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Abstract

The Multi-Objective Dial-a-Ride Problem (DARP) poses significant challenges in the field of transporta-
tion optimization, requiring the simultaneous optimization of conflicting objectives such as travel costs,
emission, and customer ride times. In this research, we analyse two distinct approaches for tackling
the Multi-Objective DARP: Mixed-Integer Linear Programming (MIP) solvers and Genetic Algorithms
(GAs). Through a series of experiments and performance evaluations on diverse problem instances,
we assess the strengths and weaknesses of each method. We compare their efficiency, scalability, and
ability to generate Pareto-optimal solutions. Additionally, the study explores the impact of algorithmic
variations on the convergence and solution quality of the Genetic Algorithm. The results demonstrate
that MIP solvers seem entirely unsuited for the generation of quality Multi-Objective Pareto fronts. Of
the Genetic Algorithms, the algorithm extended with our proposed guiding heuristics in its genetic op-
erators, manages to construct the best quality Pareto front, outperforming the other algorithms in both
finding the best objective solution values, as well as pareto diversity and convergence. We discuss the
practical implications of our findings, offering recommendations for researchers and practitioners in the
realm of transportation optimization and emission reduction.
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1
Introduction

1.1. Problem Statement
Climate change poses an imminent threat to our planet, primarily driven by the alarming levels of
greenhouse gas emissions, with Carbon Dioxide (CO2) being a major contributor [41]. To address
this crisis, the Paris Agreement has set emission targets within the European Union, aiming for a 55%
reduction in greenhouse gas emissions by 2030 [36]. A vital part in achieving these targets is dependant
on the transportation sector, which is responsible for 21% of global emissions, with road vehicles alone
contributing 15% [40].

One of the most straightforward methods of reducing road vehicle emission is to reduce the amount of
vehicles on the road. If one wants to reduce the amount of road vehicles, while still allowing passenger
and freight transport demands to be met, without major changes in transport architecture that would
allow for different modes of transportation, vehicles will have to transport more passengers and freight.
Road vehicles transport an average of only 1.67 passengers [5]. If one in ten vehicles would carry
an extra passenger, an estimate of 7.74 billion gallons of petrol would be saved annually [28]. This
suggests emission could be reduced by a significant amount by getting people to share their rides.

The Dial-A-Ride problem (DARP) [32], is an NP-hard optimization challenge aiming to determine the op-
timal routes for a fleet of vehicles based on pick-up and drop-off requests. These requests may involve
passengers, freight, or a combination of both. Usual key objectives in solving the DARP include mini-
mizing total travel costs, total route duration, and customer ride/waiting times [3]. This former objective
of minimizing travel costs is particularly intriguing. A minimal profit-oriented route efficiently handles
multiple requests simultaneously, seeking to maximize the handled travel demand while minimizing
vehicles, time, and fuel requirements.

While profit-oriented DARP solutions offer a promising avenue to reduce CO2 emissions, the question
arises: Can this be reduced even further? Introducing emission reduction as an explicit objective in
the DARP allows for a focused exploration of eco efficient solutions. It is crucial, however, to balance
this with traditional DARP objectives, ensuring that routes remain cost-effective and customer waiting
times are minimized. To tackle this multifaceted problem, an algorithm is needed that can integrate
these multiple objectives and generate a diverse collection of non-dominated solutions—commonly
known as a Pareto front. This front should illuminate the trade-offs between objectives, providing a
comprehensive view of the solution space.

Given that the DARP is NP-hard, exact solutions are limited to small instances. Larger instances can
only be solved by obtaining an approximation through heuristic algorithms. Thus the question arises
whether it is better to simulate a Pareto front using solutions from an exact algorithm or to rely on
a heuristic algorithm to approximate the Pareto front in terms of solution quality and computational
efficiency.

To solve this problem, we consider two optimization approaches: an exact Mixed Integer Programming
model and a Multi-Objective Genetic Algorithm. How can these approaches best be used to obtain a
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wide variety of high quality solutions for the multi-objective DARP?

1.2. Research Question
The primary aim of this research is to address the following research question:

Which optimization approach, between an exact Mixed Integer Programming model and a
Multi-Objective Genetic Algorithm, proves more effective in providing solutions to the multi-
objective Dial-A-Ride problem?

To delve into this overarching question, it will be divided into two sub-questions:

Sub-question 1: How effectively do both approaches explore the objective space?

In addressing this sub-question, we will look at the solution diversity, objective solution quality, conver-
gence speed, and general shape of the Pareto front.

Sub-question 2: Can problem-specific heuristics be incorporated within the Genetic Algo-
rithm to improve its performance in addressing the multi-objective Dial-A-Ride problem?

The overarching goal of this research is to generate an algorithm for the Dial-A-Ride problem that
provides a variety of solutions based on the core DARP objectives and the additional objective of
minimizing emissions. The algorithm should produce solutions that approximate exact optimal solutions
and are well-distributed throughout the objective space, offering distinct and varied solutions. This will
allow ride sharing services to choose a solution that best fits their company values and goals.



2
Previous Research

2.1. Problem variations
The Dial-A-Ride problem is a variation of the vehicle routing problem (VRP)[47]. The VRP knows many
other variations, some of these can be seen as a sort of stepping stone between the VRP and the
DARP, while other variations expand upon the DARP. These variations all share a common goal of
finding optimized routes and schedules based on pick up and drop off requests and are all NP-hard
problems. The main difference between these can be found in the specifics of what they transport and
how the optimal routes are determined. To get a quick overview of what each variation concerns, the
most relevant VRP variations, along with some of their sub-variations, are described below.

2.1.1. Vehicle Routing Problem
The basic goal of a Vehicle Routing problem, as stated in its name, is to determine optimal routes for
a set of vehicles to serve a group of customers. This description is kept vague on purpose, allowing
variations of this problem to freely add their own specifics. An example of this is the Pick-Up and
Delivery Vehicle Routing Problem (PDVRP), which concerns the distribution and collection of goods to
and from customers [45]. This problem adds the first step towards the DARP by introducing the concept
of picking up and delivering the same objects in a single route. Another VRP is the Vehicle Routing
Problem with Time Windows [31] (VRPTW), which introduces time windows to the to be delivered
objects which the final schedule has to comply to. These two concepts (Pick-up and delivery & Time
windows) became important factors in later Dial-A-Ride variations.

