<]
TUDelft

Delft University of Technology

Designing Simulators for Robot Learning

van der Heijden, D.S.

DOI
10.4233/uuid:d41281cc-d8cc-450d-b863-2a41d9d4a203

Publication date
2025

Document Version
Final published version

Citation (APA)
van der Heijden, D. S. (2025). Designing Simulators for Robot Learning. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:d41281cc-d8cc-450d-b863-2a41d9d4a203

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:d41281cc-d8cc-450d-b863-2a41d9d4a203
https://doi.org/10.4233/uuid:d41281cc-d8cc-450d-b863-2a41d9d4a203

Designing Simulators
for Robot Learning

Douwe Sebastiaan v
van der Heijden |~ o~

iii

DESIGNING SIMULATORS FOR ROBOT LEARNING

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology
by the authority of the Rector Magnificus prof.dr.ir. TH.J.J. van der Hagen,
chair of the Board for Doctorates
to be defended publicly on
Tuesday 29 April 2025 at 15.00 o’clock

by
Douwe Sebastiaan VAN DER HEIJDEN

Master of Science in Systems and Control, Delft University of Technology

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, voorzitter

Prof.dr. R. Babuska, Delft University of Technology, promotor
Dr.-Ing. J. Kober, Delft University of Technology, promotor
Dr. L. Ferranti, Delft University of Technology, copromotor

Independent members:

Prof.dr.ir. B. De Schutter, Delft University of Technology

Prof.dr. A. Plaat, Leiden University

Prof.dr. A. Valada, University of Freiburg, Germany

Dr. H.C. van Hoof, University of Amsterdam

Prof.dr.ir. J. Hellendoorn, Delft University of Technology, reserve member

This work was supported by the European Union’s H2020 project Open Deep Learning
Toolkit for Robotics (OpenDR) under grant agreement No 871449.

4 Delft OD
TUDelft iy R

Email: b.heijden@hotmail.com
Printed by: Gildeprint
Cover: Douwe Sebastiaan van der Heijden

Copyright © 2025 by D.S. van der Heijden

ISBN 978-94-6518-019-9

An electronic version of this dissertation is available at
https://repository.tudelft.nl/.

https://repository.tudelft.nl/

All models are wrong, but some are useful.

George Box

vii

Contents

Summary

Samenvatting

1 Introduction

1.1
1.2
1.3
1.4

Paradigm of Learning-Based Robotics
Hurdles of Real-World Application
Simulating Success L e
ThisThesis

2 Flexibility: A Graph-Based Simulator

2.1
2.2
2.3
24
2.5
2.6
2.7

Introduction
Framework
Synchronization Lo
Experimental Evaluation
Applications beyond Reinforcement Learning
Discussion e
Conclusion L

3 Speed: Parallelizing Graph-Based Simulations

3.1 Imtroduction
3.2 Preliminaries L L Lo
33 OurApproach
3.4 Experimental Evaluation
35 RelatedWork. L
3.6 Conclusion L
Appendix 3.A: Scalability Analysis L
Appendix 3.B: Ablation Study Lo
Appendix 3.C: Graphs
4 Accuracy: Estimating Dynamics and Delays of Graph-Based Simulations
41 Introduction
42 RelatedWork. L
43 OurSim2Real Framework L L
44 Experimental Evaluation

ix

xiii

10
12
16
19
28
29
31

57

viii CONTENTS
45 Conclusion L 74
Appendix 4.A: Measurable Delay Fitting with Gaussian Mixture Models 74
Appendix 4.B: Unscented Kalman Filter 75
Appendix 4.C: Dynamics 77
Appendix 4.D: Covariance Matrix Adaptation Evolution Strategy 78
Appendix 4.E: Proximal Policy Optimization 80

5 Resilience: Simulating Irrelevance to Enhance Task-Relevant Learning 81
51 Introduction 82
52 RelatedWork. 83
5.3 Preliminaries L 83
5.4 Learning Relevant Koopman Eigenfunctions 85
5.5 DeepKoopmanControl 88
56 Results 90
57 Conclusion L 92

6 Conclusions and Outlook 93
6.1 Conclusions 93
6.2 Discussionand Outlook L. L o 96

Bibliography 99

Glossary 109

Acknowledgments 111

About the Author 113

List of Publications 115

ix

SUMMARY

Reinforcement learning has emerged as a promising approach for enabling robots to learn
from interactions with their environments, without relying on predefined behaviors. How-
ever, robots face significant challenges when learning directly from real-world interactions.
Real-world learning is time-consuming and resource-intensive, often requiring extensive
data collection over long periods. Additionally, the risks involved in trial-and-error learn-
ing in physical settings are high, as faulty policies can lead to safety issues or system
damage. Simulations offer a safer and more efficient alternative, allowing robots to learn in
simulated environments at faster-than-real-time speeds. Despite these benefits, simulations
often serve as imperfect approximations of reality. As a result, robots may learn behav-
iors that exploit simulation-specific quirks, which may not perform well in real-world
settings, creating difficulties in transferring learned behaviors from simulation to real
environments—a challenge known as the sim-to-real gap. Several factors contribute to the
sim-to-real gap, such as unmodeled physical phenomena like friction and deformation,
and the asynchronous nature of real-world systems that simulations often fail to capture
accurately. Additionally, using separate software stacks for simulation and deployment can
unintentionally lead to discrepancies. Finally, simulating at faster-than-real-time speeds
with asynchronous frameworks that distribute computation across multiple cores may also
introduce inaccuracies without proper synchronization.

This thesis focuses on improving simulation tools and methodologies to enhance the
efficiency and effectiveness of learning-based approaches in robotics. The work addresses
key trade-offs between flexibility, speed, and accuracy in robotic simulations, which are
critical for successfully transferring learned policies from simulation to real-world environ-
ments. Additionally, it introduces a strategy to improve resilience, ensuring that learned
behaviors are robust to irrelevant and unknown dynamics. By tackling these challenges,
this thesis provides insights into the design of effective robotic simulators and presents
contributions that help bridge the gap between simulated and real-world robotic learning.

A flexible simulation environment is essential to circumvent and abstract away inac-
curacies, while concentrating the learning process on the relevant and realistic parts of
the environment. Chapter 2 introduces EAGERx (Engine Agnostic Graph Environments
for Robotics), a graph-based sim-to-real framework designed to enhance flexibility in
robotic simulations. EAGERx allows for modular representation of tasks, enabling users
to configure systems more flexibly that accomdates various state, action, and time-scale
abstractions. A key component of EAGERx is a novel synchronization algorithm that
supports the simulation of asynchronous, hierarchical systems at faster-than-real-time
speeds. Additionally, the framework integrates delay simulation and domain random-
ization, which further enhances its ability to reduce the sim-to-real gap. The flexibility
offered by EAGERx improves learning efficiency, as robots can more effectively focus on
task-relevant dynamics. This is demonstrated in two robotic benchmark tasks, where
EAGERx successfully reduces the sim-to-real gap.

X SUMMARY

Chapter 3 builds on the flexibility introduced in Chapter 2, focusing on simulation
speed, which is critical for scaling learning efficiency in complex tasks. Graph-based simu-
lations, while flexible, present challenges for parallelization, particularly when handling
asynchronous interactions and delays. This chapter introduces a novel parallelization tech-
nique that constructs a supergraph, capturing all possible execution paths across parallel
simulations. By minimizing redundant computations, this method enables more efficient
parallel execution on accelerator hardware, significantly reducing training times without
compromising simulation accuracy. The proposed approach extends the flexibility of graph-
based simulations with efficient parallelization capabilities without sacrificing accuracy,
providing an effective solution for graph-based simulators used in reinforcement learning
tasks.

While flexibility and speed are crucial, the accuracy of simulations remains a key
factor in closing the sim-to-real gap. Chapter 4 addresses this by focusing on improving
simulation fidelity through better modeling of system dynamics with the addition of an
explicit delay model. The chapter introduces a framework, REX (Robotic Environments
with jaX), for the simultaneous estimation of dynamics and delays from real-world data,
building on the graph-based architecture discussed in earlier chapters. The key innovation
in this framework is the simulation of sensing, computation, and actuation delays, while
also demonstrating delay compensation strategies to minimize their impact on the learned
policies. Accurate modeling of real-world delays and dynamics significantly improves the
quality of sim-to-real transfer, ensuring that robots perform more reliably when deployed
in real environments.

The final core technical contribution of this thesis, detailed in Chapter 5, is the introduc-
tion of the DeepKoCo algorithm, which addresses the need for resilience in learned policies.
From self-driving cars to vision-based robotic manipulation, emerging technologies are
characterized by visual measurements of highly nonlinear physical systems. Unlike in
highly controlled lab environments where any measured change is likely relevant, cameras
in real-world settings are notorious for mainly capturing task-irrelevant information, such
as, the movement of other robots outside of a manipulator’s workspace or cloud movements
captured by the cameras of self-driving cars. While flexibility, speed, and accuracy are
essential for effective simulated learning, these are effects that may never be fully captured
in simulations. Resilience to task-irrelevant dynamics is therefore crucial when deploying
learned policies in real-world environments. DeepKoCo uses a lossy autoencoder to filter
out irrelevant dynamics, allowing the robot to focus on task-relevant information. By learn-
ing a latent representation that prioritizes important dynamics, DeepKoCo enhances the
robustness of learned behaviors. This ensures that the learned policies are not only accurate
but also resilient to the distractions and uncertainties present in real-world applications.

In conclusion, this thesis presents a structured approach to balancing flexibility, speed,
accuracy, and resilience in robotic simulators. The contributions, including the graph-based
framework, parallelization techniques, and improved modeling of real-world dynamics
with delays, provide a comprehensive toolkit for advancing reinforcement learning in
robotics. The work demonstrates that achieving this balance is essential for closing the
sim-to-real gap and enabling more efficient, robust robotic learning. Looking forward,
future research could explore co-designing learning algorithms and simulation environ-
ments to further optimize the learning process. Additionally, decoupling estimation and

SUMMARY Xi

control tasks, or integrating parallelized simulations into online planning, hold promise for
further improving both learning efficiency and resilience. The open-source tools developed
as part of this thesis are made available to the robotics community, supporting further
advancements in the field of reinforcement learning in robotics.

xiii

SAMENVATTING

Reinforcement learning lijkt een veelbelovende aanpak om robots zelfstandig te laten leren
van interacties met hun omgeving, zonder gebruik te maken van voorgeprogrammeerd
gedrag. Echter, zijn er aanzienlijke uitdagingen wanneer robots leren door middel van
interacties in de echte wereld. Leren in de echte wereld is tijdrovend en vergt veel middelen,
zoals het verzamelen van data over lange periodes. Bovendien zijn de risico’s verbonden
aan trial-and-error leren in de fysieke wereld hoog, aangezien foutief gedrag kan leiden
tot gevaarlijke situaties en schade. Simulaties bieden een veiliger en efficiénter alternatief,
waardoor robots kunnen leren in gesimuleerde omgevingen op snelheden die hoger zijn
dan real-time. Ondanks deze voordelen zijn simulaties vaak onvolmaakte benaderingen
van de realiteit. Als gevolg hiervan kunnen robots gedrag leren dat misbruik maakt
van simulatiespecifieke eigenaardigheden, die niet goed werken in de echte wereld, wat
moeilijkheden creéert bij de overdracht van geleerd gedrag van simulatie naar de echte
wereld—een uitdaging die bekendstaat als de sim-to-real gap. Verschillende factoren dragen
bij aan de sim-to-real gap, zoals niet-gemodelleerde fysieke fenomenen zoals wrijving en
vervorming, en de asynchrone aard van echte systemen die simulaties vaak niet nauwkeurig
vastleggen. Daarnaast kan het gebruik van aparte softwarestacks voor simulatie en de echte
wereld onbedoeld leiden tot discrepanties. Ten slotte kan het simuleren op snelheden hoger
dan real-time met asynchrone software die berekeningen over meerdere cores verdelen,
ook onnauwkeurigheden introduceren zonder correcte synchronisatie.

Dit proefschrift richt zich op het verbeteren van simulaties en methodologieén om de
efficiéntie en effectiviteit van op leren gebaseerde benaderingen in robotica te vergroten.
Het werk behandelt belangrijke afwegingen tussen flexibiliteit, snelheid en nauwkeurigheid
in robotsimulaties, die cruciaal zijn voor de succesvolle overdracht van geleerd gedrag van
simulatie naar de echte wereld. Daarnaast introduceert het een algoritme om veerkracht
te verbeteren, zodat geleerd gedrag robuust is tegen irrelevante en onbekende dynamica.
Door deze uitdagingen aan te pakken, biedt dit proefschrift inzichten in het ontwerp van
effectieve robotsimulatoren en presenteert het bijdragen die helpen de kloof tussen de
gesimuleerde en echte wereld in robotleren te overbruggen.

Een flexibele simulatiewereld is essentieel om onnauwkeurigheden te omzeilen en te
abstraheren, terwijl het leerproces wordt geconcentreerd op de relevante en realistische
delen van de simulatie. Chapter 2 introduceert EAGERx (Engine Agnostic Graph Environ-
ments for Robotics), een graafgebaseerd sim-to-real applicatie ontworpen om de flexibiliteit
in robotsimulaties te vergroten. EAGERx maakt een modulaire representatie van taken
mogelijk, waardoor gebruikers systemen flexibeler kunnen configureren die verschillende
toestand-, actie- en tijdschaal abstracties ondersteunen. Een belangrijk onderdeel van
EAGERX is een nieuw synchronisatie-algoritme dat de simulatie van asynchrone, hiérar-
chische systemen ondersteunt op snelheden hoger dan real-time. Daarnaast integreert
de applicatie tijdsvertraging simulatie en domein randomisatie, wat het vermogen om de
sim-to-real gap te verkleinen verder vergroot. De flexibiliteit die EAGERx biedt, verbetert

Xiv SAMENVATTING

de leerefficiéntie, omdat robots effectiever kunnen focussen op taakrelevante dynamica.
Dit wordt gedemonstreerd in twee robotbenchmarktaken, waar EAGERx met succes de
sim-to-real gap vermindert.

Chapter 3 bouwt voort op de in Chapter 2 geintroduceerde flexibiliteit, met een focus
op simulatiesnelheid, wat cruciaal is voor het opschalen van leerefficiéntie in complexe
taken. Graafgebaseerde simulaties, hoewel flexibel, bemoeilijken parallellisatie, met name
bij het simuleren van asynchrone interacties en tijdsvertragingen. Dit hoofdstuk intro-
duceert een nieuwe parallellisatietechniek die een supergraaf construeert, die alle mogelijke
uitvoeringspaden over parallelle simulaties omvat. Door redundante berekeningen te mini-
maliseren, maakt deze methode efficiéntere parallelle uitvoering op acceleratorhardware
mogelijk, waardoor trainingstijden aanzienlijk worden verminderd zonder afbreuk te doen
aan de simulatienauwkeurigheid. De voorgestelde aanpak breidt de flexibiliteit van graafge-
baseerde simulaties uit met efficiénte parallellisatie mogelijkheden zonder nauwkeurigheid
op te offeren, en biedt een effectieve oplossing voor graafgebaseerde simulatoren die worden
gebruikt in reinforcement learning.

Hoewel flexibiliteit en snelheid cruciaal zijn, blijft de nauwkeurigheid van simulaties
essentieel bij het dichten van de sim-to-real gap. Chapter 4 adresseert dit door zich te
richten op het verbeteren van de simulatiegetrouwheid door betere modellering van sys-
teemdynamica met de toevoeging van een expliciet tijdsvertragingsmodel. Het hoofdstuk
introduceert een applicatie, REX (Robotic Environments with jaX), voor de gelijktijdige
afschatting van dynamica en tijdsvertragingen op basis van echte data, voortbouwend op
de graafgebaseerde architectuur die in eerdere hoofdstukken is besproken. De belangrijkste
innovatie in deze applicatie is de simulatie van sensor, berekenings- en actuator tijdsver-
tragingen, terwijl ook tijdsvertragingcompensatie algoritmes worden gepresenteerd om
hun impact op het geleerde gedrag van de robot te minimaliseren. Nauwkeurige modeller-
ing van realistische tijdsvertragingen en dynamica verbetert de kwaliteit van sim-to-real
overdracht aanzienlijk, waardoor robots betrouwbaarder presteren wanneer ze in de echte
wereld worden ingezet.

De laatste technische bijdrage van dit proefschrift, besproken in Chapter 5, is de in-
troductie van het DeepKoCo-algoritme, dat inspeelt op de behoefte aan veerkracht in
geleerd robot gedrag. Van zelfrijdende auto’s tot het gebruik van camera’s door robo-
tarmen, worden opkomende technologieén gekenmerkt door visuele metingen van sterk
niet-lineaire fysieke systemen. In tegenstelling tot sterk gecontroleerde labomgevingen
waar elke gemeten verandering waarschijnlijk relevant is, staan camera’s in de echte wereld
erom bekend voornamelijk taakirrelevante informatie vast te leggen, zoals de beweging
van andere robots in de omgeving of wolkenbewegingen vastgelegd door de camera’s van
zelfrijdende auto’s. Hoewel flexibiliteit, snelheid en nauwkeurigheid essentieel zijn voor
effectief gesimuleerd leren, zijn dit effecten die mogelijk nooit volledig kunnen worden
vastgelegd in simulaties. Veerkracht tegen taakirrelevante dynamica is daarom cruciaal bij
het inzetten van geleerd gedrag in de echte wereld. DeepKoCo gebruikt een verlieslatende
autoencoder om irrelevante dynamica eruit te filteren, waardoor de robot zich kan concen-
treren op taakrelevante informatie. Door een latente representatie te leren die belangrijke
dynamica prioriteert, verbetert DeepKoCo de robuustheid van geleerd gedrag. Dit zorgt
ervoor dat het geleerde gedrag niet alleen nauwkeurig is, maar ook veerkrachtig is tegen
de afleidingen en onzekerheden die aanwezig zijn in de echte wereld.

SAMENVATTING XV

Concluderend presenteert dit proefschrift een gestructureerde aanpak voor het bal-
anceren van flexibiliteit, snelheid, nauwkeurigheid en veerkracht in robotsimulatoren. De
bijdragen, waaronder graafgebaseerde applicaties, parallellisatietechnieken en verbeterde
modellering van dynamica met tijdsvertragingen, bevorderen het gebruik van reinforcement
learning in robotica. Het werk demonstreert dat het bereiken van deze balans essentieel is
voor het dichten van de sim-to-real gap en het mogelijk maken van efficiénter, robuuster
robotleren. Vooruitkijkend zou toekomstig onderzoek kunnen verkennen hoe leeralgo-
ritmen en simulatiewerelden kunnen worden co-ontworpen om het leerproces verder te
optimaliseren. Daarnaast bieden het ontkoppelen van schattings- en controletaken, of
het integreren van geparallelliseerde simulaties in online planning, perspectieven voor
verdere verbetering van zowel leerefficiéntie als veerkracht. De open-source applicaties
die als onderdeel van dit proefschrift zijn ontwikkeld, worden beschikbaar gesteld aan
de robotica-gemeenschap ter ondersteuning van verdere vooruitgang op het gebied van
reinforcement learning in robotica.

INTRODUCTION

The evolution of technology has centered on automating tasks that were once performed
manually. Early examples of automation include devices like the water mill and windmill,
which converted natural forces into mechanical energy to reduce human labor in tasks
such as grinding grain or pumping water. With the onset of the Industrial Revolution, more
complex systems like the steam engine-powered assembly lines further advanced automa-
tion, significantly increasing efficiency in manufacturing processes [1]. With advances in
computing and sensor technologies, automation has progressed from mechanical systems
like the water mill to sophisticated autonomous robots. These modern robots are capable
of not only performing predefined tasks but also gathering sensory data, processing it, and
making decisions autonomously in real time. This shift from manually controlled machines
to intelligent systems marks a key development in automation, where the primary chal-
lenge is now designing mechanisms that enable robots to effectively map sensory inputs
to real-time actions in dynamic environments.

1.1 PARADIGM OF LEARNING-BASED RoBoOTICS

Traditionally, robots were programmed using detailed knowledge of physics and control
theory, allowing designers to pre-program specific behaviors to close the action loop. This
approach relies heavily on the designer’s ability to anticipate every potential scenario the
robot might encounter, and in practice, engineers often simplify problems by linearizing
dynamics [2] or assuming specific noise distributions [3] to make them mathematically
tractable. While effective in controlled and predictable environments, these assumptions
can significantly limit performance, particularly in complex or highly nonlinear settings
[4].

A useful analogy can be found with early chess computers. Chess, despite having
relatively simple rules, is extremely difficult to play at a competitive level. Initially, chess
computers relied on predefined strategies developed by grandmasters to guide their search
algorithms under constrained computational resources [5]. Similarly, robots were pro-
grammed with control strategies based on simplified physical models, such as Model
Predictive Control using linearized dynamics, to enable fast, real-time responses given
the robot’s limited processing capabilities [6]. In both cases, robots and chess computers

2 1 INTRODUCTION

were limited by their reliance on human-designed heuristics, overconstraining the type of
solutions that could be discovered.

This limitation was overcome in chess with the development of learning-based ap-
proaches, exemplified by AlphaZero [7], a program that fundamentally changed how chess
computers operate. Instead of relying on predefined human strategies, AlphaZero learned
to play by playing against itself, requiring minimal assumptions about strategy'. Design-
ers only needed to encode the rules of chess, and through repeated self-play, AlphaZero
discovered strategies far beyond the capabilities of traditional, human-designed systems,
eventually achieving superhuman performance?.

This paradigm shift in chess mirrors the ongoing shift in robotics [10]. Rather than
depending on predefined models and strategies derived from extensive expert knowl-
edge, learning-based methods—particularly reinforcement learning [11]—allow robots to
discover optimal control policies through trial-and-error interactions with their environ-
ment. This bypasses the need for simplifying assumptions about system dynamics, making
learning-based approaches particularly powerful in scenarios where environments are
highly nonlinear.

If we could transfer this learning capability to the physical world, it could revolutionize
robotics. Robots, without relying on predefined strategies or simplifying assumptions,
could autonomously discover optimal ways to perform tasks, even in highly dynamic and
complex environments. This would enable them to continuously improve their performance
and adapt in real time, unlocking new possibilities in areas such as manufacturing [12],
healthcare [13], and exploration [14].

1.2 HURDLES OF REAL-WORLD APPLICATION

Transferring the learning-based approach from a game like chess to the physical world
poses significant challenges, primarily due to the intrinsic differences between digital
simulations and real-world interactions. The rate at which a system like AlphaZero can
accrue experiences in chess through simulations vastly exceeds the pace of real-world
learning. In practical terms, a robot’s learning in the physical world is bound by real-
time constraints—akin to the difference between the two hours it might take to play a
single chess game versus the millions of games that can be simulated in parallel within
the same timeframe. Moreover, the stakes in real-world applications are vastly higher.
In chess, experimenting with different strategies merely risks losing a game, providing
valuable experience without real-world consequences. In contrast, applying a trial-and-
error learning approach in physical environments, especially those involving robots, can
have serious safety and cost implications.

1.3 SIMULATING SUCCESS

In this regard, robotic simulators offer significant advantages by addressing both the
safety and time constraints inherent to physical world experimentation. They enable

ISelf-play was not a novel concept introduced by AlphaZero. For example, TD-Gammon [8] utilized self-play and
achieved master-level performance in backgammon.

2The approach of pure self-play, without human knowledge, was first shown to reach superhuman performance
in Go by AlphaGo Zero [9].

1.4 Tuis THESIS 3

rapid, parallel simulations analogous to AlphaZero’s chess games, accelerating the learning
process without the risks associated with real-world trials [15-18]. However, while chess
can be perfectly simulated due to its defined rules and deterministic outcomes, the real
world is far more complex and unpredictable, making perfect simulation impossible. These
inaccuracies in simulation can lead robots to develop strategies that effectively exploit the
specific limitations of the simulated environment rather than addressing the underlying
task in a universally applicable manner [19]. As a result, these learned behaviors, while
successful within the context of the simulation, may prove ineffective or counterproductive
when the behavior is transferred to the real world. The robot, having optimized its actions
for the quirks and artifacts of the simulation, might be ill-prepared for the nuances and
unforeseen variables of real environments, undermining the efficacy and safety of its
real-world operations.

Acknowledging the limitations and discrepancies inherent in simulations, it is crucial
to recognize the flexibility available in designing robotic tasks and learning environments.
Unlike the fixed setting of chess, the real world allows roboticists the freedom to modify the
learning context. This adaptability allows roboticists to “change the game” by modifying
learning environments more closely to realistic conditions or even adjust the tasks to
circumvent certain complexities, thereby mitigating the risk of learning unrealistic or inef-
fective behaviors [20]. By considering the design of the simulator as an integral part of the
problem-solving process, roboticists can tailor simulated learning experiences to align more
closely with the real-world. This holistic approach, viewing both the learning algorithm
and the simulator design as malleable and interdependent components, indeed provides a
powerful tool for overcoming challenges in robot learning. In discussing simulator design,
three key considerations are highlighted: the flexibility to customize learning scenarios,
the accuracy of the simulation, and the speed of the simulation.

Navigating the interplay between flexibility, accuracy, and speed is pivotal in designing
effective robotic simulators. While flexibility allows for tailoring learning scenarios to
emphasize relevant aspects of the environment [20], too much abstraction risks limiting
the agent’s ability to discover optimal strategies and undermines the accuracy required
for real-world applicability [19]. Hence, accuracy, in turn, is crucial for applying learned
behaviors in real-world scenarios, but it should not unduly slow down simulations [21],
especially when using parallelization to accelerate learning [22]. These considerations
underscore a critical challenge: designing a simulator structure that effectively balances
flexibility, accuracy, and speed. Such a balance is essential to optimize learning outcomes
without incurring prohibitive computational costs or sacrificing the simulation fidelity
necessary for effective real-world transfer.

1.4 THais THESIS

This sets the stage for the central research question of this work: How can we design a
simulation-based robot learning framework that balances the trade-offs between flexibility,
speed, and accuracy, while ensuring resilience to the complexities and unpredictability of
real-world environments?

The design is built around balancing three key trade-offs: flexibility, accuracy, and speed.
These elements are fundamental to creating an efficient and scalable learning framework
that can be broadly applied across different robotic tasks. The focus on simulator design

4 1 INTRODUCTION

[Simulated Learning: An Intro]
Flexibility

Chapter 2.

Speed Accuracy

Chapter 3. Chapter 4.

CRRGE

Simulator

[Conclusion }&ﬁ@ }

Figure 1.1: Thesis overview. Chapter 1 introduces the challenges in simulated robot learning and
emphasizes the need for a holistic approach that views both the algorithm and simulator design as
interdependent components for effective robot learning. Chapters 2, 3, and 4 focus on key trade-offs in
simulation design—{lexibility, speed, and accuracy—each addressing a fundamental aspect of creating
scalable and efficient simulators. Chapter 5 explores algorithmic strategies to improve resilience,
ensuring learned behaviors are robust to irrelevant dynamics and unknown factors in real-world
environments. Chapter 6 concludes with a summary of findings and discusses future directions for
enhancing both simulator design and resilience strategies.

addresses many of the core challenges in robot learning by allowing for adaptable task
scenarios (flexibility), rapid learning (speed), and accurate modeling of dynamics (accuracy).
However, real-world environments are often filled with noise and irrelevant dynamics
that simulations may never fully capture. To address these challenges, it is critical not
only to optimize simulators but also to consider strategies that make the learning process
resilient to such unknown and irrelevant factors (resilience). By integrating approaches that
expose the learning process to such irrelevance, the system can better adapt to unstructured
environments. This final component ties the simulator’s design to real-world robustness,
ensuring that learned behaviors remain effective even when faced with the unpredictable
elements of real-world scenarios. A visual summary of the topics discussed in this thesis is
given in Fig. 1.1.

Flexibility Flexibility is crucial in the design of robot simulators meant to accommodate
diverse robotic systems and tasks. Firstly, robotic tasks often involve evolving requirements,
necessitating a framework that can adapt to changing needs. Secondly, finding the right
level of abstraction for effective learning requires a flexible design. State, action and
temporal abstractions are crucial for concentrating the learning process to the parts that
cannot be solved by simpler methods, enhancing the efficiency of learning. Moreover, these
abstractions can help mitigate inaccuracies in simulations by abstracting away irrelevant
details that may not be accurately modeled.

To address these challenges, Chapter 2 introduces EAGERx (Engine Agnostic Graph

1.4 Tuis THESIS 5

Environments for Robotics), a graph-based sim2real framework designed to provide the
flexibility necessary to handle a wide range of robotic tasks. Graphs are particularly well-
suited for accommodating flexibility, as they allow for modular representation of tasks
and systems. Each component, such as sensors, actuators, and controllers, is represented
as a node in the graph, and the relationships between these components can be easily
reconfigured by adjusting the graph’s structure. Nodes can be added, removed, or modified
to adapt to different task requirements, system setups, and learning objectives. The graph-
based framework also enables strict grouping and swapping of simulation and real-world
components, enabling a unified software pipeline for both real and simulated robot learning.
It also allows users to switch between different simulation engines, depending on the
specific needs of the task at hand. A novel synchronization algorithm is proposed to
ensure that the simulator accurately models the asynchronous, hierarchical nature of
real-world systems, ensuring accurate simulation at faster than real-time simulation speeds.
We demonstrate the efficacy of EAGERx in accommodating diverse robotic systems and
maintaining consistent simulation behavior across five different systems: a pendulum, a
manipulator, a quadrotor, a quadruped, and a swimming pool environment.

Speed Speed in simulated learning brings critical benefits such as faster training times
and the ability to conduct extensive hyperparameter tuning, making parallelization a
key strategy for achieving these advantages. Traditional reinforcement learning setups
assume a single, synchronized environment that interacts with the agent in a step-by-step
manner, allowing for straightforward parallelization [23]. However, the hierarchical and
asynchronous nature of real-world systems presents a significant challenge to this approach
[24]. When employing a graph-based simulation method to enhance flexibility and accuracy,
each simulation step becomes a diverse mix of computation blocks from various nodes
operating at different time scales. This leads to irregular execution paths which complicate
the parallelization process. Running multiple instances of a graph-based simulation in
parallel can become inefficient as these irregular paths often require serialization, reducing
the effectiveness of GPU utilization [25].

In Chapter 3, we introduce a solution that efficiently parallelizes these graph-based
simulations on accelerator hardware. Our method extends existing accelerated physics
simulations by integrating them as nodes in a graph-based simulation framework that
enables latency simulation capabilities through the construction of a supergraph. This
supergraph captures all data dependencies across the parallelized simulation steps, ensuring
both the accuracy and efficiency of the simulations. By optimizing for the smallest possible
supergraph, we reduce redundant computations, maintaining high simulation speeds
without compromising the fidelity of real-world dynamics. We validate our approach on two
real-world robotic systems and demonstrate superior performance over baseline methods.
Additionally, we conduct a scalability analysis on two large-scale system topologies: vehicle-
to-vehicle platooning [26] and unmanned aerial vehicle swarm control [27].

Accuracy Achieving high fidelity in simulations is crucial for effective sim2real transfers,
yet discrepancies between simulated and real environments often hinder this. Inaccuracies
from inaccurate dynamics and latencies can cause robots to learn policies that perform
well in simulation but fail to transfer to the real world.

6 1 INTRODUCTION

In Chapter 4, we addresss this by introducing a framework, REX (Robotic Environments
with jaX), that enhances simulation fidelity by estimating system dynamics and delays
from real-world data. The framework builds on the graph-based model from Chapter 2
and leverages the parallelization strategy from Chapter 3. The framework’s innovation
lies in its ability to simulate asynchronous, hierarchical systems by explicitly modeling
computation, communication, actuation, and sensing delays, while incorporating delay
compensation strategies for improved sim2real transfer. We validate our framework on two
real-world systems, demonstrating its effectiveness in improving sim-to-real performance
by accurately modeling both system dynamics and delays. A pendulum swing-up task
illustrates how neglecting delay simulation can impair policy transfer even in seemingly
simple scenarios, highlighting the need for delay-aware approaches. The quadrotor task
further demonstrates the framework’s scalability to more complex robotic systems.

Resilience From self-driving cars to vision-based robotic manipulation, emerging tech-
nologies are characterized by visual measurements of highly nonlinear physical systems.
Unlike in highly controlled lab environments where any measured change is likely rel-
evant, cameras in real-world settings are notorious for mainly capturing task-irrelevant
information, such as, the movement of other robots outside of a manipulator’s workspace
or cloud movements captured by the cameras of self-driving cars. While flexibility, speed,
and accuracy are essential for effective simulated learning, these are effects that may never
be fully captured in simulations. Resilience to task-irrelevant dynamics is therefore crucial
when deploying learned policies in real-world environments. To bridge the gap between
simulation and reality, it is important to incorporate resilience into the learning process,
enabling agents to handle unknown or irrelevant factors without sacrificing performance.
By preparing the system to adapt to such uncertainties, we can improve the robustness of
learned behaviors, ensuring their effectiveness in real-world scenarios.

In Chapter 5, we introduce an algorithmic approach to enhance resilience in learning-
based robotics. We present DeepKoCo, a model-based reinforcement learning agent de-
signed to enhance resilience by focusing on task-relevant dynamics. Using a lossy au-
toencoder [28], DeepKoCo learns a latent representation that prioritizes dynamics critical
to the task, while disregarding irrelevant information. This enables the agent to plan in
the latent space using efficient linear control methods, such as model predictive control
[6]. By filtering out distractions and focusing on essential dynamics, DeepKoCo improves
the robustness of learned policies, making them robust against irrelevant factors that
may appear in real-world scenarios. We demonstrate the success of our approach on two
simulated control tasks, showing that it is more robust to irrelevant dynamics than baseline
methods.

Summary of Contributions This thesis advances the state-of-the-art in simulation-
based robot learning through the following contributions:

« Flexibility: Novel graph-based sim2real frameworks (EAGERx and REX) are intro-
duced, integrating with multiple simulation engines and enabling state, action, and
time abstractions. These frameworks offer greater flexibility compared to more rigid,
single-engine solutions.

1.4 Tuis THESIS 7

« Accuracy: Methods are developed to accurately model, estimate, and compensate
for real-world latencies and asynchronous dynamics, improving sim2real transfer
beyond the capabilities of existing delay-agnostic simulators.

+ Speed: A parallelization approach (supergraph method) for graph-based simulations
is proposed, increasing GPU efficiency without sacrificing fidelity in simulating
asynchronous and hierarchical systems. This improves upon state-of-the-art paral-
lelization schemes that assume strictly synchronized environments.

