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Combining Multi-Level Real-time Iterations of Nonlinear Model

Predictive Control to Realize Squatting Motions on Leo

Manuel Kudruss1,3 Ivan Koryakovskiy2 Heike Vallery2 Katja Mombaur1 Christian Kirches3

Abstract— Today’s humanoid robots are complex mechanical
systems with many degrees of freedom that are built to achieve
locomotion skills comparable to humans. In order to synthesize
whole-body motions, real-tme capable direct methods of optimal
control are a subject of contemporary research. To this end,
Nonlinear Model Predictive Control is the method of choice to
realize motions on the physical robot using model-based optimal
control. However, the complexity of the problem results in a
high computational time that falls short of the expectations of
robotic experimenters and control engineers. In this article,
we show how advanced NMPC methods can be applied to
improve the control rate by a factor of 10–16 up to 190 Hz. This
is achieved by thread-based parallelization of two controllers
and by efficiently reusing control problem linearizations of the
last iteration to provide fast feedback by one controller while
the other controller prepares the next nonlinear step including
the evaluation of the multi-body dynamics and the respective
sensitivities. This way, the bottleneck of the roll-out of up to
130 ms can partly be side-stepped by repeated calls of the much
faster feedback phase of ∼ 5 ms. This enables a realization of
a squatting task on the actual 2D-robot Leo of Delft University
of Technology, which was not possible using a conventional
Nonlinear Model Predictive Control scheme.

I. INTRODUCTION

Today’s humanoid robots are complex mechanical systems

with many degrees of freedom, a multitude of sensors,

on-board computational power and powerful batteries in

order to enable autonomy. While they are built to achieve

human-like locomotion skills, they still lack online control

strategies that could realize these skills. Literature proposes

different strategies to synthesize whole-body motions for a

computational model of a robotic platform. Methods from the

domains of both model-based and model-free optimal control

are subject of current research. See [1, 2] as an example of

model-free approach to motion generation on the robot.

From the model-based point of view, the method of choice

to realize motions on a robotic platform is Nonlinear Model

Predictive Control (NMPC). NMPC is a closed-loop control

strategy that solves an optimal control problem online, and

employs a dynamic model to predict the process on a

finite horizon and to compute an optimal control profile.
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(a) Snapshot series of Leo squatting.

(b) Snapshot series of external perturbation.

Fig. 1: Snapshot series of the performed experiments.

While originally developed for the control of slow chemical

processes, recent advances allow the application of NMPC

to faster systems. However, the hybrid and nonsmooth nature

of multi-body dynamics as well as the high computational

complexity still limit the impact of NMPC for motion

generation on a much wider scale, and most often falls

short of the expectations of robotic experimenters. Therefore,

only few realizations of NMPC for motion generation on

robotic platforms exist, e.g. [3] using Differential Dynamic

Programming, and far less were used to generate walking

motions, e.g. [4, 5, 6], where a combination of simplified

models and hierarchical control of the robot was used.

Advanced methods of NMPC follow a direct approach

to optimal control. In doing so, they first discretize the

optimal control problem and then optimize the resulting

structured problem by efficient and tailored methods, e.g.

using direct multiple shooting [7] or direct collocation [8].

In order to provide control feedback in real time, the idea

of real-time iterations for NMPC was developed [9], which

is based on the observation that a single NEWTON step for

the discretized problem already provides a feedback control

that is optimal to first order. Furthermore, the NEWTON

step can be separated in three distinct phases, where the

time critical feedback phase involves the solution of only

a single Quadratic Program (QP) and can be solved effi-



ciently, cf. [10]. The time-consuming evaluation of the multi-

body system dynamics and the respective sensitivities of the

preparation phase happens prior to observation of the current

system state. The idea of real-time iterations was extended

in [11, 12, 13] to include four distinct levels of linerization

updates reducing the preparation time. [14] proposes to

mix or partially execute the updates. Some aspects of this

methodology have also been transferred to interior point

approaches, cf. [15].

