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A B S T R A C T

Artificial Intelligence (AI) and Machine Learning (ML) are pervasive in the current computer science
landscape. Yet, there still exists a lack of Software Engineering (SE) experience and best practices in
this field. One such best practice, static code analysis, can be used to find code smells, i.e., (potential)
defects in the source code, refactoring opportunities, and violations of common coding standards.
This research first set out to measure the prevalence of code smells in ML application projects. How-
ever, the results from this study additionally showed deficiencies in the dependency management of
these projects, presenting a major threat to their maintainability and reproducibility. Static code anal-
ysis practices were also found to be lacking. These issues inspired the novel concept of project smells
introduced in this research, which consider the ML project as a whole, including not just the code, but
also the data, tools and technologies surrounding it and its development. To help ML practitioners in
detecting and mitigating these project smells, as well as to help educate on SE principles, techniques
and tools, I developed an open-source static analysis tool mllint using input from experienced ML
engineers at the global bank and data-driven organisation ING. This tool was then used to evaluate
the concept of project smells and how they fit the industrial context of ING in a second study. This sec-
ond study also investigated obstructions to implementing best practices recommended by mllint ,
perceptions on static analysis tools and how ML practitioners perceive the difference in importance
of mllint ’s linting rules (by extension, project smells) for proof-of-concept versus production-ready
projects. The results indicate a need for context-aware static analysis tools, that fit the needs of the
project at its current stage of development, while requiring minimal configuration effort from the
user.
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1 I N T R O D U C T I O N

This MSc thesis originally started out as research into code smells in ML applications; the early goal
was to tread in the footsteps of a previous master thesis by Haakman [2020], who studied how state-
of-the-art lifecycle models fit the current needs of the FinTech industry [Haakman et al., 2021] and
pioneered dslinter 1, a plugin for Pylint to help detect Data Science (DS) and Machine Learning
(ML) specific code smells in Python ML applications. His results indicated that “existing lifecycle mod-
els CRISP-DM and TDSP largely reflect the current development processes of machine learning appli-
cations, but there are crucial steps missing, including a feasibility study, documentation, model eval-
uation, and model monitoring” [Haakman, 2020; Haakman et al., 2021]. On the topic of ML-specific
code smells, he implemented, publicised and evaluated dslinter on ML application code from 1000
Kaggle-sourced Jupyter Notebooks, showing that such static code analysis can be helpful in detecting
and preventing ML-specific code smells [Haakman, 2020]. Yet, he notes that “more focus is needed on
the entire lifecycle.”

As a full-stack web developer, software engineer and DevOps-enthusiast with some experience in
developing ML applications, though little in-depth knowledge of ML algorithms, I first needed to ac-
quaint myself with the current state of ML application code. Thus, I started with an initially simple
empirical study on the prevalence of non-ML-specific code smells in ML projects. To this end, I col-
lected a dataset consisting of the source code repositories of 74 open-source Python ML applications
from academic and industry-related sources alike, installed their dependencies2 and ran the popular
static analysis tool Pylint on them in its default configuration.

However, we quickly noticed that installing the dependencies of these ML projects was not triv-
ial: 32 out of 74 projects required generating or manually editing the dependency specification file
(requirements.txt) used in the project, in order for the dependencies to install without error. These
are serious issues in code dependency management in Python ML projects that present a major threat
to the reproducibility and maintainability of these projects. Additionally, we noticed that very few of
the projects contained any configurations for static analysis tools such as Pylint, indicating a gap in
their adoption with data scientists.

These dependency management and static analysis tool adoption issues, along with Haakman’s
note that more focus is needed on the entire lifecycle, inspired the realisation that a more holistic
approach to code smells would be required in order to assess the software quality of ML applications.
This coined the idea of project smells that consider the project as a whole, including not just the code,
but also the data, tools and technologies surrounding it and its development. These project smells
are thus concerned with (technological) deficits in the development process and management of ML
projects, including poor dependency management and a lack of static analysis. Code smells are also a
subcategory of project smells.

To help ML practitioners in detecting and mitigating these project smells, as well as to help educate
them on SE principles, techniques and tools—additionally giving this thesis more of a practical impact

1 https://github.com/MarkHaakman/dslinter
2 Installing a project’s dependencies is required for certain Pylint rules to work effectively
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1.1 contributions & publications 2

beside its scientific contributions—I developed a static analysis tool called mllint using input from
experienced ML engineers at ING. This tool uses a command-line interface and is open-sourced under
a GPLv3 license. It was presented at ING on multiple occasions and described as ‘ambitious’, but was
overall received positively, gathering 54 stars on GitHub.

For the final chapter in this thesis, the goal was to evaluate mllint and its concept of project smells.
In this research, we performed qualitative analysis on the reports that mllint produces on a small set
of ML projects at ING and run a survey with ML practitioners (public and at ING) who have experience
with mllint , to gauge their perceptions on the benefits and drawbacks of using static analysis tools
such as mllint and the importance of each of the linting rules of mllint for proof-of-concept versus
production-ready ML projects.

The results of this research were sufficiently promising that we decided to disseminate them through
a paper submitted to a top-tier conference, for which we picked the Software Engineering In Practice
(SEIP) track of ICSE, given our practice-oriented tool and case at ING. The results indicate a lack of
standardised tooling for dealing with varying kinds of data dependencies, as well as a lack of a stan-
dardised, easy-to-use, consistently used, maintainable and reproducible method of managing code
dependencies in the Python language ecosystem. It was also found that there is a mixed sentiment
towards static analysis tools to detect code quality issues: while ML practitioners recognise their po-
tential for code quality assurance in productionising ML projects, there is apprehension in adopting
them during the development phase of the project, given their tendency to produce false positives
and cumbersome, time-consuming configuration. This calls for more research on context-aware static
analysis, such that it fits the needs of the project at its current stage of development, while requiring
minimal configuration effort from the user.

1.1 contributions & publications
The main contributions of this MSc thesis are as follows:

1. A replicable, empirical study into prevalence of code smells as detected by Pylint in ML projects,
giving insights into the code smells most prevalent in ML applications, the shortcomings of
Pylint for performing static analysis on ML code and challenges relating to dependency man-
agement in Python ML projects.

2. A dataset of 74 open-source ML application projects and an open-source tool to perform simul-
taneous static code analysis on all of these projects.3

3. Researched insights on and experiences with the novel concept of project smells: a more holistic
approach to code smells that considers the project as a whole, including not just the code, but
also the data, tools and technologies surrounding it.

4. An open-source static analysis tool mllint 45 to help detect and remedy such project smells in
ML projects, as well as report on the overall software quality of the project. mllint aims to help
ML practitioners in developing and maintaining production-grade ML and AI projects.

On top of that, the contributions made in this thesis resulted in the following scientific publications:

3 https://gitlab.com/bvobart/python-ml-analysis
4 https://github.com/bvobart/mllint
5 https://bvobart.github.io/mllint

https://gitlab.com/bvobart/python-ml-analysis
https://github.com/bvobart/mllint
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1.2 report structure 3

1. A research paper about the empirical study on the prevalence of code smells submitted to, pub-
lished and presented at the 1st Workshop on AI Engineering (WAIN’21), associated with the
International Conference on Software Engineering (ICSE) [van Oort et al., 2021].

2. A research paper submitted to the Software Engineering In Practice (SEIP) track of ICSE on
project smells, how they fit in the FinTech context of ING, the benefits and drawbacks of us-
ing static analysis tools such as mllint as perceived by ML practitioners, and the perceived
importance of each of the linting rules of mllint for proof-of-concept versus production-ready
ML projects [van Oort et al., 2022].

1.2 report structure
This report consists primarily of the two papers produced over the course of this MSc thesis, with
each paper containing its own respective introduction, related work, methodology, results, discussion,
threats to validity and concluding sections. This introductory Chapter 1 serves to shine a spotlight
behind the scenes and explain the origin of this thesis, as well as the rationale behind the direction of
my research. Additionally, it summarises the contributions and structure of this thesis.

Both papers in this thesis are presented exactly as they were published / submitted to their respec-
tive venue. Each is placed in their own chapter, preceded by an introductory text describing the con-
text of the study, along with information about work done that is relevant to this thesis report, but
not to the readers of the academic venues that the papers were submitted to. The sections, figures,
tables, footnotes and references of each paper are constrained to their respective manuscripts and are
thus not continuous throughout this thesis. This also goes for the page numbers at the bottom of the
WAIN’21 paper: the true page numbers of this thesis report along with the current chapter name are
shown in the top-right of the page, or on the bottom-right of the page if the page contains a chapter
header.

As for the bibliography at the end of this thesis report, it merely contains academic references made
in this introduction (Chapter 1), the conclusion (Chapter 4) or in the introductory texts of the paper
chapters. Any references made in the papers themselves, are specified in the respective paper’s bibli-
ography section.

Chapter 2 introduces the first paper on The Prevalence of Code Smells in Machine Learning projects
as published at WAIN’21. Next, Chapter 3 introduces the second paper on the topic of project smells
and experiences in analysing the software quality of ML projects with mllint as submitted to SEIP’22.
Finally, Chapter 4 concludes this thesis with recommendations for future work.



2 T H E P R E VA L E N C E O F C O D E S M E L L S

To get better acquainted with the current state of ML application code and code smells, I started with
an empirical study on the prevalence of known Python code smells in ML projects. To this end, our
approach was simple and straightforward: collect a dataset of source code repositories of ML appli-
cations, install their dependencies and run the popular Python static analysis tool Pylint1 on their
source code to detect code smells. Then, aggregate the resulting list of code smells across all projects
and analyse their prevalence.

Initially, our goal for our dataset of ML applications was to have a rich mixture of both open-source
and closed-source industry projects, such that we could either combine or contrast them. Combining
them would provide us with a more representative sample of the current, real-world state of ML and AI
projects. Contrasting them would allow us to compare the prevalence of code smells in open-source
versus industry projects. However, due to difficulties in getting on-boarded at ING along with their in-
tricate web of compliance regulations to be navigated in gaining access to ML project source code, we
were not able to collect a sample of ML projects from ING and thus had to abandon the combination
or comparison with industry projects.

The results of our code smell analysis with Pylint, combined with manual inspection of the detected
smells, show that code duplication is widespread. Furthermore, the PEP8 convention for identifier
naming style may not always be applicable to ML code due to its resemblance with mathematical
notations of the underlying ML algorithm. We also found that Pylint produces a high rate of false pos-
itives in trying to analyse correct usage of import statements in certain cases, which are specifically
concerning given the tendency for ML to suffer from a high degree of glue code [Sculley et al., 2015].
More interestingly, however, we found serious issues with the specification of code dependencies in
Python ML projects that present a major threat to the reproducibility and maintainability of these
projects. Out of the 74 projects that we analysed, 32 required generating or manually editing the de-
pendency specification file (requirements.txt) used in the project, in order for the dependencies
to correctly install. Usage of the pip freeze command was observed to be a major culprit in these
cases.

2.1 academic publication & presentation
From the start of this research, we aimed at encapsulating our findings in a paper for the 1st Workshop
on AI Engineering (WAIN’212). While the submission deadline was only two months after the start
of my thesis, our findings around dependency management issues were a large motivator towards
completing our research and submitting the paper on time. This work paid off in full, as our paper was
accepted and published at WAIN’21! It is worth noting that WAIN’21 is a peer-reviewed conference

1 https://pylint.org/
2 https://conf.researchr.org/home/wain-2021
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2.1 academic publication & presentation 5

workshop co-located with ICSE, where only 12 out of 37 submitted full papers were accepted (32%
acceptance rate).

Given that the paper was accepted, I also presented it at WAIN’21, for which I recorded and edited
a video presentation of the paper3. This was broadcast at the online WAIN’21 conference workshop
on the 31st of May 2021, followed by a live Q&A session. The full recording including the Q&A can
be found on YouTube4. Two workshop participants were particularly interested in my paper, as they
messaged me on the conference platform the day before my presentation to ask several questions
about my research. One of them, who had just started his PhD around code quality in ML projects,
lauded our research and asked for advice as he wanted to replicate our research on ML code from
Jupyter Notebooks. Three other workshop participants joined the discussion room directly after the
presentation and Q&A to ask some short questions.

Additionally, this paper was presented in two one-hour presentations in February at an ML Engi-
neering chapter meeting in ING Global Analytics and in an AFR Lab meeting.

Figure 2.1: Snapshot from the video presentation of van Oort et al. [2021]

3 https://www.youtube.com/watch?v=TbgawiiYwJQ
4 https://www.youtube.com/watch?v=fQf2Cy9jzfc
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Abstract—Artificial Intelligence (AI) and Machine Learning
(ML) are pervasive in the current computer science landscape.
Yet, there still exists a lack of software engineering experience
and best practices in this field. One such best practice, static code
analysis, can be used to find code smells, i.e., (potential) defects
in the source code, refactoring opportunities, and violations of
common coding standards. Our research set out to discover the
most prevalent code smells in ML projects. We gathered a dataset
of 74 open-source ML projects, installed their dependencies and
ran Pylint on them. This resulted in a top 20 of all detected
code smells, per category. Manual analysis of these smells
mainly showed that code duplication is widespread and that the
PEP8 convention for identifier naming style may not always be
applicable to ML code due to its resemblance with mathematical
notation. More interestingly, however, we found several major
obstructions to the maintainability and reproducibility of ML
projects, primarily related to the dependency management of
Python projects. We also found that Pylint cannot reliably check
for correct usage of imported dependencies, including prominent
ML libraries such as PyTorch.

Index Terms—Artificial Intelligence, Machine Learning, static
code analysis, code smells, Python, dependency management.

I. INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML)
are pervasive in the current landscape of computer science.
Companies such as Facebook, Google, Nvidia and ING are
making use of AI and ML for a plethora of tasks that
are difficult (if not impossible) to describe using traditional
Software Engineering (SE) [1, 2, 3, 4]. Examples include facial
recognition & recomposition, natural language processing,
real-time video transformation, detection of medical anomalies
and intercepting fraudulent financial transactions.

Yet, as Sculley et al. [2] wrote in their 2015 paper on the
hidden technical debt in ML systems at Google, “only a small
fraction of real-world ML systems is composed of the ML
code. (...) The required surrounding infrastructure is vast and
complex.” This is also in part what leads Menzies [5] to predict
that the future of software will be a rich and powerful mix of
ideas from both SE and AI. Menzies also advocates for more
SE experience in the field of AI and ML, stating that poor
SE leads to poor AI while better SE leads to better AI [5].
The data scientists that write AI / ML code often come from
non-SE backgrounds where SE best practices are unknown [6].

