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Abstract
In harsh, spatial versions of the prisoner’s dilemma,
a stable ratio between cooperators and defectors is
sometimes reached quickly, whereas for other runs
the variability of this ratio is much higher. This
paper explores different patterns of this ratio over
time, and compares factors that may influence these
patterns. A measure based on variance is proposed
to achieve this. Environmental harshness, as well as
the sparsity of the environment, are found to have
great influence on variability, whereas the cost of
unreciprocated cooperation has little effect. The
proposed measure of variability may be useful to
predict population variability in the future, and help
to determine when to stop a simulation.

Keywords: population dynamics, interdependence,
agent-based modelling, Prisoner’s Dilemma, harsh
environments

1 Introduction
Altruistic behaviour seems to go against evolutionary the-
ories, as it reduces the fitness of the altruist and therefore
would be selected against. The emergence of altruism is a
topic of both a philosophical nature as well as a biological and
mathematical one. Axelrod and Hamilton used the prisoner’s
dilemma to model and study the conditions in which altruism
prevails [2] in 1981. They found that, where repeated altru-
ism yields more rewards for community at large, altruism can
thrive even though egoistic behaviour yields greater rewards
for the individual. As cooperation in nature often increases
when environmental conditions are harsh, agent-based mod-
els have emerged that provide an explanation.

Human society is dependent on altruism and cooperation,
even when it comes at a personal cost. A recent example is the
covid-19 pandemic where individuals are asked to decrease
their personal satisfaction for the greater good. With social
distancing we ask each other to sacrifice personal happiness
to protect the health of not just ourselves, but for the good of
society at large. The stability of such cooperative behaviour is
integral to the functioning of our society, as well as for many
interdependent species in nature [3] [14].

Smaldino et al [11] proposed an agent-based, spatial model
where the environmental harshness indeed increases coop-
eration, even when costs for unreciprocated cooperation get
high. The model simulates interdependence, where agents
must interact to survive. However, the variability of this co-
operation over time is still unknown.

This article investigates the relation between the variability
of cooperation and environmental harshness. It aims to pro-
vide a theoretical analysis of the stabilisation of altruistic and
egoistic behaviours in populations in the spatial prisoner’s
dilemma. This is achieved by proposing a measure of coop-
eration variability, based on variance, where a distinction is
made between low frequency variability (LFV), and high fre-
quency variability (HFV). Then, three factors are explored:
environmental harshness k, the cost of unreciprocated coop-
eration S, and influence of capping of the number of agents
such that at least 50% of the lattice is unoccupied N*. Envi-
ronmental harshness is found to be an important influence on
cooperator variability, as well as sparse populations. How-
ever, a large ratio of cooperators does not necessarily corre-
late with low variability of cooperation.
The predictive value of the cooperation variability measures
is also explored, to predict when future variability in cooper-
ation frequency is unlikely. This is helpful to predict when
a simulation can be stopped. Even though the associated ex-
periment yields promising results, more research, with larger
data sets, is needed to use population variability for this goal.

The following section provides backgrounds and defini-
tions, followed by a description of cooperator frequency vari-
ability in section 3. Then, the exact model is described in sec-
tion 4. The results of the simulations are laid out in section
5. Section 6 includes interpretation of the results, after which
conclusions and recommendations for future research are pro-
vided in section 7. Section 8 discusses the reproducibility of
this research.
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2 Background
This section provides a theoretical background to the pris-
oner’s dilemma, this spatial version and why was chosen for
a harsher model. Afterwards, an introduction into the differ-
ent variables that are explored is given.

2.1 The Prisoner’s Dilemma
The prisoner’s dilemma has long been used to study coop-
erative behaviour [4]. In this game, an agent interacts with
another agent by either choosing to defect or cooperate. With
each combination of choices, a payoff is associated, as seen in
table 1. When both agents choose to cooperate, they receives
R points (the ‘Reward’). However, when one of them chooses
to defect, he will gain T points (the ‘Temptation’), while the
cooperator gains just S points (the ‘Sucker’s payoff’). When
both defect, the payoff is P (the ‘Punishment’). The relation
between these rewards is as follows [5]:

T > R > P > S (1)

2R > T + S (2)
Therefore, by 2, cooperation yields greater rewards for the
agent community than defection, although by 1, defection
yields greater rewards individually.

