
Modeling Ping Times in First Person Shooter Games
N. Degrande1,

D. De Vleeschauwer1,2
1Alcatel Bell, Network Strategy Group

Copernicuslaan 50,
B-2018 Antwerpen, Belgium

2University Ghent, TELIN, SMACS
Sint_Pietersnieuwstraat 41,

B-9000 Gent, Belgium

{natalie.degrande|
danny.de_vleeschauwer}

@alcatel.be

R.E. Kooij3,4
3TNO Information and

Communication Technology
Brasserplein 2, P.O. Box 5050,
2600 GB Delft, the Netherlands
4Delft University of Technology
Dept. of Electrical Engineering,

Mathematics and Computer Science
Mekelweg 4,

2628 CD Delft, the Netherlands

r.e.kooij@telecom.tno.nl

M.R.H. Mandjes5,6

5CWI
P.O. Box 94079,

1090 GB Amsterdam, the Netherlands
6Korteweg-de Vries Institute

for Mathematics,
University of Amsterdam,

Plantage Muidergracht 24,
1018 TV Amsterdam, the Netherlands

michel.mandjes@cwi.nl

ABSTRACT

In First Person Shooter (FPS) games the Round Trip Time (RTT),
i.e., the sum of the network delay from client to server and the
network delay from server to client, impacts the gamer’s
performance considerably. Game client software usually has a
built-in process to measure this RTT (also referred to as ping
time), and therefore gamers do not want to connect to servers with
a long ping time. This paper develops a methodology to evaluate
the ping time in a scenario where gamers access a common
gaming server over an access network, consisting of a link per
user that connects this user to a shared aggregation node that in
turn is connected to the gaming server via a bottleneck link. First,
a model for the traffic the users and the server generate, is
proposed based on experimental results of previous papers. It
turns out that the characteristics of the (downstream) traffic from
server to clients differ substantially from the characteristics of the
client-to-server (upstream) traffic. Then, two queuing models are
developed (one for the upstream and one for the downstream
direction) and combined such that a quantile of the RTT can be
calculated given all traffic and network parameters (packet sizes,
packet inter-arrival times, link rate, network load, …). This
methodology is subsequently used to assess the (quantile of the)
RTT in a typical Digital Subscriber Line (DSL) access scenario.
In particular, given the capacity dedicated to gaming traffic on the
bottleneck link (between the aggregation node and gaming
server), the number of gamers (or equivalently the gaming load
the bottleneck link can support) is determined under the
restriction that the quantile of the RTT should not exceed a
predefined bound. It turns out that this tolerable load is
surprisingly low in most circumstances. Finally, it is remarked
that this conclusion depends to some extent on the details of the
downstream traffic characteristics and that measurements reported
in literature do not give conclusive evidence on the exact value of

all parameters, such that, although the qualitative conclusion still
remains valid, additional experiments could refine the detailed
quantitative results.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscellaneous

General Terms
Measurement, Performance, Theory

Keywords
On-line games, Round Trip Time, queuing model, analysis

1. INTRODUCTION
Since a few years the Internet Protocol (IP) is considered to be the
enabling technology for multi-service networks. As a result more
and more interactive services (such as telephony, videophony, and
networked games) compete with the traditional elastic services
(controlled by the Transport Control Protocol (TCP)).
To meet the delay (and packet loss) requirements of the
interactive services, the traffic associated with these has to be
(virtually) segregated from the elastic traffic. For that purpose the
Internet Engineering Task Force (IETF) has defined two
approaches to support Quality of Service (QoS) in IP networks:
the Integrated Services model [5] (IntServ) and the Differentiated
Services [4] (DiffServ) model. Both rely on some sort of
prioritization of packets associated with interactive applications;
these get a priority treatment via schedulers in the nodes of the
network.
In traditional First-In-First-Out (FIFO) queues (per output
interface) elastic traffic and interactive traffic cannot be
segregated. As a result, under FIFO, the TCP-controlled sources
may jeopardize the QoS experienced by the users of the
interactive services (gamers, for instance). On the other hand, one
could have two queues (per output interface), served by a (non-
pre-emptive) Head-of-Line (HoL) priority scheduler. In such a
situation, however, the elastic traffic might suffer from starvation
during busy periods of the high-priority queue. Therefore, an
attractive alternative is a scheduler like Weighted Fair Queuing
(WFQ) that assigns a minimum guaranteed link rate to each of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CoNEXT’2006, December 4-7,2006, Lisbon, Portugal.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

