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H I G H L I G H T S

• We develop a multi-actor multi-objective regional energy system planning approach.
• Optimal investment decisions for multiple actors can be derived simultaneously.
• The degrees of optimality of results show the alignment of actors quantitatively.
• A case study is done for a standalone renewable-based regional system in Amsterdam.
• A sub-optimal but most satisfactory generation mix for all actors is obtained.
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A B S T R A C T

Renewable energy investment is a complex process where multiple actors are often involved with their own,
sometimes conflicting, interests. Here we propose a multi-actor multi-objective regional energy system planning
approach to help actors gain mutual understanding regarding each other’s optimal investment wishes, in
order to advance the planning process. This approach combines two models: Multi-Objective Optimization
(MOO) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The approach uses
illustrative objectives and actors which is then applied to the greater Amsterdam region to showcase its usage
and strength. The four chosen objectives, i.e. total Capital Expenditure, total Operation & Maintenance costs,
land-use and visually impacted area are minimized simultaneously to obtain a set of Pareto-optimal solutions.
These solutions are then evaluated for governments, funders and local residents with different preferences
using TOPSIS. The case study shows that our approach is unique and useful when multiple actors have to
decide together upon the energy investment capacities. It is able to provide quantitative and optimal decision-
aiding from the multi-actor perspective and generate also sub-optimal yet acceptable solutions for all the
actors. Based on our approach, the impacts of policy options can be revealed from the actors’ perspectives as
well.

1. Introduction

1.1. Background and motivation

Renewable Energy Sources (RES) can help reduce carbon emissions
and have been the pillar in the energy transition. Although facing
uncertainties in the future, RES investment is arguably a robust energy

Abbreviations: TOPSIS, Technique for Order of Preference by Similarity to Ideal Solution; RES, Renewable Energy Sources; MOO, Multi-Objective
Optimization; ICES, Integrated Community Energy Systems; MCDM, Multi-Criteria Decision-Making; LCA, Life Cycle Assessment; CBA, Cost Benefit Analysis;
AHP, Analytical Hierarchy Process; PROMETHEE, Preference Ranking Organization METHod for Enrichment of Evaluations; ELECTRE, ELimination Et Choix
Traduisant la REalité; VIA, Visually Impacted Area; GA, Genetic Algorithm; CapEx, Capital Expenditure; O & M, Operation & Maintenance; V66, Vestas V66
wind turbines; V110, Vestas V110 wind turbines; PV-residential, residential PV; PV-utility, utility-scale PV; VRES, Variable Renewable Energy Sources; FOM,
Fixed Operation & Maintenance; VOM, Variable Operation & Maintenance; TRS, Total Roof Surface; NSGA-II, Non-dominated Sorting Genetic Algorithm II; CC,
Coefficient of Closeness; ENTSO-E, European Network of Transmission System Operators for Electricity; LCOE, Levelized Cost Of Electricity; AM, Arithmetic
Mean
∗ Corresponding author.
E-mail address: n.wang@tudelft.nl (N. Wang).

planning approach under the concern of energy independence (Al-
izadeh et al., 2016). However, the projection from McKinsey & Com-
pany (2019) states that currently in 2020, only 27% of the global power
generation comes from RES. This fact indicates that, despite the effort
made for a carbon-free future energy system, there is still a long way
to go to construct a system with a high-RES penetration. Many people
are taking part in this transition. Amongst others, researchers in the
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Nomenclature

Parameters

𝛾 storage conversion factor
𝜔𝑎
𝑚 weight for preference 𝑚, actor 𝑎

𝜙𝑖 land-use factor of technology 𝑖 (km2/kW)
LUmax maximum land that can be used (km2)
TRS total roof surface (km2)
𝜐𝑖 visual impact of one wind turbine of type 𝑖

(km2)
𝑎𝑖 Fixed Operation & Maintenance costs of

generation/storage technology 𝑖 per unit
capacity per year (e/kW/yr)

𝑏𝑖 Variable Operation & Maintenance costs of
generation/storage technology 𝑖 per unit
energy (e/kWh)

𝐶𝑖 Capital Expenditure of generation/storage
conversion technology 𝑖 (e/kW, e/kWh for
storage)

𝐷𝑡 energy demand at time 𝑡 (kWh)
𝐿𝑖 lifetime of generation/storage technology 𝑖

(yr)
𝑃 rated
𝑖 rated power of wind turbines of type 𝑖 (kW)

𝑟 discount rate
𝜂𝑖,𝑡 capacity factor of technology 𝑖 at time 𝑡

Sets

A all actors, A = {governments, funders, local
residents}

G all technologies, G = {Vestas V66 wind
turbines, Vestas V110 wind turbines, utility-
scale PV, residential PV, biomass, storage,
storage conversion}

M all preferences, M = {total Capital Expendi-
ture, total Operation & Maintenance costs,
land-use, Visually Impacted Area}

N all Pareto-optimal solutions
VRES wind and solar energy technologies, VRES

= {Vestas V66 wind turbines, Vestas V110
wind turbines, utility-scale PV, residential
PV}

field of future energy system design aim to identify what the best RES
investment plans would be.

Different categorizations of energy system planning models exist
that focus on RES integration (Prasad et al., 2014; Dagoumas and
Koltsaklis, 2019), such as optimization models and simulation models
(see the recent reviews of Oree et al. (2017) and Tozzi and Jo (2017),
respectively). Optimization models, being the most common approach
in generation investment problems (Dagoumas and Koltsaklis, 2019),
are especially suitable for studies on long-term RES investment (Iqbal
et al., 2014), as they are able to find the theoretical optimal solution
that maximizes or minimizes the objective function (such as cost or
emissions). On the other hand, simulation models, such as agent-based
models and system dynamics models, are powerful in solving other
problems since they rather look for system patterns taking into account
the interactions between agents or other system components. This study
focuses on the optimal future energy system designs and will therefore
focus on optimization models instead of on simulation models.

In most optimization models, the objective is usually to minimize
total cost (Prasad et al., 2014) to find the optimal RES generation

Variables

CC𝑎
𝑛 normalized Coefficient of Closeness for

solution 𝑛, actor 𝑎
CCaverage

𝑛 average normalized Coefficient of Closeness
for solution 𝑛

CoCl𝑎𝑛 absolute Coefficient of Closeness for solu-
tion 𝑛, actor 𝑎

𝐶CapEx total Capital Expenditure (e)
𝐶O&M total Operation & Maintenance costs (e)
𝐼𝑎+𝑚 best point regarding preference 𝑚, actor 𝑎
𝐼𝑎−𝑚 worst point regarding preference 𝑚, actor 𝑎
𝐾𝑖 capacity of generation/storage conversion

technology 𝑖 (kW, kWh for storage)
𝑃 charging
𝑡 energy from charging the storage at time 𝑡

(kWh)
𝑃 deficit
𝑡 energy deficit after deploying wind and

solar energy at time 𝑡 (kWh)
𝑃 discharging
𝑡 energy from discharging the storage at time

𝑡 (kWh)
𝑃𝑖,𝑡 energy production/storage of technology 𝑖

at time 𝑡 (kWh)
𝑄𝑛𝑚 absolute value for solution 𝑛, preference 𝑚
𝑅𝑛𝑚 normalized value for solution 𝑛, preference

𝑚
𝑆𝑎+
𝑛 positive distance for solution 𝑛, actor 𝑎

𝑆𝑎−
𝑛 negative distance for solution 𝑛, actor 𝑎

𝑉 𝑎
𝑛𝑚 weighted normalized value for solution 𝑛,

preference 𝑚, actor 𝑎
WT𝑖 number of wind turbines of type 𝑖
LU total land-use (km2)
maximin the highest minimal normalized Coefficient

of Closeness for all the actors, among all the
solutions

minimax the lowest maximal normalized Coefficient
of Closeness for all the actors, among all the
solutions

VIA total Visually Impacted Area (km2)

mix. The cost-optimal models have been extensively discussed in lit-
erature, e.g., see the recent review of Ringkjøb et al. (2018). However,
according to IRENA (2018), RES are already cost-competitive with
their fossil-fuels counterparts. Especially, onshore wind turbines are
(one of) the cheapest generation sources among all sources including
conventional generation. Despite the low cost, the global installed
capacity of onshore wind turbines is only 309GW, which is less than
half of the installed capacity of solar PV (IEA, 2019). This implies
that, for the RES investment in practice, cost is not the only criterion.
In fact, the energy system is strongly interconnected with society.
In addition to economic factors (such as cost), the decision-making
in energy system planning also depends on environmental, technical
and social aspects and is usually complex (Strantzali and Aravossis,
2016). These factors need to be emphasized in research in order to
help the stakeholders1 understand the barriers that hinder the progress
in RES implementation, to contribute to the discussion with all the
actors and thus further assist their decision-making (Miller et al., 2013).
Optimization models that can handle all these factors (provided they
can be quantified) are Multi-Objective Optimization (MOO) models.