+ Resilience: A model-based reinforcement learning approach (DeepKoCo) is intro-
duced, employing a lossy autoencoder to learn task-relevant latent representations.
By filtering out irrelevant dynamics, this approach enhances robustness in real-world
deployments compared to conventional reinforcement learning approaches.

These contributions address the central research question, demonstrating how graph-
based, data-driven, and accelerated simulator frameworks can bridge the gap between
simulation and reality. In doing so, this thesis provides novel insights and tools that expand
the state of the art in learning-based robotics, paving the way for safer, more adaptable,
and more effective robotic systems. Chapter 6 summarizes this thesis with an overview of
the key findings and discusses potential directions for future research in simulation-based
robot learning.

2

FLEXIBILITY: A GRAPH-BASED
SIMULATOR

One of the key limitations in robotic learning is the need for flexibility in simulation environ-
ments to accommodate diverse robotic systems and tasks. Traditional frameworks often lack
the adaptability required for evolving requirements, constraining their effectiveness in more
dynamic or varied scenarios.

This chapter addresses this gap by introducing EAGERx, a graph-based framework designed
to provide the flexibility necessary for sim2real transfers. The framework allows users to
modularly represent robotic components, integrate multiple simulation engines, and han-
dle asynchronous, hierarchical systems, thereby facilitating a seamless transition between
simulated and real-world environments.

This chapter is partly based on [2) B. van der Heijden " 7 Luijkx*, L. Ferranti, J. Kober, and R. Babuska, (2024). "Engine
Agnostic Graph Environments for Robotics (EAGERx): A Graph-Based Framework for Sim2real Robot Learning", IEEE
Robotics and Automation Magazine (RAM) [29].

"Equal contribution.

10 2 FLEXIBILITY: A GRAPH-BASED SIMULATOR

2.1 INTRODUCTION

Transferring control policies trained in simulation to the real world, known as sim2real, has
gained considerable interest in the field of robotics due to its potential to address complex
tasks with remarkable efficiency [22, 30, 31]. Simulations offer a safe, cost-effective, and
controlled environment for training and testing robotic algorithms, allowing roboticists
to refine their models and controllers without the risks and expenses associated with
real-world experimentation. The sim2real approach, however, faces challenges due to the
sim2real gap, that is, unaccounted discrepancies between simulation and reality. These
disparities may stem from inaccurate modeling of physical phenomena (e.g., friction, defor-
mations, and collisions) or from the use of separate software implementations for reality and
simulation, which may lead to unintended mismatches as depicted in Fig. 2.1. Another sub-
tle but significant source of discrepancy is the asynchronous nature of robotic systems [32].
While robotic systems are typically simulated sequentially [23], sensing, computation, and
acting happen concurrently in reality. Disregarding these differences can be detrimental
to the real-world performance of a policy trained in simulation.

Inaccurate modeling of physical phenomena in simulation is typically mitigated by
domain randomization [31]. However, this approach can make the simulation more chal-
lenging, which may lead to longer training times and suboptimal policies. Reformulating
the task to the right level of abstraction may be more effective to alleviate the sim2real gap
if the abstraction captures the task and can be extracted accurately both from simulated
and real data [19]. Abstractions can take various forms, such as action abstraction that
simplifies control issues using high-level actions [33], time-scale abstraction that uses
macro-actions for multi-scale planning and learning [34], and state abstraction that con-
denses raw sensor data into key features [19]. Therefore, existing sim2real frameworks
[35-37] have exploited the multi-rate graph-based design of ROS [24] to obtain a unified
software pipeline that allows for the integration of various kinds of abstractions. However,
these frameworks restrict users to the Gazebo simulator [38], which can be limiting as
different tasks may require specific types of simulators. Additionally, these frameworks
fall short in synchronizing components that operate in parallel within the simulation. At
faster-than-real-time simulation speeds, this can exacerbate communication and processing
delays, leading to inconsistencies, inaccuracies, and potential system instability. Such am-
plified delays can compromise the proper functioning of the simulated system, rendering
learned policies ineffective when transferred to real-world environments. Conversely, naive
synchronization may also widen the sim2real gap if it overlooks the concurrent nature of
sensing, computation, and acting in reality.

In addition to ROS-based frameworks, existing robot learning frameworks provide
integration of abstractions through a modular design and unified framework, often coupled
with a specific simulator. Notable examples include Isaac Orbit [39] and Drake [40]. Isaac
Orbit is a modular robot learning framework built on top of the Isaac Sim simulator [41],
offering benchmarks and readily available robot models for convenient experimentation. On
the other hand, Drake is a model-based framework combining a multibody dynamics engine
with a systems approach and optimization framework [40]. However, these frameworks
are tied to a single simulator, while various robot simulators are available, each with its
own strengths and weaknesses. Existing robot learning frameworks lack the flexibility to
choose a simulator or leverage various simulators’ strengths.

2.1 INTRODUCTION 11

fo <

e5% LN EAG?ERX @@
¢ 19@ (

r Unified stack \

for many simulators

Software stack #1 Software stack #2
l] \

- = |

) e

(Tlowrlevel State VMK]
controller estimator

n state low—level
L \ /7 { J ‘ esti mator >
Agent (J \ / Agent -7 7

\ /
Imple_men‘t Qho\nges S‘mfjle p'lo\Qe to L Agen't 7)
n two places Implemen't changes

Figure 2.1: Our framework offers a unified software pipeline for both simulated and real robot learning.
It can support various simulators and aids in integrating state, action and time-scale abstractions.

The main contribution of this chapter is EAGERx (Engine Agnostic Graph Environ-
ments for Robotics), that is, a robot learning framework with a unified software pipeline
compatible with both simulated and real robots that supports the integration of various
abstractions and simulators as depicted in Fig. 2.1. EAGERx introduces a novel synchro-
nization protocol that coordinates inter-node communication based on node rates and
anticipated delays. By simulating delays, our protocol maintains asynchronous robotic
system relationships synchronously, preserving the benefits of modular and synchronous
simulation. Contrasting with sequential simulation, the protocol permits nodes to transmit
messages asynchronously and perform tasks without waiting for immediate responses,
thereby accelerating the simulation and allowing nodes to progress based on their process-
ing capabilities and data availability. EAGERx is Python-based and offers high simulation
accuracy without compromising speed, native support for domain randomization and delay
simulation, and a modular structure for easy manual reset procedures and prior knowledge
integration. Our framework features a consistent interface, an interactive GUI, continuous
integration with tests covering 94% of the code, and comprehensive documentation, in-
cluding interactive tutorials, easing new user adoption. The documentation, tutorials, and
our open-source code can be found at https://eagerx.readthedocs.io. A motivational video
for our approach is included as supplementary material [42].

In summary, we make four key contributions:

C1 A synchronization protocol that ensures consistent simulation behavior even beyond
real-time speeds.

C2 A modular design that can support various robotic systems and state, action, and
time-scale abstractions.

C3 An agnostic design that allows compatibility with multiple engines.

https://eagerx.readthedocs.io

12 2 FLEXIBILITY: A GRAPH-BASED SIMULATOR

C4 The integrated delay simulation and domain randomization features in EAGERx can
narrow the sim2real gap.

The remainder of the paper is structured as follows. Sec. 2.2 provides a high-level introduc-
tion to the framework. Sec. 2.3 elaborates on a key low-level component of the framework,
i.e., its novel synchronization algorithm. Sec. 2.4 provides an extensive experimental evalu-
ation to show the applicability of EAGERx for sim2real robot learning. Sec. 2.5 shows the
framework’s utility beyond sim2real robot learning in two real-world robotic use cases.
Sec. 2.6 compares EAGERx and existing frameworks, and Sec. 2.7 concludes the paper.

2.2 FRAMEWORK

This section provides an overview of EAGERx. Sec. 2.2.1 outlines the framework’s main com-
ponents. Then, Sec. 2.2.2 discusses the package management system promoting modularity
and versioned compatibility. Finally, Sec. 2.2.3 discusses the framework’s capabilities for
domain randomization, simulator augmentation, and delay simulation, which are essential
to minimize the sim2real gap.

2.2.1 AGNOSTIC FRAMEWORK
First, we provide a brief overview of the main components, followed by a code example.

GRAPH

EAGERx processes are represented as nodes within a graph structure, linked by directed
edges from a node’s output to one or multiple node inputs. Nodes communicate via edges
by exchanging messages. This versatile decentralized architecture, ideal for networked
hardware and off-board computer interactions, is especially useful for robotics.

NobDE
Nodes are central to EAGERX, representing individual processes that execute concurrently.
Each node begins a new episode with a user-defined reset that sets its initial state, followed
by the execution of user-defined code, termed a callback, at a predetermined rate. These
callbacks determine the node’s functionality and define how inputs from other nodes are
transformed into outputs that are, in turn, sent as output to subsequent nodes. A typical
robotic system usually consists of many such interconnected nodes. For instance, one
node may be responsible for capturing camera images, another for localization using these
images, and yet another for directing the robot’s movement based on the localization data.
Nodes can be launched in various ways, according to their operational needs. For exam-
ple, CPU-bound nodes, which are computationally intensive, benefit from being launched as
subprocesses. This approach leverages multi-processing to bypass the limitations imposed
by Python’s Global Interpreter Lock (GIL), thus enhancing computational efficiency. In
contrast, I/O-bound nodes, which primarily handle input/output operations, are more effi-
ciently launched as separate threads. This minimizes the overhead associated with message
serialization, streamlining communication. Furthermore, EAGERX facilitates distributed
computing by enabling nodes to be launched as external processes on different machines.
This feature allows for the distribution of computational loads across a network, optimizing
the overall performance of the robotic control system.

2.2 FRAMEWORK 13

OBJECT

EAGERx objects enable flexible node replacement when transitioning a robotic system
from simulation to reality. For instance, in reality, nodes for extracting sensor data from
a physics engine become obsolete, requiring replacement with nodes interfacing robot
hardware. EAGERx objects accommodate this adaptability.

Objects define abstract inputs and outputs, as well as subgraphs for each supported
physics engine. Users can add objects to graphs (Fig. 2.2a), and establish connections
between nodes and objects. Upon selecting a physics engine, abstract objects are replaced by
corresponding subgraphs (Fig. 2.2b, Fig. 2.2¢), rendering the node and object graph engine-
agnostic (Fig. 2.2a), as it supports multiple physics-engines. Notice how the framework treats
reality as just another physics engine. Practically, objects represent entities interacting
directly with the physical environment. For instance, a robot may have an abstract input
and output for its motors and encoders, respectively. Depending on the chosen physics
engine, the robot’s subgraph comprises nodes interfacing with real hardware or nodes
communicating with a simulator.

The Object’s design also accommodates the difference in available data between simu-
lators and real-world hardware. They enable the definition of simulation-specific outputs,
such as data exclusive to simulators, and inputs like randomized external disturbances,
that can be used to enhance policy robustness. Users can easily configure these elements,
selecting or deselecting them as needed, to ensure compatibility across different physics
engines, thereby adapting the node and object graph for diverse simulation and real-world
scenarios.

ENGINE

Physics-engines (e.g., PyBullet [43], Gazebo [38]) are interfaced by a special node called
the engine. The engine initiates the physics engine, adds 3D meshes, and sets dynamic
parameters (e.g., friction coefficients). It controls time passage and its rate defines the
simulation step size.

BACKEND

Node processes, launched in various ways (i.e., subprocess, multi-threaded, distributed),
communicate through edges and interact with a collective database called the parameter
server. The backend facilitates low-level node-to-node communication (i.e., establishing
connections and the serialization of messages) for every edge and controls the parameter
server. EAGERx supports two backends (i.e., ROS1, SingleProcess), with an abstract backend
API allowing users to implement custom backends. Defined graphs can be initialized as
distributed networks of subprocesses or run in a single process. EAGERx provides an
abstraction layer over ROS, adding key features for robot learning such as synchronized
faster-than-real-time simulation, domain randomization, and delay simulation.

BAseENv

EAGERXx favors composition over inheritance as a design principle because robotic systems
are more naturally constructed from various components than by finding commonalities
and using inheritance. EAGERx environments consist of an engine, backend, and graph,
which is composed of nodes and objects. This design promotes code reuse and handles
future requirement changes better than an inheritance-based environment. Nodes operating

14 2 FLEXIBILITY: A GRAPH-BASED SIMULATOR

gym/actions lowpass pendulum gym/observations
volt u Y | volt th th
thdotl thdot
initial_state[L M
(a) Agnostic graph
pendulum pendulum

motor_API

ODE_motor
volt u

(

ODE_engine
tick u

theta
P state th
I theta_dot -
' state thdol I

(b) ODE subgraph (c) Real-world subgraph

X
initial_state

ODE_sensor
tick state

encoder_API
> tick

t
thdot

Figure 2.2: (a) Displays the engine-agnostic graph of the pendulum environment from Fig. 2.3 as
generated by the GUL The engine-specific subgraphs for replacing the object (i.e., pendulum) are
depicted for the ODE (b) and real-world (c) engines. The yellow nodes, split for visualization clarity,
symbolize the agent’s actions and observations. Blue squares represent I/O channels, while red
squares indicate node states and/or parameters that can be randomized at the start of an episode.

within the graph of an EAGERx environment support multi-processing, thus enabling
efficient parallel operations. Additionally, EAGERx facilitates vectorization across multiple
environments, thereby enhancing the system’s scalability and performance capabilities.
BaseEnv conforms to the OpenAl Gym interface [23]. The reset method initializes episodes
by setting the aggregate initial state of all graph nodes, enabling domain randomization
over any registered node state, and returns the first observation. Users then determine
actions, which are relayed to connected nodes through the step method.

Fig. 2.3 showcases the steps to create an environment using EAGERx for the pendulum
swing-up problem, a classic problem in reinforcement learning [23]. It begins with the
creation of a pendulum object and a lowpass node to filter the agent’s actions, thereby
reducing wear and tear on the system (lines 1-4). Subsequently, an agnostic graph is
constructed in which the various components are connected, anticipated delays are specified
for simulation, and cyclical connections are handled (lines 6-16). The environment is set
up with the OdeEngine physics engine and a SingleProcess backend (lines 18-23). Equally,
the RealEngine could be used to switch to real-world scenarios. Following initialization,
an interaction is implemented by sampling an action and applying it to the environment
(lines 25-30), with the environment being cleanly shut down at the end (line 31).

2.2.2 SUPPORT
Robotic system design often involves multiple cycles of design, implementation, evaluation,
and refinement. EAGERx supports the users as follows:

2.2 FRAMEWORK 15

.tutorials.pendulum Pendulum
Pendulum. make (name-"pendulum")
.tutorials.low_pass LowPass

LowPass .make (name-"lowp , rate-15, cutoff-7)

Graph
ate([o, n])
g.connect (action-"volt", target-n.inputs.u)
y . connect (source-n.outputs.y, target-o.actuators.volt,
delay=0.1)
connect (source-n.outputs.y, observation
skip-True)
source-o.sensors. th, observation-"th",
dow-2)
y .connect (source-o.sensors.thdot, observation-"thdot",
window-2)

000N QU W R

ny

OdeEngine

30,
time_factor-0
True)
eagerx.backen: gle_process SingleProcess
SingleProcess

.tutorials.env CustomEnv
env CustomEnv(g, ode, b, name-"env_id", rate-30)

obs, info env.reset()

a env.action_space.sample()

obs, reward, terminated, truncated, info env.step(a)
env.shutdown ()

Figure 2.3: Environment creation for the swing-up problem.

VisuaL1zATION TooOLS

EAGERXx offers interactive visualization tools that aid in understanding and debugging
robotic systems. Users can visualize the graph of nodes and inspect the parameter spec-
ifications of individual nodes with EAGERx’s interactive GUL The ability to visualize a
complex robotic system is a powerful tool for debugging and understanding the system’s
behavior. Example visualizations of the GUI are shown in Figures 2.2a, 2.8a, and 2.8b.

PACKAGE MANAGEMENT

EAGERXx incorporates a package management system that fosters modularity, versioned
compatibility, and automated unit tests covering 94% of the code. This system allows users
to easily share, import, and reuse code modules in different projects. By promoting modular
design, EAGERx enables users to build complex robotic systems by combining smaller,
well-tested components.

ONBOARDING RESOURCES
EAGERx provides comprehensive onboarding resources, including interactive tutorials,
code samples, and documentation, to help users quickly learn and adopt the framework.

2.2.3 MITIGATING THE SIM2REAL GAP

To address the sim2real gap, EAGERx’s modular design enables manual reset routines,

simulator augmentation, and supports domain randomization and delay simulation.
While resetting simulations is straightforward, real-world resets demand meticulously

crafted routines to revert the system to its initial state. To this end, specialized reset nodes

can be integrated into the graph, simplifying the real-world reset process between episodes.

16 2 FLEXIBILITY: A GRAPH-BASED SIMULATOR

These nodes might execute procedures requiring human interaction or engage safety filters
within the graph. Operational only during reset phases, they remain inactive during regular
episodes.

Simulator augmentation in EAGERx enables the integration of custom models, capturing
complex dynamics absent in standard simulations. For instance, in [22], augmenting the
simulator with a custom actuator model was key to successful sim2real transfer. This
flexibility in EAGERx enhances simulation accuracy and fidelity, thus facilitating a more
effective sim2real transition.

EAGERx enables domain randomization by varying simulation parameters such as
object shapes and lighting [31]. Within this framework, nodes can register any parameter
as a state, enabling its randomization via the reset method of the environment.

Delay simulation is enabled by our synchronization protocol discussed in Sec. 2.2.2,
and emulates communication latency and computational delays encountered in real-world
systems, yielding a more accurate simulation. Delays can be implemented across any graph
edge, encompassing edges between nodes and objects, thus simulating sensor and actuator
delays as demonstrated in Fig. 2.3, line 10.

2.3 SYNCHRONIZATION

Parallel computation, used in robotic system simulations via ROS [24] in existing sim2real
frameworks [35-37], can increase simulation speeds. When run at faster-than-real-time
speeds, however, these frameworks suffer from unsynchronized parallel components,
unintentionally widening the sim2real gap. Here, the individual computation delays
become more pronounced relative to the accelerated simulation clock. Without suitable
synchronization at high speeds, certain components may struggle to match pace and
gradually fall out of sync, leading to a deviation in the simulation from its real-world
counterpart. Consequently, the learned control policy’s performance may deteriorate, as it
could receive outdated or mismatched observations, yielding actions based on inaccurate
data. This may render the learned policies ineffective when transferred to the real-world
environment.

2.3.1 ProTOCOL

We developed a synchronization protocol for each of the nodes representing the robotic
system that enables parallel computation and minimizes additional message-passing over-
head, thereby enhancing system efficiency and accuracy. This protocol ensures that each
node’s callback, a user-defined code block executed at a predetermined rate for processing
inputs and generating outputs, is triggered under the right conditions. Properly constructed
communication patterns and protocols can achieve global synchronization without a cen-
tral coordinator, whereby each node proceeds with its tasks once necessary input data or
conditions have been satisfied.

Each node is launched as a subprocess that runs a local protocol version, depicted
in Alg. 1. The conditions for a node to proceed with the next callback are based on
the expected ordering of events, as dictated by assumed rates and delays of the system
(lines 5-9). Executed with an event loop thread and dedicated input channel threads,
the protocol compares received and expected message counts for input channels before

2.3 SYNCHRONIZATION 17

executing subsequent callbacks (lines 10-13). This comparison informs whether a node
proceeds with the next callback or awaits more messages. Nodes perform tasks based on
the protocol’s decision and asynchronously transmit output to connected nodes (line 14).
Only upon completion of the previous callback or receipt of a new input channel message
does the event-driven protocol evaluate conditions for the subsequent callback (line 17).
Consequently, task execution is entirely independent of any global clock or synchronization
messages, thus minimizing additional message-passing overhead.

Algorithm 1: Synchronization protocol executed by each node

Input: node rate f,, input rates f;, input delay z;, input channels
i€ U, output channels j€ Y
Output: Processed data sent to downstream nodes

1 k <« Initialize callback index to 0

2 B; < Initialize empty buffers for every input channel i
3 Start eventLoopThread

4 Start inputChannelThread for every i € U

5 eventLoopThread:

6 foreach i€ U do

7 if channel i is cyclical then

8 L 6; <— Expected message count (Alg. 3)
9 else

10 L d; «<— Expected message count (Alg. 2)
11 if §; < size(B;) for every i € U then

12 foreach i€ U do

13 L u; . < Pop last §; messages from B;
14 Yk < Run callback with inputs u; x, Vi€ U’
15 Send yy to all output channels j € Y

16 k «<— Increment callback index to k+1

17 | Trigger event on eventLoopThread
18 | WaitForEvent
19 inputChannelThread i:
20 B; «<— Buffer received message
21 | Trigger event on eventLoopThread

The protocol computes expected messages per input channel with node n executing
its callback at rate f,, and receiving messages at rate f; delayed by 7; over input channels
i € U as summarized by Alg. 2. Assuming nodes maintain their rates, callbacks occur every
Aty = in seconds, and messages are received every At; = % seconds. The protocol expects
the kth callback after kAt, seconds, anticipating |(kAty, — 7;)/At;| messages from each input
channel i, where | a/b] denotes the integer division operator.

18 2 FLEXIBILITY: A GRAPH-BASED SIMULATOR

Algorithm 2: Expected number of Algorithm 3: Expected number of messages to re-
messages to receive between the k- ceive between the k - 1th and kth callback to resolve
1th and kth callback a cyclical dependency
Input: 'callback inde).(k, node rate fy, Input: callback index k, node rate f,, input rate f;,
input rate f;, input delay ; input delay ;, fudge factor € ~ 10™°
Output: Expected number (?f Output: Expected number of messages § to receive
messages & to receive between the k- 1th and kth callback
between the k - 1th and kth 1 if k =0 then
callback 2 ‘ S50 // Set initial count to 0
1 if k=0 then 3 else
2 ‘ 8«1 // Init count to 1 /* Calculate count as if k is
3 else shifted */
/* Expected count 4 if f, > f; then
between k-1 and k */ 5 ‘ o— |(fu-e)fi) // Forward
4 Ni-1 — [(filk = 1) - fufizi)/fal 6 else
5 Ni — [(fi(k) - fufizi)/ fu) 7 L 0+ -1 // Backward
6 A — N =Niy /* Expected count between k-1 and k
/* Correct expected Ny
cognt with c.le.lay / s Nict = L(fik =1+ 0) - fufit)/fo]
A e i o | N |(ilk+0)-fufir)lf
8 | J<« A-min(A max(0,-c)) 1 A < Ne-Ne.y

/* Correct expected count with delay

¥/
1 ¢ — |(fik=fa(A-1) - fufii)/fa)
12 § «— A -min(A, max(0,-c))

While this intuition underpins the synchronization protocol, the implementation in
Alg. 2 is more complex. Computations are recast in rates to improve numerical stability
by minimizing floating-point imprecision in case of high rates (small time intervals). The
protocol sets every input channel’s initial expected message count to 1, irrespective of 7;,
simplifying callback implementations.

The protocol also handles the special case of cyclical dependencies-—common in
robotics systems interacting with a physic-engine and can cause deadlocks otherwise—with
Alg. 3. In EAGERY, users can designate input channels as cyclical, postponing dependency
to the next callback. This strategy allows one node to execute first in a cycle, while others
await this node’s output.

2.3.2 LIMITATIONS

The protocol’s limitations should be considered in the context of the underlying commu-
nication protocol, which must ensure the preservation of message order and be lossless
(e.g., TCP instead of UDP [44]). The protocol assumes that the robotic system can be
represented by nodes with fixed rates and at least one input. Although the protocol can
be easily toggled between synchronous and asynchronous modes, it does not allow for a
hybrid mode, where some nodes are synchronized and others are not. Finally, the protocol
does not account for jitter and assumes deterministic delay; however, this limitation can be
mitigated by varying the delay across episodes if needed.

2.4 EXPERIMENTAL EVALUATION 19

2.4 EXPERIMENTAL EVALUATION

This section presents experiments to show the capabilities of our framework and to support
the four key contributions discussed at the beginning of the paper and repeated below for
the reader’s convenience:

C1 A synchronization protocol that ensures consistent simulation behavior even beyond
real-time speeds.

C2 A modular design that can support various robotic systems and state, action, and
time-scale abstractions.

C3 An agnostic design that allows compatibility with multiple engines.

C4 The integrated delay simulation and domain randomization features in EAGERx can
narrow the sim2real gap.

2.4.1 EXPERIMENTAL SETUP
EAGERXx is validated with a pendulum swing-up task, a vision-based box-pushing task,
and an inclined landing experiment for a quadrotor. The simulated and real-world setups
of all three tasks are depicted in Fig. 2.4. To validate C1, we experimentally assess Alg. 1
and employ it in accelerated, parallelized training for all tasks. Claims C2-C3 are validated
by the tasks involving different engines and distinct types of systems like pendulums,
manipulators, quadrotors, and quadrupeds. Claim C4 is validated by demonstrating the
detrimental effect of delays and model mismatch on sim2real performance and showing
how simulating delays and domain randomization can restore sim2real performance. All
policies are trained in simulation, and zero-shot evaluated on their real-world counterparts.

Swing Up The inverted pendulum task addresses the classic control problem of swing-
ing up and stabilizing an underactuated pendulum. The choice of this task is intentional;
it emphasizes the critical challenge of delay compensation in reinforcement learning. By
showing how ignoring delay simulation can hinder policy transfer even in straightforward
scenarios, we highlight the significant consequences for more complex systems where
delays are inevitable and complexity is higher. The simplicity of the task underscores
the fundamental importance of addressing delays in sim2real approaches. We conduct
zero-shot evaluations using a real-world pendulum setup comprising a mass on a disk
driven by a DC motor. To train policies, we utilize two simulators. The first simulator’s
dynamics model aligns with the physical system, representing the pendulum as a disk
[45]. In contrast, the second simulator adopts the OpenAl Gym Classic Control’s Pendulum
environment, modeling the pendulum as a rod [23], inadvertently introducing a sim2real
gap that requires mitigation. All three systems are depicted in Fig. 2.4a. In all experiments,
the pendulum is controlled at a rate of 20 Hz, while sensor measurements are obtained
at a rate of 60 Hz. The agent observes the last two received sensor measurements. Users
can specify such a rolling window length when connecting nodes in EAGERx, as shown
in lines 14 and 16 of Fig. 2.3). Policies are trained using the soft actor-critic (SAC) [46]
implementation from [47].

Box Pushing In the box-pushing experiment, a Viper 300x robotic manipulator moves
a box to a target based on streaming webcam images. To emphasize the importance of

20 2 FLEXIBILITY: A GRAPH-BASED SIMULATOR

overview

(a) Swing up (b) Box pushing (c) Inclined landing

Figure 2.4: Diverse robotic system tasks illustrating the EAGERx framework’s flexibility. (a) Swing-up
task with an inverted pendulum, highlighting delay compensation in reinforcement learning. The task
involves zero-shot evaluations on a real-world pendulum setup, comparing a disk-based simulator
with the OpenAl Gym rod-based environment. (b) Box-pushing experiment using a Viper 300x
robotic manipulator, emphasizing the need for domain randomization with a low-resolution Logitech
C170 webcam for box localization tracking. (c) Inclined landing task where a quadrotor lands on a
moving and inclined deck, showcasing the integration of multiple mobile robots into a dynamic task.

domain randomization, we use a consumer-grade Logitech C170 webcam, selected for
its low resolution, modest frame rate, and high latency, to track the box’s position and
orientation. For evaluation, we selected six unique initial configurations (three positions
approximately 30 cm from the goal for both a yaw angle of 0 and 7 rad) and repeated
them thrice per policy. Policies are trained in PyBullet using the SAC [46] implementation
from [47] with hindsight experience replay [48]. The simulation and real-world setups are
shown in Fig. 2.4b.

Inclined Landing To demonstrate the framework’s ability to facilitate control in
highly dynamic environments, we trained an agent to perform the challenging maneuver
of landing a quadrotor on an inclined and moving landing deck. Due to the configuration of
its rotors, standard quadrotors can only exert thrust upwards, as rotor spinning directions
cannot be reversed mid-flight. This under-actuation complicates landing on an incline, as
the agent can only decelerate when approaching the deck. Therefore, if the agent initiates
the landing procedure with insufficient momentum, it cannot accelerate, resulting in a
crash. In [30], PPO [49] was used to learn a policy for landing on a stationary landing
deck in 2D (xz-plane) with a fixed inclination (25°). In this chapter, we follow a similar
approach using the PPO implementation from CleanRL [50]. However, we extend the
policy’s capability to land in 3D (xyz-plane), at various inclinations (0 - 25°), and on a
moving landing deck (0 - 1m/s).

As in [30], the quadrotor dynamics are prescribed by ODEs identified with real-world

2.4 EXPERIMENTAL EVALUATION 21

600 H sim (mean)
7] Bl real (mean)
8 500 -=-- success threshold
v e data
5 400
o
n
S 300
w
() = e o e e e e
S 200 o
g i
S : - : -

0
gym async (rtf=1.0) EAGERX

Figure 2.5: Comparison of mean episodic cost between simulations and real-world pendulum per-
formance. The success threshold denotes the level below which a 100% success rate is achieved.
Performance drops notably in the real-world scenario with a conventional gym approach, illustrating
the sim2real gap. Asynchronous simulation (async) at real-time speeds mitigates the gap but leads
to excessively long training times. Synchronized training under our protocol (EAGERXx) facilitates
consistent performance at faster-than-real-time simulation speeds.

data. In simulation, the landing deck moves in a straight line at a fixed inclination, varying
speed, inclination, and direction across episodes to learn multi-goal behavior. To model the
interaction between the landing deck and quadrotor, we extend the ODE dynamics with
MuJoCo’s [18] collision detection capabilities to detect successful landings and crashes.
During real-world evaluation, we move the landing deck around with a quadruped and
track the pose of both the deck and quadrotor with an accurate motion capture system.
The simulation and real-world setups are shown in Fig. 2.4c.

2.4.2 ANALYSIS

C1 We tested Alg. 1’s ability to maintain consistent simulation behaviors at speeds sur-
passing real-time, using experiments with the disk pendulum. Initially, we utilized the
disk simulator within a standard OpenAl Gym environment, trained a policy, and then
conducted a zero-shot evaluation on the actual system. As depicted in Fig. 2.5, the perfor-
mance significantly declines in the real world, indicating a substantial simulation-to-reality
(sim2real) gap. This discrepancy results from the sequential communication in simulations
contrasted with the asynchronous sensor and actuator commands in the real system via
ROS topics [24], forcing the agent to sometimes rely on outdated information in real-world
scenarios. To mimic this asynchronous nature, we adapted the gym environment to use
asynchronous communication in simulation. This adaptation enabled the policy to handle
occasional delays, enhancing its real-world applicability. However, this required limiting
simulation speed to a real-time factor of 1, considerably prolonging training duration. The
real-time factor, the ratio of simulation to real-world time, at 1 signifies running the simu-
lation in real-time. Fig. 2.6 demonstrates that increasing this factor degrades performance,
underscoring the challenges in accelerating simulation beyond real-time while ensuring
effective real-world transfer.

22 2 FLEXIBILITY: A GRAPH-BASED SIMULATOR

2000 .
[sim (mean)

4 1750 @M real (mean)
8 1500 — = success threshold
[3) e data
5 1250
o
2 1000 o
o
W 750
&
o 500
=

250 e

, T i
rtf: 1.0 rtf: 2.0 rtf: 4.0 rtf: 8.0 rtf: 16.0

Figure 2.6: The impact of varying real-time factors (rtf) on the mean episodic cost in a simulated
pendulum environment. Performance declines as the rtf increases, indicating the challenges of
maintaining fidelity in faster-than-real-time simulations when components operate asynchronously.

Setting an excessively high target real-time factor may cause parallel components in the
simulation to desynchronize and lag. Figures 2.7a and 2.7b demonstrate the consequences
of this lag in asynchronous simulations. Specifically, Fig. 2.7a displays the variation in
the simulated pendulum’s angle, sin(8), at t = 2.0 s across five runs with identical input
sequences, highlighting the increasing discrepancy in angle measurements as the real-time
factor rises. In contrast, simulations synchronized via our protocol remain deterministic
while still allowing parallel operations, enhancing speed without sacrificing accuracy.
Synchronous simulations naturally cap the real-time factor to preserve synchronization,
whereas asynchronous ones might show a misleadingly high factor, as evidenced in Fig. 2.7a,
where increased speed incurs greater variability and component desynchronization. This
illustrates the adverse effects of unsynchronized, accelerated simulations. Adapting the
disk simulator into an EAGERx environment for synchronized training under our protocol
facilitated faster-than-real-time speeds while ensuring consistency between simulated and
real-world behaviors, as depicted in Fig. 2.5.

Our protocol, designed for robotic system synchronization, does not necessitate syn-
chronous operation within the simulation. In fact, asynchronous communication still
permits nodes to transmit messages and perform tasks without waiting for immediate
responses, thereby accelerating the simulation and allowing nodes to progress based on
their processing capabilities and data availability. This is illustrated in 2.7b, where we
introduced a simulated delay between the pendulum actuator and the physics engine.
Consequently, the pendulum’s callback and the physics engine’s callback can be executed
concurrently, as the physics engine’s callback relies on the pendulum’s output from the
previous timestep rather than the current one. Since each node’s protocol operates inde-
pendently, this parallelization occurs naturally, resulting in approximately 50% increase in
the realized real-time factor for the synchronized simulation compared to the case without
delay.

C2 To support the claimed contribution that the framework accommodates various
robotic systems, the tasks involve distinct robot systems such as pendulums, manipulators,

2.4 EXPERIMENTAL EVALUATION 23

1.5 80
= SYyNC g —_ sync (delayed) o
1.0 —— async [§ = sync o
1 5 60 —— async o
0.5 /—\/\ e
1 13
S o0 - /\/ £ 40
: T —7 - &
-0.5 £
E 20
-1.0 3
-4
-1.5 0
20 40 60 80 20 40 60 80
Real-time factor (target) Real-time factor (target)
(a) Variation in angle sin(6) (b) Real-time factor

Figure 2.7: A comparison between asynchronous (async) and synchronous (sync) simulations of a
pendulum at faster-than-real-time speeds. Fig. 2.7a shows the variation in angle sin(6) at t =2.0s
over 5 runs of a simulated pendulum as a function of the real-time factor. Fig. 2.7b shows the realized
real-time factor of the simulation for both synchronous and asynchronous cases.

quadrotors, and quadrupeds. EAGERx’s graph-based design, enabling diverse abstractions,
is demonstrated in the vision-based box-pushing task. Rather than end-to-end training on
raw images, an aruco detector is used for state abstraction as depicted in Fig. 2.8e, negating
the need for photorealistic rendering. Action abstractions, visible in Fig. 2.8b, include an
inverse kinematics node for task-space learning and a safety filter correcting hazardous
commands. Nodes set at optimal rates ensure efficient resource use and learning. The
pendulum task underlines the framework’s modularity using an angle reset node, visible
in Fig. 2.8a, to position the pendulum at the initial angle via PID control before a new
episode. Finally, we demonstrate EAGERx’s capability to coordinate diverse systems, such
as a quadruped and quadrotor, in a delay-sensitive and dynamic task with the inclined
landing experiment.