2.1.2. Dial-A-Ride Problem
The goal of the DARP [14] is to design vehicle routes and schedules that can handle pick up and drop
off requests from human passengers. Since this problem involves real people and no freight, more
emphasis is put on keeping the passengers satisfied. Time windows, when transporting real people, are
a lot shorter compared to VRPs that only concern freight. As a result a DARP has to balance reducing
user inconvenience against minimizing the operating costs. Another factor the DARP introduces is
that of vehicle capacity. Unlike most freight, people can not be stacked efficiently into vehicles, thus a
vehicle can only hold a definite amount of people based on their capacity.

2.2. Algorithms
Most DARP algorithms can be divided into three main parts [14]:

• Dividing the requests into clusters. The requests in these clusters will then be assigned to the
same vehicle.

• Determining the route every vehicle takes. This is done by sequencing the requests in each
cluster.

• The scheduling of all the different requests of every route.

3
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These steps can either be solved separately or in parallel, which is largely dependant on the algorithm
used. A major distinction between DARP algorithms is whether they are static or dynamic algorithms.
A static algorithm has full knowledge of all requests in advance, allowing static algorithms to cluster,
sequence and schedule separately without worry that changes could occur that would affect a previous
step. On the other hand, a dynamic algorithm is able to receive new requests at any point. This means
the clustering, sequencing and scheduling must be able to be altered at any point, as the new requests
will have to be added to the existing structure.

2.2.1. Single-Vehicle
A Single-Vehicle DARP uses only a single vehicle to handle all requests. Clustering of these requests
into multiple routes is thus unnecessary and can be left out. Although using only one vehicle is often
inefficient and nonexistent in practice, the Single-Vehicle problem can be used as a sub-step for multi-
vehicle algorithms [38]. Solutions for this problem are thus usually designed to be used as a subroutine
in more complex algorithms. One of the first solutions to the Single-Vehicle DARP is one presented by
Psaraftis [37]. This version uses dynamic programming to generate exact optimal solutions. This ver-
sion was originally designed for static use, but was also extended to work dynamically as well. Instead
of using requests time windows (which is commonly used in modern DARP definitions) this algorithm
instead uses maximum position shift, which means the order in which the requests are handled in the
route can only alter so much from the order in which these request were recieved. Later variations
of this approach [38] do incorporate the more modern time windows. While both these algorithms are
able to generate global optimal solutions, the main issue lies in their run time complexity of O(n3 3n),
with n being the amount of customers/requests. Due to this the largest instance that had been solved
only had 9 requests. While this number of requests is far too low to function as a stand alone algorithm,
it could still be used in conjunction with a clustering algorithm that divides the request in small enough
groups.

Sexton and Bodin [44] ran with this idea of using the Single-Vehicle DARP after clustering a multi-
vehicle DARP. This algorithm uses an insertion heuristic to solve the routing problem and then solves
the associated scheduling problem. They iterate between these two parts using Benders decomposition
[46]. This division makes the algorithm able to handle larger instances, with it being tested on several
real-life cases with up to 20 customers.

Another dynamic programming approach by Desrosiers, Dumas, and Soumis [19] reformulates the
problem using integer programming. This approach allows for the utilization of constraints, making the
algorithm a lot more efficient by removing infeasible states. Algorithms of up to 40 requests have been
solved using this approach and, while not tested, the author claims theoretically much larger problems
could even be solved.

A more modern approach [23] uses an adaptive insertion algorithm which allows the algorithm to scale
to any problem size. At low problem sizes, when inserting a new customer to the existing route, the
algorithm will look at all feasible sequences, generating a global optimal solution. When the problem
size gets too large, the amount of feasible sequences grows exponentially, thus the algorithm adapts
by only looking at a certain amount of feasible solutions for each new insertion, resulting in a locally
optimal solution.

2.2.2. Multi-Vehicle
Being able to use multiple vehicles, Multi-vehicle DARPs are a lot more useful in practice, as they are
able to satisfy a larger and more realistic demand. As a result many different approaches have been
developed to tackle these multi-vehicle problems. Furthermore these approaches tend to divide the
overall task into two distinct phases: clustering and scheduling. Meaning a solution usually consists of a
combination of multiple algorithms, thus getting a clear overview of all algorithms and their effectiveness
can get quite complicated. Luckily there are papers that specifically aim to give an overview of all these
existing approaches. Cordeau and Laporte [15] give an overview of everything up to 2007 and Ho et al.
[24] continue showcasing further research developments since then. Still, too many approaches exist
to go over all of them, so instead of looking at all particular approaches that have been developed, a
larger focus will be on the general algorithms that these approaches use, as many approaches seem to
employ similar algorithms. Only the particularly interesting and effective approach will then be explored
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to a larger extend.

Most static multi-vehilce DARPs start by dividing all requests into clusters. The goal of these clusters
is to sort the requests in such a way that for each cluster a efficient route can be constructed that is
feasible to complete for a single vehicle. Hence a cluster ideally contains requests that share similar
locations and time windows. After the creation of the clusters the routes can then be scheduled. Since
the routes are only meant for a single vehicle, algorithms used to solve the single-vehicle DARP can
be used for this step. An example of this can be found by Bodin and Sexton [6] using their previous
single-vehicle algorithm [44] for this exact purpose. The most commonly used algorithms to generate
clusters and/or schedules are variations of heuristic insertion algorithm [20, 4], set partitioning using
branch-and-cut algorithms [7], genetic algorithms [39, 29], Tabu Search [13, 34], Large & Variable
Neighborhood Search [43, 35] and Simulated annealing [8].

One thing to note is that most approaches tend to use heuristics and are therefore approximation
algorithms. The most notable exceptions to this are the branch-and-bound algorithms, which are exact
algorithms and thus deliver an optimal solution. The price of an exact solution comes in the form of its
complexity, which is exponential in the worst case as the DARP is NP-hard. One of the earlier exact
solution approaches by Ropke, Cordeau, and Laporte [42] manages to solve instances containing up to
8 cars and 96 requests. Interestingly, Ho et al. [24] show that currently the largest solved DARP instance
by exact methods is still on 8 cars and 96 requests [22]. This shows that these exact methods are limited
to solve instances of this size or smaller. This approach by Gschwind and Irnich [22] which uses a
Branch-and-Price-and-Cut algorithm has a run time of just under 15 minutes, making it most suitable for
static algorithms where once the routes are determined, they will not be altered. For dynamic scenarios
where rapid changes to the schedule need to occur, exact methods still prove to be insufficient on their
own. So far, using an exact approach to solve the multi-objective DARP seems to have barely been
researched [24]. Although this is likely due to most solving methods of these exact approaches (MIP,
branch-and-bound, etc) being specifically tailored to minimize a single objective. For Multi-objective
problems, the solver could run into issues due to the more complex trade-offs present between the
multiple objectives.

