PHYSICAL REVIEW B 75, 132502 (2007)

0-77 transition in superconductor-ferromagnet-superconductor junctions with strongly
spin-dependent scattering
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We develop a theory of the critical current in superconductor—ferromagnetic alloy—superconductor trilayers,
which takes into account the strong spin dependence of electron scattering on compositional disorder in a
diluted ferromagnetic alloy. We show that in such a system the critical current oscillations as a function of the
thickness of the ferromagnetic layer, with period of vy/21, vy and I being the Fermi velocity and exchange
splitting, respectively, decay exponentially with a characteristic length of the order of the mean free path.
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The recent observation'™* of Josephson junctions with
negative coupling,>S also known as 7 junctions, has attracted
a lot of attention to hybrid superconductor-ferromagnet-
superconductor (SFS) structures. In contrast to conventional
Josephson junctions, such as superconductor—normal metal
systems, where the ground state corresponds to a supercon-
ducting phase difference ¢ of zero, the phase difference in a
SFES trilayer can take both ¢=0 and 7 values, depending on
the thickness of the ferromagnetic layer. Both O and 7 states
in SFS trilayers have been deduced from the measurements
of the density of states' and the critical current as a function
of magnetic flux and temperature.”*”8 In particular, the criti-
cal current exhibits oscillations superimposed on the expo-
nential decay as a function of the thickness of the ferromag-
netic layer.>® The decay length &, and the period &, of these
oscillations have been measured, providing comparable yet
unequal experimental values of these two parameters.

In ballistic SFS structures, the critical current is expected
to oscillate with the period &,=vp/2I. For a ferromagnetic
metal with a strong exchange splitting /, fluctuations of the
width of the ferromagnetic layer suppress the appearance of
the proximity effect, despite the fact that in ballistic struc-
tures Cooper pairs decay with the distance according to a
power law rather than exponentially. Moreover, it has been
shown!? that, when the electron motion in a ferromagnetic
film with large [ is diffusive, the randomization of the oscil-
lation phase over paths of different lengths leads to the ex-
ponential suppression of proximity at the scale of the mean
free path: £;~ [ for the case of I7>1 (where 7 is the electron
mean free path). To enhance the proximity effect in SFS
multilayers, one may want to use weakly ferromagnetic al-
loys, where the exchange field 7 is reduced by diluting the
magnetic component. The analysis of diluted systems with
IT<<1 based upon modeling disorder in SFS junctions as
spin-independent impurities has shown that the decay length
may be expected®!! to extend beyond the mean free path
range, such that &~ & =\D/I, where D=v%7/3.

In this paper, we show that the possibility to prolong the
extent of the superconducting proximity effect in SFS struc-
tures by making them of diluted magnetic alloys is strongly
limited. Following the theory of suppression of superconduc-
tivity by magnetic impurities,'? earlier theories'>!* took into
account the effect of magnetic disorder by including in the
Usadel equation a weak Cooper pair relaxation described by
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a phenomenological spin relaxation rate 7-;1. Keeping in
mind that even in a weak ferromagnet electron spin flip is an
inelastic process and should be accompanied by the excita-
tion of a magnon, we attribute the pair breaking in a ferro-
magnetic alloy to a giant magnetoresistance (GMR) type ef-
fect. As noticed in earlier GMR studies,!>!0 a feature of
ferromagnetic alloys is that elastic electron scattering in
them is strongly spin dependent. Indeed, one scattering event
off strongly spin-dependent disorder, seen differently by
spin-up and spin-down electrons, is enough to break a singlet
Cooper pair. In such a case, the decay length of a Cooper pair
is of the order of the mean free path, £;~ (. Since, in this
case, the use of Usadel equations adopted in the previous
studies of disordered SFS junctions®'! does not hold, here
we employ a nonlocal approach based on solution of the
Eilenberger equation®!%1317 to describe 0-7 Josephson oscil-
lations as a function of the thickness of the diluted ferromag-
netic alloy layer.

