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Summary

Reinforcement learning has emerged as a promising approach for enabling robots to learn

from interactions with their environments, without relying on prede�ned behaviors. How-

ever, robots face signi�cant challenges when learning directly from real-world interactions.

Real-world learning is time-consuming and resource-intensive, often requiring extensive

data collection over long periods. Additionally, the risks involved in trial-and-error learn-

ing in physical settings are high, as faulty policies can lead to safety issues or system

damage. Simulations o�er a safer and more e�cient alternative, allowing robots to learn in

simulated environments at faster-than-real-time speeds. Despite these bene�ts, simulations

often serve as imperfect approximations of reality. As a result, robots may learn behav-

iors that exploit simulation-speci�c quirks, which may not perform well in real-world

settings, creating di�culties in transferring learned behaviors from simulation to real

environments—a challenge known as the sim-to-real gap. Several factors contribute to the

sim-to-real gap, such as unmodeled physical phenomena like friction and deformation,

and the asynchronous nature of real-world systems that simulations often fail to capture

accurately. Additionally, using separate software stacks for simulation and deployment can

unintentionally lead to discrepancies. Finally, simulating at faster-than-real-time speeds

with asynchronous frameworks that distribute computation across multiple cores may also

introduce inaccuracies without proper synchronization.

This thesis focuses on improving simulation tools and methodologies to enhance the

e�ciency and e�ectiveness of learning-based approaches in robotics. The work addresses

key trade-o�s between �exibility, speed, and accuracy in robotic simulations, which are

critical for successfully transferring learned policies from simulation to real-world environ-

ments. Additionally, it introduces a strategy to improve resilience, ensuring that learned

behaviors are robust to irrelevant and unknown dynamics. By tackling these challenges,

this thesis provides insights into the design of e�ective robotic simulators and presents

contributions that help bridge the gap between simulated and real-world robotic learning.

A �exible simulation environment is essential to circumvent and abstract away inac-

curacies, while concentrating the learning process on the relevant and realistic parts of

the environment. Chapter 2 introduces EAGERx (Engine Agnostic Graph Environments

for Robotics), a graph-based sim-to-real framework designed to enhance �exibility in

robotic simulations. EAGERx allows for modular representation of tasks, enabling users

to con�gure systems more �exibly that accomdates various state, action, and time-scale

abstractions. A key component of EAGERx is a novel synchronization algorithm that

supports the simulation of asynchronous, hierarchical systems at faster-than-real-time

speeds. Additionally, the framework integrates delay simulation and domain random-

ization, which further enhances its ability to reduce the sim-to-real gap. The �exibility

o�ered by EAGERx improves learning e�ciency, as robots can more e�ectively focus on

task-relevant dynamics. This is demonstrated in two robotic benchmark tasks, where

EAGERx successfully reduces the sim-to-real gap.
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Chapter 3 builds on the �exibility introduced in Chapter 2, focusing on simulation

speed, which is critical for scaling learning e�ciency in complex tasks. Graph-based simu-

lations, while �exible, present challenges for parallelization, particularly when handling

asynchronous interactions and delays. This chapter introduces a novel parallelization tech-

nique that constructs a supergraph, capturing all possible execution paths across parallel

simulations. By minimizing redundant computations, this method enables more e�cient

parallel execution on accelerator hardware, signi�cantly reducing training times without

compromising simulation accuracy. The proposed approach extends the �exibility of graph-

based simulations with e�cient parallelization capabilities without sacri�cing accuracy,

providing an e�ective solution for graph-based simulators used in reinforcement learning

tasks.

While �exibility and speed are crucial, the accuracy of simulations remains a key

factor in closing the sim-to-real gap. Chapter 4 addresses this by focusing on improving

simulation �delity through better modeling of system dynamics with the addition of an

explicit delay model. The chapter introduces a framework, REX (Robotic Environments

with jaX), for the simultaneous estimation of dynamics and delays from real-world data,

building on the graph-based architecture discussed in earlier chapters. The key innovation

in this framework is the simulation of sensing, computation, and actuation delays, while

also demonstrating delay compensation strategies to minimize their impact on the learned

policies. Accurate modeling of real-world delays and dynamics signi�cantly improves the

quality of sim-to-real transfer, ensuring that robots perform more reliably when deployed

in real environments.

The �nal core technical contribution of this thesis, detailed in Chapter 5, is the introduc-

tion of the DeepKoCo algorithm, which addresses the need for resilience in learned policies.

From self-driving cars to vision-based robotic manipulation, emerging technologies are

characterized by visual measurements of highly nonlinear physical systems. Unlike in

highly controlled lab environments where any measured change is likely relevant, cameras

in real-world settings are notorious for mainly capturing task-irrelevant information, such

as, the movement of other robots outside of a manipulator’s workspace or cloud movements

captured by the cameras of self-driving cars. While �exibility, speed, and accuracy are

essential for e�ective simulated learning, these are e�ects that may never be fully captured

in simulations. Resilience to task-irrelevant dynamics is therefore crucial when deploying

learned policies in real-world environments. DeepKoCo uses a lossy autoencoder to �lter

out irrelevant dynamics, allowing the robot to focus on task-relevant information. By learn-

ing a latent representation that prioritizes important dynamics, DeepKoCo enhances the

robustness of learned behaviors. This ensures that the learned policies are not only accurate

but also resilient to the distractions and uncertainties present in real-world applications.

In conclusion, this thesis presents a structured approach to balancing �exibility, speed,

accuracy, and resilience in robotic simulators. The contributions, including the graph-based

framework, parallelization techniques, and improved modeling of real-world dynamics

with delays, provide a comprehensive toolkit for advancing reinforcement learning in

robotics. The work demonstrates that achieving this balance is essential for closing the

sim-to-real gap and enabling more e�cient, robust robotic learning. Looking forward,

future research could explore co-designing learning algorithms and simulation environ-

ments to further optimize the learning process. Additionally, decoupling estimation and
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control tasks, or integrating parallelized simulations into online planning, hold promise for

further improving both learning e�ciency and resilience. The open-source tools developed

as part of this thesis are made available to the robotics community, supporting further

advancements in the �eld of reinforcement learning in robotics.
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Samenvatting

Reinforcement learning lijkt een veelbelovende aanpak om robots zelfstandig te laten leren

van interacties met hun omgeving, zonder gebruik te maken van voorgeprogrammeerd

gedrag. Echter, zijn er aanzienlijke uitdagingen wanneer robots leren door middel van

interacties in de echte wereld. Leren in de echte wereld is tijdrovend en vergt veel middelen,

zoals het verzamelen van data over lange periodes. Bovendien zijn de risico’s verbonden

aan trial-and-error leren in de fysieke wereld hoog, aangezien foutief gedrag kan leiden

tot gevaarlijke situaties en schade. Simulaties bieden een veiliger en e�ciënter alternatief,

waardoor robots kunnen leren in gesimuleerde omgevingen op snelheden die hoger zijn

dan real-time. Ondanks deze voordelen zijn simulaties vaak onvolmaakte benaderingen

van de realiteit. Als gevolg hiervan kunnen robots gedrag leren dat misbruik maakt

van simulatiespeci�eke eigenaardigheden, die niet goed werken in de echte wereld, wat

moeilijkheden creëert bij de overdracht van geleerd gedrag van simulatie naar de echte

wereld—een uitdaging die bekendstaat als de sim-to-real gap. Verschillende factoren dragen

bij aan de sim-to-real gap, zoals niet-gemodelleerde fysieke fenomenen zoals wrijving en

vervorming, en de asynchrone aard van echte systemen die simulaties vaak niet nauwkeurig

vastleggen. Daarnaast kan het gebruik van aparte softwarestacks voor simulatie en de echte

wereld onbedoeld leiden tot discrepanties. Ten slotte kan het simuleren op snelheden hoger

dan real-time met asynchrone software die berekeningen over meerdere cores verdelen,

ook onnauwkeurigheden introduceren zonder correcte synchronisatie.

Dit proefschrift richt zich op het verbeteren van simulaties en methodologieën om de

e�ciëntie en e�ectiviteit van op leren gebaseerde benaderingen in robotica te vergroten.

Het werk behandelt belangrijke afwegingen tussen �exibiliteit, snelheid en nauwkeurigheid

in robotsimulaties, die cruciaal zijn voor de succesvolle overdracht van geleerd gedrag van

simulatie naar de echte wereld. Daarnaast introduceert het een algoritme om veerkracht

te verbeteren, zodat geleerd gedrag robuust is tegen irrelevante en onbekende dynamica.

Door deze uitdagingen aan te pakken, biedt dit proefschrift inzichten in het ontwerp van

e�ectieve robotsimulatoren en presenteert het bijdragen die helpen de kloof tussen de

gesimuleerde en echte wereld in robotleren te overbruggen.

Een �exibele simulatiewereld is essentieel om onnauwkeurigheden te omzeilen en te

abstraheren, terwijl het leerproces wordt geconcentreerd op de relevante en realistische

delen van de simulatie. Chapter 2 introduceert EAGERx (Engine Agnostic Graph Environ-

ments for Robotics), een graafgebaseerd sim-to-real applicatie ontworpen om de �exibiliteit

in robotsimulaties te vergroten. EAGERx maakt een modulaire representatie van taken

mogelijk, waardoor gebruikers systemen �exibeler kunnen con�gureren die verschillende

toestand-, actie- en tijdschaal abstracties ondersteunen. Een belangrijk onderdeel van

EAGERx is een nieuw synchronisatie-algoritme dat de simulatie van asynchrone, hiërar-

chische systemen ondersteunt op snelheden hoger dan real-time. Daarnaast integreert

de applicatie tijdsvertraging simulatie en domein randomisatie, wat het vermogen om de

sim-to-real gap te verkleinen verder vergroot. De �exibiliteit die EAGERx biedt, verbetert
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de leere�ciëntie, omdat robots e�ectiever kunnen focussen op taakrelevante dynamica.

Dit wordt gedemonstreerd in twee robotbenchmarktaken, waar EAGERx met succes de

sim-to-real gap vermindert.

Chapter 3 bouwt voort op de in Chapter 2 geïntroduceerde �exibiliteit, met een focus

op simulatiesnelheid, wat cruciaal is voor het opschalen van leere�ciëntie in complexe

taken. Graafgebaseerde simulaties, hoewel �exibel, bemoeilijken parallellisatie, met name

bij het simuleren van asynchrone interacties en tijdsvertragingen. Dit hoofdstuk intro-

duceert een nieuwe parallellisatietechniek die een supergraaf construeert, die alle mogelijke

uitvoeringspaden over parallelle simulaties omvat. Door redundante berekeningen te mini-

maliseren, maakt deze methode e�ciëntere parallelle uitvoering op acceleratorhardware

mogelijk, waardoor trainingstijden aanzienlijk worden verminderd zonder afbreuk te doen

aan de simulatienauwkeurigheid. De voorgestelde aanpak breidt de �exibiliteit van graafge-

baseerde simulaties uit met e�ciënte parallellisatie mogelijkheden zonder nauwkeurigheid

op te o�eren, en biedt een e�ectieve oplossing voor graafgebaseerde simulatoren die worden

gebruikt in reinforcement learning.

Hoewel �exibiliteit en snelheid cruciaal zijn, blijft de nauwkeurigheid van simulaties

essentieel bij het dichten van de sim-to-real gap. Chapter 4 adresseert dit door zich te

richten op het verbeteren van de simulatiegetrouwheid door betere modellering van sys-

teemdynamica met de toevoeging van een expliciet tijdsvertragingsmodel. Het hoofdstuk

introduceert een applicatie, REX (Robotic Environments with jaX), voor de gelijktijdige

afschatting van dynamica en tijdsvertragingen op basis van echte data, voortbouwend op

de graafgebaseerde architectuur die in eerdere hoofdstukken is besproken. De belangrijkste

innovatie in deze applicatie is de simulatie van sensor, berekenings- en actuator tijdsver-

tragingen, terwijl ook tijdsvertragingcompensatie algoritmes worden gepresenteerd om

hun impact op het geleerde gedrag van de robot te minimaliseren. Nauwkeurige modeller-

ing van realistische tijdsvertragingen en dynamica verbetert de kwaliteit van sim-to-real

overdracht aanzienlijk, waardoor robots betrouwbaarder presteren wanneer ze in de echte

wereld worden ingezet.

De laatste technische bijdrage van dit proefschrift, besproken in Chapter 5, is de in-

troductie van het DeepKoCo-algoritme, dat inspeelt op de behoefte aan veerkracht in

geleerd robot gedrag. Van zelfrijdende auto’s tot het gebruik van camera’s door robo-

tarmen, worden opkomende technologieën gekenmerkt door visuele metingen van sterk

niet-lineaire fysieke systemen. In tegenstelling tot sterk gecontroleerde labomgevingen

waar elke gemeten verandering waarschijnlijk relevant is, staan camera’s in de echte wereld

erom bekend voornamelijk taakirrelevante informatie vast te leggen, zoals de beweging

van andere robots in de omgeving of wolkenbewegingen vastgelegd door de camera’s van

zelfrijdende auto’s. Hoewel �exibiliteit, snelheid en nauwkeurigheid essentieel zijn voor

e�ectief gesimuleerd leren, zijn dit e�ecten die mogelijk nooit volledig kunnen worden

vastgelegd in simulaties. Veerkracht tegen taakirrelevante dynamica is daarom cruciaal bij

het inzetten van geleerd gedrag in de echte wereld. DeepKoCo gebruikt een verlieslatende

autoencoder om irrelevante dynamica eruit te �lteren, waardoor de robot zich kan concen-

treren op taakrelevante informatie. Door een latente representatie te leren die belangrijke

dynamica prioriteert, verbetert DeepKoCo de robuustheid van geleerd gedrag. Dit zorgt

ervoor dat het geleerde gedrag niet alleen nauwkeurig is, maar ook veerkrachtig is tegen

de a�eidingen en onzekerheden die aanwezig zijn in de echte wereld.
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Concluderend presenteert dit proefschrift een gestructureerde aanpak voor het bal-

anceren van �exibiliteit, snelheid, nauwkeurigheid en veerkracht in robotsimulatoren. De

bijdragen, waaronder graafgebaseerde applicaties, parallellisatietechnieken en verbeterde

modellering van dynamica met tijdsvertragingen, bevorderen het gebruik van reinforcement

learning in robotica. Het werk demonstreert dat het bereiken van deze balans essentieel is

voor het dichten van de sim-to-real gap en het mogelijk maken van e�ciënter, robuuster

robotleren. Vooruitkijkend zou toekomstig onderzoek kunnen verkennen hoe leeralgo-

ritmen en simulatiewerelden kunnen worden co-ontworpen om het leerproces verder te

optimaliseren. Daarnaast bieden het ontkoppelen van schattings- en controletaken, of

het integreren van geparallelliseerde simulaties in online planning, perspectieven voor

verdere verbetering van zowel leere�ciëntie als veerkracht. De open-source applicaties

die als onderdeel van dit proefschrift zijn ontwikkeld, worden beschikbaar gesteld aan

de robotica-gemeenschap ter ondersteuning van verdere vooruitgang op het gebied van

reinforcement learning in robotica.
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1
Introduction

The evolution of technology has centered on automating tasks that were once performed

manually. Early examples of automation include devices like the water mill and windmill,

which converted natural forces into mechanical energy to reduce human labor in tasks

such as grinding grain or pumping water. With the onset of the Industrial Revolution, more

complex systems like the steam engine-powered assembly lines further advanced automa-

tion, signi�cantly increasing e�ciency in manufacturing processes [1]. With advances in

computing and sensor technologies, automation has progressed from mechanical systems

like the water mill to sophisticated autonomous robots. These modern robots are capable

of not only performing prede�ned tasks but also gathering sensory data, processing it, and

making decisions autonomously in real time. This shift from manually controlled machines

to intelligent systems marks a key development in automation, where the primary chal-

lenge is now designing mechanisms that enable robots to e�ectively map sensory inputs

to real-time actions in dynamic environments.

1.1 Paradigm of Learning-Based Robotics
Traditionally, robots were programmed using detailed knowledge of physics and control

theory, allowing designers to pre-program speci�c behaviors to close the action loop. This

approach relies heavily on the designer’s ability to anticipate every potential scenario the

robot might encounter, and in practice, engineers often simplify problems by linearizing

dynamics [2] or assuming speci�c noise distributions [3] to make them mathematically

tractable. While e�ective in controlled and predictable environments, these assumptions

can signi�cantly limit performance, particularly in complex or highly nonlinear settings

[4].

A useful analogy can be found with early chess computers. Chess, despite having

relatively simple rules, is extremely di�cult to play at a competitive level. Initially, chess

computers relied on prede�ned strategies developed by grandmasters to guide their search

algorithms under constrained computational resources [5]. Similarly, robots were pro-

grammed with control strategies based on simpli�ed physical models, such as Model

Predictive Control using linearized dynamics, to enable fast, real-time responses given

the robot’s limited processing capabilities [6]. In both cases, robots and chess computers
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were limited by their reliance on human-designed heuristics, overconstraining the type of

solutions that could be discovered.

This limitation was overcome in chess with the development of learning-based ap-

proaches, exempli�ed by AlphaZero [7], a program that fundamentally changed how chess

computers operate. Instead of relying on prede�ned human strategies, AlphaZero learned

to play by playing against itself, requiring minimal assumptions about strategy
1
. Design-

ers only needed to encode the rules of chess, and through repeated self-play, AlphaZero

discovered strategies far beyond the capabilities of traditional, human-designed systems,

eventually achieving superhuman performance
2
.

This paradigm shift in chess mirrors the ongoing shift in robotics [10]. Rather than

depending on prede�ned models and strategies derived from extensive expert knowl-

edge, learning-based methods—particularly reinforcement learning [11]—allow robots to

discover optimal control policies through trial-and-error interactions with their environ-

ment. This bypasses the need for simplifying assumptions about system dynamics, making

learning-based approaches particularly powerful in scenarios where environments are

highly nonlinear.

If we could transfer this learning capability to the physical world, it could revolutionize

robotics. Robots, without relying on prede�ned strategies or simplifying assumptions,

could autonomously discover optimal ways to perform tasks, even in highly dynamic and

complex environments. This would enable them to continuously improve their performance

and adapt in real time, unlocking new possibilities in areas such as manufacturing [12],

healthcare [13], and exploration [14].

1.2 Hurdles of Real-World Application
Transferring the learning-based approach from a game like chess to the physical world

poses signi�cant challenges, primarily due to the intrinsic di�erences between digital

simulations and real-world interactions. The rate at which a system like AlphaZero can

accrue experiences in chess through simulations vastly exceeds the pace of real-world

learning. In practical terms, a robot’s learning in the physical world is bound by real-

time constraints—akin to the di�erence between the two hours it might take to play a

single chess game versus the millions of games that can be simulated in parallel within

the same timeframe. Moreover, the stakes in real-world applications are vastly higher.

In chess, experimenting with di�erent strategies merely risks losing a game, providing

valuable experience without real-world consequences. In contrast, applying a trial-and-

error learning approach in physical environments, especially those involving robots, can

have serious safety and cost implications.

1.3 Simulating Success
In this regard, robotic simulators o�er signi�cant advantages by addressing both the

safety and time constraints inherent to physical world experimentation. They enable

1
Self-play was not a novel concept introduced by AlphaZero. For example, TD-Gammon [8] utilized self-play and

achieved master-level performance in backgammon.

2
The approach of pure self-play, without human knowledge, was �rst shown to reach superhuman performance

in Go by AlphaGo Zero [9].
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rapid, parallel simulations analogous to AlphaZero’s chess games, accelerating the learning

process without the risks associated with real-world trials [15–18]. However, while chess

can be perfectly simulated due to its de�ned rules and deterministic outcomes, the real

world is far more complex and unpredictable, making perfect simulation impossible. These

inaccuracies in simulation can lead robots to develop strategies that e�ectively exploit the

speci�c limitations of the simulated environment rather than addressing the underlying

task in a universally applicable manner [19]. As a result, these learned behaviors, while

successful within the context of the simulation, may prove ine�ective or counterproductive

when the behavior is transferred to the real world. The robot, having optimized its actions

for the quirks and artifacts of the simulation, might be ill-prepared for the nuances and

unforeseen variables of real environments, undermining the e�cacy and safety of its

real-world operations.

Acknowledging the limitations and discrepancies inherent in simulations, it is crucial

to recognize the �exibility available in designing robotic tasks and learning environments.

Unlike the �xed setting of chess, the real world allows roboticists the freedom to modify the

learning context. This adaptability allows roboticists to “change the game” by modifying

learning environments more closely to realistic conditions or even adjust the tasks to

circumvent certain complexities, thereby mitigating the risk of learning unrealistic or inef-

fective behaviors [20]. By considering the design of the simulator as an integral part of the

problem-solving process, roboticists can tailor simulated learning experiences to align more

closely with the real-world. This holistic approach, viewing both the learning algorithm

and the simulator design as malleable and interdependent components, indeed provides a

powerful tool for overcoming challenges in robot learning. In discussing simulator design,

three key considerations are highlighted: the �exibility to customize learning scenarios,

the accuracy of the simulation, and the speed of the simulation.

Navigating the interplay between �exibility, accuracy, and speed is pivotal in designing

e�ective robotic simulators. While �exibility allows for tailoring learning scenarios to

emphasize relevant aspects of the environment [20], too much abstraction risks limiting

the agent’s ability to discover optimal strategies and undermines the accuracy required

for real-world applicability [19]. Hence, accuracy, in turn, is crucial for applying learned

behaviors in real-world scenarios, but it should not unduly slow down simulations [21],

especially when using parallelization to accelerate learning [22]. These considerations

underscore a critical challenge: designing a simulator structure that e�ectively balances
�exibility, accuracy, and speed. Such a balance is essential to optimize learning outcomes

without incurring prohibitive computational costs or sacri�cing the simulation �delity

necessary for e�ective real-world transfer.

1.4 This Thesis
This sets the stage for the central research question of this work: How can we design a
simulation-based robot learning framework that balances the trade-o�s between �exibility,
speed, and accuracy, while ensuring resilience to the complexities and unpredictability of
real-world environments?

The design is built around balancing three key trade-o�s: �exibility, accuracy, and speed.

These elements are fundamental to creating an e�cient and scalable learning framework

that can be broadly applied across di�erent robotic tasks. The focus on simulator design
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Figure 1.1: Thesis overview. Chapter 1 introduces the challenges in simulated robot learning and

emphasizes the need for a holistic approach that views both the algorithm and simulator design as

interdependent components for e�ective robot learning. Chapters 2, 3, and 4 focus on key trade-o�s in

simulation design—�exibility, speed, and accuracy—each addressing a fundamental aspect of creating

scalable and e�cient simulators. Chapter 5 explores algorithmic strategies to improve resilience,

ensuring learned behaviors are robust to irrelevant dynamics and unknown factors in real-world

environments. Chapter 6 concludes with a summary of �ndings and discusses future directions for

enhancing both simulator design and resilience strategies.

addresses many of the core challenges in robot learning by allowing for adaptable task

scenarios (�exibility), rapid learning (speed), and accurate modeling of dynamics (accuracy).

However, real-world environments are often �lled with noise and irrelevant dynamics

that simulations may never fully capture. To address these challenges, it is critical not

only to optimize simulators but also to consider strategies that make the learning process

resilient to such unknown and irrelevant factors (resilience). By integrating approaches that

expose the learning process to such irrelevance, the system can better adapt to unstructured

environments. This �nal component ties the simulator’s design to real-world robustness,

ensuring that learned behaviors remain e�ective even when faced with the unpredictable

elements of real-world scenarios. A visual summary of the topics discussed in this thesis is

given in Fig. 1.1.

Flexibility Flexibility is crucial in the design of robot simulators meant to accommodate

diverse robotic systems and tasks. Firstly, robotic tasks often involve evolving requirements,

necessitating a framework that can adapt to changing needs. Secondly, �nding the right

level of abstraction for e�ective learning requires a �exible design. State, action and

temporal abstractions are crucial for concentrating the learning process to the parts that

cannot be solved by simpler methods, enhancing the e�ciency of learning. Moreover, these

abstractions can help mitigate inaccuracies in simulations by abstracting away irrelevant

details that may not be accurately modeled.

To address these challenges, Chapter 2 introduces EAGERx (Engine Agnostic Graph
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Environments for Robotics), a graph-based sim2real framework designed to provide the

�exibility necessary to handle a wide range of robotic tasks. Graphs are particularly well-

suited for accommodating �exibility, as they allow for modular representation of tasks

and systems. Each component, such as sensors, actuators, and controllers, is represented

as a node in the graph, and the relationships between these components can be easily

recon�gured by adjusting the graph’s structure. Nodes can be added, removed, or modi�ed

to adapt to di�erent task requirements, system setups, and learning objectives. The graph-

based framework also enables strict grouping and swapping of simulation and real-world

components, enabling a uni�ed software pipeline for both real and simulated robot learning.

It also allows users to switch between di�erent simulation engines, depending on the

speci�c needs of the task at hand. A novel synchronization algorithm is proposed to

ensure that the simulator accurately models the asynchronous, hierarchical nature of

real-world systems, ensuring accurate simulation at faster than real-time simulation speeds.

We demonstrate the e�cacy of EAGERx in accommodating diverse robotic systems and

maintaining consistent simulation behavior across �ve di�erent systems: a pendulum, a

manipulator, a quadrotor, a quadruped, and a swimming pool environment.

Speed Speed in simulated learning brings critical bene�ts such as faster training times

and the ability to conduct extensive hyperparameter tuning, making parallelization a

key strategy for achieving these advantages. Traditional reinforcement learning setups

assume a single, synchronized environment that interacts with the agent in a step-by-step

manner, allowing for straightforward parallelization [23]. However, the hierarchical and

asynchronous nature of real-world systems presents a signi�cant challenge to this approach

[24]. When employing a graph-based simulation method to enhance �exibility and accuracy,

each simulation step becomes a diverse mix of computation blocks from various nodes

operating at di�erent time scales. This leads to irregular execution paths which complicate

the parallelization process. Running multiple instances of a graph-based simulation in

parallel can become ine�cient as these irregular paths often require serialization, reducing

the e�ectiveness of GPU utilization [25].

In Chapter 3, we introduce a solution that e�ciently parallelizes these graph-based

simulations on accelerator hardware. Our method extends existing accelerated physics

simulations by integrating them as nodes in a graph-based simulation framework that

enables latency simulation capabilities through the construction of a supergraph. This

supergraph captures all data dependencies across the parallelized simulation steps, ensuring

both the accuracy and e�ciency of the simulations. By optimizing for the smallest possible

supergraph, we reduce redundant computations, maintaining high simulation speeds

without compromising the �delity of real-world dynamics. We validate our approach on two

real-world robotic systems and demonstrate superior performance over baseline methods.

Additionally, we conduct a scalability analysis on two large-scale system topologies: vehicle-

to-vehicle platooning [26] and unmanned aerial vehicle swarm control [27].

Accuracy Achieving high �delity in simulations is crucial for e�ective sim2real transfers,

yet discrepancies between simulated and real environments often hinder this. Inaccuracies

from inaccurate dynamics and latencies can cause robots to learn policies that perform

well in simulation but fail to transfer to the real world.
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In Chapter 4, we addresss this by introducing a framework, REX (Robotic Environments

with jaX), that enhances simulation �delity by estimating system dynamics and delays

from real-world data. The framework builds on the graph-based model from Chapter 2

and leverages the parallelization strategy from Chapter 3. The framework’s innovation

lies in its ability to simulate asynchronous, hierarchical systems by explicitly modeling

computation, communication, actuation, and sensing delays, while incorporating delay

compensation strategies for improved sim2real transfer. We validate our framework on two

real-world systems, demonstrating its e�ectiveness in improving sim-to-real performance

by accurately modeling both system dynamics and delays. A pendulum swing-up task

illustrates how neglecting delay simulation can impair policy transfer even in seemingly

simple scenarios, highlighting the need for delay-aware approaches. The quadrotor task

further demonstrates the framework’s scalability to more complex robotic systems.

Resilience From self-driving cars to vision-based robotic manipulation, emerging tech-

nologies are characterized by visual measurements of highly nonlinear physical systems.

Unlike in highly controlled lab environments where any measured change is likely rel-

evant, cameras in real-world settings are notorious for mainly capturing task-irrelevant

information, such as, the movement of other robots outside of a manipulator’s workspace

or cloud movements captured by the cameras of self-driving cars. While �exibility, speed,

and accuracy are essential for e�ective simulated learning, these are e�ects that may never

be fully captured in simulations. Resilience to task-irrelevant dynamics is therefore crucial

when deploying learned policies in real-world environments. To bridge the gap between

simulation and reality, it is important to incorporate resilience into the learning process,

enabling agents to handle unknown or irrelevant factors without sacri�cing performance.