1 Note that in this paper, the terms stakeholders, actors and decision-makers
are used interchangeably.
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1.2. Literature review

1.2.1. Multi-objective optimization in energy system planning
MOO models generate solutions to achieve predefined objectives

such as cost and emissions, where the decision variables are subject
to a set of constraints. According to Alarcon-Rodriguez et al. (2010)
and Fadaee and Radzi (2012), there are two types of MOO models. In
the first type, the different objectives are merged into a single-objective
function - the so-called scalarization. Weights have to be allocated to
each objective. In this way, one optimal solution will be found, just
as for single-objective optimization. In the second type, no weights
are given, but a set of Pareto-optimal solutions for all objectives will
be found. These solutions are non-dominated, i.e. solutions for which
other solutions that are better regarding each objective do not exist.
It is important to know that these solutions are mathematically equally
good (Wang and Rangaiah, 2017), and thus the ranking of the solutions
totally depends on the decision-maker. Compared to the scalarization
method, the Pareto-optimal solutions present a better picture of the
trade-offs between the objectives, and more insights would be obtained
when the preferences of the actors are taken into account afterwards (a
posteriori). Using Pareto-optimal solutions is more methodical and less
subjective (Deb, 2015) and allows to analyse the correlation between
the objectives (Alarcon-Rodriguez et al., 2010). In fact, the compre-
hensive review of Alarcon-Rodriguez et al. (2010) concludes that most
MOO studies in energy system planning generate a set of Pareto-optimal
solutions instead of using scalarization.

The reviews of Alarcon-Rodriguez et al. (2010), Fadaee and Radzi
(2012) and Antunes and Henriques (2016) give good overviews of ear-
lier studies on MOO literature that provides Pareto-optimal solutions.
To avoid repetition, the relevant literature in the recent 10 years is
briefly reviewed here. Tekiner et al. (2010) proposes a multi-period
multi-objective generation expansion approach to simultaneously min-
imize total cost and emissions. A model to design a RES-based energy
system is presented by Zou et al. (2010), where it accounts for total
cost and system reliability. Perera et al. (2013b) and Clarke et al.
(2015) design standalone hybrid energy systems to minimize cost and
emissions. The model of Falke et al. (2016) minimizes total cost and
emissions as well and is applied to a town in Germany. A long-
term energy system planning of the Croatian energy system is done
by Prebeg et al. (2016), where the objectives are minimizing cost and
maximizing the RES contribution. Mahbub et al. (2017) investigates
the future energy scenarios in an Italian region to minimize cost and
emissions. A MOO model for expansion with high-RES shares is de-
veloped by Luz et al. (2018), which is applied to a Brazilian case to
give advice on the RES targets posed by the government. Furthermore,
minimizing cost and emissions are also found in the studies of Arnette
and Zobel (2012), Fazlollahi et al. (2012), Gabrielli et al. (2018) and Di
Somma et al. (2018) for energy system planning with various focuses
such as stochastic planning or seasonal storage. In addition, in studies
focusing on system integration options (Prasad Koirala et al., 2016)
such as community microgrids, virtual power plants, energy hubs and
Integrated Community Energy Systems (ICES) (Koirala, 2017), Pareto-
optimal solutions are also searched for. For example, Guo et al. (2014)
selects the type and capacity of distributed generation units as the
decision variables. A case study for a microgrid system is carried out. In
the work of Koirala et al. (2016), the solutions are generated randomly
for ICES to minimize cost and emissions.

In summary, various MOO studies generate Pareto-optimal solu-
tions where minimizing cost and emissions are considered the most
commonly used objectives. Although the Pareto-optimal solutions are
useful in revealing the bounds of the solution space, they need to
be further analysed to help the final decision-making by stakeholders
with different preferences. The post-processing of the results requires
other techniques than only MOO. Actually, the decision-aiding for
multiple actors is often discussed in another field of study - Multi-
Criteria Decision-Making (MCDM) (Alarcon-Rodriguez et al., 2010).
Therefore, multi-actor decision-making in energy system planning will
be introduced in the next section.

1.2.2. Multi-actor decision-making in energy system planning
Given the complex nature of the energy system planning problem,

the decision-making is not possible without considering the various
interests and preferences from multiple actors (Tsoutsos et al., 2009).
The multi-actor perspective can be considered using various methods,
such as the Value Case Method (Dittrich and van Dijk, 2013) which
identifies and aligns the values of multiple stakeholders by means
of workshops and interviews for large innovation projects. According
to Strantzali and Aravossis (2016), the most frequently used decision-
making models in RES investment are Life Cycle Assessment (LCA),
Cost-Benefit Analysis (CBA) and MCDM. While LCA mainly focuses
on the environmental impacts of RES and CBA is used to account
for the monetary aspects, MCDM inherently considers the conflicting
objectives of the stakeholders and is able to include aspects with
different units (Oree et al., 2017).

MCDM is an evaluation method that considers criteria from different
aspects simultaneously, such as technical, economic and environmental
aspects (Tsoutsos et al., 2009). In this method, a set of alternatives
are evaluated against those criteria and the output is usually rank-
ing of the alternatives. MCDM methods in energy system planning
have been reviewed comprehensively by Pohekar and Ramachandran
(2004), Løken (2007), Antunes and Henriques (2016) and Kumar et al.
(2017). Besides, the studies of Alizadeh et al. (2020) and Beiragh
et al. (2020) also provide reviews on MCDM with various focuses.
Generally, three types of methods are discussed in literature, which
are value measurement methods, goal programming and outranking
methods (Løken, 2007). This paragraph will now briefly introduce
these methods and outline some studies from the recent 10 years.
The value measurement methods give a numerical score to the criteria
based on the relative importance and rank the alternatives. These
methods usually include Analytical Hierarchy Process (AHP) (Kaya and
Kahraman, 2010; Erol and Kilkic̨, 2012; Stein, 2013; Afsordegan et al.,
2016; Çelikbilek and Tüysüz, 2016; Štreimikiene et al., 2016; Haddad
et al., 2017; Balin and Baraçli, 2017; Malkawi et al., 2017; Büyüközkan
and Karabulut, 2017; Beiragh et al., 2020). Goal programming uses
mathematical equations to select the alternatives that are closest to
the ideal points that have been defined beforehand with regard to
the objectives. The most popular method belonging to this category is
Technique of Order Preference by Similarity to Ideal Solution (TOP-
SIS) (Kaya and Kahraman, 2011; Streimikiene et al., 2012; Alsayed
et al., 2013; Brand and Missaoui, 2014; S̨engül et al., 2015; Afsordegan
et al., 2016; Balin and Baraçli, 2017; Baležentis and Streimikiene,
2017). Outranking methods apply a different methodology compared
to the previous two. Instead of obtaining a merit order of the alter-
natives like the previous methods do, the alternatives are compared
pair-wise. Examples of these methods are Preference Ranking Organi-
zation METHod for Enrichment of Evaluations (PROMETHEE) (Alsayed
et al., 2013) and ELimination Et Choix Traduisant la REalité (ELEC-
TRE) (Catalina et al., 2011; Haurant et al., 2011). Among those MCDM
methods, TOPSIS offers a simple way of combining the preferences
of multiple actors to allow for group decision-making (Shih et al.,
2007), which is most relevant to this research. It has been used in
other fields such as IT personnel selection (Samanlioglu et al., 2018),
smart medical device selection (Abdel-Basset et al., 2019) and stock
exchange (Hatami-Marbini and Kangi, 2017). The applications of TOP-
SIS in energy system planning are now reviewed, by elaborating on the
aforementioned studies in the previous paragraph. Kaya and Kahraman
(2011) proposes a modified fuzzy TOPSIS methodology and applies it
to an energy decision-making problem. Wind energy is found to be the
best RES alternative. Similarly, Streimikiene et al. (2012) develops a
framework to prioritize energy generation technologies. Alsayed et al.
(2013) finds the optimal size of a wind turbine-PV energy system by
comparing scenarios of different installed capacities. A Turkish case
study is done by Brand and Missaoui (2014). They use inputs from
stakeholders and evaluate five power mix scenarios. Also for Turkey,
the study of S̨engül et al. (2015) develops a framework to support the
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Fig. 1. Positioning of the paper in the literature on energy system planning.

ranking of RES and they find that hydro power is the best option.
However, the study of Balin and Baraçli (2017) shows that wind
energy is the best alternative for Turkey by using a combination of
fuzzy AHP and TOPSIS. Another modified fuzzy TOPSIS framework is
proposed by Afsordegan et al. (2016) to rank seven energy alternatives
under nine criteria. European Union energy development scenarios are
evaluated by Baležentis and Streimikiene (2017). The evaluations are
based on the policy priorities such as energy efficiency measures and
the increasing use of RES.