One such SE best practice is the practice of static code
analysis to find (potential) defects in the source code, refactor-
ing opportunities and violations of common coding standards,

which we amalgamate into ‘code smells’ for the rest of this
paper. Research has shown that the attributes of quality most
affected by code smells are maintainability, understandability
and complexity, and that early detection of code smells reduces
the cost of maintenance [7].

With a focus on the maintainability and reproducibility of
ML projects, the goal of our research is therefore to apply
static code analysis to applications of ML, in an attempt to
uncover the frequency of code smells in these projects and
list the most prevalent code smells. Thus, we formulate the
following research question: What are the most prevalent code
smells in Machine Learning code?

The main contributions of this paper are:
• An empirical study on the prevalence of code smells in

74 Python ML projects.
• A dataset of 74 ML projects and an open-source tool to

perform simultaneous static code analysis on all of these
projects.

II. RELATED WORK

Several studies have investigated linting and static code
analysis of non-ML projects [8, 9, 10, 11]. Tómasdóttir et al.
[8] researched why JavaScript (JS) developers use linters and
how they tend to configure them. They found that maintaining
code consistency, preventing errors, saving discussion time
and avoiding complex code were among the top reasons
why JS developers use linters. They also found that JS
developers commonly stick with already existing preset linting
configurations. Vassallo et al. [12] found a similar result;
among other results, they found that developers are often
unwilling to configure automatic static analysis tools (ASATs)
and emphasise “the necessity to improve existing strategies
for the selection and prioritisation of ASATs warnings that
are shown to developers.”

Within the Python ecosystem, Chen et al. [11] investigated
the detection and prevalence of code smells in 106 Python
projects with the most stars on GitHub. They found that long
parameter lists and long methods were more prevalent than
other code smells. Omari and Martinez [9] used Pylint to
analyse the code quality of a dataset of large Python projects.
Furthermore, Bafatakis et al. [10] used Pylint to investigate the
Python coding style compliance of StackOverflow answers.

Within the Machine Learning ecosystem, we only found
one paper by Simmons et al. [6] that performed static code

1

2.2 the prevalence of code smells — full paper 6



analysis on a large dataset of Data Science (DS) projects. They
also analysed non-DS projects with the goal of comparing
the code quality and coding standard conformance of (open-
source) DS projects versus non-DS projects, using Pylint in
its default configuration as a metric. They sourced their DS
projects from Biswas et al. [13], who in 2019 published a
dataset of 1558 “mature Github projects that develop Python
software for Data Science tasks.”. Aside from applications of
ML, it also includes ML libraries and tools.

Our study differs from [6] in that we do not compare against
non-DS projects and in that we do not solely focus on the
adherence to coding standards as [6] does. Our primary focus
lies more on investigating obstructions to the maintainability
and reproducibility of ML projects, which includes coding
standards violations, but also entails recognising refactoring
opportunities and other code smells [7]. Moreover, we solely
focus on applications of ML, and leave ML libraries and tools
out of scope. We argue that the underlying nature of ML
libraries and tools is very different from ML applications, and
thus different results are expected when studied separately.

Furthermore, Simmons et al. [6] simplified the installation
of the projects’ dependencies by using findimports1 to
resolve all imports used in the projects, instead of relying
on what projects’ authors defined in their repositories, noting
that “it was impractical to reliably determine and install
dependencies for the projects analysed.” However, if there is
an inherent difficulty in resolving these dependencies within
Python projects, then that is in itself an obstruction to the
reproducibility and maintainability of these projects. Hence,
we investigate this in our study.

III. METHODOLOGY

For this paper, we performed an empirical study on the
prevalence of code smells in ML code. We collected a dataset
of 74 ML projects and implemented a tool to set these projects
up with their dependencies in order to replicate their execution
environment. It then runs Pylint with its default configuration
on all projects in the dataset, collecting and counting the
detected code smells. The tool and dataset are both open-
source and can be found on GitLab2.

Our empirical study follows the methodology illustrated in
Figure 1. It comprises three main steps, namely: A) project
selection, B) setting up the codebases, and C) static analysis.

A. Project Selection

In total, our collected dataset comprises 74 ML projects;
32 projects come from finished Kaggle competitions, 38 from
paperswithcode.com (of which 25 projects were from the
Google-affiliated DeepMind), and 4 from reproducedpapers.
org. It includes projects from academic papers, (student) repro-
ductions, prize money awarding Kaggle competitions, as well
as industry players such as Facebook, Nvidia and DeepMind.
The dataset defines a list of Git repository URLs and allows for
customising the dependencies of particular projects, when they

1https://pypi.org/project/findimports/
2https://gitlab.com/bvobart/python-ml-analysis

have not been properly defined in their respective repository.
We elaborate on a number of characteristics of our dataset
in Section III-A1, but first, we explain how we collected the
projects in the dataset and what guidelines were used for doing
so.

We aim for this dataset to be a systematically gathered set
of projects, representative of the current, real-world state of
ML and AI projects. To this end, we have created a set of
guidelines for the inclusion of projects in the dataset, which
can be found below. Each project included in the dataset. . .

1) . . . must be hosted in an open-source Git repository.
2) . . . must be written in Python 3.
3) . . . must contain pure Python code and does not consist

purely of Jupyter Notebooks. More specifically, a project
should contain either a) at least 200 lines of pure Python
code, even if the rest of the code is embedded in Jupyter
Notebooks, or b) more lines of pure Python code than
there are lines of Python code in all Jupyter notebooks
of that project.

4) . . . must implement an ML or AI model and may not be
a library or tool for use in ML projects.

5) . . . must be considered ‘deliverable’, i.e., either a) the
project is part of or accompanies a published aca-
demic paper, or b) the project has been submitted to
paperswithcode.com, reproducedpapers.org or a Kaggle
competition (which has finished and declared the winners
at the time of considering the project).

The first guideline limits our scope to open-source projects,
as these are openly available to download and analyse.

The second and third guideline stem from a technical
limitations, as Pylint only supports Python 3 and is only able
to analyse pure Python files. Jupyter Notebooks are essentially
JSON files, containing ‘cells’ with code in Markdown, Python,
Julia, or a small selection of other different languages. While
it is technically possible to convert the Python code embedded
in these notebooks to pure Python files using a tool such
as nbconvert, the produced code has a slightly different
style than general Python modules, which invalidates
certain Pylint rules. For example, the Pylint messages
pointlesss-statement, expression-not-assigned
and wrong-import-statement produce false positives in
notebook-style code. Due to the lack of direct Pylint support
for Jupyter Notebooks and since we do not want to selectively
disable Pylint rules for notebook-extracted code as opposed to
pure Python code, we decided to exclude projects that purely
contain Jupyter Notebooks from our dataset. The minimum
of 200 lines of pure Python code in the presence of larger
Jupyter Notebooks was chosen such that this code is likely
not to be purely utility code, but also contain part of the ML
code.

The fourth guideline embodies that we are interested in
analysing applications of ML rather than libraries used in their
development, such as tensorflow, pandas, or sklearn.

The fifth and final guideline focuses on avoiding toy
projects, unfinished projects, or projects still under develop-
ment.

2
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Fig. 1. Methodology Diagram.

1) Dataset characteristics: We measured several general
characteristics of every project, which can be found in Table I.
The 74 projects in the dataset contain a total of 3156 pure
Python files, amounting to 511.018 lines of Python code,
including empty lines. The median project has 17 pure Python
files with 2848.5 lines of code, resulting in an average of 157.3
lines of Python code per file. The smallest project contained
a single file with 58 lines of Python, while the largest project
had 78572 lines of Python code across 229 files. This project
was found to be embedding the code of several dependencies
in its repository, multiple times.

B. Setting up the codebases

In this step, performed by our analysis tool, for each project,
we clone the latest version of the project’s Git repository,
create a virtual environment in it, ensure that there exists a
file that specifies any necessary dependencies and then install
those dependencies into the virtual environment. These need
to be installed, such that our static analysis tool of choice is
able to check whether imports resolve correctly and whether
the imported libraries are used correctly. This is particularly
interesting in the case of ML, as Sculley et al. [2] noted
that ML projects have a high degree of glue code and so
make extensive use of libraries. In total, the folder containing
all of the 74 cloned projects from our dataset along with
the accompanying virtual environments with their installed
dependencies, amounts to 131 GiB.

Python projects can specify and install their dependencies
in a variety of ways. The most common way to install a
Python dependency is to use pip, the package manager that is
installed alongside Python. It is common convention to specify
a Python project’s list of dependencies in a requirements file
called requirements.txt, which is conventionally placed
at the root of the project’s source code repository. It is also
possible to specify a setup.py file which allows the project
to be built into a Python package, ready to be published to
PyPI, pip’s default package index. pip can be configured to
use other package indexes, but by default it can only install
packages from PyPI, or directly from source through a Git
repository URL or a local folder with a setup.py.

However, there are also other package managers / de-
pendency management solutions such as Conda, Poetry,
pip-tools and Pipenv, with the latter being directly endorsed
in Python’s Packaging User Guide [14]. These tools each have
their own way of specifying dependencies and – especially
in Conda’s case – may use additional package indexes to

PyPI, which makes resolving these dependencies difficult. It is
possible to use pip freeze > requirements.txt, which
collects all Python packages and their exact versions installed
in the current Python environment (disregarding by which
means these packages were installed) and outputs them to a
requirements.txt file. This approach is flawed though, as
we explain in Section V-B.

Our analysis tool currently only supports installing de-
pendencies with pip and expects a requirements.txt
or setup.py file in their conventional location. The
dataset also supports specifying a custom path to a
requirements.txt file, or alternatively, the contents of a
custom requirements.txt file for a project in the dataset.
It is also possible to specify extra requirements that need to
be installed after installing the dependencies from the require-
ments file. This is necessary for, e.g., Nvidia’s Apex library,
which depends on PyTorch; when trying to run pip install
on a requirements file containing both PyTorch and Apex’s Git
repository URL (no matter the order), the installation of Apex
fails because PyTorch is not yet installed. Only for projects
that do not have a requirements.txt file, nor a manually
defined one, our analysis tool uses pipreqs3 to generate a
requirements.txt file based on the libraries imported in
the code.

Our analysis tool currently does not support using Conda,
Poetry or Pipenv for resolving and installing dependencies.
We therefore had to exclude one project that used Poetry
and two projects that used Conda and solely specified a
Conda environment.yml file, but no requirements.txt
or setup.py. No projects that we came across were using
Pipenv.

C. Static Analysis

This step is also performed by our analysis tool and
concerns running the static code analysis tool Pylint (version
2.6.0) in its default configuration on all pure Python files in
each project (but not on any of the dependencies). We choose
Pylint for static code analysis as it is widely used and widely
accepted in the Python community, as well as being highly
configurable [6, 10]. It is also well integrated into IDEs such
as PyCharm and VS Code. Furthermore, Bafatakis et al. [10]
used it to measure coding style compliance in StackOverflow
answers, Omari and Martinez [9] used it as a metric for the
code quality of open-source Python projects, and Simmons

3https://github.com/bndr/pipreqs
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TABLE I
CHARACTERISTICS OF OUR DATASET OF 74 ML PROJECTS

Characteristic Min Q1 Median Q3 Max Mean Std Dev.

Number of pure Python files 1 8 17 36 730 43 95
Number of Jupyter Notebook files 0 0 0 1 52 3 8
Lines of Python code 58 1449 2849 5243 78572 6906 13568
Lines of Jupyter Notebook Python 0 0 0 197 43387 1008 5115
Avg. lines of Python code per Python file 58 108 157 214 1151 193 155
Avg. lines of Jupyter Notebook Python per Jupyter Notebook file 12 73 129 223 1610 256 335

et al. [6] used it in their code quality comparison between DS
and non-DS Python projects.

Pylint provides an extensive set of messages, not only for
stylistic issues, but also for issues regarding programming con-
ventions, possible refactorings and other logical code smells.
While Pylint is very configurable, we chose to use Pylint’s
default configuration as it reflects the community standards,
similar to Simmons et al. [6].

The code smells that Pylint reports are each identified by
a symbol, such as bad-indentation or import-error,
which is also how we refer to specific Pylint messages in
this paper. Furthermore, these messages are divided into five
categories (message types), which we describe below. The
italic text is how Pylint describes the category.

• Convention – for programming standard violation –
Messages in this category show violations of primarily
code style conventions, as well as documentation con-
ventions and Pythonic programming conventions.

• Refactor – for bad code smell – Messages in this cate-
gory indicate that the smelly code should be refactored.

• Warning – for Python specific problems – This category
includes many generic and Python-specific linting mes-
sages.

• Error – for probable bugs in the code – Messages in
this category indicate problems in the code that are very
likely to cause run-time problems.

• Fatal – if an error occurred which prevented Pylint from
doing further processing.

Cloning and installing all projects, even though this is per-
formed automatically by the tool, is the most time-consuming
part of the analysis – it takes roughly three hours. With
all projects already cloned and their dependencies already
installed, the analysis of all 74 projects took 8m 53s using
12 threads on an Intel® Core™ i7-8750H processor.

Eight projects contained code that caused Pylint to crash
during analysis, so we excluded these from the 82 projects we
originally had in the dataset, bringing the total to 74. Several
issues have been filed about this, including one by this paper’s
first author4. This bug has since been fixed.

IV. RESULTS

Applying our methodology, we collected, installed, and
analysed 74 ML projects. In this section, we present our results
and answer to the research question posed in the introduction:

• RQ – What are the most prevalent code smells in Machine
Learning code?

4https://github.com/PyCQA/pylint/issues/3986

TABLE II
DISTRIBUTION OF PYLINT MESSAGES PER CATEGORY PER PROJECT.

Category Min Q1 Median Q3 Max Mean Std Dev.

Convention 2 57 226 799 9501 708 1361
Refactor 0 26 49 140 2437 183 433
Warning 11 74 356 824 14263 814 1826
Error 1 18 56 125 1696 129 234
Fatal 0 0 0 0 0 0 0

TABLE III
TOP 10 CODE SMELLS OVERALL AS DETECTED BY PYLINT.

# Smell Frequency

1 unused-wildcard-import 26307
2 bad-indentation 19921
3 invalid-name 19905
4 line-too-long 10321
5 missing-function-docstring 6444
6 no-member 5860
7 duplicate-code 4649
8 trailing-whitespace 4477
9 redefined-outer-name 2548

10 missing-module-docstring 2504

To answer this, we first analysed the distribution of the
amount of code smells per Pylint category per project, of
which the characteristics can be found in Table II. The table
shows the minimum, maximum, mean and median number
of messages reported by Pylint for each category, as well as
the 25th percentile (Q1), 75th percentile (Q3), and standard
deviation (Std. Dev.). We use the median as the main measure
of central tendency.

