded
from below by c · exp

(
logγ(x)

)
. So we have

c · exp
(
logγ(x)

)
≤ c ·

∫ log(x)

0

exp (yγ)dy ≤ c · log(x) · exp
(
logγ(x)

)
. (3.71)

Using the upper bound of L2(x), Equation 3.24 becomes

∞∑
k=1

exp

(
−δ2 · L(dk)

2

l(dk) · dk
· sk−1

)
(3.72)

≤
∞∑
k=1

exp

(
−δ2 · c · log

2(dk)

dk
exp

(
logγ(dk)

)
· sk−1

)
< ∞ (3.73)

For our recursive equation we will use the lower bound of L2(x) to get

sk = (1− δ) · c · sk−1 · exp
(
logγ(dk)

)
. (3.74)

We want our sk to be as big as possible, so we choose dk in such a way that
Equation 3.74 grows as quickly as possible, but still satisfies Equation 3.73.
Therefor we look specifically at the terms dependent on k in the exponent, so

log2(dk)

dk
· exp

(
logγ(dk)

)
· sk−1. (3.75)

We will search for dk of the form dk = sk−1 · exp
(
logβ(sk−1)

)
. Equation

3.75 then becomes

log2(dk)

dk
· exp

(
logγ(dk)

)
· sk−1 (3.76)

= exp
(
Nγ(k)

)
· N2(k)

exp
(
logβ(sk−1)

) (3.77)

= exp

(
Nγ(k)− logβ(sk−1) + 2 log

(
N(k)

))
, (3.78)

where N(K) =
(
log(sk−1)+logβ(sk−1)

)
. If we choose β ∈ (0, γ), we can simplify

N(k) as follows:

(
log(sk−1) + logβ(sk−1)

)
= log(sk−1)

(
1 +

logβ(sk−1)

log(sk−1

)
(3.79)

= log(sk−1)
(
1 + o(1)

)
(3.80)

∼ log(sk−1). (3.81)
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We can then simplify Equation 3.78 to

∼ exp

(
logγ(sk−1)− logβ(sk−1) + 2 log

(
log(sk−1)

))
(3.82)

= exp

(
logγ(sk−1)

(
1 +

logβ(sk−1)

logγ(sk−1)

)
+ 2 log

(
log(sk−1)

)
(3.83)

= exp

(
logγ(sk−1)

(
1 + o(1)

)
+ 2 log

(
log(sk−1)

)
. (3.84)

We can simplify this further to

∼ exp

(
logγ(sk−1) + 2 log

(
log(sk−1)

)
(3.85)

= exp

(
logγ(sk−1)

(
1 +

2 log(log(sk−1))

logγ(sk−1)

))
(3.86)

∼ exp
(
logγ(sk−1)

)
(3.87)

So if we choose β ∈ (0, γ), we have

exp

(
−δ2 ·A log(dk)

α+2

dk
· sk−1

)
∼ exp

(
− exp

(
logγ(sk−1)

))
. (3.88)

As the exponent grows faster than a linear function, we have

∞∑
k=1

exp

(
− exp

(
logγ(sk−1)

))
≤

∞∑
k=1

exp (−k) < ∞ (3.89)

So now that we have found a dk for which Equation 3.24 holds true, we cab
substitute that value of dk into the recursive formula, which gives

sk = (1− δ) · c · sk−1 · exp

(
logγ

(
exp

(
log(sk−1)

)
· sk−1

))
(3.90)

= (1− δ) · c · sk−1 · exp
((

2 log(sk−1)
)γ)

(3.91)

≥ M · sk−1 · exp
(
logγ(sk−1)

)
, (3.92)

for M = (1− δ) · c. We now have a recursive equation for sk, which we want to
solve.