classes. In this way it provides the interactive service the capacity
it needs without risking to starve the TCP-controlled traffic.
Under WFQ, elastic traffic can only interfere with the interactive
traffic by the fact that a data packet is in service at the instant a
real-time packet becomes eligible. It can be justified to assume
that this queuing delay due to the residual service of the data is
statistically independent from the queuing delay due to
competition in the queue dedicated to the interactive services
[19]. Moreover, on links of moderate to high rate the delay
associated with this kind of interference is negligible, while on
links with a very small link rate (e.g., the DSL upstream link) it
can be assumed that there is some form of pre-emption to
interrupt a long data packet in service that would introduce too
much delay on the interactive traffic. We conclude that in such a
situation one can study the real-time queue in isolation.
The network provider will tune its (WFQ) schedulers such that the
interactive traffic gets just the treatment that it needs to meet the
delay (and packet loss) bound. So, although the link rates in the
current and future IP-based networks are huge compared to the bit
rate of one interactive flow, or even compared to the aggregate bit
rate of all interactive flows, still queuing delay can occur, as the
actual capacity provisioned for the interactive services will be just
modestly higher than the (average) offered traffic.
In this paper we consider a system as described above, in which
interactive traffic shares resources with elastic traffic. The study
focuses on the situation in which the interactive traffic is
generated by gaming users. More specifically, we assess the
performance of client-server-based First Person Shooters (FPS)
games. It is known that the quality the users experience is mainly
determined by the packet delay. In a number of studies this
influence was quantified in an objective manner, with many of
these having focused on multiplayer games as representative
applications [3, 10, 11, 12, 16, 17, 26, 27]. Ardent game players
often cite network delay (referred to as ‘ping time’, or simply
‘ping’) as the main cause for degradation in their performance
and/or scores. Most of so-called ‘hard-core’ gamers often simply
choose not to connect to game servers that show a ping higher
than, say, a few 100 ms [1, 2, 13, 14, 20]. This ping time is often
seen as culprit because of built-in ping features in modern
multiplayer games, with that ping value in itself possibly
influencing the players’ performance.
Inspired by this ping time, the goal of this paper is to accurately
estimate the packet round trip time (which we often abbreviate to
RTT throughout this paper) in the setting described above. Here
the RTT is defined as the time between the instant that a packet
with information describing the action of the gamer in the virtual
three-dimensional world departs from the client PC and the time
instant the information with the motion vectors (resulting from
that gamer’s action) arrives at the client PC.
The delay incurred on an end-to-end path in the network can be
decomposed into a deterministic and a stochastic (e.g., queuing)
part. The deterministic delay is quite easy to determine, as it is
just the sum of the serialization delay, propagation delay, and
(server) processing delay. Queuing delay is more difficult to
assess because it depends on the congestion state of the network.
It is well known that deterministic upper bounds for queuing
delay are easily obtained [7, 21, 22], but these worst-case upper
bounds lead to unrealistically high values. Instead, this paper

derives statistical ‘upper bounds’ (i.e., quantiles) for the queuing
delay, leading to more realistic values [6, 9, 19].
Obviously, if gaming applications are to be offered on a
commercial basis, then there is a strong need for reliable models
that predict the delay or, conversely, a need for a methodology to
calculate the required capacity to be provisioned (e.g., via a WFQ
scheduler) for the gaming service, given the delay bound. This
paper answers this question, and can be used as a benchmark
when deploying such interactive services on a large scale.
Finally, we spend a few words on the methodology and
organization of this paper. A key ingredient in a performance
study is the traffic model. Section 2 describes the traffic
characteristics of a typical FPS gaming source, and relates these
to the result of earlier measurement studies. Then this traffic
model is used as the input for our queuing model. In Section 3 the
queuing delay is assessed when several gaming sources are
multiplexed; as argued above, such a queuing model gives a better
impression of the experienced delay than deterministic worst-case
bounds. The analysis relies on the decomposition of the upstream
and downstream part. Section 4 uses the developed queuing
model to assess the RTT typical for games played over a
representative access network. Section 5 draws the conclusions.

2. TRAFFIC SOURCE MODEL
In this section, traffic characteristics of different popular on-line
FPS games will be presented. We discuss the characteristics that
were derived in literature and confirm these by analyzing a set of
new measurement data. Based on these characteristics the traffic
source model to be used in this paper (most notably in the
queuing model) will be further justified.
Since FPS games are highly interactive, they are the least tolerant
type of online games with respect to (network) delay. As such,
they are particularly appropriate in the scope of this paper, in
which we have a focus on access network queuing delays of
online games. In the context of this queuing analysis, packet sizes
and packet arrival rates (and the distribution of the inter-arrival
times) are the most relevant characteristics to consider.
Since most online gaming is real-time and requires low latency,
most game communication uses small UDP packets sent almost
periodically. The nature of the observed traffic flows suggests that
a networked game works according to the following principles. A
gaming server keeps track of the global gaming state. At timer-
based intervals it sends a burst of back-to-back packets containing
this gaming state-information to the clients. The server has the
ability to set this update frequency (and as such the ‘inter-burst
time’) as it wishes. In turn, the clients read and process these
packets in order to update their current view on the screen. Next,
the client’s commands are processed and an update packet,
containing movement and state information of the player, is sent
to the server. Also the clients send their packets at timer-based
intervals, which may differ from client to client, depending on
client hardware performance and settings. The server processes
these packets to update the global gaming state.
In this section first an overview is given of traffic characteristics
and source models for online games found in the literature. Next,
traffic characteristics based on new measurement data is
compared to the published ones. Finally, we summarize the traffic
source model that is used further on in this paper.

2.1 Related work
Some papers report on the characterization and/or modeling of
traffic generated by different popular on-line FPS games. An
early study is by Borella who presented traffic models for the FPS
game ‘Quake’ [3]. A few years later, Färber did the same for the
game ‘Counter Strike’ [11] which is based on the ‘Quake’ engine.
He found that Borella’s game traffic model was in general still
valid. The traffic model for fast action multiplayer games Färber
proposes, consists of two sub-models: the server traffic model and
the client traffic model.

Regarding the server-to-client traffic, Färber found that the
packets arrived in bursts with an inter-burst time that was slightly
varying. In each burst, the server generates one packet for every
active client. The modus of the inter-burst time was found to be
55 ms, with mean 62 ms and a coefficient of variation (CoV) of
0.5. He approximates this inter-burst time with an extreme
distribution: he finds that the probability density function of the
extreme distribution with a = 55 ms and b = 6 ms fits the
experimental histogram best (using least square fitting). Recall
that the density f(x) of the extreme distribution, respectively the
associated cumulative distribution F(x), with parameters a and b,
is given by [28]

)exp()(

)exp()/)exp((1)(

)/)(

)/)(

bxa

bxa

exF

ebxa
b

xf

−−

−−

=

−=
 . (1)

We will denote this distribution by Ext(a,b). Note that Färber
considers inter-burst times per client, and as such tacitly assumes
that within each burst the order of the packets is the same. This is
not necessarily true though – we come back to this issue later in
this section; as a consequence, the server traffic model presented
by Färber might be misleading.