By preparing the system to adapt to such uncertainties, we can improve the robustness of

learned behaviors, ensuring their e�ectiveness in real-world scenarios.

In Chapter 5, we introduce an algorithmic approach to enhance resilience in learning-

based robotics. We present DeepKoCo, a model-based reinforcement learning agent de-

signed to enhance resilience by focusing on task-relevant dynamics. Using a lossy au-

toencoder [28], DeepKoCo learns a latent representation that prioritizes dynamics critical

to the task, while disregarding irrelevant information. This enables the agent to plan in

the latent space using e�cient linear control methods, such as model predictive control

[6]. By �ltering out distractions and focusing on essential dynamics, DeepKoCo improves

the robustness of learned policies, making them robust against irrelevant factors that

may appear in real-world scenarios. We demonstrate the success of our approach on two

simulated control tasks, showing that it is more robust to irrelevant dynamics than baseline

methods.

Summary of Contributions This thesis advances the state-of-the-art in simulation-

based robot learning through the following contributions:

• Flexibility: Novel graph-based sim2real frameworks (EAGERx and REX ) are intro-

duced, integrating with multiple simulation engines and enabling state, action, and

time abstractions. These frameworks o�er greater �exibility compared to more rigid,

single-engine solutions.
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• Accuracy: Methods are developed to accurately model, estimate, and compensate

for real-world latencies and asynchronous dynamics, improving sim2real transfer

beyond the capabilities of existing delay-agnostic simulators.

• Speed: A parallelization approach (supergraph method) for graph-based simulations

is proposed, increasing GPU e�ciency without sacri�cing �delity in simulating

asynchronous and hierarchical systems. This improves upon state-of-the-art paral-

lelization schemes that assume strictly synchronized environments.

• Resilience: A model-based reinforcement learning approach (DeepKoCo) is intro-

duced, employing a lossy autoencoder to learn task-relevant latent representations.

By �ltering out irrelevant dynamics, this approach enhances robustness in real-world

deployments compared to conventional reinforcement learning approaches.

These contributions address the central research question, demonstrating how graph-

based, data-driven, and accelerated simulator frameworks can bridge the gap between

simulation and reality. In doing so, this thesis provides novel insights and tools that expand

the state of the art in learning-based robotics, paving the way for safer, more adaptable,

and more e�ective robotic systems. Chapter 6 summarizes this thesis with an overview of

the key �ndings and discusses potential directions for future research in simulation-based

robot learning.
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2
Flexibility: A Graph-Based

Simulator

One of the key limitations in robotic learning is the need for �exibility in simulation environ-
ments to accommodate diverse robotic systems and tasks. Traditional frameworks often lack
the adaptability required for evolving requirements, constraining their e�ectiveness in more
dynamic or varied scenarios.

This chapter addresses this gap by introducing EAGERx, a graph-based framework designed
to provide the �exibility necessary for sim2real transfers. The framework allows users to
modularly represent robotic components, integrate multiple simulation engines, and han-
dle asynchronous, hierarchical systems, thereby facilitating a seamless transition between
simulated and real-world environments.

This chapter is partly based on q B. van der Heijden*, J. Luijkx*, L. Ferranti, J. Kober, and R. Babuska, (2024). "Engine
Agnostic Graph Environments for Robotics (EAGERx): A Graph-Based Framework for Sim2real Robot Learning", IEEE
Robotics and Automation Magazine (RAM) [29].

*
Equal contribution.
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2.1 Introduction
Transferring control policies trained in simulation to the real world, known as sim2real, has

gained considerable interest in the �eld of robotics due to its potential to address complex

tasks with remarkable e�ciency [22, 30, 31]. Simulations o�er a safe, cost-e�ective, and

controlled environment for training and testing robotic algorithms, allowing roboticists

to re�ne their models and controllers without the risks and expenses associated with

real-world experimentation. The sim2real approach, however, faces challenges due to the

sim2real gap, that is, unaccounted discrepancies between simulation and reality. These

disparities may stem from inaccurate modeling of physical phenomena (e.g., friction, defor-

mations, and collisions) or from the use of separate software implementations for reality and

simulation, which may lead to unintended mismatches as depicted in Fig. 2.1. Another sub-

tle but signi�cant source of discrepancy is the asynchronous nature of robotic systems [32].

While robotic systems are typically simulated sequentially [23], sensing, computation, and

acting happen concurrently in reality. Disregarding these di�erences can be detrimental

to the real-world performance of a policy trained in simulation.

Inaccurate modeling of physical phenomena in simulation is typically mitigated by

domain randomization [31]. However, this approach can make the simulation more chal-

lenging, which may lead to longer training times and suboptimal policies. Reformulating

the task to the right level of abstraction may be more e�ective to alleviate the sim2real gap

if the abstraction captures the task and can be extracted accurately both from simulated

and real data [19]. Abstractions can take various forms, such as action abstraction that

simpli�es control issues using high-level actions [33], time-scale abstraction that uses

macro-actions for multi-scale planning and learning [34], and state abstraction that con-

denses raw sensor data into key features [19]. Therefore, existing sim2real frameworks

[35–37] have exploited the multi-rate graph-based design of ROS [24] to obtain a uni�ed

software pipeline that allows for the integration of various kinds of abstractions. However,

these frameworks restrict users to the Gazebo simulator [38], which can be limiting as

di�erent tasks may require speci�c types of simulators. Additionally, these frameworks

fall short in synchronizing components that operate in parallel within the simulation. At

faster-than-real-time simulation speeds, this can exacerbate communication and processing

delays, leading to inconsistencies, inaccuracies, and potential system instability. Such am-

pli�ed delays can compromise the proper functioning of the simulated system, rendering

learned policies ine�ective when transferred to real-world environments. Conversely, naive

synchronization may also widen the sim2real gap if it overlooks the concurrent nature of

sensing, computation, and acting in reality.

In addition to ROS-based frameworks, existing robot learning frameworks provide

integration of abstractions through a modular design and uni�ed framework, often coupled

with a speci�c simulator. Notable examples include Isaac Orbit [39] and Drake [40]. Isaac

Orbit is a modular robot learning framework built on top of the Isaac Sim simulator [41],

o�ering benchmarks and readily available robot models for convenient experimentation. On

the other hand, Drake is a model-based framework combining a multibody dynamics engine

with a systems approach and optimization framework [40]. However, these frameworks

are tied to a single simulator, while various robot simulators are available, each with its

own strengths and weaknesses. Existing robot learning frameworks lack the �exibility to

choose a simulator or leverage various simulators’ strengths.
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Figure 2.1: Our framework o�ers a uni�ed software pipeline for both simulated and real robot learning.

It can support various simulators and aids in integrating state, action and time-scale abstractions.

The main contribution of this chapter is EAGERx (Engine Agnostic Graph Environ-

ments for Robotics), that is, a robot learning framework with a uni�ed software pipeline

compatible with both simulated and real robots that supports the integration of various

abstractions and simulators as depicted in Fig. 2.1. EAGERx introduces a novel synchro-

nization protocol that coordinates inter-node communication based on node rates and

anticipated delays. By simulating delays, our protocol maintains asynchronous robotic

system relationships synchronously, preserving the bene�ts of modular and synchronous

simulation. Contrasting with sequential simulation, the protocol permits nodes to transmit

messages asynchronously and perform tasks without waiting for immediate responses,

thereby accelerating the simulation and allowing nodes to progress based on their process-

ing capabilities and data availability. EAGERx is Python-based and o�ers high simulation

accuracy without compromising speed, native support for domain randomization and delay

simulation, and a modular structure for easy manual reset procedures and prior knowledge

integration. Our framework features a consistent interface, an interactive GUI, continuous

integration with tests covering 94% of the code, and comprehensive documentation, in-

cluding interactive tutorials, easing new user adoption. The documentation, tutorials, and

our open-source code can be found at https://eagerx.readthedocs.io. A motivational video

for our approach is included as supplementary material [42].

In summary, we make four key contributions:

C1 A synchronization protocol that ensures consistent simulation behavior even beyond

real-time speeds.

C2 A modular design that can support various robotic systems and state, action, and

time-scale abstractions.

C3 An agnostic design that allows compatibility with multiple engines.

https://eagerx.readthedocs.io
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C4 The integrated delay simulation and domain randomization features in EAGERx can

narrow the sim2real gap.

The remainder of the paper is structured as follows. Sec. 2.2 provides a high-level introduc-

tion to the framework. Sec. 2.3 elaborates on a key low-level component of the framework,

i.e., its novel synchronization algorithm. Sec. 2.4 provides an extensive experimental evalu-

ation to show the applicability of EAGERx for sim2real robot learning. Sec. 2.5 shows the

framework’s utility beyond sim2real robot learning in two real-world robotic use cases.

Sec. 2.6 compares EAGERx and existing frameworks, and Sec. 2.7 concludes the paper.

2.2 Framework
This section provides an overview of EAGERx. Sec. 2.2.1 outlines the framework’s main com-

ponents. Then, Sec. 2.2.2 discusses the package management system promoting modularity

and versioned compatibility. Finally, Sec. 2.2.3 discusses the framework’s capabilities for

domain randomization, simulator augmentation, and delay simulation, which are essential

to minimize the sim2real gap.

2.2.1 Agnostic Framework
First, we provide a brief overview of the main components, followed by a code example.

Graph
EAGERx processes are represented as nodes within a graph structure, linked by directed

edges from a node’s output to one or multiple node inputs. Nodes communicate via edges

by exchanging messages. This versatile decentralized architecture, ideal for networked

hardware and o�-board computer interactions, is especially useful for robotics.

Node
Nodes are central to EAGERx, representing individual processes that execute concurrently.

Each node begins a new episode with a user-de�ned reset that sets its initial state, followed

by the execution of user-de�ned code, termed a callback, at a predetermined rate. These

callbacks determine the node’s functionality and de�ne how inputs from other nodes are

transformed into outputs that are, in turn, sent as output to subsequent nodes. A typical

robotic system usually consists of many such interconnected nodes. For instance, one

node may be responsible for capturing camera images, another for localization using these

images, and yet another for directing the robot’s movement based on the localization data.

Nodes can be launched in various ways, according to their operational needs. For exam-

ple, CPU-bound nodes, which are computationally intensive, bene�t from being launched as

subprocesses. This approach leverages multi-processing to bypass the limitations imposed

by Python’s Global Interpreter Lock (GIL), thus enhancing computational e�ciency. In

contrast, I/O-bound nodes, which primarily handle input/output operations, are more e�-

ciently launched as separate threads. This minimizes the overhead associated with message

serialization, streamlining communication. Furthermore, EAGERx facilitates distributed
computing by enabling nodes to be launched as external processes on di�erent machines.

This feature allows for the distribution of computational loads across a network, optimizing

the overall performance of the robotic control system.
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Object
EAGERx objects enable �exible node replacement when transitioning a robotic system

from simulation to reality. For instance, in reality, nodes for extracting sensor data from

a physics engine become obsolete, requiring replacement with nodes interfacing robot

hardware. EAGERx objects accommodate this adaptability.

Objects de�ne abstract inputs and outputs, as well as subgraphs for each supported

physics engine. Users can add objects to graphs (Fig. 2.2a), and establish connections

between nodes and objects. Upon selecting a physics engine, abstract objects are replaced by

corresponding subgraphs (Fig. 2.2b, Fig. 2.2c), rendering the node and object graph engine-
agnostic (Fig. 2.2a), as it supports multiple physics-engines. Notice how the framework treats

reality as just another physics engine. Practically, objects represent entities interacting

directly with the physical environment. For instance, a robot may have an abstract input

and output for its motors and encoders, respectively. Depending on the chosen physics

engine, the robot’s subgraph comprises nodes interfacing with real hardware or nodes

communicating with a simulator.

The Object’s design also accommodates the di�erence in available data between simu-

lators and real-world hardware. They enable the de�nition of simulation-speci�c outputs,

such as data exclusive to simulators, and inputs like randomized external disturbances,

that can be used to enhance policy robustness. Users can easily con�gure these elements,

selecting or deselecting them as needed, to ensure compatibility across di�erent physics

engines, thereby adapting the node and object graph for diverse simulation and real-world

scenarios.

Engine
Physics-engines (e.g., PyBullet [43], Gazebo [38]) are interfaced by a special node called

the engine. The engine initiates the physics engine, adds 3D meshes, and sets dynamic

parameters (e.g., friction coe�cients). It controls time passage and its rate de�nes the

simulation step size.

Backend
Node processes, launched in various ways (i.e., subprocess, multi-threaded, distributed),

communicate through edges and interact with a collective database called the parameter

server. The backend facilitates low-level node-to-node communication (i.e., establishing

connections and the serialization of messages) for every edge and controls the parameter

server. EAGERx supports two backends (i.e., ROS1, SingleProcess), with an abstract backend

API allowing users to implement custom backends. De�ned graphs can be initialized as

distributed networks of subprocesses or run in a single process. EAGERx provides an

abstraction layer over ROS, adding key features for robot learning such as synchronized

faster-than-real-time simulation, domain randomization, and delay simulation.

BaseEnv
EAGERx favors composition over inheritance as a design principle because robotic systems

are more naturally constructed from various components than by �nding commonalities

and using inheritance. EAGERx environments consist of an engine, backend, and graph,

which is composed of nodes and objects. This design promotes code reuse and handles

future requirement changes better than an inheritance-based environment. Nodes operating
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(a) Agnostic graph

(b) ODE subgraph (c) Real-world subgraph

Figure 2.2: (a) Displays the engine-agnostic graph of the pendulum environment from Fig. 2.3 as

generated by the GUI. The engine-speci�c subgraphs for replacing the object (i.e., pendulum) are

depicted for the ODE (b) and real-world (c) engines. The yellow nodes, split for visualization clarity,

symbolize the agent’s actions and observations. Blue squares represent I/O channels, while red

squares indicate node states and/or parameters that can be randomized at the start of an episode.

within the graph of an EAGERx environment support multi-processing, thus enabling

e�cient parallel operations. Additionally, EAGERx facilitates vectorization across multiple

environments, thereby enhancing the system’s scalability and performance capabilities.

BaseEnv conforms to the OpenAI Gym interface [23]. The reset method initializes episodes

by setting the aggregate initial state of all graph nodes, enabling domain randomization

over any registered node state, and returns the �rst observation. Users then determine

actions, which are relayed to connected nodes through the step method.

Fig. 2.3 showcases the steps to create an environment using EAGERx for the pendulum

swing-up problem, a classic problem in reinforcement learning [23]. It begins with the

creation of a pendulum object and a lowpass node to �lter the agent’s actions, thereby

reducing wear and tear on the system (lines 1-4). Subsequently, an agnostic graph is

constructed in which the various components are connected, anticipated delays are speci�ed

for simulation, and cyclical connections are handled (lines 6-16). The environment is set

up with the OdeEngine physics engine and a SingleProcess backend (lines 18-23). Equally,

the RealEngine could be used to switch to real-world scenarios. Following initialization,

an interaction is implemented by sampling an action and applying it to the environment

(lines 25-30), with the environment being cleanly shut down at the end (line 31).

2.2.2 Support
Robotic system design often involves multiple cycles of design, implementation, evaluation,

and re�nement. EAGERx supports the users as follows:
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1 from .tutorials.pendulum import Pendulum # Make object
2 o = Pendulum.make(name="pendulum")
3 from .tutorials.low_pass import LowPass # Make node
4 n = LowPass.make(name="lowpass", rate=15, cutoff=7)
5
6 from eagerx import Graph # Make `agnostic` graph
7 g = Graph.create([o, n])
8 g.connect(action="volt", target=n.inputs.u)
9 g.connect(source=n.outputs.y, target=o.actuators.volt,
10 delay=0.1) # Simulates actuator delay
11 g.connect(source=n.outputs.y, observation="y",
12 skip=True) # Resolves cyclic dependency
13 g.connect(source=o.sensors.th, observation="th",
14 window=2) # Use last 2 sensor readings
15 g.connect(source=o.sensors.thdot, observation="thdot",
16 window=2) # Use last 2 sensor readings
17
18 from eagerx_ode.engine import OdeEngine # Select engine
19 e = OdeEngine.make(rate=30,
20 real_time_factor=0, # 0 -> unlimited
21 sync=True) # toggles synchronization
22 from eagerx.backends.single_process import SingleProcess
23 b = SingleProcess.make() # Make backend
24
25 from .tutorials.env import CustomEnv # Make env
26 env = CustomEnv(g, ode, b, name="env_id", rate=30)
27
28 obs, info = env.reset() # Start a new episode
29 a = env.action_space.sample() # Select an action
30 obs, reward, terminated, truncated, info = env.step(a)
31 env.shutdown() # Release resources

Figure 2.3: Environment creation for the swing-up problem.

Visualization Tools
EAGERx o�ers interactive visualization tools that aid in understanding and debugging

robotic systems. Users can visualize the graph of nodes and inspect the parameter spec-

i�cations of individual nodes with EAGERx’s interactive GUI. The ability to visualize a

complex robotic system is a powerful tool for debugging and understanding the system’s

behavior. Example visualizations of the GUI are shown in Figures 2.2a, 2.8a, and 2.8b.

Package Management
EAGERx incorporates a package management system that fosters modularity, versioned

compatibility, and automated unit tests covering 94% of the code. This system allows users

to easily share, import, and reuse code modules in di�erent projects. By promoting modular

design, EAGERx enables users to build complex robotic systems by combining smaller,

well-tested components.

Onboarding Resources
EAGERx provides comprehensive onboarding resources, including interactive tutorials,

code samples, and documentation, to help users quickly learn and adopt the framework.

2.2.3 Mitigating the Sim2Real gap
To address the sim2real gap, EAGERx’s modular design enables manual reset routines,

simulator augmentation, and supports domain randomization and delay simulation.

While resetting simulations is straightforward, real-world resets demand meticulously

crafted routines to revert the system to its initial state. To this end, specialized reset nodes

can be integrated into the graph, simplifying the real-world reset process between episodes.
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These nodes might execute procedures requiring human interaction or engage safety �lters

within the graph. Operational only during reset phases, they remain inactive during regular

episodes.

Simulator augmentation in EAGERx enables the integration of custom models, capturing

complex dynamics absent in standard simulations. For instance, in [22], augmenting the

simulator with a custom actuator model was key to successful sim2real transfer. This

�exibility in EAGERx enhances simulation accuracy and �delity, thus facilitating a more

e�ective sim2real transition.

EAGERx enables domain randomization by varying simulation parameters such as

object shapes and lighting [31]. Within this framework, nodes can register any parameter

as a state, enabling its randomization via the reset method of the environment.

Delay simulation is enabled by our synchronization protocol discussed in Sec. 2.2.2,

and emulates communication latency and computational delays encountered in real-world

systems, yielding a more accurate simulation. Delays can be implemented across any graph

edge, encompassing edges between nodes and objects, thus simulating sensor and actuator

delays as demonstrated in Fig. 2.3, line 10.

2.3 Synchronization
Parallel computation, used in robotic system simulations via ROS [24] in existing sim2real

frameworks [35–37], can increase simulation speeds. When run at faster-than-real-time

speeds, however, these frameworks su�er from unsynchronized parallel components,

unintentionally widening the sim2real gap. Here, the individual computation delays

become more pronounced relative to the accelerated simulation clock. Without suitable

synchronization at high speeds, certain components may struggle to match pace and

gradually fall out of sync, leading to a deviation in the simulation from its real-world

counterpart. Consequently, the learned control policy’s performance may deteriorate, as it

could receive outdated or mismatched observations, yielding actions based on inaccurate

data. This may render the learned policies ine�ective when transferred to the real-world

environment.

2.3.1 Protocol
We developed a synchronization protocol for each of the nodes representing the robotic

system that enables parallel computation and minimizes additional message-passing over-

head, thereby enhancing system e�ciency and accuracy. This protocol ensures that each

node’s callback, a user-de�ned code block executed at a predetermined rate for processing

inputs and generating outputs, is triggered under the right conditions. Properly constructed

communication patterns and protocols can achieve global synchronization without a cen-

tral coordinator, whereby each node proceeds with its tasks once necessary input data or

conditions have been satis�ed.

Each node is launched as a subprocess that runs a local protocol version, depicted

in Alg. 1. The conditions for a node to proceed with the next callback are based on

the expected ordering of events, as dictated by assumed rates and delays of the system

(lines 5-9). Executed with an event loop thread and dedicated input channel threads,

the protocol compares received and expected message counts for input channels before
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executing subsequent callbacks (lines 10-13). This comparison informs whether a node

proceeds with the next callback or awaits more messages. Nodes perform tasks based on

the protocol’s decision and asynchronously transmit output to connected nodes (line 14).

Only upon completion of the previous callback or receipt of a new input channel message

does the event-driven protocol evaluate conditions for the subsequent callback (line 17).

Consequently, task execution is entirely independent of any global clock or synchronization

messages, thus minimizing additional message-passing overhead.

Algorithm 1: Synchronization protocol executed by each node

Input: node rate fn , input rates fi , input delay �i , input channels

i ∈ , output channels j ∈ 
Output: Processed data sent to downstream nodes

1 k ← Initialize callback index to 0
2 Bi ← Initialize empty bu�ers for every input channel i
3 Start eventLoopThread

4 Start inputChannelThread for every i ∈
5 eventLoopThread:
6 foreach i ∈ do
7 if channel i is cyclical then
8 �i ← Expected message count (Alg. 3)

9 else
10 �i ← Expected message count (Alg. 2)

11 if �i ≤ size(Bi ) for every i ∈ then
12 foreach i ∈ do
13 ui,k ← Pop last �i messages from Bi
14 yk ← Run callback with inputs ui,k , ∀i ∈
15 Send yk to all output channels j ∈ 
16 k ← Increment callback index to k +1
17 Trigger event on eventLoopThread

18 WaitForEvent

19 inputChannelThread i:
20 Bi ← Bu�er received message

21 Trigger event on eventLoopThread

The protocol computes expected messages per input channel with node n executing

its callback at rate fn and receiving messages at rate fi delayed by �i over input channels

i ∈ as summarized by Alg. 2. Assuming nodes maintain their rates, callbacks occur every

Δtn = 1
fn seconds, and messages are received every Δti = 1

fi seconds. The protocol expects

the kth callback after kΔtn seconds, anticipating ⌊(kΔtn −�i)/Δti⌋ messages from each input

channel i, where ⌊a/b⌋ denotes the integer division operator.
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Algorithm 2: Expected number of

messages to receive between the k −
1th and kth callback

Input: callback index k, node rate fn ,

input rate fi , input delay �i
Output: Expected number of

messages � to receive

between the k −1th and kth

callback

1 if k = 0 then
2 � ← 1 // Init count to 1
3 else

/* Expected count
between k −1 and k */

4 Nk−1 ←⌊(fi (k −1)− fnfi�i )/fn⌋
5 Nk ←⌊(fi (k) − fnfi�i )/fn⌋
6 Δ←Nk −Nk−1

/* Correct expected
count with delay */

7 c ← ⌊(fik − fnΔ− fnfi�i )/fn⌋
8 � ← Δ−min(Δ,max(0,−c))

Algorithm 3: Expected number of messages to re-

ceive between the k −1th and kth callback to resolve

a cyclical dependency

Input: callback index k, node rate fn , input rate fi ,
input delay �i , fudge factor � ≈ 10−9

Output: Expected number of messages � to receive

between the k −1th and kth callback

1 if k = 0 then
2 � ← 0 // Set initial count to 0
3 else

/* Calculate count as if k is
shifted */

4 if fn > fi then
5 o ← ⌊(fn −�)/fi⌋ // Forward
6 else
7 o ← −1 // Backward

/* Expected count between k −1 and k
*/

8 Nk−1 ←⌊(fi (k −1+o)− fnfi�i )/fn⌋
9 Nk ←⌊(fi (k + o)− fnfi�i )/fn⌋

10 Δ←Nk −Nk−1
/* Correct expected count with delay

*/
11 c ← ⌊(fik − fn(Δ−1)− fnfi�i )/fn⌋
12 � ← Δ−min(Δ,max(0,−c))

While this intuition underpins the synchronization protocol, the implementation in

Alg. 2 is more complex. Computations are recast in rates to improve numerical stability

by minimizing �oating-point imprecision in case of high rates (small time intervals). The

protocol sets every input channel’s initial expected message count to 1, irrespective of �i ,
simplifying callback implementations.

The protocol also handles the special case of cyclical dependencies-—common in

robotics systems interacting with a physic-engine and can cause deadlocks otherwise—with

Alg. 3. In EAGERx, users can designate input channels as cyclical, postponing dependency

to the next callback. This strategy allows one node to execute �rst in a cycle, while others

await this node’s output.

2.3.2 Limitations

The protocol’s limitations should be considered in the context of the underlying commu-

nication protocol, which must ensure the preservation of message order and be lossless

(e.g., TCP instead of UDP [44]). The protocol assumes that the robotic system can be

represented by nodes with �xed rates and at least one input. Although the protocol can

be easily toggled between synchronous and asynchronous modes, it does not allow for a

hybrid mode, where some nodes are synchronized and others are not. Finally, the protocol

does not account for jitter and assumes deterministic delay; however, this limitation can be

mitigated by varying the delay across episodes if needed.
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2.4 Experimental Evaluation
This section presents experiments to show the capabilities of our framework and to support

the four key contributions discussed at the beginning of the paper and repeated below for

the reader’s convenience:

C1 A synchronization protocol that ensures consistent simulation behavior even beyond

real-time speeds.

C2 A modular design that can support various robotic systems and state, action, and

time-scale abstractions.

C3 An agnostic design that allows compatibility with multiple engines.

C4 The integrated delay simulation and domain randomization features in EAGERx can

narrow the sim2real gap.

2.4.1 Experimental Setup
EAGERx is validated with a pendulum swing-up task, a vision-based box-pushing task,

and an inclined landing experiment for a quadrotor. The simulated and real-world setups

of all three tasks are depicted in Fig. 2.4. To validate C1, we experimentally assess Alg. 1

and employ it in accelerated, parallelized training for all tasks. Claims C2-C3 are validated

by the tasks involving di�erent engines and distinct types of systems like pendulums,

manipulators, quadrotors, and quadrupeds. Claim C4 is validated by demonstrating the

detrimental e�ect of delays and model mismatch on sim2real performance and showing

how simulating delays and domain randomization can restore sim2real performance. All

policies are trained in simulation, and zero-shot evaluated on their real-world counterparts.

Swing Up The inverted pendulum task addresses the classic control problem of swing-

ing up and stabilizing an underactuated pendulum. The choice of this task is intentional;

it emphasizes the critical challenge of delay compensation in reinforcement learning. By

showing how ignoring delay simulation can hinder policy transfer even in straightforward

scenarios, we highlight the signi�cant consequences for more complex systems where

delays are inevitable and complexity is higher. The simplicity of the task underscores

the fundamental importance of addressing delays in sim2real approaches. We conduct

zero-shot evaluations using a real-world pendulum setup comprising a mass on a disk

driven by a DC motor. To train policies, we utilize two simulators. The �rst simulator’s

dynamics model aligns with the physical system, representing the pendulum as a disk

[45]. In contrast, the second simulator adopts the OpenAI Gym Classic Control’s Pendulum
environment, modeling the pendulum as a rod [23], inadvertently introducing a sim2real

gap that requires mitigation. All three systems are depicted in Fig. 2.4a. In all experiments,

the pendulum is controlled at a rate of 20 Hz, while sensor measurements are obtained

at a rate of 60 Hz. The agent observes the last two received sensor measurements. Users

can specify such a rolling window length when connecting nodes in EAGERx, as shown

in lines 14 and 16 of Fig. 2.3). Policies are trained using the soft actor-critic (SAC) [46]

implementation from [47].