A. Contribution of this Article

For the platform considered in this article, the analysis

of the different phases of a NMPC iteration reveals that

the bottleneck of computation is the preparation phase, i.e.,

the forward simulation of the multi-body dynamics and the

evaluation of derivative information, while the feedback is

reasonably fast. Therefore, in this article, we propose a

control strategy based on switching of two controllers. One

controller provides feedback based on linear MPC for the last

known linearization of the nonlinear control problem. The

other controller is given actual initial values and computes

a new linearization of the problem. When the problem is

successfully linearized, a control feedback based on NMPC

is provided and the linearization is communicated to the

linear MPC controller. Subsequently, feedback is provided

again using Linear Model Predictive Control (LMPC) based

on the this new linearization while the other controller is busy

relinearizing the problem. The contribution of this article is

a new and beneficial combination and parallelization of both

linear and nonlinear methods for feedback control.

The proposed strategy is a key to running NMPC on the

robotic platform in real time and the performance of the

proposed control strategy is evaluated on the 2D robot Leo of

Delft University of Technology, cf. [1]. The performed task,

squatting of the robotic platform, is realized via a tracking

of switching setpoints of the NMPC controller.

II. NONLINEAR MODEL PREDICTIVE CONTROL

In this article, feedback is provided by NMPC, a closed-

loop control strategy in which the control action is computed

from the current system state by solving an open-loop Op-

timal Control Problem (OCP) on a finite prediction horizon

T := [0, T ] online, also denoted as receding horizon control.

The OCP to be solved to provide feedback reads

min
x(·),u(·),p

∫ T

0

‖ℓ(x(t),u(t),p)− ℓ̄(t,p)‖2W dt (1a)

+ ‖e(x(T ),p)− ē(p)‖2
W̃

(1b)

s.t. ẋ(t) = f(x(t),u(t),p), t ∈ T , (1c)

0 = x(0)− x̂0, (1d)

0 = p− p̂, (1e)

0 6 g(x(t),u(t)), t ∈ T . (1f)

For t ∈ T , u(t) ∈ R
nu denotes the control trajectory. The

state trajectory of the dynamic system is x(t) ∈ R
nx . The

model parameters of the system are denoted by p ∈ R
np .

Here, the dynamic system is described by ordinary differen-

tial equations with right-hand side f(x,u,p). The nonlinear

least-squares objective function defined by a weighted L2-

norm with positive definite weighting matrices W and W̃
is composed of two terms that penalize the deviation of

ℓ(x,u,p), e(x,p) from setpoints ℓ̄, ē. In addition, mixed

state-control path constraints g(x,u) are imposed on the

system to model its physical limitations or security margins.

At the current time instant t = 0, given the full state

x̂0 ∈ R
nx and parameter estimates p̂ ∈ R

np , an NMPC

scheme solves the open-loop optimal control problem (1) to

provide the first part of the approximated optimal solution

u⋆(t; x̂0, p̂), t ∈ [t0, t1] as a feedback control to the system.

A. Direct Optimal Control

In order to solve the infinite dimensional problem (1), we

apply a direct and all-at-once approach by subdividing the

horizon T into N subintervals [ti, ti+1], 0 6 i 6 N , and

discretize the control trajectory by means of constant control

parameters on the time grid, i.e., u(t) = qi, t ∈ [ti, ti+1].
Direct multiple shooting [7] introduces additional vari-

ables si ∈ R
nx , 0 6 i < N and further parametrizes the state

trajectory by means of the solution x(t) := x(t; ti, si, qi,p)
of separate local initial value problems

ẋ(t) = f(x(t),u(t),p), x(ti) = si, t ∈ [ti, ti+1],

by state-of-the-art adaptive solvers for both evaluation of

nominal solution as well as sensitivities, e.g. [16]. Continuity

of the trajectories in the solution is established by matching

conditions x(ti+1; ti, si, qi,p) = si+1, 0 6 i < N .

From this discretization and parametrization, a large but

structured nonlinear programming problem is obtained that

can be solved efficiently with tailored structure-exploiting

Sequential Quadratic Programming (SQP) methods, cf. [17].

Observing that the OCP is linearly dependent on x̂0, p̂ due

to (1d),(1e), the Nonlinear Program (NLP) may be written

in parametric form,

min
w

ϕ(w) (2a)

s.t. 0 = c(w) + P (x̂0, p̂), (2b)

0 6 d(w), (2c)

with w := [s, q,p], s := [s0, . . . , sN ], q := [q0, . . . , qN ].
The projector P aligns the initial values and parameter with

the rest of the equality constraints c.

