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ABSTRACT 

In First Person Shooter (FPS) games the Round Trip Time (RTT), 
i.e., the sum of the network delay from client to server and the 
network delay from server to client, impacts the gamer’s 
performance considerably. Game client software usually has a 
built-in process to measure this RTT (also referred to as ping 
time), and therefore gamers do not want to connect to servers with 
a long ping time. This paper develops a methodology to evaluate 
the ping time in a scenario where gamers access a common 
gaming server over an access network, consisting of a link per 
user that connects this user to a shared aggregation node that in 
turn is connected to the gaming server via a bottleneck link. First, 
a model for the traffic the users and the server generate, is 
proposed based on experimental results of previous papers. It 
turns out that the characteristics of the (downstream) traffic from 
server to clients differ substantially from the characteristics of the 
client-to-server (upstream) traffic. Then, two queuing models are 
developed (one for the upstream and one for the downstream 
direction) and combined such that a quantile of the RTT can be 
calculated given all traffic and network parameters (packet sizes, 
packet inter-arrival times, link rate, network load, …). This 
methodology is subsequently used to assess the (quantile of the) 
RTT in a typical Digital Subscriber Line (DSL) access scenario. 
In particular, given the capacity dedicated to gaming traffic on the 
bottleneck link (between the aggregation node and gaming 
server), the number of gamers (or equivalently the gaming load 
the bottleneck link can support) is determined under the 
restriction that the quantile of the RTT should not exceed a 
predefined bound. It turns out that this tolerable load is 
surprisingly low in most circumstances. Finally, it is remarked 
that this conclusion depends to some extent on the details of the 
downstream traffic characteristics and that measurements reported 
in literature do not give conclusive evidence on the exact value of 

all parameters, such that, although the qualitative conclusion still 
remains valid, additional experiments could refine the detailed 
quantitative results.     

Categories and Subject Descriptors 
H.4.m [Information Systems Applications]: Miscellaneous 

General Terms 
Measurement, Performance, Theory 
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1. INTRODUCTION 
Since a few years the Internet Protocol (IP) is considered to be the 
enabling technology for multi-service networks. As a result more 
and more interactive services (such as telephony, videophony, and 
networked games) compete with the traditional elastic services 
(controlled by the Transport Control Protocol (TCP)).  
To meet the delay (and packet loss) requirements of the 
interactive services, the traffic associated with these has to be 
(virtually) segregated from the elastic traffic. For that purpose the 
Internet Engineering Task Force (IETF) has defined two 
approaches to support Quality of Service (QoS) in IP networks: 
the Integrated Services model [5] (IntServ) and the Differentiated 
Services [4] (DiffServ) model. Both rely on some sort of 
prioritization of packets associated with interactive applications; 
these get a priority treatment via schedulers in the nodes of the 
network.  
In traditional First-In-First-Out (FIFO) queues (per output 
interface) elastic traffic and interactive traffic cannot be 
segregated. As a result, under FIFO, the TCP-controlled sources 
may jeopardize the QoS experienced by the users of the 
interactive services (gamers, for instance). On the other hand, one 
could have two queues (per output interface), served by a (non-
pre-emptive) Head-of-Line (HoL) priority scheduler. In such a 
situation, however, the elastic traffic might suffer from starvation 
during busy periods of the high-priority queue. Therefore, an 
attractive alternative is a scheduler like Weighted Fair Queuing 
(WFQ) that assigns a minimum guaranteed link rate to each of the 
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classes. In this way it provides the interactive service the capacity 
it needs without risking to starve the TCP-controlled traffic.  
Under WFQ, elastic traffic can only interfere with the interactive 
traffic by the fact that a data packet is in service at the instant a 
real-time packet becomes eligible. It can be justified to assume 
that this queuing delay due to the residual service of the data is 
statistically independent from the queuing delay due to 
competition in the queue dedicated to the interactive services 
[19]. Moreover, on links of moderate to high rate the delay 
associated with this kind of interference is negligible, while on 
links with a very small link rate (e.g., the DSL upstream link) it 
can be assumed that there is some form of pre-emption to 
interrupt a long data packet in service that would introduce too 
much delay on the interactive traffic. We conclude that in such a 
situation one can study the real-time queue in isolation. 
The network provider will tune its (WFQ) schedulers such that the 
interactive traffic gets just the treatment that it needs to meet the 
delay (and packet loss) bound. So, although the link rates in the 
current and future IP-based networks are huge compared to the bit 
rate of one interactive flow, or even compared to the aggregate bit 
rate of all interactive flows, still queuing delay can occur, as the 
actual capacity provisioned for the interactive services will be just 
modestly higher than the (average) offered traffic. 
In this paper we consider a system as described above, in which 
interactive traffic shares resources with elastic traffic. The study 
focuses on the situation in which the interactive traffic is 
generated by gaming users. More specifically, we assess the 
performance of client-server-based First Person Shooters (FPS) 
games. It is known that the quality the users experience is mainly 
determined by the packet delay. In a number of studies this 
influence was quantified in an objective manner, with many of 
these having focused on multiplayer games as representative 
applications [3, 10, 11, 12, 16, 17, 26, 27]. Ardent game players 
often cite network delay (referred to as ‘ping time’, or simply 
‘ping’) as the main cause for degradation in their performance 
and/or scores. Most of so-called ‘hard-core’ gamers often simply 
choose not to connect to game servers that show a ping higher 
than, say, a few 100 ms [1, 2, 13, 14, 20]. This ping time is often 
seen as culprit because of built-in ping features in modern 
multiplayer games, with that ping value in itself possibly 
influencing the players’ performance.  
Inspired by this ping time, the goal of this paper is to accurately 
estimate the packet round trip time (which we often abbreviate to 
RTT throughout this paper) in the setting described above. Here 
the RTT is defined as the time between the instant that a packet 
with information describing the action of the gamer in the virtual 
three-dimensional world departs from the client PC and the time 
instant the information with the motion vectors (resulting from 
that gamer’s action) arrives at the client PC.  
The delay incurred on an end-to-end path in the network can be 
decomposed into a deterministic and a stochastic (e.g., queuing) 
part. The deterministic delay is quite easy to determine, as it is 
just the sum of the serialization delay, propagation delay, and 
(server) processing delay. Queuing delay is more difficult to 
assess because it depends on the congestion state of the network. 
It is well known that deterministic upper bounds for queuing 
delay are easily obtained [7, 21, 22], but these worst-case upper 
bounds lead to unrealistically high values. Instead, this paper 