C3 To support the claimed contribution that EAGERx is compatible with a variety of
physics engines and the real world, we conducted experiments with four different engines—
PyBullet [43], OpenAl Gym Classic Control [23], real-world, and simulations with sets
of ODEs—showing the ability to switch between real and simulated counterparts. The
box-pushing task demonstrates how a division of the graph into engine-specific and engine-
agnostic subgraphs resulted in a unified pipeline between PyBullet and reality. The inverse
kinematics and safety filter nodes work with any simulator, as seen in the agnostic graph
(Fig. 2.8b), while the aruco detector and webcam nodes are swapped with PyBullet-specific
nodes in Figures 2.8d and 2.8e. Likewise, the agnostic graph in Fig. 2.8a was used in all
pendulum experiments to display sim2real transfer across physics engines. The inclined
landing experiment further illustrates the framework’s flexibility by combining the collision
detection capabilities of MuJoCo [18] with the accurately identified ODE dynamics of the
quadrotor. This task highlights how different physics engines can be integrated seamlessly
within EAGERx. The collision detection in MuJoCo is used to detect successful landings and

24 2 FLEXIBILITY: A GRAPH-BASED SIMULATOR

crashes, while the ODE dynamics ensure realistic quadrotor behavior. Collision detection is
used both in simulation and reality, so it is therefore placed in the agnostic graph Fig. 2.8c.
During real-world evaluation, the landing deck is moved by a quadruped and the poses
of both the deck and the quadrotor are tracked using a motion capture system. Since
simulating the full dynamics of a quadruped during policy learning is unnecessary and
would only slow down training with redundant computation, the quadruped control nodes
are placed in the real-world engine-specific graph. We can simulate just a moving landing
platform without the quadruped, as actuation is not required to move objects in simulation.
This approach focuses computational resources on what truly matters for training.

C4 We show that the integrated delay simulation and domain randomization features
can reduce the sim2real gap by demonstrating that the negative impacts of actuator delay
can be counteracted using the delay simulation feature during training for two different
simulated versions of the pendulum. In this task, we supported C4 by evaluating policies
on the real system with an actuator delay set at the smallest value that led to a breakdown
in baseline performance. When we progressively increased the actuator delay, it resulted
in baseline policy failure for delays of 0.025 s and 0.035 s for the rod and disk pendulum,
respectively. Our experiments studied the potential of training with domain randomization
and/or delay simulation to mitigate the adverse effects of the actuator delay. For the
disk pendulum, we applied randomization within +10% of the mean values (0.033 kg for
mass and 0.1 m for length). For the rod pendulum, randomization was limited to +5%,
considering the higher accuracy of this model. Delay simulation involved randomization
within +0.005 s around the set actuator delay. The results shown in Fig. 2.9 suggest that
delay simulation can mitigate the adverse effects of actuator delay for zero-shot transfer
from both the rod and disk simulator to the real pendulum system. In the disk scenario,
adding domain randomization to delay simulation further improved performance and
resulted in successful transfer with the smallest performance gap between simulation
and reality. The effectiveness of domain randomization is further highlighted in the box-
pushing task (Fig. 2.10). We examined its impact by altering the box’s friction coefficient
between 0.1 and 0.4. Fig. 2.10 shows that, compared to the baseline, friction randomization
reduces the performance gap between simulation and reality despite lowering overall
performance, thereby illustrating that relying solely on domain randomization can increase
task difficulty. Conversely, incorporating the inverse kinematics node combined with
friction randomization enhances performance while reducing the gap between simulation
and real-world execution. We used a delay simulation of 0.02 seconds for the inclined
landing task and randomized the mass within +5%, leading to the results in Fig. 2.11.
However, we refrain from conducting an extensive ablation study on the effects of delay
simulation and domain randomization to avoid unnecessary hardware damage.

2.4 EXPERIMENTAL EVALUATION 25

angle_reset
th volt

pendulum

gym/actions

gym/observations
th

volt

Friction_cSeFF
orientation|
position

orientation
position

(b) Agnostic graph - box pushing

gym/actions Quadrotor

roll_cmd vel

pitch_cmd [PES \

z_cmd Sl =

position Mujoco _
gym/observations
pos_quad l d
orn_quad veL_qua
" deck pos_quad

[PERL(EISE orn_quad

(c) Agnostic graph - inclined landing

box
pybullet_pos
tick position
pybullet_orn
tick orientation

box

aruco_detector|
mimage box_pos
box_orn

webcam_c170

tick image
real_world
M tick image

friction_coeff

>

pybullet_engine
. position

tick friction_coeff orientation
orientation position
position initial_state

(d) PyBullet subgraph (e) Real world subgraph

Figure 2.8: Diverse robotic system tasks demonstrating the versatility of EAGERx’s graph-based
design. (a) The pendulum swing-up task uses an agnostic graph with an angle reset node for initializing
the pendulum’s position. (b) The vision-based box-pushing task utilizes an inverse kinematics node
for task-space learning and a safety filter for correcting hazardous commands. The engine-specific
subgraphs for replacing the box object in (b) are depicted for the PyBullet (d) and real-world (e)
engines. (c) The inclined landing task illustrates how EAGERx integrates collision detection in
MuJoCo with ODE dynamics to get the best of both simulators.

26 2 FLEXIBILITY: A GRAPH-BASED SIMULATOR

1000 <
[sim (mean)
° I real (mean)
- 800 —== success threshold
g e data
U L]
3}
5 600
=]
2
[=3
W 400
c
©
Q
=
200 === R e e et e P
rod rod rod disc dlsc dlsc disc
DR DS DR DS

Figure 2.9: Results for the pendulum swing-up task show the mean episodic cost for 5 policies (10
episodes per policy) and the impacts of domain randomization (DR) and delay simulation (DS). Here
rod and disk refer to the engine used during training, as depicted in Fig. 2.4a. For clarity, the y-axis is
capped at 1000, though note this truncates some data points. The success threshold indicates 100%
success rate, meaning successful pendulum swing up and stabilization each episode for all evaluations
below this threshold.

- ° .
£ 0.08 [sim (mean)
= 0.07 ° I real (mean)
5 O
(] e data
O 0.06 .
[*]
+ 0.05
Q
2 0.04
©
2 0.03
a 0.02
c
S 0.01
=
0.00
PyBullet PyBuIIet PyBuIIet PyBullet
IK DR

Figure 2.10: Results for the box-pushing task show the mean distance from the goal at the end of 16
episodes for 3 policies and evaluate the benefits of an inverse kinematics (IK) node (facilitating task
space control) and domain randomization (DR) of the friction coefficient.

2.4 EXPERIMENTAL EVALUATION 27

s sim
mm real

wioJj

Success rate (%)

.
=
S
3
N
\
i
o
~

yoeoudde juoly
yoeoudde ueal
0 'G'T "¢) wouy
yoeoudde juouy

70 'T-"T-

Landing Deck: Landing Deck: Landing Deck:
v=0m/s, £6 =26° v=0m/s, £6 =18° v=0.75m/s, £6 =15°

Figure 2.11: Results for the inclined landing experiment show the success rate for landing on a
stationary and moving deck at various inclinations in simulation and real-world settings. The
experiments evaluate the performance of the policy in terms of successful landings across 10 episodes,
demonstrating the framework’s capability to handle dynamic and delay-sensitive tasks involving
diverse robotic systems like quadrupeds and quadrotors.

28 2 FLEXIBILITY: A GRAPH-BASED SIMULATOR

2.5 APPLICATIONS BEYOND REINFORCEMENT LEARNING

The modular design and unified software pipeline of the framework have utility in various
other domains. This section explores two such instances: interactive imitation learning and
Machine Learning (ML) enhanced classical control, showcasing EAGERx’s utility beyond
reinforcement learning.

2.5.1 INTERACTIVE IMITATION LEARNING

This application shows how EAGERX is suitable for (interactive) imitation learning. Here,
the task involves assembling a mock-up Diesel engine by following voice commands
from a human operator. The parts used in this task are 3D-printed versions of the parts
from an actual Diesel engine assembly setup [51]. To solve this task, we apply a learning
from demonstration approach based on CLIPort [52]. However, we utilize an interactive
imitation learning approach instead of gathering offline demonstrations only. Collecting
on-policy data helps us to, for example, learn to recover from failures. Learning recovery
behavior is often not possible using demonstrations collected offline by experts since they
are unlikely to visit failure states. We apply an active learning method based on uncertainty
quantification [53]. This method actively queries the human teacher for a demonstration
in case there is high prediction uncertainty. EAGERx offers three main advantages in this
scenario. First of all, we can easily create a digital twin of the real-world environment
in simulation. This allows one to debug a large portion of the pipeline in simulation,
which is safe and time-efficient. Moreover, the simulated environment facilitates the cost-
effective collection of synthetic demonstrations. These can be used to pre-train the policy
in simulation and speed up learning. Lastly, EAGERx’s modular graph structure enables the
simple connection of various components. In this case, the graph includes a speech-to-text
transcriber based on Whisper [54], the policy node, as well as the RGB-D camera, and the
manipulator. An overview of the task is shown in Fig. 2.12. A video demonstration of this
application is available at https://eagerx.readthedocs. io.

2.5.2 ML-ENHANCED CrLASSICAL CONTROL
This application illustrates EAGERx’s integration of pre-trained ML models with classical
control in a custom simulator, addressing a practical challenge. EAGERx was applied
to an adaptive swimming pool environment, showcased in Fig. 2.13. This environment
enhances traditional counter-current pools by dynamically adjusting the current based on
the swimmer’s position. Normally, it is the swimmer’s task to stay centered in the pool, a
difficult task for beginners. Our approach, however, modifies the pool’s counter-current
in line with the swimmer’s location, maintaining central positioning regardless of swim
speed. This adaptability makes the pool more user-friendly for novice swimmers.
Variable transport delays complicate the control problems [55]. Specifically, alterations
in motor power do not instantaneously translate into flow changes; this delay results from
the gradual response of the water pump’s first-order dynamics, as well as the variable time
it takes for a change in water flow to impact the swimmer, contingent on their position
in the pool. When the swimmer is towards the front, they feel the effects of flow velocity
changes more rapidly than when positioned at the rear. The absence of a readily available
off-the-shelf simulator for this specific scenario underscored the utility of EAGERx, which

https://eagerx.readthedocs.io

2.6 D1scussION 29

Pretraining , RGB-D Image Real-World Execution
! - []
! - — N
1
: -
1
! ! 1 High
|
1
i
1

Uncertainty |Low
CLIPort . .
Quantification

1 Language Command
(Hey robot, please put the red thing in the middle tube.)

Figure 2.12: In this application of EAGERX, a CLIPort [52] model is trained using an active learning
approach that queries the human teacher for a demonstration in case of high prediction uncertainty.
Also, the model is pre-trained using demonstrations gathered in simulation.

(a) Custom simulator (b) Real

Figure 2.13: Application of EAGERx in an adaptive swimming pool environment. The system
modulates the pool’s counter-current in response to the swimmer’s hip position relative to a preset
boundary (red line), utilizing a pose detector and Kalman filter for position estimation and a PID
controller for current adjustment.

facilitated the creation of a custom simulator, proving invaluable in the development of the
control pipeline.

The modular architecture of EAGERx facilitated the integration of a pose detector [56]
with a Kalman filter, resulting in estimates of the swimmer’s position and velocity from
solely top-view camera imagery. Subsequently, a PID controller was employed to modulate
the pool current in alignment with these estimates. A video demonstration is available in
the supplemental material.

2.6 DISCUSSION

Comparing EAGERx with ROS [24] might seem natural due to their modular structures
and asynchronous communication. Nonetheless, such a comparison risks being misleading
since EAGERx represents an abstraction based on the actor model [57] and can operate
atop a backend like ROS. This abstraction layer offers vital functionality for robot learning,
including synchronized faster-than-real-time simulation, domain randomization, and delay
simulation, not inherently supported by ROS. Recent research [58] presented a reactive
solution to ROS’s asynchronous programming challenges via an event-driven API, inspir-
ing EAGERx’s synchronization approach. However, this API didn’t specifically aim to

30 2 FLEXIBILITY: A GRAPH-BASED SIMULATOR

synchronize simulations using expected rates and delays, as demonstrated in our work.
Importantly, EAGERX’s protocol extends beyond ROS to other backends as well.

The proposed synchronization protocol can be seen as an application of the actor model
for computation [57]. It is a powerful and flexible model of concurrent computation where
actors, the primary units, execute tasks concurrently and communicate by exchanging
messages. The actor model is well-suited for synchronizing robotic systems represented as
graphs of nodes, where various nodes need to operate concurrently. Our protocol operates
on an event-driven basis and circumvents dependence on a global/local clock, a central
coordinator [59], or extra synchronization messages [60]. Instead, it assesses conditions
for subsequent callbacks exclusively after finalizing the preceding one or obtaining a new
input channel message. This can outperform busy-waiting techniques (or spinlock) [61]
that continuously evaluate conditions at a fixed time interval.

Ptolemy II [62] constitutes a software framework for designing, modeling, and simu-
lating heterogeneous systems. Like EAGERY, it applies the actor model of computation,
enabling concurrency and asynchronous communication. Both frameworks offer graphical
user interfaces for visualizing complex systems. Ptolemy II holds an advantage over EA-
GERKx in its support for a wider range of computation models and the ability to combine
them within a single system. Nevertheless, Ptolemy II serves as a general-purpose frame-
work, while EAGERx specifically targets robot learning. Furthermore, Ptolemy II employs
a Java-based structure, in contrast with EAGERx’s exclusive use of Python.

In comparison to Gym [23] — which offers a flexible API but lacks a unified sim2real
framework — EAGERx addresses this deficiency. Unlike Gym’s default sequential simula-
tion, EAGERx supports concurrent, distributed operations across devices within environ-
ments, enhancing its applicability to robot learning. Gym environments use object-oriented
classes, frequently constructed via inheritance and extended with wrapper patterns. How-
ever, this approach in Gym, particularly with extensive use of wrappers, tends to create
overly complex and difficult-to-manage class structures in robotic systems, leading to
maintenance challenges and reduced clarity in system design. Additionally, incorporating
time abstraction within Gym environments is challenging, often confining it to multiples
of the environment’s step size. Conversely, EAGERx allows each node within the graph
environment to operate at separate frequencies.

Various robot learning frameworks with connections to EAGERx have been introduced
in the field. Among these, Isaac Orbit [39] and Drake [40] stand out as recent frameworks
with shared design principles. In line with EAGERx, Orbit and Drake adopt a modular
approach to constructing robot environments, enabling the execution of different nodes at
varying rates to support both lower and higher-level control for effective robot learning.
However, these frameworks exhibit three critical differences with EAGERx. Firstly, EAGERx
is designed to be engine-agnostic, whereas Orbit relies on a proprietary simulator, and
Drake incorporates an integrated multi-body dynamics simulator, hence restricting them
to a single simulation platform. Secondly, EAGERx features dedicated reset procedures
in the form of reset nodes. These nodes can be added to the graph and are only activated
during environment resets. Thirdly, EAGERx offers a unified pipeline for both simulation
and reality. Although Orbit and Drake promote component reusability in both simulation
and reality, EAGERx enforces this more rigorously through engine-agnostic and engine-
specific graphs. This effectively isolates the engine-agnostic code and minimizes the risk of

2.7 CONCLUSION 31

EAGERx Orbit [39] Drake [40] robo-gym [35] gym-gazebo2[36]

Engine Agnostic X X - X
Specialized Reset Procedures X X X X
Unified Pipeline Sim/Real - - - -
Synchronized Simulation X X
Distributed Computing

GPU Accelerated X X X X
Gradient Information Available X X X X
Domain/Delay Randomization / /X / XX XX
Environment Visualization - -
Open Source / License-free / == / / /
Documentation / Tutorials / / / -/ X XX
Last commit (age) <1week 2months <1 week 1 year 4 years

Table 2.1: A comparison of various modular sim-to-real robot learning frameworks, where = indicates
partial feature presence.

discrepancies. Additional frameworks such as Robo-Gym [35] and Gym-Gazebo(2) [36]
aimed to exploit the node structure of ROS for robot learning and were primarily centered
around the Gazebo simulator without synchronization. To speed up training, EAGERx uses
multi-processing instead of complete GPU acceleration for parallelization across multiple
environments. While GPU parallelization can significantly speed up learning [22], its
practicality can sometimes be limited for simulations requiring CPU-bound computations
or non-GPU-adaptable libraries. In such cases, the latency from data transfer between GPU
and CPU can become the dominant factor in simulation speed [17]. Among the frameworks
discussed, only Orbit currently enables parallel training on a GPU. A comparative summary
of the discussed robot learning frameworks is presented in Tab. 2.1.

2.7 CONCLUSION

This chapter presented EAGERX, a novel framework to facilitate the transfer of robot learn-
ing policies from simulation to the real world. Our unified framework is compatible with
simulated and real robots. Its design can accommodate various abstractions and simulators.
The presented synchronization protocol simulates delays without sacrificing simulation
speed or accuracy, enabling effective policy training in simulation and subsequent transfer
to real robots. We evaluated our framework on two benchmark robotic tasks, demonstrat-
ing its effectiveness in reducing the sim2real gap. Finally, we demonstrated the utility of
the framework beyond sim2real robot learning in two real-world robotic use cases.

We plan to extend the open-source code base with more code examples for future work.
Also, training can be sped up using GPU acceleration, and gradient information can be
provided to facilitate optimization through nodes. Lastly, it will be valuable to provide
real2sim functionalities to reduce the sim2real gap further using real-world data.

33

SPEED: PARALLELIZING
GRAPH-BASED SIMULATIONS

Following the introduction of the EAGERx framework, another critical limitation in simulator
design is the need for high-speed simulations to support efficient robotic learning. While
flexibility is important, slow simulation speeds can hinder the learning process, especially for
reinforcement learning where many iterations are required.

In this chapter, we tackle the issue of simulation speed by introducing a method for efficiently
parallelizing graph-based simulations on accelerator hardware. This method optimizes execu-
tion paths to enable higher simulations speeds while maintaining simulation fidelity, thereby
enabling scalable and efficient learning in large and complex robotic tasks.

This chapter is partly based on @ B. van der Heijden, L. Ferranti, J. Kober, and R. Babuska, (2024). "Efficient
Parallelized Simulation of Cyber-Physical Systems", Transactions on Machine Learning Research (TMLR) [63].

34 3 SPEED: PARALLELIZING GRAPH-BASED SIMULATIONS

3.1 INTRODUCTION

Physics simulations on accelerator hardware [15-18] have significantly reduced train-
ing times for reinforcement learning policies that conform to traditional, sequentially-
structured agent-simulator interactions [22]. Such interactions lead to clear-cut and pre-
dictable execution paths, allowing for efficient parallelization, as shown in Fig. 3.1a. How-
ever, this sequential approach fails to capture the concurrent and dynamic nature of the
real world.

Accounting for latency is crucial in the simulation of cyber-physical systems (CPS),
which integrate computational algorithms with physical processes. In CPS, embedded
computers and networks both monitor and control these processes, typically through
feedback loops where physical processes impact computations and vice versa via sensors
and actuators [64]. A critical application of CPS is vehicular platooning, involving multiple
vehicles that operate in close proximity, coordinating their actions based on shared sensor
data in real-time. This coordination is highly sensitive to time delays, making the accurate
simulation of these delays critical for developing robust platooning algorithms [26].

Delayed sensor data causes an agent to choose actions based on outdated information.
Similarly, slow policy evaluation can unavoidably extend the effect of previous actions
beyond their planned duration. Moreover, the focus has traditionally been on single agents
trained end-to-end [65]. In practice, however, Al systems deployed in real-world settings
often rely on a pipeline of models. Accounting for the latency between these models
will become crucial as tasks grow in complexity [66]. Finally, physics simulators often
bundle physics, sensor, and actuator simulations into a single unit running at a single rate.
However, in reality, there are vital asynchronous effects within this block that need to be
accounted for. Overlooking these asynchronous effects in simulation widens the sim2real
gap and can lead to policies that do not perform well in the real world.

To represent the asynchronous interactions between components, we advocate the
division of the simulator into separate parts. This matches the typical design in robotics,
where systems consist of interconnected nodes operating asynchronously at various rates
[24]. This division enables the creation of computation graphs that accurately represent data
flow in real-world situations, including latency effects. Consequently, each simulation step
turns into a diverse mix of computation units from various components that run at different
time scales, as illustrated in Fig. 3.1b. These must be executed in a sequence that respects the
data dependencies outlined by the graph’s edges. Simulating with these diverse partitions
improves accuracy but complicates parallelization (i.e., simulating multiple copies of the
simulation in parallel), as distinct partitions may need to execute simultaneously across
GPU threads, hindering GPU efficiency. Such misalignment can happen with independent
episodic resets, often initiated based on variable reset criteria. One parallel simulation
might reset because the agent reached its goal, while another continues because the agent
is still far away. Diverging execution paths can significantly reduce kernel efficiency
[25]. When GPU threads take different paths, they must be serialized, leading to more
instructions and reduced performance.

The main contribution of this chapter is an approach to parallelize cyber-physical
system simulations that emulates asynchronicity and delays with minimized computational
overhead on accelerator hardware. This allows existing accelerated physics simulations to
be extended with efficient latency simulation capabilities. We achieve this by identifying a

3.2 PRELIMINARIES 35

Sensor Actuator

Agent's p Delay Delay
' gent's) > .__'_,
Action gtate Simulator's Agent o '
i N state
Observation N \ Actuator
. I

Agent ~ Sensor
Simulator Physics

.reset() .stepQ) .reset() | .step()/\ .step())

simulated time (s) simulated time (s)
(a) Sequential interaction (b) Asynchronous interaction

Figure 3.1: Comparative illustration of computation graphs with and without simulated delays.
Vertices represent periodic computations, and edges represent data dependencies. (a) The absence of
delay simulation creates consistent blocks of computation, enabling efficient parallelization across
simulation steps yet failing to capture the inherent asynchrony of the real world. (b) While improving
simulation fidelity, simulated delays between various components turn every simulation step into a
diverse mix of computation, challenging parallelization efficiency.

graph—ideally the smallest one possible—that encodes all the data dependencies outlined
by every simulation step’s edges. This universal graph, referred to as a supergraph, is
determined prior to simulation. Sorting the supergraph topologically yields a static execu-
tion order for parallel processing of simulation steps without violating data dependencies.
By targeting the smallest supergraph, we minimize redundant computation. Finding the
smallest supergraph is generally a complex, NP-hard problem [67]; however, our greedy
algorithm efficiently approximates this supergraph by leveraging the inherent periodicity
in cyber-physical systems.

In sum, we make three key claims: Our approach (i) emulates asynchronicity leading to
more accurate simulation, (ii) efficiently handles time-scale differences and asynchronicity,
resulting in higher parallelized simulation speeds than baseline approaches, and (iii) scales
to complex system topologies. These claims are supported by an experimental evaluation
on two real-world robotic systems, followed by a scalability analysis on two cyber-physical
system topologies: vehicle-to-vehicle (V2V) platooning [26] and unmanned aerial vehicle
(UAV) swarm control [27]. An ablation study on the effects of the algorithmic simplifications
was also conducted and included as an appendix. Finally, a motivational video for our
approach is included as supplementary material [68].

3.2 PRELIMINARIES

Before diving into the details of our approach, we first lay down some basic definitions
and notation that will aid in the formalization of our problem and the description of our
approach. We consider graphs G = (V,E) consisting of a set of vertices V(G) and a set of
directed edges E(G). Edge (u,v) € E(G) denotes an edge from vertex u to vertex v. The
notation |V(G)| denotes the number of vertices in . Any subset of vertices V/ < V(G)
induces a unique subgraph ¢’ c G. The difference G2 — G1, where G; c C», yields a graph G
with V(G) = V(G2)\ V(G1) and E(G) = E(G2) \ E(G1). The edges that connect G; and Gy - G;

36 3 SPEED: PARALLELIZING GRAPH-BASED SIMULATIONS

are defined as the cut-set Cg,(G1), which is a subset of E(G3). The union of graphs G; and G,
with respect to a set of edges Ei2 is denoted as G = Gy ug,, G2, where V(G) = V(G1)u V(G2)
and E(G) = E(G1) v E(G2) u E12. The addition Gy + G2, where G1,G < G3, yields a subgraph
G12 < G3, by unifying Gy ug,, G2 where Ejp = Cg,(G1) n Cg,(G2). An edge contraction on an
edge (u, v) € E(Q) yields a new graph ¢’ such that V(¢') = V(¢)\{u,v}u{w} and

E(G) = (E(©)\{(1v),(v,u)})
u{(w,x) | (u,x) € E(G) or (v,x) € E(G)}
u{(x,w) | (x,u) € E(G) or (x,v) € E(G)}.

The ancestors of a vertex Ag(u) are all vertices V’(G) c V(C) that can reach u via a directed
path in G. The roots of a graph G are the set of vertices that have no incoming edges,
formally R(G) = {u € V(G) | Vv e V(G),(v,u) € E(G)}. Similarly, the leafs of a graph G are the
set of vertices that have no outgoing edges. A Directed Acyclic Graph (DAG) is a directed
graph that contains no cycles. A topological sort T of a directed acyclic graph G is a linear
ordering of its vertices such that for every directed edge (u, v) € E(G), vertex u comes before
v in the ordering. Multiple topological sorts may exist for a given graph G, and the set of all
possible topological sorts is denoted by 7 (G). A labeling function L : V — [is a function
that assigns a label to each vertex. The set of all vertices with label I is denoted by V;(G)
and is arranged as a sorted list consistent with a topological sort of G. We denote the set of
topological sorts where the final vertex is of label [in G as T,‘T(g). Formally, this is defined
as:

T71C) = {r € T(Q) | I(z,u) = G, u € Vi(G)},

where I(z,u) gives the position of vertex u in the sorted set 7. A matching function
fm : VxV — {True,False} is defined as follows:

True if L(u) = L(v),

False otherwise.

f(u,0) = {

A mapping between two graphs G; and G, is a bijective function M : V/(G1) — V/(G,)
where V’ represent a subset of the vertices. Its domain dom(M) is V/(G;) and its range
rng(M) is V/(G,). Operations like union u, intersection n, and difference \ can be applied
to both dom(M) and rng(M). A mapping M can extend to M’ by adding a new vertex pair
(u, v) with M’ = Mu {(u, v)} where u € V(G1)\dom(M) and v € V(G,) \rng(M). A subgraph
monomorphism M : V(G1) — V’/(Gy) is a specialized mapping that maps each vertex u to
v such that L(u) = L(v) and each edge (u, v) corresponds to an edge (M(u), M(v)) in Ga. If
such M exists, Gy is a supergraph of G; and can be reduced to G; by removing vertices
and edges in Gy. The transformed set of edges Ej;(G1) under the mapping M is defined as
follows:

Ep(G1) = {(v/,9') | (u,0) € E(Gy),
v’ = M(u) if u € dom(M),u” = u otherwise,
v’ = M(v) if v € dom(M), v’ = v otherwise}

This set includes edges (1, v”) where u’ and v/ are either mapped vertices of u and v under
M if they are in the domain of M, or are u and v themselves otherwise.

3.3 OUR APPROACH 37

3.3 OUR APPROACH

Consider the set of computation graphs generated by multiple episodes of an asynchronous
system, as illustrated in Fig. 3.2, where vertices of the same color represent the same
periodic computation unit, and edges represent data dependencies. These graphs might be
partially recorded from real-world executions or synthetically created to reflect expected
computation and communication delays. Variations in these graphs across episodes lead to
distinct execution paths. However, managing these variations with conventional if-else
branching for parallel execution on GPUs is inefficient, as highlighted in [25]. Predication
[69] is a technique that sidesteps the need for if-else branching by executing all possible
paths and masking out the computations that are not needed. This approach, while
eliminating branching, can be inefficient due to the execution of all vertices in the paths,
making it crucial to minimize the number of vertices.

To achieve this, we introduce an approach to identify a minimum common supergraph
(mcs) that is acyclic and encapsulates all potential execution paths from a collection of
computation graphs, optimizing for the fewest vertices (i.e., computational overhead).
Topologically sorting the supergraph yields an execution order that, via predication mask-
ing, is transformed into a valid order for any given graph, as the supergraph encodes all
data dependencies.

In aligning with standard simulator interfaces [23], illustrated in Fig. 3.1, we first parti-
tion these computation graphs into disjoint subgraphs, each corresponding to a simulation
step. Crucially, we designate a supervisor node in each partition, a pivotal element that
dictates the boundaries of these subgraphs. In the context of reinforcement learning, the
supervisor node is akin to the agent, while all other nodes within the partition form the
environment, providing observations to and receiving actions from the supervisor node.
The supervisor node’s operating rate sets the simulation time step, ensuring that each
partition accurately reflects a step of the simulation process. We then find a supergraph
that accommodates all possible paths in every partition with a minimum number of vertices.
This supergraph serves as a template that can be reduced to match any of the partitions
(i.e., simulation steps) by masking (i.e., removing) specific vertices and edges. This setup
enables parallel execution of any partition on accelerated hardware.

3.3.1 PROBLEM DEFINITION

Consider a set of observed computation graphs denoted by {Go,G1,... }, where each G; is a
DAG. For a given supervisor label s, our goal is to partition each G; into disjoint subgraphs
Pi1,Pi2,.... Each subgraph corresponds to a discrete simulation step and contains exactly
one leaf vertex labeled as s. The objective is to determine these valid partitions along with
the smallest DAG, S, that serves as a common supergraph for all partitions. Similar to each
partition, a single instance of the designated supervisor vertex in S must be a leaf vertex.
Here, ‘smallest’ is defined by the number of vertices to minimize computational overhead.
We aim to find a subgraph monomorphism M;; : V(P;;) — V’(S) for each partition P;.
This mapping allows us to reduce S into P;; using a predication mask. The predication
mask is a binary mask applied to S to selectively remove vertices and edges not present
in P;j. Specifically, the mask is false for vertices and edges not in rng(M; ;) and Epy, ;(Py),
respectively, and true otherwise.

38 3 SPEED: PARALLELIZING GRAPH-BASED SIMULATIONS

Physics Sensor Agent Actuator
Asynchronous systems . ___
produce non-uniform > - —
computation graphs [§)
/ due to delays T \
. Supergraph + Predication Masks \

'
/)

, Masked OO O Used . o0

v ,'l P
O—>0—0, =<
o SNImy mr O /
3 /. @ @ é
W | .reset() step() \ step()
,ﬁ
time "Wasted"

. compute . (- (7
J B9 o &]\ '\.71%4—:‘0
: Zx)&% WP B
i e-010-¢-0.0 oo—’ 06— —6-6——¢
M" (.reset() = | .step() = | .step()
time
s O~
. .\'—>.) .\‘ S] \.
gl } ﬁﬁ' 75 'Z
H o,o—jéI ~®
.L.L.{.L.i.f l.reset() | | step() ﬂlﬂ ®

time

Figure 3.2: This figure illustrates our approach to efficiently simulating multi-rate asynchronous
systems. Given variable delays, computation graphs can differ across episodes (left). We find a
supergraph and predication masks, illustrated by the grey shaded blocks, for every computation graph
that enables parallel execution across partitions (right). This mask, randomized during simulation,
allows us to efficiently emulate asynchronicity and time-scale differences with minimal computational
waste.

3.3.2 SUPERGRAPH SEARCH

Algorithm 4: Minimum Common Supergraph Search (mcs)

Input: Designated supervisor label s
Input: Number of steps to backtrack f
Input: A set of observed computation graphs {Gy,G1,... }
Output: A set of partitions {Py,1,Po2,... Pij... }
Output: A supergraph S and mapping M;; for all partitions Pij
1 S « Initialize with V(S) = {u|L(u) = s} and E(S) =
2 for G; € {Gy,G1,...} do

3 Gy «— Initialize unmatched graph as G;
/* Until all supervisor vertices are matched */
4 while Vi(G,) # @ do
5 u;j <— Get next supervisor u; from sorted set Vs(Gy) with index j = I(Vs(Gi), u;)
6 Ay < u;; and its ancestors: Ag, (u;j)u {u;;}
7 M* — Get largest map: Alg. 5 with (s, S,Gy, Ay)
8 P* « Partition subgraph: dom(M*) c V(G)
9 P« Missing subgraph: Ag, (u;;)\ V(P*) < V(G)
10 if V(P°) = @ then
/* All ancestors were matched */
11 M;j < Store subgraph monomorphism M"
12 P;j < Store partition P*
13 Gu < Remove matched partition: G, - P;;
14 else
/* Partial match */
15 L Gy < Restore f partitions in Gy G; with Gy + Pjj g+ Pij gy +-+ Pyjg
16 S « Update to S’ with missing vertices and edges: (V(S) UV(P),E(S)uEM- (P + P'))

3.3 OUR APPROACH 39

Our approach, as outlined in Alg. 4 and illustrated in Fig. 3.3, aims to simultaneously
achieve three main objectives: identifying the supergraph S, determining the partitionings
P;j, and discovering the associated mappings M; ;. For each computation graph G;, the
algorithm iterates until all supervisor vertices are matched, as specified in Line 4. In every
iteration, the largest partition P* and its associated mapping M" are sought (Line 5-7),
following the method detailed in Alg. 5 and explained later on in Sec. 3.3.3.

S g Pio Pia Gu

P SUUURRRR ; . f c
S e S P e P ‘
; : 3 b 3 ® 2o Ui N

2N)

\
\

>0 W) resetO) _’..step()) - Agu(ui2)

simulated time simulated time .step()

(a) Process next computation graph (b) After two partitions, match the next super- (c) Find the largest match

starting with current supergraph visor vertex (lines 5-6) (lines 7-9)
S (line 2)
S’ S*
R e P Pus Pz G JE S
. K CD“erpul:azon - - ® - : . :
. \\ % /4 N
7 e = L
2 ,;‘:set()) .step() .’QZJ | ‘ .j
'-.. / simulated time \ J
(d) Update Si-! (e) Backtrack f = 2 with newly updated super- (f) Resulting fi-
with unmatched graph (line 15) nal supergraph
yellow vertex after processing
(line 16) Gi

Figure 3.3: Illustration of the Minimum Common Supergraph Search process (Alg. 4) at a midway
point. A partial match is found for u; 2, leading to an updated S’ with missing ancestors P~ and
initiating a backtrack to re-evaluate previous partitions.