Starting with an initial guess (w0,λ0,µ0) of the primal

and dual variables of NLP (2), a full-step SQP method

employs, in every iteration k, a quadratic approximation of

NLP in the form of a QP and performs a step wk+1 =
wk + ∆wk,λk+1 = λQP ,µ

k+1 = µQP by using the

solution (∆w0,λQP ,µQP ) of the QP, which is given by

min
∆w

1
2∆wTB(wk)∆w +∆wT b(wk) (3a)

s.t. 0 = c(wk) +C(wk)∆w + P (x̂0, p̂), (3b)

0 6 d(wk) +D(wk)∆w, (3c)

Here, we denote the Jacobians of the in- and equality

constraints by C = dc
dw

(w), D = dd
dw

(w), respectively. The
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Fig. 2: Leo robot of Delft University of Technology (a)

and its control architecture (b). Annotation shows the world

frame (magenta) as well as the root frame origin (black).

Hessian of the Lagrangian of NLP is B(w), and the vector

b(w) is the gradient of the objective.

State-of-the-art NMPC methods based on nonlinear pro-

gramming rely on the real-time iteration scheme of [9] to

compute feedback in real-time. Subsequent problems only

differ in the values of x̂0, p̂ and this dependency is only

linear in the QP. Due to the linearity, by means of the so-

called initial value embedding methodology, i.e., a difference

in s0 6= x̂0 and p 6= p̂ due to initializing the problem

with the state and control information of the last solution

can be satisfied after a single full NEWTON step. The next

iterate then represents a first-order tangential predictor of the

solution, cf. [18].

In this way, computationally expensive parts can be sepa-

rated from time-critical ones and the computational delay of

the feedback is reduced to the time required to solve a single

QP, such that by careful initialization a separation into three

phases of the SQP step is possible as follows:

• Preparation: setup of QP (3) and structure exploitation

• Feedback: QP solution triggered by arrival of x̂0, p̂
• Transition: unroll exploitation, perform NEWTON step

Advanced methods further these ideas by dividing the real-

time iteration into sub steps that can provide feedback even

faster by evaluating only parts of the required Jacobian

information, c.f. [11, 12, 13, 14].

III. ROBOT AND MODEL

In Figure 2, the robot Leo is depicted in (a) as well

as its control structure in (b). Leo was originally built to

perform Reinforcement Learning experiments directly on

the hardware, cf. [1]. The robot is attached to a boom for

walking experiments to enforce a 2D motion around a center

platform. For the experiments in this article and to further

investigate the combination of NMPC and Reinforcement

Learning, we focus on a more secure and easier repeatable

task than walking, namely squatting. Therefore, the robot

was taken off the boom and fixed to a ground plate below

its feet in order to ready it for a squatting task. Leo is small

(50 cm) in size and light-weight (1.7 kg). Foam bumpers

are attached on both sides of the torso top and between

the hip motors in order to secure the robot from damage

due to falls in a wide range of configurations. Additionally,

elastic couplings were added for protection of in-build motor

gearboxes. Leo has seven Degrees of Freedom (DoFs) driven

by servo motors (Dynamixel XM430; max. torque 3Nm),

three in each leg at ankle, knee and hip as well as one motor

in the shoulder joint. The on-board embedded computer (VIA

Eden 1.2GHz CPU and 1GB RAM) communicates over RS-

485 serial ports with the motors, which are used in voltage

control mode, and communicate back their position as well as

temperature. The measured joint velocities are retrieved from

the position signal by differentiating and filtering the results

by means of a second order BUTTERWORTH filter. The

operating system on-board of the robot implements a fixed

sampling time of 30ms. While in principle its possible to run

NMPC on the embedded hardware, we choose to use external

computational power to implement the control for the robot.

As depicted in Figure 2 (b) NMPC is run on a laptop

that communicates with the embedded system on the robot

via Ethernet using the ZeroMQ1 library for communication.