These studies focus on either the ranking of the RES alternatives or
evaluating the scenarios consisting of energy mix options. The former,
although being able to give advice on the best RES, lacks detailed and
quantitative insights on the investment capacity taking into account
the realistic data such as demand profiles and the generation profiles
of wind and solar energy. The evaluations of future energy scenarios
overcome part of the problem as they are able to choose a specific
energy mix. However, the scenarios are often given and may be far
from optimal. Furthermore, the decision-making for a group of actors
has not yet been studied using TOPSIS in the field of energy system
planning.

1.2.3. Combination of MOO and MCDM
Regardless of the sector, decision-making is always a complex task.

Depending on the goal of the study, it usually involves the combi-
nation of methodologies, where the merits of both would be utilized
conjointly. For instance, in supply chain management, it is essential to
optimize the purchase process, while considering multiple criteria to
evaluate different suppliers. Kannan et al. (2013) uses MOO and MCDM
to rate and select the best green suppliers. The performance of the
energy supply chain is assessed thoroughly with the help of combining
various methods in Shafiei Kaleibari et al. (2016).

Model combinations are also studied in the field of energy system
planning. For example, when criteria such as benefit, opportunity are
crucial, strategic planning and MCDM can be jointly used to provide
decision-support in prioritizing RES for policy-makers (Alizadeh et al.,
2020). The need for using MOO and MCDM is recognized by Antunes
and Henriques (2016). MOO is able to provide a large set of optimal
solutions showing trade-offs between different objectives. Starting from
the Pareto-optimal solutions, MCDM further enables a richer critical
evaluation and analysis of the solutions. Hajibandeh et al. (2018)
combines MOO and MCDM to identify the efficient strategies for system
operators with a focus on demand response programmes.

Our literature review shows that although the RES investment prob-
lem has been studied extensively, the combination of MOO and MCDM
to find the optimal generation mix has not often been addressed. The
holistic approach that combines both methodologies will be able to give
a comprehensive understanding of the optimal future energy system
designs to various stakeholders including but not limited to policy-
makers. Before further stating the research gap and our contributions,
two studies that combine MOO and MCDM in energy system planning
will first be discussed.

For the design of a standalone energy system, Perera et al. (2013a)
uses fuzzy TOPSIS which is capable of handling the ambiguity associ-
ated with the relative weights of the objectives to analyse the Pareto-
optimal solutions. Their approach would be useful for the decision-
aiding for a particular decision-maker who has ambiguity on the rel-
ative importance of the objectives. Jing et al. (2018) uses MOO and
MCDM to design a combined cooling, heat and power energy system
with a focus on the Solid Oxide Fuel Cells. The purpose of their study
is to select the best location and building type for such a system with
different input data.

These two papers indicate the strength of combining MOO with
MCDM, in particular TOPSIS. However, they are not able to cope with
multiple actors with different preferences. Perera et al. (2013a) focuses
on dealing with the ambiguity of opinions of a particular decision-
maker, while various actors who are simultaneously involved in an
energy system planning problem are not addressed and hence, the
optimal decisions for those actors cannot be derived. In the work of Jing
et al. (2018), TOPSIS is used to evaluate two objectives (cost and
emissions), but actors are not included at all.

1.3. Research gap and contributions of the paper

We conclude that in the literature on energy system planning, the
combination of MOO and MCDM has not drawn enough attention.
Two studies which have done so either focus on dealing with the
ambiguity of a hypothetical decision-maker or pay attention to the
optimal selection of the location of the energy system with differ-
ent input data. However, the inclusion of multiple stakeholders with
diverse preferences and accordingly, the comparisons and trade-offs
of the optimal solutions from the actors’ perspectives have not been
studied. In other words, no researchers have yet performed energy
system planning through the lens of the multi-actor perspective. This
perspective is needed in the complex energy system where multiple
stakeholders need to reach agreements on RES investment capacity.
Therefore, it is crucial to inform the stakeholders about the optimal
generation mixes from their perspectives and other stakeholders’ per-
spectives in RES investment negotiations. This understanding will assist
their decision-making and thus accelerate the RES implementation
process.

In addition, based on the literature review on MOO, the visual
impact of wind turbines (Sunak and Madlener, 2016) and the land-use
of RES have not previously been included in MOO studies as separate
objectives. The visual impact of wind turbines can be considered as
a proxy for acceptance of wind energy, and the land-use of RES is a
significant issue (Palmer-wilson et al., 2019) regarding spatial policies.

Therefore, we propose a two-stage multi-actor multi-objective re-
gional energy system planning model that is able to consider multiple
actors and their preferences. It combines a MOO model with TOPSIS.
Fig. 1 pinpoints the positioning of our study with regard to the existing
studies in the field of energy system planning.

The major contributions of the paper are the following:
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• The proposed method simultaneously considers several actors
that are often involved in the RES investment process, which
addresses the multi-actor environment in the real world. It will
be particularly useful for energy system designers, policy-makers,
investors and residents that participate in the energy system
planning. Furthermore, the approach is generic, indicating that
other than the exemplary actors and the objectives which are
considered in this paper, the integrated method is able to include
other actors and their preferences with minor adjustments on a
case-by-case basis.

• Optimal energy mix for each actor can be derived using our
quantitative method. The preferred technologies and the optimal
investment capacity for each actor can now be compared, which
was previously largely discussed qualitatively.

• Due to the two-stage approach, a set of Pareto-optimal solutions
will be obtained using MOO at first. Then, the degrees of optimal-
ity of all the obtained Pareto-optimal solutions can be derived for
each actor. Therefore, in addition to the optimal solution for each
actor, our approach enables the possibility to find solutions that
are sub-optimal for each actor yet e.g., most satisfying for all the
actors.

• Researchers can now use our approach directly or with minor
adjustments, to explore and reveal the impacts of various policy
options (e.g., RES subsidies, emission targets and spatial policies)
on the optimal investment decisions from the multi-actor perspec-
tive, which was in the past mostly evaluated without the attention
on the various actors.

• The land-use of RES and the visual impact of wind turbines
which is considered as a proxy for acceptance will be modelled
separately as two objectives.

1.4. Overview of the proposed approach

In order to guide the readers, the scope of the models in this paper
and a brief introduction of our approach are given.

1.4.1. Scope of the models in this paper
The main contribution of the paper is to present a two-stage multi-

actor multi-objective regional energy system planning approach that is
able to give the investment decisions with various degrees of optimality
from a multi-actor perspective. This will be done by generating a set of
Pareto-optimal solutions using a MOO model, which are then evaluated
using TOPSIS to consider the actors and their preferences.

Considering the goal of the study, therefore, in this paper, the scope
of the MOO model, the considered actors and their preferences are
limited and simplified. They are mainly used to perform an illustrative
case study that will later be conducted to demonstrate the usage and
the strength of the approach. However, as stated in the first major
contribution of the work, they can be adapted for any specific case
where the approach is still applicable and useful.

1.4.2. Introduction of the approach
The model focuses on a standalone regional energy system that

requires investment in RES including wind energy, solar energy and
biomass as well as storage. The investments are further divided into
six technologies, which are Vestas V66 wind turbines, Vestas V110
wind turbines, residential PV, utility-scale PV, biomass and hydrogen
storage. Vestas V66 and Vestas V110 are turbines with different sizes,
resulting in different land-use and Visually Impacted Area (VIA). A
simulation model is constructed to model the energy flow based on the
six technologies.

To find the optimal investment decisions on the number of wind
turbines and the capacities of the other technologies, a MOO algorithm,
the Genetic Algorithm (GA) (see Section 3.4 for details), will be used. In
this study, the involved actors in energy system planning are simplified

Table 1
The major preferences of the three actor groups.