The server packet size showed a higher variability. The
characteristics he obtains are a mean size of 127 byte and a CoV
of 0.74. Again, he approximates this (using least square fitting of
the probability density function with the histogram) with the
extreme distribution Ext(120,36).

Now focus on the client-to-server traffic. This can be
characterized by an almost constant data and packet rate. He finds
an inter-arrival time of 42 ms and a CoV of 0.24, which makes
him propose a deterministic distribution, and he writes Det(40).
We think 40 ms is chosen, since this corresponds to a client that
updates its local copy of the gaming world 25 times a second.
Finally, the client packet size distribution, characterized by a
mean of 82 byte and a CoV of 0.12, is modeled by the extreme
distribution Ext(80,5.7).
Note that Färber also mentions that shifted lognormal and shifted
Weibull distributions lead to acceptable fits to the data as well.
Lang et al. developed a traffic model for the game Half-Life [16].
Their model states that the server-to-client inter-burst times are
deterministic with values around 60 ms, while the server-to-client
packet sizes can be modeled through lognormal distributions. It
was found that the packet sizes depend on the map that is played.
The client-to-server traffic on the other hand can be modeled
using a deterministic function (41 ms) for the inter-arrival times,
and for the packet sizes it is seen that there is no dependency on
whatever parameter and that the sizes range from 60 to 90 byte.
Here normal and lognormal distributions lead to equally good fits.

In general, the authors found that the traffic pattern was only
affected by the map that was played (server-to-client packet sizes
in particular) and the graphic rendering software of the client
computer (in particular, inter-arrival times of the client-to-server
traffic). Moreover, their model is roughly in line with the model
proposed by Färber.
In another paper [17], Lang et al. present a model for the Xbox
System Link game Halo. The server-to-client inter-burst time is
modeled deterministically (40 ms), and the same holds for the
packet sizes (where the actual size depends on the number of
players in the game). For the client-to-server traffic, they found
that 33% of the packets (with a fixed size of 72 byte) are sent
every 201 ms; the other 67% (of which the size depends on the
number of players on the client Xbox) also have a constant inter-
arrival time, but this inter-arrival time depends on the client Xbox
hardware. From these observations the authors conclude that the
traffic is strongly periodic, and that the traffic pattern is
influenced by the number of players (specifically the server-to-
client and client-to-server packet sizes) and the client Xbox
hardware (particularly, the client-to-server inter-arrival times).
In [18] Lang et al. present a traffic model for Quake3. They show
that the packet lengths from server to client depend on the number
of players participating in the game and to a lesser extent on the
particular map. Packet lengths vary between about 50 byte and
400 byte. The server sends one update packet per client
approximately every 50 ms. It is also shown in [18] that the
packet length distribution for packets from client to server is
independent of all observed parameters. The smaller packets are
about 50 byte and the largest ones are around 70 byte. The packet
transmission rate of a client is dependent on the map played and
on the client’s graphic card. Typical inter-arrival times mentioned
in [18] vary between 10 ms and 30 ms.
The main aim of [23] was to study the impact of delay and jitter
on game play and subjective user experience. An experiment was
set up in which 12 players combated against each other in the FPS
game Unreal Tournament 2003. As a side result the traffic was
logged during this LAN party. Part of this traffic will be used here
to verify the traffic characteristics from literature that were
summarized above. Because jitter was artificially introduced in
this experiment we have to be careful in interpreting the inter-
arrival time measurements. In particular, we only used those
experiments from [23] for which the introduced jitter was much
lower than the mean inter-arrival time between bursts.
The traffic trace of 6 minutes consists of all traffic between the
dedicated server and the 12 players in both directions. Similar to
the papers mentioned above, we found that the traffic from the
server to the clients consists of traffic bursts, which arrive with
almost constant inter-arrival times (the average inter-burst time is
47 ms with a CoV of 0.07). Six of the bursts (which not even
represents 0.1% of the total) however showed an inter-arrival time
of almost 80 ms, whereas the burst after that peculiar burst came
with an inter-arrival time of about 15 ms. Their occurrence was
not periodic and the reason for these ‘delayed’ bursts is unknown
to us.
With a few exceptions (about 0.5% of the bursts), all bursts
contain 1 packet for each of the players. The reason why there
was 1 (or in 1 case 2) packet(s) missing has not become clear; it
might be due to packet loss in the network. Since we see no
reason why the server would not send an update packet to each

one of the clients, and the occurrence of this ‘missing packet’ is
not high, we will not take this into account in the following.
Furthermore, we observed that the order of the packets within the
burst was not the same for each burst. If this is only due to the
jitter that was deliberately imposed during the measurements, or if
this is already present at the moment the server sends the burst, is
not clear. Therefore, we cannot state that the order of the packets
(at the moment the server sends the burst) is the same for each
burst.
For the server packet size, we find a mean size of 154 byte and a
CoV of 0.28. Within a burst however, the packet size variation is
less with a CoV varying from 0.05 to 0.11. Note that we also
found, like in the papers discussed above, that the map that is
played affects these characteristics (particularly, the mean packet
size). Concerning the burst sizes, we found a mean of 1852 byte,
with a CoV of 0.19. For the traffic from the clients to the server,
we found (neglecting a few outliers) a mean packet size of
73 byte and a CoV of 0.06, the inter-arrival time was 28 ms with a
CoV of 0.30. These findings are displayed in Table 1.

Table 1: Overview of characteristics of traffic generated
during a FPS gaming session on a LAN. Packet sizes are in

byte, inter-burst times in ms, burst sizes in byte.