Box Pushing In the box-pushing experiment, a Viper 300x robotic manipulator moves

a box to a target based on streaming webcam images. To emphasize the importance of
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(a) Swing up (b) Box pushing (c) Inclined landing

Figure 2.4: Diverse robotic system tasks illustrating the EAGERx framework’s �exibility. (a) Swing-up

task with an inverted pendulum, highlighting delay compensation in reinforcement learning. The task

involves zero-shot evaluations on a real-world pendulum setup, comparing a disk-based simulator

with the OpenAI Gym rod-based environment. (b) Box-pushing experiment using a Viper 300x

robotic manipulator, emphasizing the need for domain randomization with a low-resolution Logitech

C170 webcam for box localization tracking. (c) Inclined landing task where a quadrotor lands on a

moving and inclined deck, showcasing the integration of multiple mobile robots into a dynamic task.

domain randomization, we use a consumer-grade Logitech C170 webcam, selected for

its low resolution, modest frame rate, and high latency, to track the box’s position and

orientation. For evaluation, we selected six unique initial con�gurations (three positions

approximately 30 cm from the goal for both a yaw angle of 0 and
�
2 rad) and repeated

them thrice per policy. Policies are trained in PyBullet using the SAC [46] implementation

from [47] with hindsight experience replay [48]. The simulation and real-world setups are

shown in Fig. 2.4b.

Inclined Landing To demonstrate the framework’s ability to facilitate control in

highly dynamic environments, we trained an agent to perform the challenging maneuver

of landing a quadrotor on an inclined and moving landing deck. Due to the con�guration of

its rotors, standard quadrotors can only exert thrust upwards, as rotor spinning directions

cannot be reversed mid-�ight. This under-actuation complicates landing on an incline, as

the agent can only decelerate when approaching the deck. Therefore, if the agent initiates

the landing procedure with insu�cient momentum, it cannot accelerate, resulting in a

crash. In [30], PPO [49] was used to learn a policy for landing on a stationary landing

deck in 2D (xz-plane) with a �xed inclination (25◦). In this chapter, we follow a similar

approach using the PPO implementation from CleanRL [50]. However, we extend the

policy’s capability to land in 3D (xyz-plane), at various inclinations (0 − 25◦), and on a

moving landing deck (0−1m/s).

As in [30], the quadrotor dynamics are prescribed by ODEs identi�ed with real-world
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Figure 2.5: Comparison of mean episodic cost between simulations and real-world pendulum per-

formance. The success threshold denotes the level below which a 100% success rate is achieved.

Performance drops notably in the real-world scenario with a conventional gym approach, illustrating

the sim2real gap. Asynchronous simulation (async) at real-time speeds mitigates the gap but leads

to excessively long training times. Synchronized training under our protocol (EAGERx) facilitates

consistent performance at faster-than-real-time simulation speeds.

data. In simulation, the landing deck moves in a straight line at a �xed inclination, varying

speed, inclination, and direction across episodes to learn multi-goal behavior. To model the

interaction between the landing deck and quadrotor, we extend the ODE dynamics with

MuJoCo’s [18] collision detection capabilities to detect successful landings and crashes.

During real-world evaluation, we move the landing deck around with a quadruped and

track the pose of both the deck and quadrotor with an accurate motion capture system.

The simulation and real-world setups are shown in Fig. 2.4c.

2.4.2 Analysis
C1 We tested Alg. 1’s ability to maintain consistent simulation behaviors at speeds sur-

passing real-time, using experiments with the disk pendulum. Initially, we utilized the

disk simulator within a standard OpenAI Gym environment, trained a policy, and then

conducted a zero-shot evaluation on the actual system. As depicted in Fig. 2.5, the perfor-

mance signi�cantly declines in the real world, indicating a substantial simulation-to-reality

(sim2real) gap. This discrepancy results from the sequential communication in simulations

contrasted with the asynchronous sensor and actuator commands in the real system via

ROS topics [24], forcing the agent to sometimes rely on outdated information in real-world

scenarios. To mimic this asynchronous nature, we adapted the gym environment to use

asynchronous communication in simulation. This adaptation enabled the policy to handle

occasional delays, enhancing its real-world applicability. However, this required limiting

simulation speed to a real-time factor of 1, considerably prolonging training duration. The

real-time factor, the ratio of simulation to real-world time, at 1 signi�es running the simu-

lation in real-time. Fig. 2.6 demonstrates that increasing this factor degrades performance,

underscoring the challenges in accelerating simulation beyond real-time while ensuring

e�ective real-world transfer.
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Figure 2.6: The impact of varying real-time factors (rtf) on the mean episodic cost in a simulated

pendulum environment. Performance declines as the rtf increases, indicating the challenges of

maintaining �delity in faster-than-real-time simulations when components operate asynchronously.

Setting an excessively high target real-time factor may cause parallel components in the

simulation to desynchronize and lag. Figures 2.7a and 2.7b demonstrate the consequences

of this lag in asynchronous simulations. Speci�cally, Fig. 2.7a displays the variation in

the simulated pendulum’s angle, sin(�), at t = 2.0 s across �ve runs with identical input

sequences, highlighting the increasing discrepancy in angle measurements as the real-time

factor rises. In contrast, simulations synchronized via our protocol remain deterministic

while still allowing parallel operations, enhancing speed without sacri�cing accuracy.

Synchronous simulations naturally cap the real-time factor to preserve synchronization,

whereas asynchronous ones might show a misleadingly high factor, as evidenced in Fig. 2.7a,

where increased speed incurs greater variability and component desynchronization. This

illustrates the adverse e�ects of unsynchronized, accelerated simulations. Adapting the

disk simulator into an EAGERx environment for synchronized training under our protocol

facilitated faster-than-real-time speeds while ensuring consistency between simulated and

real-world behaviors, as depicted in Fig. 2.5.

Our protocol, designed for robotic system synchronization, does not necessitate syn-

chronous operation within the simulation. In fact, asynchronous communication still

permits nodes to transmit messages and perform tasks without waiting for immediate

responses, thereby accelerating the simulation and allowing nodes to progress based on

their processing capabilities and data availability. This is illustrated in 2.7b, where we

introduced a simulated delay between the pendulum actuator and the physics engine.

Consequently, the pendulum’s callback and the physics engine’s callback can be executed

concurrently, as the physics engine’s callback relies on the pendulum’s output from the

previous timestep rather than the current one. Since each node’s protocol operates inde-

pendently, this parallelization occurs naturally, resulting in approximately 50% increase in

the realized real-time factor for the synchronized simulation compared to the case without

delay.

C2 To support the claimed contribution that the framework accommodates various

robotic systems, the tasks involve distinct robot systems such as pendulums, manipulators,
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(a) Variation in angle sin(�) (b) Real-time factor

Figure 2.7: A comparison between asynchronous (async) and synchronous (sync) simulations of a

pendulum at faster-than-real-time speeds. Fig. 2.7a shows the variation in angle sin(�) at t = 2.0 s

over 5 runs of a simulated pendulum as a function of the real-time factor. Fig. 2.7b shows the realized

real-time factor of the simulation for both synchronous and asynchronous cases.

quadrotors, and quadrupeds. EAGERx’s graph-based design, enabling diverse abstractions,

is demonstrated in the vision-based box-pushing task. Rather than end-to-end training on

raw images, an aruco detector is used for state abstraction as depicted in Fig. 2.8e, negating

the need for photorealistic rendering. Action abstractions, visible in Fig. 2.8b, include an

inverse kinematics node for task-space learning and a safety �lter correcting hazardous

commands. Nodes set at optimal rates ensure e�cient resource use and learning. The

pendulum task underlines the framework’s modularity using an angle reset node, visible

in Fig. 2.8a, to position the pendulum at the initial angle via PID control before a new

episode. Finally, we demonstrate EAGERx’s capability to coordinate diverse systems, such

as a quadruped and quadrotor, in a delay-sensitive and dynamic task with the inclined

landing experiment.

C3 To support the claimed contribution that EAGERx is compatible with a variety of

physics engines and the real world, we conducted experiments with four di�erent engines—
PyBullet [43], OpenAI Gym Classic Control [23], real-world, and simulations with sets

of ODEs—showing the ability to switch between real and simulated counterparts. The

box-pushing task demonstrates how a division of the graph into engine-speci�c and engine-

agnostic subgraphs resulted in a uni�ed pipeline between PyBullet and reality. The inverse
kinematics and safety �lter nodes work with any simulator, as seen in the agnostic graph

(Fig. 2.8b), while the aruco detector and webcam nodes are swapped with PyBullet-speci�c

nodes in Figures 2.8d and 2.8e. Likewise, the agnostic graph in Fig. 2.8a was used in all

pendulum experiments to display sim2real transfer across physics engines. The inclined

landing experiment further illustrates the framework’s �exibility by combining the collision

detection capabilities of MuJoCo [18] with the accurately identi�ed ODE dynamics of the

quadrotor. This task highlights how di�erent physics engines can be integrated seamlessly

within EAGERx. The collision detection in MuJoCo is used to detect successful landings and



2

24 2 Flexibility: A Graph-Based Simulator

crashes, while the ODE dynamics ensure realistic quadrotor behavior. Collision detection is

used both in simulation and reality, so it is therefore placed in the agnostic graph Fig. 2.8c.

During real-world evaluation, the landing deck is moved by a quadruped and the poses

of both the deck and the quadrotor are tracked using a motion capture system. Since

simulating the full dynamics of a quadruped during policy learning is unnecessary and

would only slow down training with redundant computation, the quadruped control nodes

are placed in the real-world engine-speci�c graph. We can simulate just a moving landing

platform without the quadruped, as actuation is not required to move objects in simulation.

This approach focuses computational resources on what truly matters for training.

C4 We show that the integrated delay simulation and domain randomization features

can reduce the sim2real gap by demonstrating that the negative impacts of actuator delay

can be counteracted using the delay simulation feature during training for two di�erent

simulated versions of the pendulum. In this task, we supported C4 by evaluating policies

on the real system with an actuator delay set at the smallest value that led to a breakdown

in baseline performance. When we progressively increased the actuator delay, it resulted

in baseline policy failure for delays of 0.025 s and 0.035 s for the rod and disk pendulum,

respectively. Our experiments studied the potential of training with domain randomization

and/or delay simulation to mitigate the adverse e�ects of the actuator delay. For the

disk pendulum, we applied randomization within ±10% of the mean values (0.033 kg for

mass and 0.1m for length). For the rod pendulum, randomization was limited to ±5%,

considering the higher accuracy of this model. Delay simulation involved randomization

within ±0.005 s around the set actuator delay. The results shown in Fig. 2.9 suggest that

delay simulation can mitigate the adverse e�ects of actuator delay for zero-shot transfer

from both the rod and disk simulator to the real pendulum system. In the disk scenario,

adding domain randomization to delay simulation further improved performance and

resulted in successful transfer with the smallest performance gap between simulation

and reality. The e�ectiveness of domain randomization is further highlighted in the box-

pushing task (Fig. 2.10). We examined its impact by altering the box’s friction coe�cient

between 0.1 and 0.4. Fig. 2.10 shows that, compared to the baseline, friction randomization

reduces the performance gap between simulation and reality despite lowering overall

performance, thereby illustrating that relying solely on domain randomization can increase

task di�culty. Conversely, incorporating the inverse kinematics node combined with

friction randomization enhances performance while reducing the gap between simulation

and real-world execution. We used a delay simulation of 0.02 seconds for the inclined

landing task and randomized the mass within ±5%, leading to the results in Fig. 2.11.

However, we refrain from conducting an extensive ablation study on the e�ects of delay

simulation and domain randomization to avoid unnecessary hardware damage.
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(a) Agnostic graph - swing up

(b) Agnostic graph - box pushing

(c) Agnostic graph - inclined landing

(d) PyBullet subgraph (e) Real world subgraph

Figure 2.8: Diverse robotic system tasks demonstrating the versatility of EAGERx’s graph-based

design. (a) The pendulum swing-up task uses an agnostic graph with an angle reset node for initializing

the pendulum’s position. (b) The vision-based box-pushing task utilizes an inverse kinematics node

for task-space learning and a safety �lter for correcting hazardous commands. The engine-speci�c

subgraphs for replacing the box object in (b) are depicted for the PyBullet (d) and real-world (e)

engines. (c) The inclined landing task illustrates how EAGERx integrates collision detection in

MuJoCo with ODE dynamics to get the best of both simulators.
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Figure 2.9: Results for the pendulum swing-up task show the mean episodic cost for 5 policies (10

episodes per policy) and the impacts of domain randomization (DR) and delay simulation (DS). Here

rod and disk refer to the engine used during training, as depicted in Fig. 2.4a. For clarity, the y-axis is

capped at 1000, though note this truncates some data points. The success threshold indicates 100%

success rate, meaning successful pendulum swing up and stabilization each episode for all evaluations

below this threshold.

Figure 2.10: Results for the box-pushing task show the mean distance from the goal at the end of 16

episodes for 3 policies and evaluate the bene�ts of an inverse kinematics (IK) node (facilitating task

space control) and domain randomization (DR) of the friction coe�cient.
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Figure 2.11: Results for the inclined landing experiment show the success rate for landing on a

stationary and moving deck at various inclinations in simulation and real-world settings. The

experiments evaluate the performance of the policy in terms of successful landings across 10 episodes,

demonstrating the framework’s capability to handle dynamic and delay-sensitive tasks involving

diverse robotic systems like quadrupeds and quadrotors.
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2.5 Applications beyond Reinforcement Learning
The modular design and uni�ed software pipeline of the framework have utility in various

other domains. This section explores two such instances: interactive imitation learning and

Machine Learning (ML) enhanced classical control, showcasing EAGERx’s utility beyond

reinforcement learning.

2.5.1 Interactive Imitation Learning
This application shows how EAGERx is suitable for (interactive) imitation learning. Here,

the task involves assembling a mock-up Diesel engine by following voice commands

from a human operator. The parts used in this task are 3D-printed versions of the parts

from an actual Diesel engine assembly setup [51]. To solve this task, we apply a learning

from demonstration approach based on CLIPort [52]. However, we utilize an interactive

imitation learning approach instead of gathering o�ine demonstrations only. Collecting

on-policy data helps us to, for example, learn to recover from failures. Learning recovery

behavior is often not possible using demonstrations collected o�ine by experts since they

are unlikely to visit failure states. We apply an active learning method based on uncertainty

quanti�cation [53]. This method actively queries the human teacher for a demonstration

in case there is high prediction uncertainty. EAGERx o�ers three main advantages in this

scenario. First of all, we can easily create a digital twin of the real-world environment

in simulation. This allows one to debug a large portion of the pipeline in simulation,

which is safe and time-e�cient. Moreover, the simulated environment facilitates the cost-

e�ective collection of synthetic demonstrations. These can be used to pre-train the policy

in simulation and speed up learning. Lastly, EAGERx’s modular graph structure enables the

simple connection of various components. In this case, the graph includes a speech-to-text

transcriber based on Whisper [54], the policy node, as well as the RGB-D camera, and the

manipulator. An overview of the task is shown in Fig. 2.12. A video demonstration of this

application is available at https://eagerx.readthedocs.io.

2.5.2 ML-Enhanced Classical Control
This application illustrates EAGERx’s integration of pre-trained ML models with classical

control in a custom simulator, addressing a practical challenge. EAGERx was applied

to an adaptive swimming pool environment, showcased in Fig. 2.13. This environment

enhances traditional counter-current pools by dynamically adjusting the current based on

the swimmer’s position. Normally, it is the swimmer’s task to stay centered in the pool, a

di�cult task for beginners. Our approach, however, modi�es the pool’s counter-current

in line with the swimmer’s location, maintaining central positioning regardless of swim

speed. This adaptability makes the pool more user-friendly for novice swimmers.

Variable transport delays complicate the control problems [55]. Speci�cally, alterations

in motor power do not instantaneously translate into �ow changes; this delay results from

the gradual response of the water pump’s �rst-order dynamics, as well as the variable time

it takes for a change in water �ow to impact the swimmer, contingent on their position

in the pool. When the swimmer is towards the front, they feel the e�ects of �ow velocity

changes more rapidly than when positioned at the rear. The absence of a readily available

o�-the-shelf simulator for this speci�c scenario underscored the utility of EAGERx, which

https://eagerx.readthedocs.io
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Figure 2.12: In this application of EAGERx, a CLIPort [52] model is trained using an active learning

approach that queries the human teacher for a demonstration in case of high prediction uncertainty.

Also, the model is pre-trained using demonstrations gathered in simulation.

(a) Custom simulator (b) Real

Figure 2.13: Application of EAGERx in an adaptive swimming pool environment. The system

modulates the pool’s counter-current in response to the swimmer’s hip position relative to a preset

boundary (red line), utilizing a pose detector and Kalman �lter for position estimation and a PID

controller for current adjustment.

facilitated the creation of a custom simulator, proving invaluable in the development of the

control pipeline.

The modular architecture of EAGERx facilitated the integration of a pose detector [56]

with a Kalman �lter, resulting in estimates of the swimmer’s position and velocity from

solely top-view camera imagery. Subsequently, a PID controller was employed to modulate

the pool current in alignment with these estimates. A video demonstration is available in

the supplemental material.

2.6 Discussion
Comparing EAGERx with ROS [24] might seem natural due to their modular structures

and asynchronous communication. Nonetheless, such a comparison risks being misleading

since EAGERx represents an abstraction based on the actor model [57] and can operate

atop a backend like ROS. This abstraction layer o�ers vital functionality for robot learning,

including synchronized faster-than-real-time simulation, domain randomization, and delay

simulation, not inherently supported by ROS. Recent research [58] presented a reactive

solution to ROS’s asynchronous programming challenges via an event-driven API, inspir-

ing EAGERx’s synchronization approach. However, this API didn’t speci�cally aim to
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synchronize simulations using expected rates and delays, as demonstrated in our work.

Importantly, EAGERx’s protocol extends beyond ROS to other backends as well.

The proposed synchronization protocol can be seen as an application of the actor model

for computation [57]. It is a powerful and �exible model of concurrent computation where

actors, the primary units, execute tasks concurrently and communicate by exchanging

messages. The actor model is well-suited for synchronizing robotic systems represented as

graphs of nodes, where various nodes need to operate concurrently. Our protocol operates

on an event-driven basis and circumvents dependence on a global/local clock, a central

coordinator [59], or extra synchronization messages [60]. Instead, it assesses conditions

for subsequent callbacks exclusively after �nalizing the preceding one or obtaining a new

input channel message. This can outperform busy-waiting techniques (or spinlock) [61]

that continuously evaluate conditions at a �xed time interval.

Ptolemy II [62] constitutes a software framework for designing, modeling, and simu-

lating heterogeneous systems. Like EAGERx, it applies the actor model of computation,

enabling concurrency and asynchronous communication. Both frameworks o�er graphical

user interfaces for visualizing complex systems. Ptolemy II holds an advantage over EA-

GERx in its support for a wider range of computation models and the ability to combine

them within a single system. Nevertheless, Ptolemy II serves as a general-purpose frame-

work, while EAGERx speci�cally targets robot learning. Furthermore, Ptolemy II employs

a Java-based structure, in contrast with EAGERx’s exclusive use of Python.

In comparison to Gym [23] — which o�ers a �exible API but lacks a uni�ed sim2real

framework — EAGERx addresses this de�ciency. Unlike Gym’s default sequential simula-

tion, EAGERx supports concurrent, distributed operations across devices within environ-

ments, enhancing its applicability to robot learning. Gym environments use object-oriented

classes, frequently constructed via inheritance and extended with wrapper patterns. How-

ever, this approach in Gym, particularly with extensive use of wrappers, tends to create

overly complex and di�cult-to-manage class structures in robotic systems, leading to

maintenance challenges and reduced clarity in system design. Additionally, incorporating

time abstraction within Gym environments is challenging, often con�ning it to multiples

of the environment’s step size. Conversely, EAGERx allows each node within the graph

environment to operate at separate frequencies.

Various robot learning frameworks with connections to EAGERx have been introduced

in the �eld. Among these, Isaac Orbit [39] and Drake [40] stand out as recent frameworks

with shared design principles. In line with EAGERx, Orbit and Drake adopt a modular

approach to constructing robot environments, enabling the execution of di�erent nodes at

varying rates to support both lower and higher-level control for e�ective robot learning.

However, these frameworks exhibit three critical di�erences with EAGERx. Firstly, EAGERx

is designed to be engine-agnostic, whereas Orbit relies on a proprietary simulator, and

Drake incorporates an integrated multi-body dynamics simulator, hence restricting them

to a single simulation platform. Secondly, EAGERx features dedicated reset procedures

in the form of reset nodes. These nodes can be added to the graph and are only activated

during environment resets. Thirdly, EAGERx o�ers a uni�ed pipeline for both simulation

and reality. Although Orbit and Drake promote component reusability in both simulation

and reality, EAGERx enforces this more rigorously through engine-agnostic and engine-
speci�c graphs. This e�ectively isolates the engine-agnostic code and minimizes the risk of
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EAGERx Orbit [39] Drake [40] robo-gym [35] gym-gazebo2[36]

Engine Agnostic 3 7 7 y 7
Specialized Reset Procedures 3 7 7 7 7
Uni�ed Pipeline Sim/Real 3 y y y y

Synchronized Simulation 3 3 3 7 7
Distributed Computing 3 3 3 3 3
GPU Accelerated 7 3 7 7 7
Gradient Information Available 7 7 3 7 7
Domain/Delay Randomization 3 / 3 3 / 7 3 / 3 7 / 7 7 / 7
Environment Visualization 3 3 3 y y

Open Source / License-free 3 / 3 y / y 3 / 3 3 / 3 3 / 3
Documentation / Tutorials 3 / 3 3 / 3 3 / 3 y / 7 7 / 7
Last commit (age) < 1 week 2 months < 1 week 1 year 4 years

Table 2.1: A comparison of various modular sim-to-real robot learning frameworks, where y indicates

partial feature presence.

discrepancies. Additional frameworks such as Robo-Gym [35] and Gym-Gazebo(2) [36]

aimed to exploit the node structure of ROS for robot learning and were primarily centered

around the Gazebo simulator without synchronization. To speed up training, EAGERx uses

multi-processing instead of complete GPU acceleration for parallelization across multiple

environments. While GPU parallelization can signi�cantly speed up learning [22], its

practicality can sometimes be limited for simulations requiring CPU-bound computations

or non-GPU-adaptable libraries. In such cases, the latency from data transfer between GPU

and CPU can become the dominant factor in simulation speed [17]. Among the frameworks

discussed, only Orbit currently enables parallel training on a GPU. A comparative summary

of the discussed robot learning frameworks is presented in Tab. 2.1.

2.7 Conclusion
This chapter presented EAGERx, a novel framework to facilitate the transfer of robot learn-

ing policies from simulation to the real world. Our uni�ed framework is compatible with

simulated and real robots. Its design can accommodate various abstractions and simulators.

The presented synchronization protocol simulates delays without sacri�cing simulation

speed or accuracy, enabling e�ective policy training in simulation and subsequent transfer

to real robots. We evaluated our framework on two benchmark robotic tasks, demonstrat-

ing its e�ectiveness in reducing the sim2real gap. Finally, we demonstrated the utility of

the framework beyond sim2real robot learning in two real-world robotic use cases.

We plan to extend the open-source code base with more code examples for future work.

Also, training can be sped up using GPU acceleration, and gradient information can be

provided to facilitate optimization through nodes. Lastly, it will be valuable to provide

real2sim functionalities to reduce the sim2real gap further using real-world data.
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3
Speed: Parallelizing

Graph-Based Simulations

Following the introduction of the EAGERx framework, another critical limitation in simulator
design is the need for high-speed simulations to support e�cient robotic learning. While
�exibility is important, slow simulation speeds can hinder the learning process, especially for
reinforcement learning where many iterations are required.

In this chapter, we tackle the issue of simulation speed by introducing a method for e�ciently
parallelizing graph-based simulations on accelerator hardware. This method optimizes execu-
tion paths to enable higher simulations speeds while maintaining simulation �delity, thereby
enabling scalable and e�cient learning in large and complex robotic tasks.

This chapter is partly based on q B. van der Heijden, L. Ferranti, J. Kober, and R. Babuska, (2024). "E�cient
Parallelized Simulation of Cyber-Physical Systems", Transactions on Machine Learning Research (TMLR) [63].
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3.1 Introduction
Physics simulations on accelerator hardware [15–18] have signi�cantly reduced train-

ing times for reinforcement learning policies that conform to traditional, sequentially-

structured agent-simulator interactions [22]. Such interactions lead to clear-cut and pre-

dictable execution paths, allowing for e�cient parallelization, as shown in Fig. 3.1a. How-

ever, this sequential approach fails to capture the concurrent and dynamic nature of the

real world.

Accounting for latency is crucial in the simulation of cyber-physical systems (CPS),

which integrate computational algorithms with physical processes. In CPS, embedded

computers and networks both monitor and control these processes, typically through

feedback loops where physical processes impact computations and vice versa via sensors

and actuators [64]. A critical application of CPS is vehicular platooning, involving multiple

vehicles that operate in close proximity, coordinating their actions based on shared sensor

data in real-time. This coordination is highly sensitive to time delays, making the accurate

simulation of these delays critical for developing robust platooning algorithms [26].

Delayed sensor data causes an agent to choose actions based on outdated information.

Similarly, slow policy evaluation can unavoidably extend the e�ect of previous actions

beyond their planned duration. Moreover, the focus has traditionally been on single agents

trained end-to-end [65]. In practice, however, AI systems deployed in real-world settings

often rely on a pipeline of models. Accounting for the latency between these models

will become crucial as tasks grow in complexity [66]. Finally, physics simulators often

bundle physics, sensor, and actuator simulations into a single unit running at a single rate.

However, in reality, there are vital asynchronous e�ects within this block that need to be

accounted for. Overlooking these asynchronous e�ects in simulation widens the sim2real

gap and can lead to policies that do not perform well in the real world.

To represent the asynchronous interactions between components, we advocate the

division of the simulator into separate parts. This matches the typical design in robotics,

where systems consist of interconnected nodes operating asynchronously at various rates

[24]. This division enables the creation of computation graphs that accurately represent data

�ow in real-world situations, including latency e�ects. Consequently, each simulation step

turns into a diverse mix of computation units from various components that run at di�erent

time scales, as illustrated in Fig. 3.1b. These must be executed in a sequence that respects the

data dependencies outlined by the graph’s edges. Simulating with these diverse partitions

improves accuracy but complicates parallelization (i.e., simulating multiple copies of the

simulation in parallel), as distinct partitions may need to execute simultaneously across

GPU threads, hindering GPU e�ciency. Such misalignment can happen with independent

episodic resets, often initiated based on variable reset criteria. One parallel simulation

might reset because the agent reached its goal, while another continues because the agent

is still far away. Diverging execution paths can signi�cantly reduce kernel e�ciency

[25]. When GPU threads take di�erent paths, they must be serialized, leading to more

instructions and reduced performance.

The main contribution of this chapter is an approach to parallelize cyber-physical

system simulations that emulates asynchronicity and delays with minimized computational

overhead on accelerator hardware. This allows existing accelerated physics simulations to

be extended with e�cient latency simulation capabilities. We achieve this by identifying a
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(a) Sequential interaction (b) Asynchronous interaction

Figure 3.1: Comparative illustration of computation graphs with and without simulated delays.

Vertices represent periodic computations, and edges represent data dependencies. (a) The absence of

delay simulation creates consistent blocks of computation, enabling e�cient parallelization across

simulation steps yet failing to capture the inherent asynchrony of the real world. (b) While improving

simulation �delity, simulated delays between various components turn every simulation step into a

diverse mix of computation, challenging parallelization e�ciency.

graph—ideally the smallest one possible—that encodes all the data dependencies outlined

by every simulation step’s edges. This universal graph, referred to as a supergraph, is

determined prior to simulation. Sorting the supergraph topologically yields a static execu-

tion order for parallel processing of simulation steps without violating data dependencies.

By targeting the smallest supergraph, we minimize redundant computation. Finding the

smallest supergraph is generally a complex, NP-hard problem [67]; however, our greedy

algorithm e�ciently approximates this supergraph by leveraging the inherent periodicity

in cyber-physical systems.

In sum, we make three key claims: Our approach (i) emulates asynchronicity leading to

more accurate simulation, (ii) e�ciently handles time-scale di�erences and asynchronicity,

resulting in higher parallelized simulation speeds than baseline approaches, and (iii) scales

to complex system topologies. These claims are supported by an experimental evaluation

on two real-world robotic systems, followed by a scalability analysis on two cyber-physical

system topologies: vehicle-to-vehicle (V2V) platooning [26] and unmanned aerial vehicle

(UAV) swarm control [27]. An ablation study on the e�ects of the algorithmic simpli�cations

was also conducted and included as an appendix. Finally, a motivational video for our

approach is included as supplementary material [68].