Objectives

Total O & M costs Total CapEx Land-use VIA
Actors groups min min min min

Governments ✓ ✓ ✓ ✓

Funders ✓ ✓

Local residents ✓

to three main actor groups (see Section 4.1 for details), who are govern-
ments, funders and local residents. They have four common interests,
which will be the objectives to be minimized. These objectives are total
Capital Expenditure (CapEx), total Operation & Maintenance (O & M)
costs, land-use and VIA. Using GA, the Pareto-optimal solutions will be
obtained regarding the four objectives. Within the common interests,
they also have their major preferences (see Table 1). Subsequently,
based on the major preferences of the actors, TOPSIS is used to find
the optimal solution for each actor.

An overview of the approach is shown in Fig. 2.

1.5. Structure of the paper

The paper is organized as follows. Firstly, Section 2 describes the
simulation model that simulates the energy flow. Then, the optimiza-
tion model and the algorithm are discussed in Section 3. Next, the
actors and their preferences are described and TOPSIS is formulated
in Section 4. Section 5 introduces the case study and summarizes the
input data. Later, results and discussions are presented and elaborated
in Section 6. At last, conclusions are drawn and policy implications are
given.

2. Simulation model

The simulation model for energy system planning consists of a num-
ber of individual models to simulate energy generation and storage.

2.1. Considered technologies

As mentioned in Section 1.4.2, in this study, the modelling of the
energy flow starts with the six considered technologies. They are Vestas
V66 wind turbines (V66), Vestas V110 wind turbines (V110), residen-
tial PV (PV-residential), utility-scale PV (PV-utility), biomass (biomass)
and hydrogen storage technology. Moreover, hydrogen storage tech-
nology consists of storage conversion (storage-conversion) and storage
(storage). Accordingly, the decision variables are the numbers of the
wind turbines (WT𝑖,∀𝑖 ∈ {V66,V110}) and the installed capacities
of the other technologies (𝐾𝑖,∀𝑖 ∈ {PV-residential,PV-utility, biomass,
storage, storage-conversion}).

The proposed simulation model includes state-of-the-art compo-
nents in regional energy planning models, such as RES generation
profiles and storage technology. A general model of storage is used,
although hydrogen storage is specified, other forms of storage such as
flow battery storage can also be used subject to the choice of the study.
In addition, biomass is included to provide controllable generation. It
is noted that this model is used to illustrate the usage of the proposed
method. Therefore, an exhaustive inclusion of generation technologies
and the detailed modelling of hydrogen storage are considered out of
scope.
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Fig. 2. Overview of the approach.

2.2. Energy production from intermittent sources

Energy generated from Variable Renewable Energy Sources (VRES),
i.e. solar and wind, is affected by meteorological conditions, which are
included in the model using capacity factors. Therefore, their generated
energy (𝑃𝑖,𝑡) at all time steps depends on the installed capacity of each
technology (𝐾𝑖) and the capacity factor (𝜂𝑖,𝑡) of each technology (𝑖,∀𝑖 ∈
VRES). The installed capacity of the wind turbines (𝐾𝑖) is calculated
as the sum of the rated power (𝑃 rated

𝑖 ) and the number of the turbines
(WT𝑖).

𝐾𝑖 = 𝑃 rated
𝑖 WT𝑖 ∀𝑖 ∈ {V66, V110} (1)

𝑃𝑖,𝑡 = 𝜂𝑖,𝑡𝐾𝑖 ∀𝑖 ∈ VRES,∀𝑡 ∈ {1, 2,… , 𝑇 } (2)

where VRES = {V66, V110, PV-utility, PV-residential}.
However, the generated energy (𝑃𝑖,𝑡) may not be enough to fulfil the

energy demand (𝐷𝑡) at all time steps. In other words, there may be a
deficit in the required energy supply, which is calculated by:

𝑃 deficit
𝑡 = 𝐷𝑡 −

∑

𝑖∈VRES
𝑃𝑖,𝑡 ∀𝑡 ∈ {1, 2,… , 𝑇 } (3)

2.3. Energy storage

If there is a shortage in energy supply (i.e. 𝑃 deficit
𝑡 ≥ 0), the

storage can be used to supply stored energy to the demand (storage
discharging) if there is enough stored energy. If the solar PV and the
wind turbines produce more energy than is required (i.e. 𝑃 deficit

𝑡 <
0), the excess energy can be stored (storage charging) in the storage
technology if the storage is not full. The efficiency of charging and
discharging is denoted by 𝜂. The energy that is stored (𝑃storage,𝑡) at all
time steps is calculated by:

𝑃storage,𝑡

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑃storage,𝑡−1 −
1
𝜂 𝑃

deficit
𝑡 ∀𝑡 ∈ {1, 2,… , 𝑇 } if 𝑃 deficit

𝑡 ≥ 0 and
𝑃storage,𝑡−1 ≥

1
𝜂 𝑃

deficit
𝑡

0 if 𝑃 deficit
𝑡 ≥ 0 and

𝑃storage,𝑡−1 <
1
𝜂 𝑃

deficit
𝑡

𝑃storage,𝑡−1 − 𝜂𝑃 deficit
𝑡 ∀𝑡 ∈ {1, 2,… , 𝑇 } if 𝑃 deficit

𝑡 < 0

(4)

We define two extra variables for discharging (𝑃 discharging
𝑡 ) and

charging (𝑃 charging
𝑡 ), respectively. They are defined in the following way

as non-negative variables:

𝑃 discharging
𝑡

=

{

𝜂(𝑃storage,𝑡−1 − 𝑃storage,𝑡) ∀𝑡 ∈ {1, 2,… , 𝑇 } if 𝑃 deficit
𝑡 ≥ 0

0 if 𝑃 deficit
𝑡 < 0

(5)

𝑃 charging
𝑡 =

{

0 if 𝑃 deficit
𝑡 ≥ 0

1
𝜂 (𝑃storage,𝑡 − 𝑃storage,𝑡−1) ∀𝑡 ∈ {1, 2,… , 𝑇 } if 𝑃 deficit

𝑡 < 0

(6)

The model is initialized with the energy storage empty:

𝑃storage,0 = 0 (7)

The charging and discharging happen in the storage conversion,
whose capacity (𝐾storage-conversion) is proportional to the storage capac-
ity (𝐾storage), i.e.:

𝐾storage-conversion = 𝛾𝐾storage (8)

where 𝛾 is taken as 0.167 (Schlachtberger et al., 2017) in this study.
The constraints regarding the bounds of the storage will be given in

Section 3.3.

2.4. Energy from biomass

The energy generated by biomass (𝑃biomass,𝑡) at all time steps is used
to fulfil the remaining deficits in supply. It is only deployed when
energy from VRES is not enough and the storage has been emptied
after discharging. The amount of energy generated by the biomass is
calculated as follows.

𝑃biomass,𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑃 deficit
𝑡 − 𝜂𝑃storage,𝑡−1 ∀𝑡 ∈ {1, 2,… , 𝑇 } if 𝑃 deficit

𝑡 ≥ 0
and 𝑃storage,𝑡 = 0

0 otherwise

(9)

The constraints regarding the bounds of the energy generated by
biomass will be given in Section 3.3.

3. Multi-objective optimization model

In order to find the Pareto-optimal solutions for the generation
mixes, in this study, a MOO problem is formulated, and GA is used
to solve the model. This section introduces the objectives, constraints
of the optimization problem as well as the optimization technique that
is used.
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Fig. 3. Flowchart of the NSGA-II algorithm.

3.1. Choice of objectives

The four objectives that will be minimized are total CapEx, total O &
M costs, land-use and VIA. CO2 emissions are often used as an objective
in MOO studies, however, in this study, they are treated as an implicit
constraint that CO2 emissions are considered to be reduced by 100%
since only RES are used.

As stated in Section 1.4.1, in order to convey the main message
which is an improved energy planning method by adding the multi-
actor perspective to MOO, some modelling choices are made. Without
increasing the computational burden, the four most important objec-
tives that are related to the preferences of the actors are chosen,
where land-use is crucial for a region with limited land. The model
is considered to be used directly for the design of a carbon-free future
energy system. However, if a new study is to be conducted that focuses
on the different emission targets, our model can always be fine-tuned
on a case-by-case basis.