Server-to-client Client-to-server

Mean CoV Mean CoV

Packet size 154 0.28 73 0.06l

Inter-burst time 47 0.07 28 0.30

Burst size 1852 0.19 - -

2.2 Traffic Source Models
In this section, we will present the traffic source models that will
be used in the remainder of this paper. Like in the papers
discussed above, also here we will consider 2 traffic models: one
for the server traffic and one for the client traffic.

2.2.1 Client traffic model
Based on the findings in Section 2.1, the packet sizes and packet
inter-arrival times of the client-to-server traffic can be
approximated by deterministic distributions. Based on this, the
client traffic model (representing the upstream traffic from the
client’s point of view) that should be used, corresponds to
periodic stream of packets (each stream corresponds to a user),
but with random phasing between the streams. A large enough set
of streams with periodic arrivals could be approximated by an
aggregate stream with Poisson arrivals (see Section 3.1).

2.2.2 Server traffic model
Following Section 2.1, the inter-arrival times of the server (burst)
traffic, can be assumed to be deterministic. For the server (burst)
traffic size, unlike previous authors (which concentrated on fitting
the probability density function to the histogram or on fitting the
theoretical to the experimental central moments), we prefer to fit
the tail of the distribution, since this tail dominates also the tail of
the corresponding queue occupation (and hence, the tail of the
queuing delay). We propose to model the server (burst) traffic
size with an Erlang distribution; this is because this distribution

fits the tail of the experimental results quite well (see Figure 1),
and because of its analytical tractability.
The Erlang(K,λ) distribution has two parameters: the shape
parameter λ and the Erlang order K; its mean is K/λ and its
variance K/λ2. We determine the mean value by fitting it to the
measured average burst size (1852 byte, as seen in Table 1). In
order to determine the order K of the Erlang distribution, we can
focus either on fitting the CoV (which boils down to fitting the
standard deviation), or on the tail of the distribution. Following
the former approach, i.e., fitting the CoV and noticing from Table
1 that it is 0.19, we derive that K is 28. Following the latter
approach, i.e., (visually) fitting the tail, we see from Figure 1 that
K is somewhere between 15 and 20. This figure presents the
experimental tail distribution function of the burst sizes as
measured in the experiment as well as of the tail distribution
functions of Erlang distributions for K = 15, 20 and 25,
respectively.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1000 2000 3000 4000

burst size (bytes)

TD
F Erlang(15,0.008)

Erlang(20,0.011)
Erlang(25,0.013)
Experimental

Figure 1: Tail distribution function of the measured burst

sizes and Erlang tail distributions of different order for which
the mean was already fit to the measured mean.

Following the above reasoning, the server traffic model could be
approached by D/EK/1, where K is of the order 20. As already
mentioned (see Section 2.1), the CoV of packet sizes within a
burst is a substantially smaller than the overall CoV of server
packet sizes. Based on that fact, we expect that the impact of the
number of gamers on the burst size distribution, and hence on K,
is small. Nevertheless, the choice of K has a significant impact on
the dimensioning. We return to this in Section 4.
Finally, taking into account the literature studies and the analysis
of the new measurement data, it is clear that the traffic
characteristics of online games differ considerably from game to
game. For that reason, different choices for K will be considered
in the remainder of the paper.

3. QUEUING MODEL
In this section we assess the stochastic part of the RTT (i.e., the
ping time) a gamer experiences. As the deterministic part is
straightforward to calculate (see Section 1), we do not consider it
in this section, but we do take this deterministic part into account
in Section 4. The stochastic part is the sum of two random delays,
the upstream and downstream queuing delay, which we assume to
be statistically independent.
The upstream queuing delay is due to the competition of packets
stemming from different clients on the link to the server (see
Figure 2). Indeed, it may happen that a packet from a certain

client arrives on that aggregation point at the instant a packet from
another client is being transported over the link towards the
server, such that this packet will have to queue. In such a way a
queue can temporary build up in that aggregation point. Because
we assume that on the long run less packets are arriving at this
point than can be served, this queue should regularly empty.
Packets that arrive in an empty queue experience no queuing
delay, while packet arriving in a full queue may experience
substantial queuing delay. In Section 3.1 we determine the
stochastic law that characterizes this queuing delay by arguing
that the queuing behavior can be modeled by an M/G/1 queuing
system.

Client PC C lient PC

Client PC Client PC

Serv er

Ω
D V D

Ω
D V D

Ω D V DΩ D V D

Figure 2: Client-server architecture for interactive gaming.

The downstream queuing delay is a consequence of the fact that
an arriving burst on the link (from the server towards the fan-out
point, see Figure 2) to the clients may see a residual part of the
previous burst. Indeed, the burst size is highly variable (which we
model by an Erlang distribution, see Section 2.2.2) and it is not
guaranteed that the (e.g., 40 ms) inter-arrival times will always be
long enough to transport all packets within the burst over that
link. In that way a queue may build up. Since we assume that also
in the downstream direction the queuing system is stable, this
queue has to regularly empty as well. Bursts that see an empty
queue experience no queuing delay, while other bursts may
experience a considerable queuing delay. We determine the
stochastic law that characterizes the queuing delay of the bursts in
Section 3.2.1. On top of that delay, a packet in a particular burst
sees an additional delay due to all packets within that burst that
are in front of it. Packets in the beginning of the burst hardly see
any queuing delay of this type, while the packets at the end of the
burst will have to wait a significantly longer time. In Section 3.2.2
we determine the probabilistic law that governs this delay.
We determine all probabilistic laws by deriving the associated
probability generating functions. In Section 3.3 we determine the
probability generating function of the total queuing delay and
explicitly invert this probability generating function to obtain the
tail distribution function of the total queuing delay. From this tail
distribution function we determine the quantile of the queuing
delay.
In this paper we merely state the probabilistic laws that are
needed for the computation of the stochastic part of the RTT. The

derivation of these laws is out of scope for this paper, but can be
found in [8].