3.2 Preliminaries
Before diving into the details of our approach, we �rst lay down some basic de�nitions

and notation that will aid in the formalization of our problem and the description of our

approach. We consider graphs  = (V ,E) consisting of a set of vertices V () and a set of

directed edges E(). Edge (u,v) ∈ E() denotes an edge from vertex u to vertex v. The

notation |V ()| denotes the number of vertices in . Any subset of vertices V ′ ⊆ V ()
induces a unique subgraph ′ ⊆ . The di�erence 2 −1, where 1 ⊆ 2, yields a graph 
with V () = V (2) ⧵ V (1) and E() = E(2) ⧵ E(1). The edges that connect 1 and 2 −1
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are de�ned as the cut-set C2 (1), which is a subset of E(2). The union of graphs 1 and 2
with respect to a set of edges E12 is denoted as  = 1 ∪E12 2, where V () = V (1) ∪V (2)
and E() = E(1) ∪ E(2) ∪ E12. The addition 1 +2, where 1,2 ⊆ 3, yields a subgraph

12 ⊆ 3, by unifying 1 ∪E12 2 where E12 = C3 (1) ∩C3 (2). An edge contraction on an

edge (u,v) ∈ E() yields a new graph ′ such that V (′) = V () ⧵ {u,v}∪{w} and

E(′) = (E() ⧵ {(u,v), (v,u)})
∪ {(w,x) ∣ (u,x) ∈ E() or (v,x) ∈ E()}
∪ {(x,w) ∣ (x,u) ∈ E() or (x,v) ∈ E()}.

The ancestors of a vertex A(u) are all vertices V ′() ⊆ V () that can reach u via a directed

path in . The roots of a graph  are the set of vertices that have no incoming edges,

formally R() = {u ∈ V () ∣ ∀v ∈ V (), (v,u) ∉ E()}. Similarly, the leafs of a graph  are the

set of vertices that have no outgoing edges. A Directed Acyclic Graph (DAG) is a directed

graph that contains no cycles. A topological sort � of a directed acyclic graph  is a linear

ordering of its vertices such that for every directed edge (u,v) ∈ E(), vertex u comes before

v in the ordering. Multiple topological sorts may exist for a given graph , and the set of all

possible topological sorts is denoted by  (). A labeling function L ∶ V → l is a function

that assigns a label to each vertex. The set of all vertices with label l is denoted by Vl ()
and is arranged as a sorted list consistent with a topological sort of . We denote the set of

topological sorts where the �nal vertex is of label l in  as  -1
l (). Formally, this is de�ned

as:

 -1
l () = {� ∈  () ∣ I (� ,u) = ||, u ∈ Vl ()} ,

where I (� ,u) gives the position of vertex u in the sorted set � . A matching function
fm ∶ V ×V → {True,False} is de�ned as follows:

fm(u,v) =

{
True if L(u) = L(v),
False otherwise.

A mapping between two graphs 1 and 2 is a bijective function M ∶ V ′(1) → V ′(2)
where V ′ represent a subset of the vertices. Its domain dom(M) is V ′(1) and its range

rng(M) is V ′(2). Operations like union ∪, intersection ∩, and di�erence ⧵ can be applied

to both dom(M) and rng(M). A mapping M can extend to M ′
by adding a new vertex pair

(u,v) with M ′ = M ∪{(u,v)} where u ∈ V (1) ⧵dom(M) and v ∈ V (2) ⧵ rng(M). A subgraph
monomorphism M ∶ V (1) → V ′(2) is a specialized mapping that maps each vertex u to

v such that L(u) = L(v) and each edge (u,v) corresponds to an edge (M(u),M(v)) in 2. If

such M exists, 2 is a supergraph of 1 and can be reduced to 1 by removing vertices

and edges in 2. The transformed set of edges EM (1) under the mapping M is de�ned as

follows:

EM (1) = {(u′,v′) ∣ (u,v) ∈ E(1),
u′ = M(u) if u ∈ dom(M),u′ = u otherwise,

v′ = M(v) if v ∈ dom(M),v′ = v otherwise}

This set includes edges (u′,v′)where u′ and v′ are either mapped vertices of u and v under

M if they are in the domain of M , or are u and v themselves otherwise.



3.3 Our Approach

3

37

3.3 Our Approach
Consider the set of computation graphs generated by multiple episodes of an asynchronous

system, as illustrated in Fig. 3.2, where vertices of the same color represent the same

periodic computation unit, and edges represent data dependencies. These graphs might be

partially recorded from real-world executions or synthetically created to re�ect expected

computation and communication delays. Variations in these graphs across episodes lead to

distinct execution paths. However, managing these variations with conventional if-else

branching for parallel execution on GPUs is ine�cient, as highlighted in [25]. Predication

[69] is a technique that sidesteps the need for if-else branching by executing all possible

paths and masking out the computations that are not needed. This approach, while

eliminating branching, can be ine�cient due to the execution of all vertices in the paths,

making it crucial to minimize the number of vertices.

To achieve this, we introduce an approach to identify a minimum common supergraph
(mcs) that is acyclic and encapsulates all potential execution paths from a collection of

computation graphs, optimizing for the fewest vertices (i.e., computational overhead).

Topologically sorting the supergraph yields an execution order that, via predication mask-

ing, is transformed into a valid order for any given graph, as the supergraph encodes all

data dependencies.

In aligning with standard simulator interfaces [23], illustrated in Fig. 3.1, we �rst parti-
tion these computation graphs into disjoint subgraphs, each corresponding to a simulation

step. Crucially, we designate a supervisor node in each partition, a pivotal element that

dictates the boundaries of these subgraphs. In the context of reinforcement learning, the

supervisor node is akin to the agent, while all other nodes within the partition form the

environment, providing observations to and receiving actions from the supervisor node.

The supervisor node’s operating rate sets the simulation time step, ensuring that each

partition accurately re�ects a step of the simulation process. We then �nd a supergraph

that accommodates all possible paths in every partition with a minimum number of vertices.

This supergraph serves as a template that can be reduced to match any of the partitions

(i.e., simulation steps) by masking (i.e., removing) speci�c vertices and edges. This setup

enables parallel execution of any partition on accelerated hardware.

3.3.1 Problem Definition
Consider a set of observed computation graphs denoted by {0,1,…}, where each i is a

DAG. For a given supervisor label s, our goal is to partition each i into disjoint subgraphs

i,1,i,2,…. Each subgraph corresponds to a discrete simulation step and contains exactly

one leaf vertex labeled as s. The objective is to determine these valid partitions along with

the smallest DAG,  , that serves as a common supergraph for all partitions. Similar to each

partition, a single instance of the designated supervisor vertex in  must be a leaf vertex.

Here, ‘smallest’ is de�ned by the number of vertices to minimize computational overhead.

We aim to �nd a subgraph monomorphism Mi,j ∶ V (i,j ) → V ′() for each partition i,j .
This mapping allows us to reduce  into i,j using a predication mask. The predication

mask is a binary mask applied to  to selectively remove vertices and edges not present

in i,j . Speci�cally, the mask is false for vertices and edges not in rng(Mi,j ) and EMi,j (i,j ),
respectively, and true otherwise.
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Figure 3.2: This �gure illustrates our approach to e�ciently simulating multi-rate asynchronous

systems. Given variable delays, computation graphs can di�er across episodes (left). We �nd a

supergraph and predication masks, illustrated by the grey shaded blocks, for every computation graph

that enables parallel execution across partitions (right). This mask, randomized during simulation,

allows us to e�ciently emulate asynchronicity and time-scale di�erences with minimal computational

waste.

3.3.2 Supergraph Search
Algorithm 4: Minimum Common Supergraph Search (mcs)

Input: Designated supervisor label s
Input: Number of steps to backtrack �
Input: A set of observed computation graphs {0,1,…}
Output: A set of partitions {0,1,0,2,…i,j…}
Output: A supergraph  and mapping Mi,j for all partitions i,j

1  ← Initialize with V () = {u|L(u) = s} and E() = ∅
2 for i ∈ {0,1,…} do
3 u ← Initialize unmatched graph as i

/* Until all supervisor vertices are matched */
4 while Vs (u) ≠ ∅ do
5 ui,j ← Get next supervisor ui from sorted set Vs (u) with index j = I (Vs (i ),ui )
6 Au ← ui,j and its ancestors: Au

(ui,j ) ∪ {ui,j}
7 M ∗ ← Get largest map: Alg. 5 with (s, ,u,Au)
8  ∗ ← Partition subgraph: dom(M ∗) ⊆ V ()
9  - ← Missing subgraph: Au

(ui,j ) ⧵ V ( ∗) ⊆ V ()
10 if V ( -) = ∅ then

/* All ancestors were matched */
11 Mi,j ← Store subgraph monomorphism M ∗

12 i,j ← Store partition  ∗

13 u ← Remove matched partition: u −i,j
14 else

/* Partial match */
15 u ← Restore � partitions in u ⊆ i with u +i,j−� +i,j−�+1 +⋯+i,j−1
16  ← Update to  ′

with missing vertices and edges: (V () ∪V ( -),E() ∪EM ∗ ( ∗ + -))
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Our approach, as outlined in Alg. 4 and illustrated in Fig. 3.3, aims to simultaneously

achieve three main objectives: identifying the supergraph  , determining the partitionings

i,j , and discovering the associated mappings Mi,j . For each computation graph i , the

algorithm iterates until all supervisor vertices are matched, as speci�ed in Line 4. In every

iteration, the largest partition  ∗
and its associated mapping M ∗

are sought (Line 5-7),

following the method detailed in Alg. 5 and explained later on in Sec. 3.3.3.

(a) Process next computation graph

starting with current supergraph

 i−1
(line 2)

(b) After two partitions, match the next super-

visor vertex (lines 5-6)

(c) Find the largest match

(lines 7-9)

(d) Update  i−1

with unmatched

yellow vertex

(line 16)

(e) Backtrack � = 2 with newly updated super-

graph (line 15)

(f) Resulting �-

nal supergraph

after processing

i

Figure 3.3: Illustration of the Minimum Common Supergraph Search process (Alg. 4) at a midway

point. A partial match is found for ui,2, leading to an updated ′ with missing ancestors  -
and

initiating a backtrack to re-evaluate previous partitions.

Depending on whether all ancestors are matched, the algorithm �nds either a complete

or a partial match corresponding to the supervisor vertex ui,j . In the case of a complete

match, both ∗
andM ∗

are stored (Line 10-13). For partial matches, the algorithm backtracks

� iterations to reconsider previously matched partitions (Line 15). In either case, the

supergraph  is updated using Eq. (3.1) to ensure it remains a supergraph of its previous

version and incorporates all necessary ancestors V ( -) for future matches, as follows:

′ = (V () ∪V ( -),E() ∪EM ∗ ( ∗ + -)), (3.1)

where  ∗ + - ⊆ i . More edges in the updated supergraph ′ e�ectively constrain the

number of possible mappings for subsequent partitions by reducing the number of topo-

logical sorts available in the supergraph. Conversely, more vertices in ′ increase its

expressiveness by increasing the number of vertices that can be mapped to a vertex in

subsequent partitions, but also increase the computational overhead of the simulation. In

the next section, we detail the algorithm for �nding the largest match, Alg. 5, which is a

critical component of the supergraph search algorithm. It may only result in mappings M ∗
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Figure 3.4: Midway illustration of Line 9-16 in the Largest Match Search (Alg. 5) linked to Fig. 3.3c.

The 3 and 7 symbols indicate whether a vertex in the candidate front F c
is matched in Line 12. The

�rst iteration yields an empty mapping due to the absence of a yellow vertex in the supergraph. In

the second iteration, the vertex is excluded from the front, enabling a large partial match. The search

is only displayed for a single topological sort.

that ensure that collectively contracting all edges (u,v) ∈ E( ∗) in u will not introduce

any cycle in the resulting graph ′
u
. This constraint is critical to ensure that the updated

supergraph ′, as governed by equation Eq. (3.1), remains acyclic. This sets us apart from

previous work [70, 71], which do not consider this constraint.

3.3.3 Largest Match Search
Our approach to identifying the largest valid mapping M ∗

for each supervisor vertex ui,j
in  is outlined in Alg. 5 and illustrated in Fig. 3.4. Initially, it tries to match all ancestor

vertices in candidate subgraphs c
, extracted from the unmatched graph 

excl
(Line 2).

The search is re�ned by iteratively excluding ancestors in a breadth-�rst manner from c

(Line 8, and 21).

To this end, a re�ned search front F c
is formed for each iteration (Line 4-6, Line 9). The

algorithm explores all k-combinations of Fcon in descending order of k (Line 6). For each

combination, the largest candidate mapping Mc
is sought by traversing all valid topologies

of  , starting from the re�ned search front F c
(Line 7-10). Every time a match is found, the

mapping is extended and the search front is updated (Line 11-16). Our approach assumes

that vertices are stateful, i.e., vertices of similar labels are connected with one another,

ensuring the uniqueness of the match (Line 12-13). If a larger mapping is found, M ∗
is

updated (Line 17-18). The algorithm halts the search if no larger match can be found

(Line 19-20). To lower computational complexity, we apply crucial greedy approximations

in lines 6 and 7, as further motivated in Sec. 3.3.4.

We may only consider mappingsM ∗
that ensure that the updated supergraph′ remains

acyclic after updating with Eq. (3.1). To ensure this, we initiate each candidate search at the

roots of 
excl

and  , as speci�ed in Line 4 and 7, adopting a search strategy aligned with

the topological sort of  and a breadth-�rst search of 
excl

. This approach guarantees that

edges between matched vertices in dom(M ∗), represented by  ∗
, cannot create cycles in ′.

For vertices not matched in dom(M ∗) (designated as  -
), their positioning is either strictly

prior to or following  ∗
in the topological sense, thus also ensuring acyclicity in ′. This

strict placement is achieved by initially removing only root vertices from consideration
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Algorithm 5: Largest Match Search

Input: Designated supervisor label s
Input: Supergraph 
Input: Unmatched computation graph u

Input: Vertices to be matched Au

Output: Largest mapping M ∗

1 M ∗ ← Initialize an empty mapping

2 
excl

← Initialize search graph as u

3 while True do
4 F

excl
← Initialize search front as roots R(

excl
)

5 Fcon ← Determine constrained front: F
excl

∩Au

6 forall Fcom ∈ k-comb(Fcon) do // Greedy: one Fcom per k
7 forall � ∈  -1

s () do // Greedy: only a single �
8 c ← Remove u ∈ Fcon ⧵ Fcom from V (

excl
)

9 F c ← Initialize front: F
excl

⧵ (Fcon ⧵ Fcom)
10 Mc ← Initialize an empty candidate mapping

11 forall v ∈ � do
12 if ∃u ∈ F c ∶ fm(u,v) = True then
13 u ← {u ∈ F c ∶ fm(u,v) = True}

14 Mc ← Extend mapping: Mc ∪{(u,v)}
15 c ← Remove matched u from V (c)
16 F c ← Update front: F c ⧵ {u}∪R(c)

17 if |dom(M c) ∩Au | > |dom(M ∗) ∩Au | then
18 M ∗ ←Mc /* Store largest mapping */

19 smax ← |Au | − |Au ⧵ V (excl
)| − (|Fcon | − |Fcom |)

20 if (|dom(M ∗) ∩Au |) ≥ smax or |dom(M ∗)| = | | then return M ∗

21 
excl

← Exclude vertices from search graph: V (
excl

) ⧵ Fcon
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(Line 4) and subsequently extending the search frontier solely upon removing a newly

found match that subsequently leads to new root vertices (Line 15-16).

3.3.4 Limitations and Approximations
The e�cacy of our approach is contingent on a set of assumptions. Firstly, the best

performance is achieved when the computation graphs exhibit a recurring topological

structure. Secondly, the model assumes substantial time-scale di�erences between what we

term the supervisor vertex and other vertices. Finally, our approach assumes that vertices are

stateful, i.e., vertices of similar labels are connected with one another. These assumptions

are particularly well-suited for cyber-physical systems where components are stateful and

run at �xed target frequencies, and where the supervisor vertex often takes the form of

a slower, learning agent or an outer-loop controller. Moreover, the algorithm assumes

that the computation graphs’ structure does not depend on the data processed by the

vertices. Speci�cally, we assume delays in the system are not a function of the internal

states, outputs, or incoming inputs.

Identifying the minimal common supergraph is an NP-hard problem [67]. To manage

this complexity, we make several approximations to Alg. 5. If all vertices are assumed to be

stateful, then the constrained front Fcon can contain at most one vertex for each label, i.e.

|Fcon| = |rng(L)|. Then, the worst-case time complexity for considering all topological sorts

of the supergraph  and all combinations of Fcon is (2|rng(L)| + |V |!) (Line 6-7 in Alg. 5). We

alleviate this by considering only a single topological sort of  and a single combination

per combination size k, reducing the worst-case time complexity to (|rng(L)+1|+ |V |). We

have found that these approximations do not signi�cantly impact the resultant supergraph

in our evaluations, as detailed in the ablation study in Appendix 3.B. Lastly, the sequence

in which computation graphs are processed can a�ect the resultant supergraph. Similar to

[71], this has not proven to have a signi�cant impact in our evaluations.

3.4 Experimental Evaluation
The main focus of this work is an e�cient approach to simulate delays in parallelized

simulation on accelerator hardware. We present our experiments to show the capabilities of

our approach and to support our key claims that our approach (i) emulates asynchronicity

leading to more accurate simulation, (ii) e�ciently handles time-scale di�erences and

asynchronicity, resulting in higher parallelized simulation speeds than baseline approaches,

(iii) scales to complex system topologies. In the remainder of this section, we will use mcs
to refer to our proposed method.

3.4.1 Baselines
We outline three baseline methods for our experimental evaluation. The sequential baseline

(seq) assumes no delays in computation graph processing, illustrating a conventional

approach as shown in Fig. 3.1a. This baseline serves as a reference for evaluating the

impact of realistic delays in simulations.

We then introduce two baselines that incorporate delays by randomizing predication

masks in parallelized simulations, but di�er in supergraph construction. Given the absence

of existing methods that can handle the DAG constraint and partitioning requirements
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for our supergraph (as discussed in Sec. 3.3.3), these baselines represent straightforward

strategies for supergraph construction. Both baselines sequentially stack K layers in

the supergraph, with each layer containing a vertex for every non-supervisor label and

concluding with a �nal layer of a single supervisor vertex. This structure ensures the

supergraph is a DAG and with its size as | | = K × (|rng(L)| − 1) + 1, thereby ensuring

subgraph monomorphisms across partitions with an adequate number of layers. The

topological baseline (top) sets K equal to the number of vertices in the largest partition.

While this method guarantees a subgraph monomorphism with each partition, it can lead

to disproportionately large supergraphs with sparse layer utilization. The generational
baseline (gen), on the other hand, sets K as the maximum path distance across partitions.

This approach is more space-e�cient but also tends to over-include vertices, as it does not

account for time-scale di�erences between vertices. Consequently, each layer incorporates

every vertex label, even those infrequently used.

To evaluate these methods, we introduce the supergraph e�ciency metric (�):

� = 100×
1
N

∑
i,j

|i,j |
| |

Here, N denotes the total number of partitions, with � indicating the mean partition size

relative to the total supergraph size. This metric e�ectively quanti�es the proportion of

vertices actively utilized (unmasked) in emulating the computation graphs across episodes.

Note that a 100% e�ciency may not be achievable in practice, as it would imply that all

partitions have an equal number of vertices.

3.4.2 Performance
In this set of experiments, we aim to validate that randomizing predication masks during

training enhances the �delity of robotic simulations and our approach to identifying the

supergraph leads to more e�cient parallelized simulations. We validate the performance on

two real-world systems: a pendulum swing-up task and a vision-based robotic manipulation

task. We use two di�erent control strategies, reinforcement learning (RL) and model

predictive control (MPC), to demonstrate the utility of our approach in di�erent real-world

settings.

Pendulum swing-up task
The pendulum swing-up task is a well-known RL benchmark with nonlinear, unstable, and

underactuated dynamics sensitive to delays [45]. The choice for this task is deliberate; it

highlights the core challenge of delay compensation in reinforcement learning. By demon-

strating how neglecting delay simulation can impair policy transfer even in seemingly

simple scenarios, we underscore the greater consequences for complex systems where

delays are unavoidable and complexity is greater, as discussed in prior work [27, 72–74].

The simplicity of the task serves to clarify the fundamental importance of accounting for

delays in sim2real approaches.

The experimental setup and control diagram are depicted in Fig. 3.5. A failure to emulate

the asynchronous real-world interactions between components makes a simulation-trained

policy ine�ective when transferred to a real-world setting. Policies were trained using soft

actor-critic (SAC) [75] in two simulators: one emulating delays (our approach: mcs) and
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(a) Pendulum (b) Control diagram

Figure 3.5: Experimental setup and control diagram for the pendulum swing-up task. Panel (a) depicts

the experimental setup, and panel (b) shows the control diagram.
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Figure 3.6: Sim2real evaluation of an RL policy trained to swing up a pendulum with (mcs) and

without delays (seq). Panels (a) and (b) show the training curve and sim2real evaluation, respectively,

while panel (c) shows the speed performance.

another without delays (sequential approach: seq). Note that the gen and top baselines

are not included in the sim2real evaluation. This exclusion is due to their replication

of the same e�ective computation graphs as mcs, leading to identical policy outcomes.

Hence, we only consider these baselines later on in the simulation speed evaluation within

this section. We record 10 computation graphs from the real-world system to identify

a supergraph, partitioning and corresponding predication masks that were randomized

during training. Each experiment was replicated �ve times with di�erent random seeds

and the results are presented in Fig. 3.6. Though the sequential (seq) approach exhibits

quicker convergence and superior simulated performance, it underperforms in real-world

tests compared to our approach that includes latency simulation during training. A smaller

performance gap between simulation and reality suggests that our approach leads to more

accurate simulation, yielding more e�ective real-world policies. This is further supported

by cross-evaluations of the trained policies in each other’s training environment, where

mcs proved e�ective in both environments, unlike seq.

On average, it took 0.54 seconds to identify the supergraph and predication masks for

the 10 recorded computation graphs, which is a one-time startup cost that is small compared

to the total training and compilation time of 100 seconds. To establish the link between

e�ciency and simulation speed, we carried out a parallelized performance evaluation
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(a) Box pushing (b) Control diagram

Figure 3.7: Experimental setup and control diagram for the box pushing task. Panel (a) depicts the

experimental setup, and panel (b) shows the control diagram.
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Figure 3.8: A comparison of four MPC strategies for a task where a manipulator moves a box to a

target: three consider delays (mcs, gen, top) and one does not (seq). Panels (a) and (b) depict the mean

convergence rate and �nal accuracy over 10 episodes with 95% con�dence intervals, respectively,

while panel (c) correlates these with the achieved replanning rate. The seq strategy, although faster

initially, leads to less accurate movements due to ignoring delays. The mcs method, while replanning

less frequently, achieves approximately 40% higher accuracy. Moreover, mcs exhibits the highest

replanning rate with a smaller supergraph (mcs: || = 54) compared to gen (|| = 139) and top (|| = 223)

that also consider delays.

of the swing up-task on an RTX 3070 GPU. We deliberately measure simulation speed

during policy evaluation rather than measuring the overall training time to clearly separate

simulation speed improvements from any learning algorithm and training-related overhead.

We compiled the supergraph with JAX [76] and randomized the predication masks across

1000 parallelized episodes. We used the supergraphs produced by our approach with

backtracking � = 5 and both baseline methods and recorded the simulation frames per

second (fps). As indicated in Fig. 3.6, our method notably outperforms other baselines

that include delays, achieving an approximate simulation speed of 3 million fps. This

improvement is largely attributed to a more compact supergraph. We observed a clear

linear relationship between � and simulation fps, which is consistent with the inverse

proportionality between simulation fps and supergraph size.
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Manipulation task
In the manipulation task, a Viper 300x robotic manipulator moves a box to a target based

on streaming webcam images. The goal is to minimize the distance between the box

and a goal position. Our experimental setup and control diagram are shown in Fig. 3.7.

Emphasizing the importance of delay simulation, we use a consumer-grade Logitech C170

webcam, chosen for its low resolution, modest frame rate, and high latency, to track the

box’s position and orientation.

We adopt the MPC approach from [77], planning actions based on the most recent

robot observations using the Cross Entropy Method (CEM) [78]. CEM, known for its

e�cient, derivative-free optimization, is particularly advantageous due to its paralleliz-

ability. Considering the contact-rich nature of box pushing, we opt for Brax [17] as our

dynamics model within the MPC framework, instead of learning complex contact dynamics.

Brax, a di�erentiable physics simulator, is optimized for GPU acceleration and e�ectively

handles contact-rich tasks. In a similar approach, [79] recently used PhysX [15] to solve

a box-pushing task. Our implementation employs CEM for three iterations, involving 75

samples per iteration and a planning horizon of two control steps, each lasting 0.15 seconds.

We implement our approach using JAX [76] and execute it on an RTX 3070 GPU.

We evaluate four MPC strategies: three accounting for delays (mcs, gen, top) and one

ignoring them (seq). Delay-inclusive strategies, following [77], use past plans to predict

future box positions and orientations at action time. This prediction is based on the 10

recorded computation graphs of the system that are used to identify a supergraph, parti-

tioning, and corresponding predication masks. On average, it took 1.53 seconds to identify

the supergraph and predication masks for the 10 recorded computation graphs, which is a

one-time startup cost that is small compared to the total evaluation time of 160 seconds.

Due to their computational load, these strategies have a lower replanning rate compared

to the delay-agnostic seq. The slower the replanning rate, the further into the future the

planner must predict, increasing the likelihood of inaccurate predictions. As Fig. 3.8b shows,

mcs achieves 40% higher accuracy than seq, despite less frequent replanning. Moreover,

the mcs method also results in smoother operations than seq. The larger supergraphs in

gen and top result in excessively slow replanning, signi�cantly reducing convergence rates,

and �nal accuracy. This illustrates the trade-o� between accuracy and e�ciency, where

the improved accuracy must justify the additional computational load.

3.4.3 Scalability
The next set of experiments support the claim that our approach scales to complex sys-

tem topologies. In Sec. 3.4.2, we showed that employing a supergraph with randomized

predication masks can e�ectively emulate direct delay simulation. We also identi�ed an

approximate linear correlation between graph e�ciency � and simulation speed. Next,

we assess our method’s scalability, analyzing various system topologies and modifying

node counts and asynchronicity degrees to ascertain their e�ects on identifying e�cient

supergraphs. In this section, we consider two cyber-physical systems for which delay

simulation is crucial: vehicle-to-vehicle (V2V) platooning [26, 74, 80] and unmanned aerial

vehicle (UAV) swarm control [27]. Furthermore, a detailed analysis of the impact of di�erent

abstract topological characteristics on supergraph e�ciency is provided in Appendix 3.A.

Fig. 3.9a illustrates the V2V platooning and UAV swarm control systems. In V2V
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(a) Schematic (b) Topology

Figure 3.9: Panel (a) shows the V2V platooning and UAV swarm control systems, with the former

comprising a leader and followers, and the latter a central controller and UAVs. Panel (b) depicts their

respective topologies, where every component communicates at 20 Hz with each other, while the

simulator runs at 200 Hz. The leader and controller are chosen as the supervisor nodes, respectively.
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Figure 3.10: The computational complexity versus e�ciency for di�erent topologies, asynchronicity

levels, and node counts, highlighting their impact on performance.

platooning, vehicles maintain a set distance and speed, following a leader. This requires

each vehicle to respond to the leader, highlighting the necessity for delay-aware simulation.

Vehicles communicate with the leader and the vehicle ahead. For UAV swarm control, a

central entity directs the UAVs to prevent collisions and achieve formation, with UAVs

communicating solely with this controller. Additionally, each component connects to the

simulator to enable physics simulation. Accurate simulations require delays simulation in

both systems, as discussed in [26] and [27]. Within systems encompassing N nodes, there

is a single simulator and one leader or controller designated as the supervisor, alongside

N −2 Followers and UAVs, respectively, as illustrated in Fig. 3.9b. The simulator runs at

200Hz, while all other nodes communicate with each other at a target rate of 20Hz. The

e�ective sampling time of every node i is computed as Δti,k = Δti +max(0,xkΔti), where

xi,k is the delay of node i, experience during sequence number k, scaled with the node’s

nominal sampling time. An Ornstein-Uhlenbeck (OU) process [81] is used to model every

node’s delay to re�ect the temporal correlation of delays, de�ned as follows:

xk = �xk−1 +��, (3.2)
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Figure 3.11: Top row shows V2V plots, while the bottom row shows UAV plots. Panel (a) shows the

elapsed time for completion with N = 32 nodes across various asynchronicity. Initial episodes are

time-intensive due to numerous preliminary partial matches, followed by a consistent linear time

scaling in processing time. Panels (b) and (c) compare the e�ciency of mcs (our approach), top, and

gen. In panel (b) the number of nodes is varied with no asynchronicity (� = 0), while in panel (c) the

asynchronicity levels are varied with a �xed size of N = 8 nodes.

where � is a correlation coe�cient, � is the standard deviation, and � is a Gaussian random

variable with zero mean and unit variance. The standard deviation of an OU process is

related to the standard deviation of a Gaussian distribution with �g =
√
�2
2� . We arti�cially

generate computation graphs for the topologies depicted in Fig. 3.9b, varying the asyn-

chronicity level � ∈ {0,0.1,0.2,0.3} and the number of nodes N ∈ {2,4,8,16,32,64}. We

replicate each experiment 5 times using di�erent random seeds. For each con�guration,

we generate 10 computation graphs, each running for a duration of 10 seconds. Example

computation graphs are presented in Appendix 3.C. We employ Alg. 4 to identify a super-

graph on a single core of an Intel Core i9-10980HK and compare its performance with two

baseline approaches.