3.2. Objectives

Total CapEx The total CapEx of the six technologies is the first
objective to be minimized. 𝐶𝑖 represents the CapEx every unit capacity
of each technology (𝑖). The total annualized CapEx is calculated as:

𝐶CapEx =
∑

𝑖∈G

𝑟𝐶𝑖𝐾𝑖

1 − 1
(1+𝑟)𝐿𝑖

(10)

where G = {V66, V110, PV-utility, PV-residential, biomass,
storage, storage conversion}, 𝑟 is the discount rate, which is taken as
5% in this study (Wang et al., 2020), 𝐿𝑖 is the lifetime of the technology
(𝑖).

Total O & M costs The total O & M costs is the second objective
to be minimized. For each technology (𝑖), the operation and main-
tenance costs consist of the Fixed Operation & Maintenance (FOM)
costs per unit capacity per year (𝑎𝑖) and the Variable Operation &
Maintenance (VOM) costs per unit energy generated (𝑏𝑖). The total
annualized operation and maintenance costs is calculated as:

𝐶O&M =
∑

𝑖∈G
(𝑎𝑖𝐾𝑖 + 𝑏𝑖

∑

𝑡∈{1,2,…,𝑇 }
𝑃𝑖,𝑡) (11)

Land-use The total land-use of RES indicates the used land by RES
technologies. It is quantified using the land-use factor (𝜙𝑖) of each
technology (𝑖), which is defined as the area of used land per unit
capacity. The assumption in this research is that wind turbines and
utility-scale PV take up land since they are land-intensive compared to
other technologies. Residential PV is placed on rooftops and does not
occupy any land, but it will be constrained by the available rooftop
surfaces (see Section 3.3).

LU =
∑

𝑖∈{V66,V110,PV-utility}
𝜙𝑖𝐾𝑖 (12)

VIA The VIA caused by the energy system is calculated in a similar
way. An assumption is made that only wind turbines have a specific
visual impact (𝜐𝑖,∀𝑖 ∈ {V66,V110}), measured in area of impacted land

per wind turbine. Solar PV and biomass are not assumed to have any
effects on visual impact.

VIA =
∑

𝑖∈{V66, V110}
𝜐𝑖WT𝑖 (13)

3.3. Constraints

The optimization model has to satisfy a set of constraints. They are
now discussed.

Energy balance constraint The first constraint concerns the energy
balance. The energy demand has to be met all the time.

∑

𝑖∈VRES∪{Biomass}
𝑃𝑖,𝑡 + 𝑃 discharging

𝑡 ≥ 𝐷𝑡 + 𝑃 charging
𝑡 ∀𝑡 ∈ {1, 2,… , 𝑇 } (14)

Energy storage constraints The energy stored (𝑃 stored
𝑡 ) needs to be be-

tween zero and the installed storage capacity (𝐾storage). The amount of
charging and discharging (𝑃 deficit

𝑡 ) is limited by the storage conversion
capacity. The relevant constraints are:

0 ≤ 𝑃storage,𝑡 ≤ 𝐾storage ∀𝑡 ∈ {1, 2,… , 𝑇 } (15)
0 ≤ 𝑃 deficit

𝑡 ≤ 𝐾storage-conversion ∀𝑡 ∈ {1, 2,… , 𝑇 } (16)

Energy from biomass constraint The energy generated from biomass
𝑃biomass,𝑡 cannot be negative or exceed its capacity (𝐾biomass). Therefore,
the energy generation from biomass adheres to the following constraint:

0 ≤ 𝑃biomass,𝑡 ≤ 𝐾biomass ∀𝑡 ∈ {1, 2,… , 𝑇 } (17)

Land-use constraint The next constraint is a constraint on land-use.
The energy system cannot use more land than is available and suitable
for RES development in the system. The suitable land (LUmax) for wind
turbines and utility-scale PV energy can be calculated following the
approach of Wang et al. (2020).

∑

𝑖∈{V66,V110,PV-utility}
𝜙𝑖𝐾𝑖 ≤ LUmax (18)

Residential PV constraint The last constraint is about the available
rooftop surface. Residential PV are solar panels which are placed on
rooftops. The total area occupied by the residential PV has to be less
than the Total Roof Surface (TRS). Same as suitable land for wind
turbines and utility-scale PV, this TRS can also be estimated following
the approach of Wang et al. (2020).

𝜙PV-residential𝐾PV-residential ≤ TRS (19)

3.4. Optimization algorithm

In this research, the Non-dominated Sorting Genetic Algorithm II
(NSGA-II), which is one of the most widely used GA (Golchha and
Qureshi, 2015), is used to find the set of Pareto-optimal solutions.

A GA is an artificial intelligence technique that is widely used to
solve MOO problems. It offers a high degree of flexibility and can
handle non-linear functions. GA is specifically efficient for finding
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Fig. 4. Illustration of the step 1–5 of the TOPSIS method, where only three objectives are visualized.

the Pareto-optimal solutions in a MOO problem because it evaluates
multiple solutions in a single iteration.

The NSGA-II algorithm works based on an evolutionary process. A
simplified flowchart of the NSGA-II algorithm used in this research is
presented in Fig. 3. It starts with an initial population that is made
up of a random set of individuals, i.e. the installed capacities of
the six technologies. Then, the defined objectives and constraints are
evaluated. The population is selected if the values of the objectives
are low and the constraints are met. Next, subsequent generations are
generated by combining different individuals and by random changes to
a single individual, i.e. crossover and mutation process. The algorithm
keeps creating new generations until a certain number of generations
have been reached. The final generation of the population is the output
of the algorithm. In this research, the population size is 200 and the
generation is 500. These values are set based on the work of Sawle
et al. (2018) and are made larger to ensure convergence.

4. Multi-actor perspective

After obtaining the Pareto-optimal solutions, the trade-offs between
the different objectives can be obtained. However, it remains unclear
what the optimal solutions will be for the actors with unique (com-
bination of) preferences. To be able to take these preferences into
account, the results will be evaluated using TOPSIS from a multi-actor
perspective. First, the involved actors and their preferences will be
discussed. Then, the process of TOPSIS will be elaborated.

4.1. Involved actors and their preferences

The involved actors and their preferences are inputs for the model.
Since the focus and the contribution of this paper are to provide an
integrated energy planning approach to take the actors’ preferences into
account, simplified choices are made for the chosen actor groups and
their preferences. For detailed discussions in those aspects, interested
readers could refer to Antunes and Henriques (2016), Prasad Koirala
et al. (2016) and Al-falahi et al. (2017). If different groups of actors
and their preferences are to be used, the formulations of the objectives
will need to be changed accordingly but our proposed method will still
be valid. In this work, the involved actors are simplified to three actor
groups: governments, funders and local residents. We consider that the
overarching preference of all these actors is to plan a regional energy
system consisting of solely RES. Therefore, 100% carbon emission
reduction or solely using RES is considered to be their joint objective
which will be treated as a given and is not included in their preference
list. The rest of their preferences are shown in Table 1.

It has to be noted that, as mentioned in Section 1.4.2, total CapEx,
total O & M costs, land-use and VIA will be the objectives in the
optimization model. These objectives are all considered as preferences

for all the actors. In Table 1, only the major preferences of the actors
are marked, the other preferences are included in the optimization
as objectives but play a less important role compared to the major
preferences. Therefore, in TOPSIS, the solutions will be evaluated based
on their major preferences. The three actor groups and their major
preferences are now discussed further.

All levels of government are aligned in their preferences to minimize
total CapEx, total O & M costs, land-use and VIA. Governments make
up the first composite actor. The landowners have identical preferences
to the governments. Therefore, they are also represented by this actor
group.

RES projects need to be funded. The examples of funders are energy
cooperatives, producers or investors. They are primarily concerned
with minimizing total CapEx and total O & M costs. This actor group
is referred to as the funders.

The local residents that want to prevent visual impact from wind
turbines are unique in their major preferences: they mainly care about
minimizing VIA. Therefore, local residents acting against wind turbines
are categorized as another actor group.

4.2. Multi-criteria decision-making model (TOPSIS)

After obtaining the Pareto-optimal solutions from MOO, the so-
lutions will be evaluated based on their desirability to different ac-
tors, and then the final optimal solution for each actor will be ob-
tained, which results from a ranking of the outcomes using TOPSIS
method. Shih et al. (2007) presents an extension of TOPSIS that is
able to combine the preferences of multiple actors to allow for group
decision-making, which will be used in this research. The process for
TOPSIS will be described as follows, where step 1–5 are illustrated in
Fig. 4.

Step 1 is to construct the decision matrix consisting of the values
(𝑄𝑛𝑚) for each of the four preferences 𝑚,∀𝑚 ∈ M for each solution
𝑛,∀𝑛 ∈ N, where M = {total CapEx, total O & M costs, land-use, VIA},
and N is the set of Pareto-optimal solutions.