3.1 Upstream: M/D/1
Relying on the findings of Section 2, we can assume that in the
upstream direction equally sized packets are transmitted with
virtually identical inter-arrival times, say D; let N be the number
of users. The resulting queuing model would be N*D/D/1, see for
instance Roberts et al. [25]. An explicit formula for the queuing
delay in the N*D/D/1 queue is known, but it does not provide
insight and is relatively computationally demanding. However, it
can be argued that we can do with simpler formulas. In fact, the
use of M/D/1 queues for modeling the upstream queuing delay is
mathematically justified in [8]. Notice that, in [25], empirical
observations indicate that the M/D/1 approximation works very
well, particularly for relatively small load (while there are serious
deviations for a load above, say, 90%). The regime with relatively
low load is the regime we are interested in.
The moment generating function of the delay in an M/D/1 system
is well known [15]. Later in this paper, we approximate this
moment generating function of the upstream queuing delay as

s
sD uuu −

+−≈
γ
γρρ1)(, (2)

where γ is the dominant pole of the exact moment generating
function (and ρu is the upstream load).

3.2 Downstream: D/EK/1
As explained in Section 2, in the downstream direction the
gaming server sends the packets in bursts, which (in all, except a
few, cases) contain a packet for each gamer. The burst sizes are
modeled as independent, identically distributed (i.i.d.) random
variables with an Erlang distribution of order K as marginal
distribution. Bursts are sent at constant inter-departure time T
(presumably the refresh interval with which the server updates its
virtual 3D world).
If the traffic generated by 1 server is sent over a reserved bit pipe,
the queuing in the downstream direction is modeled with the
D/EK/1 queuing model. If traffic stemming from more servers is
transported over a (joint) reserved bit pipe, the N*D/G/1 queuing
model applies where G=ΣEK (i.e., a weighted mix of Erlang
distributions), which, based on an argument similar to the one
developed in the previous paragraph, is very well approximated
by M/G/1, if the number of servers is high enough. In this paper
we only consider the case of 1 gaming server.
In the next subsection we first determine the tail distribution of
the delay seen by the bursts in the D/EK/1 queuing model. Then
we determine the tail distribution function of a (tagged) packet
within a burst.

3.2.1 Delay distribution of bursts in the D/EK/1
queuing model
Let wn be the remaining work (expressed in [s]) in the system just
before the n-th arrival instant. Notice that the variable wn is also
the delay seen by the n-th burst. In addition, bn denotes the
amount of work arriving (expressed in [s], i.e., the burst size
divided by the reserved gaming rate) at the n-th arrival instant,
which are i.i.d. with an Erlang distribution of order K as marginal

distribution. Finally, T (expressed in [s]) is the amount of work
that can be performed between two arrival instants.
In steady state (which we assume to exist) the probability density
functions of random variables tend to a limit. We define the
moment generating functions for the random variables in steady
state as, e.g.,

][)(nsweEsW = , (3)

and similarly for other random variables. Since the burst size
follows a Erlang distribution of order K we have

K

s
sB ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
β
β)(, (4)

with 0/ >= bKβ and b is the average service time for one
burst.
In [8] an explicit expression is derived for W(s):

 ∑∑
== −

+⎟
⎠
⎞⎜

⎝
⎛ −=

K

k
k

k
k

K

k
k s

aasW
11

1)(
α
α

 , (5)

where each pole is given by

 },...,1{,)1(Kk
b

K k
k ∈∀

−
−=

ζ
α , (6)

where ζk is the unique solution of

 },...,1{,)1(21exp Kk
K
kjzz

d

∈∀⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

−
=

π
ρ

, (7)

in Re[z]<1, where ρd is the load defined as Tb (which assumes a
value between 0 and 1 for a stable system).
Finally, the weights aj can be shown to satisfy

 () Kja
K

jk
k jk

kK

jj ...,,1,1
1

=
−
−

= ∏
≠
= ζζ

ζζ . (8)

Notice that for the special case D/M/1 (K=1) exactly the same
solution as in [15] is obtained.

3.2.2 Delay distribution of packets
A tagged packet arriving in a certain burst experiences a delay dn,t
composed of two contributions

 tnntn pwd ,, += . (9)

First, the tagged packet has to wait for all the remaining work in
the system the instant it arrived, which is equal to the delay wn the
burst sees. Second, it has to wait a time pn,t due the packets that
jointly arrived in the same burst and that are in front of the tagged
packet.
Similarly as above we define the moment generating functions
Dd(s) and P(s) for the steady state random variables dn,t and pn,t
respectively. As the delay components wn and pn,t are statistically
independent, we have that

)()()(sPsWsDd = . (10)

To assess P(s) we need to know where in the arriving burst the
tagged packet resides. This is described by a random variable un,t

with probability density function pu(un,t) with support [0,1]. For
instance, un,t = 0 means that that the tagged packet is the first of
the n-th burst. We assume that that there are so many packets in a
burst, such that the size of a packet is negligible with respect to
the size of the burst, and hence, un,t can take any value in [0,1].
For instance, un,t = 1 means that the packet is the last one of the
burst and sees (practically) the whole burst before it. By first
conditioning on the burst size, then averaging over all possible
burst sizes and a change of variables, it follows that

)()(
1

0

τ
τβ

β
τ u

K

p
s

dsP ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= ∫ . (11)

For general distributions pu(un,t), no conclusions can be drawn
with respect to the poles of P(s), but we consider a special case.
We assume that from burst to burst the packet can reside
anywhere in the burst, i.e., that pu(un,t) is the uniform distribution.
In this case, the integral defining P(s) can be calculated (by
identifying a primitive function of the integrand) and satisfies, for
K>1:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