Our results show that Pylint messages in the Warning
category are the most prevalent – the median project has 356
warnings – closely followed by messages in the Convention
category with 226 messages for the median project. Messages
in the Refactor and Error categories are less prevalent; re-
spectively 49 and 56 such messages for the median project.
However, especially given the Error category is meant for
messages that show “probable bugs”, this is an interesting
observation. Even more interesting, there was no project for
which Pylint reported no error messages.

As a more direct answer to this research question, we mea-
sured across all projects in our dataset what the top 20 code
smells per category are that Pylint reported, see Table IV. The
top 10 messages that Pylint reported, disregarding category,
are in Table III.

Convention – In this category we found that invalid naming,
missing documentation (missing-function-docstring,
missing-module-docstring,
missing-class-docstring and missing-docstring)
and improper organisation of imports
(wrong-import-position, wrong-import-order,

4
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TABLE IV
TOP 20 MESSAGES PER CATEGORY REPORTED BY PYLINT ALONG WITH HOW OFTEN THEY WERE COUNTED ACROSS ALL PROJECTS.

Convention Refactor Warning Error
Symbol Count Symbol Count Symbol Count Symbol Count

1 invalid-name 19905 duplicate-code 4649 unused-wildcard-import 26307 no-member 5860
2 line-too-long 10321 too-many-arguments 2158 bad-indentation 19921 import-error 1750
3 missing-function-docstring 6444 super-with-arguments 1802 redefined-outer-name 2548 undefined-variable 471
4 trailing-whitespace 4477 too-many-locals 1456 unused-import 2321 not-callable 397
5 missing-module-docstring 2504 too-many-instance-attributes 658 arguments-differ 1678 no-name-in-module 326
6 wrong-import-position 2286 no-else-return 509 unused-variable 986 no-value-for-parameter 168
7 missing-class-docstring 2060 too-few-public-methods 438 attribute-defined-outside-init 962 function-redefined 100
8 wrong-import-order 1750 no-self-use 422 unused-argument 902 unsubscriptable-object 100
9 ungrouped-imports 367 useless-object-inheritance 351 abstract-method 841 bad-option-value 94
10 import-outside-toplevel 285 too-many-statements 265 redefined-builtin 536 unexpected-keyword-arg 84
11 consider-using-enumerate 256 too-many-branches 218 dangerous-default-value 447 relative-beyond-top-level 68
12 missing-docstring 246 cyclic-import 108 reimported 322 assignment-from-no-return 27
13 superfluous-parens 244 inconsistent-return-statements 71 wildcard-import 297 bad-super-call 21
14 missing-final-newline 236 unnecessary-comprehension 48 logging-format-interpolation 288 redundant-keyword-arg 19
15 multiple-statements 218 chained-comparison 46 pointless-statement 253 too-many-function-args 18
16 trailing-newlines 176 consider-using-in 45 fixme 247 invalid-unary-operand-type 17
17 bad-whitespace 166 simplifiable-if-expression 34 protected-access 223 no-self-argument 9
18 unidiomatic-typecheck 78 literal-comparison 30 logging-fstring-interpolation 110 misplaced-bare-raise 9
19 singleton-comparison 69 too-many-nested-blocks 26 f-string-without-interpolation 105 no-method-argument 6
20 multiple-imports 53 no-else-raise 24 pointless-string-statement 101 access-member-before-definition 6

ungrouped-imports, import-outside-toplevel and
multiple-imports) were the most commonly recognised
code smells in the Convention category.

Refactor – The most commonly recognised opportu-
nities for refactoring pertained to duplicate code (4649),
using too many arguments when defining a function or
method (2158, too-many-arguments), and using an old
style for calling super in the constructor of an inherit-
ing class (1802, super-with-arguments), instead of us-
ing the Python 3 style where no arguments to super are
necessary. It also shows that functions and classes are of-
ten too complex; Pylint reports 1456 functions that use too
many local variables (too-many-locals), 265 that are too
long (too-many-statements) and 218 that have too many
branches, as well as 658 classes that have too many attributes
on them (too-many-instance-attributes).

Warning – The most reported Warning messages,
by far, are unused-wildcard-import (26307) and
bad-indentation (19921). Code smells relating to import
management, as already indicated in the Convention category,
are also reflected in the Warning category with 26307 counts
of unused wildcard imports, 2321 counts of unused imports,
322 counts of libraries that were imported multiple times
in the same file (reimported) and 297 counts of wildcard
imports. Aside from unused imports, unused variables (986)
and unused arguments (902) are also common. Having
variables that redefine (shadow) function or variable names
from an outer scope (redefined-outer-scope) is also
common with 2548 recognised cases, as is redefining Python’s
built-in global names (536, redefined-builtin).

Error – Finally, in the Error category, with 5860 counts, the
no-member message is the most prevalent, warning about the
usage of non-existent attributes and methods on class instances
and non-existent functions in Python modules. Import errors
are the second most common with 1750 counts (i.e. on
average 23.6 import errors per project), which are reported
when a module (whether an external library or a module
from a local file) contains imports that Pylint cannot resolve.
The 326 no-name-in-module messages are also related to

these import problems, as they are emitted upon using a
from X import Y style import, where X is resolved (so no
import error is emitted), but Y is not found. Furthermore, the
use of undefined variables and attempting to call uncallable
objects are also prevalent.

V. IMPLICATIONS

In this section, we discuss the implications of our results
for ML developers. We start by elaborating upon the code
smells that we have found to be most prevalent and continue
with a discussion of problems regarding dependency manage-
ment that we encountered while performing this research. We
also argue how these problems affect the maintainability and
reproducibility of the analysed ML projects.

A. Explaining the most prevalent code smells

This section aims at providing an explanation for the
prevalence of the most common code smells in our dataset
of ML projects by investigating their occurrences.

Error – Most interestingly, we found that there were zero
projects that had zero messages in the Error category. Only
the geomancer project in the DeepMind research repository5

had one error, namely a true positive no-name-in-module
error message in the project’s test file.

We also found that no-member and import-error are
the most reported code smells in this category. Upon manual
inspection of these messages in several projects, we noticed
that import errors have two primary causes, namely:
• Bad specification of requirements – Using the
kaggle-kuzushiji-recognition-2019 project as
an example, we noticed that it was missing at least four
dependencies in its (otherwise well-defined) requirements
file. Imports of these missing dependencies were primarily
found in the code of a dependency that the project’s
authors had copied into their repository for some slight
customisations, but were also found in other scripts in the
repository.

5https://github.com/deepmind/deepmind-research
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• Pylint producing false positives on local imports – Taking
the navigan6 project as an example, even though we
manually fixed the import errors relating to badly specified
requirements, there were 28 errors remaining. These errors
come from unresolved imports from local modules, i.e.,
Python files in the repository. In Python, a local module
utils.py can be imported from other modules in the same
directory using import utils and it is recommended (but
not necessary) to add an __init__.py file to that directory
to indicate that it is a Python package [15]. However,
as a GitHub issue reports7, Pylint produces false positive
import errors on local imports, but strangely not when the
__init__.py file is not present.

As for no-member errors, in the
kaggle-kuzushiji-recognition-2019 project – which
has 327 of them – these were primarily caused by false
positives from Pylint on the majority of – if not all – usages
of the torch library (i.e. PyTorch), including those of basic
PyTorch functions like torch.as_tensor, torch.tensor
and torch.max. The project with the most no-member
errors, RSNA-STR-Pulmonary-Embolism-Detection
(1549), showed the same trend, as did DL-unet and several
other projects that we investigated. This is a known issue that
has been reported to Pylint’s Github repository8 of which the
essence goes back as far as 2013 with a similar problem in
the use of NumPy9. The reason that is stated in these issues,
is that Pylint has trouble extracting the members and type
information of libraries that are backed by bindings with the
C programming language.

Pylint cannot reliably check for correct uses of import
statements; both local imports, as well as imports from C-
backed libraries such as PyTorch, suffer from a high rate
of false positives.

This is especially concerning in the context of ML, as the
majority of ML libraries are backed by C (to make them
performant). The fix that the Pylint developers propose in
the relevant GitHub issues all entail (partially) disabling the
no-member rule, implying that Pylint cannot reliably check
for correct uses of C-backed libraries. This is additionally
concerning in the context of ML, as it has a high degree of
glue code, i.e. code that is written to coerce data in and out
of general-purpose libraries [2].

Additionally, the fact that Pylint fails to reliably analyse the
usage of prominent ML libraries, provides a major obstacle to
the adoption of Continuous Integration (CI) in the develop-
ment environment of ML systems. If a static code analysis
tool produces too many false positives, it will be noisy and
counterproductive [12]. Thus, other important true positives
may be overlooked.

6https://github.com/yandex-research/navigan
7https://github.com/PyCQA/pylint/issues/3984
8https://github.com/PyCQA/pylint/issues/{3510, 2708, 2067}.
9https://github.com/PyCQA/pylint/issues/58.

Additionally, the fact that Pylint fails to reliably analyse
whether prominent ML libraries are used correctly, provides
a major obstacle to the adoption of Continuous Integra-
tion (CI) in the development environment of ML systems.

Warning – In this category, we found that one
project (kaggle_rsna2019_3rd_solution) was responsi-
ble for 13917 of all 26307 unused-wildcard-import
messages, with 53 wildcard-import messages. Since
unused-wildcard-import are emitted per unused function
imported with a wildcard import, this means that there were
on average 263 unused imports per wildcard import in this
project. Notably, most of these messages were also (contained
in) instances of duplicate code. Such unused wildcard imports
pollute a module’s namespace with the names of all imported
functions, meaning there is a greater chance of (accidentally)
redefining an outer name. Additionally, wildcard imports may
also have unintended side-effects that can be very difficult to
debug.

The tendency towards using wildcard imports may stem
from the prototypical and experimental nature of ML projects,
combined with the fact that it is simply easier for the developer
to import everything from a library and use whatever they
need, rather than import functions individually. Dead exper-
imental codepaths as found by Sculley et al. [2] of which
the imports still remain, can also be a cause of bad import
management.

As for the many bad-indentation messages, these were
dominated primarily by DeepMind projects that were using a
different convention for indentation width, namely two spaces
instead of four. This is not surprising since indentation width
is a preference, where the PEP8 style guide10 prescribes four
spaces, but others such as Google’s TensorFlow style guide11

prescribe two spaces.
Refactor – We found that duplicate-code is the most

commonly reported refactoring opportunity. Having manually
inspected a random subset of these messages and where they
occur, we have noticed that these are primarily caused by
ML developers having multiple permutations of similar ML
models to perform the same task. Each model (experimental
codepath) then uses a slightly different underlying algorithm
or slightly different parameters and are each defined in their
own file, likely in an attempt to find the best performing one.
Yet instead of identifying the commonalities between these
different models and abstracting them into modules that can
be reused across their codebase, ML developers seem to prefer
simply copy-pasting the files. However, more research into
code reuse and duplication in ML code is required to truly
understand this phenomenon and how it can be prevented.

Code duplication is common in ML, but calls for more
extensive research to truly understand to what extent and
for what reasons this occurs, and how it can be avoided.

10https://www.python.org/dev/peps/pep-0008/
11https://www.tensorflow.org/community/contribute/code_style
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Regarding the high prevalence of the
too-many-arguments and too-many-locals messages,
it is congruent with previous work which shows that data
science projects contain significantly more instances of
these than traditional software projects [6]. Simmons et al.
[6] also notes that these messages are related: function
arguments namely also count as local function variables. By
default, a too-many-arguments message is emitted when
a function or method takes more than five arguments, while
too-many-locals is emitted when a function or method
contains more than 15 local variables. A possible cause for
their prevalence, as Simmons et al. [6] note, are “models
with multiple hyperparameters that are either hard-coded as
variables in the function definition or passed to the function
as individual parameters rather than being stored in a
configuration object.”

Convention – While line length violations stem primarily
from developer preference, invalid and improper naming is a
problem not exclusive to Python [7]. Pylint by default emits
a invalid-name message when it finds names that do not
comply to PEP8, i.e. are improperly capitalised or less than
three characters long (except in the case of inline variables).
Indeed, shorter identifier names do take longer to comprehend
than whole words [16], but Simmons et al. [6] aptly notes that
this may not necessarily be the case in DS and ML code due to
its heavily mathematical background. Thus, ML practitioners
may find it easier to comprehend the details of a piece of ML
code written so that it resembles the notation of the underlying
mathematical model, including the names of the identifiers.
Future research on this subject will have to show how this
affects the readability of ML code.

The PEP8 convention for identifier naming style may not
always be applicable in ML code due to its resemblance
with mathematical notation. Future research is required to
investigate how this affects the readability of ML code.

B. Problems installing project dependencies

Setting up the projects’ codebases as detailed in Section
III-B was not a trivial task. While 42 out of 74 projects
did have a requirements file in their repository that installed
without a hitch out of the box, there were 32 projects where a
requirements.txt had to be generated or had to manually
be created from inspecting the repository or manually modified
from what was already in the repository. Furthermore, there
were 13 projects that required installing extra dependencies
after installing those in the requirements file. One of these
projects had a valid requirements file – and specified the extra
dependencies in their ReadMe – but the 12 others did not.

As for the projects for which a requirements file had to be
manually created or modified, we made a few observations as
to why this was needed. First, some projects did not contain
a requirements file at all, but did specify instructions in the
ReadMe, e.g., the yolact_edge project.

Secondly, some projects had simply made a small mistake
in their manual maintenance of the requirements file, as was

the case with the navigan project. The project authors fixed
the mistake less than a day after we filed an issue on their
GitHub12 about it.

Thirdly, some projects were relying on custom Docker
containers for their runtime environment. These projects,
e.g. kaggle-imaterialist, maintain a Dockerfile in their
repository (sometimes with an additional requirements file) in
which the project’s dependencies are installed, often without
specifying exact dependency versions.

Finally, and most commonly (especially with the Kaggle
projects), projects would contain a requirements.txt file
that was likely the result of running pip freeze – a shell
command that lists all the packages installed in the current
Python environment, including their respective dependencies,
along with their exact versions. However, the are three prob-
lems with this approach:
• Difficult to maintain – Since pip freeze lists all direct,

indirect, runtime and development dependencies, without
distinction, in alphabetical order, we conjecture that it is
difficult for maintainers to assess whether a certain depen-
dency can safely be upgraded without breaking their code
or breaking any of their dependencies.