Depending on whether all ancestors are matched, the algorithm finds either a complete
or a partial match corresponding to the supervisor vertex u;;. In the case of a complete
match, both P* and M" are stored (Line 10-13). For partial matches, the algorithm backtracks
B iterations to reconsider previously matched partitions (Line 15). In either case, the
supergraph S is updated using Eq. (3.1) to ensure it remains a supergraph of its previous
version and incorporates all necessary ancestors V(P~) for future matches, as follows:

= (V(S)uV(P),E(S)uEp:(P" + P7)), (3.1)

where P* + P~ c G;. More edges in the updated supergraph S’ effectively constrain the
number of possible mappings for subsequent partitions by reducing the number of topo-
logical sorts available in the supergraph. Conversely, more vertices in S’ increase its
expressiveness by increasing the number of vertices that can be mapped to a vertex in
subsequent partitions, but also increase the computational overhead of the simulation. In
the next section, we detail the algorithm for finding the largest match, Alg. 5, which is a
critical component of the supergraph search algorithm. It may only result in mappings M"

40 3 SPEED: PARALLELIZING GRAPH-BASED SIMULATIONS

o P A e @ o S o 8 e & o

s g s & & S Ng® (oo

g AN e # :\ \ ‘\ o0

= Xe--- ¢ \v 7) \ 3N YY)) } -

o] dod "X d < J

5 VN = L X“;v T a X T « P dom(M€)

= O 040} 0-0=0; O~0~040}-© 0-0~0~0+%; Unmatched ~ Matched
Excluded fom | Most matched

—_ Fseam\n ;:on(. N ancestors ses-...

+ con \ Feomb ™ ® [N [.Q M "\ °

= 5; 5 @8 @220 7 4

& oo

“r-u' 1

) dom(M*¢)

Unmatched Matched

Figure 3.4: Midway illustration of Line 9-16 in the Largest Match Search (Alg. 5) linked to Fig. 3.3c.
The v and X symbols indicate whether a vertex in the candidate front F¢ is matched in Line 12. The
first iteration yields an empty mapping due to the absence of a yellow vertex in the supergraph. In
the second iteration, the vertex is excluded from the front, enabling a large partial match. The search
is only displayed for a single topological sort.

that ensure that collectively contracting all edges (u, v) € E(P*) in G,, will not introduce
any cycle in the resulting graph G/,. This constraint is critical to ensure that the updated
supergraph S’, as governed by equation Eq. (3.1), remains acyclic. This sets us apart from
previous work [70, 71], which do not consider this constraint.

3.3.3 LARGEST MATCH SEARCH

Our approach to identifying the largest valid mapping M" for each supervisor vertex u;;
in S is outlined in Alg. 5 and illustrated in Fig. 3.4. Initially, it tries to match all ancestor
vertices in candidate subgraphs G°, extracted from the unmatched graph G (Line 2).
The search is refined by iteratively excluding ancestors in a breadth-first manner from G¢
(Line 8, and 21).

To this end, a refined search front F¢ is formed for each iteration (Line 4-6, Line 9). The
algorithm explores all k-combinations of F.op in descending order of k (Line 6). For each
combination, the largest candidate mapping M€ is sought by traversing all valid topologies
of S, starting from the refined search front F¢ (Line 7-10). Every time a match is found, the
mapping is extended and the search front is updated (Line 11-16). Our approach assumes
that vertices are stateful, i.e., vertices of similar labels are connected with one another,
ensuring the uniqueness of the match (Line 12-13). If a larger mapping is found, M" is
updated (Line 17-18). The algorithm halts the search if no larger match can be found
(Line 19-20). To lower computational complexity, we apply crucial greedy approximations
in lines 6 and 7, as further motivated in Sec. 3.3.4.

We may only consider mappings M" that ensure that the updated supergraph S’ remains
acyclic after updating with Eq. (3.1). To ensure this, we initiate each candidate search at the
roots of Gy and S, as specified in Line 4 and 7, adopting a search strategy aligned with
the topological sort of S and a breadth-first search of Gey. This approach guarantees that
edges between matched vertices in dom(M"), represented by P*, cannot create cycles in S’.
For vertices not matched in dom(M") (designated as P~), their positioning is either strictly
prior to or following P* in the topological sense, thus also ensuring acyclicity in S”. This
strict placement is achieved by initially removing only root vertices from consideration

3.3 OUR APPROACH 41

Algorithm 5: Largest Match Search

Input: Designated supervisor label s
Input: Supergraph S

Input: Unmatched computation graph G,
Input: Vertices to be matched A,
Output: Largest mapping M"

1 M" « Initialize an empty mapping
2 Gexel < Initialize search graph as G,
3 while True do
4 Fexel < Initialize search front as roots R(Gexcl)
5 F.on < Determine constrained front: Foyo n Ay
6 forall F,,,, € k-comb(F,,) do // Greedy: one Feon per k
7 forall 1€ 7,'(S)do // Greedy: only a single r
8 G «— Remove u € Feon \ Feom from V(Gey1)
9 F¢ « Initialize front: Foyi \ (Feon \ Feom)
10 M?¢ « Initialize an empty candidate mapping
11 forall ve r do
12 if Ju e F° : f,(u,v) = True then
13 u<«— {u€F: fin(u,v) =True}
14 M€ «— Extend mapping: M°u {(u,v)}
15 G° «— Remove matched u from V(G°)
16 F¢ « Update front: F°\{u}uR(C®)
17 if |dom(M®)n Ay| > |dom(M")n A,| then
18 L M «— M* /* Store largest mapping */
19 Smax <— ‘Aul - |Au \ V(gexcl)‘ - (chonl - |Fcom|)
20 if (Jdom(M*)n Ay|) = Smax or [dom(M*)| = |S| then return M*
21 Gexcl <— Exclude vertices from search graph: V(Gexcl) \ Feon

42 3 SPEED: PARALLELIZING GRAPH-BASED SIMULATIONS

(Line 4) and subsequently extending the search frontier solely upon removing a newly
found match that subsequently leads to new root vertices (Line 15-16).

3.3.4 LIMITATIONS AND APPROXIMATIONS

The efficacy of our approach is contingent on a set of assumptions. Firstly, the best
performance is achieved when the computation graphs exhibit a recurring topological
structure. Secondly, the model assumes substantial time-scale differences between what we
term the supervisor vertex and other vertices. Finally, our approach assumes that vertices are
stateful, i.e., vertices of similar labels are connected with one another. These assumptions
are particularly well-suited for cyber-physical systems where components are stateful and
run at fixed target frequencies, and where the supervisor vertex often takes the form of
a slower, learning agent or an outer-loop controller. Moreover, the algorithm assumes
that the computation graphs’ structure does not depend on the data processed by the
vertices. Specifically, we assume delays in the system are not a function of the internal
states, outputs, or incoming inputs.

Identifying the minimal common supergraph is an NP-hard problem [67]. To manage
this complexity, we make several approximations to Alg. 5. If all vertices are assumed to be
stateful, then the constrained front F.y, can contain at most one vertex for each label, i.e.
|Feon| = [rng(L)|. Then, the worst-case time complexity for considering all topological sorts
of the supergraph S and all combinations of Fep is @28l +|V|!) (Line 6-7 in Alg. 5). We
alleviate this by considering only a single topological sort of S and a single combination
per combination size k, reducing the worst-case time complexity to O(jrng(L) + 1| +|V|). We
have found that these approximations do not significantly impact the resultant supergraph
in our evaluations, as detailed in the ablation study in Appendix 3.B. Lastly, the sequence
in which computation graphs are processed can affect the resultant supergraph. Similar to
[71], this has not proven to have a significant impact in our evaluations.

3.4 EXPERIMENTAL EVALUATION

The main focus of this work is an efficient approach to simulate delays in parallelized
simulation on accelerator hardware. We present our experiments to show the capabilities of
our approach and to support our key claims that our approach (i) emulates asynchronicity
leading to more accurate simulation, (ii) efficiently handles time-scale differences and
asynchronicity, resulting in higher parallelized simulation speeds than baseline approaches,
(iii) scales to complex system topologies. In the remainder of this section, we will use mcs
to refer to our proposed method.

3.4.1 BASELINES
We outline three baseline methods for our experimental evaluation. The sequential baseline
(seq) assumes no delays in computation graph processing, illustrating a conventional
approach as shown in Fig. 3.1a. This baseline serves as a reference for evaluating the
impact of realistic delays in simulations.

We then introduce two baselines that incorporate delays by randomizing predication
masks in parallelized simulations, but differ in supergraph construction. Given the absence
of existing methods that can handle the DAG constraint and partitioning requirements

3.4 EXPERIMENTAL EVALUATION 43

for our supergraph (as discussed in Sec. 3.3.3), these baselines represent straightforward
strategies for supergraph construction. Both baselines sequentially stack K layers in
the supergraph, with each layer containing a vertex for every non-supervisor label and
concluding with a final layer of a single supervisor vertex. This structure ensures the
supergraph is a DAG and with its size as |S| = K x (jrng(L)| - 1) + 1, thereby ensuring
subgraph monomorphisms across partitions with an adequate number of layers. The
topological baseline (top) sets K equal to the number of vertices in the largest partition.
While this method guarantees a subgraph monomorphism with each partition, it can lead
to disproportionately large supergraphs with sparse layer utilization. The generational
baseline (gen), on the other hand, sets K as the maximum path distance across partitions.
This approach is more space-efficient but also tends to over-include vertices, as it does not
account for time-scale differences between vertices. Consequently, each layer incorporates
every vertex label, even those infrequently used.
To evaluate these methods, we introduce the supergraph efficiency metric (n):

1 [Py
7=100x — :
N

Here, N denotes the total number of partitions, with 7 indicating the mean partition size
relative to the total supergraph size. This metric effectively quantifies the proportion of
vertices actively utilized (unmasked) in emulating the computation graphs across episodes.
Note that a 100% efficiency may not be achievable in practice, as it would imply that all
partitions have an equal number of vertices.

3.4.2 PERFORMANCE

In this set of experiments, we aim to validate that randomizing predication masks during
training enhances the fidelity of robotic simulations and our approach to identifying the
supergraph leads to more efficient parallelized simulations. We validate the performance on
two real-world systems: a pendulum swing-up task and a vision-based robotic manipulation
task. We use two different control strategies, reinforcement learning (RL) and model
predictive control (MPC), to demonstrate the utility of our approach in different real-world
settings.

PENDULUM SWING-UP TASK

The pendulum swing-up task is a well-known RL benchmark with nonlinear, unstable, and
underactuated dynamics sensitive to delays [45]. The choice for this task is deliberate; it
highlights the core challenge of delay compensation in reinforcement learning. By demon-
strating how neglecting delay simulation can impair policy transfer even in seemingly
simple scenarios, we underscore the greater consequences for complex systems where
delays are unavoidable and complexity is greater, as discussed in prior work [27, 72-74].
The simplicity of the task serves to clarify the fundamental importance of accounting for
delays in sim2real approaches.

The experimental setup and control diagram are depicted in Fig. 3.5. A failure to emulate
the asynchronous real-world interactions between components makes a simulation-trained
policy ineffective when transferred to a real-world setting. Policies were trained using soft
actor-critic (SAC) [75] in two simulators: one emulating delays (our approach: mcs) and

44 3 SPEED: PARALLELIZING GRAPH-BASED SIMULATIONS

Only present
in simulation

<./

(b) Control diagram

(a) Pendulum

Figure 3.5: Experimental setup and control diagram for the pendulum swing-up task. Panel (a) depicts
the experimental setup, and panel (b) shows the control diagram.

® seq ® mcs ® gen [] topl
g 1e6
— /‘
n e
1000 1000 2, S
= = e v
0 o 6
o] Lo e
Y 500 Y 500 02 o
o 2
ull i "
o o i
0 20000 40000 seq mcs real 0 50 100
steps environment efficiency (%)

(a) Training curve (b) Sim2real (c) Speed

Figure 3.6: Sim2real evaluation of an RL policy trained to swing up a pendulum with (mcs) and
without delays (seq). Panels (a) and (b) show the training curve and sim2real evaluation, respectively,
while panel (c) shows the speed performance.

another without delays (sequential approach: seq). Note that the gen and top baselines
are not included in the sim2real evaluation. This exclusion is due to their replication
of the same effective computation graphs as mcs, leading to identical policy outcomes.
Hence, we only consider these baselines later on in the simulation speed evaluation within
this section. We record 10 computation graphs from the real-world system to identify
a supergraph, partitioning and corresponding predication masks that were randomized
during training. Each experiment was replicated five times with different random seeds
and the results are presented in Fig. 3.6. Though the sequential (seq) approach exhibits
quicker convergence and superior simulated performance, it underperforms in real-world
tests compared to our approach that includes latency simulation during training. A smaller
performance gap between simulation and reality suggests that our approach leads to more
accurate simulation, yielding more effective real-world policies. This is further supported
by cross-evaluations of the trained policies in each other’s training environment, where
mes proved effective in both environments, unlike seq.

On average, it took 0.54 seconds to identify the supergraph and predication masks for
the 10 recorded computation graphs, which is a one-time startup cost that is small compared
to the total training and compilation time of 100 seconds. To establish the link between
efficiency and simulation speed, we carried out a parallelized performance evaluation

3.4 EXPERIMENTAL EVALUATION 45

(a) Box pushing (b) Control diagram

Figure 3.7: Experimental setup and control diagram for the box pushing task. Panel (a) depicts the
experimental setup, and panel (b) shows the control diagram.

® seq ® mcs ® gen ® topJ

(o)}
[oe]

E E
- q
g 40 [v] N
~ ~4 L6
: g -
[= 20 c g
© 2 Q4
L & o &
2 2 7
£ S e
0 Ci 2.7
0 4 8 12 16 0 12 14 16 0 50 100
time (s) time (s) efficiency (%)
(a) Performance (b) Final accuracy (c) Planning rate

Figure 3.8: A comparison of four MPC strategies for a task where a manipulator moves a box to a
target: three consider delays (mcs, gen, top) and one does not (seq). Panels (a) and (b) depict the mean
convergence rate and final accuracy over 10 episodes with 95% confidence intervals, respectively,
while panel (c) correlates these with the achieved replanning rate. The seq strategy, although faster
initially, leads to less accurate movements due to ignoring delays. The mecs method, while replanning
less frequently, achieves approximately 40% higher accuracy. Moreover, mcs exhibits the highest
replanning rate with a smaller supergraph (mecs: |G| = 54) compared to gen (|G| = 139) and top (|G| = 223)
that also consider delays.

of the swing up-task on an RTX 3070 GPU. We deliberately measure simulation speed
during policy evaluation rather than measuring the overall training time to clearly separate
simulation speed improvements from any learning algorithm and training-related overhead.
We compiled the supergraph with JAX [76] and randomized the predication masks across
1000 parallelized episodes. We used the supergraphs produced by our approach with
backtracking f = 5 and both baseline methods and recorded the simulation frames per
second (fps). As indicated in Fig. 3.6, our method notably outperforms other baselines
that include delays, achieving an approximate simulation speed of 3 million fps. This
improvement is largely attributed to a more compact supergraph. We observed a clear
linear relationship between 1 and simulation fps, which is consistent with the inverse
proportionality between simulation fps and supergraph size.

46 3 SPEED: PARALLELIZING GRAPH-BASED SIMULATIONS

MANIPULATION TASK

In the manipulation task, a Viper 300x robotic manipulator moves a box to a target based
on streaming webcam images. The goal is to minimize the distance between the box
and a goal position. Our experimental setup and control diagram are shown in Fig. 3.7.
Emphasizing the importance of delay simulation, we use a consumer-grade Logitech C170
webcam, chosen for its low resolution, modest frame rate, and high latency, to track the
box’s position and orientation.

We adopt the MPC approach from [77], planning actions based on the most recent
robot observations using the Cross Entropy Method (CEM) [78]. CEM, known for its
efficient, derivative-free optimization, is particularly advantageous due to its paralleliz-
ability. Considering the contact-rich nature of box pushing, we opt for Brax [17] as our
dynamics model within the MPC framework, instead of learning complex contact dynamics.
Brax, a differentiable physics simulator, is optimized for GPU acceleration and effectively
handles contact-rich tasks. In a similar approach, [79] recently used PhysX [15] to solve
a box-pushing task. Our implementation employs CEM for three iterations, involving 75
samples per iteration and a planning horizon of two control steps, each lasting 0.15 seconds.
We implement our approach using JAX [76] and execute it on an RTX 3070 GPU.

We evaluate four MPC strategies: three accounting for delays (mcs, gen, top) and one
ignoring them (seq). Delay-inclusive strategies, following [77], use past plans to predict
future box positions and orientations at action time. This prediction is based on the 10
recorded computation graphs of the system that are used to identify a supergraph, parti-
tioning, and corresponding predication masks. On average, it took 1.53 seconds to identify
the supergraph and predication masks for the 10 recorded computation graphs, which is a
one-time startup cost that is small compared to the total evaluation time of 160 seconds.
Due to their computational load, these strategies have a lower replanning rate compared
to the delay-agnostic seq. The slower the replanning rate, the further into the future the
planner must predict, increasing the likelihood of inaccurate predictions. As Fig. 3.8b shows,
mcs achieves 40% higher accuracy than seq, despite less frequent replanning. Moreover,
the mcs method also results in smoother operations than seq. The larger supergraphs in
gen and top result in excessively slow replanning, significantly reducing convergence rates,
and final accuracy. This illustrates the trade-off between accuracy and efficiency, where
the improved accuracy must justify the additional computational load.

3.4.3 SCALABILITY
The next set of experiments support the claim that our approach scales to complex sys-
tem topologies. In Sec. 3.4.2, we showed that employing a supergraph with randomized
predication masks can effectively emulate direct delay simulation. We also identified an
approximate linear correlation between graph efficiency 7 and simulation speed. Next,
we assess our method’s scalability, analyzing various system topologies and modifying
node counts and asynchronicity degrees to ascertain their effects on identifying efficient
supergraphs. In this section, we consider two cyber-physical systems for which delay
simulation is crucial: vehicle-to-vehicle (V2V) platooning [26, 74, 80] and unmanned aerial
vehicle (UAV) swarm control [27]. Furthermore, a detailed analysis of the impact of different
abstract topological characteristics on supergraph efficiency is provided in Appendix 3.A.
Fig. 3.9a illustrates the V2V platooning and UAV swarm control systems. In V2V

3.4 EXPERIMENTAL EVALUATION 47

o)

=3 =
O 0

m, Q <—>|_r.__l Q <—>_/._I_.j
Followers (F) Leader (L)

5 N
N % g z 3
&. = .o
UAV Swarm
UAVs (U) Control (C) Control 3

(a) Schematic (b) Topology

£
ﬁ-\m

2

Figure 3.9: Panel (a) shows the V2V platooning and UAV swarm control systems, with the former
comprising a leader and followers, and the latter a central controller and UAVs. Panel (b) depicts their
respective topologies, where every component communicates at 20 Hz with each other, while the
simulator runs at 200 Hz. The leader and controller are chosen as the supervisor nodes, respectively.

100 v

> sigma e 38

s 80 . ® 00 ® 16

3 60 o, e 01 ® 32

g T ® 02 ® 64

~

S 40 %o 'Y Q ©® s ® 03 topology
£ 20 x & ¥ (& nodes ® uav

o e 2 ® v2v

O0-1 10 100 e 4

elapsed time (s)

Figure 3.10: The computational complexity versus efficiency for different topologies, asynchronicity
levels, and node counts, highlighting their impact on performance.

platooning, vehicles maintain a set distance and speed, following a leader. This requires
each vehicle to respond to the leader, highlighting the necessity for delay-aware simulation.
Vehicles communicate with the leader and the vehicle ahead. For UAV swarm control, a
central entity directs the UAVs to prevent collisions and achieve formation, with UAVs
communicating solely with this controller. Additionally, each component connects to the
simulator to enable physics simulation. Accurate simulations require delays simulation in
both systems, as discussed in [26] and [27]. Within systems encompassing N nodes, there
is a single simulator and one leader or controller designated as the supervisor, alongside
N -2 Followers and UAVSs, respectively, as illustrated in Fig. 3.9b. The simulator runs at
200Hz, while all other nodes communicate with each other at a target rate of 20Hz. The
effective sampling time of every node i is computed as At; ;. = At; + max(0, x;At;), where
xX; is the delay of node i, experience during sequence number k, scaled with the node’s
nominal sampling time. An Ornstein-Uhlenbeck (OU) process [81] is used to model every
node’s delay to reflect the temporal correlation of delays, defined as follows:

X = Oxp_1+0ov, (3.2)

48 3 SPEED: PARALLELIZING GRAPH-BASED SIMULATIONS

— 0.0 0.1 — 0.2 —_— 0.3J s mcs s gen | topJ s mcs . gen s top
w6 __100 __100
g R 80 X 80
4
= J 60 T 60
-] < c
[T 2 40 9 40
o 9 || 9 I
& 20 & 20
: i | | S 7l oo b |
30 v, 1L . b, N 1 1™
0 50 100 2 4 8163264 0.0 0.1 0.2 0.3
matched (%) nodes sigma
=6 __100 ~ 100
2 X g0 X 80
4
= J 60 o 60
-] < c
05 9 40 9 40
o 9 || 9
& 20 £ 20
z G |] |
0 ¢ L0 I, N 1 1™
0 50 100 2 4 8163264 0.0 0.1 0.2 0.3
matched (%) nodes sigma
(a) Elapsed time (b) Size (c) Asynchronicity

Figure 3.11: Top row shows V2V plots, while the bottom row shows UAV plots. Panel (a) shows the
elapsed time for completion with N = 32 nodes across various asynchronicity. Initial episodes are
time-intensive due to numerous preliminary partial matches, followed by a consistent linear time
scaling in processing time. Panels (b) and (c) compare the efficiency of mcs (our approach), top, and
gen. In panel (b) the number of nodes is varied with no asynchronicity (¢ = 0), while in panel (c) the
asynchronicity levels are varied with a fixed size of N = 8 nodes.

where 0 is a correlation coefficient, o is the standard deviation, and v is a Gaussian random
variable with zero mean and unit variance. The standard deviation of an OU process is

related to the standard deviation of a Gaussian distribution with o, = \/% . We artificially
generate computation graphs for the topologies depicted in Fig. 3.9b, varying the asyn-
chronicity level o € {0,0.1,0.2,0.3} and the number of nodes N € {2,4,8,16,32,64}. We
replicate each experiment 5 times using different random seeds. For each configuration,
we generate 10 computation graphs, each running for a duration of 10 seconds. Example
computation graphs are presented in Appendix 3.C. We employ Alg. 4 to identify a super-
graph on a single core of an Intel Core i9-10980HK and compare its performance with two
baseline approaches.

Fig. 3.10 presents an analysis of our method’s computational complexity in constructing
the supergraph, considering both the computation graph’s characteristics (N, o) and topol-
ogy (v2v, uav). We observe that efficiency is inversely related to the asynchronicity level
and, to a lesser extent, to the number of nodes. Moreover, a decrease in efficiency correlates
with an increase in computation time, primarily because fewer complete matches are found.
Nevertheless, the one-time upfront cost of identifying the supergraph is usually minor
when compared to the overall simulation time, substantiating our claim that our approach
scales effectively to complex system topologies. Fig. 3.11a details the required computation

3.5 RELATED WORK 49

time under varying levels of asynchronicity, as it processes all recorded computation graphs.
The initial episodes incur higher computational costs due to the increased computational
overhead of handling numerous partial matches (Line 6-7 in Alg. 5), while subsequent
episodes demonstrate linear scaling in time.

Fig. 3.11b compares the performance of our algorithm with baseline approaches for
different numbers of nodes when there is no asynchronicity (o = 0). Our approach achieves
a 100% efficiency, whereas the efficiency of baseline approaches declines rapidly as the
number of nodes increases. Fig. 3.11c demonstrates the performance of our algorithm com-
pared with baseline approaches for different levels of asynchronicity when the topologies
comprise N = 8 nodes. As asynchronicity increases, partitions become more dissimilar, and
the efficiency of our approach does decline, yet it remains multiples higher than that of the
baseline approaches. The supergraphs generated by our method, along with those from
the baseline approaches, are depicted in Appendix 3.C.

In summary, our evaluation suggests that our method successfully emulates asyn-
chronicity, offering more accurate and faster parallelized simulations compared to baseline
approaches. At the same time, our method scales well to larger system topologies by
finding more efficient supergraphs than baseline methods. Thus, we have substantiated all
our key claims through this experimental evaluation.

3.5 RELATED WORK

Accelerated Physics Simulation Accelerated physics simulators like Brax [17], MJX
[18], and PhysX [15] are designed for GPU execution. However, they lack features for
simulating delays between their physics engine and other components, such as sensors and
actuators. Moreover, to mimic complete systems, these simulators must be extended with
controllers and perception modules. Yet, these extensions typically interact with simulators
sequentially, ignoring the concurrent and asynchronous nature of real-world systems. Our
approach builds on this by dividing these simulators into separate components, facilitating
the simulation of asynchronous interactions between them.

Adressing Asynchronicity and Delays The ORBIT framework [39] and research by
[82] have explored integrating delays into robotic simulations. While ORBIT introduces
actuator delays to PhysX, it overlooks the asynchronicity between other system components.
[82]’s work centers on compensating for system delays in the learning algorithm, not
addressing the dynamic interactions among delayed components. In contrast, our method
extends beyond actuator delays, encompassing asynchrony across all components.

Minimum Common Supergraph Our approach addresses a variant of the minimal
universal supergraph (MUG) problem, which seeks the smallest supergraph, i.e., the mcs,
containing all graphs in a given set as a subgraph [83]. Unlike the brute-force exact
algorithm presented in [83], which is suitable only for small graph sets, our approximate
greedy algorithm is capable of handling graphs with more than 2000 vertices. In [71], an
iterative update strategy, based on [70], is utilized to approximate the mcs. Our method
shares similarities but satisfies an additional constraint: the resulting mcs must remain
acyclic post-merge. Furthermore, our extended objective is to efficiently partition a provided

50 3 SPEED: PARALLELIZING GRAPH-BASED SIMULATIONS

set of larger graphs into smaller subgraphs before finding the mcs for these partitioned
subgraphs. In contrast, [83] and [71] start from a given and static collection of graphs
and focus strictly on the identification of the mcs, meaning the partitioning we perform
together with the supergraph identification is already a given in their scenario.

Both [83] and [71], and our method, (approximately) solve the maximum common
subgraph problem as a subroutine to find the minimum common supergraph (mcs) [84, 85].
However, our focus is on subgraph monomorphisms, which allow for additional edges
in the subgraph, rather than induced subgraph isomorphisms, which require a one-to-
one correspondence between every node and edge in the subgraph and target graph. To
efficiently identify the largest mapping, we introduce an algorithm that leverages the
acyclic nature of our mcs that accelerates the search for a large approximate mapping.
Note that our algorithm restricts the largest mapping to connected subgraphs, potentially
overlooking larger disconnected mapping candidates.

3.6 CONCLUSION

In this chapter, we introduced a method for efficiently simulating inherently asynchronous
systems on accelerator hardware. Our approach leverages recorded computation graphs
from real-world operations to accurately model asynchronicity and time-scale differences.
The experiments suggest that our approach provides a scalable, efficient, and accurate
means for simulating cyber-physical systems. We evaluated our method in two real-world
scenarios against baselines and confirmed its efficacy in emulating asynchronicity and
handling time-scale differences efficiently. Our work opens avenues for developing fast
and accurate cyber-physical system simulations. Finally, our approach holds promise for
enhancing the integration of other machine learning algorithms that generate dynamic
graphs into frameworks like Jax [76], by aligning dynamic computation graphs with static
ones.

3.6 CONCLUSION 51

APPENDIX 3.A: SCALABILITY ANALYSIS

In this scalability study, we focus on artificially generated computation graphs, as they
allow us to systematically vary the number of nodes, the level of asynchronicity, and the
topology of the graph. We consider three different topologies: unidirectional, bidirectional,
and unirandom, depicted in Fig. 3.12.

The nominal sampling time of each node is set according to the node’s index i as
At; = 11.5, except for the last node’s sampling time which is set to Aty = ZIW s. These
topologies resemble cascaded control schemes that are common in robotic systems, with
slower learning-based nodes and faster simulator nodes with intermediate controllers,
estimators, sensors and actuators. The effective sampling time is computed with Eq. (3.2)
as further detailed in Sec. 3.4.3.

As in Sec. 3.4.3, we consider a different number of nodes N € {2,4,8,16,32,64}, and a
varying levels of asynchronicity o € {0,0.1,0.2,0.3}, and replicate every experiment 5 times
using different random seeds. For each configuration, we generate 20 computation graphs,
each running for a duration of 100 seconds.

Figures 3.13a, 3.13b, and 3.13c illustrate the performance of our algorithm for different
numbers of nodes when there is no asynchronicity (¢ = 0). Our approach achieves a 100%
efficiency for the unidirectional topology, whereas the efficiency of baseline approaches
declines rapidly as the number of nodes increases. The superior efficiency of our approach
in the unidirectional topology is attributed to its fewer connections. Figures 3.13d, 3.13e, and
3.13f demonstrate the performance of our algorithm for different levels of asynchronicity
when the network comprises N = 8 nodes. As asynchronicity increases, partitions become
more dissimilar, and the efficiency of our approach does decline, yet it remains multiples
higher than that of the baseline approaches.

Figure 3.14 presents an analysis of our method’s computational complexity in con-
structing the supergraph, considering both the computation graph’s characteristics and
topology, and the scaling of supergraph search complexity over all recorded computation
graphs. Figures 3.14a, 3.14b, and 3.14c detail our algorithm’s complexity under varying
asynchronicity levels through time as it processes all recorded computation graphs. The
initial episodes incur higher computational costs due to the increased computational over-
head of handling numerous partial matches (Line 6-7 in Alg. 5), while subsequent episodes
demonstrate linear scaling in time.

In Fig. 3.15, we again observe that efficiency is inversely related to both the asyn-
chronicity level and the number of connections per node within a topology. Specifically,
the unidirectional topology outperforms the bidirectional and unirandom topologies due
to its fewer edges. A decrease in efficiency correlates with an increase in computation time,
primarily because fewer complete matches are found, which is consistent with the results
in Sec. 3.4.3. While the most substantial contributor to computation time is the number of
nodes in the topology, it does not affect efficiency as similar efficiency is achieved with
different numbers of nodes.

52 3 SPEED: PARALLELIZING GRAPH-BASED SIMULATIONS

Asynchronous ,
interaction [4

L <o -

% Bidirectional

1Hz 2Hz .o N 1Hz 200Hz N 1Hz 200Hz Hz 2Hz ...