=
−

1
)1(

)(
1K

ssK
sP

β
ββ . (12)

Notice that this can be interpreted as the residual lifetime of an
Erlang variable of order (K-1) [15].
It can be shown using Horner’s rule that P(s) can be written as a
weighted sum of Erlang terms:

 ∑
−

=

−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=
2

0

1

)1(
1)(

K

k

kK

sK
sP

β
β

 . (13)

3.3 Combining uplink and downlink queuing
delay
There are three contributions to the total queuing delay: the
upstream queuing delay, the downstream delay of the burst the
packet is part of and the delay due to the fact that the packet can
be in a random place in the burst.
We assume that the upstream and downstream queuing delay are
statistically independent, so that the moment generating function
of the total delay is a product Du(s)W(s)P(s). As can be seen from
eqs. (2), (5) and (13) respectively, each of these factors can be
(approximately) written as a sum of Erlang terms, such that, with
the technique explained in [8], we can write this product as a sum
of Erlang terms:

() ()

∑ ∑ ∑

∑

−

=

−−

= =

−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
−

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

2

0

1

0 0

)()(

1

)!(!
)()()(

)1(
1

)()()()(

K

k

kK
k

l

l

m

mlm
ul

K

j
j

j
jjjuu

smlm
WD

K

s
aPD

s
PW

β
ββββ

α
α

αα
γ
γργγ

(14)

which is straightforward to invert.
In the next section we will use eq. (14) to determine quantile
values for the RTT.

4. NUMERICAL RESULTS
In this section we assess the impact of several parameters on the
RTT performance for FPS games by considering a number of
representative scenarios. Our starting point is the architecture
depicted in Figure 2 in Section 3.
It has been shown in the previous sections that several variables
have impact on the RTT performance. In this section we wish to
quantify this impact. The variables we have identified are:

• the gaming load (defined as the average amount of
gaming traffic divided by the capacity reserved for the
gaming traffic on the aggregation link); evidently, a
higher load induces a higher delay;

• the mean size of packets from the server to the clients;
for a fixed load larger packet sizes lead to both higher
queuing and serialization delays;

• the inter-arrival time of bursts of packets from the
server to the clients; longer inter-arrival times lead to
possible longer waiting times;

• the CoV of the size of the burst of packets from the
server to the clients; for given load the lower the CoV,
the lower the queuing delay; note that in our model the
burst sizes are assumed to follow an Erlang distribution
of order K therefore CoV = 1/√K.

In order to keep the number of scenarios limited we make the
following assumptions: the size of packets from client is fixed at
PC = 80 byte, the uplink access bandwidth is fixed at
Rup = 128 kb/s, the downlink access bandwidth is fixed at
Rdown = 1024 kb/s. In addition we suppose that the inter-arrival
time T of bursts of packets from the server equals the inter-arrival
time D of packets from the clients (per client). We will fix T at the
values 40 ms and 60 ms. This choice is motivated by the findings
of Section 2.
With C we denote the capacity reserved on the aggregation link
(i.e., the link between fan-out point and the gaming server) for
gaming traffic. As explained in Section 1, this capacity C is that
part of the aggregation link that the WFQ scheduler reserves for
gaming traffic. We also assume that the other traffic classes
always sends traffic such that the WFQ scheduler cannot borrow
capacity from other classes. We choose C = 5000 kb/s.
For the size of packets sent from the server, denoted by PS, we
take the values 125 byte, 100 byte and 75 byte. In order to assess
the impact of the CoV of the burst sizes we vary the order K of
the Erlang distribution (representing the variation of the size in
the bursts of packets from the server); the following values are
considered: K = 2, 9 or 20.
For each scenario we have computed the RTT for various values
of the load ρd on the aggregation link in the downlink direction.
One can readily verify that this load is given by

TC
NPs

d

8
=ρ , (15)

where N denotes the number of active gamers and PS given in
byte, T in ms and C in kb/s. A similar formula applies for the
uplink load. In the remainder of this section we vary the downlink
load by varying the number of active gamers N.

In line with [6, 9, 19] we choose to compute 99,999% quantiles of
the RTT. Obviously the RTT also includes serialization delay on
the access link and the aggregation link, both in uplink and
downlink direction.
For all scenarios considered we have used the methodology
developed in Section 3 to assess the RTT quantiles. Figure 3
shows the RTT quantiles as a function of the load ρd for the case
PS = 125 byte, T = 60 ms, for several values of the Erlang order K.
For this set of parameter the uplink load ρu is always much
smaller than the downlink load ρd. Hence, the upstream delay
component Dup is always negligible with respect to the
downstream delay component Ddown. As mentioned before the
latter has two components: the delay of a burst and the delay due
to the position of a packet within a burst. For low loads it is easy
to see that the burst delay is small (because the probability that a
burst is still being processed when the next burst arrives is very
small), and hence, that the packet position delay dominates. As
explained above this packet position delay has the same
distribution as the residual lifetime of an Erlang distribution of
order (K-1) and as such its quantile is proportional to the number
of packets within a burst (i.e., the number N of gamers) and
hence, is proportional to the load ρd. This linear behavior can be
observed in Figure 3 for low load values. As the load ρd increases,
the burst delay starts to dominate and the curves tend to the
asymptote ρd = 1.

P S = 125 byte; T = 60 ms

0
50

100
150
200
250
300
350
400

0% 20% 40% 60% 80% 100%
load (downlink)

R
TT

 [m
s]

K = 2
K = 9
K = 20

Figure 3: Impact of Erlang order K on the RTT.