derives statistical ‘upper bounds’ (i.e., quantiles) for the queuing 
delay, leading to more realistic values [6, 9, 19].  
Obviously, if gaming applications are to be offered on a 
commercial basis, then there is a strong need for reliable models 
that predict the delay or, conversely, a need for a methodology to 
calculate the required capacity to be provisioned (e.g., via a WFQ 
scheduler) for the gaming service, given the delay bound. This 
paper answers this question, and can be used as a benchmark 
when deploying such interactive services on a large scale.  
Finally, we spend a few words on the methodology and 
organization of this paper. A key ingredient in a performance 
study is the traffic model. Section 2 describes the traffic 
characteristics of a typical FPS gaming source, and relates these 
to the result of earlier measurement studies. Then this traffic 
model is used as the input for our queuing model. In Section 3 the 
queuing delay is assessed when several gaming sources are 
multiplexed; as argued above, such a queuing model gives a better 
impression of the experienced delay than deterministic worst-case 
bounds. The analysis relies on the decomposition of the upstream 
and downstream part. Section 4 uses the developed queuing 
model to assess the RTT typical for games played over a 
representative access network.  Section 5 draws the conclusions.   

2. TRAFFIC SOURCE MODEL 
In this section, traffic characteristics of different popular on-line 
FPS games will be presented. We discuss the characteristics that 
were derived in literature and confirm these by analyzing a set of 
new measurement data. Based on these characteristics the traffic 
source model to be used in this paper (most notably in the 
queuing model) will be further justified.  
Since FPS games are highly interactive, they are the least tolerant 
type of online games with respect to (network) delay. As such, 
they are particularly appropriate in the scope of this paper, in 
which we have a focus on access network queuing delays of 
online games. In the context of this queuing analysis, packet sizes 
and packet arrival rates (and the distribution of the inter-arrival 
times) are the most relevant characteristics to consider. 
Since most online gaming is real-time and requires low latency, 
most game communication uses small UDP packets sent almost 
periodically. The nature of the observed traffic flows suggests that 
a networked game works according to the following principles. A 
gaming server keeps track of the global gaming state. At timer-
based intervals it sends a burst of back-to-back packets containing 
this gaming state-information to the clients. The server has the 
ability to set this update frequency (and as such the ‘inter-burst 
time’) as it wishes. In turn, the clients read and process these 
packets in order to update their current view on the screen. Next, 
the client’s commands are processed and an update packet, 
containing movement and state information of the player, is sent 
to the server. Also the clients send their packets at timer-based 
intervals, which may differ from client to client, depending on 
client hardware performance and settings. The server processes 
these packets to update the global gaming state. 
In this section first an overview is given of traffic characteristics 
and source models for online games found in the literature. Next, 
traffic characteristics based on new measurement data is 
compared to the published ones. Finally, we summarize the traffic 
source model that is used further on in this paper. 