2.3. Model & Objectives
Since there are many variations of the DARP as well as a multitude of algorithms capable of producing
a solution, a single definitive model of the DARP does not exist. There are, however, certain charac-
teristics that are so inherent to the problem that almost any variation and algorithm will make use of
these. The data used as input for the problem contains some of these common characteristics. As
many DARP use a list of available vehicles, a list of customer requests containing locations (both for
pick-up and drop-off requests), as well as some sort of mechanism to enforce a time limit, such as a list
of time windows for each request. Another shared characteristic is the output: a route for each vehicle
in the form of a list containing the locations of all requests that particular vehicle has to handle in order,
both starting and ending at the depot. In order to not only generate a feasible route list that adheres
to the time constraints, but also a (close to) optimal one, these approaches aim to minimize some sort
of objective. In this section these different objectives will be analysed to find out their relevance to our
objective of minimizing CO2 emissions.

2.3.1. Route Duration, Distance & Profit
Most approaches use the objective of minimizing either the overall route duration [19] or the route
distance [13]. Another objective is the maximization of profit [18]. These three objectives provide very
similar solutions, as the shortest route is usually also the fastest. Maximizing profit can also be seen as
minimizing operational costs. Since the operational costs are largely the wage of the drivers and the
cost of fuel [7], the shortest route generally uses the least gas and the fastest route allows drivers to
serve the most amount of customers per hour. Hence the similarities between these objectives. Since
fuel usage is also directly correlated to CO2 emission, these objectives are already very much aligned
with the objective of emission reduction. However, none of these objectives explicitly align with the
minimization of fuel usage and are at best merely an approximation, as there are a multitude of other
factors that ultimately determine fuel usage and thus emission. Regardless, it could be interesting to
compare the eco-efficiency of these approximations with more specialized approaches.
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2.3.2. Customer Satisfaction
Another common DARP objective is to minimize the dissatisfaction of the customers (or maximize
the satisfaction). The exact meaning of customer satisfaction can vary, but it commonly means to
minimize the waiting and travel time for each customer or the difference between desired and actual
drop-off times. This objective seem to always be combined with another objective, as is the case for
Psaraftis [38] and Sexton and Bodin [44] which both minimize a combination of customer dissatisfaction
and overall route duration. Since this objective is seemingly never used on its own, one can conclude
that customer satisfaction by itself does not provide adequate solutions. The main benefit of including
customer satisfaction is to make the ride service more appealing to the customer. Looking at the survey
by Cordeau and Laporte [15] an interesting observation can be made that customer dissatisfaction is
more common in earlier approaches. A possible reason for this could be that in the early days ride
sharing services were still novel, so these services had to be more appealing to customers in order to
attract them. While this objective does not directly align with the minimization of emission, disregarding
this objective entirely could result in customers preferring to use other ride services instead.

2.3.3. Emission
There are already a couple of DARPs with the objective of directly minimizing emissions. While a
lot less common compared to the other objectives, regard for this objective has risen over the last
few years especially. Hu, Zheng, and Liao [25] created a multi-objective model which includes fuel
consumption as one of its three objectives, the other two being operational cost and service quality,
which they later improved upon [26]. In order to bind these three quite varying objectives to a single
parameter, they chose to implement speed levels for the vehicles. A higher speed level would benefit
the service quality (by reducing customer waiting time) and reduce the operational costs (by reducing
travel time). A lower speed level would reduce fuel consumption as travelling at lower speeds is more
fuel efficient. Besides this multi-objective model they also tested each of these objectives individually,
the results of their models is shown in Figure2.1.

Figure 2.1: Table displaying the main results of four different models by Hu, Zheng, and Liao [26]. Model A, B & C have a
single objective of minimizing travel time, waiting time or fuel consumption respectively. Model S-1 minimizes the combination

of these three objectives with equal weights

Model C and Model S-1 are of particular interest as these include fuel consumption as their objective.
Comparing these two shows why a multi-objective model could be preferred over a model with fuel
consumption as its sole objective. Whilemodel C does logically have the least amount of fuel consumed,
it heavily compensates for that by having a significant increase in both travel time and waiting time.
Model A and B share the same tendency, minimizing their objective at the cost of the other parameters.
Model S-1 has the relative lowest combination of all three. The weights of these objectives can be
further altered to fine tune the model based on which objective is deemed the most important. Since
this importance is quite subjective it mainly depends on outside factors, for example rises in fuel cost
could make fuel consumption more important and bad customer reviews probably indicate more weight
should be put behind service quality.

Instead of using multiple objectives, an alternative might be to put constraints on certain factors to keep
a limit on how much these factors can be ignored in favour of the main objective. Chen, Hu, and Wu
[10] came up with an approach for an exact solution that had two objectives: Minimizing travel time &
fuel consumption. Additionally, certain constraints are set such as time window length and maximum
ride duration to keep their solution in check. Furthermore, they deploy a traffic simulation model to
estimate emissions. As can be expected both travel time and fuel consumption are reduced as the
constraints are loosened. So while this approach also requires a balance between these main DARP
objectives, setting constraints, such as allowing customers to wait no more than X minutes, it could be
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easier to manage compared to arbitrarily altering weights until the desired values are achieved.

A non exact approach is that by Abedi et al. [2], which uses a heuristic (tabu search). What is interesting
about this approach is not its objectives, which are minimizing Operating costs and fuel consumption,
but rather they have some alternative ways of reducing this fuel consumption. Since their approach
is particularly aimed at elderly and disabled customers, who sometimes require special seating, they
deploy heterogeneous vehicles (different types and sizes). Thus for each type of vehicle they utilize,
they determine how much fuel is used to travel a certain distance. While this is very specific to their
target demographic, a more general version of this could be used by simply regarding vehicle sizes, as
smaller vehicles drive more efficiently, at the cost of less capacity.