Step 2 is to create a normalized decision matrix with the normalized
values (𝑅𝑛𝑚). A simple linear normalization is applied. In the equation
below, 𝑄max,𝑚 represents the maximum value for preference 𝑚 out of
the complete set of solutions. 𝑄min,𝑚 represents the minimum value for
preference 𝑚:

𝑅𝑛𝑚 =
𝑄𝑛𝑚 −𝑄min,𝑚

𝑄max,𝑚 −𝑄min,𝑚
∀𝑛 ∈ N,∀𝑚 ∈ M (20)

Step 3 is to define the weighted normalized decision matrix (𝑉 𝑎
𝑛𝑚)

for each actor 𝑎,∀𝑎 ∈ A, where A = {governments, funders, local
residents}. Major preferences for one actor group are awarded a weight
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of 1. If a preference is not the major preference for a specific actor
group, the weight is 0.

𝑉 𝑎
𝑛𝑚 = 𝑤𝑎

𝑚𝑅𝑛𝑚 ∀𝑛 ∈ N,∀𝑚 ∈ M,∀𝑎 ∈ A (21)

Step 4 is to find the best point (𝐼𝑎+𝑚 ) regarding each preference 𝑚
for each actor 𝑎 and the worst point (𝐼𝑎−𝑚 ) regarding each preference 𝑚
for each actor 𝑎. In this research, all preferences are minimized.

𝐼𝑎+𝑚 = min
∀𝑛∈N

𝑉 𝑎
𝑛𝑚 ∀𝑚 ∈ M,∀𝑎 ∈ A (22)

𝐼𝑎−𝑚 = max
∀𝑛∈N

𝑉 𝑎
𝑛𝑚 ∀𝑚 ∈ M,∀𝑎 ∈ A (23)

Step 5 is to derive the positive distance (𝑆𝑎+
𝑛 ) and the negative

distance (𝑆𝑎−
𝑛 ) for each solution 𝑛 for each actor 𝑎. These are calculated

using the Euclidean distance between each solution and the best/worst
points. If the positive distance (𝑆𝑎+

𝑛 ) is large, it means that this solution
is far from the best point, i.e. it is not a good solution. Similarly, a
good solution will entail a large negative distance and a small positive
distance.

𝑆𝑎+
𝑛 = (

∑

𝑚∈M
(𝐼𝑎+𝑚 − 𝑉 𝑎

𝑛𝑚)
2)

1
2 ∀𝑛 ∈ N,∀𝑎 ∈ A (24)

𝑆𝑎−
𝑛 = (

∑

𝑚∈M
(𝐼𝑎−𝑚 − 𝑉 𝑎

𝑛𝑚)
2)

1
2 ∀𝑛 ∈ N,∀𝑎 ∈ A (25)

Step 6 is to determine the so-called normalized Coefficient of Close-
ness (CC) (CC𝑎

𝑛) for each solution 𝑛 for each actor 𝑎. To do this, first the
absolute CC (CoCl𝑎𝑛) for each solution 𝑛 for each actor 𝑎 is calculated.

CoCl𝑎𝑛 =
𝑆𝑎−
𝑛

𝑆𝑎+
𝑛 + 𝑆𝑎−

𝑛
∀𝑛 ∈ N,∀𝑎 ∈ A (26)

Then, CoCl𝑎𝑛 are normalized to CC𝑎
𝑛. CC𝑎

𝑛 represents the degree of
optimality of solution 𝑛 for actor 𝑎, which will be referred to as CC
score in the rest of the paper. A CC score of 1 means that the solution
is the closest to the best solution and the furthest to the worst solution
for the specified actor.

CC𝑎
𝑛 =

CoCl𝑎𝑛 − CoCl𝑎min
CoCl𝑎max − CoCl𝑎min

∀𝑛 ∈ N,∀𝑎 ∈ A (27)

Step 7 is the final step. Each solution now has a CC score for each
actor. To combine the preferences of the actors, the method proposed
by Shih et al. (2007) is used. The geometric mean of the CC scores for
all actors is calculated to define an average CC score (CCaverage

𝑛 ). In the
equations below, |A| represents the size of the set of actors A.

CCaverage
𝑛 = (

∏

𝑎∈A
CC𝑛,𝑎)

1
|A| ∀𝑛 ∈ N (28)

Two more values are defined: maximin and minimax. For each
solution, the minimum CC score of all the actors is taken, and then
the solution that has the highest minimum CC score is defined as
the maximin. It indicates the solution that achieves the highest least
satisfaction for all the actors. Similarly, for each solution, the maximum
CC score of all the actors is used, and subsequently, the solution with
the lowest maximum CC score is defined as the minimax. It usually
represents the decision for a risk-neutral decision-maker.

maximin = max
∀𝑛∈N

(min
∀𝑎∈A

CC𝑎
𝑛) (29)

minimax = min
∀𝑛∈N

(max
∀𝑎∈A

CC𝑎
𝑛) (30)

5. Case study set-up

To illustrate the usage of the approach, a case study will be done.
This section introduces the background of the case study and the data
inputs.

Fig. 5. The region Noord-Holland Zuid in the Netherlands (Noord-Holland Zuid, 2020).

5.1. Background

To combat climate change, in 2019, the Dutch government has
concluded the National Climate Agreement to reduce the Netherlands’
emissions by 49% by 2030, compared to 1990 levels, and by 95% by
2050 (Government of the Netherlands, 2019). One of the measures
is to promote RES investment on the regional level. For that pur-
pose, the country has been divided into 30 energy regions (Unie van
Waterschappen, 2019), where each region is asked to come up with
their plans on the RES investment capacity. Amsterdam is located in
the region Noord-Holland Zuid (see Fig. 5). The region is currently
working closely with the local and regional stakeholders and the gov-
ernments (Noord-Holland Zuid, 2020) to propose their RES investment
plan. The multi-actor nature of the complex regional energy planning
process fits perfectly the scope of our study. Therefore, this region is
chosen as the case to show the usage and the strength of our method
and to give policy-relevant results.

Following the approach of Wang et al. (2020), in this region, the
total suitable land for RES development (LUmax) is 409 km2 and TRS is
86 km2.

5.2. Hourly energy demand

The hourly Dutch national electricity demand is used to scale the de-
mand for this region based on population. The national energy demand
has been retrieved from the European Network of Transmission System
Operators for Electricity (ENTSO-E) Transparency Platform (ENTSO-E,
2019). In this research, the ENTSO-E data from 2015 is used.

5.3. Hourly wind and solar PV power output

The outputs of solar PV and wind turbines depend on their specific
capacity factor (see Eq. (2)). In this research, the data is derived
following the approach of Wang et al. (2020). The data from 2015 is
used.

Two wind turbines are considered: the Vestas V66 turbine with
a rated power of 1750 kW and a rotor diameter of 66m (which is
sometimes referred to as small wind turbines in this research), and
the Vestas V110 turbine with a rated power of 2000 kW and a rotor
diameter of 110m (which is sometimes referred to as big wind turbines
in this research). These turbines have separate input data for capacity
factors.

In total, three time-series are used in this study as the inputs for
wind and solar energy.

5.4. Techno-economic parameters

Table 2 shows the techno-economic parameters that are used in this
research. For each technology, the parameters regarding cost, lifetime,
land-use factors and VIA are given.



Energy Policy 143 (2020) 111578

10

N. Wang et al.

Table 2
2050 estimations of the techno-economic parameters.

Parameter

Technology CapEx (e/kW) FOM costs
(e/kW∕yr)

VOM costs
(e/kWh)

Lifetime
(yr)

Land-use factor
(km2/kW)

VIA per
turbine (km2)

Source

Residential PV 1250 17 0 25 0.00003 / KIC InnoEnergy (2015)
Utility-scale PV 850 27 0 25 0.00003 / Palmer-wilson et al. (2019) and

KIC InnoEnergy (2015)
Vestas V66 wind turbine 1205 45 0 25 0.00014 12.2 Wang et al. (2020)
Vestas V110 wind turbine 1205 45 0 25 0.00034 32.7 Wang et al. (2020)
Biomass 2640 90 0.0845 33 / / Wang et al. (2020)
Hydrogen storage
conversion

2400 0.04 0 5 / / Wang et al. (2020) and IRENA
(2017)

Hydrogen storage 0.06(e/kWh) 62% (in/out
efficiency 𝜂)

0 5 / Wang et al. (2020) and IRENA
(2017)

6. Results and discussions

The MOO model generates a set of Pareto-optimal solutions, they
have then been processed with the MCDM technique (TOPSIS) from a
multi-actor perspective. In this section, the results will be presented.