Supervisor
vertex

~~~< Randomly
_connected
S

Se

N-1Hz 200Hz

(a) Unidirectional (b) Bidirectional (c) Unirandom

Figure 3.12: Three abstract topologies to evaluate the scalability of our approach. (a) Unidirectional:
each node has a single outgoing connection. (b) Bidirectional: each node has two outgoing connections.
(c) Unirandom: akin to Unidirectional, but with an extra random outgoing connection per node.

. mcs mmm gen | topJ

__100 _100 _100 __100 __100 __100

2 80 £ 80 £ 80 2 80 £ 80 & 80

T 60 T 60 T 60 T 60 T 60 T 60

€ ] e € e e

Q2 40 9 a0 Q2 40 9 a0 9 a0 2 40

2 2 2 2 2 2

£ 20 || £ 20 || £ 20 || £ 20 I £ 20 £ 20 l I

o M b e MR b b S M D b N e e e O (1M1 ™
2 4 8163264 2 4 8163264 2 4 8163264 0.0 0.1 0.2 0.3 0.0 01 02 03 0.0 0.1 0.2 03

nodes nodes nodes sigma sigma sigma

(a) Unidirectional (b) Bidirectional (c) Unirandom  (d) Unidirectional (e) Bidirectional (f) Unirandom
Figure 3.13: Efficiency comparison of mcs (our approach), top, and gen. In panels (a-c) the number of
nodes is varied with no asynchronicity (¢ = 0), while in panels (d-f) the asynchronicity levels are
varied with a fixed size of N = 8 nodes.

— 00 — 01 — 0.2 —03J
0 0 0
g 100 g 100 GE’ 100
F=) = F=]
o k-] k-]
@ 50 @ 50 @ 50
0 0 n
o o o
8 L) ]
v 9 so 100 ¢ % so 100 ¢ % 50 100
matched (%) matched (%) matched (%)
(a) Unidirectional (b) Bidirectional (c) Unirandom

Figure 3.14: Performance analysis of computational complexity and efficiency. Panels (a-c) show the
elapsed time for completion with N = 32 nodes across various asynchronicity levels and topologies.
Initial episodes are time-intensive due to numerous preliminary partial matches, followed by a
consistent linear time scaling in processing time.

100 wemw w0 w -

9 x sigma e 8

< 80 . o ° ® 00 e 16

3 60 &= 9 ® 01 ® 32

g . (353 o

& 10 % ® 02 @ o2

o % .. np ® 03 topology

E 20 %o ”{,% ) nodes @ bi

? o o 2 ® rand
10t 102 10° o 4 2 uni

elapsed time (s)

Figure 3.15: Complexity and efficiency versus node count, asynchronicity, and topology, highlighting
their impact on performance.



3.6 CONCLUSION 53

APPENDIX 3.B: ABLATION STUDY

- 0 ‘340
0 L — 0 ~
o 0510152 = power o
£ 100 £ 10° mm linear g 30
= =
et s 320
@ 50 2 ‘6_'10 max-edge
2 |||| %102 - . © - arbitrary
o uni  bi rand d uni  bi rand 0 unl bi rand
topology topology topology
__100 _. 100 _ 100
é 800 5 10 15 20 § 80 ] [?ower Oﬁ 80 ] ma>'<—edge
mm linear B arbitrary
g 60 T 60 & 60
c c [
2 40 2 40 Q2 40
o = 2
£ 20 £ 20 £ 20
Q Q Q
0 uni bi rand 0 uni bi rand 0 uni bi rand
topology topology topology
(a) Backtrack (b) Combination (c) Sort

Figure 3.16: Ablation study on topologies with N = 32 and ¢ = 0.1, examining computational complex-
ity and efficiency. Sub-figures show: (a) Effects of varying f; (b) Efficiency-impact of considering one
(linear) vs. all combinations per size k (power); (c) Comparison of arbitrary and max-edgetopological
sorts.

In this study, our goal is to substantiate that our approach employs simplifications dis-
cussed in Sec. 3.3.4 that reduce computational complexity without significantly affecting
performance. For this ablation study, we focus on the topologies in Fig. 3.12 with N =
and o = 0.1, ablating the proposed simplifications.

Fig. 3.16 illustrates that the benefits of backtracking are limited. However, it neither
increases the computational complexity of our approach nor adversely affects efficiency.

We also analyzed the effect of considering only a single combination for each size k, as
opposed to exploring all combinations. Fig. 3.16 demonstrates that this simplification has
negligible impact on efficiency but considerably reduces the computational complexity (note
the log-scale). It is worth noting that only considering a single combination even seems to
perform slightly better in some cases. This outcome, while not statistically implausible,
may also be caused by other factors, such as the order in which the graphs are processed.
Our hypothesis centers on the specific nature of the computation graphs generated by
cyber-physical systems. These graphs tend to exhibit a relatively fixed structure, meaning
the variety of topological orderings is considerably constrained compared to more generic
graphs. Consequently, this structural rigidity could diminish the advantages we might
expect from checking all combinations.

Lastly, we explored the implications of using a single topological sort. Rather than
exhaustively considering all topological sorts—an approach that would be computationally
prohibitive—we compared the effects of using an arbitrary sort versus a max-edge sort.
The max-edge sort of the supergraph is defined as one that accommodates the maximum
number of potential edges (i.e., constraints) and therefore increases the chance of finding a




54 3 SPEED: PARALLELIZING GRAPH-BASED SIMULATIONS

match in Alg. 5. Due to the inherent unidirectionality of the unidirectional topology, the
max-edge sort arranges vertices of lower indices before those of higher indices. Since we
lack max-edge sorting criteria for bidirectional and unirandom topologies, we limited this
part of the study to the unidirectional topology. Fig. 3.16 shows that this simplification has
negligible impact on efficiency.

APPENDIX 3.C: GRAPHS

0.15 . . 0 5 10 15 20 25

time (s) topological generation
(a) Computation graph of V2V platooning (b) Our approach (mecs)

L L

F1
[Aletetetototetototototototototototototetot ot ok

OO YN

[V fetetetotetatototototototetatotototototototete

OO NN

[V fetotetotetatotototototototatotatotots!

0 5 10 15 20 25 0 5 10 15 20 25
topological generation topological generation
(c) Topological (top) (d) Generational (gen)

Figure 3.17: Panel (a) presents a segment of a computational graph corresponding to the platooning
scenario in Fig. 3.9b with N = 4 and ¢ = 0.2. Vertices of identical color correspond to the same periodic
computation unit, and edges represent data dependencies. Panels (b-d) illustrate the supergraphs
generated by our method (mcs), as well as the topological (top) and generational (gen) methods. Our
approach yields a supergraph with a reduced number of vertices, indicating enhanced efficiency in
identifying commonalities across the computation graphs.



3.6 CONCLUSION

55

\

vAv, .\“Y‘A%.‘{A‘\‘Y{A_‘k?{é S
IR It B

UAV,

SIM " -
0.00 0.05 0.10 0.15 0.20 0.25 0 5 0 15 20
time (s) topological generation
(a) Computation graph of UAV swarm control (b) Our approach (mcs)

IlIlIlIlIlIIIIIlIlIlIlIlIlIlIlIlIlIII’.

UAV,
o SXOBUABOAMON,
0 5 10 15 20 25 0 5 10 15 20
topological generation topological generation
(c) Topological (top) (d) Generational (gen)

25

25

Figure 3.18: Panel (a) presents a segment of a computational graph corresponding to the uav swarm
scenario in Fig. 3.9b with N = 4 and ¢ = 0.2. Vertices of identical color correspond to the same periodic
computation unit, and edges represent data dependencies. Panels (b-d) illustrate the supergraphs
generated by our method (mcs), as well as the topological (top) and generational (gen) methods. Our
approach yields a supergraph with a reduced number of vertices, indicating enhanced efficiency in

identifying commonalities across the computation graphs.







57

ACCURACY: ESTIMATING
DyNAMICS AND DELAYS OF
GRAPH-BASED SIMULATIONS

Although flexible and fast simulations are essential for robotic learning, it is often challenging
to obtain accurate simulations that closely match real-world dynamics due to unmodeled
effects such as delays. These inaccuracies often result in policies that work well in simulation
but fail in real-world deployment.

This chapter addresses this gap by presenting a framework, REX (Robotic Environments with
jaX), for improving the accuracy of simulations through the estimation of delays and system
dynamics based on real-world data. The framework builds on the graph-based architecture
from earlier chapters, enhancing fidelity in sim2real transfers by simulating asynchronous
operations and compensating for various types of delays.

This chapter is partly based on [ B. van der Heijden, j. Kober, R. Babuska, and L. Ferranti, (2025). "REX: GPU-
Accelerated Sim2Real Framework with Delay and Dynamics Estimation’, Transactions on Machine Learning Research
(TMLR) [86].




58 4 Accuracy: ESTIMATING DYNAMICS AND DELAYS OF GRAPH-BASED SIMULATIONS

4.1 INTRODUCTION

Sim2real, the transfer of control policies from simulation to the real world, is crucial
in robotics thanks to its ability to solve tasks efficiently without the risks associated
with real-world learning [22, 31]. With recent advancements in physics simulation on
accelerator hardware [15-18], parallelized simulations have greatly reduced training times
for complex tasks [22, 87]. However, discrepancies between simulation and reality, such
as unmodeled dynamics, often reduce the effectiveness of these policies in real-world
applications. Addressing this ‘sim2real’ gap is essential for effective transfer of policies
from simulation to the real world.

A critical yet often overlooked issue in sim2real transfer is the impact of latency in real-
world systems, which can degrade performance [29, 31, 32, 88]. The real world is inherently
asynchronous, with delayed sensor data causing agents to act on outdated information.
Additionally, slow policy evaluations can further delay the agent’s actions, compounding
these latency issues and leading to suboptimal performance. To mitigate these effects,
Fig. 4.1 illustrates two common compensation strategies: simulating delays during training
(Fig. 4.1¢) [31, 63, 88] and using an estimator to predict future states (Fig. 4.1d) [77, 89-91].
However, both strategies have limitations. Delay simulation complicates training because
the agent’s input must include a history of observations and actions to restore the Markov
property, while an estimator requires accurately modeled system dynamics and delays,
which are often difficult to identify [92].

The hierarchical and asynchronous nature of robotic systems further complicates ac-
curate and efficient simulation on accelerator hardware. Unlike conventional RL, which
assumes a single, synchronized environment [23], robotic systems consist of interconnected
models operating at different rates, with asynchronous communication introducing com-
plexities like inter-model latencies and stochastic dynamics [24, 64], leading to irregular
computation patterns. Irregular execution paths require serialization, reducing GPU effi-
ciency, and while simulating time-scale differences improves sim2real accuracy, it further
exacerbates this inefficiency [25].

The main contribution of this chapter is a sim2real framework, REX (Robotic Envi-
ronments with jaX), that introduces a graph-based simulation model with latency effects,
optimized for parallelization on accelerator hardware. The framework’s innovation lies in its
ability to simulate asynchronous, hierarchical systems by explicitly modeling computation,
communication, actuation, and sensing delays, while incorporating delay compensation
strategies for improved sim2real transfer. Parallelization in both state and parameters
allows for simultaneous estimation of system dynamics and delays from real-world data,
efficiently minimizing the sim2real gap. Additionally, it supports real-world deployment
by distributing computations across CPU cores and accelerators, optimizing for latency
and performance.

For RL and robotics practitioners, this framework offers several advantages. It enables
the modeling of both simulated and real-world systems through a unified, ROS-like graph-
based pipeline [24]. The framework supports accelerated training speeds familiar to RL
workflows and reduces the sim2real gap by refining models with real-world data. Integra-
tion with the JAX [76] ecosystem further supports advanced RL training and optimization
[93-96].

Building on these advantages, we make four key claims: Our framework (i) enables



4.2 RELATED WORK 59

ut+1|t+r

Agent Agent Agent
t r|t T,
Estlmator Agent
l'lt+z'(,|t Ts t+r[t Ts World t+r|t+r

(a) Naiive (b) Real world (c) Delay simulation (d) Delay compensation

Figure 4.1: A policy trained in simulation (a) may perform suboptimally in the real world (b) due
to delays. The notation uy,, |;—,, denotes that an action u is applied at t + 7, based on information
up to t - 75, where 7, and 7; are the actuation and sensing delays, respectively. By simulating these
delays during training (c), the sim2real gap with (b) can be reduced. Alternatively, an estimator (d)
can predict future states and compensate for delays, improving policy transfer from (a) to (d). The
notation x;,;|;_;, denotes that a state x is predicted at ¢ + r, based on information up to # - 7.

the identification of both dynamics and delays from real-world data, (ii) implements delay
compensation and simulation techniques that are essential for effective sim2real trans-
fer, (iii) facilitates efficient parallelized offline simulation on accelerator hardware, (iv)
supports real-time online processing capabilities that meet the latency and performance
requirements of real-world systems. These claims are supported by experiments on two
real-world systems. The pendulum swing-up task clearly demonstrates how neglect-
ing delay simulation can impair policy transfer, highlighting the need for delay-aware
approaches, while the quadrotor task shows scalability to more complex robotic sys-
tems. The documentation, tutorials, and our open-source code can be found at https:
//bheijden.github.io/rex/. A video recording of the real-world experiments
is available at https://youtu.be/73j30LUjTx_T.

4.2 RELATED WORK

Sim2Real Frameworks SimZ2real frameworks such as Orbit [39], Drake [40], and EA-
GERx [29] facilitate the transfer of control policies from simulation to real-world settings.
However, they generally do not include direct support for delay or dynamics identification
from real-world data. Our framework addresses this gap by integrating these capabilities
directly into the framework. Orbit utilizes Nvidia PhysX for parallelized simulations on
accelerator hardware [15]. Our framework is based on JAX [76] to support parallelized
computation on accelerator hardware, while also enabling automatic differentiation. More-
over, our framework, like EAGERx [29], is not restricted to a specific simulator, as long as
the simulator is compatible with JAX, such as Brax [17] or the MJX extension of MuJoCo
[18]. This flexibility enables users to select and extend engines as needed within the graph-
based model. Tab. 4.1 provides a feature comparison between REX and related sim2real
frameworks.

Delay Estimation System identification involves estimating the system’s dynamics
from input-output data and is a well-established area of research [97]. Traditional methods
primarily focus on linear systems, often utilizing least-squares optimization techniques



https://bheijden.github.io/rex/
https://bheijden.github.io/rex/
https://youtu.be/7j30LUjTx_I

60 4 Accuracy: ESTIMATING DYNAMICS AND DELAYS OF GRAPH-BASED SIMULATIONS

REX Orbit Drake EAGERx
[39] [40] [29]

Multi-Sim Compatible X X

GPU Accelerated X X
Gradient Information X X
Delay Simulation

Delay Estimation X X X
Dynamics Estimation X X X

Table 4.1: A feature comparison between REX and related sim2real frameworks.

[98], while more recent efforts have extended to nonlinear systems [99]. Recent advances
leverage the differentiability of general-purpose simulators to estimate complex system
dynamics [100-102]. Our approach builds on these advancements by extending simulators
with delay dynamics, allowing for the joint estimation of both system dynamics and delays.
Instead of gradient-based methods, we use evolutionary strategies [103], which we found
to be less susceptible to local minima and better utilize the parallelism of modern hardware
[95].

Delay Simulation Frameworks like Drake, EAGERx, and Orbit provide support for
fixed delay simulation [29, 39, 40]. Our framework, however, extends this capability by
supporting stochastic delay simulation using Gaussian Mixture Models (GMMs). Addition-
ally, it incorporates correlations between delays by considering the system’s topology and
communication structure during simulation. Although our framework allows for correlated
delays, these delays are data-independent and do not change based on the simulated data.
For example, even if an object detection algorithm takes longer to process when multiple
objects are in view, our simulated delays remain the same regardless of the number of
detected objects.

Delay Compensation Delay compensation in sim2real has been addressed through
various methods. Algorithmic approaches for compensating delays have been proposed
by [82, 104]. Other studies have enhanced sim2real performance by simulating delays
during training and using a history of observations and actions as policy inputs [29, 31]. As
part of their approach, [22] modified IsaacGym [105] to include a custom actuator model
from [21], which accounts for control signal delays caused by hardware/software layers.
These methods teach policies to handle delays without compensating for them directly
during real-world execution. Direct compensation techniques, such as the Smith predictor
[89], have long been used in robotics to manage delays from sensors, actuators [90, 91],
and planning latency [77]. In our work, we demonstrate that by compensating for delays
during execution, we can eliminate the need for delay simulation during training, resulting
in a more efficient training process while maintaining high performance in real-world
applications.



4.3 OUR SIM2REAL FRAMEWORK 61

computation communication
delay ~ /" delay ~,
)
4 .
Camera <& Estimator Agent & Motor
delay (ms) delay (ms) delay (ms) delay (ms)
-

Camera Estimator N Agent . Motor sensor A siv::la?izn actuator A
stepsiz
60 Hz 50 Hz 30 Hz 50 Hz delay < ! P 7\ delay <1

N

(a) Real-world system (b) Simulated system with delays

Figure 4.2: Comparison between a real-world system setup and a simulated system with integrated
delays. The real-world system (a) operates with different nodes at specified rates, while the simulated
system (b) incorporates various types of delays to closely mimic real-world timing behaviors, including
sensor, actuator, communication, and computation delays.

4.3 OUR SIM2REAL FRAMEWORK

In this section, we present our framework for sim2real transfer in robotics, focusing on
accurately modeling and compensating for the asynchronous interactions and delays
encountered in real-world systems. In the following, we will first describe the graph-based
architecture that facilitates asynchronous message passing and delay modeling. We will
then detail the three runtime configurations designed for simulation, accelerated training,
and real-time deployment. Finally, we will cover the integration of system identification
techniques and delay compensation strategies to bridge the gap between simulation and
reality.

4.3.1 OVERVIEW
The central element of our framework is the node, which represents a discrete unit of
computation or sensing, operating asynchronously within the system. Nodes are designed
to run at specified rates, processing inputs, maintaining state, and generating outputs. In
our approach, both real-world and simulated systems are implemented as networks of
these nodes, where communication occurs via directed edges, as shown in Fig. 4.2a. Each
node’s operation is defined by a step function that determines its behavior, transforming
inputs into outputs. For example, nodes can represent various components such as cameras,
agents, or motors, each handling specific tasks like sensing, control, or actuation. This
modular design allows for flexible state, time, and action abstractions, supporting the
modeling of complex interactions in a decentralized manner. Nodes are interconnected in a
directed graph, facilitating asynchronous message passing and enabling nodes to operate at
different rates. This design also enables the swapping of real-world nodes with simulated
nodes, resulting in a unified software pipeline that can be used for sim2real transfer.
Asynchronous operations are inherent in real-world systems due to network transmis-
sion times, processing lags, or mechanical response times, which introduces delays into the
system dynamics. To address this, we introduce a delay simulation model that captures both
deterministic and stochastic delays, incorporating realistic timing behavior through delay
distributions for communication, computation, sensor, and actuator delays. As shown in
Fig. 4.2b, our model explicitly defines these delays as non-negative distributions, ensuring
that the timing characteristics of the simulated environment closely match those of the real
world. While this provides the structure for delay simulation, the challenge of estimating




62 4 Accuracy: ESTIMATING DYNAMICS AND DELAYS OF GRAPH-BASED SIMULATIONS

the correct delay parameters is addressed later in Sec. 4.3.3.

The framework supports multiple communication protocols to manage the flow of
messages between nodes, allowing users to specify whether each communication channel
should be blocking or non-blocking. A blocking channel ensures that a receiver node
waits for the most recent message before processing, which minimizes latency in real-time
systems by avoiding outdated information. However, blocking channels can introduce
instability if delays cause unforeseen propagation through the graph; in such cases, non-
blocking channels may be preferable. For example, an estimator node might opt for
non-blocking behavior to continue predicting the system’s state when sensor messages are
delayed, allowing the controller to maintain responsive operation.

4.3.2 RUNTIMES

Our framework leverages JAX [76] for efficient computation, utilizing its ability to
perform just-in-time (JIT) compilation and automatic differentiation, which are crucial
for high-performance machine learning applications. Nodes are defined using a generic
interface, with parameters, states, and outputs specified using data structures that can be
statically analyzed, as shown in Fig. 4.3a. This approach allows for ahead-of-time (AOT)
compilation of the st ep method (Fig. 4.3a, Line 12) on various architectures, including
CPUs and GPUs, thereby reducing latency. By compiling nodes in this manner, they can
be seamlessly employed across different runtime modes without modification, ensuring
flexibility and efficiency in both real-world and simulated environments. Our framework
supports three distinct runtime modes, each tailored for different stages of development,
training, and deployment: WALL_ CLOCK, SIMULATED, and COMPILED.

The WALL_ CLOCK runtime is designed for real-time execution on physical hardware,
operating at real-time speed with each node’s step function running asynchronously at its
designated rate (Fig. 4.3b, lines 1-14). Nodes can be compiled to run on dedicated hardware
resources such as separate CPU cores or accelerator hardware, minimizing latency (Fig. 4.3b,
Line 17). After initializing the state of the graph, which aggregates the states of all nodes,
the graph can be executed for a specified number of steps while recording the outputs and
their corresponding timestamps (Fig. 4.3b, lines 19-24).

The SIMULATED runtime enables faster-than-real-time simulation, allowing for ac-
celerated testing and development without real-time constraints. Message passing is based
on simulated timestamps that are generated based on the communication protocol of
every connection (blocking or non-blocking) and specified delay distributions, replicating
real-world asynchronous effects (Fig. 4.3c, lines 1-14).

The COMPILED runtime further leverages accelerator hardware like GPUs or TPUs
for parallelized execution by enabling the compilation of entire computation graphs into
a single function. This makes this runtime suitable for tasks such as training RL policies
and large-scale system identification that can leverage massive parallelism. Data flows
from other runtimes (e.g., (Fig. 4.3b, Line 26)) are converted into a computation graph
(Fig. 4.3c, Line 21) and compiled for parallel execution (Fig. 4.3c, lines 22-26), encoding the
asynchronous effects of real-world interaction or simulated delays and enabling parallel
execution on accelerator hardware. By supporting these three runtime modes, our frame-
work provides comprehensive flexibility for a wide range of applications, from real-time
deployment to parallelized system identification and policy training.



4.3 OUR SIM2REAL FRAMEWORK

63

cla gent (BaseNode) :
def init_params(self,
return PyTree(a

y

def init_state(self,
return PyTree(x1

rn graph_state):

B

def init_output(self,
return PyTree(yl

rng,
y2

def step(self, step_state):
E step_state

params, state state

eps, seq, ts ss.ts
cam ss.inputs[
cam.data, cam.ts cam.ts_recv
2

)

ace(state-new_state)
output

new

state
output P

IE

PyTree(x1
ree(yl

x
y2

)

ne
ret

(a) Node definition

SimCam(rate-60,
Agent (rate-30,
SimMotor(rate
brax Brax(rate-100,
nodes [brax, cam, ag
brax.connect (motor, de
cam. connect (brax, dela
agent.connect (cam, del
motor.connect (agent,

agent
motor

graph Graph(agent, n
RealTime
raph.warmup (devices
graph.init()
i range(100):
gs graph.run(gs)
graph.stop()

BWNHROVRNO TR WN R

aph.get_record(

aph (

> K. T
jax.vmap(graph.i
=

gs
rollou

(c) Simulation runtimes

rng, graph_state):
b )

graph_state):

dela
window-2,

jax.vmap (graph.rollout) (gss,

cam
agent
motor
nodes

Camera(rate-60)
Agent (rate-30)
Motor(rate-50)
[cam, agent, motor]

agent
motor

connect (cam)
connect (agent,

block-True, window-2

)

graph Graph(agent, nodes,

Clock. WALL_
RealTimeFactor REAL_T

OCK,
)

graph.warmup (devices

graph.init()

i range(100) :
graph.run(gs)

h.stop()

gs
or
record graph.get_record()

df record.to_graph()

delay-Ge (0.05, 0.01))
delay-Ge (0.02, 0.01))
50, del Ga (0.04, 0.01))
delay-Deterministic(0.01))
ent, motor]

lay-Gauss(0.01, 0.01))
y=Gauss(0.01, 0.01))
ay-Gauss(0.01, 0.01))
y=Gauss(0.01, 0.01),
block=True)

odes,
Factor

)

Clock . SIMULATED,
FAST_AS_POSSIBLE)

). to aph() . augment (nodes)
agent, nodes
andom. PRNGKe )
nit) (rngs)

cg)

3. num=1000)

rngs)

Figure 4.3: Node definitions (a) use generic PyTrees that allow for compilation across different
architectures for reduced latency. Examples of runtime configurations, showing different execution
modes: WALL_CLOCK (b, Line 13) for real-time operation on physical hardware, SIMULATED (c,
Line 13) for simulating without real-time constraints, and COMPILED (b, Line 23) for parallelized
execution on accelerator hardware. Variable names and notations were slightly shortened for clarity

and space.




64 4 Accuracy: ESTIMATING DYNAMICS AND DELAYS OF GRAPH-BASED SIMULATIONS

Add "Brax-Camera" edges ar‘gmin alculate los:
according to trainable
Actions Camera min/max delay specification W | — )
T ]
1L | [ OO e ’9@{]*@*@*
p [ ININTN
Time (5] Time (o) R p p i pup p Estimator \[:]—>—>—>—>—>D—>
Wa o S e S Camera
Agent O—=0O)—=0)—=0)—=0)— o .08 o) O
N B VS N, " 5
stimator | OZOZOZOZDZ0) - rax é-a;p_{/o-o;oﬂ;d»gﬂ Brax o8 /,
P
Camera| O4 4 40404 ¢ O>0>0>0r= Motor P A A ey
prase st ) 7 " -
Motor [ b ) > J>( I > > it s s T 5 ooy e T )
Time ) delay distribution
a) Collected data and data flow b) Computation graph c) Optimize
P Pp. P

Figure 4.4: System identification example applied to the system in Fig. 4.2a. (a) Data collection
from the real-world system, including sensor data and timing information. (b) Construction of a
computation graph that integrates the data flow with simulated nodes for dynamics and hidden delay
identification. Motor-Brax edges are added based on a specified delay distribution, while Brax-camera
edges follow a trainable min-max delay specification. (c) Optimization of simulation parameters and
delays to minimize discrepancies between simulated and real-world behaviors, focusing on the delay
interpolation parameter o and the parameters i/, 6 for the camera and Brax nodes.

4.3.3 SYSTEM IDENTIFICATION

System identification is crucial for minimizing the sim2real gap by ensuring that the
simulated model closely mirrors the real-world system. Our framework facilitates this
by identifying both the dynamics and delays inherent in real-world systems, allowing for
more accurate simulation and effective delay compensation. In the following, we detail
how to build and optimize a tailored computation graph from the real-world data collected
to estimate system dynamics and delays (see Fig. 4.4). Data is collected from the real-world
system using the WALL_ CLOCK runtime, logging not only sensor and actuator data but
also the timing information associated with message exchanges between nodes. This
includes the timestamps for when a message is received, when a node begins processing,
and when it sends out the output. Using this data, we construct a data flow graph that
captures node interactions, including the precise timing of messages (see Fig. 4.4a, and
Line 21 in Fig. 4.3c).

Dynamics The data flow graph serves as a foundation for identifying the system’s
dynamics. One advantage of using a data flow graph is that it inherently represents
asynchronous interactions and correctly encodes time-scale differences between nodes.
Accounting for these asynchronous effects is essential, as they can significantly impact
the identified system dynamics [92]. Given the data flow graph, our framework builds a
tailored computation graph as follows. We augment the data flow graph with a simulator
that models the system dynamics by adding simulator nodes at the desired simulation
rate. Edges between simulation nodes and real-world-interacting nodes are introduced
to pass the simulation state to the nodes that model real-world interactions (actuators,
sensors, etc.), according to the assumed delay distributions, as shown in Fig. 4.4b. These
delay distributions are either trainable or prespecified, as explained later in this section.
By replaying actions through the computation graph and comparing the reconstructed
outputs with the collected data, we optimize the simulator parameters to minimize a
reconstruction loss. During this process, all parameters within the computation graph (e.g.



4.3 OUR SIM2REAL FRAMEWORK 65

simulator parameters or those in any other nodes), can be optimized. For instance, in the
example shown in Fig. 4.4c, we simultaneously identify Brax’s system parameters and the
camera’s parameters for angle-to-pixel conversion, but we could have also optimized for
any other parameter in the graph, such as the motor’s friction. The COMPILED runtime
is particularly advantageous for this optimization process due to its ability to parallelize
computations efficiently. We found evolutionary strategies effective for this task, as they
leverage parallelism, constraint specification, and are less susceptible to local minima
[94, 95, 103].

Measurable Delays In addition to dynamics, our framework addresses delay estimation,
distinguishing between directly measurable delays and hidden delays, such as those in
actuators and sensors. Using the recorded timing data, we estimate the communication
and computation delays of the system by fitting a Gaussian Mixture Model (GMM) to the
measurable delay data using gradient descent. Details on the GMM fitting can be found
in Appendix 4.A. Typically, around a thousand samples are sufficient for fitting, which,
depending on the system’s rate, may require less than a minute of data collection. When
sampling from the GMM, we clip the sampled values to be non-negative, as delays are
inherently non-negative.

Hidden Delays With hidden delays we mean delays that are not directly observable in
the data flow graph, such as delays between the real world and sensors or actuators. While
we support the addition of edges between simulator and real-world-interacting nodes based
on prespecified delay distributions (e.g., motor-Brax connections in Fig. 4.4b), users can
also introduce trainable delays to identify hidden delays (e.g., Brax-camera connections
in Fig. 4.4b). Our approach requires specifying a minimum and maximum bound for
each trainable delay, which we use to introduce additional edges that accommodate all
possible communication patterns between two nodes under minimum and maximum delay
conditions. We then introduce a trainable parameter « € [0, 1] for each connection, allowing
interpolation between the minimum and maximum scenarios. Different deterministic
interpolation schemes, such as linear or zero-order hold, are currently supported to model
various delay characteristics.

4.3.4 DELAY COMPENSATION

Once the system dynamics and delays are identified, the framework supports various
strategies for delay compensation to enhance sim2real performance.

Delay Simulation One straightforward strategy is to integrate the identified delay dis-
tributions into the simulation environment. This approach, referred to as delay simulation
(Fig. 4.1c), allows the agent to learn policies that are delay aware. Notice that delays make
the problem non-Markovian. To address this, a history of observations and actions can be
stacked and used as input to the policy to restore the Markov property. This does make the
learning problem more challenging, as the agent must learn to solve the task and handle
delays simultaneously, as we will show in our experiments.




66 4 Accuracy: ESTIMATING DYNAMICS AND DELAYS OF GRAPH-BASED SIMULATIONS

Estimator While RL approaches often treat the environment as a black box, in sim2real
scenarios, we can utilize the identified system dynamics and delays to design a model-
based delay compensator that predicts the system’s behavior during real-world execution.
Inspired by a Smith Predictor [89] and shown in Fig. 4.1d, our strategy is to predict the state
we expect when the corresponding command based on this state reaches the system. By
knowing all delays, we can predict when a command will arrive and estimate the system
state at that future time. Specifically, when a sensor captures an observation, we timestamp
it and subtract the identified hidden delay 7 to estimate the timestamp of the world’s
state the observation corresponds to, t; — 7;. When the estimator processes the observation
at t, it can determine when the resulting command will reach the system by adding the
expected estimator-to-actuator latency, z,, resulting in t, + 7,. Thus, the estimator first
updates the state up to t; — 75 and then predicts it forward to t, + 7, using the past control
inputs and their estimated timestamps. We recommend using an Unscented Kalman Filter
(UKF) [106] for this task because it effectively handles non-differentiable and non-linear
dynamics, while requiring only a small number of particles that can be efficiently evaluated
in parallel (see Appendix 4.B for more information). Additionally, in partially observable
settings, a UKF can infer the hidden state of the system from observations and provide this
state to the agent, enabling training in a fully observable, delay-free environment, which
generally facilitates easier learning. In our experiments, we will evaluate the benefits of
using such an estimator for delay compensation and compare the performance gains of
delay compensation alone versus delay compensation with hidden state estimation.

4.3.5 LIMITATIONS

Our framework does not support running nodes on different machines; computations are
restricted to different devices via JAX. This limits the ability to compile nodes for low-level
controllers onboard a robot. Additionally, JAX’s Just-In-Time (JIT) compilation can lead to
long compilation times, although recent updates with function caching have mitigated this
to some extent.

The framework estimates hidden delays as deterministic, which is a reasonable assump-
tion for many robotics applications. Nevertheless, stochastic delays can be modeled by
adding variability to the deterministically identified delays, for example, to simulate jitter
in sensor readings. Also, our approach requires setting minimum and maximum bounds
for trainable delays, but we have found that using large bounds often yields good results.
Furthermore, our delay simulation is state independent, meaning that while it accounts for
the correlation and stochastic nature of delays, it does not adapt to the specific conditions
or data of each simulation step. For instance, if an algorithm takes longer to process when
there are multiple simulated objects in view, our approach would not capture this increase
in processing time that would occur in a real-world scenario.

As systems scale to large configurations, efficiently parallelizing full asynchronicity
for every node can become a challenge. To this end, we leverage the supergraph approach
in [63] to efficiently parallelize graph-based simulations. Furthermore, the graph-based
framework provides flexibility by allowing users to adjust the level of detail as needed
for the task. For example, users may model entire robots as single nodes, focusing on
interactions between them rather than internal asynchronicity, to maintain scalability in
large-scale systems. The complexity of calculations within nodes is efficiently managed



4.4 EXPERIMENTAL EVALUATION 67

using JAX [76], which enables scalable computations through its support for parallelization
and distributed computing across multiple devices.

4.4 EXPERIMENTAL EVALUATION

The main focus of this work is a sim2real framework that addresses asynchronous inter-
actions in real-world systems by modeling delays and using real-world data for accurate
system identification and reinforcement learning training. Our experiments are designed to
validate the key claims made in Sec. 4.1 as follows. First, we identify the system dynamics
and delays from real-world data, followed by a sim2real transfer evaluation using the
identified system while using delay compensation techniques. We validate our approach
on two distinct real-world systems: a pendulum swing-up and a quadrotor control task.

4.4.1 SYSTEM IDENTIFICATION AND DELAY ESTIMATION

To support the claim that our approach enables the identification of both dynamics and
delays from real-world data, we present system identification and delay estimation results
for the two selected systems.

Pendulum In contrast to the classic swing-up task [23], which uses full state information,