2.1 Related work 
Some papers report on the characterization and/or modeling of 
traffic generated by different popular on-line FPS games. An 
early study is by Borella who presented traffic models for the FPS 
game ‘Quake’ [3]. A few years later, Färber did the same for the 
game ‘Counter Strike’ [11] which is based on the ‘Quake’ engine. 
He found that Borella’s game traffic model was in general still 
valid. The traffic model for fast action multiplayer games Färber 
proposes, consists of two sub-models: the server traffic model and 
the client traffic model.  

Regarding the server-to-client traffic, Färber found that the 
packets arrived in bursts with an inter-burst time that was slightly 
varying. In each burst, the server generates one packet for every 
active client. The modus of the inter-burst time was found to be 
55 ms, with mean 62 ms and a coefficient of variation (CoV) of 
0.5. He approximates this inter-burst time with an extreme 
distribution: he finds that the probability density function of the 
extreme distribution with a = 55 ms and b = 6 ms fits the 
experimental histogram best (using least square fitting). Recall 
that the density f(x) of the extreme distribution, respectively the 
associated cumulative distribution F(x), with parameters a and b,  
is given by [28] 
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We will denote this distribution by Ext(a,b). Note that Färber 
considers inter-burst times per client, and as such tacitly assumes 
that within each burst the order of the packets is the same. This is 
not necessarily true though – we come back to this issue later in 
this section; as a consequence, the server traffic model presented 
by Färber might be misleading.  

The server packet size showed a higher variability. The 
characteristics he obtains are a mean size of 127 byte and a CoV 
of 0.74. Again, he approximates this (using least square fitting of 
the probability density function with the histogram) with the 
extreme distribution Ext(120,36).  

Now focus on the client-to-server traffic. This can be 
characterized by an almost constant data and packet rate. He finds 
an inter-arrival time of 42 ms and a CoV of 0.24, which makes 
him propose a deterministic distribution, and he writes Det(40). 
We think 40 ms is chosen, since this corresponds to a client that 
updates its local copy of the gaming world 25 times a second. 
Finally, the client packet size distribution, characterized by a 
mean of 82 byte and a CoV of 0.12, is modeled by the extreme 
distribution Ext(80,5.7).  
Note that Färber also mentions that shifted lognormal and shifted 
Weibull distributions lead to acceptable fits to the data as well. 
Lang et al. developed a traffic model for the game Half-Life [16]. 
Their model states that the server-to-client inter-burst times are 
deterministic with values around 60 ms, while the server-to-client 
packet sizes can be modeled through lognormal distributions. It 
was found that the packet sizes depend on the map that is played. 
The client-to-server traffic on the other hand can be modeled 
using a deterministic function (41 ms) for the inter-arrival times, 
and for the packet sizes it is seen that there is no dependency on 
whatever parameter and that the sizes range from 60 to 90 byte. 
Here normal and lognormal distributions lead to equally good fits. 

In general, the authors found that the traffic pattern was only 
affected by the map that was played (server-to-client packet sizes 
in particular) and the graphic rendering software of the client 
computer (in particular, inter-arrival times of the client-to-server 
traffic). Moreover, their model is roughly in line with the model 
proposed by Färber.  
In another paper [17], Lang et al. present a model for the Xbox 
System Link game Halo. The server-to-client inter-burst time is 
modeled deterministically (40 ms), and the same holds for the 
packet sizes (where the actual size depends on the number of 
players in the game). For the client-to-server traffic, they found 
that 33% of the packets (with a fixed size of 72 byte) are sent 
every 201 ms; the other 67% (of which the size depends on the 
number of players on the client Xbox) also have a constant inter-
arrival time, but this inter-arrival time depends on the client Xbox 
hardware. From these observations the authors conclude that the 
traffic is strongly periodic, and that the traffic pattern is 
influenced by the number of players (specifically the server-to-
client and client-to-server packet sizes) and the client Xbox 
hardware (particularly, the client-to-server inter-arrival times). 
In [18] Lang et al. present a traffic model for Quake3. They show 
that the packet lengths from server to client depend on the number 
of players participating in the game and to a lesser extent on the 
particular map. Packet lengths vary between about 50 byte and 
400 byte. The server sends one update packet per client 
approximately every 50 ms. It is also shown in [18] that the 
packet length distribution for packets from client to server is 
independent of all observed parameters. The smaller packets are 
about 50 byte and the largest ones are around 70 byte. The packet 
transmission rate of a client is dependent on the map played and 
on the client’s graphic card. Typical inter-arrival times mentioned 
in [18] vary between 10 ms and 30 ms. 
The main aim of [23] was to study the impact of delay and jitter 
on game play and subjective user experience. An experiment was 
set up in which 12 players combated against each other in the FPS 
game Unreal Tournament 2003. As a side result the traffic was 
logged during this LAN party. Part of this traffic will be used here 
to verify the traffic characteristics from literature that were 
summarized above. Because jitter was artificially introduced in 
this experiment we have to be careful in interpreting the inter-
arrival time measurements. In particular, we only used those 
experiments from [23] for which the introduced jitter was much 
lower than the mean inter-arrival time between bursts. 
The traffic trace of 6 minutes consists of all traffic between the 
dedicated server and the 12 players in both directions. Similar to 
the papers mentioned above, we found that the traffic from the 
server to the clients consists of traffic bursts, which arrive with 
almost constant inter-arrival times (the average inter-burst time is 
47 ms with a CoV of 0.07). Six of the bursts (which not even 
represents 0.1% of the total) however showed an inter-arrival time 
of almost 80 ms, whereas the burst after that peculiar burst came 
with an inter-arrival time of about 15 ms. Their occurrence was 
not periodic and the reason for these ‘delayed’ bursts is unknown 
to us.  
With a few exceptions (about 0.5% of the bursts), all bursts 
contain 1 packet for each of the players. The reason why there 
was 1 (or in 1 case 2) packet(s) missing has not become clear; it 
might be due to packet loss in the network. Since we see no 
reason why the server would not send an update packet to each 