Axelrod and Hamilton [2] laid the groundwork for mod-
elling the emergence of cooperative behaviour with the pris-
oner’s dilemma, by using repeated prisoner’s dilemma games.
Here, each agent is able to remember their opponent’s previ-
ous moves against them. They showed that more cooperative
strategies fare best in this Iterated Prisoners Dilemma, thus
showing a way to model the emergence of cooperative be-
haviour in nature.

agent 2
agent 1 Cooperate2 Defect2
Cooperate1 R1, R1 S1, T2

Defect1 T1, S2 P1, P2

Table 1: The payoffs for each agent, when playing the prisoner’s
dilemma game.

2.2 Spatial, Agent-Based Prisoner’s Dilemma
Another way to study the emergence of cooperation by us-
ing the prisoner’s dilemma game, is by using a spatial en-
vironment. Here, agents do not necessarily remember their
previous interactions with other agents. Instead, agents are
able to move over a 2D space, and ‘interact’ with each other
when they are in close proximity. This interaction consists of
playing the prisoners dilemma game, in which points can be
earned. These points are needed by the agents to stay alive,
as well as enabling them to reproduce. When their energy
points get below zero, they die and disappear from the lat-
tice. Smaldino et al. [10; 11] proposed such a spatial model
with just two types of agents: agents that always defect and
agents that always cooperate. With this model [11], cooper-
ators thrive in harsher environments, just as observed in na-
ture [6], as the harshness in this model makes cooperative
behaviour essential for survival.

These harsher environments were created by introducing
an ‘environmental cost of living’, a point deduction for each
round.

2.3 Cooperation Variability
I define variability of cooperation as the variance of the rela-
tive change of cooperation over time.

In the harsh environment, defecting agents cannot survive
without altruistic cooperators to exploit. Cooperators die
when they cannot interact with other cooperators. This leads
to interesting spatial patterns: cooperators need clusters with
their own kind to survive, while defectors exploit them from
the edges of these clusters[10; 11; 8].

This conduces variability in the ratio between cooperators
and defectors, when defectors initially thrive by exploiting
cooperators, but later die when there are little cooperators
left to exploit. Sometimes an equilibrium is reached quickly,
where the ratio between cooperators and defectors remains
about the same in the future time-steps. In other cases, the
variability of this ratio varies greatly over time, and it is hard
to predict if a stable ratio is ever reached.

Souza et al.[12] have laid down a framework to analyse
populations in non-spatial snowdrift games. Snowdrift games
are similar to the prisoner’s dilemma, while [9] provide a re-
view on group interactions, and not the pairwise interactions
as defined in this prisoner’s dilemma. Where Nowak provides
an excellent framework for variability of cooperation with the
prisoner’s dilemma in a spatial environment [8], it is based on
cellular automata, instead of based on moving agents.

This paper proposes a new way of measuring the variabil-
ity of populations, which is suitable for the model made by
Smaldino et al [11]. This measure is further explained in sec-
tion 3.

3 Measuring Cooperation Variability
To categorise variability in cooperator frequency, let us first
define cooperator frequency. For ease of computation and
plotting, the cooperator frequency is multiplied by 1000.

Cooperator Frequency Ct =
cooperators at t

total agent count at t
∗ 1000

Two types of in cooperator frequency were defined. The first
type of variability is High Frequency Variability, from here
on called HFV. HFV describes, on the smallest scale, the vari-
ance of cooperation changes. It is calculated as described be-
low: Let b be the bucket number, such that 0 < b ≤ bn, with n
the number of buckets, and let t be the step, with 0 ≤ t < ∆t,
where ∆t depicts the bucket size.

HFV = Avg(Varb=1...bn(Ct=b∆t...b∆t+∆t−1))

Low Frequency Variability, or LFV concerns the more
high-level variability of cooperator frequency.