our setup relies solely on camera images of the pendulum. This task highlights the challenge
of delay estimation and system identification from images. We apply an open-loop voltage
sequence to the motor for 21 seconds while recording a stream of images from a RealSense
d435i camera, in addition to the applied actions and corresponding timing information.
Using this data, we construct a data flow graph that is augmented to form a computation
graph, incorporating simulator nodes operating at 100 Hz. We introduce edges between the
simulator nodes and the camera and motor via two trainable delays that assume a minimum
and maximum delay of 0 to 50 ms, respectively. Images are first preprocessed through
background subtraction and color thresholding to detect the center pixel coordinates of the
red dot that marks the pendulum’s mass. The actions are then reapplied to the simulator,
and we optimize the parameters to minimize the reconstruction error between predicted and
actual pixel coordinates. Simultaneous optimization is performed on several parameters: the
physics parameters of the Brax simulator (mass, length, friction, inertia, etc.), parameters
for hidden camera and motor delays, and the parameters of an ellipse model (center, axes,
rotation) that maps pixel coordinates to angles using the intuition that the pendulum’s
motion (as pixel coordinates) will be an ellipse when projected onto the camera plane. A
UKF is employed for full state estimation and delay compensation, utilizing a lightweight
dynamics model (see Appendix 4.C). We use the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [103] to optimize the 27 parameters by minimizing the reconstruction
error between the predicted and measured pixel coordinates. See Appendix 4.D for details
on CMA-ES and the hyperparameter settings. Finally, we fit GMMs to estimate delay
distributions for all measurable communication and computation delays.

The reconstructed angle and angular velocity from the simulator and estimator are
shown in Fig. 4.5a, alongside the validation data obtained from the pendulum’s encoder,
which can be considered the ground truth with minimal delay. The open-loop reconstruc-
tion remains accurate over a 21-second time horizon. The identified delay distributions




68 4 Accuracy: ESTIMATING DYNAMICS AND DELAYS OF GRAPH-BASED SIMULATIONS

—— encoder —— brax —— filtered =~ —— predictive
9.0
7.5
P -
£ T 85
(o]
< o0 :ao
[ o8
75 25 50 75 100 125 150 175 200 190 192
Time (s) Time (s)
20 8
- -
2 q
o o T 4
[ g
= ~ 0
@ @
-20
25 50 7.5 100 125 150 17.5 20.0 —4 19.0 192
Time (s) Time (s)
(a) Reconstruction (b) Zoomed

Probability
density (log-scale)
~

N

NS

Deterministic
delay ~-7

(c) Estimated delays

Figure 4.5: Pendulum system identification and delay estimation. (a) Open-loop reconstruction of the
angle () and angular velocity (6) with the brax simulator, compared to ground-truth encoder data.
(b) A zoomed view shows that the predictive UKF estimate that compensates for delays, outperforms
the filtered estimate that does not. (c) Estimated GMM delay distributions and deterministic hidden
delays for the camera and motor, with the grey area indicating the measured delay distribution and
the black line showing the GMM fit.

are illustrated in Fig. 4.5¢, with a motor-to-Brax delay of approximately 7 ms and a Brax-
to-camera delay of around 8 ms. The camera delay exhibits a multi-modal distribution,
suggesting variability due to internal processing and shutter speed. The effectiveness of
delay compensation is demonstrated in Fig. 4.5b by comparing the filtered and predictive
estimates. The filtered estimate shows the UKF’s state estimate plotted against the times-
tamp of when the action using the estimated state was applied to the simulator, resulting
in a noticeable phase shift of around 50 ms. In contrast, the predictive estimate forecasts
the filtered estimate forward, resulting in a lower mean squared error (MSE) for both the
angle and angular velocity, as shown in Tab. 4.2. Finally, we use the identified system to
render images from the estimated poses, as shown in Fig. 4.6. The comparison between
real and rendered images from two different viewpoints qualitatively demonstrates the
accuracy of the estimated system parameters.

Quadrotor Next, we identify the dynamics and delays of a quadrotor system using
real-world data to demonstrate the applicability of our approach to higher-dimensional



4.4 EXPERIMENTAL EVALUATION 69

R
l MSEy MSE;
> > filtered 0.069  4.256

predictive  0.012 1.114

Y

(a) Real images (b) Rendered images with Brax

Table 4.2: Mean squared error
Figure 4.6: Comparison of real and rendered images of the pendulum (MSE) with respect to ground-
from two different viewpoints. (a) shows actual images captured from truth encoder data. Bold-
side and frontal views. (b) shows the corresponding rendered images face indicates the best perfor-

from the estimated poses. mance.
—— mocap — mocap recon)
0.5
5 3 3z
£ oo L oo Loz Agent
- © ° _1 I TR
=03 10 5.2 5.4 e T3
Time (s) Time (s) Tume (s) delay (ms)]
Probability 1 3 9
2 N - o density (log-scale) \delay (ms)/
0 z -1 85 \ ODE
Eo E o E | |
- > iers
> . = ;_1 90 Dete;:;:;st)c 1
7 delay (ms]
0 10 . 6.3 —
Time (s) Time (s) Tlme (s) 4
(a) Reconstruction (b) Zoomed (c) Estimated delays

Figure 4.7: System identification and delay estimation for quadrotor control. (a) Open-loop recon-
struction of roll, pitch, and velocities in body frame over 15 seconds (recon), showing the accuracy of
the identified model compared to the MoCap data (mocap). (b) Zoomed view illustrates an accurate fit.
(c) Estimated GMM delay distributions, with the grey area indicating the measured delay distribution
and the black line showing the GMM fit.

state-action spaces. The quadrotor’s yaw is fixed, while the reference roll and pitch angles
and the height setpoint are sent to a PID controller to maintain a circular flight path at a
constant altitude. The PID controller converts the height setpoint to a thrust command,
which, along with the roll and pitch commands, is sent to the Crazyflie. We record the
actions, timing data, and state information captured by a motion capture (MoCap) system.
Similar to the pendulum experiment, we construct a data flow graph that is augmented to
form a computation graph with simulator nodes operating at 100 Hz. Edges are introduced
between the simulator nodes and the MoCap and PID nodes, incorporating hidden delay
nodes with a minimum and maximum delay of 0 to 50 ms, respectively. A dynamics model
similar to that used in [30] is employed (see Appendix 4.C). Simultaneous optimization
is performed on the dynamics parameters (e.g., mass, drag, gain, time constants) and
interpolation parameters for hidden delays between the dynamics model, MoCap, and
PID controller, using CMA-ES [103] to optimize the eight parameters by minimizing the
reconstruction error between the predicted and measured quadrotor attitude and body
frame velocities. See Appendix 4.D for details on CMA-ES and the hyperparameter settings.
We also fit GMMs to estimate delay distributions for all measurable communication and




70 4 Accuracy: ESTIMATING DYNAMICS AND DELAYS OF GRAPH-BASED SIMULATIONS

computation delays.

The results in Fig. 4.7a show accurate reconstruction of the quadrotor’s states over
15 seconds. The identified delays are shown in Fig. 4.7c, with PID-to-ODE delay at 34
ms, ODE-to-PID delay at 9 ms, and ODE-to-MoCap delay at 15 ms. In the next section,
we evaluate the advantage of delay-aware system identification for sim2real transfer by
training policies with and without considering delays.

4.4.2 SIM2REAL TRANSFER

To support the claim that our approach implements delay compensation techniques essential
for effective sim2real transfer, we evaluate the sim2real performance of policies trained
with and without delay compensation for the pendulum and quadrotor systems.

Pendulum Swing-Up This task highlights the challenge of delay compensation and
partial observability in reinforcement learning. By demonstrating that neglecting delay
simulation can impair policy transfer even in a seemingly simple scenario, we underscore
the necessity of delay-aware approaches for more complex systems, where delays are
inevitable and system dynamics are more intricate [27, 72-74]. The pendulum task’s
simplicity effectively clarifies the importance of addressing delays in sim2real frameworks.

To investigate the impact of delays and partial observability on task complexity, we
train pendulum swing-up policies using PPO [49] under different conditions in simulation
(see Appendix 4.E for more details). We evaluate policies trained with full state information,
stacked observations with and without delay simulation, and estimated full state infor-
mation with simulated delays. As shown in Fig. 4.8a, policies with full state information
achieve higher rewards and converge faster than those relying on stacked observations,
especially when delays are present. This highlights the additional challenge introduced by
delays and partial observability, beyond the complexity of the task itself.

Zero-shot evaluations on the real system show that policies trained solely with stacked
observations fail to consistently swing up the pendulum, while the policy trained with
delay simulation, delay compensation, and full state estimation achieves reliable swing-up,
as demonstrated in Fig. 4.8b. Interestingly, even a policy trained on the full state without
simulated delays can achieve consistent swing-up when real-world evaluation uses an
estimator that compensates for delays and estimates the full state, as indicated by pred. in
Fig. 4.8c.

We assess the performance gains of delay compensation alone versus delay compensa-
tion with hidden state estimation, by evaluating the full state policy in two other scenarios:
using the angle encoder, which provides full state information with negligible delay com-
pared to camera images, and using the filtered state estimate from the UKF instead of the
forward-predicted state. Both policies perform suboptimally, suggesting that both full
state estimation and forward prediction are essential for reliable performance, as shown
in Fig. 4.8c. A side-by-side comparison of the real-world swing-up performance of the
different policies is available in the supplementary video.

Path Following with a Quadrotor We trained a quadrotor to fly a circular path at
maximum speed with varying radii to assess the impact of delay simulation on sim2real
performance. We used PPO [49] to train policies using a reward function that penalizes



4.4 EXPERIMENTAL EVALUATION 71

—— estimator + delay sim. stack —— stack + delay sim. —— full state
-10? 1.0 1.0
T
E "] u
3 H H
@ 8 Sos
d g 0.5 g .
£ 7] 0
: T | |
0.0 p i - 0.0 "
0 1 2 sim real enc. filt. pred.
steps 1le6 environment observation
(a) Training curve (b) Sim2real (c) Estimator

Figure 4.8: Sim2real evaluation of policies trained under different delay and observation conditions for
the pendulum swing-up task. (a) Training curves comparing policies with full state information and
stacked observations. (b) Sim2real performance showing the percentage of time the pendulum remains
upright (within +10° and +0.5rad/s). (c) Performance of a policy using full state estimation with delay
compensation, demonstrating the importance of delay compensation for steady performance.

—— delay sim. —— no-delay sim.
~ 1 - 1 -1
£y @ L0 0
>_q >_q >
-10 1 -10 1 -10 1
x (m) x (m) x (m)
~ 1 —_ 1 -1
£y £y @ S P
> > >
-10 1 -10 1 -10 1
x (m) x (m) x (m)

(a) R=1.0m (b)R=0.75m  (c) R=0.5m

Figure 4.9: Sim2real performance of quadrotor policies trained with and without delay simulation
across different path radii. Top row: simulated path following at radii R = 1.0m, R = 0.75m, and
R = 0.5m. Bottom row: real-world path following shows that delay simulation improves performance
and stability, particularly at smaller radii where delays significantly impact control.

path error and rewards high speeds along the path (see Appendix 4.E for more details).
In simulation, all policies achieved successful path following, with the no-delay policy
reaching higher speeds and maintaining lower path errors due to its ability to fly more
aggressively in the absence of simulated delays, as detailed in Tab. 4.3. However, in
real-world tests, only the policy trained with delay simulation maintained stable flight;
the no-delay policy exhibited oscillations around the target path. The performance gap
widened at smaller radii, with the no-delay policy exhibiting highly unstable flight behavior
at a radius of 0.5 m, demonstrating the critical role of delay-aware training for reliable
real-world deployment, as shown in Fig. 4.9. A side-by-side comparison of the real-world
flight performance of the two policies is available in the supplementary video.




72 4 Accuracy: ESTIMATING DYNAMICS AND DELAYS OF GRAPH-BASED SIMULATIONS

Simulation Real-world
Radii (m)
Upath (m/s) €path (m) Upath (m/s) €path (m)
delay no-delay delay no-delay delay mno-delay delay no-delay
1.00 1.95 2.23 0.03 0.02 2.02 2.05 0.06 0.21
0.75 1.67 1.92 0.03 0.02 1.64 1.63 0.04 0.19
0.50 1.39 1.61 0.04 0.04 1.36 1.18 0.04 0.24

Table 4.3: Impact of delays on simulated vs. real-world performance across different path radii. vyam
denotes the average speed flown along the path, and ey, represents the average error between the
quadrotor’s position and the target path. Boldface indicates the best performance in each category.

4.4.3 COMPUTATIONAL RUNTIME ANALYSIS

To support our claim that the framework enables efficient parallelized simulation on
accelerator hardware, we evaluated simulation speeds using the COMPILED runtime on
an NVIDIA RTX 3070 Laptop GPU. The data flow was augmented with simulator nodes
and subsequently parallelized to simulate delays according to real-world settings.

We measured the computation time for CMA-ES [103] to converge during system
identification for the pendulum and quadrotor tasks. For the pendulum, optimizing 27
parameters with a population size of 200 and a 21-second rollout per fitness evaluation
(1,050 steps) led to convergence after 38 generations in 22.07 seconds, achieving 380Kk steps/s
with a compilation time of 19.97 seconds. For the quadrotor, optimizing eight parameters
under similar conditions but with a 15-second rollout (375 steps) resulted in convergence
after 31 generations in 5.81 seconds, reaching 400k steps/s with a compilation time of 10.16
seconds. We also evaluated PPO training time using the implementation from [96]: for the
pendulum, training five policies in parallel with 64 environments reached 5 million steps
in 77.1 seconds (325k steps/s), while for the quadrotor, training with 128 environments for
10 million steps completed in 29.8 seconds (336k steps/s), demonstrating the framework’s
efficiency in supporting rapid training on real-world tasks.

To isolate simulation speed from training overhead, we performed a parallelized rollout
speed analysis (Fig. 4.10). The results show a linear relationship on a logarithmic scale,
indicating that as the number of parallel environments doubles, the simulation speed
also roughly doubles. An initial superlinear increase is observed, likely due to constant
overheads being amortized over a larger number of parallel environments, resulting in
more efficient resource utilization.

The simulation speed in our framework is determined by the computational workload
of each node and the ability to parallelize their interactions. Our framework extends beyond
standard simulations by modeling the asynchronous interaction between components,
which are inherently challenging to parallelize efficiently [63]. By demonstrating fast
simulation speeds for the pendulum and quadrotor, we show that our framework achieves
efficient runtime performance without introducing significant overhead beyond the compu-
tations within each node. If the simulation speed were slow, even with the simple dynamics
of these systems, it would indicate a substantial fixed overhead from the framework.

To compare runtime performance with other sim2real frameworks, we evaluate the
runtime of a common system across these frameworks. Specifically, we compare the



4.4 EXPERIMENTAL EVALUATION 73

B pendulum s quadrotor

108 Delay  Rate
Node (ms) (Hz) Device Computation
ﬁ Pendulum
2 108 camera 9.8 £8.0 60 CPU;  image-to-angle conv.
E estimator 3.5+ 5.2 50 CPU, UKF update
2 10° agent 1.7+£23 50 GPU  Policy NN(64,64)
d II II II II motor 5.6 £7.0 50 CPU; Cmd to pendulum
30702 g4 06 g8 pl0 oz ol Quadrotor
parallel envs mocap 03+0.1 50 CPU;  Read quadrotor pose
agent 26+05 25  GPU  Policy NN(64,64)
Figure 4.10: Simulation steps per second  pid 28+£03 50 CPU;  Cmds to quadcopter

vs. number of parallel environments for

a 200-step rollout on a GPU. The pen- Table 4.4: Delay statistics for Quadrotor and Pendulum
dulum (20 ms/step) and quadrotor (25 nodes, including delay (mean + std.) in ms, rate in Hz,
ms/step) systems both demonstrate alin- device type, and a description of each computation. Sub-
ear scaling in simulation speed with in- scripts indicate dedicated CPU cores. NN denotes a neural
creasing parallel environments. network with layer sizes in parentheses.

pendulum system described in Appendix 4.C with the pendulum examples in Drake [40]
and EAGERx [29], as all systems involve a simple pendulum with a two-dimensional state,
ensuring a fair comparison. Since GPU parallelization is not supported in these frameworks,
we measure the runtime performance of a single 20-second rollout on a CPU while applying
random actions. Our results indicate that EAGERx achieves 0.28k steps/s, Drake achieves
60k steps/s, and our framework achieves 15k steps/s on a single CPU core. We attribute
EAGERX’s slower performance to the overhead of ROS communication between nodes,
while Drake benefits from its optimized C++ backend. Our framework is significantly faster
than EAGERx and, compared to Drake, can support GPU-based parallelized execution,
which can further improve simulation speed, as demonstrated in Fig. 4.10.

To support the claim that our framework meets the latency and performance require-
ments for real-time online processing in real-world systems, we evaluate the latency of
different components during real-world experiments. Our framework records timing in-
formation for each node, allowing us to estimate computation and communication delay
statistics across both the pendulum and quadrotor systems, as visualized in Fig. 4.5¢c and
Fig. 4.7c. The mean and standard deviation of delays for each node’s periodic computation
are calculated, providing insights into system performance. By dedicating specific CPU
cores to each node, we bypass the Python Global Interpreter Lock (GIL), enabling concur-
rent execution. Additionally, we use the GPU to accelerate policy inference in the agent
node. This approach results in low latency across the system. Unexpectedly, the motor
node in the pendulum system exhibited large delays, likely due to the hardware’s slow
response time while servicing ROS [24] service calls. As expected, the camera node had
the longest delays, attributed to the time required for image retrieval and processing to
convert images to angles.

In summary, our evaluation demonstrates that our approach effectively identifies both
dynamics and delays from real-world data, compensates for delays to improve sim2real
transfer, and facilitates efficient parallelized simulation on accelerator hardware. At the
same time, our approach meets the latency and performance requirements for real-time




74 4 Accuracy: ESTIMATING DYNAMICS AND DELAYS OF GRAPH-BASED SIMULATIONS

online processing, supporting all four key claims.

4.5 CONCLUSION

In this chapter, we presented a novel framework, REX (Robotic Environments with jaX),
for sim2real transfer that introduces a graph-based simulation model incorporating latency
effects, optimized for parallelization on accelerator hardware. Our approach models asyn-
chronous, hierarchical systems by explicitly representing computation, communication,
actuation, and sensing delays. This enables the simultaneous estimation of system dynamics
and delays using real-world data, effectively minimizing the sim2real gap. We implemented
and evaluated our approach on two real-world robotic systems, demonstrating its ability
to support rapid training while maintaining high fidelity to real-world conditions. The
experiments suggest that our framework not only improves the accuracy of policy transfer
by reducing the impact of delays and partial observability but also enhances simulation
efficiency by leveraging hardware acceleration.

For future work, we aim to extend the framework to support estimating stochastic
hidden delays, which could further reduce the sim2real gap by more accurately capturing
real-world uncertainties. Additionally, we plan to enhance the framework’s scalability
and real-world applicability by enabling distributed computing across multiple machines,
beyond the current capability of utilizing different devices via JAX.

APPENDIX 4.A: MEASURABLE DELAY FITTING WITH GAUS-
SIAN MIXTURE MODELS

Let {x,-}]i\i1 represent the observed delays as one-dimensional data points. We consider a
Gaussian Mixture Model (GMM) with K components, where each component k is charac-
terized by three parameters: (7, g, oy ). Specifically,

« 7y: the mixing weight of component k, satisfying 2115:1 7 =1and my 20,
« Jii: the mean of the Gaussian component,
« oy: the standard deviation of the Gaussian component.

The full set of parameters of the GMM is denoted as 0 = {7y, i, o) }Ik(:l’ which includes
all mixing weights, means, and standard deviations. The probability density function for a
single data point x; under this model is expressed as:

K
plxi] 0) = Y meN (xi | i, }),
k=1

where N (x; | pig aé) is the probability density function of a normal distribution with mean
. and variance oj. To estimate the parameters of the GMM, we minimize the negative
log-likelihood of the observed delays:

N K
£©6)=- log (Z TN (i | uk,oﬁ)> .

i=1 k=1



4.5 CONCLUSION 75

The optimization is performed using a gradient-based approach. Specifically, the param-
eters 6 are updated iteratively using a standard solver such as the Adam optimizer [? ],
which adjusts the parameters to minimize £(0). To improve numerical stability during
optimization, we normalize the data before fitting the GMM. The observed delays {x;} are
transformed into normalized delays {x/} as:

r_ X Hx

' max(oy,€)’
where i, and oy are the mean and standard deviation of the observed delays, and € is a
small constant (e.g., 1077) to avoid division by zero. The GMM is then fit to the normalized
dataset {x] }ﬁl, and the negative log-likelihood is computed accordingly. After fitting the
model, the parameters are denormalized to map back to the original data range with:

Hi = Pk - Ox + i,
5’k = Of * Ox.

This approach ensures numerical stability during optimization while providing parameters
fi and oy in the original scale of the observed delays.

APPENDIX 4.B: UNSCENTED KALMAN FILTER

The Unscented Kalman Filter (UKF) is a state estimation algorithm designed for nonlinear
systems. It employs a deterministic sampling technique to approximate the mean and
covariance of the state distribution. This approach is more accurate than linearization-
based methods, such as the Extended Kalman Filter (EKF), for highly nonlinear systems
[3]. Since the UKEF relies on sampling rather than linearization, it can effectively handle
non-differentiable functions. The number of sigma points, 2n+ 1, is determined by the state
dimensionality n and is typically much smaller than the number of particles required for a
particle filter. Additionally, the evaluation of sigma points can be efficiently parallelized.
The sigma points are calculated to capture the mean and covariance of the state distribution
and we follow the procedure in [107] to generate 2n + 1 sigma points. Given the current
state mean x and covariance P, the scaling parameter A = a®(n + ) - n is computed, where
a controls the spread of the sigma points, k adjusts scaling, and f incorporates prior
knowledge (e.g., § = 2 for Gaussian distributions). The sigma points are then determined
as:

Xo=%X, yxi=xzvn+A-[P];, i=1,...,n

where +n+A-[P]; is the i-th column of the Cholesky decomposition of (n+ A)P. The
corresponding weights for mean and covariance are:

A
w(()m) = w(()c) = w(()m) +(1- a? +p), ng) = wgc) =

, i=1,...,2n
2(n+A)

The filter is initialized with an initial state mean xo and covariance Py. The state transition
function f(-) and observation function h(-) are nonlinear, describing the process dynamics
and measurements, respectively. Process and measurement noise are assumed to be additive,
Gaussian, and uncorrelated, with zero mean and covariance matrices Q and R, respectively.




76 4 Accuracy: ESTIMATING DYNAMICS AND DELAYS OF GRAPH-BASED SIMULATIONS

Actions commanded at time ¢ - 1 will affect the state at time ¢ + 7,, where 7, is the actuation
delay. Similarly, the most recent measurement available at time ¢ is from time ¢ - 75, where
75 is the sensor delay. Hence, the indexing of the measurements and actions is shifted
by the sensor and actuation delays. For simplicity, we assume that the sensor delay g
and actuation delay 7, are constant and a multiple of the timestep. Furthermore, we
consider time-invariant noise distributions, process models, and measurement models.
Note, however, that the UKF can be extended to handle time-varying noise covariances,
models, variable delays, and non-uniform timesteps, but we do not consider them here for
notational clarity.

The UKF estimation step at time ¢ is outlined in Alg. 6. In the prediction and update
steps, the UKF updates its prior state estimate from ¢ -1 - 75 to the last measurement time,
t - 75, using the most recent measurement available at ¢ - 7;. Next, the UKF forward-predicts
the state to t + 7,4, incorporating the commanded actions available up to t - 1+ 7, to account
for the combined sensor and actuation delays.

Algorithm 6: UKF Estimation Step with Delay Compensation

Input: Process noise Q, measurement noise R, weights wgm), wgc)

model h(-), sensor delay 7;, actuation delay 7,
Input: Previous state mean x;_;_r,, covariance P;_;_; , new measurement z;_, action sequence
t-1+14
{uk } k=t-1-14
Output: Estimated state mean x;_,, covariance P;_. , forward-predicted state mean x;.,, covariance
Pt+ Ta
Calculate Sigma Points:

, process model f(-), measurement

[

t-1-15

2 Compute sigma points { )(i( )} from current state mean x;_1-,, and covariance P;_1_,.
3 Prediction Step:
4 Propagate sigma points through process model with actions: y; = f()(l-(H*m,ut,l,TS)A
5 Compute predicted mean: x;_, =3 ; wgm))({.
6 Compute predicted covariance: P;_, =3 wfc) O =X ) x;,TS)T +Q.
7 Update Step:
8 Propagate sigma points through measurement model: z; = A(y;).
9 Compute predicted measurement mean: z,_, =3 wfm)zi.
10 Compute innovation covariance: S =Y; wl(c)(z,- -2 )zi— z;,TS)T +R.
11 Compute cross-covariance: C =Y ; wgc)()(i' =X Nzi - zt',,s)T,
12 Compute Kalman gain: K = CS™'.
13 Update state mean: X;—z, = X;_, +K(z¢-7, —2,_,)-
14 Update covariance: P_,, =P, -KSK'.
15 Forward-prediction Step: »
16 fork=t-r1,...,t-1+1, do
17 Compute sigma points { )(i(k)} from state mean x; and covariance Py.
18 Propagate sigma points through process model with actions: y; = f( )(i(k),uk).
19 Compute forward-predicted mean: xj.; = Y; wgm))({.
20 Compute forward-predicted covariance: Py, = Y ; wgc)()({ X517 ~Xpe1) T+ Q.
21 end
22 return x; ., Py ¢, Xpi1,, Prav,




4.5 CONCLUSION 77

APPENDIX 4.C: DYNAMICS

APPENDIX 4.C.1 PENDULUM DYNAMICS

The pendulum system is modeled by a second-order ordinary differential equation (ODE).
The state x = (6, 0) represents the angle 6 and angular velocity 6. The control input u
represents the applied voltage. The angular acceleration 6 is given by:

. — .
u + mglsin(0) - b0 - 6% - csign(d)
li ;

where J is the moment of inertia, m the mass, [ the pendulum length, b the damping coeffi-
cient, K the motor constant, R the motor resistance, c¢ the static friction, and g = 9.81m/ s2
the gravitational acceleration. Dynamics are simulated using a fourth-order Runge-Kutta
integration method with a fixed time step of 0.01 seconds. All parameters (J, m, [, b, K, R,
c) are identified experimentally in Chapter 4 except for the gravitational acceleration g,
together with any additional parameters required for hidden delay estimation.

6=

APPENDIX 4.C.2 QUADROTOR DYNAMICS
The dynamics model, similar to that in [30], is used to simulate the quadrotor’s motion.
The dynamics are divided into three components: rotational, translational, and motor
dynamics. The state is represented by the position p = (x, y, z), velocity v = (x, y, 2), attitude
n=(¢, 0, 1), and thrust state Q. The control inputs are the reference pulse-width modulation
(PWM) motor signal ® and two reference angles ¢f and ;.. Yaw dynamics are neglected,
with yaw angle assumed constant at i = 0. The rotational dynamics are approximated by a
first-order system for the attitude angles ¢ and 6:

P kC(¢ref_ ¢) y _ kC(gref_ 0)

§=letZ9) §= et

Tc Tc

where the same k. and 7. are used for the rotation in both angle directions due to the
system’s symmetry. These dynamics comprise the quadrotor’s closed-loop onboard control
of the attitude angles. The total thrust generated by the quadrotor’s motors is modeled as
a first-order system:

Q=0anQ+by0 fihrust = cmQ + dm©®

where am, bm, cm, and dpy, are motor-specific constants. The drag force acting on the
quadrotor is given by:

Kxy® 0 0
farag=-| 0 Kxy@ 0 | vp,
0 0 Kz

where xyy and x, are drag coefficients, w is the rotor speed, and v}, is the body-frame
velocity. The body-frame velocity is calculated as v, = R" v', where R is the rotation
matrix from the body frame to the world frame. The rotor speed is approximated using the
following relationships (see [108] for more details) between the effective PWM signal O,
rotor speed w, and total thrust fipust:

Jeorust = 4(aP®gff+ bp©Oefr + Cp) W= 4(ar86ff+ br)




78 4 Accuracy: ESTIMATING DYNAMICS AND DELAYS OF GRAPH-BASED SIMULATIONS

where ap, bp, and ¢p are PWM constants, ar and b, are rotor constants, and the factor 4
accounts for the quadrotor’s four rotors. The translational dynamics are:

o1
U= ;R([O, 0>fthrust]T +fdrag) -[0,0, g]T,

where m is the quadrotor’s mass, and g is the gravitational constant. Dynamics are
simulated using a fourth-order Runge-Kutta integration method with a fixed time step of
0.01 seconds.

The motor, PWM, and rotor constants are specific to the motor and require additional
sensors for accurate identification. We use the experimentally identified values from [108]
for the Crazyflie 2.0 quadrotor, as done in [30]:

am = -15.47, bm = 1.0, m=143x10""  dp=2.89x107",
ap=213x10""1, b, =1.03x107°, ¢, =5.49x107%,
ar = 0.041, by = 380.83.

The remaining parameters (m, ke, 7, Kxys k) are experimentally identified in Chapter 4,
along with any additional parameters required for hidden delay estimation.

APPENDIX 4.D: COVARIANCE MATRIX ADAPTATION Evo-
LUTION STRATEGY

The Covariance matrix adaptation evolution strategy (CMA-ES) algorithm is a stochastic,
derivative-free optimization method well-suited for non-linear or non-convex problems
[103]. It evolves a population of solutions by sampling from a multivariate normal distribu-
tion, adapting the covariance matrix and step size to guide search directions efficiently.

The algorithm steps are outlined in Alg. 7, where the key hyperparameters are defined
as follows. First, the total number of iterations or generations, denoted as G, determines
how long the algorithm runs. Each iteration involves evaluating a population of candidate
solutions, the size of which is specified by A. From this population, the top-performing p
solutions are selected for recombination, with the condition p < A. The learning process
also depends on several adaptation rates: ¢, and d, control the adaptation of the step size,
while ¢, c1, and ¢, influence the covariance matrix updates, ensuring efficient exploration
of the search space. The initial mean vector, m©® e R", represents the initial estimate in
the search space, while the initial step size, 0'(0), scales the search distribution. To ensure
isotropic sampling at the outset, the initial covariance matrix, cO s typically set to the
identity matrix, I. Note that it is common practice to search over a normalized space, where
the search distribution is isotropic and centered at the origin, to improve numerical stability.
Hence, the initial mean vector and covariance matrix are initialized to zero and the identity



4.5 CONCLUSION 79

matrix, respectively.

Algorithm 7: CMA-ES (Covariance Matrix Adaptation Evolution Strategy)

Input: Population size A, initial mean m(0>, initial step size 0(0>, initial covariance matrix C© = L

weights wy,..., w,
Output: Optimized solution m*

1 Initialize:
) log(yu+ 3)-log(i) .
2 Setw; Z§i1(log(u+z) log(]) fori= Loop
3 Normalize weights: w; «— <"—
Tj1 W
0
4 Setp()<—0 p(><—0 pefr — (e w21 Y, WP
5 Set learning rates c,, c¢, ¢1, Cys darnplng factor dg, and chi constant y, < /n(1 + L)
6 Generation loop:
7 for g=0,1,..., G-1do
8 for k — 1 toAdo
9 Sample: xj ~ N'(m, %C)
10 Evaluate fitness: f(xy)
11 end
12 Sort xy,...,x, by fitness, and select the y best solutions
13 Compute new mean: m&*) «— ¥ wix;
14 Update step-size evolution path:
1 1 g+ 1) 8)
15 P(g+ = (1-¢5) Pf“rg) o (2= co et - C” 3 mEom® m
16| he — [pE V1= (1= 26D < (14+ 29) -
17 Update covariance evolutlon path:
1 (8+1) _m(8)
18 Ps.:g+ ) (1- Cc)P(cg) +he e (2= co)peft - %
19 Update covariance matrix:
1 nT
20 cler) (1-¢ - c,,)C(g) + Clp(cg+ )p(cg+ A o 2’11:1 Wiyz'yiT
_ x;-m@
21 where y; = —©
22 Update step size:
23 &) — 58 . exp <— (”pﬁ;l I- 1))
24 end
25 return m’ < m&*V

The table below summarized the hyperparameters used in the CMA-ES algorithm for
the Pendulum and Quadrotor tasks in Chapter 4.

Hyperparameter Name Pendulum | Quadrotor
Generations 40 100
A Population size 200 200
J7; Selected solutions 20 20
Co Step-size learning rate 0.40 0.65
Ce Covariance learning rate 0.14 0.68
a Rank-1 update rate 0.0024 0.19
c Rank-y update rate 0.038 0.27
d}; Step-size damping 1.40 241
m(© Initial mean vector 0 0
o) Initial step size 0.4 0.4
c© Initial covariance matrix I I




80 4 Accuracy: ESTIMATING DYNAMICS AND DELAYS OF GRAPH-BASED SIMULATIONS

APPENDIX 4.E: PRoXxIMAL PoLicYy OPTIMIZATION

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm designed to
optimize policies by maximizing the expected return [49]. However, reproducing PPO’s
results can be challenging due to its sensitivity to hyperparameters and implementation
details [109]. For this reason, we provide the exact PPO implementation used in Chapter 4
inhttps://bheijden.github.io/rex/. Our implementation is largely based
on [96], which itself builds upon [50].

The table below summarizes the hyperparameter settings used for the two tasks in

Chapter 4:

Hyperparameter Name Pendulum | Quadrotor
T Total timesteps 2x10° 10x10°
n Learning rate 3.26x107% | 9.23x1074
Nenvs Number of environments 128 128
Nsteps Number of steps per update 32 64
E Number of epochs 8 16
Nminibatch Number of minibatches 16 8
Y Discount factor 0.9939 0.9844
AGAE GAE lambda 0.971 0.939
Eclip Clipping epsilon 0.164 0.131
Qent Entropy coeflicient 0.01 0.01
Qf Value function coefficient 0.802 0.756
Zmax Max gradient norm 0.963 0.76
Nhidden Number of hidden layers 2 2
hunits Number of hidden units 64 64
Phidden Hidden activation tanh tanh
Oind State-independent action noise True True
Squash Action squashing True True
Nanneal Anneal learning rate False False
Norm Normalize environment True True



https://bheijden.github.io/rex/

81

RESILIENCE: SIMULATING
IRRELEVANCE TO ENHANCE
TASK-RELEVANT LEARNING

Despite the advancements in flexibility, speed, and accuracy discussed in the preceding chapters,
real-world environments are unpredictable and often introduce irrelevant dynamics that
simulations cannot fully capture. These challenges can degrade the performance of learned
policies when transferred to real-world applications.

In this chapter, we introduce DeepKoCo, an algorithm designed to enhance the resilience of
learning-based robots by focusing on task-relevant dynamics. By using a lossy autoencoder to

filter out irrelevant information, DeepKoCo improves the robustness of policies, ensuring their
effectiveness in noisy real-world environments.

This chapter is partly based on [2 B. van der Heijden, L. Ferranti, J. Kober, and R. Babuska, (2024). "DeepKoCo:

Efficient latent planning with a task-relevant Koopman representation”, Proc. of the IEEE/RST Intl. Conf. on Intelligent
Robots and Systems (IROS) [110].



82 5 RESILIENCE: SIMULATING IRRELEVANCE TO ENHANCE TASK-RELEVANT LEARNING

5.1 INTRODUCTION

From self-driving cars to vision-based robotic manipulation, emerging technologies are
characterized by visual measurements of strongly nonlinear physical systems. Unlike in
highly controlled lab environments where any measured change is likely relevant, cameras
in real-world settings are notorious for mainly capturing task-irrelevant information, such
as, the movement of other robots outside of a manipulator’s workspace or cloud movements
captured by the cameras of self-driving cars.

While Deep Reinforcement Learning (DRL) algorithms can learn to perform various
tasks using raw images, they will require an enormous number of trials. Prior methods
mitigate this by encoding the raw images into a lower-dimensional representation that
allows for faster learning. However, these methods can be easily distracted by irrelevant
dynamics [111]. This motivates data-driven methodologies that learn low-dimensional
latent dynamics that are task-relevant and useful for control.

In the learning of latent dynamics for control, there is a trade-off between having an
accurate dynamic model and one that is suitable for control. On one hand, latent dynamic
models based on neural networks (NN) can provide accurate predictions over long horizons.
On the other hand, their inherent nonlinearity renders them incompatible with efficient
planning algorithms. Alternatively, one can choose to approximate the latent dynamics