Fig. 3.10 presents an analysis of our method’s computational complexity in constructing

the supergraph, considering both the computation graph’s characteristics (N ,� ) and topol-

ogy (v2v, uav). We observe that e�ciency is inversely related to the asynchronicity level

and, to a lesser extent, to the number of nodes. Moreover, a decrease in e�ciency correlates

with an increase in computation time, primarily because fewer complete matches are found.

Nevertheless, the one-time upfront cost of identifying the supergraph is usually minor

when compared to the overall simulation time, substantiating our claim that our approach

scales e�ectively to complex system topologies. Fig. 3.11a details the required computation
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time under varying levels of asynchronicity, as it processes all recorded computation graphs.

The initial episodes incur higher computational costs due to the increased computational

overhead of handling numerous partial matches (Line 6-7 in Alg. 5), while subsequent

episodes demonstrate linear scaling in time.

Fig. 3.11b compares the performance of our algorithm with baseline approaches for

di�erent numbers of nodes when there is no asynchronicity (� = 0). Our approach achieves

a 100% e�ciency, whereas the e�ciency of baseline approaches declines rapidly as the

number of nodes increases. Fig. 3.11c demonstrates the performance of our algorithm com-

pared with baseline approaches for di�erent levels of asynchronicity when the topologies

comprise N = 8 nodes. As asynchronicity increases, partitions become more dissimilar, and

the e�ciency of our approach does decline, yet it remains multiples higher than that of the

baseline approaches. The supergraphs generated by our method, along with those from

the baseline approaches, are depicted in Appendix 3.C.

In summary, our evaluation suggests that our method successfully emulates asyn-

chronicity, o�ering more accurate and faster parallelized simulations compared to baseline

approaches. At the same time, our method scales well to larger system topologies by

�nding more e�cient supergraphs than baseline methods. Thus, we have substantiated all

our key claims through this experimental evaluation.

3.5 Related Work
Accelerated Physics Simulation Accelerated physics simulators like Brax [17], MJX

[18], and PhysX [15] are designed for GPU execution. However, they lack features for

simulating delays between their physics engine and other components, such as sensors and

actuators. Moreover, to mimic complete systems, these simulators must be extended with

controllers and perception modules. Yet, these extensions typically interact with simulators

sequentially, ignoring the concurrent and asynchronous nature of real-world systems. Our

approach builds on this by dividing these simulators into separate components, facilitating

the simulation of asynchronous interactions between them.

Adressing Asynchronicity and Delays The ORBIT framework [39] and research by

[82] have explored integrating delays into robotic simulations. While ORBIT introduces

actuator delays to PhysX, it overlooks the asynchronicity between other system components.

[82]’s work centers on compensating for system delays in the learning algorithm, not

addressing the dynamic interactions among delayed components. In contrast, our method

extends beyond actuator delays, encompassing asynchrony across all components.

Minimum Common Supergraph Our approach addresses a variant of the minimal
universal supergraph (MUG) problem, which seeks the smallest supergraph, i.e., the mcs,

containing all graphs in a given set as a subgraph [83]. Unlike the brute-force exact

algorithm presented in [83], which is suitable only for small graph sets, our approximate

greedy algorithm is capable of handling graphs with more than 2000 vertices. In [71], an

iterative update strategy, based on [70], is utilized to approximate the mcs. Our method

shares similarities but satis�es an additional constraint: the resulting mcs must remain

acyclic post-merge. Furthermore, our extended objective is to e�ciently partition a provided
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set of larger graphs into smaller subgraphs before �nding the mcs for these partitioned

subgraphs. In contrast, [83] and [71] start from a given and static collection of graphs

and focus strictly on the identi�cation of the mcs, meaning the partitioning we perform

together with the supergraph identi�cation is already a given in their scenario.

Both [83] and [71], and our method, (approximately) solve the maximum common
subgraph problem as a subroutine to �nd the minimum common supergraph (mcs) [84, 85].

However, our focus is on subgraph monomorphisms, which allow for additional edges

in the subgraph, rather than induced subgraph isomorphisms, which require a one-to-

one correspondence between every node and edge in the subgraph and target graph. To

e�ciently identify the largest mapping, we introduce an algorithm that leverages the

acyclic nature of our mcs that accelerates the search for a large approximate mapping.

Note that our algorithm restricts the largest mapping to connected subgraphs, potentially

overlooking larger disconnected mapping candidates.

3.6 Conclusion
In this chapter, we introduced a method for e�ciently simulating inherently asynchronous

systems on accelerator hardware. Our approach leverages recorded computation graphs

from real-world operations to accurately model asynchronicity and time-scale di�erences.

The experiments suggest that our approach provides a scalable, e�cient, and accurate

means for simulating cyber-physical systems. We evaluated our method in two real-world

scenarios against baselines and con�rmed its e�cacy in emulating asynchronicity and

handling time-scale di�erences e�ciently. Our work opens avenues for developing fast

and accurate cyber-physical system simulations. Finally, our approach holds promise for

enhancing the integration of other machine learning algorithms that generate dynamic

graphs into frameworks like Jax [76], by aligning dynamic computation graphs with static

ones.
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Appendix 3.A: Scalability Analysis
In this scalability study, we focus on arti�cially generated computation graphs, as they

allow us to systematically vary the number of nodes, the level of asynchronicity, and the

topology of the graph. We consider three di�erent topologies: unidirectional, bidirectional,
and unirandom, depicted in Fig. 3.12.

The nominal sampling time of each node is set according to the node’s index i as

Δti = 1
i s, except for the last node’s sampling time which is set to ΔtN = 1

200 s. These

topologies resemble cascaded control schemes that are common in robotic systems, with

slower learning-based nodes and faster simulator nodes with intermediate controllers,

estimators, sensors and actuators. The e�ective sampling time is computed with Eq. (3.2)

as further detailed in Sec. 3.4.3.

As in Sec. 3.4.3, we consider a di�erent number of nodes N ∈ {2,4,8,16,32,64}, and a

varying levels of asynchronicity � ∈ {0,0.1,0.2,0.3}, and replicate every experiment 5 times

using di�erent random seeds. For each con�guration, we generate 20 computation graphs,

each running for a duration of 100 seconds.

Figures 3.13a, 3.13b, and 3.13c illustrate the performance of our algorithm for di�erent

numbers of nodes when there is no asynchronicity (� = 0). Our approach achieves a 100%
e�ciency for the unidirectional topology, whereas the e�ciency of baseline approaches

declines rapidly as the number of nodes increases. The superior e�ciency of our approach

in the unidirectional topology is attributed to its fewer connections. Figures 3.13d, 3.13e, and

3.13f demonstrate the performance of our algorithm for di�erent levels of asynchronicity

when the network comprises N = 8 nodes. As asynchronicity increases, partitions become

more dissimilar, and the e�ciency of our approach does decline, yet it remains multiples

higher than that of the baseline approaches.

Figure 3.14 presents an analysis of our method’s computational complexity in con-

structing the supergraph, considering both the computation graph’s characteristics and

topology, and the scaling of supergraph search complexity over all recorded computation

graphs. Figures 3.14a, 3.14b, and 3.14c detail our algorithm’s complexity under varying

asynchronicity levels through time as it processes all recorded computation graphs. The

initial episodes incur higher computational costs due to the increased computational over-

head of handling numerous partial matches (Line 6-7 in Alg. 5), while subsequent episodes

demonstrate linear scaling in time.

In Fig. 3.15, we again observe that e�ciency is inversely related to both the asyn-

chronicity level and the number of connections per node within a topology. Speci�cally,

the unidirectional topology outperforms the bidirectional and unirandom topologies due

to its fewer edges. A decrease in e�ciency correlates with an increase in computation time,

primarily because fewer complete matches are found, which is consistent with the results

in Sec. 3.4.3. While the most substantial contributor to computation time is the number of

nodes in the topology, it does not a�ect e�ciency as similar e�ciency is achieved with

di�erent numbers of nodes.
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(a) Unidirectional (b) Bidirectional (c) Unirandom

Figure 3.12: Three abstract topologies to evaluate the scalability of our approach. (a) Unidirectional:
each node has a single outgoing connection. (b) Bidirectional: each node has two outgoing connections.

(c) Unirandom: akin to Unidirectional, but with an extra random outgoing connection per node.
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Figure 3.13: E�ciency comparison of mcs (our approach), top, and gen. In panels (a-c) the number of

nodes is varied with no asynchronicity (� = 0), while in panels (d-f) the asynchronicity levels are

varied with a �xed size of N = 8 nodes.

0 50 100
matched (%)

0

50

100

el
ap

se
d 

ti
m

e 
(s

)

0.0 0.1 0.2 0.3

0 50 100
matched (%)

0

50

100

el
ap

se
d 

ti
m

e 
(s

)

(a) Unidirectional

0 50 100
matched (%)

0

50

100

el
ap

se
d 

ti
m

e 
(s

)

(b) Bidirectional

0 50 100
matched (%)

0

50

100

el
ap

se
d 

ti
m

e 
(s

)

(c) Unirandom

Figure 3.14: Performance analysis of computational complexity and e�ciency. Panels (a-c) show the

elapsed time for completion with N = 32 nodes across various asynchronicity levels and topologies.

Initial episodes are time-intensive due to numerous preliminary partial matches, followed by a

consistent linear time scaling in processing time.
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Figure 3.15: Complexity and e�ciency versus node count, asynchronicity, and topology, highlighting

their impact on performance.
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Appendix 3.B: Ablation Study
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Figure 3.16: Ablation study on topologies with N = 32 and � = 0.1, examining computational complex-

ity and e�ciency. Sub-�gures show: (a) E�ects of varying � ; (b) E�ciency-impact of considering one

(linear) vs. all combinations per size k (power); (c) Comparison of arbitrary and max-edgetopological

sorts.

In this study, our goal is to substantiate that our approach employs simpli�cations dis-

cussed in Sec. 3.3.4 that reduce computational complexity without signi�cantly a�ecting

performance. For this ablation study, we focus on the topologies in Fig. 3.12 with N = 32
and � = 0.1, ablating the proposed simpli�cations.

Fig. 3.16 illustrates that the bene�ts of backtracking are limited. However, it neither

increases the computational complexity of our approach nor adversely a�ects e�ciency.

We also analyzed the e�ect of considering only a single combination for each size k, as

opposed to exploring all combinations. Fig. 3.16 demonstrates that this simpli�cation has

negligible impact on e�ciency but considerably reduces the computational complexity (note

the log-scale). It is worth noting that only considering a single combination even seems to

perform slightly better in some cases. This outcome, while not statistically implausible,

may also be caused by other factors, such as the order in which the graphs are processed.

Our hypothesis centers on the speci�c nature of the computation graphs generated by

cyber-physical systems. These graphs tend to exhibit a relatively �xed structure, meaning

the variety of topological orderings is considerably constrained compared to more generic

graphs. Consequently, this structural rigidity could diminish the advantages we might

expect from checking all combinations.

Lastly, we explored the implications of using a single topological sort. Rather than

exhaustively considering all topological sorts—an approach that would be computationally

prohibitive—we compared the e�ects of using an arbitrary sort versus a max-edge sort.

The max-edge sort of the supergraph is de�ned as one that accommodates the maximum

number of potential edges (i.e., constraints) and therefore increases the chance of �nding a
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match in Alg. 5. Due to the inherent unidirectionality of the unidirectional topology, the

max-edge sort arranges vertices of lower indices before those of higher indices. Since we

lack max-edge sorting criteria for bidirectional and unirandom topologies, we limited this

part of the study to the unidirectional topology. Fig. 3.16 shows that this simpli�cation has

negligible impact on e�ciency.

Appendix 3.C: Graphs
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Figure 3.17: Panel (a) presents a segment of a computational graph corresponding to the platooning

scenario in Fig. 3.9b with N = 4 and � = 0.2. Vertices of identical color correspond to the same periodic

computation unit, and edges represent data dependencies. Panels (b-d) illustrate the supergraphs

generated by our method (mcs), as well as the topological (top) and generational (gen) methods. Our

approach yields a supergraph with a reduced number of vertices, indicating enhanced e�ciency in

identifying commonalities across the computation graphs.
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(a) Computation graph of UAV swarm control
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Figure 3.18: Panel (a) presents a segment of a computational graph corresponding to the uav swarm

scenario in Fig. 3.9b with N = 4 and � = 0.2. Vertices of identical color correspond to the same periodic

computation unit, and edges represent data dependencies. Panels (b-d) illustrate the supergraphs

generated by our method (mcs), as well as the topological (top) and generational (gen) methods. Our

approach yields a supergraph with a reduced number of vertices, indicating enhanced e�ciency in

identifying commonalities across the computation graphs.
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4
Accuracy: Estimating

Dynamics and Delays of
Graph-Based Simulations

Although �exible and fast simulations are essential for robotic learning, it is often challenging
to obtain accurate simulations that closely match real-world dynamics due to unmodeled
e�ects such as delays. These inaccuracies often result in policies that work well in simulation
but fail in real-world deployment.

This chapter addresses this gap by presenting a framework, REX (Robotic Environments with
jaX), for improving the accuracy of simulations through the estimation of delays and system
dynamics based on real-world data. The framework builds on the graph-based architecture
from earlier chapters, enhancing �delity in sim2real transfers by simulating asynchronous
operations and compensating for various types of delays.

This chapter is partly based on q B. van der Heijden, J. Kober, R. Babuska, and L. Ferranti, (2025). "REX: GPU-
Accelerated Sim2Real Framework with Delay and Dynamics Estimation", Transactions on Machine Learning Research
(TMLR) [86].
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4.1 Introduction
Sim2real, the transfer of control policies from simulation to the real world, is crucial

in robotics thanks to its ability to solve tasks e�ciently without the risks associated

with real-world learning [22, 31]. With recent advancements in physics simulation on

accelerator hardware [15–18], parallelized simulations have greatly reduced training times

for complex tasks [22, 87]. However, discrepancies between simulation and reality, such

as unmodeled dynamics, often reduce the e�ectiveness of these policies in real-world

applications. Addressing this ‘sim2real’ gap is essential for e�ective transfer of policies

from simulation to the real world.

A critical yet often overlooked issue in sim2real transfer is the impact of latency in real-

world systems, which can degrade performance [29, 31, 32, 88]. The real world is inherently

asynchronous, with delayed sensor data causing agents to act on outdated information.

Additionally, slow policy evaluations can further delay the agent’s actions, compounding

these latency issues and leading to suboptimal performance. To mitigate these e�ects,

Fig. 4.1 illustrates two common compensation strategies: simulating delays during training

(Fig. 4.1c) [31, 63, 88] and using an estimator to predict future states (Fig. 4.1d) [77, 89–91].

However, both strategies have limitations. Delay simulation complicates training because

the agent’s input must include a history of observations and actions to restore the Markov

property, while an estimator requires accurately modeled system dynamics and delays,

which are often di�cult to identify [92].

The hierarchical and asynchronous nature of robotic systems further complicates ac-

curate and e�cient simulation on accelerator hardware. Unlike conventional RL, which

assumes a single, synchronized environment [23], robotic systems consist of interconnected

models operating at di�erent rates, with asynchronous communication introducing com-

plexities like inter-model latencies and stochastic dynamics [24, 64], leading to irregular

computation patterns. Irregular execution paths require serialization, reducing GPU e�-

ciency, and while simulating time-scale di�erences improves sim2real accuracy, it further

exacerbates this ine�ciency [25].

The main contribution of this chapter is a sim2real framework, REX (Robotic Envi-

ronments with jaX), that introduces a graph-based simulation model with latency e�ects,

optimized for parallelization on accelerator hardware. The framework’s innovation lies in its

ability to simulate asynchronous, hierarchical systems by explicitly modeling computation,

communication, actuation, and sensing delays, while incorporating delay compensation

strategies for improved sim2real transfer. Parallelization in both state and parameters

allows for simultaneous estimation of system dynamics and delays from real-world data,

e�ciently minimizing the sim2real gap. Additionally, it supports real-world deployment

by distributing computations across CPU cores and accelerators, optimizing for latency

and performance.

For RL and robotics practitioners, this framework o�ers several advantages. It enables

the modeling of both simulated and real-world systems through a uni�ed, ROS-like graph-

based pipeline [24]. The framework supports accelerated training speeds familiar to RL

work�ows and reduces the sim2real gap by re�ning models with real-world data. Integra-

tion with the JAX [76] ecosystem further supports advanced RL training and optimization

[93–96].

Building on these advantages, we make four key claims: Our framework (i) enables
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(a) Naiive (b) Real world (c) Delay simulation (d) Delay compensation

Figure 4.1: A policy trained in simulation (a) may perform suboptimally in the real world (b) due

to delays. The notation ut+�a |t−�s denotes that an action u is applied at t + �a based on information

up to t − �s , where �a and �s are the actuation and sensing delays, respectively. By simulating these

delays during training (c), the sim2real gap with (b) can be reduced. Alternatively, an estimator (d)

can predict future states and compensate for delays, improving policy transfer from (a) to (d). The

notation xt+�a |t−�s denotes that a state x is predicted at t + �a based on information up to t − �s .

the identi�cation of both dynamics and delays from real-world data, (ii) implements delay

compensation and simulation techniques that are essential for e�ective sim2real trans-

fer, (iii) facilitates e�cient parallelized o�ine simulation on accelerator hardware, (iv)

supports real-time online processing capabilities that meet the latency and performance

requirements of real-world systems. These claims are supported by experiments on two

real-world systems. The pendulum swing-up task clearly demonstrates how neglect-

ing delay simulation can impair policy transfer, highlighting the need for delay-aware

approaches, while the quadrotor task shows scalability to more complex robotic sys-

tems. The documentation, tutorials, and our open-source code can be found at https:
//bheijden.github.io/rex/. A video recording of the real-world experiments

is available at https://youtu.be/7j30LUjTx_I.

4.2 Related Work
Sim2Real Frameworks Sim2real frameworks such as Orbit [39], Drake [40], and EA-

GERx [29] facilitate the transfer of control policies from simulation to real-world settings.

However, they generally do not include direct support for delay or dynamics identi�cation

from real-world data. Our framework addresses this gap by integrating these capabilities

directly into the framework. Orbit utilizes Nvidia PhysX for parallelized simulations on

accelerator hardware [15]. Our framework is based on JAX [76] to support parallelized

computation on accelerator hardware, while also enabling automatic di�erentiation. More-

over, our framework, like EAGERx [29], is not restricted to a speci�c simulator, as long as

the simulator is compatible with JAX, such as Brax [17] or the MJX extension of MuJoCo

[18]. This �exibility enables users to select and extend engines as needed within the graph-

based model. Tab. 4.1 provides a feature comparison between REX and related sim2real

frameworks.

Delay Estimation System identi�cation involves estimating the system’s dynamics

from input-output data and is a well-established area of research [97]. Traditional methods

primarily focus on linear systems, often utilizing least-squares optimization techniques

https://bheijden.github.io/rex/
https://bheijden.github.io/rex/
https://youtu.be/7j30LUjTx_I
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REX Orbit Drake EAGERx

[39] [40] [29]

Multi-Sim Compatible 3 7 7 3
GPU Accelerated 3 3 7 7
Gradient Information 3 7 3 7
Delay Simulation 3 3 3 3
Delay Estimation 3 7 7 7
Dynamics Estimation 3 7 7 7

Table 4.1: A feature comparison between REX and related sim2real frameworks.

[98], while more recent e�orts have extended to nonlinear systems [99]. Recent advances

leverage the di�erentiability of general-purpose simulators to estimate complex system

dynamics [100–102]. Our approach builds on these advancements by extending simulators

with delay dynamics, allowing for the joint estimation of both system dynamics and delays.

Instead of gradient-based methods, we use evolutionary strategies [103], which we found

to be less susceptible to local minima and better utilize the parallelism of modern hardware

[95].

Delay Simulation Frameworks like Drake, EAGERx, and Orbit provide support for

�xed delay simulation [29, 39, 40]. Our framework, however, extends this capability by

supporting stochastic delay simulation using Gaussian Mixture Models (GMMs). Addition-

ally, it incorporates correlations between delays by considering the system’s topology and

communication structure during simulation. Although our framework allows for correlated

delays, these delays are data-independent and do not change based on the simulated data.

For example, even if an object detection algorithm takes longer to process when multiple

objects are in view, our simulated delays remain the same regardless of the number of

detected objects.

Delay Compensation Delay compensation in sim2real has been addressed through

various methods. Algorithmic approaches for compensating delays have been proposed

by [82, 104]. Other studies have enhanced sim2real performance by simulating delays

during training and using a history of observations and actions as policy inputs [29, 31]. As

part of their approach, [22] modi�ed IsaacGym [105] to include a custom actuator model

from [21], which accounts for control signal delays caused by hardware/software layers.

These methods teach policies to handle delays without compensating for them directly

during real-world execution. Direct compensation techniques, such as the Smith predictor

[89], have long been used in robotics to manage delays from sensors, actuators [90, 91],

and planning latency [77]. In our work, we demonstrate that by compensating for delays

during execution, we can eliminate the need for delay simulation during training, resulting

in a more e�cient training process while maintaining high performance in real-world

applications.
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(a) Real-world system (b) Simulated system with delays

Figure 4.2: Comparison between a real-world system setup and a simulated system with integrated

delays. The real-world system (a) operates with di�erent nodes at speci�ed rates, while the simulated

system (b) incorporates various types of delays to closely mimic real-world timing behaviors, including

sensor, actuator, communication, and computation delays.

4.3 Our Sim2Real Framework
In this section, we present our framework for sim2real transfer in robotics, focusing on

accurately modeling and compensating for the asynchronous interactions and delays

encountered in real-world systems. In the following, we will �rst describe the graph-based

architecture that facilitates asynchronous message passing and delay modeling. We will

then detail the three runtime con�gurations designed for simulation, accelerated training,

and real-time deployment. Finally, we will cover the integration of system identi�cation

techniques and delay compensation strategies to bridge the gap between simulation and

reality.

4.3.1 Overview
The central element of our framework is the node, which represents a discrete unit of

computation or sensing, operating asynchronously within the system. Nodes are designed

to run at speci�ed rates, processing inputs, maintaining state, and generating outputs. In

our approach, both real-world and simulated systems are implemented as networks of

these nodes, where communication occurs via directed edges, as shown in Fig. 4.2a. Each

node’s operation is de�ned by a step function that determines its behavior, transforming

inputs into outputs. For example, nodes can represent various components such as cameras,

agents, or motors, each handling speci�c tasks like sensing, control, or actuation. This

modular design allows for �exible state, time, and action abstractions, supporting the

modeling of complex interactions in a decentralized manner. Nodes are interconnected in a

directed graph, facilitating asynchronous message passing and enabling nodes to operate at

di�erent rates. This design also enables the swapping of real-world nodes with simulated

nodes, resulting in a uni�ed software pipeline that can be used for sim2real transfer.

Asynchronous operations are inherent in real-world systems due to network transmis-

sion times, processing lags, or mechanical response times, which introduces delays into the

system dynamics. To address this, we introduce a delay simulation model that captures both

deterministic and stochastic delays, incorporating realistic timing behavior through delay

distributions for communication, computation, sensor, and actuator delays. As shown in

Fig. 4.2b, our model explicitly de�nes these delays as non-negative distributions, ensuring

that the timing characteristics of the simulated environment closely match those of the real

world. While this provides the structure for delay simulation, the challenge of estimating
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the correct delay parameters is addressed later in Sec. 4.3.3.

The framework supports multiple communication protocols to manage the �ow of

messages between nodes, allowing users to specify whether each communication channel

should be blocking or non-blocking. A blocking channel ensures that a receiver node

waits for the most recent message before processing, which minimizes latency in real-time

systems by avoiding outdated information. However, blocking channels can introduce

instability if delays cause unforeseen propagation through the graph; in such cases, non-

blocking channels may be preferable. For example, an estimator node might opt for

non-blocking behavior to continue predicting the system’s state when sensor messages are

delayed, allowing the controller to maintain responsive operation.

4.3.2 Runtimes
Our framework leverages JAX [76] for e�cient computation, utilizing its ability to

perform just-in-time (JIT) compilation and automatic di�erentiation, which are crucial

for high-performance machine learning applications. Nodes are de�ned using a generic

interface, with parameters, states, and outputs speci�ed using data structures that can be

statically analyzed, as shown in Fig. 4.3a. This approach allows for ahead-of-time (AOT)

compilation of the step method (Fig. 4.3a, Line 12) on various architectures, including

CPUs and GPUs, thereby reducing latency. By compiling nodes in this manner, they can

be seamlessly employed across di�erent runtime modes without modi�cation, ensuring

�exibility and e�ciency in both real-world and simulated environments. Our framework

supports three distinct runtime modes, each tailored for di�erent stages of development,

training, and deployment: WALL_CLOCK, SIMULATED, and COMPILED.

The WALL_CLOCK runtime is designed for real-time execution on physical hardware,

operating at real-time speed with each node’s step function running asynchronously at its

designated rate (Fig. 4.3b, lines 1-14). Nodes can be compiled to run on dedicated hardware

resources such as separate CPU cores or accelerator hardware, minimizing latency (Fig. 4.3b,

Line 17). After initializing the state of the graph, which aggregates the states of all nodes,

the graph can be executed for a speci�ed number of steps while recording the outputs and

their corresponding timestamps (Fig. 4.3b, lines 19-24).

The SIMULATED runtime enables faster-than-real-time simulation, allowing for ac-

celerated testing and development without real-time constraints. Message passing is based

on simulated timestamps that are generated based on the communication protocol of

every connection (blocking or non-blocking) and speci�ed delay distributions, replicating

real-world asynchronous e�ects (Fig. 4.3c, lines 1-14).

The COMPILED runtime further leverages accelerator hardware like GPUs or TPUs

for parallelized execution by enabling the compilation of entire computation graphs into

a single function. This makes this runtime suitable for tasks such as training RL policies

and large-scale system identi�cation that can leverage massive parallelism. Data �ows

from other runtimes (e.g., (Fig. 4.3b, Line 26)) are converted into a computation graph

(Fig. 4.3c, Line 21) and compiled for parallel execution (Fig. 4.3c, lines 22-26), encoding the

asynchronous e�ects of real-world interaction or simulated delays and enabling parallel

execution on accelerator hardware. By supporting these three runtime modes, our frame-

work provides comprehensive �exibility for a wide range of applications, from real-time

deployment to parallelized system identi�cation and policy training.
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1 class Agent(BaseNode):
2 def init_params(self, rng, graph_state):
3 return PyTree(a=..., b=...)
4
5 def init_state(self, rng, graph_state):
6 return PyTree(x1=..., x2=...)
7
8 def init_output(self, rng, graph_state):
9 return PyTree(y1=..., y2=...)