Lemma 2. Let ak be a series satisfying the differential equation

ak ≥ N · ak−1 · exp
(
logγ(ak−1)

)
for some constant N > 0 and some γ ∈ (0, 1). Then the solution of ak is

ak ≥ exp

(
k

(
1

1−γ

))
.
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Proof. Let ak be a series satisfying the differential equation, with N > 0 and
γ ∈ (0, 1) constants. Then, dividing by ak−1 gives

ak
ak−1

≥ N · exp
(
logγ(ak−1)

)
. (3.93)

Taking the logarithm on both sides gives

log(ak)− log(ak−1) ≥ log(N) + logγ(ak−1). (3.94)

Substituting yk = log(ak) gives

yk − yk−1 ≥ log(N) + yγk−1 (3.95)

Removing the constant and writing this as a differential equation gives

y′(k) ≥ y(k)γ . (3.96)

We want to see if the solution ŷ(k) = k

(
1

1−γ

)
is a valid solution. Therefor, we

have to calculate both sides of the equation and see if the inequality holds. We
get that

ŷ′(k) =
1

1− γ
· k

(
γ

1−γ

)
(3.97)

and

ŷγ(k) = k

(
γ

1−γ

)
. (3.98)

As we have γ ∈ (0, 1), we have that ŷ′(k) ≥ ŷγ(k), we have that y(k) = k

(
1

1−γ

)
is a valid solution to Equation 3.96. As we took y(k) = log(ak), we have that

ak = exp
(
k

(
1

1−γ

))
.

Using Lemma 2 on out differential equation, we get an lower bound on out
sk. We now know that, for l(x) = c · exp

(
logγ(x)

)
, we have |Gk| ≥ sk ∼

exp
(
k

(
1

1−γ

))
. Now that we have a good lower bound on the generation sizes,

we will find a criteria for explosion in Section 4.
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Chapter 4

Thinned Tree

4.1 New model

We will look at a specific thinned version of the model mentioned in Section 2,
where we will thin the tree U∞ by pruning some branches of the tree. The tree
from this new model will be indicated by Ũ∞, and the generations of Ũ∞ will
be written as G̃k, where G̃k ⊆ Gk.

Definition 4.1.1 (Thinned tree). Given a series tk > 0, the thinned tree is
defined as

Ũ∞ :=
⋃
k≥2

{u ∈ Gk

∣∣T (p(u)) < tk−1} ∪ G1 ∪∅

In generation 1, nothing gets pruned, so G̃1 = G1.In generation k, k > 1,
an individual u will get pruned if its parent p(u) has a greater birth interval
than tk−1. So every element of the series tk is assigned to generation Gk, and if
an individual u from generation Gk has a greater birth interval than tk, all its
children and their children and so on will be pruned.

As Ũ∞ ⊆ U∞, if explosion happens in Ũ∞, it also happens in U∞. Therefore
we will search for explosion in Ũ∞. If the tree Ũ∞ survives, by definition that
means that there are infinitely many non-empty generations. As individuals in
generation k are thinned in a way so that they only exist if their parents in
the previous generation k − 1 are all born before time

∑k−1
i=1 tk−1. Therefore,

if there are infinitely many generations, they all exist before time
∑∞

k=1 tk.
Therefore, we want to find a series tk for which

∑∞
k=1 tk < ∞. Then there are

infinitely many non-empty generations in a finite time, and therefore infinitely
many individuals in a finite time. In short, if Ũ∞ survives, explosion occurs.

4.2 Explosion in thinned tree

First we have two conditions for survivability:
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Theorem 3 (Condition for explosion for l1(x)). Let Ũ∞ be a thinned tree by tk
with

∑∞
k=1 tk < ∞ and offspring distribution P

(
D ≥ k

)
= c·logα(k)

k . Then the
tree survives if

FT (x) >> xα+1−ε

for x close to zero and for some ε > 0.

Theorem 4 (Condition for explosion for l2(x)). Let Ũ∞ be a thinned tree by tk

with
∑∞

k=1 tk < ∞ and offspring distribution P
(
D ≥ k

)
=

c·exp
(
logγ(k)

)
k . Then

the tree survives if

FT (x) >> exp
(
(ε− α)x

(
1

1−γ

))
for some ε > 0.

Before we prove these theorems, we want to find a lower bound s̃k on the
generation size of the thinned tree. To find this lower bound, we use the same
equation as in Section 3, but we introduce the term pk := P

(
T ≤ tk

)
. So pk is

the chance that an individuals doesn’t get pruned. We get

s̃k = (1− δ)pk−1E
[
D1(D≤d̃k)

]
s̃k−1 (4.1)

Repeating the calculations done in Equation 3.2 until Equation 3.23 in Section
3, we get that

P
(
|G̃k| ≤ s̃k

∣∣|G̃k−1| ≥ s̃k−1

)
≤ exp

(
−δ2 · L(d̃k)