LFV = Var(Avgb=1...bn
(Ct=b∆t...b∆t+∆t−1))

The first bucket, b = 0 is disregarded. During these first
time-steps, most populations are still in an extremely unsta-
ble initial phase where these variability measures have little
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(a) LFV = 144, HFV = 1

(b) LFV = 137, HFV = 5

(c) LFV = 312, HFV = 375

Figure 1: Examples of different values for High Frequency Variabil-
ity (HFV). These plots all have similar LFV.

(a) LFV = 0, HFV = 0

(b) LFV = 5005, HFV = 36

(c) LFV = 5592, HFV = 519

Figure 2: Examples of Low Frequency Variability (LFV).
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Figure 3: Reprinted from [11]. The behaviour cycle of an agent.

predictive value over the rest of the run. Examples to illus-
trate different values of HFV and LFV can be found in figure
1 and figure 2.

The advantage of these measures is that their use of vari-
ance makes them comparable over multiple types of runs,
with differing population sizes or maximum time-step.

4 Model Description
The model is built on the model proposed and studied by
Smaldino, Schank, and McElreath [11]. For an in-depth dis-
cussion and a theoretical background, I refer to their paper
[11].

This spatial, agent-based model, has agents interact on a
L ∗ L lattice. This lattice is configured with a Moore neigh-
bourhood that wraps around the edges. There are just two
agent types: those that always cooperate and those that al-
ways defect. At initialisation, N agents, half cooperators and
half defectors, are placed in random locations. For all experi-
ments conducted here, N = 500 There is a maximum of one
agent at each location. Each agent is initialised with a ran-
dom amount of energy points between 1 and 50. At each time
step, every agent goes through a sequence that is described in
figure 3. First, an opponent is selected from the agent’s 8
neighbouring cells. If an opponent is found, the prisoner’s
dilemma game is played and payoffs are added or deducted
to the agent’s energy points. If no opponent is found, because
no neighbouring agent exists, or because the neighbouring
agents have already played during this time-step, a movement
is attempted to any unoccupied neighbouring cell. Each agent
energy store is capped at 150 energy points. An agent can at-
tempt to reproduce at 100 energy points, success depends on
the availability of an empty neighbouring location. If an agent
is able to reproduce, it loses 50 energy points. The newborn
agent has the same strategy as it’s creator, and is initialised
with 50 energy points. At the end of each agent’s behaviour
cycle, the cost of living k is deducted from its energy store.
If the energy store gets to or below 0 energy points, the agent
dies and disappears from the lattice.

The payoffs for the prisoners dilemma interactions are de-
scribed in table 2. Except for the price of unreciprocated co-
operation S (see also section 2.1), payoffs were fixed. Lattice

size was set at L = 50. As [10] notes, this lattice size does not
produce different results with regards to the emerging spatial
patterns or ratio’s between populations such as patterns or ra-
tio’s, compared to runs with a larger lattice size.

Simulations were run in NetLogo, which randomises the
order in which each agent behaviour cycle is initiated during
each time-step [1]. The NetLogo Behaviorspace functionality
was used to generate batch runs.

agent 2
agent 1 Cooperate2 Defect2
Cooperate1 3, 3 S, 5
Defect1 5, S 0, 0

Table 2: The payoffs for each agent, as used in this model, in the
form (payoff agent 1, payoff agent 2)

5 Simulation Results
Two experiments were conducted.

First, to investigate cooperator frequency variability’s rela-
tion to environmental harshness, population sparsity and the
cost of unreciprocated cooperation, simulations were run on
the model as described in the following section 5.1.

Second, to investigate the predictive value of HFV and
LFV, a number of runs were conducted that continued to 106

time-steps. The outcome of this experiment is described in
section 5.2.
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(a) LFV, N∗ = 100% (b) HFV, N∗ = 100%

(c) LFV, N∗ = 50% (d) HFV, N∗ = 50%

Figure 4: The range of LFV and HFV, with differing cost of unreciprocated cooperation S and differing cost of living k
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Figure 5: N*, the sparsity of the environment, has a large influence on the HFV of the cooperation frequency variability. The dotted lines, at
HFV = 2 and HFV= 80, surround a region where there are regular, very small changes, or ’jitters’, in the ratio of cooperators.
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5.1 Which Factors Influence Cooperator
Frequency Variability?