10
11 # AOT jit-compile with graph.warmup()
12 def step(self, step_state):
13 ss = step_state # Shorten name
14 # Read params, and current state
15 params, state = ss.params, ss.state
16 # Current episode, sequence, timestamp
17 eps, seq, ts = ss.eps, ss.seq, ss.ts
18 # Grab the data, and I/O timestamps
19 cam = ss.inputs['cam'] # connectd node
20 cam.data, cam.ts_send, cam.ts_recv
21 # Compute new state, and output
22 new_state = PyTree(x1=..., x2=...)
23 output = PyTree(y1=..., y2=...)
24 # Update step_state for next step call
25 new_ss = ss.replace(state=new_state)
26 return new_ss, output # Sends output

(a) Node de�nition

1 # Real-world nodes
2 cam = Camera(rate=60)
3 agent = Agent(rate=30)
4 motor = Motor(rate=50)
5 nodes = [cam, agent, motor]
6 # Connect
7 agent.connect(cam) # Async msging
8 motor.connect(agent, # Last 2 msgs
9 block=True, window=2)
10 # Runtime: WALL_CLOCK
11 # Used for real-time operation
12 graph = Graph(agent, nodes,
13 Clock.WALL_CLOCK,
14 RealTimeFactor.REAL_TIME)
15 # Ahead-of-time compilation of
16 # every node's .step() method
17 graph.warmup(devices=...)
18 # Run the graph at agent's rate
19 gs = graph.init() # Graph state
20 for i in range(100):
21 gs = graph.run(gs)
22 graph.stop() # Halts all nodes
23 # Gather data (outputs, timings)
24 record = graph.get_record()
25 # Convert to data flow
26 df = record.to_graph()

(b) Real-world runtime

1 # Simulation nodes & connections
2 cam = SimCam(rate=60, delay=Gauss(0.05, 0.01))
3 agent = Agent(rate=30, delay=Gauss(0.02, 0.01))
4 motor = SimMotor(rate=50, delay=Gauss(0.04, 0.01))
5 brax = Brax(rate=100, delay=Deterministic(0.01))
6 nodes = [brax, cam, agent, motor]
7 brax.connect(motor, delay=Gauss(0.01, 0.01))
8 cam.connect(brax, delay=Gauss(0.01, 0.01))
9 agent.connect(cam, delay=Gauss(0.01, 0.01))
10 motor.connect(agent, delay=Gauss(0.01, 0.01),
11 window=2, block=True)
12 # Runtime: SIMULATED (no throttling)
13 graph = Graph(agent, nodes, Clock.SIMULATED,
14 RealTimeFactor.FAST_AS_POSSIBLE)
15 graph.warmup(devices=...) # JIT compilation
16 gs = graph.init() # Graph state
17 for i in range(100): # Simulates 100 steps
18 gs = graph.run(gs)
19 graph.stop() # Halts all nodes
20 # Simulated data flow to computation graph
21 cg = graph.get_record().to_graph().augment(nodes)
22 # Runtime: COMPILED (1000 parallel rollouts)
23 graph = CompiledGraph(agent, nodes, cg)
24 rngs = jax.split(jax.random.PRNGKey(0), num=1000)
25 gss = jax.vmap(graph.init)(rngs) # 1000 states
26 rollout = jax.vmap(graph.rollout)(gss, rngs) # run

(c) Simulation runtimes

Figure 4.3: Node de�nitions (a) use generic PyTrees that allow for compilation across di�erent

architectures for reduced latency. Examples of runtime con�gurations, showing di�erent execution

modes: WALL_CLOCK (b, Line 13) for real-time operation on physical hardware, SIMULATED (c,

Line 13) for simulating without real-time constraints, and COMPILED (b, Line 23) for parallelized

execution on accelerator hardware. Variable names and notations were slightly shortened for clarity

and space.
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(a) Collected data and data �ow (b) Computation graph (c) Optimize

Figure 4.4: System identi�cation example applied to the system in Fig. 4.2a. (a) Data collection

from the real-world system, including sensor data and timing information. (b) Construction of a

computation graph that integrates the data �ow with simulated nodes for dynamics and hidden delay

identi�cation. Motor-Brax edges are added based on a speci�ed delay distribution, while Brax-camera

edges follow a trainable min-max delay speci�cation. (c) Optimization of simulation parameters and

delays to minimize discrepancies between simulated and real-world behaviors, focusing on the delay

interpolation parameter � and the parameters  ,� for the camera and Brax nodes.

4.3.3 System Identification
System identi�cation is crucial for minimizing the sim2real gap by ensuring that the

simulated model closely mirrors the real-world system. Our framework facilitates this

by identifying both the dynamics and delays inherent in real-world systems, allowing for

more accurate simulation and e�ective delay compensation. In the following, we detail

how to build and optimize a tailored computation graph from the real-world data collected

to estimate system dynamics and delays (see Fig. 4.4). Data is collected from the real-world

system using the WALL_CLOCK runtime, logging not only sensor and actuator data but

also the timing information associated with message exchanges between nodes. This

includes the timestamps for when a message is received, when a node begins processing,

and when it sends out the output. Using this data, we construct a data �ow graph that

captures node interactions, including the precise timing of messages (see Fig. 4.4a, and

Line 21 in Fig. 4.3c).

Dynamics The data �ow graph serves as a foundation for identifying the system’s

dynamics. One advantage of using a data �ow graph is that it inherently represents

asynchronous interactions and correctly encodes time-scale di�erences between nodes.

Accounting for these asynchronous e�ects is essential, as they can signi�cantly impact

the identi�ed system dynamics [92]. Given the data �ow graph, our framework builds a

tailored computation graph as follows. We augment the data �ow graph with a simulator

that models the system dynamics by adding simulator nodes at the desired simulation

rate. Edges between simulation nodes and real-world-interacting nodes are introduced

to pass the simulation state to the nodes that model real-world interactions (actuators,

sensors, etc.), according to the assumed delay distributions, as shown in Fig. 4.4b. These

delay distributions are either trainable or prespeci�ed, as explained later in this section.

By replaying actions through the computation graph and comparing the reconstructed

outputs with the collected data, we optimize the simulator parameters to minimize a

reconstruction loss. During this process, all parameters within the computation graph (e.g.
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simulator parameters or those in any other nodes), can be optimized. For instance, in the

example shown in Fig. 4.4c, we simultaneously identify Brax’s system parameters and the

camera’s parameters for angle-to-pixel conversion, but we could have also optimized for

any other parameter in the graph, such as the motor’s friction. The COMPILED runtime

is particularly advantageous for this optimization process due to its ability to parallelize

computations e�ciently. We found evolutionary strategies e�ective for this task, as they

leverage parallelism, constraint speci�cation, and are less susceptible to local minima

[94, 95, 103].

Measurable Delays In addition to dynamics, our framework addresses delay estimation,

distinguishing between directly measurable delays and hidden delays, such as those in

actuators and sensors. Using the recorded timing data, we estimate the communication

and computation delays of the system by �tting a Gaussian Mixture Model (GMM) to the

measurable delay data using gradient descent. Details on the GMM �tting can be found

in Appendix 4.A. Typically, around a thousand samples are su�cient for �tting, which,

depending on the system’s rate, may require less than a minute of data collection. When

sampling from the GMM, we clip the sampled values to be non-negative, as delays are

inherently non-negative.

Hidden Delays With hidden delays we mean delays that are not directly observable in

the data �ow graph, such as delays between the real world and sensors or actuators. While

we support the addition of edges between simulator and real-world-interacting nodes based

on prespeci�ed delay distributions (e.g., motor-Brax connections in Fig. 4.4b), users can

also introduce trainable delays to identify hidden delays (e.g., Brax-camera connections

in Fig. 4.4b). Our approach requires specifying a minimum and maximum bound for

each trainable delay, which we use to introduce additional edges that accommodate all

possible communication patterns between two nodes under minimum and maximum delay

conditions. We then introduce a trainable parameter � ∈ [0,1] for each connection, allowing

interpolation between the minimum and maximum scenarios. Di�erent deterministic

interpolation schemes, such as linear or zero-order hold, are currently supported to model

various delay characteristics.

4.3.4 Delay Compensation
Once the system dynamics and delays are identi�ed, the framework supports various

strategies for delay compensation to enhance sim2real performance.

Delay Simulation One straightforward strategy is to integrate the identi�ed delay dis-

tributions into the simulation environment. This approach, referred to as delay simulation

(Fig. 4.1c), allows the agent to learn policies that are delay aware. Notice that delays make

the problem non-Markovian. To address this, a history of observations and actions can be

stacked and used as input to the policy to restore the Markov property. This does make the

learning problem more challenging, as the agent must learn to solve the task and handle

delays simultaneously, as we will show in our experiments.
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Estimator While RL approaches often treat the environment as a black box, in sim2real

scenarios, we can utilize the identi�ed system dynamics and delays to design a model-

based delay compensator that predicts the system’s behavior during real-world execution.

Inspired by a Smith Predictor [89] and shown in Fig. 4.1d, our strategy is to predict the state

we expect when the corresponding command based on this state reaches the system. By

knowing all delays, we can predict when a command will arrive and estimate the system

state at that future time. Speci�cally, when a sensor captures an observation, we timestamp

it and subtract the identi�ed hidden delay �s to estimate the timestamp of the world’s

state the observation corresponds to, ts −�s . When the estimator processes the observation

at te , it can determine when the resulting command will reach the system by adding the

expected estimator-to-actuator latency, �a , resulting in te + �a . Thus, the estimator �rst

updates the state up to ts −�s and then predicts it forward to te +�a using the past control

inputs and their estimated timestamps. We recommend using an Unscented Kalman Filter

(UKF) [106] for this task because it e�ectively handles non-di�erentiable and non-linear

dynamics, while requiring only a small number of particles that can be e�ciently evaluated

in parallel (see Appendix 4.B for more information). Additionally, in partially observable

settings, a UKF can infer the hidden state of the system from observations and provide this

state to the agent, enabling training in a fully observable, delay-free environment, which

generally facilitates easier learning. In our experiments, we will evaluate the bene�ts of

using such an estimator for delay compensation and compare the performance gains of

delay compensation alone versus delay compensation with hidden state estimation.

4.3.5 Limitations
Our framework does not support running nodes on di�erent machines; computations are

restricted to di�erent devices via JAX. This limits the ability to compile nodes for low-level

controllers onboard a robot. Additionally, JAX’s Just-In-Time (JIT) compilation can lead to

long compilation times, although recent updates with function caching have mitigated this

to some extent.

The framework estimates hidden delays as deterministic, which is a reasonable assump-

tion for many robotics applications. Nevertheless, stochastic delays can be modeled by

adding variability to the deterministically identi�ed delays, for example, to simulate jitter

in sensor readings. Also, our approach requires setting minimum and maximum bounds

for trainable delays, but we have found that using large bounds often yields good results.

Furthermore, our delay simulation is state independent, meaning that while it accounts for

the correlation and stochastic nature of delays, it does not adapt to the speci�c conditions

or data of each simulation step. For instance, if an algorithm takes longer to process when

there are multiple simulated objects in view, our approach would not capture this increase

in processing time that would occur in a real-world scenario.

As systems scale to large con�gurations, e�ciently parallelizing full asynchronicity

for every node can become a challenge. To this end, we leverage the supergraph approach

in [63] to e�ciently parallelize graph-based simulations. Furthermore, the graph-based

framework provides �exibility by allowing users to adjust the level of detail as needed

for the task. For example, users may model entire robots as single nodes, focusing on

interactions between them rather than internal asynchronicity, to maintain scalability in

large-scale systems. The complexity of calculations within nodes is e�ciently managed
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using JAX [76], which enables scalable computations through its support for parallelization

and distributed computing across multiple devices.

4.4 Experimental Evaluation
The main focus of this work is a sim2real framework that addresses asynchronous inter-

actions in real-world systems by modeling delays and using real-world data for accurate

system identi�cation and reinforcement learning training. Our experiments are designed to

validate the key claims made in Sec. 4.1 as follows. First, we identify the system dynamics

and delays from real-world data, followed by a sim2real transfer evaluation using the

identi�ed system while using delay compensation techniques. We validate our approach

on two distinct real-world systems: a pendulum swing-up and a quadrotor control task.

4.4.1 System Identification and Delay Estimation
To support the claim that our approach enables the identi�cation of both dynamics and

delays from real-world data, we present system identi�cation and delay estimation results

for the two selected systems.

Pendulum In contrast to the classic swing-up task [23], which uses full state information,

our setup relies solely on camera images of the pendulum. This task highlights the challenge

of delay estimation and system identi�cation from images. We apply an open-loop voltage

sequence to the motor for 21 seconds while recording a stream of images from a RealSense

d435i camera, in addition to the applied actions and corresponding timing information.

Using this data, we construct a data �ow graph that is augmented to form a computation

graph, incorporating simulator nodes operating at 100 Hz. We introduce edges between the

simulator nodes and the camera and motor via two trainable delays that assume a minimum

and maximum delay of 0 to 50 ms, respectively. Images are �rst preprocessed through

background subtraction and color thresholding to detect the center pixel coordinates of the

red dot that marks the pendulum’s mass. The actions are then reapplied to the simulator,

and we optimize the parameters to minimize the reconstruction error between predicted and

actual pixel coordinates. Simultaneous optimization is performed on several parameters: the

physics parameters of the Brax simulator (mass, length, friction, inertia, etc.), parameters

for hidden camera and motor delays, and the parameters of an ellipse model (center, axes,

rotation) that maps pixel coordinates to angles using the intuition that the pendulum’s

motion (as pixel coordinates) will be an ellipse when projected onto the camera plane. A

UKF is employed for full state estimation and delay compensation, utilizing a lightweight

dynamics model (see Appendix 4.C). We use the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) [103] to optimize the 27 parameters by minimizing the reconstruction

error between the predicted and measured pixel coordinates. See Appendix 4.D for details

on CMA-ES and the hyperparameter settings. Finally, we �t GMMs to estimate delay

distributions for all measurable communication and computation delays.

The reconstructed angle and angular velocity from the simulator and estimator are

shown in Fig. 4.5a, alongside the validation data obtained from the pendulum’s encoder,

which can be considered the ground truth with minimal delay. The open-loop reconstruc-

tion remains accurate over a 21-second time horizon. The identi�ed delay distributions
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Figure 4.5: Pendulum system identi�cation and delay estimation. (a) Open-loop reconstruction of the

angle (�) and angular velocity (�̇) with the brax simulator, compared to ground-truth encoder data.

(b) A zoomed view shows that the predictive UKF estimate that compensates for delays, outperforms

the �ltered estimate that does not. (c) Estimated GMM delay distributions and deterministic hidden

delays for the camera and motor, with the grey area indicating the measured delay distribution and

the black line showing the GMM �t.

are illustrated in Fig. 4.5c, with a motor-to-Brax delay of approximately 7 ms and a Brax-

to-camera delay of around 8 ms. The camera delay exhibits a multi-modal distribution,

suggesting variability due to internal processing and shutter speed. The e�ectiveness of

delay compensation is demonstrated in Fig. 4.5b by comparing the �ltered and predictive

estimates. The �ltered estimate shows the UKF’s state estimate plotted against the times-

tamp of when the action using the estimated state was applied to the simulator, resulting

in a noticeable phase shift of around 50 ms. In contrast, the predictive estimate forecasts

the �ltered estimate forward, resulting in a lower mean squared error (MSE) for both the

angle and angular velocity, as shown in Tab. 4.2. Finally, we use the identi�ed system to

render images from the estimated poses, as shown in Fig. 4.6. The comparison between

real and rendered images from two di�erent viewpoints qualitatively demonstrates the

accuracy of the estimated system parameters.

Quadrotor Next, we identify the dynamics and delays of a quadrotor system using

real-world data to demonstrate the applicability of our approach to higher-dimensional
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(a) Real images (b) Rendered images with Brax

Figure 4.6: Comparison of real and rendered images of the pendulum

from two di�erent viewpoints. (a) shows actual images captured from

side and frontal views. (b) shows the corresponding rendered images

from the estimated poses.

MSE� MSE�̇

�ltered 0.069 4.256

predictive 0.012 1.114

Table 4.2: Mean squared error

(MSE) with respect to ground-

truth encoder data. Bold-

face indicates the best perfor-

mance.
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Figure 4.7: System identi�cation and delay estimation for quadrotor control. (a) Open-loop recon-

struction of roll, pitch, and velocities in body frame over 15 seconds (recon), showing the accuracy of

the identi�ed model compared to the MoCap data (mocap). (b) Zoomed view illustrates an accurate �t.

(c) Estimated GMM delay distributions, with the grey area indicating the measured delay distribution

and the black line showing the GMM �t.

state-action spaces. The quadrotor’s yaw is �xed, while the reference roll and pitch angles

and the height setpoint are sent to a PID controller to maintain a circular �ight path at a

constant altitude. The PID controller converts the height setpoint to a thrust command,

which, along with the roll and pitch commands, is sent to the Crazy�ie. We record the

actions, timing data, and state information captured by a motion capture (MoCap) system.

Similar to the pendulum experiment, we construct a data �ow graph that is augmented to

form a computation graph with simulator nodes operating at 100 Hz. Edges are introduced

between the simulator nodes and the MoCap and PID nodes, incorporating hidden delay

nodes with a minimum and maximum delay of 0 to 50 ms, respectively. A dynamics model

similar to that used in [30] is employed (see Appendix 4.C). Simultaneous optimization

is performed on the dynamics parameters (e.g., mass, drag, gain, time constants) and

interpolation parameters for hidden delays between the dynamics model, MoCap, and

PID controller, using CMA-ES [103] to optimize the eight parameters by minimizing the

reconstruction error between the predicted and measured quadrotor attitude and body

frame velocities. See Appendix 4.D for details on CMA-ES and the hyperparameter settings.

We also �t GMMs to estimate delay distributions for all measurable communication and
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computation delays.

The results in Fig. 4.7a show accurate reconstruction of the quadrotor’s states over

15 seconds. The identi�ed delays are shown in Fig. 4.7c, with PID-to-ODE delay at 34

ms, ODE-to-PID delay at 9 ms, and ODE-to-MoCap delay at 15 ms. In the next section,

we evaluate the advantage of delay-aware system identi�cation for sim2real transfer by

training policies with and without considering delays.

4.4.2 Sim2Real Transfer
To support the claim that our approach implements delay compensation techniques essential

for e�ective sim2real transfer, we evaluate the sim2real performance of policies trained

with and without delay compensation for the pendulum and quadrotor systems.

Pendulum Swing-Up This task highlights the challenge of delay compensation and

partial observability in reinforcement learning. By demonstrating that neglecting delay

simulation can impair policy transfer even in a seemingly simple scenario, we underscore

the necessity of delay-aware approaches for more complex systems, where delays are

inevitable and system dynamics are more intricate [27, 72–74]. The pendulum task’s

simplicity e�ectively clari�es the importance of addressing delays in sim2real frameworks.

To investigate the impact of delays and partial observability on task complexity, we

train pendulum swing-up policies using PPO [49] under di�erent conditions in simulation

(see Appendix 4.E for more details). We evaluate policies trained with full state information,

stacked observations with and without delay simulation, and estimated full state infor-

mation with simulated delays. As shown in Fig. 4.8a, policies with full state information

achieve higher rewards and converge faster than those relying on stacked observations,

especially when delays are present. This highlights the additional challenge introduced by

delays and partial observability, beyond the complexity of the task itself.

Zero-shot evaluations on the real system show that policies trained solely with stacked

observations fail to consistently swing up the pendulum, while the policy trained with

delay simulation, delay compensation, and full state estimation achieves reliable swing-up,

as demonstrated in Fig. 4.8b. Interestingly, even a policy trained on the full state without

simulated delays can achieve consistent swing-up when real-world evaluation uses an

estimator that compensates for delays and estimates the full state, as indicated by pred. in

Fig. 4.8c.

We assess the performance gains of delay compensation alone versus delay compensa-

tion with hidden state estimation, by evaluating the full state policy in two other scenarios:

using the angle encoder, which provides full state information with negligible delay com-

pared to camera images, and using the �ltered state estimate from the UKF instead of the

forward-predicted state. Both policies perform suboptimally, suggesting that both full

state estimation and forward prediction are essential for reliable performance, as shown

in Fig. 4.8c. A side-by-side comparison of the real-world swing-up performance of the

di�erent policies is available in the supplementary video.

Path Following with a Quadrotor We trained a quadrotor to �y a circular path at

maximum speed with varying radii to assess the impact of delay simulation on sim2real

performance. We used PPO [49] to train policies using a reward function that penalizes
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Figure 4.8: Sim2real evaluation of policies trained under di�erent delay and observation conditions for

the pendulum swing-up task. (a) Training curves comparing policies with full state information and

stacked observations. (b) Sim2real performance showing the percentage of time the pendulum remains

upright (within ±10◦ and ±0.5rad/s). (c) Performance of a policy using full state estimation with delay

compensation, demonstrating the importance of delay compensation for steady performance.
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Figure 4.9: Sim2real performance of quadrotor policies trained with and without delay simulation

across di�erent path radii. Top row: simulated path following at radii R = 1.0m, R = 0.75m, and

R = 0.5m. Bottom row: real-world path following shows that delay simulation improves performance

and stability, particularly at smaller radii where delays signi�cantly impact control.

path error and rewards high speeds along the path (see Appendix 4.E for more details).

In simulation, all policies achieved successful path following, with the no-delay policy

reaching higher speeds and maintaining lower path errors due to its ability to �y more

aggressively in the absence of simulated delays, as detailed in Tab. 4.3. However, in

real-world tests, only the policy trained with delay simulation maintained stable �ight;

the no-delay policy exhibited oscillations around the target path. The performance gap

widened at smaller radii, with the no-delay policy exhibiting highly unstable �ight behavior

at a radius of 0.5 m, demonstrating the critical role of delay-aware training for reliable

real-world deployment, as shown in Fig. 4.9. A side-by-side comparison of the real-world

�ight performance of the two policies is available in the supplementary video.
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Radii (m)

Simulation Real-world

v
path

(m/s) e
path

(m) v
path

(m/s) e
path

(m)

delay no-delay delay no-delay delay no-delay delay no-delay

1.00 1.95 2.23 0.03 0.02 2.02 2.05 0.06 0.21

0.75 1.67 1.92 0.03 0.02 1.64 1.63 0.04 0.19

0.50 1.39 1.61 0.04 0.04 1.36 1.18 0.04 0.24

Table 4.3: Impact of delays on simulated vs. real-world performance across di�erent path radii. v
path

denotes the average speed �own along the path, and e
path

represents the average error between the

quadrotor’s position and the target path. Boldface indicates the best performance in each category.

4.4.3 Computational Runtime Analysis
To support our claim that the framework enables e�cient parallelized simulation on

accelerator hardware, we evaluated simulation speeds using the COMPILED runtime on

an NVIDIA RTX 3070 Laptop GPU. The data �ow was augmented with simulator nodes

and subsequently parallelized to simulate delays according to real-world settings.

We measured the computation time for CMA-ES [103] to converge during system

identi�cation for the pendulum and quadrotor tasks. For the pendulum, optimizing 27

parameters with a population size of 200 and a 21-second rollout per �tness evaluation

(1,050 steps) led to convergence after 38 generations in 22.07 seconds, achieving 380k steps/s

with a compilation time of 19.97 seconds. For the quadrotor, optimizing eight parameters

under similar conditions but with a 15-second rollout (375 steps) resulted in convergence

after 31 generations in 5.81 seconds, reaching 400k steps/s with a compilation time of 10.16

seconds. We also evaluated PPO training time using the implementation from [96]: for the

pendulum, training �ve policies in parallel with 64 environments reached 5 million steps

in 77.1 seconds (325k steps/s), while for the quadrotor, training with 128 environments for

10 million steps completed in 29.8 seconds (336k steps/s), demonstrating the framework’s

e�ciency in supporting rapid training on real-world tasks.

To isolate simulation speed from training overhead, we performed a parallelized rollout

speed analysis (Fig. 4.10). The results show a linear relationship on a logarithmic scale,

indicating that as the number of parallel environments doubles, the simulation speed

also roughly doubles. An initial superlinear increase is observed, likely due to constant

overheads being amortized over a larger number of parallel environments, resulting in

more e�cient resource utilization.

The simulation speed in our framework is determined by the computational workload

of each node and the ability to parallelize their interactions. Our framework extends beyond

standard simulations by modeling the asynchronous interaction between components,

which are inherently challenging to parallelize e�ciently [63]. By demonstrating fast

simulation speeds for the pendulum and quadrotor, we show that our framework achieves

e�cient runtime performance without introducing signi�cant overhead beyond the compu-

tations within each node. If the simulation speed were slow, even with the simple dynamics

of these systems, it would indicate a substantial �xed overhead from the framework.

To compare runtime performance with other sim2real frameworks, we evaluate the

runtime of a common system across these frameworks. Speci�cally, we compare the
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ms/step) systems both demonstrate a lin-

ear scaling in simulation speed with in-

creasing parallel environments.

Delay Rate

Node (ms) (Hz) Device Computation

Pendulum
camera 9.8 ± 8.0 60 CPU1 image-to-angle conv.

estimator 3.5 ± 5.2 50 CPU2 UKF update

agent 1.7 ± 2.3 50 GPU Policy NN(64,64)

motor 5.6 ± 7.0 50 CPU3 Cmd to pendulum

Quadrotor
mocap 0.3 ± 0.1 50 CPU1 Read quadrotor pose

agent 2.6 ± 0.5 25 GPU Policy NN(64,64)

pid 2.8 ± 0.3 50 CPU2 Cmds to quadcopter

Table 4.4: Delay statistics for Quadrotor and Pendulum

nodes, including delay (mean ± std.) in ms, rate in Hz,

device type, and a description of each computation. Sub-

scripts indicate dedicated CPU cores. NN denotes a neural

network with layer sizes in parentheses.

pendulum system described in Appendix 4.C with the pendulum examples in Drake [40]

and EAGERx [29], as all systems involve a simple pendulum with a two-dimensional state,

ensuring a fair comparison. Since GPU parallelization is not supported in these frameworks,

we measure the runtime performance of a single 20-second rollout on a CPU while applying

random actions. Our results indicate that EAGERx achieves 0.28k steps/s, Drake achieves

60k steps/s, and our framework achieves 15k steps/s on a single CPU core. We attribute

EAGERx’s slower performance to the overhead of ROS communication between nodes,

while Drake bene�ts from its optimized C++ backend. Our framework is signi�cantly faster

than EAGERx and, compared to Drake, can support GPU-based parallelized execution,

which can further improve simulation speed, as demonstrated in Fig. 4.10.

To support the claim that our framework meets the latency and performance require-

ments for real-time online processing in real-world systems, we evaluate the latency of

di�erent components during real-world experiments. Our framework records timing in-

formation for each node, allowing us to estimate computation and communication delay

statistics across both the pendulum and quadrotor systems, as visualized in Fig. 4.5c and

Fig. 4.7c. The mean and standard deviation of delays for each node’s periodic computation

are calculated, providing insights into system performance. By dedicating speci�c CPU

cores to each node, we bypass the Python Global Interpreter Lock (GIL), enabling concur-

rent execution. Additionally, we use the GPU to accelerate policy inference in the agent

node. This approach results in low latency across the system. Unexpectedly, the motor

node in the pendulum system exhibited large delays, likely due to the hardware’s slow

response time while servicing ROS [24] service calls. As expected, the camera node had

the longest delays, attributed to the time required for image retrieval and processing to

convert images to angles.

In summary, our evaluation demonstrates that our approach e�ectively identi�es both

dynamics and delays from real-world data, compensates for delays to improve sim2real

transfer, and facilitates e�cient parallelized simulation on accelerator hardware. At the

same time, our approach meets the latency and performance requirements for real-time
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online processing, supporting all four key claims.

4.5 Conclusion
In this chapter, we presented a novel framework, REX (Robotic Environments with jaX),

for sim2real transfer that introduces a graph-based simulation model incorporating latency

e�ects, optimized for parallelization on accelerator hardware. Our approach models asyn-

chronous, hierarchical systems by explicitly representing computation, communication,

actuation, and sensing delays. This enables the simultaneous estimation of system dynamics

and delays using real-world data, e�ectively minimizing the sim2real gap. We implemented

and evaluated our approach on two real-world robotic systems, demonstrating its ability

to support rapid training while maintaining high �delity to real-world conditions. The

experiments suggest that our framework not only improves the accuracy of policy transfer

by reducing the impact of delays and partial observability but also enhances simulation

e�ciency by leveraging hardware acceleration.

For future work, we aim to extend the framework to support estimating stochastic

hidden delays, which could further reduce the sim2real gap by more accurately capturing

real-world uncertainties. Additionally, we plan to enhance the framework’s scalability

and real-world applicability by enabling distributed computing across multiple machines,

beyond the current capability of utilizing di�erent devices via JAX.

Appendix 4.A:MeasurableDelayFittingwithGaus-
sian Mixture Models
Let {xi}Ni=1 represent the observed delays as one-dimensional data points. We consider a

Gaussian Mixture Model (GMM) with K components, where each component k is charac-

terized by three parameters: (�k , �k ,�k ). Speci�cally,

• �k : the mixing weight of component k, satisfying ∑K
k=1 �k = 1 and �k ≥ 0,

• �k : the mean of the Gaussian component,

• �k : the standard deviation of the Gaussian component.