6.1. Aggregation and interpretation of the results

After applying the TOPSIS method to the Pareto-optimal solutions,
for each solution, a unique CC score will be obtained for each actor
based on their preferences. In principle, the solution with the high-
est CC score should be the optimal solution for the particular actor.
However, in this study, for each actor, the solutions that have the top
2% CC scores are taken first, and then the mean of these solutions is
regarded as the final optimal solution for each actor. The same process
is applied for all the results that will be presented later, except for the
cost-optimal result which is not an averaged result.

The reasons are two-fold. Firstly, as mentioned in Section 1.2.2,
TOPSIS, as one of the goal programming methods, evaluates the so-
lutions based on their distances to the ideal points. This indicates that,
among the Pareto-optimal solutions, there might be several solutions
that have similar CC scores but feature different generation mixes. Only
taking the solution with the highest CC score will completely ignore
the near-optimal solutions. By averaging, the near-optimal solutions are
taken into account and thus the robustness of the optimal solutions are
enhanced. Secondly, the nature of MOO and GA indicates that only a
finite number of Pareto-optimal solutions can be generated. For this
reason, the results only represent a part of the Pareto-optimal solu-
tions. This understanding helps to interpret the results in Section 6.2
concerning the optimal solution for the local residents.

Before discussing the results, it is crucial to emphasize that the case
study results have to be used carefully since they are subject to the
assumptions and the model set-up used in this research. The main aim
of the case study is to showcase the kind of problem the proposed
method is able to solve as well as its applicability, highlighting its
added value and uniqueness compared to existing methods such as
those of Perera et al. (2013a) and Jing et al. (2018). Nevertheless, the
general trend in the optimal solutions is captured.

6.2. Optimal solutions for the actors

Fig. 6 shows the optimal solutions for the governments, the funders
and the local residents and they will now be discussed. The cost-optimal
solution, the average-optimal solution, the maximin solution and the
minimax solution will be discussed in Section 6.3.

For the governments-optimal solution, the generation mix mainly
consists of biomass and residential PV. Each of them contributes around
half of the total capacity. The Levelized Cost Of Electricity (LCOE) is
129e∕MWh, which is the highest among those of the three actors and
is the same as the LCOE of the local residents-optimal solution. Since
there are hardly wind turbines in the generation mix, the land-use and

VIA are negligible. Moreover, biomass is the largest component in the
total CapEx and the total O & M costs. In general, since all the four
objectives are considered as the major preferences of the governments,
none of the objectives is the highest or the lowest among the optimal
solutions of the three actors.

For the funders, their major preferences are the total CapEx and the
total O & M costs. Compared to the governments, the optimal solution
for the funders features more wind turbine installations. Biomass is
still an important generation source, but now the small wind turbines
replace residential PV, becoming the second-largest generation source
in capacity. Furthermore, thanks to the wind turbines which produce
cheap energy, the LCOE drops to 115e∕MWh. The penalty of more wind
turbines is the increased land-use and VIA. The land-use is now 88% of
the total suitable area, which is also around a quarter of the total area
in the region. The VIA is even more astonishing, which is 12 times the
total regional area. However, it has to be noted that, the exact number
of VIA is not instructive since a detailed study regarding the VIA has
to be conducted depending on the layout of the wind farm in reality.
Hence, the values of VIA should be interpreted relatively. As for the
funders’ major preferences, the total CapEx is comparable to that of
the governments-optimal solution, but the total O & M costs is much
lower and is the lowest among the three optimal solutions.

The only major preference of the local residents is VIA. Unlike
the major preferences of the governments and the funders which are
related to all the considered technologies, the major preference of
local residents is only affected by wind turbines. Therefore, in the
evaluation stage, they are indifferent to other technologies. This ob-
servation indicates that for the local residents-optimal solution, solar
PV and biomass may both appear with certain capacities. However, as
mentioned in Section 6.1, only a part of the Pareto-optimal solutions
will be generated from the MOO model in each model run. In this
case, only biomass is present in the generation mix, leading to low
total CapEx and high total O & M costs. Its LCOE is the same as the
governments-optimal solution - 129e∕MWh.

In summary, for such a standalone energy system with only RES,
different actors all favour biomass in the generation mix. Wind turbines
sometimes play a role, but only for actors who consider cost more
crucial than other criteria. In addition to biomass, residential PV serves
as the other main generation source if more criteria are taken into
account.

6.3. Comparison to the cost-optimal solution

The MOO model provides solutions that optimize four objectives.
A cost-optimal solution, which is a single-objective solution, does not
belong to the Pareto-optimal solutions. In this study, nevertheless, it is
of utmost interest, since it is often the proposed solution from existing
literature. Therefore, it will be discussed and compared with other
solutions to highlight the added value of our multi-actor approach.

In order to minimize cost, wind turbines contribute to 43% of the
generation mix in the cost-optimal solution. The LCOE is 111e∕MWh,
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Fig. 6. The governments-optimal solution, the funders-optimal solution, the local residents-optimal solution, the average-optimal solution, the maximin solution, the minimax
solution and the cost-optimal solution.

which is comparable to the funders-optimal solution. It is notice-
able that the land-use has already reached its upper bound according
to Eq. (18). Because of this constraint, wind turbines cannot be installed
more and thus the LCOE cannot be lower. With regard to VIA, the effect
of big turbines has increased compared to the funders-optimal solution.

In practice, only one solution is required. Therefore, besides the
optimal solutions for all the actors and the cost-optimal solution, it
is important to come to a solution that considers all the actors. In
this study, this single solution is quantified using the average-optimal
solution, the maximin solution and the minimax solution.

The average-optimal solution is calculated based on Eq. (28), it
shows the solution combining all the major preferences of the actors.
The solution with the highest average CC score is discussed. This
solution is comparable with the governments-optimal solution, but with
more capacities in utility-scale PV.

The maximin solution is a solution that may not be optimal but is
acceptable or satisfying for everyone. It is calculated based on Eq. (29).

An acceptable solution is here interpreted as the solution that has the
highest least satisfaction for the actors. Compared with the average-
optimal solution, an extra capacity of small wind turbines comes into
the generation mix. The land-use is 38% of the total suitable area, and
the VIA is 4 times the area in the region.

The minimax solution, also known as the least regret solution, is
the solution that all the actors will have the least regret after making
the decision. It features risk-neutral decision-makers and is calculated
based on Eq. (30). This solution has the highest total capacity which
includes all the considered technologies. Storage is present for the first
time. Biomass, residential PV, utility-scale PV and small wind turbines
have similar installed capacities. The LCOE and the total CapEx are the
highest among all the solutions. However, despite the large capacity in
wind energy, the land-use and the VIA are not as high as those in the
funders-optimal solutions, since the contribution of big wind turbines
is small.
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Fig. 7. The alignment of the solutions in terms of CC scores for the actors.

Fig. 8. Sensitivity studies for CapEx, VOM of biomass and land-use factors.

Fig. 9. Sensitivity studies for different weights allocated to the actors.

6.4. Alignment of the optimal solutions for the actors

In the previous sections, the optimal results in terms of installed
capacity, LCOE, land-use, VIA, total CapEx and total O & M costs are
discussed. In this section, the solutions are further analysed by looking
at the alignment of these solutions, or in other words, how well each
solution performs for other actors. For the optimal solution for each
actor, the CC scores of other actors are obtained. Fig. 7 shows such
an alignment matrix. The cells show the CC scores for each actor for
the six solutions. It is noted that the CC scores for a particular actor
(i.e. row-wise) are the normalized values using the best and the worst

values of their own (see Eq. (27)). In other words, a score of zero does
not indicate that all the major preferences are the lowest for this actor,
it is only undesirable based on the overall evaluation of these major
preferences among all its Pareto-optimal solutions.

Several observations are gained from this table. The main observa-
tion is that the governments and the local residents are well aligned,
while the funders often have diverging views with them. In addition,
the funders-optimal solution is considered as a bad solution for the
government (with the CC score 0.18) and also for the local residents
(with the CC score 0.14). This is because, with wind energy being the
cheapest energy, funders are prone to more capacity in wind energy
which, in turn, increases the land-use and the VIA. Furthermore, the
maximin solution seems to be the most acceptable solution for all the
actors, since the least satisfied actor still has a score of 0.7.