These approaches all seem to have their own methods for calculating fuel consumption and there does
not seem to be a general best method, so in section 2.4 a more in-depth look at how to estimate fuel con-
sumption will be had. An approach that uses only the single objective of minimizing fuel consumption
also seems to not exist yet, besides the poorly optimized model used in Hu, Zheng, and Liao [26]. Even
versions using constraints seem to still use at least two objectives, but perhaps a certain combination
of constraints exist that allow a single-objective fuel reduction model to thrive.

2.4. Fuel Consumption
Section 2.3.3 shows that each existing research concerning eco-efficient DARPs had their own meth-
ods of measuring fuel consumption. Most of these methods seem to use simple methods, as exact fuel
consumption calculations are far too complex, and are thus estimations instead of exact calculations.
Furthermore they tend to only look at one aspect for possible fuel consumption reduction, such as the
study by Abedi et al. [2] which only looks at utilizing different types of vehicles with different rates of fuel
consumption at the cost of capacity. Hu, Zheng, and Liao [26] on the other hand only look at the differ-
ence speed makes in fuel consumption. While other solutions use traffic simulations to get an estimate.
A study by Demir, Bektaş, and Laporte [17] reviews multiple studies concerning fuel consumption and
concludes that there are many factors which affect fuel consumption for land vehicles. However, these
factors rely on a lot of specific circumstances regarding the vehicle, driver and environment. Many of
these factors are either unknown or so insignificant that they should only be regarded if it is vital to
obtain the exact value. A good approximation of fuel usage can already be obtained by just looking at
vehicle types alongside specific driving (speed) modes [21].

2.5. Multi-Objective Optimization
Multi-objective optimization (MOO) algorithms aim to solve problems that have multiple objectives (min-
imizing some values). Usually these objectives are conflicting, meaning the improvement of one ob-
jective comes at the cost of another objective. For these cases, the goal is to find a set of solutions
that contain the best possible trade-offs between the objectives. This set of solutions, called the Pareto
front, contains all solutions where one of the objectives can not be further minimized without increasing
another one of the objectives. This front becomes a valuable tool for evaluating the exact costs, both
monetary and environmental, associated with reducing the time customers spend waiting. Dial-a-ride
services can use this information to strike a balance based on their specific priorities for each objective.

2.5.1. Weighted Aggregation
In the context of this specific variation of the Dial-a-Ride problem, three conflicting objectives must be
minimized: operational costs, total emissions, and customer travel duration. Weighted aggregation
provides a method to combine these objectives into a single objective value, aiming for overall min-
imization. This involves assigning weights to each objective and summing them to obtain a unified
objective for optimization. Hu, Zheng, and Liao [27] solve a multi-objective model for the DARP us-
ing weighted aggregation. While achieving good results, their model only requires a single solution,
instead of a full front of solutions. Their model, for instance, does not explicitly reveal how reductions in
emissions may influence operational costs. However, by shifting the weights between runs to put more
emphasis on certain objectives, multiple ’optimal’ solutions can be obtained. These solutions could
then be combined to simulate a pseudo-Pareto front.
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2.5.2. Genetic Algorithms
On the other hand, real multi-objective optimization algorithms specifically aim to generate a Pareto
front. Genetic Algorithms are some of the most used types of Multi-Objective optimization algorithms
for the Dial-A-Ride Problem. A popularly used genetic algorithm is the Non-dominated Sorting Genetic
Algorithm (NSGA). A NSGA is specifically tailored for and commonly used to solve multi-objective
optimization problems [4]. While many approaches [48, 30] use NSGA-II, since it is faster [9] than both
its predecessor (NSGA) and successor (NSGA-III), NSGA-III is the best at generating more diverse
solutions sets [9]. Thus NSGA-III is ultimately the best suited for the goal of generating a diverse
Pareto front.

2.5.3. Hybrid Heuristics
To tailor multi-objective Genetic Dial-A-Ride models to the specific constraints of DARP, many studies
include additional heuristics, such as local search [33, 30] or other problem specific alterations to the
genetic operators [48]. These heuristics guide the algorithm toward feasible and superior solutions,
enhancing the adaptability of the algorithm to the intricacies of DARP.

Conclusively, the integration of weighted aggregation and multi-objective genetic algorithms, especially
NSGA-III, presents a robust approach to solving the complex challenges posed by the DARP. These
approaches offer valuable insights for dial-a-ride services to make informed decisions, considering
diverse trade-offs in objectives.



3
Models & Algorithms

3.1. MILP Model
Several mixed integer linear programming models already exist for the DARP. However, most of these
models describe either a base version of the DARP or their own specific alteration. Thus our model
uses the three-index formulation from Cordeau and Laporte [15] as a basis, but is expanded to include
the additional objectives. The method for calculating the cost has also been altered to be the sum of the
drivers wages and the cost of the required fuel, instead of simply being based on the distance travelled.

Parameters Explanation
n Number of requests.
K Number of vehicles.
L Maximum route length.
V Set of integers from 0 to 2n + 1 containing all re-

quests. The first and final entry represent the depot,
the entries in between are the union of P&D

P A set from 1 to n containing the pickup requests.
D A set from n + 1 to 2n containing the drop-off re-

quests.
Qk The maximum capacity of vehicle k.
qi The load of request i (negative for drop-off re-

quests).
di Service time of request i.
ei Earliest available pickup for request i.
li Latest possible drop-off for request i.
tij Time (m) it takes to go from request i to j.
ekij Emission cost of vehicle k going from request i to j.
w1 Weight for objective 1: Operational cost.
w2 Weight for objective 2: Emission.
w3 Weight for objective 3: Customer ride duration.