It is obvious from Figure 3 that the order K of the Erlang
distribution, and hence the CoV of the burst sizes, has a strong
impact on the RTT quantiles. We observe that indeed RTT
quantiles are highly sensitive to the Erlang order. Even at
moderate load values, low values of K lead to unacceptable RTT
performance. This observation is robust with respect to the choice
of PS. We have done the same experiment for PS = 100 byte and
PS = 75 byte and obtained nearly the same behavior as depicted in
Figure 3.
The fact that for low loads the RTT (virtually equal to the
(dominant) packet position delay in these cases) is still large is
tightly connected to our assumption that the scheduler follows the
WFQ discipline. Indeed, after a certain packet in the burst is
processed, the WFQ scheduler visits queues of other traffic
classes (which we assumed to nearly always contain packets)
before it returns relatively fast (a time of the order of T/N) to the
gaming queue, such that overall the gaming queue gets drained by
a rate C (which is a small fraction of the link capacity). Consider,
however, another (burst-non-preemptive) scheduler: it processes a

complete burst of packets before visiting other queues, spends a
relatively long time (just shorter than T) on queues of other traffic
classes, all this in such a way that in the long run the gaming
queue is drained by a rate C as well. Such a scheduler would
seriously reduce the packet position delay component of the RTT
and would result in much lower quantile values for low loads.
This scheduler is a topic for future research.
Note that if PS > PC (which is the case for PS = 125 byte and
PS = 100 byte) the downlink load is higher than the uplink load.
Hence, we expect the contribution of the downlink queuing model
(D/EK/1) to dominate the contribution of the uplink model. On the
contrary, if PS < PC , then for a sufficiently high downlink load
the uplink will be dominant. In fact, one can verify that in our
case, for PS = 75 byte, a downlink load of 75/80 corresponds to
an uplink load of 1.
Figure 4 shows the RTT quantiles for the scenario PS = 125 byte,
K = 9, for the cases T = 40 ms and T = 60 ms.
As expected, Figure 4 exemplifies that higher inter-arrival times
lead to higher RTT quantiles. In fact, it can be shown that if the
downlink contribution is dominant (which is the case if the
downlink load is higher than the uplink load) then the RTT is
virtually proportional to the inter-arrival time T. To be more
precise, in Figure 4 the RTT for T = 60 ms is about 3/2 times as
high as the RTT for T = 40 ms.

P S = 125 byte; K = 9

0

50

100

150

200

0% 20% 40% 60% 80% 100%
load (downlink)

R
TT

 [m
s]

T = 40ms
T = 60ms

Figure 4: Impact of the inter-arrival time on the RTT.

It turns out that if we change the parameters Rup, Rdown and C, then
the results hardly change. This is due to two facts. First of all, the
structure of our downlink queuing model is such that it is
invariant with respect to the capacity C: only the load determines
the quantile value. So the only effect of changing Rup, Rdown and C
is a different value for the serialization delay. However, this is a
minor effect (in the order of 1 or 2 ms) because of the small
packet sizes in combination with relatively high access and
aggregation link rates (of which C is just a fraction).
The above results can be used for dimensioning purposes.
Consider for instance the case PS = 125 byte, K = 9, T = 40 ms.
Then in order to realize a maximum RTT of 50 ms (corresponding
with excellent game play, according to [11]) the gaming bit pipe
allows a load (in the downlink direction) of at most 40%, see
Figure 4. It is obvious that the maximum allowable load ρmax is
very sensitive with respect to the parameter K and hence with
respect to the CoV of the burst sizes. In fact, for PS = 125 byte,
T = 40 ms the maximum allowable load is about 20% for K = 2,
while for K = 20 the threshold ρmax is around 60%. This can be

deduced from Figure 3 (and the fact that the RTT is proportional
to the inter-arrival time T).
Using eq. (15) the dimensioning rule leads to a maximum number
of on-line gamers Nmax of

sP

TCN
8

max
max

ρ
= . (16)

So, in our example, where PS = 125 byte, T = 40 ms and
C = 5000 kbps, the maximum number of on-line gamers is 40, 80
and 120 for K = 2, 9 and 20, respectively.

5. CONCLUDING REMARKS
In this paper we have proposed a methodology for predicting ping
times in First Person Shooter (FPS) games. Our study consisted of
three parts: (1) reflections on the traffic model to be chosen; (2) a
queuing-theoretic methodology to determine the quantiles of the
Round Trip Time (RTT); (3) assessment of the RTT for realistic
scenarios.
We numerically evaluated the RTT quantiles for an architecture
where traffic of several gamers is aggregated on a bottleneck link.
Interestingly, our main observation is that our model indicates
that for realizing excellent game play the allowable gaming load
on this aggregation link is relatively low. Furthermore, it is shown
that the RTT performance is strongly determined by the burst
inter-arrival times (of packets from the server to the clients). Less
straightforward is the dependence on the CoV of burst sizes of
packets sent from server to clients; we observed a remarkably
strong impact of this CoV on the RTT quantiles. In view of this
effect, we expect that it would pay off to more accurately
determine the tail behavior of burst sizes by tracing packets in
real-life FPS games on a considerably larger scale.

6. ACKNOWLEDGMENTS
This work was partly carried out within the framework of the
project CHAMP sponsored by the Flemish Institute for the
promotion of Scientific and Technological Research in the
Industry (IWT).

7. REFERENCES
[1] Armitage, G., “Sensitivity of quake3 players to network

latency”. In ACM SIGCOMM Internet Measurement
Workshop 2001, Berkeley (CA), Nov. 2001.

[2] Armitage, G ., “An experimental estimation of latency
sensitivity in multiplayer quake 3”. In Proceedings of the
11th IEEE Int. Conf. on Networks (ICON 2003), Sydney
(Australia), 2003.

[3] Borella, M., “Source models of network game traffic”. In
Computer Communications, vol. 23, no. 4, pp. 403–410,
2000.

[4] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z. and
Weiss, W., “An Architecture for Differentiated Service”,
IETF RFC2475, 1998.