• May result in unresolvable dependencies – The resulting
requirements file may contain dependencies sourced from
different dependency management tools and package in-
dexes. These dependencies may have slightly different pack-
age names across package indexes or have only published
certain versions to e.g. Conda’s package index, but not to
PyPI. There were also projects that depended on pre-release
versions of certain libraries that are no longer available on
PyPI (e.g., older nightly versions of Tensorflow packages).

• May include unrelated dependencies – Especially if the
user is not installing their dependencies into a virtual
environment, then the resulting requirements file may also
include unnecessary, unrelated (and potentially unresolv-
able) Python dependencies, such as those used by their
operating system or those used in other projects. For ex-
ample, the side_effects_penalties in the DeepMind
research repository depends on youtube-dl (even though
the project has nothing to do with videos), as well as
some dependencies from the operating system level such
as python-apt, python-debian and ufw. The inclusion
of the latter dependencies directly indicates that the project
author was not using a virtual environment, but was instead
using sudo pip install to install all of their Python
dependencies.

We have found serious issues with the specification of
dependencies that present a major threat to the repro-
ducibility and maintainability of Python ML projects.
Further research needs to be undertaken to help ML
practitioners avoid issues in the dependency management
of their projects.

12https://github.com/yandex-research/navigan/issues/1
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VI. THREATS TO VALIDITY

A. Validity of the dataset

Our dataset may not yet be fully representative of the real-
world state of ML code, as it currently only contains open-
source ML projects, Therefore, in future research, we want
to collect a dataset of closed-source ML projects from the
industry, such as ING’s AI-driven FinTech industry. We will
use this both to compare the prevalence of code smells in
these closed-source industry projects with that of open-source
projects as presented in this paper, as well as to make our
dataset more representative of the real-world state of ML and
AI projects. We will also explore adding projects from the
dataset published by Biswas et al. [13].

Furthermore, we currently do not perform any analysis on
the code quality of Jupyter Notebooks, even though they are
very popular and have emerged as a de facto standard for
data scientists [17]. This was deliberate, as Pylint currently
does not support directly analysing the Python code in Jupyter
Notebook files and we wanted to avoid applying double
standards to pure Python code and notebook Python code by
extracting the notebook code into pure Python files. However,
given their popularity, we do intend to perform future research
on the code quality and linting of Jupyter Notebook code.

B. Validity of Pylint

Due to its dynamically typed nature, linting Python code
is notoriously difficult [6, 11]. It is therefore no surprise
that Pylint contains bugs and limitations that cause false
positives and false negatives. Pylint’s issue tracker on GitHub
also reports 165 open and 501 closed issues regarding false
positives13 as of January 19th 2021. We have also noticed
some of these shortcomings for ourselves during this research,
as we have discussed in Section V-A. We mitigate this threat
by manually checking a subset of projects to analyse potential
false positives.

VII. CONCLUSION

In this study we investigated the prevalence of code smells
in ML projects. We gathered a dataset of 74 ML projects,
ran the static analysis tool Pylint on them and collected
the distribution of Pylint messages per category per project
(Table II), the top 10 code smells in these projects overall
(Table III), and the top 20 code smells per category (Table IV).

Moreover, by performing a manual analysis of a subset
of the detected smells, we have found that code duplication
is common in ML, but does require further research to
understand to what extent this occurs and how it can be
avoided. We also found that the PEP8 convention for identifier
naming style may not always be applicable in ML code due
to its resemblance with mathematical notation. This calls for
additional research on how it affects the readability of ML
code.

Most importantly, however, we have found serious issues
with the specification of dependencies that present a major

13See https://github.com/PyCQA/pylint/issues?q=is%3Aissue+false+
positive

threat to the reproducibility and maintainability of Python ML
projects. Furthermore, we found that Pylint produces a high
rate of false positives on import statements and thus cannot
reliably check for correct usage of imported dependencies,
including prominent ML libraries such as PyTorch. Both of
these problems also provide a major obstacle to the adoption
of CI in ML systems. Further research needs to be undertaken
to help ML practitioners avoid issues in the dependency
management of their projects.
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3 M L L I N T - D E T E C T I N G P R O J E C T S M E L L S &
I M P R O V I N G S O F T W A R E Q U A L I T Y

After our findings of bad dependency management practices in open-source ML projects and furious
brainstorming on what the next direction of my thesis would be, the realisation dawned that a more
holistic view on code smells would be required to accurately assess the software quality of ML applica-
tions: project smells. Combined with my desire to deliver a practical impact for ML practitioners, this
gave rise to the development of an automated tool to detect such project smells in ML projects and
help ML practitioners to mitigate them.

3.1 implementation
Thus, mllint was born. mllint has been open-source from the start and currently lives under a
GPLv3 license in a GitHub repository1 on my personal GitHub account. It also has a public website2

with documentation of its linting categories and rules, built using the static site generator tool Hugo3.
mllint itself is published to the Python package repository PyPI4 such that it can easily be included
in Python ML projects, though mllint is not written in Python; it is instead written in Go5. Go is
particularly well-suited towards command-line applications (which I had prior experience with), is
very performant (especially in comparison to Python) and is generally a very well thought out pro-
gramming language with few, but extremely powerful concepts. Go applications compile to a static
binary and allow for easy cross-compilation to other operating systems and processor architectures.
Python’s wheel6 binary distribution format makes it possible to package a compiled Go application
into a Python package with a thin wrapper to forward shell arguments to the executable, making it
usable for users in the Python ecosystem. mllint ’s source code repository contains an automated CI
script to compile mllint , package it into platform-specific Python wheels and set of Docker contain-
ers and publish them to PyPI and Docker Hub7. The result is that mllint runs on Windows, MacOS
and Linux, and is even usable on ARM-based architectures such as Apple M1 and the Raspberry Pi.
mllint primarily produces Markdown output, which it by default pretty-prints to the terminal, but

can also be streamed to a file or to the standard output. Even the documentation of mllint ’s rules
and categories is written in Markdown, which is particularly useful in the generation of mllint ’s
documentation website. Markdown is a very versatile output format that is widely supported by a
plethora of tools, IDEs and development platforms, making it the logical choice for a human-readable,
consistently formatted, easily portable, structured output document.

1 https://github.com/bvobart/mllint
2 https://bvobart.github.io/mllint/
3 https://gohugo.io/
4 https://pypi.org/project/mllint/
5 https://golang.org/
6 https://packaging.python.org/specifications/binary-distribution-format/
7 https://hub.docker.com/r/bvobart/mllint
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3.2 peer interactions
Throughout the development of mllint , I have been in contact with various experienced ML engi-
neers at ING. In February, I joined the GAP squad and ML Engineering chapter in ING Global Analytics,
where I took part in their standups three days per week, their weekly update meeting, their bi-weekly
ML Engineering chapter meetings and monthly ML Engineering chapter days. These taught me a
great deal about the daily lives and activities of ML engineers, their development culture and the tech-
nologies they are using and experimenting with to increase the quality of their ML projects. They also
provided me a podium to disseminate my research, as I presented two of their ML Engineering chap-
ter meetings: the first in February about [van Oort et al., 2021] and my goal of developing a tool for
detecting adherence to ML best practices, the second in June about mllint , its goals, challenges and
the planned method of evaluating its efficacy.

They also helped me make contact with other ML Engineers and ML Engineering chapters within
ING. Most notably, I got into contact with the two chapter leads of the ML Engineering chapters of ING
Frankfurt and Madrid. I met with either of them and a few people from their teams to pitch mllint ,
learn more about their practices of ML project quality assurance and source ML projects and survey
participants for the evaluation of mllint . Their impressions were positive and they both invited me
to speak at one of their ML Engineering chapter meetings. Thus, in June, I presented at a combined
ML Engineering chapter meeting for both ING’s Frankfurt & Madrid hubs, joined by around 40 of their
data scientists and ML engineers.

One of the fruits of this social tree was the contact with a senior ML engineer from ING Frankfurt
who voiced his enthusiasm to contribute to the development of mllint . We met and decided that
he would be best suited for researching usage patterns of and designing the linting rules on Data
Quality practices with tools like GreatExpectations8 and TFDV9. Unfortunately, before he could add
significant value, he had other matters to attend to and left ING soon after, halting the progress on the
Data Quality linter. Nevertheless, mllint temporarily had a contributor.

Additionally, inspired by the ML project best practices of SE4ML[Serban et al., 2021], I got in contact
with members Alex Serban and Joost Visser. We discussed ML project best practices and the challenges
in mapping ML best practices to practical linting rules for ML projects. During the development of
mllint we also aligned my milestones with monthly meetings to discuss progress on mllint and
provide feedback on each other’s work.

Finally, for a short while in March, I followed the lectures of a PhD course from the University of
St. Gallen on Software Engineering for Artificial Intelligence (SE4AI)10. These provided interesting
insights into academic perspectives on AI, the SE challenges that go with it and the research to mitigate
those.

3.3 evaluation efforts
When it came time to evaluate mllint , we used the accrued connections within ING and our aca-
demic network to disseminate mllint and the evaluation survey. The timing of this was somewhat
unfortunate, as it was July and the holiday season had just commenced. Combined with the dimin-
ished social relations that perpetually working from home engenders, it encumbered communication

8 https://greatexpectations.io/
9 TensorFlow Data Validation: https://github.com/tensorflow/data-validation

10 https://docs.google.com/document/d/1_yqlNJEk2yBfd2mJxMtMz493IXU6Qzcb0sIeLLWb5kw
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with several ML engineers in ING that had previously vowed to help evaluate mllint . This addition-
ally played into our decision to publically disseminate mllint and the survey. Mid-August, we posted
a tweet11 about mllint that garnered 31 retweets and 41 likes, as well as a Reddit post12 that received
112 upvotes and flourished an interesting discussion about the potential harms and benefits of using
code quality linters.

Furthermore, to help gain more survey responses from data scientists and ML engineers from ING,
I hosted a workshop presentation of mllint at ING Analytics. The goal was to explain what mllint is,
describe some of the research behind it, give a quick demo and then let them run mllint on an ML
project of their own, finishing with filling the survey. Since the majority of people left without filling
the survey and since several others had indicated that they were interested, but not available to join,
we decided to recreate the workshop in a video13 for participants to follow along in their own time.

3.4 other information
At the end of May, I started developing repetitive strain injury (RSI) in my wrists. I visited a physio-
therapist and purchased several RSI-friendly peripherals for my daily usage. I healed through their
combined efforts and natural healing, though it still strained my development efforts on mllint for
two months.

Finishing on a positive note, mllintwas also used to help educate future data scientists and ML en-
gineers about Release Engineering for ML Applications (REMLA)14 in the homonymous MSc course
in June by Sebastian Proksch and Luís Cruz. The course contained a tutorial on version controlling
data with the Data Version Control (DVC) tool. This tutorial used mllint to verify DVC implemen-
tation practices in their example ML project and used the documentation on mllint ’s data version
control rules to teach about correct data version control practices. Additionally, in the project part
of the course, one group of students was creating an automated Repository and Pipeline Generation
Tool (RPGT)15 that can generate a template ML project that conforms to all of mllint ’s linting rules
and uses mllint for continuous quality control on CI.

11 See https://twitter.com/BvOBart/status/1426095280059994112. Retweets and likes up to date as of 9 Oct.
2021

12 See https://www.reddit.com/r/MachineLearning/comments/p3j2xh/pr_announcing_mllint_a_
linter_for_ml_project/. Upvotes up to date as of 9 Oct. 2021

13 https://www.youtube.com/watch?v=s_uCvRkr2Og
14 https://se.ewi.tudelft.nl/remla/
15 https://pypi.org/project/rpgt/
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ABSTRACT
Machine Learning (ML) projects incur novel challenges in their
development and productionisation over traditional software appli-
cations, though established principles and best practices in ensuring
the project’s software quality still apply. While using static analysis
to catch code smells has been shown to improve software quality
attributes, it is only a small piece of the software quality puzzle, es-
pecially in the case of ML projects given their additional challenges
and lower degree of Software Engineering (SE) experience in the
data scientists that develop them. We introduce the novel concept
of project smells which consider deficits in project management as
a more holistic perspective on software quality in ML projects. An
open-source static analysis tool mllint was also implemented to
help detect and mitigate these. Our research evaluates this novel
concept of project smells in the industrial context of ING, a global
bank and large software- and data-intensive organisation. We also
investigate the perceived importance of these project smells for
proof-of-concept versus production-ready ML projects, as well as
the perceived obstructions and benefits to using static analysis tools
such as mllint . Our findings indicate a need for context-aware
static analysis tools, that fit the needs of the project at its current
stage of development, while requiring minimal configuration effort
from the user.
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1 INTRODUCTION
The ubiquity of Machine Learning (ML) and Artificial Intelligence
(AI) solutions to complex computing problems demands develop-
ment processes to help transform a proof-of-conceptML experiment
into a well-engineered ML application, running continuously in
a production environment [3, 8, 12, 20]. These development pro-
cesses on the one hand incorporate novel ideas to deal with the
novel challenges that developing ML applications poses over devel-
oping traditional software applications, but on the other hand also
include established Software Engineering (SE) best practices. After
all, quoting Carleton et al. [6], “An AI system is a software-intensive
system, and the established principles of designing and deploying
quality software systems that meet their mission goals on time still
apply”.

However, productionising is difficult, especially in the case of
ML systems given their additional challenges, such as data man-
agement, testing and reproducibility [10, 14]. Traditional software
engineering historically struggled with this too, but has seen the
implementation of a host of tools to help with productionisation in
various stages of the software development lifecycle. For example,
using static analysis to enforce best practices and catch code smells,
helps catch bugs earlier and improve software quality attributes,
such as reliability, maintainability and reproducibility [11].

Especially in ML projects, though, code smells are only a small
piece in the software quality puzzle. We noticed this first-hand in
our previous research on the prevalence in code smells in open-
source ML projects: nearly half of the analysed projects struggled
with managing their code dependencies [23]. We realised that a
more holistic approach to code smells, ‘project smells’, would be
required.

To the end of automatically detecting such project smells and giv-
ing practical advice on how to fix those, we implemented mllint .
mllint 1 is an open-source command-line utility to evaluate the
software quality of Python ML projects by performing static analy-
sis on the project’s source code, data and configuration of support-
ing tools. mllint aims to help ML practitioners in developing and
maintaining production-grade ML and AI projects.