Table 3.1: Parameters of the MILP Model

The model parameters and variables are explained in tables 3.1 & 3.2. The mathematical formulation
of the model is as follows:

9
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Minimize c∗w1 + e∗w2 + r∗w3 (3.1)

Subject to e∗ =
∑
k∈K

∑
i∈V

∑
j∈V

ekijx
k
ij (3.2)

r∗ =
∑
k∈K

∑
i∈P

∑
j∈V

rki x
k
ij (3.3)

c∗ = 16.15cw/60 + 2.11e∗/2300 (3.4)

cw =
∑
k∈K

∑
i∈V

uk
2n+1x

k
i,2n+1 −

∑
k∈K

∑
i∈V

uk
0x

k
0i (3.5)∑

k∈K

∑
j∈V

xk
ij = 1 (i ∈ P ) (3.6)

∑
i∈V

xk
0i =

∑
i∈V

xk
i,2n+1 = 1 (k ∈ K) (3.7)∑

j∈V

xk
ij −

∑
j∈V

xk
n+i,j = 0 (i ∈ P, k ∈ K) (3.8)

∑
j∈V

xk
ji −

∑
j∈V

xk
ij = 0 (i ∈ P ∪D, k ∈ K) (3.9)

uk
j ≥ (uk

i + di + tij)x
k
ij (i, j ∈ V, k ∈ K) (3.10)

wk
j ≥ (wk

i + qj)x
k
ij (i, j ∈ V, k ∈ K) (3.11)

rki ≥ uk
n+1 − (uk

i + di) (i ∈ P, k ∈ K) (3.12)
uk
2n+1 − uk

0 ≤ TK (k ∈ K) (3.13)
ei ≤ uk

i ≤ li (i ∈ V, k ∈ K) (3.14)
uk
jx

k
0j ≤ ei (j ∈ V, k ∈ K) (3.15)

ti,n+i ≤ rki ≤ L (i ∈ P, k ∈ K) (3.16)
max(0, qi) ≤ wk

i ≤ min(Qk, Qk + qi) (i ∈ V, k ∈ K) (3.17)
xk
ij = 0, 1 (i, j ∈ V, k ∈ K) (3.18)

(1) is the objective function which uses weighted aggregation to minimize the values of the three ob-
jectives. (2) to (5) are the calculations for total emission, ride duration, operational costs and wages
respectively. Constraints (6) to (9) ensure the vehicle routes cover all requests once and each route
has corresponding pickup and drop-off requests and start and end at the depot. Constraints (10) to (13)
determine the schedules and vehicle loads. (14) till (17) check whether these schedules have feasible
times and loads.

Variables Explanation
xk
ij Contains the routes. is equal to 1 if vehicle k travels

from i to j, otherwise it equals 0.
uk
i Time at which vehicle k starts to service request i.

wk
i Load of vehicle k at request i.

rki Ride duration of customer of request i in vehicle k.
e∗ Total emission.
c∗ Total Operational cost.
r∗ Total ride duration.
cw Total cost of wages.

Table 3.2: Variables of the MILP Model
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3.2. Genetic Algorithm
While the Genetic Algorithm follows all the same objectives and constraints as the MIP model, the
solution output format has been altered to better fit the strengths of the Genetic Algorithm. Instead
of the results being a 3D Boolean matrix as introduced by Cordeau and Laporte [15], the solution is
instead stored as a list of integers of size 4n, as is done in the algorithm by Zelić et al. [48]. The first 2n
integers represent the request their pick up (1 to n) and their corresponding drop off (n+1 to 2n) points.
The second half contain the integer ID’s of the vehicle assigned to the corresponding request in the
first half. Four variations of the Genetic Algorithms have been developed. The differences between the
variations are found in their genetic operators. Table 3.3 shows an overview of the different operations
used per algorithm.

Table 3.3: The four algorithms and the different operators they use.

Name Sampling Crossover Mutation
Genetic Algorithm (GA) Simple Random Point Swap

Guided Crossover (GC) GA Smart Guided Point Swap
Fully Guided (FG) GA Smart Guided Guided
Half Guided (HG) GA Smart Both Guided

The Guided Genetic operators aims to improve upon the regular GA by having operations more tailored
to the multi-objective DARP. The main design philosophy behind the guiding operations to achieve
better results are the following:

• A heavy emphasis on making the solutions feasible.
• Guiding the population in the directions of the objectives.
• Diversity in its operations to combat early convergence.
• Keep the runtime linear.

3.2.1. Sampling
The initial simple sampling of candidate solutions, inspired by Zelić et al. [48], goes as follows: First
all requests are shuffled into a random order. Then, following this order, for each request all vehicles
that have enough capacity to fit the current request are determined. If no such vehicles are available,
the request is placed back at the end of the order list. Then for each eligible vehicle a priority value is
calculated. This value is the absolute difference between the target time of the request (the midpoint of
it time window) and the actual earliest time each vehicle can arrive at this request based on its previous
route. If a drop off request is selected, it gets added to the route containing the corresponding pick up
request, if the pick up request is yet to be scheduled, the drop off request is simply placed back at the
end of the order list.

Smart Sampling
The initial sampling method was mostly focused on creating correct routes that do not exceed capacity
limitations. However, since it did not regard any time limitations, it often generated infeasible solutions
that broke the time window constraints. In order to generate feasible samples more often a smarter
sampling method was implemented, this method takes the time windows into consideration as well.
The smart sampling method is very similar to the original sampling method, but with a few changes.
First the priority value of empty routes is set to the length of the request time window. This means that
if the current request time window differs too much from existing routes, it will prefer to add it to an
unused vehicle instead. This should prevent large time gaps in routes. Another change is that when a
drop off request is added to the route. Instead of simply adding it at the end of the route, it only gets
added if the end of this requests time window is larger than the start of the previous request’s window. If
this is not the case, the same check will be done against the request that comes before in the route until
the check is successful. This prevents the drop off request from being placed in an unfeasible position
time-wise. These changes ensure a greater chance of a feasible candidate solution being created.
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3.2.2. Crossover
The first crossover method uses a simple Partial Route Exchange. For each vehicle, the child solution
randomly picks a parent and copies the same route as the parent’s vehicle. If the child inherits a route
containing requests it already serves in one of its other vehicles, these requests are removed from the
new route. After inheriting a route for each vehicle, any leftover requests that are not contained in the
child’s route are randomly added to the existing routes until every request is served.

Guided Crossover
The guided crossover method which has more emphasis on keeping the parents route structure and
keeping the routes feasible. It takes a single route from one of its parents. The other routes are then
inherited from the other parent, with any duplicate requests being removed from these routes. This
approach is similar to the crossover method used by Chevrier et al. [11]. The leftover requests are
randomly assigned to one of these routes. Where in the route these requests are placed is determined
by the time windows of each request. The pick up requests get scheduled in front of the first request
encountered whose time window starts at a later time. The drop off for this request is then placed right
before the first encountered request whose time window ends later. If non of these are encountered,
the request will be scheduled at the end of the route. In order to prevent requests from ending up purely
sorted by their time windows. The crossover will add a random slack value to the time window of a
request before determining where to put it. By inheriting only one route from one parent and the other
routes from the second, only a few duplicate and leftover requests will occur. This means the routes
keep can keep more of the parent’s exact schedules and the few leftovers can be placed with more
precise methods without increasing the run-time complexity too much.