with a more restricted function approximation class to favor the use of efficient planning
algorithms. In this respect, a promising strategy is represented by the Koopman framework
[112]. Loosely speaking, this framework allows one to map observations with nonlinear
dynamics to a latent space where the global dynamics of the autonomous system are
approximately linear (Koopman representation). This enables the use of powerful linear
optimal control techniques in the latent space [112].

While the Koopman framework is promising, existing methods have fundamental
limitations that must be addressed to fully exploit the benefits of this method for control
applications. First, methods that identify Koopman representations from data were designed
for prediction and estimation. These methods were later adapted for control. These
adaptations, however, lead to limiting assumptions on the underlying dynamics, such as
assuming the Koopman representation to be linear in the states and actions [113-117].
Second, these methods are task agnostic, that is, the models represent all dynamics they
observe, whether they are relevant to the task or not. This focuses the majority of their
model capacity on potentially task-irrelevant dynamics.

Therefore, we introduce Deep Koopman Control (DeepKoCo), that is, a model-based
reinforcement learning agent that learns a latent Koopman representation from raw pixel
images and achieves its goal through planning in this latent space. The representation is (i)
robust to task-irrelevant dynamics and (ii) compatible with efficient planning algorithms.
We propose a lossy autoencoder network that reconstructs and predicts observed costs,
rather than all observed dynamics, which leads to a representation that is task-relevant.
The latent-dynamics model can represent continuously differentiable nonlinear systems
and does not require knowledge of the underlying environment dynamics or cost function.
We demonstrate the success of our approach on two continuous control tasks and show
that our method is more robust to irrelevant dynamics than state-of-the-art approaches,
that is, DeepMDP [118] and Deep Bisimulation for Control (DBC) [111].



5.2 RELATED WORK 83

5.2 RELATED WORK

Koopman control Koopman theory has been used to control various nonlinear systems
with linear control techniques, both in simulation [112, 116, 119] and in real-world robotic
applications [114, 115]. Herein, [112, 114, 120] used a linear quadratic regulator (LQR), while
[113,115-117, 119] applied linear model predictive control (MPC). [113, 115, 117, 119] used
data-driven methods that were derived from the Extended Dynamic Mode Decomposition
(EDMD) [121] to find the Koopman representation. In contrast, [112, 114, 120] require prior
knowledge of the system dynamics to hand-craft parts of the lifting function. Similar to
[116], we rely on deep learning to derive the Koopman representation for control. However,
we do not assume the Koopman representation to be (bi-)linear in the states and actions and
we show how our representation can be used to control systems that violate this assumption.
Compared to existing methods, we propose an agent that learns the representation online
in a reinforcement learning setting using high-dimensional observations that contain
irrelevant dynamics.

Latent planning Extensive work has been conducted to learn latent dynamics from
images and use them to plan suitable actions [122-124]. [124] proposes a model-based
agent that uses NNs for the latent dynamics and cost model. To find suitable action
sequences, however, their method requires a significant computational budget to evaluate
many candidate sequences. Alternatively, [122, 123] propose locally linear dynamic models,
which allowed them to efficiently plan for actions using LQR. However, their cost function
was defined in the latent space and required observations of the goal to be available. In
contrast to our approach, all aforementioned methods are trained towards full observation
reconstruction, which focuses the majority of their model capacity on potentially task-
irrelevant dynamics.

Relevant representation learning [111, 118] filter task-irrelevant dynamics by min-
imizing an auxiliary bisimulation loss. Similar to our approach, they propose learning
latent dynamics and predicting costs. Their method, however, is limited to minimizing a
single-step prediction loss, while we incorporate multi-step predictions. This optimizes
our model towards accurate long-term predictions. [125, 126] also proposed training a
dynamics model towards predicting the future sum of costs given an action sequence.
However, their method focused on discrete control variables, while we focus on continuous
ones.

5.3 PRELIMINARIES

This section briefly introduces the Koopman framework for autonomous and controlled
nonlinear systems. A detailed description can be found in [112]. This framework is fun-
damental to the design of our latent model and control strategy.

5.3.1 KOOPMAN EIGENFUNCTIONS FOR AUTONOMOUS SYSTEMS

Consider the following autonomous nonlinear system 0 = F(0), where the observations
o € RN evolve according to the smooth continuous-time dynamics F(o). For such a system,
there exists a lifting function g(-) : RN — R" that maps the observations to a latent space




84 5 RESILIENCE: SIMULATING IRRELEVANCE TO ENHANCE TASK-RELEVANT LEARNING

where the dynamics are linear, that is,

< 5(0)= Kgl0), (5.1)

where K is the infinitesimal operator generator of Koopman operators K. In theory, K
is infinite dimensional (i.e., n — o), but a finite-dimensional matrix representation can
be obtained by restricting it to an invariant subspace. Any set of eigenfunctions of the
Koopman operator spans such a subspace. Identifying these eigenfunctions [119, 127]
provides a set of intrinsic coordinates that enable global linear representations of the
underlying nonlinear system. A Koopman eigenfunction satisfies

d
a(j}(o) = K¢(0) = A¢(0), (5.2)
where A € C is the continuous-time eigenvalue corresponding to eigenfunction ¢(o).

5.3.2 KOOPMAN EIGENFUNCTIONS FOR CONTROLLED SYSTEMS

For controlled nonlinear system with action a € R™ and smooth continuous-time dynamics
0 = F(o0, a), we follow the procedure in [112]. Given the eigenfunction ¢(o, @) augmented
with a for the controlled system, we can take its time derivative and apply the chain rule
with respect to o and a, leading to

d -
£6(0,0) = 700, )F(0,@)+7a(0,a)a, 53)
A¢(o0,a)

where A is now the eigenvalue that corresponds to eigenfunction ¢(o, @). Since @ can be
chosen arbitrarily, we could set it to zero and instead interpret each action as a parameter
of the Koopman eigenfunctions. Thus, for any given choice of parameter a the standard
relationship in Eq. (5.2) is recovered in the presence of actions. A local approximation of
the Koopman representation is obtained when a is nonzero.

5.3.3 IDENTIFYING KOOPMAN EIGENFUNCTIONS FROM DATA

To facilitate eigenfunction identification with discrete data, Eq. (5.3) can be discretized
with a procedure similar to [127]. The eigenvalues A, = p+iw are used to parametrize
block-diagonal A = diag(J?,J?,...J¥) € R?*2F For all P pairs of complex eigenvalues, the
discrete-time operator A has a Jordan real block of the form

uht |cos(wAt) - sin(wAt)

Jpw)=e sin(wAt) cos(wAt) |’ (>4)

with sampling time At. The “forward Euler method” provides a discrete approximation of
the control matrix, so that Eq. (5.3) can be discretized as

@(0k+1, A+1) = AQ(Ok, ar) + v, (0K, ag) agAt. (5.5)
\ ) S

B, Aay

k



5.4 LEARNING RELEVANT KOOPMAN EIGENFUNCTIONS 85

Herein, the stacked vector ¢ = (¢!, ¢, .., #7') comprises a set of P eigenfunctions with ¢/ € R
associated with complex eigenvalue pair A, and Jordan block J/. Subscript k corresponds to
discretized snapshots in time. If we view the action increment Aay = ay,1 — ai in Eq. (5.5)
as the controlled input instead, we obtain a discrete control-affine Koopman eigenfunction
formulation with linear autonomous dynamics for the original non-control-affine nonlinear
system. In the next section, we show that Eq. (5.5) plays a central role in our latent model.

5.4 LEARNING RELEVANT KoOPMAN EIGENFUNCTIONS

For efficient planning in the latent space, we propose to learn a latent dynamics model
that uses Koopman eigenfunctions as its latent state. This section describes this model
and how the Koopman eigenfunctions can be identified robustly, that is, in a way that the
identified eigenfunctions remain unaffected by task-irrelevant dynamics that are expected
to contaminate the observations.

5.4.1 KOOPMAN LATENT MODEL

We propose a lossy autoencoder that builds on the deep autoencoder in [127]. Compared to
[127], our autoencoder enables control. To train the latent model, we provide the training
objective that is to be minimized given a buffer D that contains observed sequences {# }IZ:O
of a Markov decision process with tuples t; = (0g, @, Aag, ci), where i are observed scalar
costs. The proposed latent model is illustrated in Fig. 5.1 with more details below on the
individual components of the architecture.

Encoder The encoder ¢ is the approximate eigenfunction that maps an observation-
action pair (o, @) to the latent state sg. The encoder ¢ is parametrized by a neural network,
defined as

Sk = ¢(0, ag). (5.6)

Latent Dynamics The latent state s; approximates a Koopman eigenfunction, so the
autonomous time evolution in the latent space is linear and dictated by A.

Note here that ay is part of the augmented latent state and we view the action increment
Aay as the controlled variable that is determined by the policy. This leads to the dynamics
model in Eq. (5.7), which we derived from Eq. (5.5). The Koopman operator A is parametrized
by P complex conjugate eigenvalue pairs .. We do not assume the latent dynamics to be
linear in the control. Instead, the influence of Aay on the latent state varies and depends
on the partial derivative of the encoder with respect to the action, i.e., the state-dependent
matrix By, = vq, ¢(0f, ay) € R2Pxm

Sk
ai

Sk+1
Afiq

Aay. (5.7)

A0
0 I

B‘Pk
ok

Cost Model The environment contains a cost function that produces a scalar cost obser-
vation ¢ at every time-step. For planning in the latent space, we require a cost model ¢;
as a function of the latent state. This cost approximates the observed cost (i.e., ¢ ~ ¢i). We




86 5 RESILIENCE: SIMULATING IRRELEVANCE TO ENHANCE TASK-RELEVANT LEARNING

00 N
Po >| Q [:Su el | .. ST—1 ST
P-l—> o~ 2 L I ar| lar—] T ar
P-2->. l l Aﬂ ﬁ l lAa’r—l
: \
Rollout éo & il ér
A I
. R | | =
o L O G 5ot -
. [l P 3
l J — g Y @}
A Api-1) ¥ :
Aay oy
(Bl @)D % 0 | - Torp| ool b (2220
¥ 2 N Qpp)| % Sk
[ [Ty :+
v | a
Latent Model = & a E
sy Rajesr IE‘ m
L \—»F-—+
—_— DeepKoCo ! =,

Ck

Figure 5.1: Latent Model The proposed network architecture of the latent model, consisting of the
dynamic model, cost model, and policy (depicted in green, purple, and red, respectively). Rollout
A multi-step ahead prediction with the latent model. Note that we only encode an observation at
the first time-step (blue boxes), after which we remain in the latent space. DeepKoCo The training
procedure that corresponds to Alg. 8.

adopt a latent state-dependent quadratic cost model to facilitate the use of fast planning
algorithms (Sec. 5.5). The entries of Cs, € R™2P are determined by a function 1/(s;) that is
parametrized by a neural network. The weights of / are initially unknown and must be
learned together with the rest of the latent model. We assume that the cost of applying
action ay is known a priori and defined by matrix R. This leads to the cost model

A 2 T
¢ = ||Cs, sk|l2 + ai Ray. (5.8)

Policy The action increment Aay is the controlled variable that is sampled from a proba-
bility distribution 7, conditioned on the augmented latent state (i.e., Aay ~ m(Aag|sk, ai)).
Even though the model is deterministic, we define the policy to be stochastic to allow for
stochastic exploration. The policy will be specified further in Sec. 5.5.

Aay ~ n(Aag|sg, a) (5.9)

Decoder After learning the latent model we intend to plan over it, which involves a
multi-step prediction. Given only the encoder Eq. (5.6), dynamics model Eq. (5.7), policy
Eq. (5.9) and the current (o, ai)-pair, we would be limited to single-step predictions of
Sk4+1 at run-time, because multi-step predictions sg,; with i > 1 would require knowledge
of future observations oy, ; to evaluate By, ;. Therefore, to make multi-step predictions,
we introduce a decoder ¢! (parametrized by a NN) in Eq. (5.10) that uses predicted latent
states sy ; to construct pseudo-observations 0y, ; that produce the same partial derivative
as the true observation (i.e., vq, (¢ (sp), ap) = va; ¢(0k, ai)). Future values aj.,; do not



5.4 LEARNING RELEVANT KOOPMAN EIGENFUNCTIONS 87

pose a problem, because they can be inferred from the policy Eq. (5.9) and dynamics model
Eq. (5.7).

o = ¢ (si)- (5.10)

Image Processor When the observations are raw pixel images p;., not all relevant infor-
mation can be inferred from a single observation. To restore the Markov property, we pass
the last d consecutive pixel images through a convolutional neural network Q in Eq. (5.11),
stack the output into a single vector, and consider that to be the observation oy instead. In
that case, the observed sequences consist of tuples ty = (Py, ..., Pr_ g1, @k Ak, ck).

Of = Q(Pk""’pk—dﬂ)’ (511)

5.4.2 LEARNING THE LATENT MODEL

Our latent model should have linear dynamics and be predictive of observed costs. These
two high-level requirements lead to the following three losses which are minimized during
training.

Linear Dynamics To ensure that the latent state is a valid Koopman eigenfunction, we
regularize the time evolution in the latent space to be linear by using the following loss,

T-1

Linear loss: Liin = = > 19(0k+1 @ka1) ~ SkatlmsEs (5.12)
k=0

where si, is obtained by rolling out a latent trajectory as illustrated in Fig. 5.1.

Cost Prediction We want the latent representation to contain all necessary information
to solve the task. If we would naively apply an autoencoder that predicts future observa-
tions, we focus the majority of the model capacity on potentially task-irrelevant dynamics
contained in the observations. To learn a latent representation that only encodes relevant
information, we propose to use a lossy autoencoder that is predictive of current and future
costs instead. Such a representation would allow an agent to predict the cost evolution of
various action sequences and choose the sequence that minimizes the predicted cumulative
cost, which is essentially equivalent to solving the task. Because we only penalize inaccu-
rate cost predictions, the encoder is not incentivized to encode task-irrelevant dynamics
into the latent representation as they are not predictive of the cost. This leads to the
task-relevant identification of the lifting function ¢. Cost prediction accuracy is achieved
by using the following two losses,

Reconstruction loss: Lrecon = |co = Col|MSE (5.13)

T
1 .
Prediction loss: Lored = T Z”ck - CrIMSE (5.14)
k=1




88 5 RESILIENCE: SIMULATING IRRELEVANCE TO ENHANCE TASK-RELEVANT LEARNING

Training Objective We minimize the losses in Eq. (5.12), Eq. (5.13), and Eq. (5.14),
corresponding to linear dynamics regularization and cost prediction, together with an
L2-regularization loss Leg on the trainable variables (excluding neural network biases).
This leads to the following training objective,

min Ly, + @1 (Lrecon + Epred) + a2 Lyeg, (5.15)
g LI L7]

where 0 is the collection of all the trainable variables that parametrize the encoder ¢,
decoder (p'1, cost model ¥, and convolutional network Q (in case of image observations).
Weights a1, @y are hyperparameters. The model is trained using the Adam optimizer [128]
with learning rate &, on batches of B sequences {tk},io for E epochs.

5.5 DEEP KooPMAN CONTROL

This section introduces the agent that uses the Koopman latent model to find the action
sequence that minimizes the predicted cumulative cost. We use linear model-predictive
control (LMPC) to allow the agent to adapt its plan based on new observations, meaning
the agent re-plans at each step. Re-planning at each time-step can be computationally
costly. In the following, we explain how to exploit and adapt our latent model and cost
model to formulate a sparse and convex MPC problem that can be solved efficiently online.

The planning algorithm should achieve competitive performance, while only using a
limited amount of computational resources. This motivates choosing Koopman eigenfunc-
tions as the latent state, because the autonomous dynamics are linear. The dynamics are
affine in the controlled variable Aay that is multiplied in the definition of the state space
by By, , which depends on the latent state. Similarly, Cs, requires the evaluation of the
nonlinear function (sg). There exist methods that can be applied in this setting, such
as the State-Dependent Ricatti Equation (SDRE) method [129]. While the SDRE requires
less complexity compared to sample-based nonlinear MPC (e.g. CEM [130]), it remains
computationally demanding as it also requires the derivative of ¢ with respect to s; at
every step of the planning horizon.

Our goal is to reduce the online complexity of our planning strategy, while also dealing
with input constraints. Hence, we trade-off some prediction accuracy (due to the mismatch
between the latent model and the MPC prediction model) to simplify the online planning
strategy by using linear MPC. We propose to evaluate the state-dependent matrices Cs,
and By, at time-step k = 0 (obtained from our latent model) and keep them both fixed for
the rest of the LMPC horizon. This assumes that the variation of By, and Cs, is limited
over the prediction horizon (compared to Eq. (5.7) and Eq. (5.8)). Nevertheless, thanks
to this simplification we can rely on LMPC for planning that can be solved efficiently.
Specifically, once we evaluate s, Cy,, and By,, the computational cost of solving the MPC
problem in the dense form [6] scales linearly with the latent state dimension due to the
diagonal structure of A. As Section 5.6 details, this simplification allows our method to
achieve competitive final performance, while only requiring a single evaluation of the NNs
Q, ¢, and . This significantly decreases the computational cost at run-time compared to
sample-based nonlinear MPC (e.g., CEM [130]) that would require many evaluations of
the NN at every time-step. In contrast to LQR, LMPC can explicitly deal with actuator
saturation by incorporating constraints on a. The proposed planning strategy based on



5.5 DEep KoorPmMAN CONTROL 89

Algorithm 8: Deep Koopman Control (DeepKoCo)

Input: Model parameters: P, d
Policy parameters: { = {H,R,R}
Noise parameters: 1°%, Jizn’ft“, Nou
Train parameters: N,L, T,E, B
Optimization parameters: ¢ = {ay, o, @}
Output: Eigenvalues AL
Trained networks ¢, ¢!, /,Q
0, )LE]"“’[P] «— InitializeModel(P, R)
while not converged do
A— GetKoopmanOperator(AE]
for episode [ =1,...,N do
Pos - P1_q < ResetEnvironment()
a)<—0
for time-step k = 0,...,L do
o) < ProcessImages(py,.... Pr_q.1> 0)
Sk, By, , Cs, < LatentModel(ox, ax, 0)
Aay — LMPC(sy, ai, By, , Cs, A {)
@y, < ai + Aag+ Noise(1°%, 0>°1)
Pr+1> ¢k < ApplyAction(ay)

O 0 NN R W N

_ e s
N o= o

Ju
w

| D < Du CreateSequences(T, { t }izo)

H
'y
o
el

W-lPl  TrainModel(D, 6, AL17 ¢ E, B)

LMPC is defined as follows:

H
. , 1 -
AJpin ICZ:;HCsoSkHz+akRak+AakRAak, (5.16)
St sk+1 — A O sk + B(PO Aa
h Afe+1 0 I||ax I k>

a™"" < ap <ad™ fork=1,..,H,

where H is the prediction horizon. Positive-definite matrix R penalizes the use of Aaj and
is required to make the problem well-conditioned. Its use does introduce a discrepancy
between the approximate cost model Eq. (5.8) and the cumulative cost ultimately minimized
by the agent Eq. (5.16). Therefore, the elements in R are kept as low as possible.

To align the representation learning objective Eq. (5.15) with the linear MPC objective
Eq. (5.16), we also fix the state-dependent terms Cs, and By, at time-step k = 0 in the
evaluation of the cost prediction loss Eq. (5.14) and linear loss Eq. (5.12). Note that this
does not mean that Cs, and By, are constant in the latent model Eq. (5.7), Eq. (5.8). The
matrices remain state-dependent, but their variation is limited over the sequence length T.
In general, we choose the sequence length to be equal to the prediction horizon. Hence,
we learn a representation that provides local linear models that are particularly accurate
around sy in the direction of the (goal-directed) trajectories gathered during training.

To gather a rich set of episodes to learn the Koopman latent model, we add colored noise
to the actions commanded by the agent’s linear MPC policy, that is, a1 = ai + Aay + €.
This adds a stochastic exploration component to the policy. We use an Ornstein-Uhlenbeck




90 5 RESILIENCE: SIMULATING IRRELEVANCE TO ENHANCE TASK-RELEVANT LEARNING

1500 _

1000

~N
(ﬂ
cum. cost

500

500 600 700

1500

\ \ l - / g 1000
° o
€
/ A e - ;
/ / 0 100

0 200 400 600 800 0 100 200 300 400 500 600 700
episode episode

DBC [l DeepkoCo [l DeepMDP

Figure 5.2: Left Typical setups for the two tasks in a clean scenario (first row) and distractor scenario
(second row). In all setups, the center system is controlled by the agent. In the manipulator task, the
moving target is a blue ball. Right Learning curves when using state observations. The grid-location
of each figure corresponds to the grid-location of each setup on the left. The mean cumulative cost
over the last 10 episodes (line) with one standard deviation (shaded area) over 5 random seed runs
are shown.

1500 1500
- | AV v\ Mor M/ M W\/\/\JVW/\/VW
2 1000 - 1000 nan s o V\""\\M 2
S e,
! \ "
E LY W, L /\\,\
S5 500 500 A
o \ A~ AN
Dol AN
0 0
0 200 400 600 800 0 200 400 600 800
episode episode

DBC [ DeepKoCo B DeepMDP

Figure 5.3: Learning curves when using images as observations in the pendulum task. The mean
cumulative cost over the last 10 episodes (line) with one standard deviation (shaded area) over 5
random seed runs are shown. Left Clean scenario. Right Distractor scenario.

(OU) process to generate the additive colored noise with decay rate A°". The variance o>
is linearly annealed from oizrftu — 0 over 1,..., N°" episodes, that is, after N°" episodes the
policy becomes deterministic.

An overview of the proposed method is shown in Alg. 8. First, we initialize all model
parameters. Then, we construct the Koopman operator A with Eq. (5.4) and gather N
episodes of experience. Each time-step, we process the image observations with Eq. (5.11),
evaluate the latent model Eq. (5.6), Eq. (5.7), and Eq. (5.8), and use it to find Aay with
Eq. (5.16). Noise is added to the action increment before it is applied to the environment.
We fill the experience buffer D with N episodes, split into sequences of length T, and train
on them for E epochs with Eq. (5.15). This is repeated until convergence.

5.6 REsuULTS

We evaluate DeepKoCo on two continuous control tasks, namely OpenAI’s pendulum
swing-up task and a manipulator task. The manipulator task is similar to OpenAI’s reacher



5.6 RESULTS 91

task where the two joints of a two-link arm are torque controlled and the Euclidean distance
between the arm’s end-point and a target must be minimized. However, we increase the
difficulty by allowing the target to move at a constant angular velocity and radius around
the arm’s center-joint. Given that the angular velocity and radius vary randomly over
episodes, the manipulator must learn to track arbitrary circular trajectories at different
speeds. The dynamics for the manipulator can be formulated as xj,; = F(xy) + B(xy)ag,
where x is the original nonlinear state. Such dynamics do not necessarily admit a Koopman
representation that is (bi-)linear in the states and actions, as is often assumed in literature
[114, 116].

To investigate the effect of distractor dynamics, we test each task in two different
scenarios. In the first scenario, only relevant dynamics are observed, while in the second
one we purposely contaminate the observations with distractor dynamics. The agent is
either provided with a concatenated state observation containing the state measurements of
both the relevant system and distractors (while not knowing which states are the relevant
ones) or image observations with all systems in-frame (refer to Fig. 5.2 for the setup). The
state observation dimension from the clean to the distractor scenario increases from 3 to
15 for the pendulum and from 10 to 50 for the manipulator. A video of the simulations
using DeepKoCo accompanies the chapter [131].

Baselines We compare with two baselines that both combine model-free reinforcement
learning with an auxiliary bisimulation loss to be robust against task-irrelevant dynamics:
(i) Deep Bisimulation for Control (DBC) [111], and (ii) DeepMDP [118]. In case of state
observations, we replace their convolutional encoder, with our fully connected encoder.

Hyperparameters We use the same set of hyperparameters throughout all experiments,
except for the number of complex eigenvalue pairs P, that is, P = 10 and P = 30 in the
swing-up and manipulator task, respectively to cope with the complexity of the scenarios.
As policy parameters, we use H = 15,R = 0.001,R = 0.01,A9U = 0.85,(7§l’i0tu = 0.85. Initially,
we fill the experience buffer D with N = 90 episodes, split into sequences of length T = 15,
and train on them for E = 100 epochs. Then, we continuously add the sequences of N = 20
episodes to the buffer and train on the complete buffer for E = 3 epochs. As optimization
parameters, we use a1 = 10, a2 = 10‘14,5( =0.001. In case of image observations, we stack
the last d = 3 images, downsample them to 3 x 64 x 64 pixels before passing them through
the convolutional NN defined in [132]. The networks ¢, ¢!, i are 2-layered fully connected
NNs with 90, 90, and 70 units per layer, respectively. The layers use ReLU activation and
are followed by a linear layer. The number of complex eigenvalue pairs P, planning horizon
H, and action increment cost R are the most important parameters to tune.

Clean Scenario Concerning the pendulum task, the baselines converge more quickly to
the final performance compared to DeepKoCo, as the top-left graph of Fig. 5.2 shows. Nev-
ertheless, we do consistently achieve a similar final performance. The slower convergence
can be explained by the added noise, required for exploration, that is only fully annealed
after 400 episodes. We believe the convergence rate can be significantly improved by
performing a parameter search together with a faster annealing rate, but we do not expect
to be able to match the baselines in this ideal scenario. Note that, despite the apparent




92 5 RESILIENCE: SIMULATING IRRELEVANCE TO ENHANCE TASK-RELEVANT LEARNING

simplicity of the application scenario, finding an accurate Koopman representation for the
pendulum system is challenging, because it exhibits a continuous eigenvalue spectrum and
has multiple (unstable) fixed points [127]. Concerning the manipulator task, both baselines
were not able to solve the manipulator task with a moving target as the top-right graph
of Fig. 5.2 shows, while they were able to learn in case the target was fixed. This shows
that learning to track arbitrary circular references is significantly harder than regulating
towards a fixed goal. Despite the increased difficulty, DeepKoCo learns to track the mov-
ing target. Finally, note that the manipulator task shows that the proposed method can
deal with a multi-dimensional action-space and non-quadratic cost functions, that is, the
Euclidean norm (the square root of an inner product).

Distractor Scenario In the more realistic scenario, both baselines fail to learn anything.
In contrast, our approach is able to reach the same final performance as in the clean scenario,
in a comparable amount of episodes, as the bottom row of Fig. 5.2 shows. This result can
be explained by noticing that our multi-step cost prediction (in our loss function Eq. (5.14))
provides a stronger learning signal for the agent to distinguish relevant from irrelevant
dynamics. For the manipulator task, there is a tracking error caused by the trade-off of
using fixed B, and Cs along the MPC prediction horizon for efficiency. While our latent
model presented in Sec. 5.4 supports state-dependent matrices, we decided to keep them
fixed in the control design for efficiency.

Image Observations Fig. 5.3 shows the results for the pendulum task when images are
used instead of state observations. In both clean and distractor scenarios, our approach
is able to reach a similar final performance compared to using state observations. As
expected, the baselines struggle to learn in the distractor scenario. This supports our
statement that our approach learns a task-relevant Koopman representation from high-
dimensional observations. We plan to test the manipulator task with images both in
simulation and in real-world experiments.

5.7 CONCLUSION

We presented a model-based agent that uses the Koopman framework to learn a latent
Koopman representation from images. DeepKoCo can find Koopman representations that
(i) enable efficient linear control, (ii) are robust to distractor dynamics. Thanks to these
features, DeepKoCo outperforms the baselines (two state-of-the-art model-free agents) in
the presence of distractions. As part of our future work, we will extend our deterministic
latent model with stochastic components to deal with partial observability and aleatoric
uncertainty. Furthermore, we will extend our cost model to deal with sparse rewards, as
they are often easier to provide.



93

CONCLUSIONS AND OUTLOOK

This thesis contributes to the field of robotic learning by focusing on the balance between
flexibility, accuracy, and speed in simulator design. By optimizing these factors, we address
key challenges in creating simulations that are both representative of real-world scenarios
and efficient for learning robotic policies. This chapter summarizes the main contributions,
discuss the broader implications of the findings, and outline future research directions.

6.1 CONCLUSIONS

Given the diverse and evolving nature of robotic tasks, a flexible simulator must accommo-
date various systems and adapt to evolving requirements. To address this, the sim2real
framework EAGERx (Engine Agnostic Graph Environments for Robotics) was introduced
in Chapter 2, featuring a graph-based architecture that enables modular representation
of tasks, systems, and simulators. By adding, removing, or reconfiguring nodes, EAGERx
allows users to modify the architecture easily to suit different tasks. The framework was
demonstrated across diverse systems such as pendulums, quadrupeds, quadrotors, and
manipulators, interfacing seamlessly with multiple simulators and supporting various state,
action, and time-scale abstractions. While the graph-based design enabled flexibility, it
introduced challenges in simulating real-world asynchronous effects and coordinating
components at faster-than-real-time speeds. To address this, EAGERx incorporated a
novel synchronization protocol that manages inter-node communication based on node
rates and anticipated delays, ensuring consistent simulation behavior at faster-than-real-
time speeds. An ablation study confirmed that abstractions, delay simulation, and proper
synchronization—key features enabled by the graph-based architecture—resulted in the
smallest sim2real gap, and led to the best policy transfer performance in two real-world
robotic tasks. Thus, flexibility offered by our graph-based design plays a pivotal role in
integrating these features and narrowing the sim2real gap, allowing for effective policy
transfer to real-world scenarios.

While flexibility is essential for accommodating diverse robotic tasks, speed is equally
crucial for robot learning. Speed in simulated learning provides critical benefits, such as
faster training times and the ability to conduct extensive hyperparameter tuning, which
makes parallelization a key strategy to achieve these advantages. With the advent of




94 6 CONCLUSIONS AND OUTLOOK

accelerated physics-based simulations, parallelization has become a popular approach to
improving training efficiency. Traditional reinforcement learning setups typically assume
a single, synchronized environment built around a physics engine that interacts with the
agent step-by-step, enabling straightforward parallelization. However, robotic system
simulations encompass more than just physics, involving dynamics that are asynchronous
and hierarchical in nature. In Chapter 3, we showed that the hierarchical and asynchronous
nature of real-world systems complicates parallelization in simulation, leading to redun-
dant computations and longer training times. To address these challenges and unlock
the potential of parallelization for hierarchical and asynchronous systems, we introduced
a method that efficiently parallelizes graph-based simulations on accelerator hardware.
Building on the flexibility of the graph-based architecture introduced in Chapter 2, which
supports asynchronous interactions and time-scale differences, our supergraph method
enables efficient parallelized simulation of such systems by minimizing redundant compu-
tations. We demonstrate that this method doubles computational efficiency in simulating
two real-world robotic systems compared to baseline methods while maintaining superior
accuracy in handling asynchronous interactions and delays, leading to improved policy
transfer performance. Furthermore, our results show that efficiency gains scale signifi-
cantly, increasing by up to 20 times as the system complexity grows to 64 asynchronously
running components. Thus, Chapter 3 advances robot simulation for learning by extending
beyond parallelized physics simulations to efficiently handle asynchronous and hierarchical
dynamics of robotic systems.

While modeling asynchronous and hierarchical real-world systems is crucial for accu-
rate simulation, and parallelizing these simulations is essential for efficient learning, these
alone are not sufficient to bridge the sim2real gap. A graph-based architecture provides a
parametric structure expressive enough to capture real-world complexity, but configuring
it to accurately model the system remains a significant challenge. This is analogous to a
neural network capable of approximating any function, but requiring data-driven training
to find the right weights. Similarly, a graph-based simulator may theoretically represent
complex robotic systems, but identifying the correct delays and parameters to capture sys-
tem dynamics, including asynchronous interactions, demands estimation from real-world
data. To address this, we introduced REX (Robotic Environments with jaX) in Chapter 4, a
framework designed to estimate system dynamics and delays from real-world data, thereby
enhancing simulation fidelity and policy transfer. Building on the graph-based architecture,
REX incorporates asynchronous and hierarchical dynamics with efficient parallelization
strategies from earlier chapters, enabling the simultaneous estimation of system dynamics
and delays using evolutionary strategies that leverage accelerator hardware. We demon-
strated that accurately modeling delays and asynchronous operations allows the training
of delay-aware policies, significantly improving policy transfer performance compared
to baseline methods that disregard delays in two real-world robotic systems. We also
explored training delay-agnostic policies while compensating for delays at inference using
Smith-predictor-based strategies during deployment. This approach improved performance
in simulation by simplifying the learning task, since solving a delayed task is inherently
harder than a delay-free version, while still achieving comparable real-world performance.
This ties back to the flexibility highlighted in Chapter 2, as the graph-based architecture
supports the integration of delay compensation as a state abstraction, simplifying the



6.1 CONCLUSIONS 95

overall learning process.

By demonstrating how graph-based architectures can serve as flexible models to capture
the complexity of real-world systems, how the supergraph method can enhance paralleliza-
tion, and how real-world data can be used to estimate delays and dynamics, we have shown
the potential of graph-based simulations in balancing flexibility, speed, and accuracy for
robot learning. However, as tasks grow in complexity, we inevitably face the challenge of
the unknown. While policy transfer in simulated learning depends on accurately modeling
all scenarios that an agent might encounter, the real world is infinitely complex, with
the number of possible scenarios expanding rapidly as the observation space grows. For
example, while we may be able to simulate different types of roads for a self-driving car, we
cannot simulate every possible lighting condition, weather pattern, or all the objects that a
car might pass. Instead of attempting to simulate every possible scenario, we should focus
on accurately modeling an abstraction of all relevant scenarios while building resilience
against the infinite number of irrelevant ones, thereby enhancing robustness. This was
the focus of Chapter 5, where we demonstrated that learning a latent dynamics model
that predicts future rewards enables the agent to focus on task-relevant dynamics while
ignoring irrelevant distractions. We showed that this approach significantly improves the
robustness of learned policies, maintaining performance even in the presence of distractors,
achieving comparable results in two simulated benchmark tasks as in a distractor-free envi-
ronment. In contrast, baseline methods struggle, failing to learn the task when distractors
are present, despite achieving perfect performance in the absence of distractions. We draw
parallels between the delay compensation strategies at inference time in Chapter 4 and the
latent task-relevant dynamics model discussed in Chapter 5. Both approaches simplify the
learning task in simulation by reducing the complexity of the environment to a delay-free
and entirely task-relevant one. In doing so, the complexities of delay compensation and