one of the clients, and the occurrence of this ‘missing packet’ is 
not high, we will not take this into account in the following.  
Furthermore, we observed that the order of the packets within the 
burst was not the same for each burst. If this is only due to the 
jitter that was deliberately imposed during the measurements, or if 
this is already present at the moment the server sends the burst, is 
not clear. Therefore, we cannot state that the order of the packets 
(at the moment the server sends the burst) is the same for each 
burst.  
For the server packet size, we find a mean size of 154 byte and a 
CoV of 0.28. Within a burst however, the packet size variation is 
less with a CoV varying from 0.05 to 0.11. Note that we also 
found, like in the papers discussed above, that the map that is 
played affects these characteristics (particularly, the mean packet 
size). Concerning the burst sizes, we found a mean of 1852 byte, 
with a CoV of 0.19. For the traffic from the clients to the server, 
we found (neglecting a few outliers) a mean packet size of 
73 byte and a CoV of 0.06, the inter-arrival time was 28 ms with a 
CoV of 0.30. These findings are displayed in Table 1. 

Table 1: Overview of characteristics of traffic generated 
during a FPS gaming session on a LAN. Packet sizes are in 

byte, inter-burst times in ms, burst sizes in byte. 

Server-to-client Client-to-server 
 

Mean CoV Mean CoV 

Packet size 154 0.28 73 0.06l 

Inter-burst time 47 0.07 28 0.30 

Burst size 1852 0.19 - - 

 

2.2 Traffic Source Models 
In this section, we will present the traffic source models that will 
be used in the remainder of this paper. Like in the papers 
discussed above, also here we will consider 2 traffic models: one 
for the server traffic and one for the client traffic. 

2.2.1 Client traffic model 
Based on the findings in Section 2.1, the packet sizes and packet 
inter-arrival times of the client-to-server traffic can be 
approximated by deterministic distributions. Based on this, the 
client traffic model (representing the upstream traffic from the 
client’s point of view) that should be used, corresponds to 
periodic stream of packets (each stream corresponds to a user), 
but with random phasing between the streams. A large enough set 
of streams with periodic arrivals could be approximated by an 
aggregate stream with Poisson arrivals (see  Section 3.1). 

2.2.2 Server traffic model 
Following Section 2.1, the inter-arrival times of the server (burst) 
traffic, can be assumed to be deterministic. For the server (burst) 
traffic size, unlike previous authors (which concentrated on fitting 
the probability density function to the histogram or on fitting the 
theoretical to the experimental central moments), we prefer to fit 
the tail of the distribution, since this tail dominates also the tail of 
the corresponding queue occupation (and hence, the tail of the 
queuing delay). We propose to model the server (burst) traffic 
size with an Erlang distribution; this is because this distribution 

fits the tail of the experimental results quite well (see Figure 1), 
and because of its analytical tractability. 
The Erlang(K,λ) distribution has two parameters: the shape 
parameter λ and the Erlang order K; its mean is K/λ and its 
variance K/λ2. We determine the mean value by fitting it to the 
measured average burst size (1852 byte, as seen in Table 1). In 
order to determine the order K of the Erlang distribution, we can 
focus either on fitting the CoV (which boils down to fitting the 
standard deviation), or on the tail of the distribution. Following 
the former approach, i.e., fitting the CoV and noticing from Table 
1 that it is 0.19, we derive that K is 28. Following the latter 
approach, i.e., (visually) fitting the tail, we see from Figure 1 that 
K is somewhere between 15 and 20. This figure presents the 
experimental tail distribution function of the burst sizes as 
measured in the experiment as well as of the tail distribution 
functions of Erlang distributions for K = 15, 20 and 25, 
respectively.  
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Figure 1: Tail distribution function of the measured burst 

sizes and Erlang tail distributions of different order for which 
the mean was already fit to the measured mean. 