We argue that many data-driven companies may benefit from
an SE for ML tool such as mllint . This research gauges how
well these project smells as detected by mllint fit the context of
ML development at our industrial partner ING. ING is a global
bank and large software- and data-intensive organisation with
a strong European base that offers retail and wholesale banking

1https://github.com/bvobart/mllint
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services to 38.5 million customers in over 40 countries [9] and has
15.000 employees in IT, software and data technology [1]. ING
has extensive use-cases for increasing its business value with AI
and ML, such as assessing credit risk, fighting economic crime by
monitoring transactions and improving customer service. As part
of a major shift in the organisation to adopt AI and ML and become
data-driven, ING is defining standards for the different processes
around the lifecycle of ML applications [8].

To measure the fit of project smells in this context, we qualita-
tively analyse the reports generated by mllint on ING projects and
combine them with feedback from ML practitioners. Additionally,
we asked ML practitioners to run mllint on their projects and pro-
vide us with their feedback on their experiences with mllint and
its concepts. By doing so, we aim to also uncover the obstacles
towards implementing specific best practices, as well as the per-
ceived benefits and drawbacks of using static analysis tools such
as mllint to verify SE practices in ML projects. Additionally, we
investigate how ML practitioners perceive the difference in im-
portance of mllint ’s linting rules on proof-of-concept projects
versus production-ready projects, as the former may not require as
rigorous software quality checks as the latter do.

More formally, our research questions are as follows:

RQ1 How do the project smells as detected by mllint fit the
industrial context of a large software- and data-intensive
organisation like ING?

RQ2 What differences do ML practitioners perceive in the im-
portance of mllint ’s linting rules between proof-of-concept
and production-ready projects?

RQ3 What are the main obstacles for ML practitioners towards
implementing specific best practices?

RQ4 What are the perceived benefits of using static analysis
tools such as mllint to verify SE practices in ML projects?

The rest of this paper is structured as follows. Section 2 describes
influential research in the field of SE for ML that served as the back-
ground for this research. Section 3 elucidates the concept of project
smells and mllint , detailing two major challenges in its devel-
opment. Section 4 explains the methodology used to answer our
research questions. In Section 5, we present the findings from apply-
ing our methodology and answer our research questions. Section
6 then combines and discusses these findings along the themes
of version controlling data, dependency management and static
analysis tool adoption. We then discuss the threats to the validity
of our research in Section 7 and conclude with an outlook on future
work in Section 8.

The contributions of this research are as follows:

• The novel concept of project smells as a holistic perspective
on software quality in ML projects.

• An open-source static analysis tool mllint 2 to help with
detecting and mitigating these project smells.

• Experiences, insights and perceptions on project smells in
an industrial context.

2https://github.com/bvobart/mllint

2 BACKGROUND
Both Software Engineering and Machine Learning are well studied
in literature, though their intersection is still an emerging field of
research [3, 12, 14].

Sculley et al. [15] were among the first to investigate risk factors
in the design of real-world ML systems at Google through the lens
of technical debt. In doing so, they unearthed several anti-patterns
in ML system design, including glue code—the tendency for ML ap-
plications to consist of code that glues together functionalities from
various general-purpose libraries—and configuration debt—the ten-
dency for both researchers and engineers to see configuration and
configurability of the ML application as an afterthought [15]. Con-
tinued research at Google investigating production-readiness and
the reduction of technical debt in ML systems, resulted in “The
ML Test Score” [5]: a rubric with 28 specific tests and monitoring
needs, along with a scoring system to determine the production-
readiness of ML systems. These tests are split into four categories,
namely Data, Model, Infrastructure and Monitoring, with each cate-
gory containing seven tests. For every test, half a point is awarded
for executing the test manually, documenting and distributing the
results. A full point is awarded if that test is automated and runs
regularly. The scores are then summed per category and the final
production-readiness score is calculated by taking the minimum
of these category scores. A score between 3 and 5 is interpreted as
“Strong levels of automated testing and monitoring, appropriate for
mission-critical systems.” [5]

Amershi et al. [3] at Microsoft also used experiences from engi-
neering ML applications in their case study. Their study resulted
in several best practices and three aspects of engineering ML / AI
applications that makes them fundamentally different from tradi-
tional software applications. One such aspect is concerned with
the discovery and management of data: ML applications also need
to deal with finding, collecting, cleaning, curating and processing
their input data. This data also needs to be stored and versioned, for
which in contrast to code there were no well-designed technologies
to do so [3]. Another challenge lies in the customisation and reuse
of ML models on problems in different domains or with slightly
different input formats, as this may require retraining or even re-
placing the model with new or additional training data. Finally,
Amershi et al. [3] state that strict modularity between ML models is
difficult to achieve, as models are not easily extensible and multiple
models may interact with each other in unexpected ways. Kriens
and Verbelen [10] recognise this and propose a partial solution in
the form of OSGi-like metadata for ML models.

The aforementioned challenges are reflected in systematic litera-
ture reviews (SLRs) such as [14], [24] and [2]. Nascimento et al. [14]
analysed the limitations and open challenges found in the SE for
ML field of research, noting that testing, AI software quality and —
again— data management are three of the main challenges faced by
professionals in the field. They also report on several SE practices,
approaches and tools for dealing with these challenges. On the topic
of testing ML systems, Zhang et al. [26] performed an extensive
SLR of various techniques to do this. Washizaki et al. [24] simi-
larly performed an SLR on SE design patterns for ML techniques,
identifying several good and bad patterns for engineering ML soft-
ware. Muralidhar et al. [13] also identify MLOps anti-patterns. More
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recently, Alamin and Uddin [2] conducted an in-depth literature
review, resulting in a taxonomy of different quality assurance chal-
lenges for ML software applications, which includes dealing with
data dependencies and ML-specific technical debt. Bogner et al.
[4] further investigates technical debt in ML systems, identifying
new forms of such debt, 72 anti-patterns (most of them relating to
models and data) and 46 potential solutions to them.

Our research also builds on the work of SE4ML [19], who have
identified 45 best practices for engineering trustworthy ML appli-
cations [16, 17, 22]. They also measured the adoption of these best
practices under practitioners, both in academic and industry use
[16]. Among others, their findings indicate that larger teams tend
to adopt more best practices and that traditional software engineer-
ing practices tend to have a lower adoption than ML-specific best
practices. More recently, they also studied challenges and solutions
in an SLR about software architecture for systems with ML com-
ponents [20]. Along with new ML-specific challenges, they also
found that traditional software architecture challenges also play an
important role in architecting ML systems.

Lastly, in our previous work, we analysed the prevalence of code
smells in ML projects [23]. Aside from widespread code duplication
in ML projects and several false positives in Pylint, we coinciden-
tally found that nearly half of the projects we analysed struggled
with dependency management, so much so that manual adjust-
ments were needed to allow error-free installation of the Python
libraries that they used. This severely hurts the maintainability and
reproducibility of these projects.

3 MLLINT
Following from the related work, a pattern emerges suggesting that
code smells are only a small factor in the overall software quality
of ML applications. Code smells do “have a strong relationship with
quality attributes, i.e., with understandability, maintainability, testa-
bility, complexity, functionality, and reusability” [11], but they do
not paint the complete picture, especially in ML applications given
the extra challenges in their development over traditional software
applications.

Thus, to more accurately assess the software quality of ML appli-
cations, a more holistic approach would be required, where instead
of code smells, we analyse project smells. Such project smells are
concerned with deficits in how an ML project is managed, including
poor dependency management (as outlined in [23]), lack of ver-
sion control for code or data, lack of unit testing, lack of proper
Continuous Integration (CI) configurations, or a lack of effective
static analysis tooling. Code smells are also a subcategory of project
smells.

To the end of automatically detecting such project smells and giv-
ing practical advice on how to fix those, we implemented mllint .
mllint is a command-line utility to evaluate the software quality
of ML projects written in Python by performing static analysis
on the project’s source code, data and configuration of support-
ing tools. The aim of mllint is threefold. First, mllint aims to
help data scientists and ML engineers in creating and maintaining
production-grade ML and AI projects, both on their own personal
computers as well as on CI. Secondly, it aims to help ML practition-
ers inexperienced with SE techniques explore and make effective

use of battle-hardened SE for ML tools in the Python ecosystem, Fi-
nally, mllint aims to help ML project managers assess the quality
of their ML projects and receive recommendations on what aspects
of their projects they should focus on improving.

3.1 Implementation
mllint analyses a project with linting rules in five categories,
which roughly correspond to the project smells as previously out-
lined. These categories are based on well-known SE practices in
traditional software application development, as well as SE for ML
best practices from (grey) literature, such as SE4ML’s collection
of best practices [17, 19] and Google’s Rules for ML [27]. Each
category is described as follows.

Version Control This category comprises both version con-
trolling source code (with Git), as well as version controlling
data. The latter is particularly relevant to ML applications.

Dependency Management This category entails checking
whether the project manages its code dependencies (e.g. used
libraries) in a reproducible and maintainable manner, to mit-
igate the dependency management issues found in [23].

Continuous Integration The rule in this category checks
whether the project has a CI configuration file. It should
still be extended with rules to check whether the config-
uration is valid and to what degree the CI configuration
uses appropriate tooling to continuously verify the project’s
software quality.

Code Quality This category is concerned with code smells
and runs a set of linters (Pylint, Mypy, Black, isort and
Bandit) to detect and help mitigate them. It still needs to be
extended with tools for detecting ML-specific code smells,
such as dslinter [7].

Testing This category analyses testing practices in the project
by counting the number of test files, the number of tests
passed and the test coverage. Since mllint performs static
analysis, it will not run the tests, but instead expects a test-
and coverage report from a prior test run.

Each category contains linting rules that analyse and score how
the best practice referred to by the category is implemented in the
project. For example, the Version Control category contains rules
such as “Project uses Git”, “Project should not have any large files in
its Git history” and “Project uses Data Version Control”. The checks
imposed by these linting rules are based upon prevalent tooling
and usage techniques found in the industry.

Additionally, users can define custom rules in their mllint con-
figuration by referring to a custom program that performs this
custom check and returns the resulting score and corresponding
details. This allows users to implement their own linting rules
for verifying internal team or company practices. Additionally, it
can help with prototyping new rules for mllint before they are
included in mllint ’s core set of linting rules.

After its analysis, mllint outputs a Markdown-formatted report
that is by default pretty-printed to the terminal. This report contains
a score for each rule (between 0 and 100%), often along with details
that explain the score, provide extra information derived from the
analysis and / or provide recommendations on how to make the rule
3https://github.com/bvobart/mllint/blob/main/docs/example-report.md
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Figure 1: Example snippet from an mllint report rendered
to the terminal. The full report can be found on GitHub.3

pass. For an example of such a terminal-rendered mllint report,
see Figure 1.

The experienced practitioner might note that mllint in its cur-
rent state primarily focuses on project smells that are also applicable
to non-ML projects, but has few rules that specifically apply only
to ML projects. There are two reasons for this: first, such more
general SE tools and techniques (e.g. dependency management
and linting for code quality) are more alien to data scientists than
ML-specific tools, given the low degree of SE experience in data
scientists. Secondly and more practically, given our limited amount
of development resources for mllint , we have yet to implement
more ML-specific linting rules.

In the following two sections, we explain two of the challenges
faced in architecting mllint and its rules, along with how we ap-
proached them. Note that mllint is currently a research prototype.
There are still many linting rules to implement and a host of ML
project tools and architectures to support. As such, mllint is yet to
reach its full potential, though it does pave the way towards using
static analysis techniques to improve the quality of ML projects.
mllint is built with an extensible architecture so that the list of
supported practices can continuously be extended.

3.2 Challenge 1: Mapping high-level best
practices to practical guidelines

The SE for ML best practices found in academic sources such as [17,
19] tend to be quite high-level: they explain a concept or technique
for a project to adhere to, but often provide little direct, practical
recommendations on how to implement it correctly. An example of
this is the best practice to use static analysis tools for checking code
quality [18], which does not recommend any specific linting tools to
employ or what kinds of linting rules to enable – in part, to remain
timeless and general. But especially within the plethora of language-
supporting, supplementary tools and libraries that exists within

the Python ecosystem, it can be very difficult and time-consuming
to find the right tools or configuration.

The aim of mllint is therefore to give practical advice to its
users; concrete tools, techniques and guidelines that the user can
implement such that the SE for ML best practices are fulfilled, along
with automated checks to detect the degree of adoption. However,
figuring out which exact tools to advocate for implementing which
best practice is non-trivial, especially as programming ecosystems
change. This is best done by looking at what tools are prevalent
and popular in the industry.

Additionally, mllint is an automated, command-line tool, so
based only on the project’s source code (e.g. the contents of its
Git repository), it has to be able to reliably computationally check
whether the project adheres to each practice. This makes it diffi-
cult, in some cases impossible, to verify whether certain team- or
governance-related best practices are being upheld. Two examples
of this are “Establish Responsible AI Values” and “Perform Risk As-
sessments” [19]. These are team or company processes that a source
code analysis tool such as mllint will not be able to enforce.

To find appropriate linting rules and practical advice, we started
by exploring the practical side of the SE for ML landscape and how
their best practices relate to practical implementations. This was
done by estimating the measurability of the best practices from
SE4ML [17, 19] and Google’s Rules for ML [27]. For each practice,
we explored ways to detect adherence to it in the source code of
an ML project, how reliable such an approach would be and, by
extension, how feasible it would be to reliably and accurately mea-
sure adherence to this practice. Our indication of measurability was
given as one of five colours between red (not measurable), yellow
(technically measurable, but likely to be unreliable or inaccurate)
and green (measurable in a reliable and accurate way).

As an example, consider the best practice to use Continuous
Integration [19]. This was marked yellow, as it is easily possible to
detect whether a project has a CI configuration in its repository
–and CI configurations are also machine-readable– but it is difficult
to determine whether this configuration contains an appropriate
set of CI jobs for the project. By contrast, the best practice “Check
that Input Data is Complete, Balanced and Well Distributed” [19]
was marked green, since this data should be available through the
software repository and only requires a few statistical checks on
the data, possibly through tools like GreatExpectations4 or Tensor-
Flow Data Validation5. Finally, the aforementioned best practice to
“Establish Responsible AI Values” was marked red, as this is a team
/ organisational value that cannot be deduced from the project’s
software repository.

After this measurability analysis, we simply picked the low-
hanging fruits, i.e., the most measurable, yet also easy to implement
best practices to become our first best practices. An iterative ap-
proach was then taken in constant collaboration with experienced
ML engineers from ING to determine which best practices were
most useful next.