The external computational power was provided by a laptop

equipped with an Intel c© CoreTMi7 4600U CPU running at

2.10GHz with 4 cores, 8GB main memory and running 64–

bit Ubuntu c© LinuxTM.

A. Model

The robot is best approximated by a rigid-body dynamics

model. The required dynamic properties of the links, i.e.,

masses, inertias and Centers of Mass (CoMs), were taken

from [1]. We use the software library Rigid Body Dynamics

Library (RBDL) [19, 20] to implement the model and to

evaluate the Forward Dynamics of the model efficiently.

In Figure 2, the world frame is depicted, where the x axis

exists along the 2D walking motion pointing forward, the z
axis point upward and, in order to have a CARTESIAN frame,

the y axis is pointing out of the figure such that a positive

rotation around the y axis results in a clock-wise motion. The

kinematic structure of the robot can be modeled in different

ways. Here, we employ a fixed-base model that describes

the kinematic chain from foot over ankle, knee and hip to

the root and the arm of the robot. Furthermore, it is possible

to exploit the symmetry for the task as in order to achieve

squatting the legs and feet have to be aligned in parallel.

a) States and Controls: The dynamic model is im-

plemented as Ordinary Differential Equation (ODE) in the

OCP (1c) by order reduction, i.e., implemented on accel-

eration level by evaluating the Forward Dynamics (FD),

q̈ = FD(q, q̇, τ ), and integrating twice to receive joint

positions and velocities q, q̇.

Following the formulation of the NMPC problem (1), the

differential states x are in this case the joint positions q and

1http://zeromq.org



velocities q̇, i.e., x(t) =
[

q(t)
q̇(t)

]

, ∀t ∈ T .

The controllable variables of the system u are the input

voltages of the servo motors v, i.e., u(t) = v(t), ∀t ∈ T .

Control functions u are approximated as piecewise constant

functions. The voltages v are setpoints provided to the motor

internal controller. In order to receive joint torques from the

motor input voltage v for the model, we apply a mapping

depending on the angular velocity q̇, i.e., τ ≡ τ (v, q̇). We

refer to [1] for further details.

b) Objective Function: As mentioned above, the squat-

ting task is realized by means of the objective function

ℓ(x,u,p) =









rz(q)
xc(q)
pose(q)

q̇









, ℓ̄(t,p) =









p

x̄c

0.30
0









, (4)

where we denote the forward kinematic evaluations of the

root frame as r(q) and the x position of the CoM as xc(q).
The term pose(q) := qankle + qknee + qhip denotes the

evaluation of the torso angle wrt. the world frame computed

from the angles of ankle, knee and hip, and the joint

velocities q̇ are used as a regularization terms improving the

stability of the robot. The setpoint for the CoM term is the

center of the support polygon denoted by x̄c and given by the

position of the tip and heel of the support foot. The height

to track by the robot is provided via the model parameter

p and the squatting is then realized by its modulation over

time. We weight the different terms by the weighting matrix

W = diag {50.0, 100.0, 50.0, 3.0, . . . , 3.0}, with a focus on

stability, a trade-off between tracking and correct upright

pose and a small weight on the joint velocity penalty.

c) Constraints: In order to guarantee stability of the

robot, we additionally formulate static stability as constraint

g(x,u) =

[

xt − xc(q)
xc(q)− xh

]

, (5)

where xt, xh denote the position of the tip and the heel of the

robot feet. We exploit the symmetry and therefore one foot is

enough to describe the polygon of support. The optimization

is subject to the constraints








−1.57
−2.53
−0.61
−3.00









6 q 6









1.45
−0.02
2.53
0.36









(6)

and box constraints to limit the motor voltages by −5V 6

vi 6 5V, i ∈ {ankle, knee, hip, arm}.

d) Run-time Analysis in Simulation: Initially, we per-

formed experiments in simulation. From this, an analysis

of the computational time of the different NMPC phases is

visualized in Figure 7a by box plots. The results show a

relatively slow preparation phase of 71.61ms, while tran-

sition (7.39ms) and feedback (5.37ms) phases are much

faster in comparison. Following this, nominal NMPC with

a total iteration time of 80.31ms would end up with a

minimum control rate of only ∼ 12Hz , while a control

rate of ∼ 186Hz would be possible by leveraging the fast

NMPCLMPC
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Fig. 3: Schematic of the control approach. In a init(ialization)

phase both controllers (A,B) are prepared by estimates

(x̂0, p̂) from the robot. The concurrent controllers provide

feedback u0 either with (LMPC) or re-linearize and pro-

vide nonlinear feedback once (NMPC). LMPC feedback is

queried as long as NMPC thread is in preparation. When the

NMPC thread is ready, roles are switched and the scheme is

continued.

feedback time this would improve control rate by a factor of

15. We only compared the maximum recorded run time data

here and in the mean higher values are possible.