2

l(d̃k) · d̃k
· pk−1 · s̃k−1

)
(4.2)

=: ek. (4.3)

We want all generation sizes to be greater than the lower bound. Therefore we
want

P
(
∀k : |G̃k| ≥ s̃k

)
> 0. (4.4)

We also have

P
(
∀k : |G̃k| ≥ s̃k

)
=

∞∏
k=1

P
(
|G̃k| ≥ s̃k

∣∣|G̃k−1| ≥ s̃k−1

)
(4.5)

≥
∞∏
k=1

(
1− ek

)
. (4.6)

So, combining Equation 4.4 and Equation 4.6, we have

∞∏
k=1

(
1− ek

)
> 0. (4.7)
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Corollary 4.1. Let ai be a series with ai ∈ [0, 1) ∀i ∈ N. Then

∞∑
i=1

ai < ∞ =⇒
∞∏
i=1

(1− ai) > 0

holds true.

Proof. Suppose
∑∞

i=1 ai < ∞. We want to show that
∏∞

i=1(1 − ai) > 0. By
taking the natural logarithm it suffices to show that

∑∞
i=1 log(1 − ai) > −∞.

Then we can use the Taylor expansion of the natural logarithm.

log(1− x) = −x− x2

2
−O(x3)

Therefore we have

∞∑
i=1

log(1− ai) =

∞∑
i=1

(
−ai −

a2i
2

−O(a3i )
)

(4.8)

= −
∞∑
i=1

ai −
∞∑
i=1

O(a2i ) (4.9)

> −2

∞∑
i=1

ai (4.10)

> −∞ (4.11)

Since the infinite sum only contains numbers in [0, 1), the second sum is smaller
than the first sum Which is the desired inequality.

Proof of Theorem 3. Using Corollary 4.1 and Equation 4.7, we see that it is
sufficient to show

∞∑
k=1

ek < ∞. (4.12)

if we want the tree to survive. Repeating the calculations done in Equation 3.24
until Equation 3.46 in Section 3, we get the recursive equation

s̃k = M · pk−1s̃k−1 log
α+1(pk−1s̃k−1). (4.13)

Now we want to find a pk, such that we can get a constraint on T to find
explosion. If we want explosion, we want pk−1s̃k−1 → ∞, so that s̃k grows
as quickly as possible. Therefore we need that pk−1 >> s̃k−1. We can con-
struct another constraint for pk−1 from Equation 4.13, as we want s̃k to be an
increasing function, so s̃k

s̃k−1
≥ 1. From Equation 4.13 we can then see that

M · pk−1 log
α+1(pk−1s̃k−1) ≥ 1. (4.14)
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We just want the order of magnitude of pk, so the term M can be left out of
the equation. Rewriting this equation gives

pk−1 ∼ 1

logα+1(pk−1s̃k−1)
. (4.15)

This is a difficult recursive equation so solve with the pk−1 term on both sides
of the equation. Therefore we will remove that term on the right-hand side of
the equation in the following way:

logα+1(pk−1s̃k−1) =
(
log(pk−1) + log(s̃k−1)

)α+1

. (4.16)

As we already found that pk−1 >> s̃k−1, we know that pk is of a greater order
than s̃k, so we can bound the right-hand side of Equation 4.16 by(

log(pk−1) + log(s̃k−1)
)α+1

≤ logα+1−ε(s̃k−1), (4.17)

for some ε > 0. Substituting Equation 4.16 and Equation 4.17 into Equation
4.15, we get

pk−1 ∼ 1

logα+1−ε(s̃k−1)
. (4.18)

To further simplify Equation 4.13, we substitute Equation 4.18 to obtain

s̃k ≥ M · 1

logα+1−ε(s̃k−1)
s̃k−1 log

α+1

(
1

logα+1−ε(s̃k−1)
s̃k−1

)
(4.19)

Further simplifying this equation gives

s̃k ≥ M · logε−α−1(s̃k−1)s̃k−1

(
log(s̃k−1)− (α+ 1− ε)

log(log(s̃k−1))

log(s̃k−1)

)α+1

(4.20)

≥ M · logε(s̃k−1)s̃k−1

(
1− (α+ 1− ε) log(log(s̃k−1))

log(s̃k−1)

)α+1

. (4.21)

For ε ∈ (0, α+ 1), we can further rewrite this as

s̃k ≥ M · logε(s̃k−1)s̃k−1

(
1 + o(1)