A possible downside to a more structured operator is that it could possible converge too soon. The half
guided genetic algorithm is a compromise of both crossover methods. By alternating between using
the guided crossover for more stability and the initial random crossover more diverse solutions could
possibly be explored.

3.2.3. Mutation
The basic mutation operator selects 2 requests randomly. Then it exchanges both the pick up and the
drop off requests of both of these requests.

Guided Mutation
The guided mutation algorithm utilizes multiple mutation methods, that all have their own intended
purpose. Each mutation one of these methods is chosen based on their probability. The methods
with the highest probabilities are those that aim to diversify the solution. The methods whose aim is
to optimize certain aspects of the solution have a lower probability. This leaves plenty of room for
exploration while the optimization methods gently nudge the solution in the direction of (one of) the
objectives. Each method is kept relatively simple to keep the algorithm efficient. The methods used for
mutation are described in the table below:

Name Description Intended Purpose Probability
Random Swap Two requests are randomly cho-

sen. Both their pick up and drop
off requests are then swapped
with one another

Indiscriminate exploration of ob-
jective space while keeping the
same amount of requests each
route

0.3

Random Migration One request is randomly chosen,
its pick up and drop off requests
move to a random vehicle at a
random location

Indiscriminate exploration of the
objective space while changing
the amount of requests in each
route

0.3

Table continues on next page
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Table continued from previous page
Name Description Intended Purpose Probability

Distance Swap Picks a random request from
a random vehicle’s route. For
each non-depot neighbor of the
request, calculate the route dis-
tance if these requests were to
swap. If none of these swaps re-
duce the route distance, the orig-
inal route is kept; otherwise, the
swap that causes the largest re-
duction in distance is done. Cor-
responding pick up and drop off
requests are not swapped.

Guiding the solution towards
shorter routes, which directly
benefits the objective of reduc-
ing emissions.

0.1

Timing Swap Picks a random request from a
random vehicle. If the previ-
ously scheduled request on its
route has a later time window,
the two requests swap. If this
is not the case, the next sched-
uled request on the route is in-
spected. If its time window starts
earlier than the picked request,
they swap. Corresponding pick
up and drop off requests are not
swapped.

Generally guides the solution
to have more consistent route
schedules, reducing time gaps in
the schedule making faster and
thus cheaper routes

0.1

Duration reduction Picks a random request from a
non-empty vehicle. If it’s a pick
up request, check whether the
next request scheduled is its cor-
responding drop off request; if
not, swap the two. If the ran-
domly picked request was a drop
off request, check the request
scheduled before it. If it’s not its
corresponding pick up request,
swap them.

Pushes pick up and drop off re-
quests closer to each other, re-
ducing the ride time of that cus-
tomer. Guiding the solution to-
wards a lower total customer ride
duration

0.1

Route Swap Two randomly picked vehicles
swap their routes.

Since our DARP has non-
homogeneous vehicles, differing
in both eco-efficiency and ca-
pacity. Swapping routes allows
the solution to explore the same
route schedules with different
vehicles.

0.05

Table continues on next page
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Table continued from previous page
Name Description Intended Purpose Probability

Max Route Migration Finds the route whose first and fi-
nal requests’ time windows have
the largest difference. Then
randomly remove either the first
non-depot request alongside its
corresponding drop off or the fi-
nal drop off request and its cor-
responding pick up. Then pick
a random vehicle and add the
removed request to this vehi-
cle’s route, right before the first
request in the schedule whose
time window starts later. The
drop off request is placed right af-
ter the pick up request.

Reduces the length of the
longest route, reducing the over-
all route duration, shorter routes
directly reduce the operational
costs.

0.05

3.2.4. Repair
The repair function will make sure each vehicle will never exceed it’s capacity during its route. To do
this, for each route, at every request a check will be done to see if the requests load would exceed the
vehicles capacity. If this is the case, the algorithm finds the next scheduled drop off request that has
a pick up request earlier in the route. This drop off request is then moved ahead in schedule of the
capacity exceeding request. If required, additional drop off requests are moved ahead in the same way
until the current request no longer exceeds capacity.

The repair function also checks if any drop off requests appear before its corresponding pick up request.
If so, these two are simply swapped.



4
Analysis

4.1. Experimental Setup
The exact MILP model is recreated in Minizinc and uses Gurobi 10.0.1 as its solver. The Genetic
algorithm is implemented in Python 3.9, using Pymoo for the NSGA-III algorithm. All experiments are
ran on a Windows PC (Intel Core i5-7300HQ CPU @ 2.50GHz with 8gB).

4.1.1. Test Data
The dataset used for the experiments uses data obtained from these [16] existing datasets. This dataset
contains simulated DARP instances with spacial and temporal variations. The requests are generated
with random locations and start times that fall within the desired service area and duration. Each request
has the same time window of 60 minutes. From these different parameters, three scenarios have been
created that aim to test different challenges and aspects of the DARP problem. The scenarios are as
follows:

• Scenario 1: This scenario covers an area of 20km2 over 8 hours. Having a small service area &
duration to work with means problem instances are more likely to have a lot of feasible solutions.
Requests will be closer to one another both geographically and time wise, allowing for many
variations within routes to still be feasible. This scenario aims to test how well the algorithm can
find and navigate through all these different variations to generate a suitable Pareto front.

• Scenario 2: This scenario covers the same area of 20km2, but has a longer service time of
24 hours. As a result the requests are spaced further apart on the timeline. Routes are now
constraint by their maximum route duration of 8 hours. There is also less variation possible in the
order of the requests in the routes, as their time windows are less likely to overlap. This scenario
tests how capable the algorithm is at exploring the solution space of instances with stricter time
constraints and less feasible solutions.

• Scenario 3: This scenario covers a larger area of 60km2 over 8 hours. A larger service area
means the requests lie further apart from each other. Larger distances take longer to travel,
hence instances in this scenario are also more constrained time wise. These larger distances
also allow for more significant variations in route distances, putting emphasis on finding routes
that can efficiently reach these requests.

The amount of requests per instance ranges from 10 to 100, with 5 to 30 vehicles. These numbers are
based on the real data [1] of a ride share company in Austin, TX.