IV. COMBINING MULTI-LEVEL REAL-TIME ITERATIONS

The idea of different levels of real-time iterations was

already touched in Section II. Here, we revisit the levels

proposed in [11] that are required for our implementation.

In order to provide feedback even faster, the idea of the

four different levels is to only update selected parts of

the linearization during the preparation phase. This can

be understood as updating the respective quantities in the

QP (3), i.e., the evaluation of all, parts or none of B, b, C,

c, D and d . We focus on the two extremes of updating the

full information and leaving out the preparation phase, i.e.,

the levels “D” and “A” of [11].

a) Level D: A nominal NMPC iteration, i.e., a full

SQP step, evaluating the gradient of the objective b(wk), the

constraint residuals c(wk), d(wk) as well as the respective

Jacobians C(wk), D(wk) and computing a new Hessian

(approximation) B(wk) using the latest iterate (wk,λk,µk).
From this information a new QP (3) is built. After the

solution of the QP is available, the feedback control is sent

to the process and the SQP iteration is finalized.

b) Level A: This level realizes LMPC using the most

recent linearization provided by a completed D iteration.

That is, the most recent set of matrices and vector B̂, b̂,



the constraints Ĉ, ĉ, D̂, d̂ is kept fixed in the QP. From

this, and given new estimates of the initial states x̂0 as

well as parameters p̂, a feedback control is computed by

solving the QP. Level A iterations can be performed without

any evaluation of the nominal or derivative information and

consist of only a solution of the already prepared QP.

In Section III, we concluded with the fact that the feedback

phase can grant feedback reasonably fast in comparison to

the slow preparation phase. This means that feedback can

be provided fast and cheap by using only Level A iterations.

Level D iterations are computationally expenisve and slightly

violate the real-time constraint due the fixed sampling time of

the robot. Following the ideas proposed in [14], a solution is

to reuse the linearization and provide intermediate feedback

using level A, while the preparation phase is ongoing. This

can be realized by two concurrent threads either using level A

or level D real-time iterations. In this article, we implemented

the control scheme as depicted in Figure 3.

First, both controllers are prepared in separate threads

and receive initial states x̂0 and parameters p̂ in a common

initialization phase. While the threads run concurrently, each

of the controllers has a distinct role in providing feedback

u0 either using level A iterations and reusing the last

linearization (LMPC), or in using level D iterations with

a full preparation phase (NMPC). The level D iterations

are subject to a non-negligible computational delay. Once

the relinearization has been triggered by initial values, we

provide linear feedback through queries to the level A

iterations thread. As soon as the level D thread is ready,

which typically happens after 2-3 level A queries here, we

switch roles for one iteration, provide full NMPC feedback,

and re-linearize in the NMPC thread. The level A thread then

takes care of providing the feedback until the next level D

iteration is ready.

Software: The approach is implemented on top of

OCP solver MUSCOD-II, cf. [21, 22]. Here, the preparation

phase uses a RUNGE-KUTTA-FEHLBERG 4/5 method to

evaluate the ODEs adaptively, which is extended to also

compute the necessary derivative information by means of

Internal Numerical Differentiation, cf. [7]. In order to solve

the QP in the feedback phase, we employ the QP solver

QPOPT [23], which itself uses an active-set strategy and

implements consecutive warmstarts on the optimal active

set of the previous solution. For controlling the robot and

investigating the combination with Reinforcement Learning

(RL), we integrated MUSCOD-II with the RL software

package GRL2 [24] that already implements the interface for

communicating with robot Leo.