Following the above reasoning, the server traffic model could be 
approached by D/EK/1, where K is of the order 20. As already 
mentioned (see Section 2.1), the CoV of packet sizes within a 
burst is a substantially smaller than the overall CoV of server 
packet sizes. Based on that fact, we expect that the impact of the 
number of gamers on the burst size distribution, and hence on K, 
is small. Nevertheless, the choice of K has a significant impact on 
the dimensioning. We return to this in Section 4. 
Finally, taking into account the literature studies and the analysis 
of the new measurement data, it is clear that the traffic 
characteristics of online games differ considerably from game to 
game. For that reason, different choices for K will be considered 
in the remainder of the paper. 

3. QUEUING MODEL 
In this section we assess the stochastic part of the RTT (i.e., the 
ping time) a gamer  experiences. As the deterministic part is 
straightforward to calculate (see Section 1), we do not consider it 
in this section, but we do take this deterministic part into account 
in Section 4. The stochastic part is the sum of two random delays, 
the upstream and downstream queuing delay, which we assume to 
be statistically independent.  
The upstream queuing delay is due to the competition of packets 
stemming from different clients on the link to the server (see 
Figure 2). Indeed, it may happen that a packet from a certain 



client arrives on that aggregation point at the instant a packet from 
another client is being transported over the link towards the 
server, such that this packet will have to queue. In such a way a 
queue can temporary build up in that aggregation point. Because 
we assume that on the long run less packets are arriving at this 
point than can be served, this queue should regularly empty. 
Packets that arrive in an empty queue experience no queuing 
delay, while packet arriving in a full queue may experience 
substantial queuing delay. In Section 3.1 we determine the 
stochastic law that characterizes this queuing delay by arguing 
that the queuing behavior can be modeled by an M/G/1 queuing 
system.      

Client PC C lient  PC

Client PC Client PC

Serv er

Ω
D V D

Ω
D V D

Ω D V DΩ D V D

 
Figure 2: Client-server architecture for interactive gaming. 

The downstream queuing delay is a consequence of the fact that 
an arriving burst on the link (from the server towards the fan-out 
point, see Figure 2) to the clients may see a residual part of the 
previous burst. Indeed, the burst size is highly variable (which we 
model by an Erlang distribution, see Section 2.2.2) and it is not 
guaranteed that the (e.g., 40 ms) inter-arrival times will always be 
long enough to transport all packets within the burst over that 
link. In that way a queue may build up. Since we assume that also 
in the downstream direction the queuing system is stable, this 
queue has to regularly empty as well. Bursts that see an empty 
queue experience no queuing delay, while other bursts may 
experience a considerable queuing delay. We determine the 
stochastic law that characterizes the queuing delay of the bursts in 
Section 3.2.1. On top of that delay, a packet in a particular burst 
sees an additional delay due to all packets within that burst that 
are in front of it. Packets in the beginning of the burst hardly see 
any queuing delay of this type, while the packets at the end of the 
burst will have to wait a significantly longer time. In Section 3.2.2 
we determine the probabilistic law that governs this delay.  
We determine all probabilistic laws by deriving the associated 
probability generating functions. In Section 3.3 we determine the 
probability generating function of the total queuing delay and 
explicitly invert this probability generating function to obtain the 
tail distribution function of the total queuing delay. From this tail 
distribution function we determine the quantile of the queuing 
delay.   
In this paper we merely state the probabilistic laws that are 
needed for the computation of the stochastic part of the RTT. The 

derivation of these laws is out of scope for this paper, but can be 
found in [8]. 

3.1 Upstream: M/D/1 
Relying on the findings of Section 2, we can assume that in the 
upstream direction equally sized packets are transmitted with 
virtually identical inter-arrival times, say D; let N be the number 
of users. The resulting queuing model would be N*D/D/1, see for 
instance Roberts et al. [25]. An explicit formula for the queuing 
delay in the N*D/D/1 queue is known, but it does not provide 
insight and is relatively computationally demanding. However, it 
can be argued that we can do with simpler formulas. In fact, the 
use of M/D/1 queues for modeling the upstream queuing delay is 
mathematically justified in [8]. Notice that, in [25], empirical 
observations indicate that the M/D/1 approximation works very 
well, particularly for relatively small load (while there are serious 
deviations for a load above, say, 90%). The regime with relatively 
low load is the regime we are interested in. 
The moment generating function of the delay in an M/D/1 system 
is well known [15]. Later in this paper, we approximate this 
moment generating function of the upstream queuing delay as  

s
sD uuu −

+−≈
γ
γρρ1)( ,                                    (2) 

where γ   is the dominant pole of the exact moment generating 
function (and ρu is the upstream load).  