4https://greatexpectations.io/
5https://github.com/tensorflow/data-validation

3.5 “project smells” — full paper 20



“Project smells” — Experiences in Analysing the SoftwareQuality of ML Projects with mllint ICSE 2022 – SEIP, May 21–29, 2022, Pittsburgh, PA, USA

3.3 Challenge 2: Heterogeneity of ML projects
Another big challenge for mllint comes from the many different
kinds of ML projects. An ML project could be plain-old Python
using basic ML libraries, but could also be based on a framework
like TensorFlow or PyTorch, for each of which a different project
architecture and tooling might be preferable. If a company has their
own ML infrastructure or platform, then this could also impose
different requirements to the project’s layout and tooling. Further-
more, if the company uses proprietary tools for fulfilling certain
practices, mllint may not recognise them and will not be able
to assess whether the best practice is followed correctly, resulting
in incorrect recommendations. All in all, some linting rules may
not make sense on certain projects, or need to adapt what they
recommend for different kinds of projects.

Aside from the technical differences, ML projects may also differ
in maturity. An ML project that is only a proof of concept does not
need to be as highly engineered, reproducible and maintainable as
a production-ready or fully productionised project. Surely, it should
get its basics right, as the best practice “Keep the first model simple
and get the infrastructure right” (rule #4 of Google’s Rules of ML
[27]) also endorses, but as an example, it may not be worthwhile
fixing all linter warnings or achieving full test coverage. The more
mature the project, the more important these engineering princi-
ples become though. Since mllint ’s recommendations may steer
the engineering process, mllint should account for differences
in maturity, by adjusting the weights of its rules to match what is
important to the project at the current stage of development. This
paper therefore also investigates the perceived differences in the
prioritisation of each of mllint ’s rules.

Finally, there will always be tools, techniques and practices that
mllint will not recognise or have linting rules for, such as propri-
etary tools and internal company / team practices. To provide some
degree of support for such cases, mllint allows users to define
custom rules in its configuration that run some arbitrary script
or program to score and provide recommendations on a custom
practice. Such custom rules also provide a testing ground for new
linting rules that may later be published as a plugin to mllint , or
even be built into mllint .

Summarising, the challenge of heterogeneity of ML projects to
tools like mllint is still an open challenge. However, our proposals
to solving it may at least limit its impact. These include configura-
bility of enabled rules (with sensible defaults), automatic adaptation
of linting rules to different kinds of technology stacks present in
projects, and custom linting rules.

4 METHODOLOGY
To answer the research questions posed in the introduction, we
employed a mixed-methods approach. An overview of this is dis-
played in Figure 2. First, we gathered and qualitatively analysed the
mllint reports of eight ML projects at ING. Secondly, we asked
and encouraged ML practitioners from ING and open-source com-
munities alike, to try mllint on one or more of their projects and
evaluate the reports that it produced. Subsequently, we ran a survey
with 22 users of mllint to evaluate the efficacy of the tool, as well
as gather insights on how users prioritise each of the implemented
rules. We also used insights from informal, open-ended interviews

performed with ML practitioners within ING, partially instigated by
a desire for deeper elaboration on some of the survey participants’
answers.6

4.1 Qualitative analysis of mllint reports
To help answer RQ1, we gathered and qualitatively analysed the
reports that mllint generated for eight ML applications within
ING. For seven of these projects we got access to the source code
and ran mllint on it ourselves. For the other, we asked one of its
developers to run mllint on their project themselves and forward
us the report, which we then discussed with the developer.

The analysis of the reports then consists of three stages. First,
we manually browse through each report to inspect the scores and
details for each linting rule, assessing what project smells were
detected and how deeply ingrained in the project they are. Are they
simple oversights during development? Are they mllint false pos-
itives? Were the developers unaware of the advocated best practice
so far? Does the project show evidence of them applying the best
practice, but in way different to what mllint recognises, or did the
developers actively choose not to implement the best practice being
advocated by the rule? Whenever uncertain, we ask the project’s
developers for further clarification and verification of these ideas.

Secondly, combining the insights taken from multiple reports,
we try to deduce patterns in the prevalence of the detected project
smells. Which project smells are most and least often detected?
Are there any project smells that are systemically ignored, or do
the developers have suitable alternatives for these practices? This
results in a list of key ideas and insights about mllint ’s project
smells.

Finally, in order to validate the findings and gauge the signifi-
cance of each of the key ideas taken from stage 2 within the context
of ING, we discuss the findings and key ideas with the other authors
and experienced ML engineers from ING.

4.2 Survey
Based on our research questions, we designed a survey to evaluate
the efficacy of mllint as a tool and gather insights on the prioriti-
sation of each rules. The survey starts by gathering demographics
such as the participant’s profession, the type of organisation they
work in, their team size & composition and their experience in
the fields of SE and ML. We then asked participants about their
experiences with mllint by asking about their first impressions,
the amount of mllint recommendations they have or would apply
to their ML projects, and how much they agree or disagree with a
few statements on how helpful the descriptions of mllint ’s rules
are and whether they would consider employing mllint in their
ML project development and code review process.

Next, in separate questions, we ask what benefits and drawbacks
static analysis tools such as mllint have for the participant in
validating SE practices for ML projects, which we use for answering
RQ4 and RQ3 respectively. We also ask questions about rules that
the user disabled or was not able to implement and what was
obstructing them in doing so, which we also use for answering
RQ3. Furthermore, we ask participants what features or rules they

6While the survey was anonymous, the participant could fill in an email address for
us to contact if answers were found to be either unclear or particularly interesting.
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Figure 2: Overview diagram of the methodology used in this paper.

think mllint is still missing and what features they think could
be improved.

In the final part of the survey, to answer RQ2, we ask partici-
pants to rate the importance of each of the linting rules currently
implemented in mllint . Possible answers are on a Likert-scale,
ranging from ‘Not important’ to ‘Absolutely Essential’, with the
addition of an ‘I don’t know’ option. Since the priority of each rule
may be different in different stages of the lifecycle of an ML project,
we ask the participant to do this for both a proof-of-concept and
a production-ready ML project. Since it may not be entirely clear
what these terms entail, we provide the user with the following
definitions:

Proof-of-concept project A project that primarily serves as
an example to show that the concept behind the project
works and will scale. Imagine that this is to show your super-
visors that it is worthwhile to further develop this project
into one that can eventually be deployed to the production
environment.

Production-ready project A project that is mature enough
to be deployed to the production environment (or already is).
This requires rigorous project quality standards, such that
the application is stable and will behave as expected.

For open-ended questions, we codified each of the answers by
going through each answer, sentence by sentence, marking the
topics that they discuss and denoting their sentiment towards it;
are they being positive or negative, or listing advantages, disad-
vantages or caveats to take into account? We also took note of any
specific, insightful remarks that the answers made. As an exam-
ple, the phrase “mllint provides a good checklist of things to do to
improve ML project quality” would be marked as having a positive
sentiment and tagged with ‘quality checklist’, ‘project quality’ and
‘guides planning’.

The survey was spread among ML practitioners at ING through
their data science and data engineering mailing lists and Slack
channels and the AI for FinTech Research Lab. It was also presented
at ING’s ML engineering chapters and two workshop sessions were
held at ING Analytics, one live and one pre-recorded. Furthermore,
we publicised mllint and a public copy of the survey through
our academic network, a tweet and a Reddit post. The discussion

that the Reddit post triggered, as well as notes from open-ended
discussions conducted with experienced ML engineers from ING
after the survey, were codified similarly to the survey answers and
used to answer RQ3 and RQ4.

In total, 22 people filled in our survey, most of them ML en-
gineers, of which one chapter lead ML Engineering, two chapter
leads Data Science, two ML researchers and two PhD students. 14
participants work at ING, 4 at some other non-tech company and 4
at a university or non-commercial research lab. On average, par-
ticipants had between 2 to 6 years of experience at developing ML
applications and between 4 to 10 years of experience in Software
Engineering (defined in the survey as “designing, implementing,
testing and maintaining complex software applications”). They tend
to work in teams of 6 to 9 members, of which on average 4 have a
strong background in SE.

Most participants noted they had used mllint on one project
at the time of filling in the survey, only three participants had run
mllint on two to five projects. Initial impressions are overall posi-
tive, with participants noting that the terminal interface is pretty
and that the reports are well-organised, as well as “informative to
people unfamiliar with ML tooling and/or Python workflows”. One
participant even noted the tool “should be a standard on ML projects”.
However, participants also noted that mllint is still early in de-
velopment and that some were overwhelmed with the amount of
terminal output, especially in the presence of many code quality
linter messages.

5 RESULTS
Applying our methodology, we found the following answers to our
research questions.

5.1 RQ1: How do the project smells as detected
by mllint fit the industrial context of a large
software- and data-intensive organisation
like ING?

In total, eight ML projects at ING were analysed. Four of these were
proof-of-concept projects, two projects were production-ready, one
project was in the process of being made production-ready and
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Figure 4: Countplot of SE experience among our survey par-
ticipants.

one project was an example project. Listing by mllint category as
described in subsection 3.1, our key findings and observations are
as follows7.

Version Control
Every project was using Git to version control their code. Three
projects had large files in their Git history, some of it training
data, some of it large Jupyter Notebook files. However, none of
the projects that we analysed were version controlling their data
using the Data Version Control (DVC)8 tool, though it is known
that some projects at ING do use it. Data acquisition methods differ
per project: some receive it at run-time, one had scripts to retrieve
the data from an external database, some instructed the user to
download the data from an internal document sharing platform.

Dependency Management
Dependency management was done well in two projects, in one
project not at all and in other projects with a combination of
requirements.txt and setup.py, of which mllint doesn’t recog-
nise whether it is used in an effective, maintainable and repro-
ducible way. Manual inspection showed that these projects do
groom their requirements.txt files, there was no evidence of
direct pip freeze usage as was prevalent in [23] and some of
these projects were neatly separating their runtime dependencies
from development dependencies. However, there were also two
projects that duplicated the contents of their requirements.txt
in their setup.py.

Code Quality
The example project and (being made) production-ready projects
7We intentionally omit the CI category, as its implementation in mllint has a false
positive.
8https://dvc.org/

adopt static analysis tools to lint for code smells, as indicated by
instructions to run linters in the documentation or linter config-
urations in their repositories. These projects are not free of code
smells though, as particularly Pylint was eager to complain, though
it is disputable what degree of its messages were false positives or
irrelevant. The other proof-of-concept projects, however, were not
using static analysis tools, as shown by their lack of linter configu-
ration, lack of linter usage instructions and abundance of detected
code smells.

Testing
The two production-ready projects and example project have au-
tomated tests that also pass. Two proof-of-concept projects had
varying amounts of tests, but some of them fail due to import
errors9. The other three projects, including the one being made
production-ready, did not have any tests.

5.2 RQ2: What are the differences between
perceptions on mllint ’s linting rules for
proof-of-concept versus production-ready
ML projects?

From our survey, we have gathered the following results, as listed by
linting rule (sub-)category. For the average importance, we encoded
our five Likert-scale answers to integers between -2 and 2, and
took the mean of the responses. For the range of importance, we
subtracted and added the standard deviation from / to the mean,
then rounded to the nearest integer, mapping back to a Likert-scale
answer.

Version Control – Code
For both proof-of-concept as well as production-ready projects,
survey participants on average find usage of Git in ML projects
between moderately important and absolutely essential, averaging
very important. For production-ready projects, usage of Git is even
unanimously seen as absolutely essential.

Version Control – Data
The importance of the rules on the (correct) use of DVC is dis-
puted: for proof-of-concept projects, survey participants find this
between not important and very important, averaging to slightly
important. For production-ready projects, survey participants find
this between slightly important and absolutely essential, averaging
to very important. Note, however, that the rules in this category
primarily relate to the usage of the tool DVC, rather than the actual
practice of version-controlling data, for which there exist many
other options besides DVC.

Dependency Management
For proof-of-concept projects, the use of proper dependency man-
agement tooling is found to be between slightly important and
absolutely essential, averaging very important. While all other rules
on proof-of-concept projects were lowest rated as not important,
this rule was the only rule to be lowest rated as slightly important.
For production-ready projects, this rule was rated between very
important and absolutely essential, averaging absolutely essential,
with the lowest rating being moderately important.

For both types of projects, however, the importances of using
a single dependency manager and making a correct distinction
9Note: this may also be caused by a misconfiguration on our end, though where
available we did diligently follow instructions in the repository for running the tests.
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between runtime and development dependencies, was disputed.
The former was rated between slightly vs. moderately important
and absolutely essential, averaging moderately vs very important.
The latter was rated between not vs. slightly important and very
important vs. absolutely essential, averaging moderately important.

Continuous Integration
For proof-of-concept projects, the use of CI was rated between
slightly and very important, averaging moderately important. For
production-ready projects, this was rated between moderately im-
portant and absolutely essential, averaging very important.

Code Quality
The recommendation to use code quality linters does see a signifi-
cant shift in importance between proof-of-concept and production-
ready projects. For a proof-of-concept project, our survey partici-
pants rate this between not important and very important, averaging
moderately important. For a production-ready project, they rate this
between moderately important and absolutely essential, averaging
very important.

As for the actual linting tool being used, there is no significant
difference in the perceived importance. There is a slight tendency
towards the code formatting tool Black in proof-of-concept projects
and towards the security-focused linter Bandit in production-ready
projects. Overall, we find that the usage of code quality linters is
more important than a total absence of linter warnings.

Testing
The importance of having automated tests in a proof-of-concept
ML project is disputed and perceived to be between slightly and
very important, averaging moderately important. For a proof-of-
concept project, however, their importance is significantly higher,
between moderately important and absolutely essential, averaging
very important. Passing the tests and having a test coverage report
is also seen as moderately vs. very important.

5.3 RQ3: What are the main obstacles for ML
practitioners towards implementing
specific best practices?

Survey participants noted that out of mllint ’s rules, they were
most obstructed in implementing the practices about code quality
linters and dependency management.

“Linters, specially regarding code quality, can be overwhelming if
not properly configured. Not all warnings pointed are necessarily bad
for your code, not all justified warnings are equally bad, so it needs to
be used parsimoniously.”

Regarding code quality, survey participants complained that lin-
ters generally suffer from a high degree of false positives and that
configuring these linters is often cumbersome and time-consuming.
They experience a catch-22 situation: on the one hand, using the de-
fault configuration leaving all rules enabled, in many cases results
in an overwhelming amount of linter warnings that in the eyes of
the user often do not relate to the project in a functionally meaning-
ful way (e.g., trailing whitespace and proper docstring formatting,
but also false positive type-checking errors). On the other hand,
selectively enabling or disabling linting rules by configuring each
linter for the project, is found to be time-consuming, difficult and
cumbersome, especially for those inexperienced with the tool or
the kind of linting rules and their importance to the quality of the

project. This is especially found to be difficult in a team situation,
as each developer may have different preferences / opinions about
specific linting tools and rules.