The model’s setup was as follows:
• Run stops until a populations goes extinct, or at 105 time

steps
• range of S (cost of unreciprocated cooperation): -2.25

to -0.25, with steps of 0.75
• range of k (cost of living): 0 to 2.25, with steps of 0.75
• range of N∗: 50% and 100% of capacity L ∗ L

( N∗ = 2500 or N∗ = 1250)
• 480 runs in total, 15 of each combination of variables
• Bucket size ∆t: 5000 time-steps.

These values were chosen to replicate the harsh environments
in which cooperators thrive, as noted by Smaldino et al [11].

The Effect of Population Sparseness on Cooperator
Variability
N∗ has a strong effect on variability. The sparser environment
N∗ = 50% has, on average, a much larger variability than
N∗ = 100%. This holds for both the HFV as well as the LFV,
as seen in figure 4. Especially when looking at HFV, N∗ =
50% does not produce any runs where there are regular, small
changes in the population sizes of cooperators and defectors.
These small ‘jitters’ are found in abundance in N∗ = 100%.
N∗ = 50% has either very little HFV, below HFV < 2, or
a lot of large, irregular changes in it’s cooperator frequency,
resulting in values above HFV > 80, as shown in figure 5.

The Influence of Environmental Harshness on
Cooperator Variability
k has a large effect on variability. This holds for both LFV
and HFV. With regards to LFV: In general, a larger k in-
creases variability. The lowest value of k = 0 resulted in
the smallest LFV. However, there is a difference to be noted
here between N∗ = 100% and N∗ = 50%. On average,
N∗ = 50% has a much larger LFV than N∗ = 100%. For
N∗ = 50%, the largest LFV is found around k = 0.75,
whereas N∗ = 100% has the largest LFV around k = 1.5.

The effect of k on HFV is even more pronounced. It fol-
lows the same pattern as the LFV, with maxima at N∗ = 50%
at k = 0.75 and N∗ = 100% at k = 1.5. These effects are
shown in figure 4.

Note that all agents die at k = 2.25, which is further dis-
cussed in further on in this section under Extinction.

The Influence of Unreciprocated Cooperation on
Cooperator Variability
S has little influence on both LFV and HFV. Although some
of the smaller variability values are found at smaller values of
S, especially at N∗ = 100%, the correlation is weak.

Extinction
A run was ended when a population went extinct, i.e. when
all agents with a certain strategy died. This took place in 197
runs out of the 480. Almost all of these extinctions enfolded
during the first 5000 steps, except for two runs (N∗ = 2500,
k = 0, S = −2.5 or S = −1.75 ). All runs with the largest
cost of living, k = 2.25, ended in extinction. In this experi-
ment, two types of extinction can be identified:

1. Both populations die together. More strictly defined: the
total agent count < 250 at time of extinction.

2. Cooperators go extinct while defectors thrive, or, more
strictly: at time of extinction, more than 250 defecting
agents are alive. In practice, the total agent count, con-
sisting of only defectors, was ≥ 975 at time of extinc-
tion.

Extinctions where cooperators had a larger agent count than
250, did not take place within these runs.

k is a strong predictor for the type of extinction. All extinc-
tions of type 1, where both agent types die in large numbers,
happened when k ≥ 0.75, whereas all extinctions of type 2,
where defectors drive away cooperators, took place in envi-
ronments with k = 0, as is illustrated in 4.

Although S has little influence on variability, it does have
influence on the frequency of extinctions, as well as on the
type of extinctions. When S = −0.25, the only type of ex-
tinction is type 1. The number of type 2 extinctions increases
as S goes down.

k
S 0.00 0.75 1.50 2.25

-0.25 0% 0% 13% 100%
-1.00 100% 7% 13% 100%
-1.75 100% 7% 20% 100%
-2.50 100% 27% 20% 100%

(a) N∗ = 50%. Number of runs: 240.
k

S 0.00 0.75 1.50 2.25
-0.25 0% 0% 7% 100%
-1.00 0% 0% 7% 100%
-1.75 7% 0% 20% 100%
-2.50 27% 7% 33% 100%

(b) N∗ = 100%. Number of runs: 240.