distractor filtering are shifted to the inference stage during real-world deployment. Thus,
the resilience approach in Chapter 5 complements the delay compensation strategy in
Chapter 4, both demonstrating the utility of a flexible framework by integrating state
abstractions to enhance the robustness and transferability of policies learned in simulation
to real-world scenarios.

In summary, this thesis contributes to the field of robotic learning by developing a
structured simulator design that balances flexibility, accuracy, and speed. We have utilized
graph-based architectures to enhance simulator flexibility, enabling modular representation
of robotic tasks and facilitating the integration of state, action, and time-scale abstractions
to improve learning efficiency and transferability. Moreover, the graph-based architectures
are well-suited for creating unified software pipelines that bridge real and simulated
robot learning. These graph-based simulations have proven effective in modeling and
compensating for delays, thereby improving the accuracy of sim2real transfers. The
supergraph method addressed the challenges of parallelizing asynchronous and hierarchical
systems, reducing training times while maintaining high simulation fidelity and enabling
the efficient estimation of system dynamics and delays from real-world data. Lastly, this
work has resulted in the creation of two open-source sim2real frameworks (EAGERx, REX)
and has contributed to existing open-source deep learning frameworks (OpenDR [133]), all
made available to the research community to support advancements in robotic learning
and sim2real transfer.




96 6 CONCLUSIONS AND OUTLOOK

6.2 D1sCcUsSION AND OUTLOOK

As the complexity of robotic tasks continues to increase, the field of robot learning is
shifting its approach to meet these challenges. Rather than relying purely on end-to-end
models, the focus is now on developing a pipeline of specialized components, each designed
to address specific aspects of a larger task. This trend parallels the rise of foundation models
in natural language processing [134, 135] and computer vision [136], where large, versatile
models are trained on extensive datasets to provide generalized capabilities across many
applications. In robotics, similar foundation models are emerging, with efforts like CLIPort
[52], RT-1[137], and SayCan [138], offering broad capabilities but requiring integration with
other specialized modules (e.g., for control) to achieve complex, task-specific behaviors.
Unlike NLP or computer vision, however, robotics brings unique real-time challenges.
Robots must respond promptly to external stimuli to operate effectively, which places
stringent demands on latency and response times. These foundation models are often
computationally heavy, which means inference is either slow when performed locally
or requires offloading computations to remote data centers, both of which introduce
latency. This highlights the growing need for efficient modeling and management of delays
between components to ensure robust real-time performance. The contributions of this
thesis are well-positioned to address these needs by providing structured simulation tools
that effectively balance flexibility, accuracy, and speed. By accounting for asynchronous
interactions and modeling latency, this work paves the way for integrating foundation
models into robotic systems in a manner that maintains real-time performance requirements
and enhances system robustness.

Looking ahead, this thesis suggests a more integrated systems approach to robotic
learning, where future research could focus on co-designing learning algorithms and their
environments to further optimize the learning process. While this work lays the founda-
tion for modular representations in graph-based simulations and demonstrates how, for
example, delay compensation can be decoupled from the learning task, additional research
is necessary to explore novel ways of decomposing robotic learning tasks into manageable
subproblems. Tackling these subproblems individually may lead to more effective and
scalable learning outcomes. This challenges the conventional agent-environment paradigm
[23], which typically views the environment as a fixed entity and treats the agent as a
solitary solver of all tasks. In contrast, future research could explore a more fluid defini-
tion of agent-environment interaction, where different subproblems necessitate tailored
environmental reconfigurations. By moving beyond rigid, end-to-end training of single
agents, researchers could investigate adaptive environments that evolve in response to
agent progress or integrate pretrained agents or specialized learning algorithms to facilitate
the learning process.

In this context, one promising direction for future work involves fundamentally split-
ting robotic learning tasks into separate estimation and control subtasks. This approach
draws inspiration from the well-established duality between estimation and control in the
Linear Quadratic Gaussian (LQG) framework [139], where the two problems are handled
independently while applying a common solution tactic. A potential research avenue
could be training control policies on full state information—simplifying the learning pro-
cess—while separately training estimator policies that infer hidden states based on sensor
observations. In theory, the estimator could be optimized with the same objective as the



6.2 D1scussioN AND OUTLOOK 97

control policy since accurate estimation of the relevant hidden state enables the control
policy to select actions that maximize the expected return. However, introducing auxiliary
objectives could further incentivize the estimator to focus on reconstructing hidden states
that are most critical for the control task. By decoupling the estimation and control tasks,
the challenges of partial observability and the task itself can be addressed separately, po-
tentially making the learning easier. Moreover, this approach underscores the potential for
a flexible graph-based simulation framework, where the environment, during the learning
of the estimator policy, incorporates the pre-trained control policy as part of the system’s
overall dynamics. This flexibility facilitates redefinitions of the environment that can be
tailored to specific learning phases or subtasks, further illustrating the value of a modular
framework for representing robotic systems.

An exciting extension of this idea could involve jointly training the control and esti-
mator policies under complementary objectives. For example, the control policy could be
incentivized to propose actions that are easier to estimate, while the estimator policy is
optimized to predict the hidden states that are most relevant to the control task. This joint
optimization framework could lead to more effective policies, particularly in environments
characterized by high uncertainty and partial observability. In this regard, control and
estimation can be seen as two cooperating agents in a single system, potentially well-suited
for a multi-agent reinforcement learning approach [140].

Recent advancements also highlight the potential of integrating parallelized simulations
in online planning strategies. For instance, parallelized simulation were used in a sampling-
based planning that could solve complex robotic manipulation tasks without requiring
offline training [79]. In this approach, actions are sampled from a prior model, and the
optimal action sequence is determined online. However, a key challenge remains in sample
efficiency, as large state spaces must be explored to identify optimal actions. Moreover, the
limited planning horizon inherent in these methods can restrict exploration, often leading
to suboptimal performance.

To address these challenges, future work could explore the integration of off-policy
reinforcement learning with GPU-accelerated simulators in an online sampling-based
planner. In this approach, a policy trained offline could serve as the proposal model for the
sampling-based planner, while the value function could be used to bootstrap the planner at
the end of the planning horizon, improving both exploration and sample efficiency.

Additionally, using GPU-accelerated simulators as the dynamics models in sampling-
based estimators, such as particle filters [3], presents another promising research direction.
This approach could effectively address partial observability challenges during deployment
by decoupling state estimation from task learning, much like how delay compensation was
separated from task learning in Chapter 4.







99

BIBLIOGRAPHY

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

[11]

[12]

Shimon Y Nof. Automation: What it means to us around the world. Springer
handbook of automation, pages 13-52, 2009.

Zhongsheng Hou, Ronghu Chi, and Huijun Gao. An overview of dynamic-
linearization-based data-driven control and applications. IEEE Trans. on Industrial
Electronics, 64(5):4076—4090, 2016.

Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear approaches.
John Wiley & Sons, 2006.

Michael A Henson and Dale E Seborg. Critique of exact linearization strategies for
process control. Journal of Process Control, 1(3):122-139, 1991.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial
Intelligence, 134(1-2):57-83, 2002.

Jan M Maciejowski and Mihai Huzmezan. Predictive control. In Robust Flight Control:
A Design Challenge, pages 125-134. Springer, 2007.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science, 362(6419):1140-1144, 2018.

Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves
master-level play. Neural computation, 6(2):215-219, 1994.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. Nature, 550(7676):354-359,
2017.

Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martin-Martin,
and Peter Stone. Deep Reinforcement Learning for Robotics: A Survey of Real-World
Successes. arXiv preprint, 2024.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Hai Nguyen and Hung La. Review of deep reinforcement learning for robot manip-
ulation. In Proc. of the IEEE Intl. Conf. on Robotic Computing (IRC), pages 590—-595.
IEEE, 2019.



100

BiBLIOGRAPHY

[13]

[14]

[15]

[16]

[21]

(22]

(23]

[24]

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning
in healthcare: A survey. ACM Computing Surveys (CSUR), 55(1):1-36, 2021.

Luiza Caetano Garaffa, Maik Basso, Andrea Aparecida Konzen, and Edison Pignaton
de Freitas. Reinforcement learning for mobile robotics exploration: A survey. IEEE
Trans. on Neural Networks and Learning Systems, 34(8):3796-3810, 2021.

NVIDIA. NVIDIA PhysX, 2020.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and Frédo Durand. Diff Taichi: Differentiable Programming for Physical
Simulation. In Proc. of the Int. Conf. on Learning Representations (ICLR), 2020.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and
Olivier Bachem. Brax-A Differentiable Physics Engine for Large Scale Rigid Body
Simulation. In Proc. of the Advances in Neural Information Processing Systems (NIPS),
2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-
based control. Proc. of the IEEE/RST Intl. Conf. on Intelligent Robots and Systems (IROS),
pages 5026-5033, 2012.

Sebastian Hofer et al. Sim2Real in Robotics and Automation: Applications and
Challenges. IEEE trans. on Automation Science and Engineering, 18(2):398-400, 2021.

Matthias Mueller, Alexey Dosovitskiy, Bernard Ghanem, and Vladlen Koltun. Driving
Policy Transfer via Modularity and Abstraction. In Proc. of the Conf. Robot Learning
(CoRL), pages 1-15. PMLR, 2018.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis,
Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor skills for
legged robots. Science Robotics, 4(26):eaau5872, 2019.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to Walk
in Minutes Using Massively Parallel Deep Reinforcement Learning. Proc. of the
Conf. Robot Learning (CoRL), 164:91-100, 2022.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. OpenAl Gym. arXiv preprint, 2016.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. ROS: an open-source Robot Operating System.
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 3:5, 2009.

Naoki Shibata. Efficient Evaluation Methods of Elementary Functions Suitable for
SIMD Computation. Computer science-Research and development, 25:25-32, 2010.

Fei Zhao, Yu Liu, Jian Wang, and Li Wang. Distributed model predictive longitudinal
control for a connected autonomous vehicle platoon with dynamic information flow
topology. In Actuators, volume 10, page 204. MDPI, 2021.



REFERENCES 101

[27]

[30]

[31]

[34]

[35]

[36]

Godwin Asaamoning, Paulo Mendes, Denis Rosario, and Eduardo Cerqueira. Drone
swarms as networked control systems by integration of networking and computing.
Sensors, 21(8):2642, 2021.

Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, and Daan Wier-
stra. Towards conceptual compression. Proc. of the Advances in Neural Information
Processing Systems (NeurIPS), 29, 2016.

Bas van der Heijden, Jelle Luijkx, Laura Ferranti, Jens Kober, and Robert Babuska.
Engine Agnostic Graph Environments for Robotics (EAGERx): A Graph-Based Frame-
work for Sim2real Robot Learning. IEEE Robotics and Automation Magazine (RAM),
pages 2-15, 2024.

Jacob E Kooi and Robert Babuska. Inclined Quadrotor Landing using Deep Reinforce-
ment Learning. In Proc. of the IEEE/RS} Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 2361-2368. IEEE, 2021.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner,
Steven Bohez, and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for
quadruped robots. arXiv preprint, 2018.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey
Levine. How to train your robot with deep reinforcement learning: lessons we have
learned. Intl. Journal of Robotics Research (IJRR), 40(4-5):698—-721, 2021.

David Kortenkamp, Reid Simmons, and Davide Brugali. Robotic systems architec-
tures and programming. Springer Verlag, pages 283-306, 2016.

Doina Precup. Temporal abstraction in reinforcement learning. University of Mas-
sachusetts Amherst, 2000.

Matteo Lucchi, Friedemann Zindler, Stephan Mithlbacher-Karrer, and Horst Pichler.
robo-gym-an open source toolkit for distributed deep reinforcement learning on
real and simulated robots. In Proc. of the IEEE/RSF Intl. Conf. on Intelligent Robots
and Systems (IROS), pages 5364-5371. IEEE, 2020.

Nestor Gonzalez Lopez, Yue Leire Erro Nuin, Elias Barba Moral, Lander Usategui San
Juan, Alejandro Solano Rueda, Victor Mayoral Vilches, and Risto Kojcev. gym-
gazebo2, a toolkit for reinforcement learning using ROS 2 and Gazebo. arXiv preprint,
2019.

Iker Zamora, Nestor Gonzalez Lopez, Victor Mayoral Vilches, and Alejandro Her-
nandez Cordero. Extending the openai gym for robotics: a toolkit for reinforcement
learning using ros and gazebo. arXiv preprint, 2016.

Nathan Koenig and Andrew Howard. Design and use paradigms for Gazebo, an
open-source multi-robot simulator. In Proc. of the IEEE/RST Intl. Conf. on Intelligent
Robots and Systems (IROS), volume 3, pages 2149-2154 vol.3, 2004.



102

BiBLIOGRAPHY

(39]

[41]

(42]

[43]

[44]

[45]

[46]

(47]

(48]

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller,
Jia Lin Yuan, Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck
Babich, Gavriel State, Marco Hutter, and Animesh Garg. Orbit: A Unified Simula-
tion Framework for Interactive Robot Learning Environments. IEEE Robotics and
Automation Letters (RA-L), pages 1-8, 2023.

Russ Tedrake and the Drake Development Team. Drake: Model-based design and
verification for robotics. https://drake.mit. edu, 2019.

NVIDIA. NVIDIA Isaac Sim. https://developer.nvidia.com/
isaac-sim, 2022.

Bas van der Heijden, Jelle Lujikx, Laura Ferranti, Jens Kober, and Robert
Babuska. Supplementary video material of "EAGERx: Graph-Based Framework
for Sim2real Robot Learning". https://youtu.be/DOCQNNnTT010?si=
NLNaWyJermhLqH40, June 2024.

Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics simulation for
games, robotics and machine learning. http://pybullet. org, 2016-2021.

George Xylomenos and George C Polyzos. TCP and UDP performance over a wireless
LAN. In Proc. of the IEEE Conf. on Computer Communications (INFOCOM), volume 2,
pages 439-446. IEEE, 1999.

Erik Derner, Jiri Kubalik, Nicola Ancona, and Robert Babuska. Constructing parsi-
monious analytic models for dynamic systems via symbolic regression. Applied Soft
Computing, 94:106432, 2020.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie
Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine.
Soft Actor-Critic Algorithms and Applications. arXiv preprint, 2019.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus,
and Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementa-
tions. Journal on Machine Learning Research (JMLR), 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba.
Hindsight experience replay. In Proc. of the Advances in Neural Information Processing
Systems (NeurIPS), 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint, 2017.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam
Chakraborty, Kinal Mehta, and Jodo G.M. Aradgjo. CleanRL: High-quality Single-file
Implementations of Deep Reinforcement Learning Algorithms. Journal on Machine
Learning Research (JMLR), 2022.


https://drake.mit.edu
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim
https://youtu.be/D0CQNnTT010?si=NLNaWyJermhLqH40
https://youtu.be/D0CQNnTT010?si=NLNaWyJermhLqH40
http://pybullet.org

REFERENCES 103

[51]

[52]

(53]

[54]

(58]

[59]

[60]

[61]

Alexandre Angleraud, Akif Ekrekli, Kulunu Samarawickrama, Gaurang Sharma, and
Roel Pieters. Sensor-based human-robot collaboration for industrial tasks. Robotics
and Computer-Integrated Manufacturing, 86:102663, 2024.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways
for robotic manipulation. Proc. of the Conf. Robot Learning (CoRL), pages 894-906,
2022.

Jelle Luijkx, Zlatan Ajanovi¢, Laura Ferranti, and Jens Kober. PARTNR: Pick and
place Ambiguity Resolving by Trustworthy iNteractive leaRning. In 5th NeurIPS
Robot Learning Workshop: Trustworthy Robotics, 2022.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and
Ilya Sutskever. Robust speech recognition via large-scale weak supervision. In
Proc. of the Int. Conf. on Machine Learning (ICML), pages 28492-28518. PMLR, 2023.

Fu Zhang and Murali Yeddanapudi. Modeling and simulation of time-varying delays.
In Proc. of the Symposium on Theory of Modeling and Simulation, pages 1-8, 2012.

Rishabh Bajpai and Deepak Joshi. Movenet: A deep neural network for joint pro-
file prediction across variable walking speeds and slopes. IEEE Instrumentation &
Measurement Magazine, 70:1-11, 2021.

Carl Hewitt, Peter Bishop, and Richard Steiger. Session 8 formalisms for artificial
intelligence a universal modular actor formalism for artificial intelligence. In Advance
Papers of the Conference, volume 3, page 235. Stanford Research Institute Menlo Park,
CA, 1973.

Henrik Larsen, Gijs van der Hoorn, and Andrzej Wasowski. Reactive Programming
of Robots with RxROS, volume 6 of Studies in Computational Intelligence, pages 55-83.
Springer Verlag, 2021.

Michel Raynal. Concurrent programming: algorithms, principles, and foundations.
Springer Verlag, 2013.

David G. Messerschmitt. Synchronization in digital system design. IEEE Journal on
Selected Areas in Communications, 8(8):1404-1419, 1990.

Thomas E Anderson. The performance of spin lock alternatives for shared-memory
multiprocessors. IEEE trans. on Parallel and Distributed Systems, 1(1):6—-16, 1990.

Claudius Ptolemaeus. System design, modeling, and simulation: using Ptolemy II,
volume 1. Ptolemy. org Berkeley, 2014.

Bas van der Heijden, Laura Ferranti, Jens Kober, and Robert Babuska. Efficient
Parallelized Simulation of Cyber-Physical Systems. Trans. on Machine Learning
Research (TMLR), 2024. Reproducibility Certification.

Radhakisan Baheti and Helen Gill. Cyber-physical systems. The Impact of Control
Technology, 12(1):161-166, 2011.



104

BiBLIOGRAPHY

[65]

[66]

(67]

(68]

Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-
to-end robotic reinforcement learning without reward engineering. arXiv preprint,
2019.

Robert Nishihara, Philipp Moritz, Stephanie Wang, Alexey Tumanov, William Paul,
Johann Schleier-Smith, Richard Liaw, Mehrdad Niknami, Michael I Jordan, and Ion
Stoica. Real-time machine learning: The missing pieces. In Proc. of the Workshop on
Hot Topics n Operating Systems (HTOS), pages 106-110, 2017.

James Trimble. Partitioning algorithms for induced subgraph problems. PhD thesis,
University of Glasgow, 2023.

Bas van der Heijden, Laura Ferranti, Jens Kober, and Robert Babuska. Supple-
mentary video material of "Efficient Parallelized Simulation of Cyber-Physical Sys-
tems". https://youtu.be/I-1asHKBX60?si=HtASYaj1tt1Sxj59,
May 2024.

Ryan Taylor and Xiaoming Li. Software-Based Branch Predication for AMD GPUs.
SIGARCH Comput. Archit. News, 38(4):66-72, 2011.

Horst Bunke, Xiaoyi Jiang, and Abraham Kandel. On the minimum common super-
graph of two graphs. Computing, 65:13-25, 2000.

Horst Bunke, Pasquale Foggia, Corrado Guidobaldi, and Mario Vento. Graph cluster-
ing using the weighted minimum common supergraph. Graph Based Representations
in Pattern Recognition, pages 235-246, 2003.

Xing Liu, Hansong Xu, Weixian Liao, and Wei Yu. Reinforcement learning for cyber-
physical systems. In 2019 IEEE International Conference on Industrial Internet (ICII),
pages 318-327. IEEE, 2019.

Xin Lou, Cuong Tran, David KY Yau, Rui Tan, Hongwei Ng, Tom Zhengjia Fu, and
Marianne Winslett. Learning-based time delay attack characterization for cyber-
physical systems. In 2019 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm), pages 1-6. IEEE,
2019.

Andrés A Peters, Richard H Middleton, and Oliver Mason. Leader tracking in
homogeneous vehicle platoons with broadcast delays. Automatica, 50(1):64-74, 2014.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
In Proc. of the Int. Conf. on Machine Learning (ICML), pages 1861-1870. PMLR, 2018.

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning
programs via high-level tracing. Systems for Machine Learning, 4(9), 2018.

Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Tingnan Zhang, Jie Tan, and Vikas
Sindhwani. Data efficient reinforcement learning for legged robots. Proc. of the
Conf. Robot Learning (CoRL), pages 1-10, 2020.


https://youtu.be/I-1asHKBX6o?si=HtASYaj1ttlSxj59

REFERENCES 105

(78]

[79]

[80]

[81]

[82]

[85]

[86]

(87]

(88]

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo simulation, and machine
learning. Springer, 133, 2004.

Corrado Pezzato, Chadi Salmi, Max Spahn, Elia Trevisan, Javier Alonso-Mora, and
Carlos Hernandez Corbato. Sampling-based model predictive control leveraging
parallelizable physics simulations. arXiv preprint, 2023.

Dongyao Jia, Kejie Lu, Jianping Wang, Xiang Zhang, and Xuemin Shen. A survey
on platoon-based vehicular cyber-physical systems. IEEE Communications Surveys
& tutorials, 18(1):263-284, 2015.

Enrico Bibbona, Gianna Panfilo, and Patrizia Tavella. The Ornstein—-Uhlenbeck
process as a model of a low pass filtered white noise. Metrologia, 45(6):S117, 2008.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan
Binas. Reinforcement learning with random delays. In Proc. of the Int. Conf. on
Learning Representations (ICLR), 2021.

James Trimble. Induced universal graphs for families of small graphs. arXiv preprint,
2021.

Ciaran McCreesh, Patrick Prosser, and James Trimble. A partitioning algorithm for
maximum common subgraph problems. Proc. of the Intl. Conf. on Artificial Intelligence
(IJCAI), pages 712-719, 2017.

James J. McGregor. Backtrack search algorithms and the maximal common subgraph
problem. Software: Practice and Experience, 12, 1982.

Bas van der Heijden, Jens Kober, Robert Babuska, and Laura Ferranti. REX: GPU-
accelerated sim2real framework with delay and dynamics estimation. Trans. on
Machine Learning Research (TMLR), 2024.

David Hoeller, Nikita Rudin, Dhionis Sako, and Marco Hutter. Anymal parkour:
Learning agile navigation for quadrupedal robots. Science Robotics, 9(88):eadi7566,
2024.

Norhan Mohsen Elocla, Mohamad Chehadeh, Igor Boiko, Sean Swei, and Yahya
Zweiri. The Role of Time Delay in Sim2real Transfer of Reinforcement Learning for
Unmanned Aerial Vehicles. In Proc. of the Int. Conf. on Advanced Robotics (ICAR),
pages 514-519. IEEE, 2023.

Otto JM Smith. Closer control of loops with dead time. Chemical engineering progress,
53:217-219, 1957.

Michael Sherback, Oliver Purwin, and Raffaello D’Andrea. Real-time motion planning
and control in the 2005 cornell robocup system. In Robot Motion and Control: Recent
Developments, pages 245-263. Springer, 2006.



106

BiBLIOGRAPHY

[91]

[102]

[103]

[104]

Frederico Augugliaro, Sergei Lupashin, Michael Hamer, Cason Male, Markus Hehn,
Mark W Mueller, Jan Sebastian Willmann, Fabio Gramazio, Matthias Kohler, and
Raffaello D’Andrea. The flight assembled architecture installation: Cooperative
construction with flying machines. IEEE Control Systems Magazine, 34(4):46-64,
2014.

Heinz Unbehauen and GP Rao. Continuous-time approaches to system identifica-
tion—a survey. Automatica, 26(1):23-35, 1990.

Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning environment
library, 2022.

Robert Tjarko Lange. evosax: Jax-based evolution strategies. arXiv preprint, 2022.

Yujin Tang, Yingtao Tian, and David Ha. EvoJAX: Hardware-Accelerated Neuroevo-
lution. arXiv preprint, 2022.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and
Jakob Foerster. Discovered policy optimisation. Proc. of the Advances in Neural
Information Processing Systems (NIPS), 35:16455-16468, 2022.

Lennart Ljung. System identification. In Signal analysis and prediction, pages 163-173.
Springer, 1998.

Peter Van Overschee and BL0888 De Moor. Subspace identification for linear systems:
Theory—Implementation—Applications. Springer Science & Business Media, 2012.

Oliver Nelles. Nonlinear dynamic system identification. Springer, 2020.

Quentin Le Lidec, Igor Kalevatykh, Ivan Laptev, Cordelia Schmid, and Justin Carpen-
tier. Differentiable simulation for physical system identification. IEEE Robotics and
Automation Letters (RA-L), 6(2):3413-3420, 2021.

Eric Heiden, Christopher E Denniston, David Millard, Fabio Ramos, and Gaurav S
Sukhatme. Probabilistic inference of simulation parameters via parallel differentiable
simulation. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pages
3638-3645. IEEE, 2022.

Ken Caluwaerts, Atil Iscen, ] Chase Kew, Wenhao Yu, Tingnan Zhang, Daniel Free-
man, Kuang-Huei Lee, Lisa Lee, Stefano Saliceti, Vincent Zhuang, et al. Barkour:
Benchmarking animal-level agility with quadruped robots. arXiv preprint, 2023.

Nikolaus Hansen. The CMA evolution strategy: a comparing review. Towards a
new evolutionary computation: Advances in the estimation of distribution algorithms,
pages 75-102, 2006.

Erik Schuitema, Lucian Busoniu, Robert Babuska, and Pieter Jonker. Control delay
in reinforcement learning for real-time dynamic systems: A memoryless approach.
In Proc. of the IEEE/RST Intl. Conf. on Intelligent Robots and Systems (IROS), pages
3226-3231. IEEE, 2010.



REFERENCES 107

[105]

[106]

[107]

V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller,
N. Rudin, A. Allshire, and A. Handa. Isaac Gym: High Performance GPU Based
Physics Simulation For Robot Learning. In Proc. of the Advances in Neural Information
Processing Systems (NIPS), 2021.

Simon J Julier and Jeffrey K Uhlmann. Unscented filtering and nonlinear estimation.
Proceedings of the IEEE, 92(3):401-422, 2004.

Rudolph Van Der Merwe. Sigma-point Kalman filters for probabilistic inference in
dynamic state-space models. Oregon Health & Science University, 2004.

[108] Julian Forster. System identification of the crazyflie 2.0 nano quadrocopter. B.S.

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

thesis at ETH Zurich, 2015.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto,
and Weixun Wang. The 37 implementation details of proximal policy optimization.
ICLR Blog Track, 2023.

Bas van der Heijden, Laura Ferranti, Jens Kober, and Robert Babuska. DeepKoCo:
Efficient latent planning with a task-relevant Koopman representation. In Proc. of
the IEEE/RST Intl. Conf. on Intelligent Robots and Systems (IROS), pages 183-189. IEEE,
2021.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine.
Learning invariant representations for reinforcement learning without reconstruc-
tion. arXiv preprint, 2020.

Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of
Koopman eigenfunctions for control. Machine Learning: Science and Technology,
2(3):035023, 2021.

Hassan Arbabi, Milan Korda, and Igor Mezi¢. A data-driven koopman model predic-
tive control framework for nonlinear partial differential equations. In Proc. of the
IEEE Conf. on Decision and Control (CDC), pages 6409-6414. IEEE, 2018.

Giorgos Mamakoukas, Maria Castano, Xiaobo Tan, and Todd Murphey. Local Koop-
man operators for data-driven control of robotic systems. In Proc. of Robotics: Science
and Systems (RSS), 2019.

Daniel Bruder, Brent Gillespie, C David Remy, and Ram Vasudevan. Modeling and
Control of Soft Robots Using the Koopman Operator and Model Predictive Control.
In Proc. of Robotics: Science and Systems (RSS), 2019.

Yunzhu Li, Hao He, Jiajun Wu, Dina Katabi, and Antonio Torralba. Learning Com-
positional Koopman Operators for Model-Based Control. In Proc. of the Int. Conf. on
Learning Representations (ICLR), 2019.

Milan Korda and Igor Mezic. Optimal construction of Koopman eigenfunctions for
prediction and control. IEEE Trans. on Automatic Control, 65(12):5114-5129, 2020.



108

BiBLIOGRAPHY

[118]

[119]

[120]

[121]

[122]

[123]

[124]

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare.
Deepmdp: Learning continuous latent space models for representation learning. In
Proc. of the Int. Conf. on Machine Learning (ICML), pages 2170-2179. PMLR, 2019.

Milan Korda and Igor Mezic. Linear predictors for nonlinear dynamical systems:
Koopman operator meets model predictive control. Automatica, 93:149-160, 2018.

Steven L Brunton, Bingni W Brunton, Joshua L Proctor, and ] Nathan Kutz. Koopman
invariant subspaces and finite linear representations of nonlinear dynamical systems
for control. PLoS one, 11(2):e0150171, 2016.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data-driven
approximation of the koopman operator: Extending dynamic mode decomposition.
Journal of Nonlinear Science, 25:1307-1346, 2015.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed
to control: A locally linear latent dynamics model for control from raw images. In
Proc. of the Advances in Neural Information Processing Systems (NIPS), 2015.

Ershad Banijamali, Rui Shu, Hung Bui, Ali Ghodsi, et al. Robust locally-linear
controllable embedding. In Proc. of the Intl. Conf. on Artificial Intelligence and Statistics
(AISTATS), pages 1751-1759. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak
Lee, and James Davidson. Learning latent dynamics for planning from pixels. In
Proc. of the Int. Conf. on Machine Learning (ICML), pages 2555-2565. PMLR, 2019.

[125] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Proc. of

the Advances in Neural Information Processing Systems (NIPS), volume 30, 2017.

[126] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent

[127]

[128]

[129]

[130]

Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering atari, go, chess and shogi by planning with a learned model. Nature,
588(7839):604-609, 2020.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal
linear embeddings of nonlinear dynamics. Nature Communications, 9(1):4950, 2018.

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic gradient
descent. In Proc. of the Int. Conf. on Learning Representations (ICLR), pages 1-15.
ICLR US., 2015.

Insu Chang and Joseph Bentsman. Constrained discrete-time state-dependent Riccati
equation technique: A model predictive control approach. In Proc. of the IEEE Conf. on
Decision and Control (CDC), pages 5125-5130. IEEE, 2013.

Istvan Szita and Andras Lorincz. Learning Tetris using the noisy cross-entropy
method. Neural Computation, 18(12):2936-2941, 2006.



GLOSSARY 109

[131]

[132]

[133]

[134]

Bas van der Heijden, Laura Ferranti, Jens Kober, and Robert Babuska. Supplementary
video material of "DeepKoCo: Efficient latent planning with a task-relevant Koopman
representation". https://youtu.be/7510uQyHBmQ, July 2021.

David Ha and Jurgen Schmidhuber. World models. arXiv preprint, 2018.

Nikolaos Passalis, Stefania Pedrazzi, Robert Babuska, Wolfram Burgard, Daniel Dias,
Francesco Ferro, Moncef Gabbouj, Ole Green, Alexandros losifidis, Erdal Kayacan,
et al. Opendr: An open toolkit for enabling high performance, low footprint deep
learning for robotics. In Proc. of the IEEE/RS7 Intl. Conf. on Intelligent Robots and
Systems (IROS), pages 12479-12484. IEEE, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. OpenAI 2018.

[135] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language

[136]

[137]

[138]

[139]

[140]

understanding. arXiv preprint, 2018.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In Proc. of the
Int. Conf. on Machine Learning (ICML), pages 8821-8831. PMLR, 2021.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis,
Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv preprint,
2022.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron
David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al.
Do as i can, not as i say: Grounding language in robotic affordances. arXiv preprint,
2022.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
ASME Trans. Journal of Basic Engineering, 1960.

Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Multi-agent reinforcement learning:
A selective overview of theories and algorithms. Handbook of reinforcement learning
and control, pages 321-384, 2021.


https://youtu.be/75lOuQyHBmQ




111

ACKNOWLEDGMENTS

Twelve years at TU Delft—what a ride. Choosing Delft for my studies was hands down the
best decision I've made, setting me up to do what I love. A big thanks to the institute for
the inspiration and the launchpad for my career.

First and foremost, I want to thank my supervisors, Laura Ferranti, Jens Kober, and
Robert Babuska. Laura, your guidance, support, and unwavering enthusiasm for my work
gave me confidence when I needed it. Having someone so invested in my success made
all the difference. Jens, your ability to absorb complex ideas with minimal explanation
and immediately spot weaknesses (which I may not have initially acknowledged) was
uncanny. More often than not, you were right—annoyingly so, and the quality of this work
is undeniably better because of it. Robert, our technical discussions always ran longer than
planned, but I never left without fresh ideas and renewed excitement. Your Friday night
MATLAB plots, following up on an afternoon chat, were next-level dedication. Not many
professors still code, but mine does!

To Aske, Herke, Abhinav, and Bart, thank you for kindly agreeing to be part of my
doctoral committee, taking the time to review my dissertation, and providing detailed
feedback.

To all my colleagues in the research groups of Laura and Jens, and the rest of the
Cognitive Robotics department—thank you for the engaging discussions. A special shout-
out to Jelle, my partner in crime on the OpenDR project. Our trips to Thessaloniki and the
Outer Banks won’t be forgotten. Best of luck finishing your PhD!

Alexander and Gijs, supervising you was a privilege. Our discussions were some of the
most enjoyable parts of my PhD—thanks for keeping things interesting.

To my parents, Lex and Hilde, for their unwavering support and for instilling in me
what my grandpa always said: "kennis kunnen ze niet van je afnemen, geld wel."

Finally, to Pien, for her patience, support, and for giving me the space to finish, even
when it meant weekends of me locked in work mode. Looking forward to the many
weekends that are actually free—together!

Bas
Amsterdam, February 2025






113

ABOUT THE AUTHOR

Douwe Sebastiaan vAN DER HEIJDEN

27 September 1994 Born in Vleuten-De Meern, The Netherlands.

EpucAaTION
2006 — 2012 VWO (cum laude), Leidsche Rijn College.
2012 - 2016 B.Sc., Mechanical Engineering, TU Delft.
Thesis: Microwave Induced Plasma Gasification of Sewage Sludge
2017 - 2019 M.Sc., Systems & Control (cum laude), TU Delft.
Thesis: Iterative Bias Estimation for an Ultra-Wideband
Localization System.
2020 - 2025 Ph.D. Candidate, TU Delft.

Thesis: Designing Simulators for Robot Learning.
(co-)promotors: dr. L. Ferranti, dr. J. Kober, and prof. R. Babuska.

VISITING SCHOLAR

2018 - 2019 Visiting Researcher, ETH Zurich (10 months).
Research Group of prof. R. D’Andrea.






115

LisT OF PUBLICATIONS

JOURNAL

@ 1

3 2.

@ 3.

B. van der Heijden*, J. Luijkx*, L. Ferranti, J. Kober, and R. Babuska. "Engine Agnostic
Graph Environments for Robotics (EAGERx): A Graph-Based Framework for Sim2real Robot
Learning", IEEE Robotics and Automation Magazine (RAM), 2024.

B. van der Heijden, L. Ferranti, J. Kober, and R. Babuska. "Efficient Parallelized Simulation
of Cyber-Physical Systems", Transactions on Machine Learning Research (TMLR), 2024.

B. van der Heijden, J. Kober, R. Babuska, and L. Ferranti. "REX: GPU-Accelerated Sim2Real
Framework with Delay and Dynamics Estimation", Transactions on Machine Learning Re-
search (TMLR), 2025.

CONFERENCE

4.

3 s.

F. Sibona, J. Luijkx, B. van der Heijden, L. Ferranti, and M. Indri. "EValueAction: a proposal
for policy evaluation in simulation to support interactive imitation learning", Proc. of the IEEE
Intl. Conf. on Industrial Informatics (INDIN), 2023.

B. van der Heijden, L. Ferranti, J. Kober, and R. Babuska. "DeepKoCo: Efficient latent
planning with a task-relevant Koopman representation”, Proc. of the IEEE/RS] Intl. Conf. on
Intelligent Robots and Systems (IROS), 2021.

. B.van der Heijden, A. Ledergerber, R. Gill, and R. D’Andrea. "Iterative Bias Estimation for

an Ultra-Wideband Localization System", IFAC World Congress, 2021.

WORKSHOP

7.

A. Keijzer , B. van der Heijden’, and J. Kober. "Prioritizing States with Action Sensitive
Return in Experience Replay", European Workshop on Reinforcement Learning (EWRL), 2023.

[3) Included in this thesis.

*

Equal contribution.