To describe a dilute ferromagnetic alloy, we use the fol-
lowing Hamiltonian (a 2X2 matrix in the spin space),
adopted" in GMR theory:

H=p*12m+ V(r) + oJ(r), (1)

where V and J describe magnetic atoms embedded into a
normal metal, and o is the vector of Pauli matrices. The
average (J)=e_l determines the exchange splitting for con-
duction band electrons, and (V)=0. Since every magnetic
atom produces both scalar V and exchange J potentials, we
use the following correlation functions for magnetic and
nonmagnetic  disorder:  (V(r)V(r'))=2mvr) ' 8r-r1’),
(JorT ) =@mvr)  6,5800-1"),  and (V) (x"))
=2V Ti) '8, 8(r—1").

The starting point for a quantitative description is the
Eilenberger equation for the retarded component of the semi-
classical Green’s function,

VMg + [~ io? +ilo* +i3,8]. =0, 2)

y — 8 f) E(O le) 52— 1 3
g(f_g,ffwo,g, 3)

where (f%) 45(r, 10, @) ==[f,5(r.1;—n,-w)]", 7 acts in the
Nambu space, n=p/p, the self-energy has the form
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and (g)=[g d*n/4 is the Green’s function averaged over
the momentum direction. For the weak proximity effect, Eq.
(2) can be linearized around the zero-order Green’s function
go="". Performing the expansion up to first order, we obtain

v f = 2iwf + 2ilof+ (7, + 7, )f - (7' = 7)) = 0.
(4)

The linearization of the Eilenberger equation and subse-
quent analysis are based upon the assumption of weak cou-
pling between superconductors and the ferromagnet, which
is realized, for instance, if these are separated by an opaque
barrier with low transparency ® << 1. The appropriate bound-
ary conditions have been derived by Zaitsev,'8

g1 -0)[1-(g)°]+6(g) = 08¢,
vsla

where ¢7“=[g,(n,)+g,(-n_)]/2 (i=S and F for a supercon-
ductor and a ferromagnetic alloy, respectively), n.>0, where
n, is the projection of n=p/p onto the direction normal to
the SF interface, and g,=(gs+g%)/2. In the case of low
transparency ® <1, we find that in the first order in 0,

~Ya — ~d

g§=gF=g ’

v @ v(0) ~(0
§'= Z[gfq eV,

where gg") and gﬁ” are the Green’s functions in the two ma-
terials when those are detached (@=0). Together with Eq.
(4) this gives us a closed set of equations.

It is convenient to represent the semiclassical Green’s
function f(m,z) as a combination of two functions of a
positive argument n.>0: fi(n,,z)=f(n,,z) and f,(n.,z)
=f(-n.,z). In this representation the boundary conditions
take the form

fl(nz’o) _fZ(nz’O) =dar,
fl(nz’dF) _f2(nz7dF) =—dg,

apr=-0A eXP(i<?5L/R)/\“‘/Az - wz’ (5)

where dr is the thickness of the ferromagnetic layer. The
equations for f| and f, take the forms

n.9.f1(n..2) + Mi(n..2) - o{f(2)) =0,

- nz(ngZ(nz’Z) + )\fZ(nz,Z) - a(f(z)) =0, (6)
where n.>0 and a=(7,— 7))/ (1y+ 7)), -1 <a<1. Also,
AN=1-2i(w-1o,)T (7)

is a 2 X2 matrix acting on the 2 X2 matrix f, and 7'=7/
+ T;l. The averaged Green’s function equals

2h(2)=S,80) + f TGO Dz + « f

0

o

0

PHYSICAL REVIEW B 75, 132502 (2007)

1
() = f dn[fi(n..2) + fo(n.,2)]. (8)
0

In the case of a thick ferromagnetic layer, such that
e <1, where I=v £7 1s the mean free path, one can write
down the formal solution of Egs. (6) as

a(® . dz’'
filn,z) = aLe—)\z/nzl + 7f PNE —z)/nzl<f(zl»n_
0 Z

a NGy oy 92
+ [ e ) —, (9a)
IJo n,
o dF , dZ,
foln,z) = aRe)\(z—dF)/nzl 4 7 eMez )/nzloc(zl»_
z n,
o dr Iy dZI
+— | ey = (9b)
LJo n,

The subsequent algebra includes adding and averaging
Egs. (9), which leads to the integral equation for (f). Having
presented (f(z)) as the sum

(f2)) =agh(z) + agh(dp - 2),

we find that the (matrix) function h(z) satisfies a Fredholm
equation of the second type,

(10)

dp
2h(z) =K(\2) + (/) | [G(\|z-7Z']) + G\(z+2"))
0

+ G\ Q2dr-z-7")]h(z")dz’,

where G(z)=f(1,ngle‘2/”zldnz; K(z)=[oe " dn..