V. EXPERIMENTAL SETUP

In order to evaluate the novel control algorithm, we

performed two sets of experiments: a squatting task and an

experiment evaluating the performance against perturbations.

The experimental setup of the squatting task is shown in

Figure 4. In order to bring the robot into a well-defined

2https://github.com/wcaarls/grl
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Fig. 4: Scheme explaining the squatting task. Before and

after the experiment (white background, from t0 to tf ), a

setup and tear down phase (light gray background) brings

the robot into a initial configuration. During the experiment

the setpoint (dark gray bars) tracked by the root center (cross

shape, cf. Figure 2) is switched at time points ti, 0 < i < f .

initial configuration, two phases precede each trial: a PID

phase and an NMPC init(ialization) phase. In the PID phase

a configuration is tracked by a low gain PID controller and

in the following init phase the NMPC software is initialized.

The actual trial starts as soon as the controller is ready, which

we indicate by t0 = 0.0 s and ends after tf = 25.0 s. The

actual task is implemented as a tracking of a setpoint at

the center of the torso of the robot by NMPC run on the

laptop. The squatting motion is achieved by tracking two

distinct setpoints, a lower plo = 0.28m and pup = 0.35m
one, such that the robot has to move its root by 7 cm from a

crouching to almost fully stretched legs. These are repeatedly

switched for the controller after periods of 1.5 s, such that 8
full squats have to be performed in total. After the experiment

the robot is brought back into its initial configuration by a

non-recorded NMPC phase followed by a final PID phase,

during which the NMPC policy is finalized.

The setup to evaluate the performance against external

perturbations follows that of the squatting task. Here, we

track an intermediate setpoint pim = 0.32m, while the robot

experiences external perturbations.

For the purpose of evaluation the following criteria are

considered in the validation of each experiment:

• The value of the objective as indicator of performance.

• The trajectories of states, control and tracking task.

• The timing statistics of the respective NMPC policy.

Friction Compensation for Dynamixel Motors: The actu-

ation of the robot is realized by Dynamixel XM430 servo

motors. Here, we use voltage control mode of the motors,

as proposed in [1]. The motors are subject to COULOMB

and viscous frictions, and gearbox inefficiency. Without a

compensation of the friction a realization of NMPC was

not possible on the hardware (see the supplementary video).

Therefore, we implemented an affine transformation of an

input control signal. The actual applied voltage vi = 0.75 ·
v
nmpc
i + v

comp
i (p) is composed of the control signal from

NMPC multiplied by the gearbox efficiency of 75% and a



compensatory term for the friction v
comp
i , given by

v
comp
i (p) =

{

1.0µC , if p = pup

−1.5µC , if p = plo,

where the COULOMB friction term was tuned to be µC =
0.86V for i ∈ {ankle, knee, hip} and 0V for arm. Please

note that methods of system identification can be applied

to compensate on the joint level. In the future, we plan to

overcome this issue by combining the control and learning

of these structural uncertainties in the environment via RL,

cf. [25]. Therefore, we omit the parameter identification part

in this article and focus on the control.

VI. RESULTS

In Figure 1a, a scene from a squatting experiment shows

Leo performing a single squat. The whole experiment was

repeated five times in a row. Each trial was successful and no

problems occurred. The recorded data from the experiments

is visualized in Fig. 5, 6. Note that the joint angles and the

motor input voltages of the arm have been dropped. This is

due the fact that the arm is not moving much and also has

little effect due to its low weight.

In Fig. 5a, the actual height tracking is depicted as

presented in Figure 4. The setpoints pup, plo (dark and

light gray horizontal bars) attracts the root origin correctly,

which then slightly overshoots before the setpoint is switched

again. During tracking of the lower setpoint the overshoot is

stronger. We use the same colors as for the setpoints pup, plo

(dark and light gray) to highlight ascending and descending

phases in the other plots.

In Fig. 5b, the reward, i.e., the instantaneous negative

objective function value (4), is plotted against time. Here,

optimal performance would show values close to zero. While

this value is never reached exactly, it comes close to the

optimal value at the end of reaching the lower set point.

However during each ascending phase the value of the reward

is significantly lower than during the respective get-down

phase of a squat.

Fig. 6 (a-c), show the angles of hip, knee and ankle joint.