Table 3: Percentage of extinctions, per k and S. Total number of
runs: 480.

k
surviving population 0.00 0.75 1.50 2.25
defectors 50 0 0 0
cooperators 0 0 0 0
surviving agents <250 0 7 20 120

Table 4: Runs that ended in extinction, categorised by type of ex-
tinction and the value of k, cost of living.

Cooperator Variability over Time
5.2 Cooperator Variability as a Predictor of

Future Cooperator Variability and Frequency
To study if HFV and LFV are useful as a predictor of fu-
ture changes in cooperator frequency, another experiment was
conducted. The setup of the model was similar to the prior ex-
periment, as described in 5.1, with the most important differ-
ence that simulations were stopped at 106 instead of105. Be-
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(a) LFV, until 105 and until 106 (b) HFV, until 105 and until 106

Figure 6: The relation between Cooperation Variability until 105 and until 106. The outlier is described in figure 7.

Figure 7: The outlier, with S = −1.75, N = 50% and k = 1.5

cause of computational constraints, only 1 run of each com-
bination of variables was performed. This resulted in 32 runs
in total. 13 of these had extinctions. They all went extinct
before 105. 19 runs ran to the maximum time-step of 106.

Both HFV and LFV did not seem to change much from
t = 105 to t = 1006. This is shown in figure 6. There was
one notable difference. This run, with S = −1.75, N =
50% and k = 1.5, initially seemed to have little cooperator
variability, but started showing large cooperator variability at
around t = 344000, as shown in figure 7. For all other runs,
the correlation was strong.

Cooperator Frequency Changes over Time and
Variability

The difference in cooperator frequency was measured by tak-
ing the absolute difference between the average cooperator
frequency for 0.95 ∗ 105 ≤ t < 105, and the average cooper-
ator frequency for t = 0.995 ∗ 106 and t = 106.

LFV has a strong correlation between the difference in co-
operator frequency and LFV, except for one run. This was the
same outlier that was described in the previous paragraph.
Except for this run, there were no large changes in cooperator
frequency observed when LFV is low. With exception of the
outlier, changes in cooperator frequency were small.

6 Discussion
In the result section, it was shown that a larger cost of living
generally increases both HFV and LFV. Sparser environments
may lead to higher HFV. The cost of unreciprocated cooper-
ation has little influence on HFV and LFV. HFV and LFV
usually do not change much after the roughly the first 105

time-steps. Except for one run, where this was not the case.
This chapter provides a discussion of the underlying as-

sumptions, as well as for the results.

6.1 Important assumptions
Length of runs
In a previous experiment, changes in cooperator frequency
were noted after 105 time-steps [10], although the same pa-
per asserts that 106 time-steps is sufficiently long “to allow
the system into stable behaviour”, from “running several con-
ditions out to t = 106 and noting that the long-run coopera-
tor frequencies did not vary from t = 106. As cooperator
frequency may still change between 105 and 106 time-steps,

Figure 8: The relation between LFV until t = 105 and the difference
in cooperator frequency over time. The difference in cooperator fre-
quency was measured by taking the absolute difference between the
average cooperator frequency for 0.95 ∗ 105 ≤ t < 105, and the
average cooperator frequency for t = 0.995 ∗ 106 and t = 106. The
outlier is described in figure 7.
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variability may behave differently as well. Because of com-
putational limitations, most runs were set to t = 105 as their
last time-step. In the small sample of 19 runs that ran to
t = 106, one run was detected that changed in LFV, HFV
and cooperator frequency after t = 105. All other runs did
not change much after the first 105 time-steps, both with re-
gards to LFV and HFV, as well as their cooperator frequency.