3.2 Downstream: D/EK/1 
As explained in Section 2, in the downstream direction the 
gaming server sends the packets in bursts, which (in all, except a 
few, cases) contain a packet for each gamer. The burst sizes are 
modeled as independent, identically distributed (i.i.d.) random 
variables with an Erlang distribution of order K as marginal 
distribution. Bursts are sent at constant inter-departure time T 
(presumably the refresh interval with which the server updates its 
virtual 3D world).  
If the traffic generated by 1 server is sent over a reserved bit pipe, 
the queuing in the downstream direction is modeled with the 
D/EK/1 queuing model. If traffic stemming from more servers is 
transported over a (joint) reserved bit pipe, the N*D/G/1 queuing 
model applies where G=ΣEK (i.e., a weighted mix of Erlang 
distributions), which, based on an argument similar to the one 
developed in the previous paragraph, is very well approximated 
by M/G/1, if the number of servers is high enough. In this paper 
we only consider the case of 1 gaming server.  
In the next subsection we first determine the tail distribution of 
the delay seen by the bursts in the D/EK/1 queuing model. Then 
we determine the tail distribution function of a (tagged) packet 
within a burst.  

3.2.1 Delay distribution of bursts in the D/EK/1 
queuing model 
Let wn be the remaining work (expressed in [s]) in the system just 
before the n-th arrival instant. Notice that the variable wn is also 
the delay seen by the n-th burst. In addition, bn denotes the 
amount of work arriving (expressed in [s], i.e., the burst size 
divided by the reserved gaming rate) at the n-th arrival instant, 
which are i.i.d. with an Erlang distribution of order K as marginal 



distribution. Finally, T (expressed in [s]) is the amount of work 
that can be performed between two arrival instants.  
In steady state (which we assume to exist) the probability density 
functions of random variables tend to a limit. We define the 
moment generating functions for the random variables in steady 
state as, e.g.,   

 ][)( nsweEsW =     , (3) 

and similarly for other random variables. Since the burst size 
follows a Erlang distribution of order K we have 
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with 0/ >= bKβ  and b  is the average service time for one 
burst.   
In [8] an explicit expression is derived for W(s):  
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where each pole is given by  
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where ζk is the unique solution of 
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in Re[z]<1, where ρd is the load defined as Tb (which assumes a 
value between 0 and 1 for a stable system).   
Finally, the weights aj can be shown to satisfy  
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Notice that for the special case D/M/1 (K=1) exactly the same 
solution as in [15] is obtained.  

3.2.2 Delay distribution of packets  
A tagged packet arriving in a certain burst experiences a delay dn,t 
composed of two contributions 

 tnntn pwd ,, +=    . (9) 

First, the tagged packet has to wait for all the remaining work in 
the system the instant it arrived, which is equal to the delay wn the 
burst sees. Second, it has to wait a time pn,t due the packets that 
jointly arrived in the same burst and that are in front of the tagged 
packet.  
Similarly as above we define the moment generating functions 
Dd(s) and P(s) for the steady state random variables dn,t and pn,t 
respectively. As the delay components wn and pn,t are statistically 
independent, we have that  

 )()()( sPsWsDd =       . (10) 

To assess P(s) we need to know where in the arriving burst the 
tagged packet resides. This is described by a random variable un,t 

with probability density function pu(un,t) with support [0,1]. For 
instance, un,t = 0 means that that the tagged packet is the first of 
the n-th burst. We assume that that there are so many packets in a 
burst, such that the size of a packet is negligible with respect to 
the size of the burst, and hence, un,t can take any value in [0,1]. 
For instance, un,t = 1 means that the packet is the last one of the 
burst and sees (practically) the whole burst before it. By first 
conditioning on the burst size, then averaging over all possible 
burst sizes and a change of variables, it follows that 
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For general distributions pu(un,t), no conclusions can be drawn 
with respect to the poles of P(s), but we consider a special case.  
We assume that from burst to burst the packet can reside 
anywhere in the burst, i.e., that pu(un,t) is the uniform distribution. 
In this case, the integral defining P(s) can be calculated (by 
identifying a primitive function of the integrand) and satisfies, for 
K>1:  
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Notice that this can be interpreted as the residual lifetime of an 
Erlang variable of order (K-1) [15].  
It can be shown using Horner’s rule that P(s) can be written as a 
weighted sum of Erlang terms: 
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3.3 Combining uplink and downlink queuing 
delay 
There are three contributions to the total queuing delay: the 
upstream queuing delay, the downstream delay of the burst the 
packet is part of and the delay due to the fact that the packet can 
be in a random place in the burst. 
We assume that the upstream and downstream queuing delay are 
statistically independent, so that the moment generating function 
of the total delay is a product Du(s)W(s)P(s). As can be seen from 
eqs. (2), (5) and (13) respectively, each of these factors can be 
(approximately) written as a sum of Erlang terms, such that, with 
the technique explained in [8], we can write this product as a sum 
of Erlang terms:  
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which is straightforward to invert.  
In the next section we will use eq. (14) to determine quantile 
values for the RTT.  