Regarding dependencymanagement, while mllint recommends
using Poetry or Pipenv, some survey participants note that they
prefer to stick with Python’s standard requirements.txt and
setup.py files. While they do acknowledge that these are easy
to misuse, especially for those inexperienced with them, several
arguments are made for them. First, they argue that a disciplined
developer or team can still use Python’s standard tooling in an
effective, maintainable and sufficiently reproducible manner, espe-
cially when combined with Docker. Secondly, if they are already
sufficiently proficient at this, they do not want to re-learn to do
with Poetry what they can already do with Pip. Thirdly, they note
that they do not want to be forced to use external tooling (outside
of Python) to interact with a project. Finally, they note that Poetry
may conflict with other tools they are using in the project, such
as Versioneer. Solving such conflicts creates extra overhead and
may be further complicated by a smaller user base as opposed to
standard Python tools to help with solving these conflicts.

Generalising with other mentions of less specific obstructions,
we find that:

(1) Configuration of tools, especially static analysis tools, is
perceived as difficult, cumbersome and time-consuming.

(2) False positives are a significant obstruction to the adoption
of certain tools, especially static analysis tools. They pro-
duce noise and may distract the user towards irrelevant or
trivial issues, which results in overhead to selectively ignore
them or adjust the configuration of the tool to match their
preferences.

(3) While some tools are recognised to be useful to inexperi-
enced practitioners in reducing mistakes, experienced practi-
tioners prefer to use tooling they are already used to, instead
of having to learn to use a new tool. They may also be hes-
itant to add more tools to a tool stack they already deem
sufficient.

(4) New tooling may conflict or have unexpected interactions
with tooling that is already in use. Solving these problems
causes extra overhead for practitioners. The expectancy of
such problematic interactions also creates apprehension to-
wards adopting these tools.

5.4 RQ4: What is the perceived benefit of using
static analysis tools such as mllint to check
SE guidelines in ML projects?

Participants note that they find tools such as mllint to be particu-
larly useful for enforcing best practices, maintaining consistency in
the project and discovering useful new tools in the Python ecosys-
tem to improve their project quality. They also mention that static
analysis tools such as mllint can help guide the direction that
further development efforts should take in the road towards pro-
ductionisation of the project. In doing so, these tools’ reports can
be used as a project quality checklist.

“It is a great way to enforce best practices, avoid common pitfalls
and automate "common sense". Without such tools it’s easy to be
sloppy on project quality.”
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Participants find static analysis tools such as mllint to also
be useful for doing code review by helping to “bring attention of a
reviewer to potentially problematic pieces of code introduced, specially
when integrated to automated CI pipelines.”. Usage of these tools in
CI is a popular suggestion, though varying suggestions are made
as to the frequency of running them (e.g. on every pull request, at
every release, or before finalising the project).

6 DISCUSSION
This section collects, combines and discusses our findings, sec-
tioned along three themes: version controlling data, dependency
management and static analysis tool adoption.

6.1 Data version control
While the results from RQ1 showed that none of the projects we
analysed were using the tool DVC, this does not necessarily mean
that industry ML practitioners are not version controlling their data.
Validating with experienced ML engineers at ING, we find various
ways in which data is managed: some projects only require data
from the user at run-time, some have data small enough to fit in
the code repository, but most prevalently, data is either pulled from
a Hadoop filesystem or shared through other internal data sharing
solutions, requiring the ML developer to download it manually.
One ML engineer mentioned that they had experimented with DVC
before, but found that it produced some overhead and preferred
to stick with the semi-versioned workflow that they already had.
Each of these methods has a varying degree of version control and
a varying suitability towards certain types of data (consumption).

Overall, there seems to be a lack of standardised tooling for
dealing with varying kinds of data dependencies, as practitioners
generally stick with what is most practical or known to them. This
presents a significant challenge to static analysis tools for detecting
data version control techniques.

6.2 Dependency management
Overall, dependency management is perceived to be very important
vs. absolutely essential and is done better in our industrial context
than in the open-source context seen in [23], though practices still
differ significantly between projects and developers. Some prefer
to use external tooling such as Poetry, others prefer to create a
manual workflow around Python’s standard requirements.txt
and setup.py files. Such a workflow was argued by several ML
engineers to be effectively usable with disciplined and sufficiently
experienced users, though they do recognise that they are prone to
misuse with less experienced users.

This is particularly troubling in ML project development, given
the gap in SE experience in data scientists. Unlike other popular lan-
guage ecosystems such as NodeJS (npm or yarn), Go (built-in) and
Rust (cargo), which external tools like Poetry take heavy inspiration
from, the Python language ecosystem still lacks a standardised, easy-
to-use, consistently used, maintainable and reproducible method of
managing code dependencies.

6.3 Static analysis tool adoption
Most notably, our results show a mixed sentiment towards static
analysis tools. Combining our findings from RQ1 and RQ2 on code

quality project smells, we identify a tendency against using these
linters during the development phase of the project and instead only
adopting them during the productionisation phase, as an after-the-
fact check on code quality. However, research has shown that linters
are particularly useful during development for automatically fixing
code styling (maintaining code consistency), avoiding complex code
and finding potential bugs early [21]. Especially in ML applications,
where one run of the program could take in the order of minutes
or hours, linters can save the user from an unfortunate typo near
the end of the program that would void all the time spent running
it so far.

So why do practitioners refrain from adopting static analysis
tools during their ML project development? Findings from RQ3,
corroborated by existing research [21], show two primary obstruc-
tions towards their adoption: a high rate of false positives and
cumbersome, time-consuming configuration.

False positives in static analysis tools—which may also include
real but irrelevant warnings—are particularly common in dynam-
ically typed, interpreted languages such as Python. Our previous
research also found Pylint to produce a high rate of false positives
on imports, both local imports as well as prominent ML libraries
[23]. This problem is easier stated than solved, however, which calls
for more development efforts and research into preventing false
positives in static analysis on Python code, both from a tooling and
linguistic perspective.

Surely, practitioners could also selectively disable the rules that
produce false positives in the configuration of their linters. How-
ever, as our findings corroborate, creating and maintaining linter
configurations is also a significant challenge in their adoption [21].
Practitioners, especially those in a team and / or inexperienced with
the linter or their importance to the code quality of the project,
find it difficult, cumbersome and time-consuming to define their
standards and configure their linters to fit them.

Thus, for tool developers to have their tools become widely
used, there seems to be an inherent trade-off between having a tool
that is abstract or malleable enough to fit as many applications as
possible (without producing false positives), while also requiring
as little configuration effort from the user as possible. To achieve
this, one set of recommendations is to simplify the configuration
of the tool as much as possible: do not give the user unnecessary
configuration options [25]. Similar to tools like gofmt, govet and
Black: set standards and defaults that every user can agree on, then
provide users with minimal knobs to adjust these, which barely
leaves any room for bikeshedding.

However, many static analysis tools, including mllint , are too
complex or deal with too opinionated subjects to set one standard.
Thus, there is also a need for context-aware static analysis tooling:
by either automatically detecting or having the user configure in a
quick and simple way what the context of the project / code under
review is, the tool can automatically adjust its linting practices to
conform to the user’s needs. In the case of mllint , this context
would include the project’s (desired) maturity (e.g. toy, proof-of-
concept, production-ready), use-case or tool stack. As an example of
the latter, a project that uses TensorFlow is better off using TFDV for
data validation purposes than GreatExpectations. The same holds
for other peripheral tooling. Such context-aware static analysis
functionality could be realised by using presets or profiles, similar
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to ESLint [21] and isort, though more research on this subject is
recommended.

7 THREATS TO VALIDITY
7.1 Analysed projects & survey participants
In the qualitative analysis of mllint reports of ING ML projects,
we were only able to get access to or receive mllint reports for
eight projects. There may also be a selection bias in the projects
that we got access to, as we were unable to get access to ML projects
of more sensitive natures, due to internal regulations around either
what data they process or what functionality they perform. We
are therefore unsure of the generalisability of this dataset towards
the state of ML projects at ING. We attempted to mitigate this
problem by validating our generalised findings with experienced
ML engineers at ING.

The limited number of survey participants (22) also presents a
challenge to this research’s validity. It was difficult to gain survey
responses, in part also since it required participants to have experi-
ence running mllint on one of their own ML projects. However,
the more qualitative nature of our survey questions and analysis
of the answers, combined with validation with experienced ML
engineers, may help to mitigate this challenge.

We also find a lack in diversity among our survey participants,
given that most of the participants are ML engineers with extensive
experience in SE. While it is certainly interesting to research how
our tool relates to experienced engineers, it would be interesting to
also include more data scientists with little experience in SE in our
survey.

7.2 Construct validity
For this research, we primarily focused on the project smells that
mllint is able to detect reliably. However, there are many more
project smells to be catalogued and to be implemented such that
mllint recognises them. Additionally, there are many more tools,
techniques and SE practices that mllint does not yet recognise
or recommend, but are valid ways of mitigating project smells.
Some of mllint ’s linting rules may currently also pertain more
to the use of a tool that implements a certain ML project best
practice, than to the practice itself, such as the rules about data
version control with DVC. Therefore, until extended to support
more tools, techniques and practices, mllint can only reliably
detect a limited set of project smells, consequently limiting the
scope of this research.

Furthermore, for the RQ4, we focus on perceived benefits of static
analysis tools, though it may be more interesting to investigate
observable benefits. This could be done, for example, by asking
ML practitioners to use mllint in the development of their ML
projects for a prolonged period of time and then seeing how the
software quality of their ML projects increases over time. While this
was considered, we acknowledge that mllint is not yet mature
enough to accurately measure the full software quality of an ML
project. To the best of our knowledge, there is also no other tool that
can accurately measure the full software quality of an ML project,
without limiting its scope to only one or a few aspects of software
quality. This poses a challenge to future research on this subject.

8 CONCLUSION & FUTUREWORK
In conclusion, this research introduced the novel concept of project
smells as a more holistic view over code smells for assessing the
software quality in ML projects and implemented a novel static
analysis tool, mllint , to help detect and mitigate these deficits
in ML project management. We investigated how these project
smells fit the industrial context of the large software- and data-
intensive organisation ING, as well as the perceived importance of
mllint ’s linting rules for ML practitioners on proof-of-concept
versus production-ready projects. We also investigated the primary
obstacles towards implementing solutions to these project smells
and the perceived benefits of using static analysis tools such as
mllint to verify SE practices in ML projects.

8.1 Future Work
Future work should primarily focus on further development of
mllint , formally defining project smells and analysing their ob-
servable impact on the software quality of ML projects. Another
interesting research direction is to investigate howML development
ecosystems can be redesigned or extended to inherently prevent
such project smells from occurring.

Regarding the development of mllint , there is a need to im-
plement more linting rules (particularly ML-specific rules), such
as on asserting data quality, having a reproducible, end-to-end ML
pipeline and linting for ML-specific code smells. Additionally, exist-
ing linting rules should be extended with more in-depth, context-
aware analysis of the project under review, with support for more
toolsets and ML frameworks.

Future research could also investigate how context-aware static
analysis can be applied in practice and how existing static analy-
sis tools can adopt this. For mllint it would entail implementing
methods for detecting or in a simple way configuring the technol-
ogy stack or ML framework used in the project and the project’s
(desired) maturity. Based on this information, mllint can then
selectively disable non-applicable rules and adjusts the weights
of other rules to fit with what is important for the project at that
stage of development. However, the effort required to configure
mllint correctly, must also be minimal.
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4 C O N C L U S I O N & F U T U R E W O R K

This MSc thesis has studied and shown the prevalence of code smells in Python ML applications,
finding serious issues in the specification of code dependencies in these projects along the way. In-
spired by a need for a more holistic viewpoint on ML project software quality than code smells, this
research introduces the novel concept of project smells, which include code smells, but also encom-
passes deficits in (technological) project management, such as poor dependency management and
lack of static analysis. I have also developed the open-source static analysis tool mllint to help ML
practitioners in detecting and mitigating these project smells. Though an ambitious project, this tool
sparked the interest of ML practitioners both within ING as well as in the public and academic com-
munities. Finally, in the case study with ING, it was investigated how the project smells fit the context
of ING’s FinTech industry, how ML practitioners perceive the importance of mllint ’s linting rules
and the considerations in adopting static analysis tools such as mllint .

4.1 future work
On the topic of code smells, this research was primarily concerned with non-ML-specific code smells
in open-source Python ML projects. It would be interesting to replicate this study on closed-source ML
projects from the industry, as well as on code extracted from Jupyter Notebooks. Alternatively, it could
be interesting to use code smell detection tools in other languages used to build ML applications, such
as Julia, R or Java.

Additionally, it may be interesting to further investigate ML-specific code smells, directly continuing
the work of Haakman [2020] and his dslinter tool. This Pylint plugin still contains a few false posi-
tives that could be remedied and could also be extended with novel ML-specific code smells, possibly
pertaining to the use of other popular ML frameworks such as PyTorch or TensorFlow. Potentially, the
authors of these frameworks could also consider developing their own static analysis tools / plugins
to help their users in detecting common misuses, simultaneously hinting towards correct usage.

Regarding mllint , there is still a plethora of possible tools, techniques and project configurations
to support and provide useful recommendations on. There are also many ML best practices yet to be
enforced by mllint that ML practitioners could benefit from. Most strongly, I recommend asserting
Data Quality practices to ensure consistent quality of input data for the ML algorithm. Other areas
of project management where project smells could likely be defined and detected are in deployment
practices, documentation, monitoring, folder structure, ML-specific testing techniques, explainability
of used models and checks on automation practices. Additionally, mllint could be extended with
linters for ML-specific code smells and existing mllint rules can be improved to support more in-
depth analyses of the project. All in all, there is a broad horizon of new possibilities for asserting ML
project software quality.

It may also be interesting to investigate new features for mllint . For example, it could be inter-
esting to implement a feature to allow mllint to fix detected problems for the user. This could help
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ML practitioners in fixing their project smells, without requiring extensive knowledge of SE tools and
techniques. Alternatively, new research could consider how mllint can educate data scientists on
state-of-the-art, technological SE and ML engineering practices. One possible approach to such ed-
ucation includes extending mllint ’s rule documentation with extra information or educational re-
sources that teach about the values behind each of the linting rules, making it a self-help tool that also
assesses the user’s skill in implementing these practices on their own ML project. Teams, squads, chap-
ters or other organisations can also teach and verify internal practices on their projects through the im-
plementation and use of custom mllint rules. Educating data scientists as they progress along their
usual development routines, armed with mllint to help them practically implement the learned prac-
tices, would allow them to learn in a productive manner on actual ML projects, rather than through
contrived examples.