The full set of parameters of the GMM is denoted as � = {�k , �k ,�k}Kk=1, which includes

all mixing weights, means, and standard deviations. The probability density function for a

single data point xi under this model is expressed as:

p(xi ∣ �) =
K
∑
k=1

�k (xi ∣ �k ,�2k ),

where  (xi ∣ �k ,�2k ) is the probability density function of a normal distribution with mean

�k and variance �2k . To estimate the parameters of the GMM, we minimize the negative

log-likelihood of the observed delays:

(�) = −
N
∑
i=1

log
(

K
∑
k=1

�k (xi ∣ �k ,�2k ))
.



4.5 Conclusion

4

75

The optimization is performed using a gradient-based approach. Speci�cally, the param-

eters � are updated iteratively using a standard solver such as the Adam optimizer [? ],

which adjusts the parameters to minimize (�). To improve numerical stability during

optimization, we normalize the data before �tting the GMM. The observed delays {xi} are

transformed into normalized delays {x′i } as:

x′i =
xi −�x

max(�x , �)
,

where �x and �x are the mean and standard deviation of the observed delays, and � is a

small constant (e.g., 10−7) to avoid division by zero. The GMM is then �t to the normalized

dataset {x′i }
N
i=1, and the negative log-likelihood is computed accordingly. After �tting the

model, the parameters are denormalized to map back to the original data range with:

�̃k = �k ⋅ �x +�x ,
�̃k = �k ⋅ �x .

This approach ensures numerical stability during optimization while providing parameters

�̃k and �̃k in the original scale of the observed delays.

Appendix 4.B: Unscented Kalman Filter
The Unscented Kalman Filter (UKF) is a state estimation algorithm designed for nonlinear

systems. It employs a deterministic sampling technique to approximate the mean and

covariance of the state distribution. This approach is more accurate than linearization-

based methods, such as the Extended Kalman Filter (EKF), for highly nonlinear systems

[3]. Since the UKF relies on sampling rather than linearization, it can e�ectively handle

non-di�erentiable functions. The number of sigma points, 2n+1, is determined by the state

dimensionality n and is typically much smaller than the number of particles required for a

particle �lter. Additionally, the evaluation of sigma points can be e�ciently parallelized.

The sigma points are calculated to capture the mean and covariance of the state distribution

and we follow the procedure in [107] to generate 2n +1 sigma points. Given the current

state mean x and covariance P, the scaling parameter � = �2(n +�)−n is computed, where

� controls the spread of the sigma points, � adjusts scaling, and � incorporates prior

knowledge (e.g., � = 2 for Gaussian distributions). The sigma points are then determined

as:

�0 = x, �i = x±
√
n+� ⋅ [P]i , i = 1,…,n

where

√
n+� ⋅ [P]i is the i-th column of the Cholesky decomposition of (n + �)P. The

corresponding weights for mean and covariance are:

w(m)0 =
�

n +�
, w(c)0 = w(m)0 + (1−�2 +�), w(m)i = w(c)i =

1
2(n +�)

, i = 1,…,2n

The �lter is initialized with an initial state mean x0 and covariance P0. The state transition

function f (⋅) and observation function ℎ(⋅) are nonlinear, describing the process dynamics

and measurements, respectively. Process and measurement noise are assumed to be additive,

Gaussian, and uncorrelated, with zero mean and covariance matrices Q and R, respectively.
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Actions commanded at time t −1will a�ect the state at time t +�a , where �a is the actuation

delay. Similarly, the most recent measurement available at time t is from time t − �s , where

�s is the sensor delay. Hence, the indexing of the measurements and actions is shifted

by the sensor and actuation delays. For simplicity, we assume that the sensor delay �s
and actuation delay �a are constant and a multiple of the timestep. Furthermore, we

consider time-invariant noise distributions, process models, and measurement models.

Note, however, that the UKF can be extended to handle time-varying noise covariances,

models, variable delays, and non-uniform timesteps, but we do not consider them here for

notational clarity.

The UKF estimation step at time t is outlined in Alg. 6. In the prediction and update

steps, the UKF updates its prior state estimate from t − 1− �s to the last measurement time,

t −�s , using the most recent measurement available at t −�s . Next, the UKF forward-predicts

the state to t +�a , incorporating the commanded actions available up to t −1+�a to account

for the combined sensor and actuation delays.

Algorithm 6: UKF Estimation Step with Delay Compensation

Input: Process noise Q, measurement noise R, weights w(m)
i ,w(c)

i , process model f (⋅), measurement

model ℎ(⋅), sensor delay �s , actuation delay �a
Input: Previous state mean xt−1−�s , covariance Pt−1−�s , new measurement zt−�s , action sequence

{uk}t−1+�ak=t−1−�s
Output: Estimated state mean xt−�s , covariance Pt−�s , forward-predicted state mean xt+�a , covariance

Pt+�a
1 Calculate Sigma Points:
2 Compute sigma points {� (t−1−�s )i } from current state mean xt−1−�s and covariance Pt−1−�s .
3 Prediction Step:
4 Propagate sigma points through process model with actions: �−i = f (�

(t−1−�s )
i ,ut−1−�s ).

5 Compute predicted mean: x−t−�s = ∑iw
(m)
i �−i .

6 Compute predicted covariance: P−t−�s = ∑iw
(c)
i (�−i −x−t−�s )(�

−
i −x−t−�s )

T +Q.

7 Update Step:
8 Propagate sigma points through measurement model: zi = ℎ(�−i ).
9 Compute predicted measurement mean: z−t−�s = ∑iw

(m)
i zi .

10 Compute innovation covariance: S = ∑iw
(c)
i (zi −z−t−�s )(zi −z

−
t−�s )

T +R.

11 Compute cross-covariance: C = ∑iw
(c)
i (�−i −x−t−�s )(zi −z

−
t−�s )

T
.

12 Compute Kalman gain: K = CS−1.
13 Update state mean: xt−�s = x−t−�s +K(zt−�s −z

−
t−�s ).

14 Update covariance: Pt−�s = P−t−�s −KSK
T

.

15 Forward-prediction Step:
16 for k = t − �s ,… , t − 1+ �a do
17 Compute sigma points {� (k)i } from state mean xk and covariance Pk .

18 Propagate sigma points through process model with actions: �−i = f (�
(k)
i ,uk ).

19 Compute forward-predicted mean: xk+1 = ∑iw
(m)
i �−i .

20 Compute forward-predicted covariance: Pk+1 = ∑iw
(c)
i (�−i −xk+1)(�−i −xk+1)T +Q.

21 end
22 return xt−�s ,Pt−�s ,xt+�a ,Pt+�a
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Appendix 4.C: Dynamics
Appendix 4.C.1 Pendulum Dynamics
The pendulum system is modeled by a second-order ordinary di�erential equation (ODE).

The state x = (�, �̇) represents the angle � and angular velocity �̇ . The control input u
represents the applied voltage. The angular acceleration �̈ is given by:

�̈ =
u KR +mgl sin(�) −b�̇ − �̇

K2
R −c sign(�̇)

J
,

where J is the moment of inertia, m the mass, l the pendulum length, b the damping coe�-

cient, K the motor constant, R the motor resistance, c the static friction, and g = 9.81m/s
2

the gravitational acceleration. Dynamics are simulated using a fourth-order Runge-Kutta

integration method with a �xed time step of 0.01 seconds. All parameters (J , m, l, b, K , R,

c) are identi�ed experimentally in Chapter 4 except for the gravitational acceleration g,

together with any additional parameters required for hidden delay estimation.

Appendix 4.C.2�adrotor Dynamics
The dynamics model, similar to that in [30], is used to simulate the quadrotor’s motion.

The dynamics are divided into three components: rotational, translational, and motor

dynamics. The state is represented by the position p = (x,y,z), velocity v = (ẋ, ẏ, ż), attitude

� = (�,�, ), and thrust stateΩ. The control inputs are the reference pulse-width modulation

(PWM) motor signal Θ and two reference angles �
ref

and �
ref

. Yaw dynamics are neglected,

with yaw angle assumed constant at  = 0. The rotational dynamics are approximated by a

�rst-order system for the attitude angles � and � :

�̇ =
kc (�ref

−�)
�c

�̇ =
kc (�ref

−�)
�c

where the same kc and �c are used for the rotation in both angle directions due to the

system’s symmetry. These dynamics comprise the quadrotor’s closed-loop onboard control

of the attitude angles. The total thrust generated by the quadrotor’s motors is modeled as

a �rst-order system:

Ω̇ = amΩ+bmΘ f
thrust

= cmΩ+dmΘ

where am, bm, cm, and dm are motor-speci�c constants. The drag force acting on the

quadrotor is given by:

f
drag

= −
⎡
⎢
⎢
⎣

�xy! 0 0
0 �xy! 0
0 0 �z!

⎤
⎥
⎥
⎦
vb ,

where �xy and �z are drag coe�cients, ! is the rotor speed, and vb is the body-frame

velocity. The body-frame velocity is calculated as vb = R⊤v⊤, where R is the rotation

matrix from the body frame to the world frame. The rotor speed is approximated using the

following relationships (see [108] for more details) between the e�ective PWM signal Θ
e�

,

rotor speed !, and total thrust f
thrust

:

f
thrust

= 4(apΘ2e�
+bpΘe�

+cp) ! = 4(arΘe�
+br)
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where ap, bp, and cp are PWM constants, ar and br are rotor constants, and the factor 4
accounts for the quadrotor’s four rotors. The translational dynamics are:

v̇ =
1
m
R([0,0, fthrust

]⊤ + f
drag)− [0,0,g]⊤,

where m is the quadrotor’s mass, and g is the gravitational constant. Dynamics are

simulated using a fourth-order Runge-Kutta integration method with a �xed time step of

0.01 seconds.

The motor, PWM, and rotor constants are speci�c to the motor and require additional

sensors for accurate identi�cation. We use the experimentally identi�ed values from [108]

for the Crazy�ie 2.0 quadrotor, as done in [30]:

am = −15.47, bm = 1.0, cm = 1.43 × 10−4, dm = 2.89 × 10−7,

ap = 2.13 × 10−11, bp = 1.03 × 10−6, cp = 5.49 × 10−4,
ar = 0.041, br = 380.83.

The remaining parameters (m, kc , �c , �xy , �z ) are experimentally identi�ed in Chapter 4,

along with any additional parameters required for hidden delay estimation.

Appendix 4.D: Covariance Matrix Adaptation Evo-
lution Strategy
The Covariance matrix adaptation evolution strategy (CMA-ES) algorithm is a stochastic,

derivative-free optimization method well-suited for non-linear or non-convex problems

[103]. It evolves a population of solutions by sampling from a multivariate normal distribu-

tion, adapting the covariance matrix and step size to guide search directions e�ciently.

The algorithm steps are outlined in Alg. 7, where the key hyperparameters are de�ned

as follows. First, the total number of iterations or generations, denoted as G, determines

how long the algorithm runs. Each iteration involves evaluating a population of candidate

solutions, the size of which is speci�ed by �. From this population, the top-performing �
solutions are selected for recombination, with the condition � ≤ �. The learning process

also depends on several adaptation rates: c� and d� control the adaptation of the step size,

while cc , c1, and c� in�uence the covariance matrix updates, ensuring e�cient exploration

of the search space. The initial mean vector, m(0) ∈ ℝn , represents the initial estimate in

the search space, while the initial step size, � (0), scales the search distribution. To ensure

isotropic sampling at the outset, the initial covariance matrix, C(0), is typically set to the

identity matrix, I. Note that it is common practice to search over a normalized space, where

the search distribution is isotropic and centered at the origin, to improve numerical stability.

Hence, the initial mean vector and covariance matrix are initialized to zero and the identity
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matrix, respectively.

Algorithm 7: CMA-ES (Covariance Matrix Adaptation Evolution Strategy)

Input: Population size �, initial mean m(0)
, initial step size � (0), initial covariance matrix C(0) = I,

weights w1,… ,w�
Output: Optimized solution m∗

1 Initialize:

2 Set wi ←
log(�+ 12 )−log(i)

∑�
j=1(log(�+ 12 )−log(j))

for i = 1,…,�

3 Normalize weights: wi ← wi
∑�
j=1wj

4 Set p(0)� ←0, p(0)c ←0, �eff ← (∑�
i=1wi )2/∑

�
i=1w2

i
5 Set learning rates c� , cc , c1, c� , damping factor d� , and chi constant �n ←

√
n(1− 1

4n +
1

21n2 )
6 Generation loop:
7 for g = 0,1,… , G-1 do
8 for k ← 1 to � do
9 Sample: xk ∼ (m,�2C)

10 Evaluate �tness: f (xk )
11 end
12 Sort x1,… ,x� by �tness, and select the � best solutions

13 Compute new mean: m(g+1) ←∑�
i=1wixi

14 Update step-size evolution path:

15 p(g+1)� ← (1−c� )p
(g)
� +

√
c� (2− c� )�eff ⋅ C−

1
2 m(g+1)−m(g)

� (g)

16 ℎ� ← ‖p(g+1)� ‖/
√
1− (1− c� )2(g+1) < (1.4+ 2

n+1 ) ⋅ �n
17 Update covariance evolution path:

18 p(g+1)c ← (1−cc )p
(g)
c +ℎ� ⋅

√
cc (2− cc )�eff ⋅ m

(g+1)−m(g)

� (g)
19 Update covariance matrix:

20 C(g+1) ← (1−c1 −c� )C(g) +c1p
(g+1)
c p(g+1)c

⊤
+c�∑

�
i=1wiyiy⊤i

21 where yi = xi−m(g)

� (g)
22 Update step size:

23 � (g+1) ←� (g) ⋅ exp(
c�
d� ⋅(

‖p(g+1)� ‖
�n −1))

24 end
25 return m∗ ←m(g+1)

The table below summarized the hyperparameters used in the CMA-ES algorithm for

the Pendulum and Quadrotor tasks in Chapter 4.

Hyperparameter Name Pendulum Quadrotor
G Generations 40 100
� Population size 200 200
� Selected solutions 20 20
c� Step-size learning rate 0.40 0.65
cc Covariance learning rate 0.14 0.68
c1 Rank-1 update rate 0.0024 0.19
c� Rank-� update rate 0.038 0.27
d� Step-size damping 1.40 2.41
m(0)

Initial mean vector 0 0
� (0) Initial step size 0.4 0.4
C(0) Initial covariance matrix I I
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Appendix 4.E: Proximal Policy Optimization
Proximal Policy Optimization (PPO) is a reinforcement learning algorithm designed to

optimize policies by maximizing the expected return [49]. However, reproducing PPO’s

results can be challenging due to its sensitivity to hyperparameters and implementation

details [109]. For this reason, we provide the exact PPO implementation used in Chapter 4

in https://bheijden.github.io/rex/. Our implementation is largely based

on [96], which itself builds upon [50].

The table below summarizes the hyperparameter settings used for the two tasks in

Chapter 4:

Hyperparameter Name Pendulum Quadrotor
T Total timesteps 2×106 10×106
� Learning rate 3.26 × 10−4 9.23 × 10−4

nenvs Number of environments 128 128
nsteps Number of steps per update 32 64
E Number of epochs 8 16

n
minibatch

Number of minibatches 16 8

 Discount factor 0.9939 0.9844

�GAE GAE lambda 0.971 0.939
�

clip
Clipping epsilon 0.164 0.131

�ent Entropy coe�cient 0.01 0.01
�

vf
Value function coe�cient 0.802 0.756

gmax Max gradient norm 0.963 0.76
n

hidden
Number of hidden layers 2 2

ℎunits Number of hidden units 64 64
�

hidden
Hidden activation tanh tanh

�
ind

State-independent action noise True True

Squash Action squashing True True

�
anneal

Anneal learning rate False False

Norm Normalize environment True True

https://bheijden.github.io/rex/
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5
Resilience: Simulating

Irrelevance to Enhance
Task-Relevant Learning

Despite the advancements in �exibility, speed, and accuracy discussed in the preceding chapters,
real-world environments are unpredictable and often introduce irrelevant dynamics that
simulations cannot fully capture. These challenges can degrade the performance of learned
policies when transferred to real-world applications.

In this chapter, we introduce DeepKoCo, an algorithm designed to enhance the resilience of
learning-based robots by focusing on task-relevant dynamics. By using a lossy autoencoder to
�lter out irrelevant information, DeepKoCo improves the robustness of policies, ensuring their
e�ectiveness in noisy real-world environments.

This chapter is partly based on q B. van der Heijden, L. Ferranti, J. Kober, and R. Babuska, (2024). "DeepKoCo:
E�cient latent planning with a task-relevant Koopman representation", Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS) [110].
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5.1 Introduction
From self-driving cars to vision-based robotic manipulation, emerging technologies are

characterized by visual measurements of strongly nonlinear physical systems. Unlike in

highly controlled lab environments where any measured change is likely relevant, cameras

in real-world settings are notorious for mainly capturing task-irrelevant information, such

as, the movement of other robots outside of a manipulator’s workspace or cloud movements

captured by the cameras of self-driving cars.

While Deep Reinforcement Learning (DRL) algorithms can learn to perform various

tasks using raw images, they will require an enormous number of trials. Prior methods

mitigate this by encoding the raw images into a lower-dimensional representation that

allows for faster learning. However, these methods can be easily distracted by irrelevant

dynamics [111]. This motivates data-driven methodologies that learn low-dimensional

latent dynamics that are task-relevant and useful for control.

In the learning of latent dynamics for control, there is a trade-o� between having an

accurate dynamic model and one that is suitable for control. On one hand, latent dynamic

models based on neural networks (NN) can provide accurate predictions over long horizons.

On the other hand, their inherent nonlinearity renders them incompatible with e�cient

planning algorithms. Alternatively, one can choose to approximate the latent dynamics

with a more restricted function approximation class to favor the use of e�cient planning

algorithms. In this respect, a promising strategy is represented by the Koopman framework

[112]. Loosely speaking, this framework allows one to map observations with nonlinear

dynamics to a latent space where the global dynamics of the autonomous system are

approximately linear (Koopman representation). This enables the use of powerful linear

optimal control techniques in the latent space [112].

While the Koopman framework is promising, existing methods have fundamental

limitations that must be addressed to fully exploit the bene�ts of this method for control

applications. First, methods that identify Koopman representations from data were designed

for prediction and estimation. These methods were later adapted for control. These

adaptations, however, lead to limiting assumptions on the underlying dynamics, such as

assuming the Koopman representation to be linear in the states and actions [113–117].

Second, these methods are task agnostic, that is, the models represent all dynamics they

observe, whether they are relevant to the task or not. This focuses the majority of their

model capacity on potentially task-irrelevant dynamics.

Therefore, we introduce Deep Koopman Control (DeepKoCo), that is, a model-based

reinforcement learning agent that learns a latent Koopman representation from raw pixel

images and achieves its goal through planning in this latent space. The representation is (i)
robust to task-irrelevant dynamics and (ii) compatible with e�cient planning algorithms.

We propose a lossy autoencoder network that reconstructs and predicts observed costs,

rather than all observed dynamics, which leads to a representation that is task-relevant.

The latent-dynamics model can represent continuously di�erentiable nonlinear systems

and does not require knowledge of the underlying environment dynamics or cost function.

We demonstrate the success of our approach on two continuous control tasks and show

that our method is more robust to irrelevant dynamics than state-of-the-art approaches,

that is, DeepMDP [118] and Deep Bisimulation for Control (DBC) [111].
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5.2 Related Work
Koopman control Koopman theory has been used to control various nonlinear systems

with linear control techniques, both in simulation [112, 116, 119] and in real-world robotic

applications [114, 115]. Herein, [112, 114, 120] used a linear quadratic regulator (LQR), while

[113, 115–117, 119] applied linear model predictive control (MPC). [113, 115, 117, 119] used

data-driven methods that were derived from the Extended Dynamic Mode Decomposition

(EDMD) [121] to �nd the Koopman representation. In contrast, [112, 114, 120] require prior

knowledge of the system dynamics to hand-craft parts of the lifting function. Similar to

[116], we rely on deep learning to derive the Koopman representation for control. However,

we do not assume the Koopman representation to be (bi-)linear in the states and actions and

we show how our representation can be used to control systems that violate this assumption.

Compared to existing methods, we propose an agent that learns the representation online

in a reinforcement learning setting using high-dimensional observations that contain

irrelevant dynamics.

Latent planning Extensive work has been conducted to learn latent dynamics from

images and use them to plan suitable actions [122–124]. [124] proposes a model-based

agent that uses NNs for the latent dynamics and cost model. To �nd suitable action

sequences, however, their method requires a signi�cant computational budget to evaluate

many candidate sequences. Alternatively, [122, 123] propose locally linear dynamic models,

which allowed them to e�ciently plan for actions using LQR. However, their cost function

was de�ned in the latent space and required observations of the goal to be available. In

contrast to our approach, all aforementioned methods are trained towards full observation

reconstruction, which focuses the majority of their model capacity on potentially task-

irrelevant dynamics.

Relevant representation learning [111, 118] �lter task-irrelevant dynamics by min-

imizing an auxiliary bisimulation loss. Similar to our approach, they propose learning

latent dynamics and predicting costs. Their method, however, is limited to minimizing a

single-step prediction loss, while we incorporate multi-step predictions. This optimizes

our model towards accurate long-term predictions. [125, 126] also proposed training a

dynamics model towards predicting the future sum of costs given an action sequence.

However, their method focused on discrete control variables, while we focus on continuous

ones.

5.3 Preliminaries
This section brie�y introduces the Koopman framework for autonomous and controlled

nonlinear systems. A detailed description can be found in [112]. This framework is fun-

damental to the design of our latent model and control strategy.

5.3.1 Koopman eigenfunctions for autonomous systems
Consider the following autonomous nonlinear system ȯ = F (o), where the observations

o ∈ ℝN evolve according to the smooth continuous-time dynamics F (o). For such a system,

there exists a lifting function g(⋅) ∶ ℝN →ℝn that maps the observations to a latent space
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where the dynamics are linear, that is,

d

dt
g(o) =◦g(o), (5.1)

where  is the in�nitesimal operator generator of Koopman operators K . In theory, K
is in�nite dimensional (i.e., n →∞), but a �nite-dimensional matrix representation can

be obtained by restricting it to an invariant subspace. Any set of eigenfunctions of the

Koopman operator spans such a subspace. Identifying these eigenfunctions [119, 127]

provides a set of intrinsic coordinates that enable global linear representations of the

underlying nonlinear system. A Koopman eigenfunction satis�es

d

dt
�(o) = K�(o) = ��(o), (5.2)

where � ∈ ℂ is the continuous-time eigenvalue corresponding to eigenfunction �(o).

5.3.2 Koopman eigenfunctions for controlled systems
For controlled nonlinear system with action a ∈ ℝm and smooth continuous-time dynamics

ȯ = F̃ (o,a), we follow the procedure in [112]. Given the eigenfunction �(o,a) augmented

with a for the controlled system, we can take its time derivative and apply the chain rule

with respect to o and a, leading to

d

dt
�(o,a) = ▽o�(o,a)F̃ (o,a)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

��(o,a)

+▽a�(o,a)ȧ, (5.3)

where � is now the eigenvalue that corresponds to eigenfunction �(o,a). Since ȧ can be

chosen arbitrarily, we could set it to zero and instead interpret each action as a parameter

of the Koopman eigenfunctions. Thus, for any given choice of parameter a the standard

relationship in Eq. (5.2) is recovered in the presence of actions. A local approximation of

the Koopman representation is obtained when ȧ is nonzero.

5.3.3 Identifying Koopman eigenfunctions from data
To facilitate eigenfunction identi�cation with discrete data, Eq. (5.3) can be discretized

with a procedure similar to [127]. The eigenvalues �± = � ± i ! are used to parametrize

block-diagonal Λ = diag(J 1, J 2, ..., J P ) ∈ ℝ2P×2P . For all P pairs of complex eigenvalues, the

discrete-time operator Λ has a Jordan real block of the form

J (�,!) = e�Δt [
cos(!Δt) −sin(!Δt)
sin(!Δt) cos(!Δt) ] , (5.4)

with sampling time Δt . The “forward Euler method” provides a discrete approximation of

the control matrix, so that Eq. (5.3) can be discretized as

'(ok+1,ak+1) = Λ'(ok ,ak ) +▽ak'(ok ,ak )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
B'k

ȧkΔt⏟⏞⏞⏞⏟⏞⏞⏞⏟
Δak

. (5.5)
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Herein, the stacked vector ' = (�1,�2, ...,�P ) comprises a set of P eigenfunctions with �j ∈ℝ2

associated with complex eigenvalue pair �j± and Jordan block J j . Subscript k corresponds to

discretized snapshots in time. If we view the action increment Δak = ak+1 −ak in Eq. (5.5)

as the controlled input instead, we obtain a discrete control-a�ne Koopman eigenfunction

formulation with linear autonomous dynamics for the original non-control-a�ne nonlinear
system. In the next section, we show that Eq. (5.5) plays a central role in our latent model.

5.4 Learning Relevant Koopman Eigenfunctions
For e�cient planning in the latent space, we propose to learn a latent dynamics model

that uses Koopman eigenfunctions as its latent state. This section describes this model

and how the Koopman eigenfunctions can be identi�ed robustly, that is, in a way that the

identi�ed eigenfunctions remain una�ected by task-irrelevant dynamics that are expected

to contaminate the observations.

5.4.1 Koopman latent model
We propose a lossy autoencoder that builds on the deep autoencoder in [127]. Compared to

[127], our autoencoder enables control. To train the latent model, we provide the training

objective that is to be minimized given a bu�er D that contains observed sequences {tk}Tk=0
of a Markov decision process with tuples tk = (ok ,ak ,Δak , ck ), where ck are observed scalar

costs. The proposed latent model is illustrated in Fig. 5.1 with more details below on the

individual components of the architecture.

Encoder The encoder ' is the approximate eigenfunction that maps an observation-

action pair (ok ,ak ) to the latent state sk . The encoder ' is parametrized by a neural network,

de�ned as

sk = '(ok ,ak ). (5.6)

Latent Dynamics The latent state sk approximates a Koopman eigenfunction, so the

autonomous time evolution in the latent space is linear and dictated by Λ.

Note here that ak is part of the augmented latent state and we view the action increment

Δak as the controlled variable that is determined by the policy. This leads to the dynamics

model in Eq. (5.7), which we derived from Eq. (5.5). The Koopman operatorΛ is parametrized

by P complex conjugate eigenvalue pairs �j±. We do not assume the latent dynamics to be

linear in the control. Instead, the in�uence of Δak on the latent state varies and depends

on the partial derivative of the encoder with respect to the action, i.e., the state-dependent

matrix B'k = ▽ak'(ok ,ak ) ∈ ℝ
2P×m

.

[
sk+1
ak+1]

= [
Λ 0
0 I ][

sk
ak]

+[
B'k
I ]Δak . (5.7)

Cost Model The environment contains a cost function that produces a scalar cost obser-

vation ck at every time-step. For planning in the latent space, we require a cost model ĉk
as a function of the latent state. This cost approximates the observed cost (i.e., ĉk ≈ck ). We
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Figure 5.1: Latent Model The proposed network architecture of the latent model, consisting of the

dynamic model, cost model, and policy (depicted in green, purple, and red, respectively). Rollout
A multi-step ahead prediction with the latent model. Note that we only encode an observation at

the �rst time-step (blue boxes), after which we remain in the latent space. DeepKoCo The training

procedure that corresponds to Alg. 8.

adopt a latent state-dependent quadratic cost model to facilitate the use of fast planning

algorithms (Sec. 5.5). The entries of Csk ∈ ℝ
1×2P

are determined by a function  (sk ) that is

parametrized by a neural network. The weights of  are initially unknown and must be

learned together with the rest of the latent model. We assume that the cost of applying

action ak is known a priori and de�ned by matrix R. This leads to the cost model

ĉk = ||Csk sk ||
2
2 +a

T
kRak . (5.8)

Policy The action increment Δak is the controlled variable that is sampled from a proba-

bility distribution � , conditioned on the augmented latent state (i.e., Δak ∼ �(Δak |sk ,ak )).
Even though the model is deterministic, we de�ne the policy to be stochastic to allow for

stochastic exploration. The policy will be speci�ed further in Sec. 5.5.