)α+1
(4.22)

≥ s̃k−1 · logε(s̃k−1). (4.23)

Using Lemma 1, we get the solution s̃k ≥ exp
(
εk log(k)

)
. As we chose pk in

Equation 4.18, we now have

pk ∼ 1

logα+1−ε
(
exp

(
εk log(k)

)) (4.24)

=
1(

εk log(k)
)α+1−ε (4.25)
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As we chose pk = P
(
T ≤ tk

)
, we now have

P
(
T ≤ tk

)
=

1(
εk log(k)

)α+1−ε (4.26)

From here, we want to find a series tk. We can write FT (x) = P
(
T ≤ x

)
. Using

this notation in Equation 4.26, we get

FT (tk) =
1(

εk log(k)
)α+1−ε . (4.27)

Now we can take the inverse of FT (x) to find an expression for tk.

tk = F−1
T

(
1(

εk log(k)
)α+1−ε

)
(4.28)

To obtain survival, the sum of time should be finite, so we must have

∞∑
k=1

F−1
T

(
1(

εk log(k)
)α+1−ε

)
< ∞ (4.29)

The harmonic series
∑∞

k=1
1
k diverges to infinity, so therefore we know that

F−1
T

(
1(

εk log(k)
)α+1−ε

)
= o

(
1

k

)
(4.30)

To simplify this, we will substitute x := 1
k , so k = 1

x into Equation 4.30:

F−1
T

(
xα+1−ε(

ε log
(
1
x

))α+1−ε

)
= o
(
x
)

(4.31)

Then we can take the cumulative distribution function FT (x) on both sides of
Equation 4.31, which gives

xα+1−ε(
ε log

(
1
x

))α+1−ε = FT

(
o
(
x
))

<< FT (x), (4.32)

for ε ∈ (0, α + 1). Then, if we choose ε > 0 close to zero, the left-hand side of
Equation 4.32 is close to zero around x = 0, and thus, if there exists an ε > 0
for which we have that FT (x) >> xα+1−ε, the tree survives.

Then we have that, if FT (x) >> xα+1−ε and l(x) = c · logα(x) for some
ε > 0, the tree survives and there are infinitely many non-empty generations.
As all generations only exist before time

∑∞
k=1 tk < ∞, we have an infinite

number of individuals at a finite time in the thinned tree, and thus explosion.
As G̃k ⊆ Gk, explosion also happens in the original tree, and we have found a
condition for explosion.
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Proof of Theorem 4. Using Corollary 4.1 and Equation 4.7, we see that it is
sufficient to show

∞∑
k=1

ek < ∞. (4.33)

if we want the tree to survive. Repeating the calculations done in Equation 3.24
until Equation 3.46 in Section 3, we get the recursive equation

s̃k = M · pk−1s̃k−1 · exp
(
logγ(pk−1s̃k−1)

)
. (4.34)

Now we want to find a pk, such that we can get a constraint on T to find
explosion. If we want explosion, we want pk−1s̃k−1 → ∞, so that s̃k grows
as quickly as possible. Therefore we need that pk−1 >> s̃k−1. We can con-
struct another constraint for pk−1 from Equation 4.34, as we want s̃k to be an
increasing function, so s̃k

s̃k−1
≥ 1. From Equation 4.34 we can then see that

M · pk−1 exp
(
logγ(pk−1s̃k−1)

)
≥ 1. (4.35)

We just want the order of magnitude of pk, so the term M can be left out of
the equation. Rewriting this equation gives

pk−1 ∼ 1

exp
(
logγ(pk−1s̃k−1)

) . (4.36)

Similar to Equation 4.16 and Equation 4.17 we get

pk−1 ∼ 1

exp
(
logγ−ε(s̃k−1)

) , (4.37)

for some ε ∈ (0, γ). To further simplify Equation 4.34, we substitute Equation
4.37 to obtain

s̃k−1 ≥ M
1

exp
(
logγ−ε(s̃k−1)

) s̃k−1 · exp

(
logγ

(
1

exp
(
logγ−ε(s̃k−1)

) · s̃k−1

))
(4.38)

≥ M · exp
(
− logγ−ε(s̃k−1)

)
· s̃k−1 · exp

((
log(s̃k−1)− logγ−ε(s̃k−1)

)γ
)

(4.39)

= M · sk−1 · exp

((
log(s̃k−1)− logγ−ε(s̃k−1)

)γ

− logγ−ε(s̃k−1)

)
.