All three joints show both a high quantitative similarity of

the different trials, with the only visible deviations near the

extrema of the trajectories. Looking at the markers, slight

deviations in the time profile are visible. While the trajecto-

ries are similar, the paths are not perfectly synchronized in

time.

Fig. 6 (d-f), show the motor input voltages at hip, knee,

and ankle. While they show the same qualitative behavior,

one can see the control effort due to the deviations during

the tracking of the lower setpoint. Even though the joint

angles show satisfactory behavior, the variability in control

can also be seen in the video, especially near the end of the

experiment when, in the final phase, the lower setpoint is

tracked. During ascending the knee voltage saturates to the

limit of 5V in the very beginning of the motion.

The timing statistics derived from the experiments are

shown in Figure 7. Figure 7a reveals similar results for the

timing statistics as the numerical experiments. Comparing

the maximum values of each phase, we see again a dom-

inant preparation phase of 132.04ms, which stands out in

comparison to the fast feedback and transition phases of

13.32ms (and 15.15ms). This shows again the benefit of

the proposed multi-level approach as with this a speedup of

the feedback time by a factor of 10–16 is easily possible and

one would end up with a minimum control rate of ∼ 75Hz
and up to ∼ 190Hz (mean). In contrast to this, a nominal

scheme relying on the same timing statistics would result in

a minimum control of not even ∼ 10Hz.

In Figure 7c, the feedback times for the currently active

LMPC thread are shown. While most of the feedback times

are below 5ms, outliers still show feedback times well

beyond 10ms.
In Figure 1b, Leo recovers from the external push per-

formed by an experimenter. The experiment was conducted

once. Note that the trajectories of this experiment are not

shown due to page limitations. The reader is referred to the

supplementary video. The feedback was crisp and the robot

directly reacted to the external perturbations by counteracting

the force. However, due to the friction compensation the

robot started to stretch his legs after some hard perturbations.

VII. DISCUSSION

The proposed multi-level NMPC control scheme showed

a satisfactory real-time performance on the robot. While the

friction compensation made the scheme actually work on

the hardware, the results reveal the erratic behavior due to

model-plant mismatch in the friction model, e.g. overshoot

and voltage saturation during squatting and leg stretching

in the push recovery experiment. We believe that this is

not a problem for future research, as there are avenues to

compensating for this either by improving the model using

parameter identification methods, or by learning by means

of RL, cf. [25].

During the descending phase while squatting, or in the

push experiment, we noticed a little jittering in the con-

trol. We offer two explanations for this. First, the friction

compensation alters the control signal computed from the

model. Especially during the down-phase or when the robot

moves very slowly, we could see the importance of adjusting

the compensatory term. Further improving it might help

reducing the mismatch or compensating it on motor level

will result in smoother motions also in regimes with slow

speed. Second, switching the controller also means switching

the current linearization point of the model, followed by up

to four consecutive feedback phases using it. A change of

the linearization has significant impact on the feedback. By

further improving the speed of the computations, especially

during the preparation phase, both the feedback time as well

as the ratio of A and D iterations can be improved.

VIII. CONCLUSION AND OUTLOOK

In this article, we presented a control approach to Nonlin-

ear Model Predictive Control (NMPC) for feedback control

employing a combination and parallelization of both linear

and nonlinear methods that is based on two different levels of
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real-time iterations, named levels A and D. This combination

enabled us to achieve real-time execution of NMPC on the

physical robotic hardware of Leo. Additionally, we proposed

a problem specific model for compensation of the static fric-

tion hindering the robot to perform the task. We successfully

performed experiments on the robot in different scenarios

followed by the detailed analysis of the recorded results. The

control scheme showed a convincing performance, where

most of the current problems, e.g. computation complexity,

were overcome.

This work presents the first step on evaluating the combi-

nation of different multi-level real-time iteration of NMPC

on the robot, and we plan to further investigate this intriguing

combination. Previously reported results from simulation

suggest that a performance improvement and a safer explo-

ration are made possible by combining NMPC with Rein-

forcement Learning on top. After a first successful evaluation

on the robot, we plan to focus on more difficult tasks, where

fast and robust walking for the platform is the goal.
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