Δak ∼ �(Δak |sk ,ak ) (5.9)

Decoder After learning the latent model we intend to plan over it, which involves a

multi-step prediction. Given only the encoder Eq. (5.6), dynamics model Eq. (5.7), policy

Eq. (5.9) and the current (ok ,ak )-pair, we would be limited to single-step predictions of

sk+1 at run-time, because multi-step predictions sk+i with i > 1 would require knowledge

of future observations ok+i to evaluate B'k+i . Therefore, to make multi-step predictions,

we introduce a decoder '-1 (parametrized by a NN) in Eq. (5.10) that uses predicted latent

states sk+i to construct pseudo-observations ôk+i that produce the same partial derivative

as the true observation (i.e., ▽ak'('
-1(sk ),ak ) ≈ ▽ak'(ok ,ak )). Future values ak+i do not
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pose a problem, because they can be inferred from the policy Eq. (5.9) and dynamics model

Eq. (5.7).

ôk = '-1(sk ). (5.10)

Image Processor When the observations are raw pixel images pk , not all relevant infor-

mation can be inferred from a single observation. To restore the Markov property, we pass

the last d consecutive pixel images through a convolutional neural network Ω in Eq. (5.11),

stack the output into a single vector, and consider that to be the observation ok instead. In

that case, the observed sequences consist of tuples tk = (pk , ...,pk−d+1,ak ,Δak , ck ).

ok = Ω(pk , ...,pk−d+1), (5.11)

5.4.2 Learning the latent model
Our latent model should have linear dynamics and be predictive of observed costs. These

two high-level requirements lead to the following three losses which are minimized during

training.

Linear Dynamics To ensure that the latent state is a valid Koopman eigenfunction, we

regularize the time evolution in the latent space to be linear by using the following loss,

Linear loss: 
lin
=
1
T

T−1
∑
k=0

‖'(ok+1,ak+1) − sk+1‖MSE, (5.12)

where sk+1 is obtained by rolling out a latent trajectory as illustrated in Fig. 5.1.

Cost Prediction We want the latent representation to contain all necessary information

to solve the task. If we would naively apply an autoencoder that predicts future observa-

tions, we focus the majority of the model capacity on potentially task-irrelevant dynamics

contained in the observations. To learn a latent representation that only encodes relevant

information, we propose to use a lossy autoencoder that is predictive of current and future

costs instead. Such a representation would allow an agent to predict the cost evolution of

various action sequences and choose the sequence that minimizes the predicted cumulative

cost, which is essentially equivalent to solving the task. Because we only penalize inaccu-

rate cost predictions, the encoder is not incentivized to encode task-irrelevant dynamics

into the latent representation as they are not predictive of the cost. This leads to the

task-relevant identi�cation of the lifting function '. Cost prediction accuracy is achieved

by using the following two losses,

Reconstruction loss: recon = ‖c0 − ĉ0‖MSE (5.13)

Prediction loss: 
pred

=
1
T

T
∑
k=1

‖ck − ĉk ‖MSE (5.14)
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Training Objective We minimize the losses in Eq. (5.12), Eq. (5.13), and Eq. (5.14),

corresponding to linear dynamics regularization and cost prediction, together with an

L2-regularization loss reg on the trainable variables (excluding neural network biases).

This leads to the following training objective,

min
�,�[1],...,[P]±


lin
+�1(recon +pred

) +�2reg, (5.15)

where � is the collection of all the trainable variables that parametrize the encoder ',

decoder '-1, cost model  , and convolutional network Ω (in case of image observations).

Weights �1,�2 are hyperparameters. The model is trained using the Adam optimizer [128]

with learning rate �̃ , on batches of B sequences {tk}Tk=0 for E epochs.

5.5 Deep Koopman Control
This section introduces the agent that uses the Koopman latent model to �nd the action

sequence that minimizes the predicted cumulative cost. We use linear model-predictive

control (LMPC) to allow the agent to adapt its plan based on new observations, meaning

the agent re-plans at each step. Re-planning at each time-step can be computationally

costly. In the following, we explain how to exploit and adapt our latent model and cost

model to formulate a sparse and convex MPC problem that can be solved e�ciently online.

The planning algorithm should achieve competitive performance, while only using a

limited amount of computational resources. This motivates choosing Koopman eigenfunc-

tions as the latent state, because the autonomous dynamics are linear. The dynamics are

a�ne in the controlled variable Δak that is multiplied in the de�nition of the state space

by B'k , which depends on the latent state. Similarly, Csk requires the evaluation of the

nonlinear function  (sk ). There exist methods that can be applied in this setting, such

as the State-Dependent Ricatti Equation (SDRE) method [129]. While the SDRE requires

less complexity compared to sample-based nonlinear MPC (e.g. CEM [130]), it remains

computationally demanding as it also requires the derivative of  with respect to sk at

every step of the planning horizon.

Our goal is to reduce the online complexity of our planning strategy, while also dealing

with input constraints. Hence, we trade-o� some prediction accuracy (due to the mismatch

between the latent model and the MPC prediction model) to simplify the online planning

strategy by using linear MPC. We propose to evaluate the state-dependent matrices Cs0
and B'0 at time-step k = 0 (obtained from our latent model) and keep them both �xed for

the rest of the LMPC horizon. This assumes that the variation of B'k and Csk is limited

over the prediction horizon (compared to Eq. (5.7) and Eq. (5.8)). Nevertheless, thanks

to this simpli�cation we can rely on LMPC for planning that can be solved e�ciently.

Speci�cally, once we evaluate s0, Cs0 , and B'0 , the computational cost of solving the MPC

problem in the dense form [6] scales linearly with the latent state dimension due to the

diagonal structure of Λ. As Section 5.6 details, this simpli�cation allows our method to

achieve competitive �nal performance, while only requiring a single evaluation of the NNs

Ω, ', and  . This signi�cantly decreases the computational cost at run-time compared to

sample-based nonlinear MPC (e.g., CEM [130]) that would require many evaluations of

the NNs at every time-step. In contrast to LQR, LMPC can explicitly deal with actuator

saturation by incorporating constraints on a. The proposed planning strategy based on
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Algorithm 8: Deep Koopman Control (DeepKoCo)

Input: Model parameters: P,d
Policy parameters: � = {H ,R, R̃}
Noise parameters: �ou,�2,ou

init
,N ou

Train parameters: N ,L,T ,E,B
Optimization parameters: � = {�1,�2, �̃}

Output: Eigenvalues �[1],...,[P]±
Trained networks ','-1, ,Ω

1 �,�[1],...,[P]± ← InitializeModel(P ,R)
2 while not converged do
3 Λ← GetKoopmanOperator(�[1],...,[P]± )
4 for episode l = 1,…,N do
5 p0, ...,p1−d ← ResetEnvironment()

6 a0 ← 0

7 for time-step k = 0,…,L do
8 ok ← ProcessImages(pk , ...,pk−d+1, �)
9 sk ,B'k ,Csk ← LatentModel(ok ,ak , �)

10 Δak ← LMPC(sk ,ak ,B'k ,Csk ,Λ, � )
11 ak+1 ←ak +Δak+ Noise(�ou,�2,ou)
12 pk+1, ck ← ApplyAction(ak )

13 D←D∪ CreateSequences(T ,{tk}Lk=0)

14 �,�[1],...,[P]± ← TrainModel(D,�,�[1],...,[P]± , � ,E,B)

LMPC is de�ned as follows:

min
Δa0,…,H−1

H
∑
k=1

||Cs0sk ||
2
2 +a

T
kRak +Δa

T
k R̃Δak , (5.16)

s.t. [
sk+1
ak+1]

= [
Λ 0
0 I ][

sk
ak]

+[
B'0
I ]Δak ,

amin ≤ ak ≤ amax, for k = 1,…,H ,

where H is the prediction horizon. Positive-de�nite matrix R̃ penalizes the use of Δak and

is required to make the problem well-conditioned. Its use does introduce a discrepancy

between the approximate cost model Eq. (5.8) and the cumulative cost ultimately minimized

by the agent Eq. (5.16). Therefore, the elements in R̃ are kept as low as possible.

To align the representation learning objective Eq. (5.15) with the linear MPC objective

Eq. (5.16), we also �x the state-dependent terms Cs0 and B'0 at time-step k = 0 in the

evaluation of the cost prediction loss Eq. (5.14) and linear loss Eq. (5.12). Note that this

does not mean that Csk and B'k are constant in the latent model Eq. (5.7), Eq. (5.8). The

matrices remain state-dependent, but their variation is limited over the sequence length T .

In general, we choose the sequence length to be equal to the prediction horizon. Hence,

we learn a representation that provides local linear models that are particularly accurate

around sk in the direction of the (goal-directed) trajectories gathered during training.

To gather a rich set of episodes to learn the Koopman latent model, we add colored noise

to the actions commanded by the agent’s linear MPC policy, that is, ak+1 = ak +Δak +�k .

This adds a stochastic exploration component to the policy. We use an Ornstein-Uhlenbeck
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Figure 5.2: Left Typical setups for the two tasks in a clean scenario (�rst row) and distractor scenario

(second row). In all setups, the center system is controlled by the agent. In the manipulator task, the

moving target is a blue ball. Right Learning curves when using state observations. The grid-location

of each �gure corresponds to the grid-location of each setup on the left. The mean cumulative cost

over the last 10 episodes (line) with one standard deviation (shaded area) over 5 random seed runs

are shown.

Figure 5.3: Learning curves when using images as observations in the pendulum task. The mean

cumulative cost over the last 10 episodes (line) with one standard deviation (shaded area) over 5

random seed runs are shown. Left Clean scenario. Right Distractor scenario.

(OU) process to generate the additive colored noise with decay rate �ou
. The variance �2,ou

is linearly annealed from �2,ou

init
→0 over 1,…,N ou

episodes, that is, after N ou
episodes the

policy becomes deterministic.

An overview of the proposed method is shown in Alg. 8. First, we initialize all model

parameters. Then, we construct the Koopman operator Λ with Eq. (5.4) and gather N
episodes of experience. Each time-step, we process the image observations with Eq. (5.11),

evaluate the latent model Eq. (5.6), Eq. (5.7), and Eq. (5.8), and use it to �nd Δak with

Eq. (5.16). Noise is added to the action increment before it is applied to the environment.

We �ll the experience bu�er D with N episodes, split into sequences of length T , and train

on them for E epochs with Eq. (5.15). This is repeated until convergence.

5.6 Results
We evaluate DeepKoCo on two continuous control tasks, namely OpenAI’s pendulum

swing-up task and a manipulator task. The manipulator task is similar to OpenAI’s reacher
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task where the two joints of a two-link arm are torque controlled and the Euclidean distance

between the arm’s end-point and a target must be minimized. However, we increase the

di�culty by allowing the target to move at a constant angular velocity and radius around

the arm’s center-joint. Given that the angular velocity and radius vary randomly over

episodes, the manipulator must learn to track arbitrary circular trajectories at di�erent

speeds. The dynamics for the manipulator can be formulated as xk+1 = F(xk ) +B(xk )ak ,

where x is the original nonlinear state. Such dynamics do not necessarily admit a Koopman

representation that is (bi-)linear in the states and actions, as is often assumed in literature

[114, 116].

To investigate the e�ect of distractor dynamics, we test each task in two di�erent

scenarios. In the �rst scenario, only relevant dynamics are observed, while in the second

one we purposely contaminate the observations with distractor dynamics. The agent is

either provided with a concatenated state observation containing the state measurements of

both the relevant system and distractors (while not knowing which states are the relevant

ones) or image observations with all systems in-frame (refer to Fig. 5.2 for the setup). The

state observation dimension from the clean to the distractor scenario increases from 3 to

15 for the pendulum and from 10 to 50 for the manipulator. A video of the simulations

using DeepKoCo accompanies the chapter [131].

Baselines We compare with two baselines that both combine model-free reinforcement

learning with an auxiliary bisimulation loss to be robust against task-irrelevant dynamics:

(i) Deep Bisimulation for Control (DBC) [111], and (ii) DeepMDP [118]. In case of state

observations, we replace their convolutional encoder, with our fully connected encoder.

Hyperparameters We use the same set of hyperparameters throughout all experiments,

except for the number of complex eigenvalue pairs P , that is, P = 10 and P = 30 in the

swing-up and manipulator task, respectively to cope with the complexity of the scenarios.

As policy parameters, we use H = 15,R = 0.001, R̃ = 0.01,�OU = 0.85,�2,ou

init
= 0.85. Initially,

we �ll the experience bu�er D with N = 90 episodes, split into sequences of length T = 15,
and train on them for E = 100 epochs. Then, we continuously add the sequences of N = 20
episodes to the bu�er and train on the complete bu�er for E = 3 epochs. As optimization

parameters, we use �1 = 10,�2 = 10−14, �̃ = 0.001. In case of image observations, we stack

the last d = 3 images, downsample them to 3×64×64 pixels before passing them through

the convolutional NN de�ned in [132]. The networks ','-1, are 2-layered fully connected

NNs with 90, 90, and 70 units per layer, respectively. The layers use ReLU activation and

are followed by a linear layer. The number of complex eigenvalue pairs P , planning horizon

H , and action increment cost R̃ are the most important parameters to tune.

Clean Scenario Concerning the pendulum task, the baselines converge more quickly to

the �nal performance compared to DeepKoCo, as the top-left graph of Fig. 5.2 shows. Nev-

ertheless, we do consistently achieve a similar �nal performance. The slower convergence

can be explained by the added noise, required for exploration, that is only fully annealed

after 400 episodes. We believe the convergence rate can be signi�cantly improved by

performing a parameter search together with a faster annealing rate, but we do not expect

to be able to match the baselines in this ideal scenario. Note that, despite the apparent
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simplicity of the application scenario, �nding an accurate Koopman representation for the

pendulum system is challenging, because it exhibits a continuous eigenvalue spectrum and

has multiple (unstable) �xed points [127]. Concerning the manipulator task, both baselines

were not able to solve the manipulator task with a moving target as the top-right graph

of Fig. 5.2 shows, while they were able to learn in case the target was �xed. This shows

that learning to track arbitrary circular references is signi�cantly harder than regulating

towards a �xed goal. Despite the increased di�culty, DeepKoCo learns to track the mov-

ing target. Finally, note that the manipulator task shows that the proposed method can

deal with a multi-dimensional action-space and non-quadratic cost functions, that is, the

Euclidean norm (the square root of an inner product).

Distractor Scenario In the more realistic scenario, both baselines fail to learn anything.

In contrast, our approach is able to reach the same �nal performance as in the clean scenario,

in a comparable amount of episodes, as the bottom row of Fig. 5.2 shows. This result can

be explained by noticing that our multi-step cost prediction (in our loss function Eq. (5.14))

provides a stronger learning signal for the agent to distinguish relevant from irrelevant

dynamics. For the manipulator task, there is a tracking error caused by the trade-o� of

using �xed B' and Cs along the MPC prediction horizon for e�ciency. While our latent

model presented in Sec. 5.4 supports state-dependent matrices, we decided to keep them

�xed in the control design for e�ciency.

Image Observations Fig. 5.3 shows the results for the pendulum task when images are

used instead of state observations. In both clean and distractor scenarios, our approach

is able to reach a similar �nal performance compared to using state observations. As

expected, the baselines struggle to learn in the distractor scenario. This supports our

statement that our approach learns a task-relevant Koopman representation from high-

dimensional observations. We plan to test the manipulator task with images both in

simulation and in real-world experiments.

5.7 Conclusion
We presented a model-based agent that uses the Koopman framework to learn a latent

Koopman representation from images. DeepKoCo can �nd Koopman representations that

(i) enable e�cient linear control, (ii) are robust to distractor dynamics. Thanks to these

features, DeepKoCo outperforms the baselines (two state-of-the-art model-free agents) in

the presence of distractions. As part of our future work, we will extend our deterministic

latent model with stochastic components to deal with partial observability and aleatoric

uncertainty. Furthermore, we will extend our cost model to deal with sparse rewards, as

they are often easier to provide.
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6
Conclusions and Outlook

This thesis contributes to the �eld of robotic learning by focusing on the balance between

�exibility, accuracy, and speed in simulator design. By optimizing these factors, we address

key challenges in creating simulations that are both representative of real-world scenarios

and e�cient for learning robotic policies. This chapter summarizes the main contributions,

discuss the broader implications of the �ndings, and outline future research directions.

6.1 Conclusions
Given the diverse and evolving nature of robotic tasks, a �exible simulator must accommo-

date various systems and adapt to evolving requirements. To address this, the sim2real

framework EAGERx (Engine Agnostic Graph Environments for Robotics) was introduced

in Chapter 2, featuring a graph-based architecture that enables modular representation

of tasks, systems, and simulators. By adding, removing, or recon�guring nodes, EAGERx

allows users to modify the architecture easily to suit di�erent tasks. The framework was

demonstrated across diverse systems such as pendulums, quadrupeds, quadrotors, and

manipulators, interfacing seamlessly with multiple simulators and supporting various state,

action, and time-scale abstractions. While the graph-based design enabled �exibility, it

introduced challenges in simulating real-world asynchronous e�ects and coordinating

components at faster-than-real-time speeds. To address this, EAGERx incorporated a

novel synchronization protocol that manages inter-node communication based on node

rates and anticipated delays, ensuring consistent simulation behavior at faster-than-real-

time speeds. An ablation study con�rmed that abstractions, delay simulation, and proper

synchronization—key features enabled by the graph-based architecture—resulted in the

smallest sim2real gap, and led to the best policy transfer performance in two real-world

robotic tasks. Thus, �exibility o�ered by our graph-based design plays a pivotal role in

integrating these features and narrowing the sim2real gap, allowing for e�ective policy

transfer to real-world scenarios.

While �exibility is essential for accommodating diverse robotic tasks, speed is equally

crucial for robot learning. Speed in simulated learning provides critical bene�ts, such as

faster training times and the ability to conduct extensive hyperparameter tuning, which

makes parallelization a key strategy to achieve these advantages. With the advent of



6

94 6 Conclusions and Outlook

accelerated physics-based simulations, parallelization has become a popular approach to

improving training e�ciency. Traditional reinforcement learning setups typically assume

a single, synchronized environment built around a physics engine that interacts with the

agent step-by-step, enabling straightforward parallelization. However, robotic system

simulations encompass more than just physics, involving dynamics that are asynchronous

and hierarchical in nature. In Chapter 3, we showed that the hierarchical and asynchronous

nature of real-world systems complicates parallelization in simulation, leading to redun-

dant computations and longer training times. To address these challenges and unlock

the potential of parallelization for hierarchical and asynchronous systems, we introduced

a method that e�ciently parallelizes graph-based simulations on accelerator hardware.

Building on the �exibility of the graph-based architecture introduced in Chapter 2, which

supports asynchronous interactions and time-scale di�erences, our supergraph method

enables e�cient parallelized simulation of such systems by minimizing redundant compu-

tations. We demonstrate that this method doubles computational e�ciency in simulating

two real-world robotic systems compared to baseline methods while maintaining superior

accuracy in handling asynchronous interactions and delays, leading to improved policy

transfer performance. Furthermore, our results show that e�ciency gains scale signi�-

cantly, increasing by up to 20 times as the system complexity grows to 64 asynchronously

running components. Thus, Chapter 3 advances robot simulation for learning by extending

beyond parallelized physics simulations to e�ciently handle asynchronous and hierarchical

dynamics of robotic systems.

While modeling asynchronous and hierarchical real-world systems is crucial for accu-

rate simulation, and parallelizing these simulations is essential for e�cient learning, these

alone are not su�cient to bridge the sim2real gap. A graph-based architecture provides a

parametric structure expressive enough to capture real-world complexity, but con�guring

it to accurately model the system remains a signi�cant challenge. This is analogous to a

neural network capable of approximating any function, but requiring data-driven training

to �nd the right weights. Similarly, a graph-based simulator may theoretically represent

complex robotic systems, but identifying the correct delays and parameters to capture sys-

tem dynamics, including asynchronous interactions, demands estimation from real-world

data. To address this, we introduced REX (Robotic Environments with jaX) in Chapter 4, a

framework designed to estimate system dynamics and delays from real-world data, thereby

enhancing simulation �delity and policy transfer. Building on the graph-based architecture,

REX incorporates asynchronous and hierarchical dynamics with e�cient parallelization

strategies from earlier chapters, enabling the simultaneous estimation of system dynamics

and delays using evolutionary strategies that leverage accelerator hardware. We demon-

strated that accurately modeling delays and asynchronous operations allows the training

of delay-aware policies, signi�cantly improving policy transfer performance compared

to baseline methods that disregard delays in two real-world robotic systems. We also

explored training delay-agnostic policies while compensating for delays at inference using

Smith-predictor-based strategies during deployment. This approach improved performance

in simulation by simplifying the learning task, since solving a delayed task is inherently

harder than a delay-free version, while still achieving comparable real-world performance.

This ties back to the �exibility highlighted in Chapter 2, as the graph-based architecture

supports the integration of delay compensation as a state abstraction, simplifying the
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overall learning process.

By demonstrating how graph-based architectures can serve as �exible models to capture

the complexity of real-world systems, how the supergraph method can enhance paralleliza-

tion, and how real-world data can be used to estimate delays and dynamics, we have shown

the potential of graph-based simulations in balancing �exibility, speed, and accuracy for

robot learning. However, as tasks grow in complexity, we inevitably face the challenge of

the unknown. While policy transfer in simulated learning depends on accurately modeling

all scenarios that an agent might encounter, the real world is in�nitely complex, with

the number of possible scenarios expanding rapidly as the observation space grows. For

example, while we may be able to simulate di�erent types of roads for a self-driving car, we

cannot simulate every possible lighting condition, weather pattern, or all the objects that a

car might pass. Instead of attempting to simulate every possible scenario, we should focus

on accurately modeling an abstraction of all relevant scenarios while building resilience

against the in�nite number of irrelevant ones, thereby enhancing robustness. This was

the focus of Chapter 5, where we demonstrated that learning a latent dynamics model

that predicts future rewards enables the agent to focus on task-relevant dynamics while

ignoring irrelevant distractions. We showed that this approach signi�cantly improves the

robustness of learned policies, maintaining performance even in the presence of distractors,

achieving comparable results in two simulated benchmark tasks as in a distractor-free envi-

ronment. In contrast, baseline methods struggle, failing to learn the task when distractors

are present, despite achieving perfect performance in the absence of distractions. We draw

parallels between the delay compensation strategies at inference time in Chapter 4 and the

latent task-relevant dynamics model discussed in Chapter 5. Both approaches simplify the

learning task in simulation by reducing the complexity of the environment to a delay-free

and entirely task-relevant one. In doing so, the complexities of delay compensation and

distractor �ltering are shifted to the inference stage during real-world deployment. Thus,

the resilience approach in Chapter 5 complements the delay compensation strategy in

Chapter 4, both demonstrating the utility of a �exible framework by integrating state

abstractions to enhance the robustness and transferability of policies learned in simulation

to real-world scenarios.

In summary, this thesis contributes to the �eld of robotic learning by developing a

structured simulator design that balances �exibility, accuracy, and speed. We have utilized

graph-based architectures to enhance simulator �exibility, enabling modular representation

of robotic tasks and facilitating the integration of state, action, and time-scale abstractions

to improve learning e�ciency and transferability. Moreover, the graph-based architectures

are well-suited for creating uni�ed software pipelines that bridge real and simulated

robot learning. These graph-based simulations have proven e�ective in modeling and

compensating for delays, thereby improving the accuracy of sim2real transfers. The

supergraph method addressed the challenges of parallelizing asynchronous and hierarchical

systems, reducing training times while maintaining high simulation �delity and enabling

the e�cient estimation of system dynamics and delays from real-world data. Lastly, this

work has resulted in the creation of two open-source sim2real frameworks (EAGERx, REX)

and has contributed to existing open-source deep learning frameworks (OpenDR [133]), all

made available to the research community to support advancements in robotic learning

and sim2real transfer.
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6.2 Discussion and Outlook
As the complexity of robotic tasks continues to increase, the �eld of robot learning is

shifting its approach to meet these challenges. Rather than relying purely on end-to-end

models, the focus is now on developing a pipeline of specialized components, each designed

to address speci�c aspects of a larger task. This trend parallels the rise of foundation models

in natural language processing [134, 135] and computer vision [136], where large, versatile

models are trained on extensive datasets to provide generalized capabilities across many

applications. In robotics, similar foundation models are emerging, with e�orts like CLIPort

[52], RT-1 [137], and SayCan [138], o�ering broad capabilities but requiring integration with

other specialized modules (e.g., for control) to achieve complex, task-speci�c behaviors.

Unlike NLP or computer vision, however, robotics brings unique real-time challenges.

Robots must respond promptly to external stimuli to operate e�ectively, which places

stringent demands on latency and response times. These foundation models are often

computationally heavy, which means inference is either slow when performed locally

or requires o�oading computations to remote data centers, both of which introduce

latency. This highlights the growing need for e�cient modeling and management of delays

between components to ensure robust real-time performance. The contributions of this

thesis are well-positioned to address these needs by providing structured simulation tools

that e�ectively balance �exibility, accuracy, and speed. By accounting for asynchronous

interactions and modeling latency, this work paves the way for integrating foundation

models into robotic systems in a manner that maintains real-time performance requirements

and enhances system robustness.

Looking ahead, this thesis suggests a more integrated systems approach to robotic

learning, where future research could focus on co-designing learning algorithms and their

environments to further optimize the learning process. While this work lays the founda-

tion for modular representations in graph-based simulations and demonstrates how, for

example, delay compensation can be decoupled from the learning task, additional research

is necessary to explore novel ways of decomposing robotic learning tasks into manageable

subproblems. Tackling these subproblems individually may lead to more e�ective and

scalable learning outcomes. This challenges the conventional agent-environment paradigm

[23], which typically views the environment as a �xed entity and treats the agent as a

solitary solver of all tasks. In contrast, future research could explore a more �uid de�ni-

tion of agent-environment interaction, where di�erent subproblems necessitate tailored

environmental recon�gurations. By moving beyond rigid, end-to-end training of single

agents, researchers could investigate adaptive environments that evolve in response to

agent progress or integrate pretrained agents or specialized learning algorithms to facilitate

the learning process.

In this context, one promising direction for future work involves fundamentally split-

ting robotic learning tasks into separate estimation and control subtasks. This approach

draws inspiration from the well-established duality between estimation and control in the

Linear Quadratic Gaussian (LQG) framework [139], where the two problems are handled

independently while applying a common solution tactic. A potential research avenue

could be training control policies on full state information—simplifying the learning pro-

cess—while separately training estimator policies that infer hidden states based on sensor

observations. In theory, the estimator could be optimized with the same objective as the
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control policy since accurate estimation of the relevant hidden state enables the control

policy to select actions that maximize the expected return. However, introducing auxiliary

objectives could further incentivize the estimator to focus on reconstructing hidden states

that are most critical for the control task. By decoupling the estimation and control tasks,

the challenges of partial observability and the task itself can be addressed separately, po-

tentially making the learning easier. Moreover, this approach underscores the potential for

a �exible graph-based simulation framework, where the environment, during the learning

of the estimator policy, incorporates the pre-trained control policy as part of the system’s

overall dynamics. This �exibility facilitates rede�nitions of the environment that can be

tailored to speci�c learning phases or subtasks, further illustrating the value of a modular

framework for representing robotic systems.

An exciting extension of this idea could involve jointly training the control and esti-

mator policies under complementary objectives. For example, the control policy could be

incentivized to propose actions that are easier to estimate, while the estimator policy is

optimized to predict the hidden states that are most relevant to the control task. This joint

optimization framework could lead to more e�ective policies, particularly in environments

characterized by high uncertainty and partial observability. In this regard, control and

estimation can be seen as two cooperating agents in a single system, potentially well-suited

for a multi-agent reinforcement learning approach [140].

Recent advancements also highlight the potential of integrating parallelized simulations

in online planning strategies. For instance, parallelized simulation were used in a sampling-

based planning that could solve complex robotic manipulation tasks without requiring

o�ine training [79]. In this approach, actions are sampled from a prior model, and the

optimal action sequence is determined online. However, a key challenge remains in sample

e�ciency, as large state spaces must be explored to identify optimal actions. Moreover, the

limited planning horizon inherent in these methods can restrict exploration, often leading

to suboptimal performance.

To address these challenges, future work could explore the integration of o�-policy

reinforcement learning with GPU-accelerated simulators in an online sampling-based

planner. In this approach, a policy trained o�ine could serve as the proposal model for the

sampling-based planner, while the value function could be used to bootstrap the planner at

the end of the planning horizon, improving both exploration and sample e�ciency.

Additionally, using GPU-accelerated simulators as the dynamics models in sampling-

based estimators, such as particle �lters [3], presents another promising research direction.

This approach could e�ectively address partial observability challenges during deployment

by decoupling state estimation from task learning, much like how delay compensation was

separated from task learning in Chapter 4.
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