4.2. Results
4.2.1. MIP Solver
The exact MIP model quickly proved to be unsuited for this Multi-Objective instance of the DARP. While
it was able to solve very small instances, the MIP failed to generate a solution within a generous time
limit of 20 minutes for instances above 12 requests. While the MIP was never expected to work well

15
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on larger instances, the multi-objective model performs significantly worse than its single-objective
counterpart, which managed to solve instances up to 36 requests [12]. Table4.1 shows the objective
values found for these small instances by both the MIP and the GA. Even with only 400 generations,
all but the original genetic algorithm managed to find the optimal solution the MIP gave. Since the MIP
could not complete larger instances, further single solution comparison was unfortunately not possible.

Figure 4.1 shows a comparison of the pseudo-Pareto front generated by the MIP and the Pareto front
obtained by the FGGA. Out of the 15 points measured by the MIP, 9 turned out to be distinct and only
5 solutions were not dominated by the front of the FGGA. Analysing 4.1 quickly shows the weakness
of generating a Pareto front using Weighted Aggregation. While it managed to find a bunch of suitable
solutions near the edges of the objective space, it fails to find all the different solutions in between these
values. The solver tended to keep picking the same solution with similar weights, instead of finding new
solutions with slightly altered values.

The failure of the MIP model to efficiently solve the multi-objective DARP is somewhat expected, con-
sidering the lack of existing research indicates that it has not been deemed worth to look into the
effectiveness of this approach. Nevertheless if the multi-objective were to perform on par with the
single-objective version, there might have still been merit in the approach. Being able to solve in-
stances up to 36 requests is much more in line with the expected number of requests found in practice
[1]. This would also have meant we would have been able to calculate how close the approximations
of the GAs are to the exact solutions on these larger realistic instances. Unfortunately with the MIP
only being able to solve instances of trivial size, it does not allow us to make meaningful conclusions
regarding the solution quality of the GAs.

Table 4.1: Comparison of best found solutions between GA & MIP

Dataset Operational Costs Emission Ride Duration
Sce Req Vehicles* GA GA+ GAS MIP GA GGA FGGA MIP GA GA+ GAS MIP
1 5 0,0,2 79.17 79.17 79.17 79.17 15.59 15.59 15.59 15.59 47 47 47 47
1 8 0,0,2 105.87 94.67 94.67 94.67 24.15 24.56 24.56 24.56 91 91 91 91
1 12 0,1,2 147,59 137,2 137,2 137,2 30,31 28,38 28,38 28,38 93 93 93 93

* * Vehicles are displayed in the format [big, medium, small]

4.2.2. Genetic Algorithms
To compare and analyze the quality and characteristics of the Pareto fronts generated by the GAs, the
following metrics are determined:

• The amount of Non Dominated solutions in the Pareto front is the first important factor. A large
number of solutions generally means the Pareto front has explored many diverse options. How-
ever, only looking at the amount can be misleading, a front with many solutions could largely be
dominated by the better quality solutions of a smaller front. Thus the ideal amount of solutions is
specific to the instance.

• The Best Solution (BSS) looks for the single ’best’ solution in the front. This is determined by
weighted aggregation. To determine the weights we look at the avarage objective values and use
the weights to normalize them. Operational Costs and Customer Wait Duration seem to share
similar values, while the emission value tends to only be about 20% of the other values. So the
weights for the former two are both set to 0.2, while the latter has a weight of 1.0. Finally the
score is once more normalized by dividing it by the number of requests in the instance. This final
score gives an indication of how the quality of a solution is compared to another instance on the
same dataset, with a lower score indicating lower (thus better) objective values.

• The S-metric evaluates the diversity of the Pareto front based on howwell spaced out the solutions
are. It is calculated by dividing the avarage distance (Euclidian) between consecutive solutions
by the solution pair with the largest distance between them. The higher the S-metric value, the
better spread out the solutions are on the Pareto front.

• The ∆-metric assesses the convergence and diversity of the Pareto front. To obtain the ∆-value,
the avarage distance (Euclidian) of consecutive solutions on the front is calculated. A lower ∆-
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Figure 4.1: Combined Pareto fronts of the MIP and FGGA

metric value indicates the front has better convergence, while a higher score means there is
diversity between solutions. A high spread and a low ∆-metric indicate the solution is both well
spread and converged.

Pareto front Analysis
Table 4.2 gives an overview of the results obtained by each algorithm per dataset. The first feature
of note is the original GA failing to find even a single solution for the larger instances of 75 and 100
requests. Indicating that the random nature of this algorithm struggles to find feasible solutions for
these larger instances.

While the HGA is able to generate solutions for each instance, it is consistently outclassed by the GGA.
Figure 4.2 shows the Pareto fronts of the same instance generated by both algorithms. The left figure
shows both fronts in the same graph, while the right figure shows the combination of both fronts into
a single front. While the former might suggest the HGA to explore a larger solution space, the latter
figure shows that it is entirely dominated by the front of the GGA.

The FGGA outperforms all other algorithms across the board. Consistently obtaining the lowest Best
Solution Score, as can be seen in 4.3a. Its lower ∆-metric compared to the other solutions (especially
at larger instances), indicate the front has converged the most, while still maintaining a large number
of solutions and high spread. Figure 4.4 shows both the Pareto fronts of both the FGGA and the GGA
for the same instance, each solution from the GGA is dominated by the front of the FGGA.

Since the MIP is unable to solve larger instances, the approximation quality can not be exactly calcu-
lated by comparing the values in the front to the exact solutions the MIP would have given. However,
since the BSS is normalized for each instance size and we do know the Pareto front with n=10 contains
the exact optimal solutions. We can compare the BSS of this front to those of larger instances. While
the original GA and HGA have BSS that slowly increase, showing their solutions get worse relatively
the larger the instance size. The GGA and especially the FGGA see a reduction in their BSS as the
instances get larger. While this does not give an absolute answer, as the exact score is dependant on
the specific instance and a larger number of requests naturally allow for more efficient routes. It does
show that these algorithms can find solutions with objective values comparable to and even exceeding
the smaller instances.
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Figure 4.2: Pareto fronts of GGA & HGA displayed seperately (left) and combined (right).