Up to this point, we could still reduce our equations to
Usadel equations provided the diffusion approximation
holds, (1—a)|Im \|[<1. In the rest of the paper, we work
outside this regime and consider the ballistic situation. For
a=0, the exact solution of Eq. (11) is h(z)=K(Az)/2. Gen-
eralizing, we find that in the ballistic case the solution is
determined by the behavior of functions K and G which at
z>1 are K(z) =G(z) =~e™¥'1/z. Assuming that solution falls
off exponentially as e/, one can see that in Eq. (11) the
last term in the integral can be neglected everywhere except
for a small region near the boundary, z=dp. This enables us
to split the solution of Eq. (11) into two parts,

h(Z) — e—)\z/th(Z) + e—)\(ZdF—z)/lhR(dF _ Z)-

(1

(12)

The first term is relevant everywhere and is the main term
of the solution, whereas the second one is only important
close to the boundary dr—z~ [, when the exponents become
of the same order. Each of the matrix functions i; (i=L,R)
satisfies the equation

e[GOz + 2 Dhi(z') + GO hi(z +2)dz (13)
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where G(\z)=G(\z)eM! and S;(\z)=K(A\z)exp(\z).

Far from the left boundary, z>1, we parametrize h;(z)
=A(z)l/\z, 1/x=\"!. Substituting it into Eq. (13) and keep-
ing the leading order in [/z, we obtain the equation for the
diagonal matrix A,

a a,. a[TA)
2-—In2)A(R)=1+—&é+— | ——d7
( N f ) @ )\f )\fo 7' ¢

+ gfZA(z -Z)G(\z)dz', (14)
N,

where the matrix £&=\[{h;(z)e™***dz/1 does not depend on z.
The last term in Eq. (14) in the leading order in In~!z is
A(z)[y+In(\z/l)] with y being Euler’s constant. Subse-
quently, we obtain a differential equation for the function
JiA(z')dz' /7. The solution far from the boundaries reads

le—}\z/l A( ) ~ 5(&,)\)
v YT RS (@ (I D
(15)

hy(z) =A(z)

where a constant 8(a,\) is of order one; at a=0 the exact
solution gives 8(0,\)=2. Numerical calculations show that
8la,\) is still close to 2 even for a=1.

Having solved the equation for i;, we use it to determine
the matrix function Sg, according to

dp _
Sk(z) = %Yf G(\(z+2')Dh(dr—2)
0

_ e—ZAz'/th(dF+ 2)dz’,

and find the solution for the function hg(z).

Within the approximations used in the above analysis of
the Eilenberger equation for the anomalous Green’s function
f, the Josephson current density in the SFS structure can be
represented as

jz—wevvpjn(w)ReI;i—w, I:(ntr(ff*)}. (16)
T

Here, n(w) is the Fermi distribution function. Substituting
the expressions for /(z) into Eq. (10) and Egs. (9), we find
_ O%AZ% sin( ¢y — qﬁR)t le™MF!
- AZ - w2 ' )\dp

I Z(aa)\7dF)’ (17)
where the matrix function Z depends on dy logarithmically
and for a=0 equals Z(0,\,dy)=1. Generally, in the leading
order in d;;' it becomes

z—3<1 3‘) o« (2 2a 12))A(d)
=Ygl 1+ Te )+ e (2- Y0402 Jata,

(18)

where E=N[(h (z)e™*dz/1 and {=a 'N’dp[{hg(z)K(\z)
Xdz/l. For dp->1 the quantity £ is constant, and A depends
on it logarithmically. The quantity { depends on df in the
same way as A. For A7<||\||~ 1, the calculation of the fre-
quency integral leads to an expression that is most conve-
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FIG. 1. Dependence of the factor |Z| determined in Eq. (18) on
a=(7;—7y)/ (Ty+ ;) for various values of I7. From top to bottom:
17=0,0.3,1,10. The results show that outside the diffusive regime,
I7<1 and 7;> 7y, Z is a smooth function of « of order 1.

niently represented as the sum over Matsubara frequencies
w,=27T(n+1/2). This is equivalent to the replacement
iw— w, in the above expressions involving the matrix \. As
a result, A becomes a diagonal matrix with two complex
conjugate eigenvalues, so that in the Matsubara representa-
tion Z has the same property and can be written down as

Z=|Zlexp(io.¢,).

