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1 Introduction
Exploiting a problem’s structure to arrive at the most efficient optimization algorithm is key in many op-

timization disciplines. In evolutionary computation, especially for solving discrete optimization problems

from a black-box optimization (BBO) perspective, linkage learning is an important research line because if

important linkages are disrupted during variation, optimization will not proceed efficiently [4].

Estimation-of-distribution algorithms (EDAs) are well-known for building and using models to exploit

problem structure [2, 3]. Models in EDAs represent probability distributions and linkage information is

processed via probabilistic dependency relations within these distributions. Although EDAs can be very

powerful, estimating complete distributions might be more than what is required to respect important linkage

relations. Here, we therefore consider the class of Genepool Optimal Mixing Evolutionary Algorithms

(GOMEAs) as they exploit linkage information by integrating greedy local search, genetic recombination

and fitness-based selection [1] based on linkage models, which can typically be learned more efficiently.

Recent results indicate that the use of hierarchical linkage models in GOMEAs leads to the best perfor-

mance [1]. There are, arguably, however still potential inefficiencies. In this paper, we consider ways to

filter these out. We further consider a way to combine the strengths of different linkage models.

2 GOMEA
GOMEA uses a population P of n solutions. Every generation, a selection S of n solutions is created by

tournament selection (with tournament size 2). Linkage learning is then performed on S , after which S is

discarded. Through variation a set of offspring O of n solutions is generated that ultimately replaces P .

The general linkage model in GOMEA is the Family Of Subsets (FOS). A FOS F contains subsets

of a set L, i.e. it is a subset of the powerset of L: F ⊆ P(L). In GOMEA, L contains all indices of

variables, i.e. L = {0, 1, . . . , l − 1}. A FOS F can be written as F = {F 0,F 1, . . . ,F |F|−1} where

F
i ⊆ {0, 1, . . . , l − 1}, i ∈ {0, 1, . . . , |F| − 1}.

Variation in GOMEA is called Genepool Optimal Mixing (GOM). GOM is applied to each solution in

the population. A solution is first cloned. Then, each linkage set F i ∈ F is iteratively considered. For each

F
i, a parent solution is randomly picked from the population and if the parents’ values for the variables in

F
i differ from those in the current solution, these values in the current solution are overwritten. The change

is accepted in case this leads to an improvement or equal quality and is undone otherwise.

3 Filtering and Combining Linkage Hierarchies
The use of hierarchical linkage models in GOMEA has so far been found to be the most robust and to be

highly efficient on a variety of problems [1]. There are, arguably, however still potential inefficiencies.

Hierarchical models contain linkage hierarchies, i.e. linkage sets F i and F
j exist such that F i ⊂ F

j . We

focus on such relations here in order to remove linkage sets that may be superfluous.

1The full version of this paper is in the proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2013).



Onemax Trap 5 NK-S1 MAXCUT 95% MAXCUT 100%

#
E

v
a
lu

a
ti

o
n

s

 100

 1000

 10000

 100000

 1e+06

 1e+07

 25  50  100  200  400

 100

 1000

 10000

 100000

 1e+06

 1e+07

 25  50  100  200  400

 100

 1000

 10000

 100000

 1e+06

 1e+07

 25  50  100  200  400

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 6  12  25  50  100

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 6  12  25  50  100

P
o
p

u
la

ti
o
n

si
ze

 10

 100

 1000

 10000

 25  50  100  200  400

 10

 100

 1000

 10000

 25  50  100  200  400

 10

 100

 1000

 10000

 25  50  100  200  400

 1

 10

 100

 1000

 10000

 100000

 6  12  25  50  100

 1

 10

 100

 1000

 10000

 100000

 6  12  25  50  100

Problem size Problem size Problem size Problem size Problem size

LTGA MLNGA LTNGA LTNGA C/P LTNGA B/B

Figure 1: Scalability of LTGA, MLNGA and LTNGA variants on all problems.

To remove a parent linkage set F j , we use the well-known likelihood-ratio statistical hypothesis test.

We filter out F j if for every X ∈ F
i and every Y ∈ (F j \ F i), X and Y are tested to be independent.

To remove a child linkage set F i, we consider the linkage strength (LS), which we define to be the

average mutual information between all pairs of variables in that set. If LS(F j) is larger than LS(F i), this

means that on average, the linkages between variables in F
j are stronger than the linkages between variables

in F
i. Thus, F j could be said to be a bigger, more interesting, building block and F

i can be disregarded.

Different hierarchical linkage models (FOS instances) model have been used with GOMEA. Here, we

consider the linkage tree (LT) and the multiscale linkage neighbors (MLN) model. A natural question is how

the best of both worlds can be captured. The most straightforward approach is to combine the LT and MLN

models, i.e. learn a (filtered) LT model, learn a (filtered) MLN model and take their union. A key question

is whether such an approach is indeed as viable as the generality of the FOS model appears to allow it to be.

4 Some Results and Conclusions
Figure 1 shows the scalability of GOMEA variants on various optimization problems of varying complexity

(details omitted in this abstract). Results show the use of either the LT model (LTGA), the MLN model

(MLNGA), the combination model (LTNGA) and filtered versions of the latter model (LTNGA B/B uses all

filters). All results are averaged over 100 runs and are for the minimally required population size to solve

the problem at hand reliably (99/100 times). When all filters are in place, the combination model performs

similar to the best of LTGA and MLNGA on all problems.

In the full version of this paper more in-depth comparisons are presented, also on other MAXCUT in-

stances that lead to a clear performance difference between the LT model and the MLN model when used

in GOMEA with the combination model LTN performing as good as the best of these two models. LTNGA

thereby can be considered to be more robust. The filtering techniques we proposed work well on the con-

sidered problems and make the linkage models more concise without negatively affecting performance. The

resulting algorithm, LTNGA, has state-of-the-art performance in terms of number of required evaluations

and requires very little time to run, even for large problems, contrary to most state-of-the-art EDAs.
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