(a) Best solution Score of each GA for different instance sizes. (b) FGGA: Best Solution Score over the number of generations

Figure 4.3: BSS over instance size (a) and generations (b)

Convergence
Figure 4.3b shows the BSS achieved by the FGGA steadily drops until around 2000 generations, after
which it will only decrease an insignificant amount (around 2% score reduction between 2000-20000
generations). Figure 4.5a shows the relation between runtimes for two similar instances of size 30
and 50. This figure shows the linear runtime relation between the two instances. 2000 generations
takes around 4-6 minutes for instances between 30-50 generations, increasing linearly as the instance
size goes up. Since the MIP is not able to run However, while the BSS stagnates after this point, the
density and spread of the Pareto front does continue to increase. Figures 4.6 & 4.7 show the Pareto
fronts at 2000, 10,000 and 20,000 respectively. Figure 4.5b shows how the size of the Pareto front
(number of solutions) changes over generations. It seems the amount of solutions found increases
until around 6000 generations, after which the number stays about the same. However the Pareto
front at 20.000 generations is much more evenly spaced across the objective space. Showing that the
quality of the Pareto front still increases during this time. For reference, the final Pareto front dominates
40/41 of the solutions at 2000 generations and 101/134 of the solutions at 10.000 generations. The
combined Pareto of the instances of 18.000 and 20.000 generations is displayed in figure 4.7b. From
the combined 170 solutions, 52 come from the 18,000 front while the remaining 118 originate from
the 20,000 front. The fact that this former front contains 52 non-dominated solutions not included in
the Pareto front of figure 4.7a indicates that even after 20,000 generations, there are still more optimal
solutions available that the algorithm has yet to discover. However with neither the BSS or the size of the
Pareto Front changing significantly, there is little to gain from further exploration, especially considering
the impractically large amount this would require, as figure 4.5a shows 20,000 generations can already
take up to one hour for realistic instance sizes.
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Figure 4.4: Pareto fronts of FGGA & GGA displayed seperately for N=100

(a) Runtime over generations (b) Pareto front size over generations

Figure 4.5: Runtime (a) and Pareto front size (b) over generations for FGGA
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Table 4.2: Pareto front Result Data

Scenario N K Algorithm Solutions BSS Spread ∆

1 10 1,2,2

GA 11 7.16 0.93 36.72
HGA 11 7.02 0.90 40
GGA 14 7.02 0.87 27
FGGA 7 7.02 0.91 19

1 20 2,2,2

GA 21 7.62 0.97 93
HGA 11 6.04 0.94 24
GGA 9 5.96 0.91 22
FGGA 37 5.96 0.95 50

1 30 3,3,4

GA 29 9.86 0.98 121
HGA 22 7.64 0.98 60
GGA 28 7.4 0.98 61
FGGA 24 6.7 0.97 87

1 50 8,8,8

GA 20 9.6 0.98 126
HGA 35 7.9 0.99 137
GGA 14 7.02 0.98 83
FGGA 41 6.63 0.98 59

3 50 8,8,8

GA - - - -
HGA 28 20.48 0.98 93
GGA 32 19.15 0.97 87
FGGA 22 17.81 0.98 83

1 75 8,8,8

GA - - - -
HGA 70 5.46 0.99 278
GGA 31 4.68 0.98 174
FGGA 58 3.92 0.98 113

2 75 8,8,8

GA - - - -
HGA 35 8.8 0.99 326
GGA 14 7.43 0.98 268
FGGA 41 6.6 0.99 206

1 100 10,10,10

GA - - - -
HGA 49 6.47 0.97 267
GGA 32 5.0 0.99 235
FGGA 56 3.98 0.98 99

All instances were run with the following GA parameters: population = 500, offspring = 50, gen = 2000.
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(a) 2000 generations (b) 10,000 generations

Figure 4.6: Pareto fronts of FGGA (N=30) over 2000 (left) and 10,000 generations (right).

(a) 20,000 generations (b) Combined Pareto fronts

Figure 4.7: Pareto front of FGGA (N=30) over 20000 generations (a) and the combined Pareto front of 4.6b and 4.7a (b).



5
Conclusion

In this research we explored the possibilities of using bothMIP aswell as GAs to effectively find solutions
for the Multi-Objective DARP. To determine the effectiveness of these solutions we looked at how well
both approaches are able to explore the objective space to generate a diverse Pareto front as well as
the individual quality of the solutions found in the front. The results show that the MIP is an unsuitable
option for both solving the multi-objective DARP as well as generating Pareto fronts. While the latter
was to be expected, as MIP will only look for a single best solution, so the front would have to be
manually generated by shifting the weights for each objective. This often resulted in the MIP still finding
the same solutions, failing to find neighbouring non-dominated solutions with similar values. However
these points could still have served as a reference to measure the approximation of the Pareto fronts
generated by the GAs. However the MIP had such issues finding solutions while regarding multiple
contrasting objectives, that its efficiency suffered significantly compared to the single-objective model
it was based on. As a result it is only able to solve small instances of up to 12 requests, which is
too low for non-trivial comparison. For the genetic algorithms we explored how well GAs with more
general off the shelf operators perform against our own approach which uses heuristics in its operators
that guide the solutions towards each specific objective. The GAs that deploy more general genetic
operators might still struggle to find good and feasible solutions for the heavily constrained Dial-A-Ride
Problem. Adding heuristics to the genetic operators that guide the solution towards the specific desired
objectives and ensuring these operators produce feasible routes gets rid of this issue. Our proposed
Fully Guided Genetic Algorithm manages to generate Pareto fronts containing high quality solutions in
a couple of minutes, scaling linearly. After which the algorithm continues to improve the quality and
diversity of the Pareto front if allowed to continue. Although the improvements seem to be minimal
after this point, their presence combined with the inability to measure the exact approximation of the
GA, means it is entirely possible that the GA has unknown limitations with regards to exploring the
entire objective space. Although the Pareto fronts seem generally diverse, the heuristics in the guided
genetic operations could very well fail to explore certain niche solutions as they get guided towards
other local optima.

Since the guiding heuristics used are numerous and very problem specific, there is still a lot of room for
further adjustments and fine tuning to other problems. In future research, these adjustments could be
implemented to allow it to run on the many other variations of the DARP. Although this would require
some altering of the operators based on the new specific problem objectives, it does mitigate the need
for an exact solution to compare it to, as this would allow (part of the) the algorithm to be tested on
existing benchmark data sets. Since there is no exact measure of the approximation of the GAs, the
algorithm For a practical application, the algorithm can be adjusted to accurately reflect the specific
parameters of a real Ride Sharing company. This Ride Sharing company can use the resulting Pareto
front to pick a solution based on their own value preference for the objectives. Allowing them to set
limits for what they want for these values and still having multiple route variations they can choose from
that have these limits.
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