Note that for w,7<A7=1,|Z| and ¢, are two parameters of
a structure independent of the Matsubara frequency. For «
=0, one finds Z=1. The dependence of |Z| on the value of the
parameter « is plotted in Fig. 1. Although the parameters |Z|
and ¢, depend on the quantities a=(7;—7y)/(7y+ 7)), I7, and
dr/l, this fact does not qualitatively affect the results. Out-
side the regimes of I7<<1 and 7,<< 7, (where our results are
not applicable) Z is a smooth function of dy of order 1 that
does not contain any dependence on scales of the order of
&~1lor & =vp/21

Finally, we arrive at the expression for the critical current
density [in j=j. sin(¢; — ¢g)] which has the form

—dgll o 20ndplop

e
= 2mev  0%Z T
J 0] |dp/z w§01+wﬁ/A2

y cos[21dglv g + arctan(217) — @]

(19)
V1 + (207)?

In the limiting cases, the summation over Matsubara fre-
quencies w, can be calculated explicitly. For a ferromagnetic
layer with thickness much greater than the coherence length
in the superconductor, dp>vy/A, the sum equals
2T sinh™!(27Td/vy). In the opposite case of a thin layer,
dr<<vp/ A, one obtains (A/4) tanh(A/2T). At zero tempera-
ture, the sum can be converted into an integral which equals
Ci(a)sin(a)+[7/2-Si(a)]cos(a), where a=2Adg/vp, and
the functions Si and Ci are sine and cosine integrals, respec-
tively. For high temperature, d.>vy/T, only the lowest fre-
quency is  important, and the sum  equals
T(1+7°T?/ A%~ exp(-27Tdy/vp).

The critical current dependence on the ferromagnetic
layer thickness described in Eq. (19) for a weakly ferromag-
netic layer with dp>1 is shown in Fig. 2. Even when dilution
of the ferromagnetic layer is such that the exchange energy
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FIG. 2. Dependence of the critical current in a SFS trilayer on
ferromagnetic layer thickness. Here, we normalize the current using
a notional jo=2mewv®?A, and show it for T=0, A7=0.1 and sev-
eral values of parameters « and I7: =0 (dashed lines) and 0.3
(solid lines). Dips in the value of j, indicate positions where it
disappears and changes sign, thus resulting in a sequence of 0-7
transitions. Neighboring dips always correspond to the same value
of I7, demonstrating only weak dependence of the results on the
parameter «. For comparison, we also show the decay of the Jo-
sephson proximity effect in a SNS structure heavily doped by mag-
netic scatterers (/7=0).

in it is weak, /7<<1, oscillations of j. as a function of the
layer thickness, with the period of &,=v /21, decay exponen-
tially at the length scale of the mean free path,
&,=I—similarly to what happens in a disordered ferromag-
netic layer with a strong exchange!® (/7> 1). Our results for
It>1 coincide with those of Ref. 10: For strong fields, the
phase randomization of the order parameter is effective irre-
spective of the nature of scatterers. The dependence of the
critical current on the thickness of the ferromagnetic layer in
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Eq. (19) resembles the experimentally observed suppression
of the proximity effect, at a length scale comparable to the
mean free path measured in the same material.”> Note that
theories involving generation of the triplet order parameter
due to nonuniform (spiral) magnetization in the
ferromagnet!® end up with the opposite conclusion, predict-
ing weaker decay of the order parameter.

In conclusion, we developed a theory of the proximity
effect in a superconductor-weakly ferromagnetic GMR
alloy—superconductor trilayers, which takes into account the
strong spin dependence of electron scattering on composi-
tional disorder. The result, Eq. (19), describes the 0-7 tran-
sition for the Josephson effect as a function of the thickness
of the ferromagnetic layer dy: Oscillations occur with the
period of &,=v;/2I and exponential decay with the charac-
teristic length &,=1 of the order of the mean free path, even
in the regime when /7<< 1. This result complements previous
studies of the spin-singlet proximity effect in
superconductor-ferromagnet hybrid structures performed for
ballistic and diffusive systems with spin-independent

scattering®!%13 as well as theories of the suppression of the
order parameter oscillations caused by spin-active
interfaces.?’
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