4. NUMERICAL RESULTS 
In this section we assess the impact of several parameters on the 
RTT performance for FPS games by considering a number of 
representative scenarios. Our starting point is the architecture 
depicted in Figure 2 in Section 3. 
It has been shown in the previous sections that several variables 
have impact on the RTT performance. In this section we wish to 
quantify this impact. The variables we have identified are:  

• the gaming load (defined as the average amount of 
gaming traffic divided by the capacity reserved for the 
gaming traffic on the aggregation link); evidently, a 
higher load induces a higher delay;  

• the mean size of packets from the server to the clients; 
for a fixed load larger packet sizes lead to both higher 
queuing and serialization delays;  

• the inter-arrival time of bursts of packets from the 
server to the clients; longer inter-arrival times lead to 
possible longer waiting times; 

• the CoV of the size of the burst of packets from the 
server to the clients; for given load the lower the CoV, 
the lower the queuing delay; note that in our model the 
burst sizes are assumed to follow an Erlang distribution 
of order K therefore CoV = 1/√K. 

In order to keep the number of scenarios limited we make the 
following assumptions: the size of packets from client is fixed at 
PC = 80 byte, the uplink access bandwidth is fixed at 
Rup = 128 kb/s, the downlink access bandwidth is fixed at 
Rdown = 1024 kb/s. In addition we suppose that the inter-arrival 
time T of bursts of packets from the server equals the inter-arrival 
time D of packets from the clients (per client). We will fix T at the 
values 40 ms and 60 ms. This choice is motivated by the findings 
of Section 2.  
With C we denote the capacity reserved on the aggregation link 
(i.e., the link between fan-out point and the gaming server) for 
gaming traffic. As explained in Section 1, this capacity C is that 
part of the aggregation link that the WFQ scheduler reserves for 
gaming traffic. We also assume that the other traffic classes 
always sends traffic such that the WFQ scheduler cannot borrow 
capacity from other classes. We choose C = 5000 kb/s.  
For the size of packets sent from the server, denoted by PS, we 
take the values 125 byte, 100 byte and 75 byte. In order to assess 
the impact of the CoV of the burst sizes we vary the order K of 
the Erlang distribution (representing the variation of the size in 
the bursts of packets from the server); the following values are 
considered: K = 2, 9 or 20.  
For each scenario we have computed the RTT for various values 
of the load ρd on the aggregation link in the downlink direction. 
One can readily verify that this load is given by 
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where N denotes the number of active gamers and PS given in 
byte, T in ms and C in kb/s. A similar formula applies for the 
uplink load. In the remainder of this section we vary the downlink 
load by varying the number of active gamers N.   

In line with [6, 9, 19] we choose to compute 99,999% quantiles of 
the RTT. Obviously the RTT also includes serialization delay on 
the access link and the aggregation link, both in uplink and 
downlink direction. 
For all scenarios considered we have used the methodology 
developed in Section 3 to assess the RTT quantiles. Figure 3 
shows the RTT quantiles as a function of the load ρd for the case 
PS = 125 byte, T = 60 ms, for several values of the Erlang order K. 
For this set of parameter the uplink load ρu is always much 
smaller than the downlink load ρd. Hence, the upstream delay 
component Dup is always negligible with respect to the 
downstream delay component Ddown. As mentioned before the 
latter has two components: the delay of a burst and the delay due 
to the position of a packet within a burst. For low loads it is easy 
to see that the burst delay is small (because the probability that a 
burst is still being processed when the next burst arrives is very 
small), and hence, that the packet position delay dominates. As 
explained above this packet position delay has the same 
distribution as the residual lifetime of an Erlang distribution of 
order (K-1) and as such its quantile is proportional to the number 
of packets within a burst (i.e., the number N of gamers) and 
hence, is proportional to the load ρd. This linear behavior can be 
observed in Figure 3 for low load values. As the load ρd increases, 
the burst delay starts to dominate and the curves tend to the 
asymptote ρd = 1.  

P S  = 125 byte; T  = 60 ms 

0
50

100
150
200
250
300
350
400

0% 20% 40% 60% 80% 100%
load (downlink)

R
TT

 [m
s]

K = 2
K = 9
K = 20

 
Figure 3: Impact of Erlang order K on the RTT.  