Stochastic nature of the model
The model, as well as agent-based modelling in general, is
highly stochastic. This makes generalising the observed cor-
relations complicated. I have been unable to find a reliable
formula to predict variability of the ratio’s between. However,
the properties of agent-based models have advantages that
other methods of analysis lack. The generative and stochas-
tic nature of the model helps to simulate the logic and con-
sequences of individual behaviour and the interdependence
between agents. Agent based modelling enables the analy-
sis of mechanisms that change behaviour of low-level entities
to create circumstances for change at a higher level of ab-
straction, with a flexibility that more rigorous mathematical
approximation lacks [7].

6.2 Population sparseness and HFV
The differences in HFV between N∗ = 50% and N∗ =
100% are partially explainable by the nature variance, on
which HFV is based on, itself. With smaller populations,
any small change in the populations results in a larger dif-
ference in cooperation frequency. The larger oscillatory pat-
terns, where HFV > 80, are absent in a fully filled lattice.
This has been noted by Smaldino et al. [11], as “indicative
of the stochasticy in agent movement, which led to the occa-
sional flurry of cooperator expansion, followed by rapid ex-
ploitation by defectors and then an eventual defector die off.”

The same source continues with: “These events were due
to variability in population size, as well as the fact that the
carrying capacity was less than the total numbers of cells
in the space.”[11] My observations do not fully agree here.
Many runs that do show larger oscillatory patterns, where
HFV > 80 and N∗ = 50%, do not have much variation
in population size at all, whereas runs with smaller oscilla-
tory patterns, where 2 < HFV < 80, and N∗ = 100%,
much more often have empty spots remaining unfilled after a
time-step. Many of these large oscillations were not related
to a large decrease in population size. Although some sud-
den drops in population size were observed in the N = 50%,
those were often absent while the large oscillatory patterns
continued. And even when those sudden drops were ob-
served, they usually were not very large.

6.3 Cooperator Frequency and its Impact on
Variability

Before conducting this experiment, I expected that a high ra-
tio of cooperators would decrease variability, as cooperators
are needed by both other cooperator, as well as defectors, to
stay alive. As noted in the results sections, a large number of
cooperators never coincided with extinction of the defector
population. But the converse is not true: many simulations
with a majority of defectors do not end in extinction. When

looking at cooperator frequency variability in the simulations
without extinction, many runs with a high rate of defectors
showed very little variability in cooperation frequency, both
for HFV and LFV. Moreover, many runs with a high ratio of
cooperators do have a large HFV and LFV. Therefore, coop-
erator frequency has little effect on the variability itself.

6.4 Predictive Value of Variability
Variability of cooperation may be useful to predict when a
run can be stopped. Of the 19 runs, 18 had little change in
cooperator frequency, and if they had, their variability mea-
sures were higher. However, one run behaved differently, and
it should not be disregarded just yet, as the changes in fre-
quency were large, and LFV and HFV were both very small.
As Strogatz describes [13], complex systems may take a long
time before entering a phase of stable behaviour. Therefore,
more research is needed to determine if the variability mea-
sures are useful to determine when the cooperator frequency
will not change much in the future.

7 Conclusion & Future work
The proposed measures of HFV and LFV are useful to de-
scribe the level of variability of the ratio between two pop-
ulations in a simulation. The strongest influence on cooper-
ator variability was the harshness of the environment. Al-
though cooperators usually fare better in harsher environ-
ments, a higher prevalence of cooperators did not reduce co-
operator variability. An enforced sparseness of populations
has a large influence on cooperator variability. Generally, the
proposed variability measures correlate well with future vari-
ability. However, it does not provide a definitive prediction
if the simulation has entered into stable behaviour. Future
research is needed to examine the predictive qualities of co-
operator variability.

8 Responsible Research
Because of the stochastic properties of agent-based
modeling, and of this model in particular, repeat-
ing this experiment may yield slightly different re-
sults. However, a detailed description of the model
is provided in chapter 3. The original model, the re-
sulting data sets and the data analysis can be found at
https://gitlab.com/BEvanGelderen/Variability Cooperation.
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