Most notably though, it should be investigated how linting profiles or presets can be applied to allow
mllint to detect and conform its recommendations to a specific project architecture and maturity.
After all, a project that uses PyTorch requires different tooling than TensorFlow projects. Similarly, a
proof-of-concept project does not need as strict software quality requirements as a production-ready
project, as this research has corroborated. However, too much configuration options hurts the adop-
tion of static analysis tools [Xu et al., 2015]. Thus, mllint should be made context-aware: able to
conform to the user’s expectations for the project with minimal need for configuration, while still en-
forcing quality standards.
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A TA B L E O F L I N T I N G R U L E P R I O R I T I S AT I O N
S U R V E Y R E S U LT S

To answer RQ2 in the paper about project smells and mllint as shown in Chapter 3, we ran a survey
in which we asked participants to rate the importance of each of mllint ’s linting rules. This appendix
contains the full table of results from the analysis of those survey responses.

The five possible Likert-scale answers were encoded to integers between -2 and 2. These numeric
values have been included in this table to show the spread of each result.

Note that the values for Mean +/- StdDev were clamped to be real values between -2 and 2.

a.1 proof-of-concept project

Name Min
Mean -
StdDev Mean

Mean +
StdDev Max

Unknown
/ unsure

0 Project uses Git (version-
control/code/git)

Not impor-
tant (-2.0)

Moderately
important
(0.241)

Very impor-
tant (1.273)

Absolutely
Essential (2)

Absolutely
Essential
(2.0)

0

1 Project should not have any large
files in its Git history (version-
control/code/git-no-big-files)

Not impor-
tant (-2.0)

Slightly
important
(-0.804)

Very impor-
tant (0.524)

Absolutely
Essential
(1.851)

Absolutely
Essential
(2.0)

1

2 DVC: Project uses Data
Version Control (version-
control/data/dvc)

Not impor-
tant (-2.0)

Not impor-
tant (-1.699)

Slightly
important
(-0.526)

Very impor-
tant (0.646)

Absolutely
Essential
(2.0)

3

3 DVC: Is installed (version-
control/data/dvc-is-installed)

Not impor-
tant (-2.0)

Not impor-
tant (-1.788)

Slightly im-
portant (-0.6)

Very impor-
tant (0.588)

Absolutely
Essential
(2.0)

2

4 DVC: Folder ‘.dvc’ should be
committed to Git (version-
control/data/commit-dvc-
folder)

Not impor-
tant (-2.0)

Not impor-
tant (-1.806)

Moderately
important
(-0.45)

Very impor-
tant (0.906)

Absolutely
Essential
(2.0)

2

5 DVC: Should have at least one
remote data storage configured
(version-control/data/dvc-has-
remote)

Not impor-
tant (-2.0)

Not impor-
tant (-2)

Slightly
important
(-1.105)

Moderately
important
(-0.169)

Moderately
important
(0.0)

3

6 DVC: Should be tracking at
least one data file (version-
control/data/dvc-has-files)

Not impor-
tant (-2.0)

Not impor-
tant (-1.974)

Slightly
important
(-0.632)

Very impor-
tant (0.71)

Absolutely
Essential
(2.0)

3

7 DVC: File ‘dvc.lock’ should
be committed to Git (version-
control/data/commit-dvc-lock)

Not impor-
tant (-2.0)

Not impor-
tant (-1.925)

Slightly
important
(-0.579)

Very impor-
tant (0.767)

Absolutely
Essential
(2.0)

3
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Name Min
Mean -
StdDev Mean

Mean +
StdDev Max

Unknown
/ unsure

8 Project properly keeps track of
its dependencies (dependency-
management/use)

Slightly im-
portant (-1.0)

Slightly
important
(-0.591)

Very impor-
tant (0.591)

Absolutely
Essential
(1.772)

Absolutely
Essential
(2.0)

0

9 Project should only use one de-
pendency manager (dependency-
management/single)

Not impor-
tant (-2.0)

Slightly
important
(-0.96)

Moderately
important
(0.476)

Absolutely
Essential
(1.912)

Absolutely
Essential
(2.0)

1

10 Project places its develop-
ment dependencies in dev-
dependencies (dependency-
management/use-dev)

Not impor-
tant (-2.0)

Not impor-
tant (-1.633)

Moderately
important
(-0.286)

Very impor-
tant (1.061)

Absolutely
Essential
(2.0)

1

11 Project uses Continuous Integra-
tion (CI) (ci/use)

Not impor-
tant (-2.0)

Slightly
important
(-1.44)

Moderately
important
(-0.19)

Very impor-
tant (1.059)

Absolutely
Essential
(2.0)

1

12 Project should use code quality
linters (code-quality/use-linters)

Not impor-
tant (-2.0)

Not impor-
tant (-1.605)

Moderately
important
(-0.227)

Very impor-
tant (1.151)

Absolutely
Essential
(2.0)

0

13 All code quality linters should
be installed in the current en-
vironment (code-quality/linters-
installed)

Not impor-
tant (-2.0)

Not impor-
tant (-1.978)

Slightly
important
(-0.619)

Very impor-
tant (0.74)

Absolutely
Essential
(2.0)

1

14 Pylint reports no issues with this
project (code-quality/pylint/no-
issues)

Not impor-
tant (-2.0)

Not impor-
tant (-1.952)

Slightly im-
portant (-0.8)

Moderately
important
(0.352)

Absolutely
Essential
(2.0)

2

15 Pylint is configured for this
project (code-quality/pylint/is-
configured)

Not impor-
tant (-2.0)

Not impor-
tant (-1.779)

Slightly
important
(-0.571)

Very impor-
tant (0.636)

Absolutely
Essential
(2.0)

1

16 Mypy reports no issues with this
project (code-quality/mypy/no-
issues)

Not impor-
tant (-2.0)

Not impor-
tant (-1.934)

Slightly
important
(-0.684)

Very impor-
tant (0.565)

Absolutely
Essential
(2.0)

3

17 Black reports no issues with this
project (code-quality/black/no-
issues)

Not impor-
tant (-2.0)

Not impor-
tant (-1.867)

Slightly
important
(-0.55)

Very impor-
tant (0.767)

Absolutely
Essential
(2.0)

2

18 isort reports no issues with this
project (code-quality/isort/no-
issues)

Not impor-
tant (-2.0)

Not impor-
tant (-1.901)

Slightly
important
(-0.722)

Moderately
important
(0.456)

Absolutely
Essential
(2.0)

4

19 isort is properly configured (code-
quality/isort/is-configured)

Not impor-
tant (-2.0)

Not impor-
tant (-2)

Slightly
important
(-0.889)

Moderately
important
(0.294)

Absolutely
Essential
(2.0)

4

20 Bandit reports no issues with this
project (code-quality/bandit/no-
issues)

Not impor-
tant (-2.0)

Not impor-
tant (-1.766)

Slightly
important
(-0.688)

Moderately
important
(0.391)

Very impor-
tant (1.0)

6

21 Project has automated tests
(testing/has-tests)

Not impor-
tant (-2.0)

Slightly
important
(-1.433)

Moderately
important
(-0.095)

Very impor-
tant (1.243)

Absolutely
Essential
(2.0)

1
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Name Min
Mean -
StdDev Mean

Mean +
StdDev Max

Unknown
/ unsure

22 Project passes all of its automated
tests (testing/pass)

Not impor-
tant (-2.0)

Slightly
important
(-1.242)

Moderately
important
(0.238)

Absolutely
Essential
(1.718)

Absolutely
Essential
(2.0)

1

23 Project provides a test coverage
report (testing/coverage)

Not impor-
tant (-2.0)

Not impor-
tant (-1.611)

Moderately
important
(-0.333)

Very impor-
tant (0.945)

Absolutely
Essential
(2.0)

1

a.2 production-ready project

Name Min
Mean -
StdDev Mean

Mean +
StdDev Max

Unknown
/ unsure

0 Project uses Git (version-
control/code/git)

Very impor-
tant (1.0)

Absolutely
Essential
(1.615)

Absolutely
Essential
(1.909)

Absolutely
Essential (2)

Absolutely
Essential
(2.0)

0

1 Project should not have any large
files in its Git history (version-
control/code/git-no-big-files)

Not impor-
tant (-2.0)

Moderately
important
(0.034)

Very impor-
tant (1.143)

Absolutely
Essential (2)

Absolutely
Essential
(2.0)

1

2 DVC: Project uses Data
Version Control (version-
control/data/dvc)

Not impor-
tant (-2.0)

Slightly
important
(-0.632)

Very impor-
tant (0.611)

Absolutely
Essential
(1.854)

Absolutely
Essential
(2.0)

4

3 DVC: Is installed (version-
control/data/dvc-is-installed)

Not impor-
tant (-2.0)

Slightly
important
(-0.803)

Moderately
important
(0.444)

Absolutely
Essential
(1.692)

Absolutely
Essential
(2.0)

4

4 DVC: Folder ‘.dvc’ should be
committed to Git (version-
control/data/commit-dvc-
folder)

Not impor-
tant (-2.0)

Slightly
important
(-0.795)

Moderately
important
(0.5)

Absolutely
Essential
(1.795)

Absolutely
Essential
(2.0)

4

5 DVC: Should have at least one
remote data storage configured
(version-control/data/dvc-has-
remote)

Not impor-
tant (-2.0)

Slightly
important
(-0.81)

Moderately
important
(0.471)

Absolutely
Essential
(1.751)

Absolutely
Essential
(2.0)

5

6 DVC: Should be tracking at
least one data file (version-
control/data/dvc-has-files)

Not impor-
tant (-2.0)

Slightly
important
(-0.76)

Moderately
important
(0.471)

Absolutely
Essential
(1.701)

Absolutely
Essential
(2.0)

5

7 DVC: File ‘dvc.lock’ should
be committed to Git (version-
control/data/commit-dvc-lock)

Not impor-
tant (-2.0)

Slightly
important
(-0.869)

Moderately
important
(0.353)

Absolutely
Essential
(1.575)

Absolutely
Essential
(2.0)

5

8 Project properly keeps track of
its dependencies (dependency-
management/use)

Moderately
important
(0.0)

Very impor-
tant (1.055)

Absolutely
Essential
(1.636)

Absolutely
Essential (2)

Absolutely
Essential
(2.0)

0

9 Project should only use one de-
pendency manager (dependency-
management/single)

Not impor-
tant (-2.0)

Moderately
important
(-0.37)

Very impor-
tant (0.952)

Absolutely
Essential (2)

Absolutely
Essential
(2.0)

1
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Name Min
Mean -
StdDev Mean

Mean +
StdDev Max

Unknown
/ unsure

10 Project places its develop-
ment dependencies in dev-
dependencies (dependency-
management/use-dev)

Not impor-
tant (-2.0)

Slightly
important
(-0.813)

Moderately
important
(0.476)

Absolutely
Essential
(1.765)

Absolutely
Essential
(2.0)

1

11 Project uses Continuous Integra-
tion (CI) (ci/use)

Not impor-
tant (-2.0)

Moderately
important
(0.41)

Very impor-
tant (1.364)

Absolutely
Essential (2)

Absolutely
Essential
(2.0)

0

12 Project should use code quality
linters (code-quality/use-linters)

Not impor-
tant (-2.0)

Moderately
important
(-0.039)

Very impor-
tant (0.905)

Absolutely
Essential
(1.848)

Absolutely
Essential
(2.0)

1

13 All code quality linters should
be installed in the current en-
vironment (code-quality/linters-
installed)

Not impor-
tant (-2.0)

Slightly
important
(-1.137)

Moderately
important
(0.238)

Absolutely
Essential
(1.613)

Absolutely
Essential
(2.0)

1

14 Pylint reports no issues with this
project (code-quality/pylint/no-
issues)

Not impor-
tant (-2.0)

Slightly
important
(-0.832)

Moderately
important
(0.35)

Absolutely
Essential
(1.532)

Absolutely
Essential
(2.0)

2

15 Pylint is configured for this
project (code-quality/pylint/is-
configured)

Not impor-
tant (-2.0)

Slightly
important
(-0.831)

Moderately
important
(0.4)

Absolutely
Essential
(1.631)

Absolutely
Essential
(2.0)

2

16 Mypy reports no issues with this
project (code-quality/mypy/no-
issues)

Slightly im-
portant (-1.0)

Slightly
important
(-0.944)

Moderately
important
(0.222)

Very impor-
tant (1.388)

Absolutely
Essential
(2.0)

4

17 Black reports no issues with this
project (code-quality/black/no-
issues)

Not impor-
tant (-2.0)

Slightly
important
(-1.043)

Moderately
important
(0.25)

Absolutely
Essential
(1.543)

Absolutely
Essential
(2.0)

2

18 isort reports no issues with this
project (code-quality/isort/no-
issues)

Not impor-
tant (-2.0)

Not impor-
tant (-1.602)

Moderately
important
(-0.111)

Very impor-
tant (1.38)

Absolutely
Essential
(2.0)

4

19 isort is properly configured (code-
quality/isort/is-configured)

Not impor-
tant (-2.0)

Not impor-
tant (-1.804)

Moderately
important
(-0.278)

Very impor-
tant (1.249)

Absolutely
Essential
(2.0)

4

20 Bandit reports no issues with this
project (code-quality/bandit/no-
issues)

Not impor-
tant (-2.0)

Slightly
important
(-0.738)

Very impor-
tant (0.556)

Absolutely
Essential
(1.849)

Absolutely
Essential
(2.0)

4

21 Project has automated tests
(testing/has-tests)

Slightly im-
portant (-1.0)

Moderately
important
(0.461)

Very impor-
tant (1.364)

Absolutely
Essential (2)

Absolutely
Essential
(2.0)

0

22 Project passes all of its automated
tests (testing/pass)

Slightly im-
portant (-1.0)

Very impor-
tant (0.654)

Very impor-
tant (1.455)

Absolutely
Essential (2)

Absolutely
Essential
(2.0)

0

23 Project provides a test coverage
report (testing/coverage)

Not impor-
tant (-2.0)

Moderately
important
(-0.283)

Very impor-
tant (0.909)

Absolutely
Essential (2)

Absolutely
Essential
(2.0)

0
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