It is obvious from Figure 3 that the order K of the Erlang 
distribution, and hence the CoV of the burst sizes, has a strong 
impact on the RTT quantiles. We observe that indeed RTT 
quantiles are highly sensitive to the Erlang order. Even at 
moderate load values, low values of K lead to unacceptable RTT 
performance. This observation is robust with respect to the choice 
of PS. We have done the same experiment for PS  = 100 byte and 
PS = 75 byte and obtained nearly the same behavior as depicted in 
Figure 3.  
The fact that for low loads the RTT (virtually equal to the 
(dominant) packet position delay in these cases) is still large is 
tightly connected to our assumption that the scheduler follows the 
WFQ discipline. Indeed, after a certain packet in the burst is 
processed, the WFQ scheduler visits queues of other traffic 
classes (which we assumed to nearly always contain packets) 
before it returns relatively fast (a time of the order of T/N) to the 
gaming queue, such that overall the gaming queue gets drained by 
a rate C (which is a small fraction of the link capacity). Consider, 
however, another (burst-non-preemptive) scheduler: it processes a 



complete burst of packets before visiting other queues, spends a 
relatively long time (just shorter than T) on queues of other traffic 
classes, all this in such a way that in the long run the gaming 
queue is drained by a rate C as well. Such a scheduler would 
seriously reduce the packet position delay component of the RTT 
and would result in much lower quantile values for low loads.  
This scheduler is a topic for future research.  
Note that if PS  > PC  (which is the case for PS = 125 byte and 
PS = 100 byte) the downlink load is higher than the uplink load. 
Hence, we expect the contribution of the downlink queuing model 
(D/EK/1) to dominate the contribution of the uplink model. On the 
contrary, if PS  < PC , then for a sufficiently high downlink load 
the uplink will be dominant. In fact, one can verify that in our 
case, for PS  = 75 byte, a downlink load of 75/80 corresponds to 
an uplink load of 1. 
Figure 4 shows the RTT quantiles for the scenario PS  = 125 byte, 
K = 9, for the cases T = 40 ms and T = 60 ms.  
As expected, Figure 4 exemplifies that higher inter-arrival times 
lead to higher RTT quantiles. In fact, it can be shown that if the 
downlink contribution is dominant (which is the case if the 
downlink load is higher than the uplink load) then the RTT is 
virtually proportional to the inter-arrival time T. To be more 
precise, in Figure 4 the RTT for T = 60 ms is about 3/2 times as 
high as the RTT for T = 40 ms. 
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Figure 4: Impact of the inter-arrival time on the RTT.  

It turns out that if we change the parameters Rup, Rdown and C, then 
the results hardly change. This is due to two facts. First of all, the 
structure of our downlink queuing model is such that it is 
invariant with respect to the capacity C: only the load determines 
the quantile value. So the only effect of changing Rup, Rdown and C 
is a different value for the serialization delay. However, this is a 
minor effect (in the order of 1 or 2 ms) because of the small 
packet sizes in combination with relatively high access and 
aggregation link rates (of which C is just a fraction).  
The above results can be used for dimensioning purposes. 
Consider for instance the case PS = 125 byte, K = 9, T = 40 ms. 
Then in order to realize a maximum RTT of 50 ms (corresponding 
with excellent game play, according to [11]) the gaming bit pipe 
allows a load (in the downlink direction) of at most 40%, see 
Figure 4. It is obvious that the maximum allowable load ρmax is 
very sensitive with respect to the parameter K and hence with 
respect to the CoV of the burst sizes. In fact, for PS = 125 byte, 
T = 40 ms the maximum allowable load is about 20% for K = 2, 
while for K = 20 the threshold ρmax is around 60%. This can be 

deduced from Figure 3 (and the fact that the RTT is proportional 
to the inter-arrival time T). 
Using eq. (15) the dimensioning rule leads to a maximum number 
of on-line gamers Nmax of  
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So, in our example, where PS  = 125 byte, T = 40 ms and 
C = 5000 kbps, the maximum number of on-line gamers is 40, 80 
and 120 for K = 2, 9 and 20, respectively.  

5. CONCLUDING REMARKS 
In this paper we have proposed a methodology for predicting ping 
times in First Person Shooter (FPS) games. Our study consisted of 
three parts: (1) reflections on the traffic model to be chosen; (2) a 
queuing-theoretic methodology to determine the quantiles of the 
Round Trip Time (RTT); (3) assessment of the RTT for realistic 
scenarios.  
We numerically evaluated the RTT quantiles for an architecture 
where traffic of several gamers is aggregated on a bottleneck link. 
Interestingly, our main observation is that our model indicates 
that for realizing excellent game play the allowable gaming load 
on this aggregation link is relatively low. Furthermore, it is shown 
that the RTT performance is strongly determined by the burst 
inter-arrival times (of packets from the server to the clients). Less 
straightforward is the dependence on the CoV of burst sizes of 
packets sent from server to clients; we observed a remarkably 
strong impact of this CoV on the RTT quantiles. In view of this 
effect, we expect that it would pay off to more accurately 
determine the tail behavior of burst sizes by tracing packets in 
real-life FPS games on a considerably larger scale.  
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