6.5. Discussion of the results

The presented results are based on certain data assumptions. There-
fore, sensitivity studies add more insights into the understanding of the
results. This section will first present the sensitivity studies on the input
parameters, and then the influence of the weights of the actors will
be elaborated. Next, the impacts of the changes in demand data are
discussed. At last, the results are compared with other studies.

Sensitivity experiments are performed, where the CapEx of all the
technologies, the VOM of biomass and the land-use factors of the wind
turbines and solar PV are changed to the + 30% and - 30% of the
corresponding values. Out of all the optimal solutions, the results of
the average-optimal solutions are given in Fig. 8. It can be seen that all
the input parameters have a significant but reasonable influence on the
results. For example, the drop of the CapEx of utility-scale PV will cause
an increase in its capacity and a decrease in the capacity of residential
PV. Furthermore, if the VOM of biomass becomes lower by 30%, the
capacity of biomass will have a considerable rise. Nevertheless, for the
average-optimal solution that considers the major preferences of all the
actors, the overall trend still holds. Biomass is the backbone in the
generation mix, solar PV is the second largest contributor and wind
turbines play a less important role, which is mainly due to the major
preferences in land-use and VIA from the governments and the local
residents.

To calculate the average results, in this study, it is assumed that
the weights of all the actors are equal (see Step 7 in Section 4.2).
This assumption is made because the focus of this work is only to
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Table 3
Scenarios with different weights allocated to the actors.

Actor group

Scenario Governments Funders Local residents Mean method

Reference 1 1 1 Geometric
AM 1 1 1 Arithmetic
AM-govt2x 2 1 1 Arithmetic
AM-funders2x 1 2 1 Arithmetic
AM-residents2x 1 1 2 Arithmetic

showcase the usage of the proposed approach. However, the changes
in weights of the actors may have effects on the results and therefore,
their influences are investigated.

Four scenarios with different weights of the actor groups are in-
troduced in Table 3. To be able to allocate different weights to the
actors, the geometric mean cannot be used, because it multiplies all
elements together (see Eq. (28)). Therefore, the Arithmetic Mean (AM)
is used for these scenarios. The average-optimal solutions are shown in
Fig. 9. The use of AM already changes the results, more residential PV is
preferred, and utility-scale PV becomes less favourable. If governments
are given more weights, the percentage of residential PV even increases.
However, when the funders are provided with more decision rights,
wind turbines will play a more important role. Similarly, given the
major preference in VIA, local residents will try to minimize the use
of wind turbines.

In this study, the demand data of 2015 is used and the scaling
of national demand to regional demand is based on population. The
change in demand data in the future, especially in view of the scenarios
such as high electrification, and other scaling methods might have
impacts on the results. The data from ENTSO-E (2019) shows that
between 2010 and 2018, the national demand varies between - 2%
and + 5% compared to the 2015 data. To explore the influences
of other scaling methods, we scaled the 2015 demand based on the
annual regional demand data from Rijswaterstraat (2020), which shows
that our scaling method based on population only underestimates the
demand by 8%. Nevertheless, Gasunie and TenneT (2020) indicates
that in the Netherlands, the demand will increase by 50% in a high
electrification scenario in 2050. We therefore conducted a sensitivity
study for demand data. The results show that the average-optimal gen-
eration capacities are changed proportionally to the demand change.
For example, for the high electrification scenario where the demand is
expected to grow by 50%, biomass capacity also increases by 50%. The
capacity of solar PV grows more than 50% since capacity factors have
to be taken into account.

Since the multi-actor perspective for energy system planning is new
and has not been studied before in literature, the cost-optimal results
presented in Fig. 6 are now compared to existing studies. The LCOE
from our study is 111e∕MWh, which is comparable to the optimiza-
tion study for the Netherlands (Wang et al., 2020). In terms of the
generation mix, Wang et al. (2020) shows wind energy has the largest
contribution. Our model results indicate that the optimal share of wind
energy is 46%. This is because in Wang et al. (2020), the total land-use
constraints are not met. In our case, the total land-use constraint is met
so that the wind capacity cannot increase anymore.

7. Conclusions and policy implications

In the field of energy system planning, MOO is used to take various
design criteria (such as cost and emissions) into account. Existing
studies focus on the trade-offs between those criteria that are often
visualized by a set of Pareto-optimal solutions. However, the energy
system is a complex system where different actors need to reach
agreements on the final investment, and the actors have their own,
sometimes conflicting, interests. Their conflicts of interests are one of
the major reasons that hinder the energy transition. Therefore, adding

actors’ perspectives to the MOO studies is of utmost importance to the
successful design and implementation of a future energy system, which
is not yet done in the literature. This paper proposes the first-of-a-
kind multi-actor perspective in multi-objective regional energy system
planning studies. It is based on a combination of models: MOO and
MCDM. The key advantages of our approach are: firstly, it is able to
simultaneously consider various actors in an energy system planning
problem; secondly, it assigns a degree of optimality to every obtained
Pareto-optimal generation mix, i.e. the generation mix that is optimal
for each actor and the sub-optimal generation mix for all the actors can
now be quantified. Besides, the land-use of RES and the visual impact
of wind turbines are now modelled separately as two objectives.

A simplified case study for the greater Amsterdam region in the
Netherlands has been done to illustrate the usage of the approach
and to show promising policy-relevant results. The optimal generation
mixes of different actor groups for a standalone RES-based energy
system are obtained. Given our model and data assumptions, govern-
ments would prefer a generation mix consisting of mainly solar PV
and biomass with similar capacities. Local residents are only concerned
about minimizing the use of wind turbines, and thus solar PV and
biomass are both favoured by them. By conducting an alignment check
for all the actors with respect to the optimal solution of each actor,
we find that the governments and the local residents are well-aligned
in the generation mix. On the other hand, the investors (or the so-
called funders in this study) prefer a generation mix with more wind
turbines, since that leads to the lowest LCOE. In addition, a least-cost
optimization, which is the most common method in energy system
planning, is carried out. It is found that the cost-optimal solution entails
biomass and wind turbines in the generation mix which is only similar
to the funders-optimal solution in our study.

Our results reveal, in a measurable way, a core fact in energy
system planning that delays the energy transition process, that different
stakeholders would shape the future energy system in the way they opt
for. The market, at the hands of investors, will likely converge to large
shares of low-cost energy, such as wind energy in our model. However,
this scenario will deploy all the land in a highly-populated region (as
in our case) to place wind turbines and will also cause high public
resistance. It will be vastly undesirable for other actors such as the
governments and the local residents. Therefore, policy-makers should,
on the one hand, incentivize other technologies (such as residential PV)
than the cheapest energy (such as wind energy). On the other hand,
they should ensure the inclusion of all stakeholders and look for a plan
that all actors find most satisfying in the decision-making process of
RES investment. This can be done by proposing an acceptable solution
for all actors. Our study suggests that, given our model assumptions, an
adequately diversified generation portfolio featuring similar capacities
in utility-scale PV and residential PV with sufficient biomass, would
increase the satisfaction of all the actors. Using this generation mix,
investors are the least satisfied but the degree of optimality is still
high. This compromise of optimality can serve as a common ground
for negotiations in regional energy system planning.

Another key contribution of our proposed approach is that, for the
first time in the literature, it opens up the possibility to investigate the
impacts of various policies on the quantitative and optimal investment
decisions from the stakeholders’ perspectives. For example, the impact
of spatial policy on the land-use of RES and the impact of RES subsidies
could be investigated, and the effects of different emission targets could
be explored. Using our approach, the impacts of these policy options on
actors’ optimal investment decisions can now be revealed, which will
generate valuable policy implications for the energy system planning
process.

Our study proposes a novel and promising approach and shows
useful results, however, the same as every work, it has some possible
extensions that are recommended for future research. Firstly, our model
considers the explicit preferences of the actors in TOPSIS, but in reality,
their preferences might be ambiguous. Future research could deploy



Energy Policy 143 (2020) 111578

14

N. Wang et al.

e.g., fuzzy TOPSIS to account for this ambiguity. Secondly, although
our approach is still valid when the objectives are changed, it is com-
putationally non-trivial to include more objectives in the MOO model.
In fact, adding every extra objective in any MOO model will largely
increase the computational effort, or that a good representation of the
Pareto-optimal solutions is not obtained. Therefore, we recommend
a future research direction that investigates the trade-offs between
the number of objectives and the completeness of the Pareto-optimal
solutions under various model set-ups.
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