[5] Braden, R., Clark, D. and Shenker, S., “Integrated Services
in the Internet Architecture: and Overview”, IETF RFC1633,
1994.

[6] Brichet, F., Massoulié, L. and Roberts, J.W., “Stochastic
Ordering and the Notion of Negligible CDV”. In Proceedings
of ITC 15, pp. 1433-1444, Washington (DC), 1997.

[7] Charny, A. and Le Boudec, J.-Y., “Delay Bounds in a
Network with Aggregate Scheduling”. In Proceedings of the
First COST 263 International Workshop, pp. 1-13, QofIS
2000, Berlin (Germany), 2000.

[8] Degrande, N., De Vleeschauwer, D., Kooij, R.E. and
Mandjes, M.R.H, “Modeling Ping times in First Person
Shooter Games”, CWI rapport PNA-R0608, ISSN 1386-
3711, June 2006.

[9] De Vleeschauwer, D., Petit, G.H., Wittevrongel, S.,
Steyaert, B. and Bruneel, H., “An Accurate Closed-Form
Formula to Calculate the Dejittering Delay in Packetised
Voice Transport”. In Proceedings of the IFIP-TC6 /
European Commission International Conference
NETWORKING2000, pp. 374-385, Paris (France), 2000.

[10] Dick, M., Wellnitz, O. and Wolf, L., “Analysis of Factors
Affecting Players’ Performance and Perception in
Multiplayer Games”. In Proceedings of Netgames ’05,
Hawthorne, New York, U.S.A., October 10-11, 2005.

[11] Färber, J., “Network Game Traffic Modelling”. In
Proceedings of NetGames 2002, Braunschweig, Germany,
April 16-17, 2002.

[12] Feng, W., Chang, F., Feng, W. and Walpole, J.,
“Provisioning On-Line Games: A Traffic Analysis of a Busy
Counter-Strike Server”. In Proceedings of SIGCOMM
Internet Measurement Workshop, November 2002.

[13] Henderson, T., “Latency and user behaviour on a multiplayer
game server”. In Proceedings of the Third Int. COST264
Workshop on Networked Group Communication, pages 1–
13. Springer-Verlag, 2001.

[14] Henderson, T. and Bhatti, S., “Networked games: a QoS-
sensitive application for QoS-insensitive users?” In
Proceedings of the ACM SIGCOMM workshop on
Revisiting IP QoS, pages 141–147. ACM Press, 2003.

[15] Kleinrock, L., 1975, “Queuing Systems Volume 1: Theory”,
John Wiley & Sons, New York.

[16] Lang, T., Armitage, G., Branch, P. and Choo, H.-Y., “A
Synthetic Traffic Model for Half Life“. In Proceedings of the
Australian Telecommunications Networks & Applications
Conference 2003 (ATNAC 2003), Melbourne, Australia,
December 2003.

[17] Lang, T. and Armitage, G., “A Ns2 Model for the System
Link Game Halo”, In Proceedings of the Australian
Telecommunications Networks & Applications Conference

2003 (ATNAC 2003), Melbourne (Australia), December
2003.

[18] Lang, T., Branch, P. and Armitage, G., “A Synthetic Traffic
Model for Quake3”, In Proceedings of ACM SIGCHI ACE
2004, Singapore, June 3-5, 2004.

[19] Mandjes, M.R.H., Van Der Wal, J.C., Kooij, R.E. and
Bastiaansen, H.J.M., 1999, “End-to-end Delay models for
Interactive Services on a Large-Scale IP Network”, In
Proceedings of the 7th workshop on performance modelling
and evaluation of ATM & IP networks (IFIP99), 1999.

[20] Pantel, L. and Wolf, L. C., “On the impact of delay on real-
time multiplayer games”. In Proceedings of the 12th Int.
workshop on network and operating systems support for
digital audio and video, pp. 23–29, ACM Press, 2002.

[21] Parekh, A. and Gallager, R., “A generalized processor
sharing approach to flow control in integrated services
networks: The single node case”. In IEEE/ACM
Transactions on Networking, vol. 1, pp. 344-357, 1993.

[22] Parekh, A. and Gallager, R., “A generalized processor
sharing approach to flow control in integrated services
networks: The multiple node case”. In IEEE/ACM
Transactions on Networking, vol. 2, pp. 137-150, 1994.

[23] Quax, P., Monsieurs, P., Lamotte, W., De Vleeschauwer, D.
and Degrande, N., “Objective and Subjective Evaluation of
the Influence of Small Amounts of Delay and Jitter on a First
Person Shooter Game”. In Proceedings of the Third
Workshop on Network and System Support for Games
(NetGames04), pp. 152-156, Portland (OR), August 30 –
September 3, 2004.

[24] Ramanan, K. and Cao, J., “A Poisson Limit for Buffer
Overflow Probabilities”. In Proceedings INFOCOM 2002,
pp. 497–505, 2002.

[25] Roberts, J., Mocci, U. and Virtamo, J., “Broadband Network
Teletraffic - Performance Evaluation and Design of
Broadband Multiservice Networks: Final Report of Action
COST 242”. Springer, Berlin, 1996.

[26] Sheldon N., Girard, E., Borg, S., Claypool, M. and Agu, E.,
“The effect of latency on user performance in warcraft 3”. In
Proceedings of the 2nd workshop on Network and system
support for games, pages 3–14. ACM Press, 2003.

[27] Ubicom Inc., “OPScore, or Online Playability Score: A
Metric for Playability of Online Games with Network
Impairments”,
http://www.ubicom.com/pdfs/whitepapers/IP3K-DWP-
OPSCORE-10.pdf, March 2005.

[28] http://mathworld.wolfram.com/
ExtremeValueDistribution.html