(4.40)
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We can simplify the exponent, so in the exponent we have(
log(s̃k−1)− logγ−ε(s̃k−1)

)γ

− logγ−ε(s̃k−1) (4.41)

= logγ(s̃k−1)
(
1 +

logγ−ε(s̃k−1)

log(s̃k−1)

)γ
− logγ−ε(s̃k−1) (4.42)

= logγ(s̃k−1)
(
1 + o(1)

)γ
− logγ−ε(s̃k−1). (4.43)

Further simplifying gives

≥ logγ(s̃k−1)− logγ−ε(s̃k−1) (4.44)

= logγ(s̃k−1) ·

(
1− logγ−ε(s̃k−1

logγ(s̃k−1

)
(4.45)

≥ logγ(s̃k−1). (4.46)

This gives the differential equation

s̃k ≥ M · s̃k−1 · exp
(
logγ(s̃k−1)

)
. (4.47)

Using Lemma 2, we get the solution as s̃k ≥ exp
(
k

(
1

1−γ

))
. As we chose pk in

Equation 4.36, we now have

pk−1 ∼ 1

exp
((

k(
1

1−γ )
)γ−ε

) (4.48)

=
1

exp
(
(γ − ε) · k

(
1

1−γ

)) . (4.49)

Fully writing pk gives

P
(
T ≤ tk

)
=

1

exp
(
(γ − ε) · k

(
1

1−γ

)) . (4.50)

From here, we want to find a series tk. Again, we will write FT (x) = P
(
T ≤ tk

)
.

We get

FT (tk) =
1

exp
(
(γ − ε) · k

(
1

1−γ

)) . (4.51)

Taking the inverse of FT (x) we get

tk = F−1
T

(
1

exp
(
(γ − ε) · k

(
1

1−γ

))). (4.52)
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To obtain survival, we must have
∑∞

k=1 tk < ∞, and as the harmonic series∑∞
k=1

1
k diverges to infinity, we have

F−1
T

(
1

exp
(
(γ − ε) · k

(
1

1−γ

))) = o

(
1

k

)
(4.53)

To simplify, we substitute x := 1
k , so k = 1

x into Equation 4.53 to get

F−1
T

(
1

exp
(
(γ − ε) · x

(
1

γ−1

))) = o
(
x
)
. (4.54)

Then taking FT (x) on both sides of Equation 4.54, which gives

1

exp
(
(γ − ε) · x

(
1

γ−1

)) = FT

(
o(x)

)
<< FT (x), (4.55)

for ε ∈ (0, γ). Therefore, if 1

exp

(
(γ−ε)·x

(
1

γ−1

)) = FT

(
o(x)

)
<< FT (x) the tree

survives.

Then by Theorem 3 and Theorem 4, we have two constraints where the
thinned tree Ũ∞ survives in a finite time, and thus explodes.

26



Chapter 5

Conclusion

In this thesis we wanted to find an criterion for explosion in a branching process,

where the offspring distribution is defined by P
(
D ≥ k

)
= l(k)

k , where l(x) is
a slowly varying function. We looked at two functions, namely l1(x) = c ·
logα+1(x) and l2(x) = c · exp

(
logγ(x)

)
for α > −1 and γ ∈ (0, 1). We did this

by constructing a lower bound sk for the generation sizes. Using Bernstein’s
inequality, we were able to find a recursive equation for sk. By writing this
recursive equation as a differential equation, we were able to find a solution for
the lower bound of the generation sizes.

After this, we applied a thinning method, which resulted in a new tree
Ũ∞ ⊆ U∞. In this thinned tree, we removed individuals from the original
tree if their parents were born too late. After that, we found that for l1(x), if
FT (x) >> xα+1−ε for some ε > 0, the thinned tree survives. As we thinned the
tree by choosing

∑∞
k=1 tk < ∞, all generations existed in a finite time, and thus

explosion occurred in Ũ∞. As it is a subset of U∞, explosion also occurred in
U∞.

For l2(x), if FT (x) >> exp
(
(ε− γ) · x

(
1

γ−1

))
for some ε > 0, the thinned

tree Ũ∞ survives, and thus the whole tree U∞ explodes.
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