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ABSTRACT

A method to reconstruct the dense velocity field from relatively sparse particle tracks is introduced. The approach leverages the properties of
proper orthogonal decomposition (POD), and it iteratively reconstructs the detailed spatial modes from a first, coarse estimation thereof. The
initially coarse Cartesian representation of the velocity field is obtained by local data averaging, where POD is applied. The spatial resolution
of the POD modes is enhanced by reprojecting them onto the sparse particle velocity to iteratively improve the reconstruction of the
temporal coefficients. Finally, the enhanced velocity field is represented at high-resolution with a reduced order model using the dominant
POD modes. The method is referred to as iterative modal reconstruction (IMR), as an extension of the recently proposed data-enhanced par-
ticle tracking velocimetry algorithm, introduced for cross correlation-based velocity data. Experiments in the wake of a cylinder at
Rep =27000 are used to assess the suitability of the method to resolve the turbulent Kdrman-Benard wake. The approach is benchmarked
against traditional as well as state-of-the-art reconstruction methods, illustrating the capability of IMR of enhancing the spatial resolution of
sparse velocity data.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0209527

I. INTRODUCTION

Lagrangian Particle Tracking (LPT) is an established measure-
ment method for three-dimensional flow diagnostics (Schroder and
Schanz, 2023), superseding traditional tomographic PIV (Elsinga ef al.,
2006) in terms of computational efficiency and spatial resolution. In
particular, the Shake-the-Box algorithm (Schanz ef al., 2016) is now
considered the state-of-the-art method for data analysis, yielding a
multitude of velocity vectors obtained, tracking the particle tracers dis-
persed in the flow. Cartesian grid data reduction (CGR) is a convenient
operation to support data inspection as well as for evaluating deriva-
tives (e.g., vorticity and shear rate) or integrals, like velocity circulation
and pressure (van Oudheusden, 2013). While ensemble-averaging of
pointwise properties can be achieved at the desired spatial resolution
by increasing the length of the measurement series (Agtiera et al,
2016, among others), the evaluation of the instantaneous flow struc-
tures as well as the turbulent vorticity fluctuations are strongly depen-
dent upon the tracer concentration. For instantaneous measurements,
averaging tracks over small regions leads to gappy velocity fields,
requiring refill operations like interpolation or Kriging regression (de
Baar et al., 2014). More complex data assimilation methods have been
proposed, namely, the VIC+ (Schneiders and Scarano, 2016) and

FlowFit (Gesemann, 2016) techniques, which reduce the constraint
imposed on particle concentration. Such methods fit the experimental
data and enforce the governing equations of fluid motion.

While most of the data assimilation approaches employ solely the
instantaneous velocity and acceleration for CGR purposes, recent
works are proposing the use of a finite temporal segment (i.e., 4D data
assimilation). Within the framework of the vortex-in-cell (VIC) tech-
nique (Schneiders et al, 2014), time-segment assimilation, using
advection-based models (Jeon et al, 2019) or vorticity transport
(Scarano et al., 2022), has proven effective.

Beyond the use of time segments for CGR, Cortina-Fernandez
et al. (2021) approached the problem invoking the proper orthogonal
decomposition (POD) method. The data-enhanced particle tracking
velocimetry (DEPTV) exploits the statistical properties of full sequence
of measured snapshots. Borrowing ideas from gappy POD approaches
(Raben ef al., 2012; Venturi and Karniadakis, 2004) that aim at filling
the gaps of cross correlation PIV measurements, the DEPTV method
combines a modal decomposition of gridded data (from cross correla-
tion analysis of PIV images) and particle tracking information (from
the same set of images) to provide a CGR of the particle tracks at an
increased spatial resolution. The modal decomposition obtained from
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cross correlation data is employed to generate a temporal basis on
which to project the particle tracks, thus providing a representation of
the spatial POD modes at increased resolution. While initially devel-
oped for planar 2D PIV data, the approach has been recently extended
to 3D tomographic-PIV experimental data (Tirelli ef al., 2023).

The inherent limitation of DEPTV stems from the representation
of the temporal coefficients. Since the temporal basis arises from low-
resolution cross correlation analysis, only flow features that are par-
tially resolved by it can be enhanced with DEPTV. This can be over-
come with the use of a predictor—corrector iterative approach, where
the temporal basis is updated by reprojecting the particle trajectories
onto the high-resolution spatial basis. The process may be repeated
until convergence of the decomposition.

The present work leverages on the concepts introduced by the
DEPTV method to achieve dense velocity reconstruction for relatively
sparse data measured with particle tracking. In the present approach,
the spatiotemporal modal decomposition is enhanced iteratively, aim-
ing at super-resolution, i.., the reconstructed velocity field estimates
flow features beyond the average inter-particle distance of the original
data. The new method is referred to as iterative modal reconstruction
(IMR), and its algorithm is presented in Sec. II. The performance of
the method is evaluated from the analysis of experimental LPT data
obtained with large-scale PIV measurements in the wake of a cylinder
at Rep =27 000 (Sec. 111). Finally, a comparative analysis is performed,
benchmarking IMR against DEPTV and the effects of the iterative
approach are discussed. Additionally, IMR is compared to linear inter-
polation and physics-based VIC data assimilation. The results quantify
the measurement error of IMR using the downsampling/resampling
technique to provide an experimental ground truth. Furthermore, the
spatial resolution of the resulting CGR is evaluated by inspection of
the coherent vortical structures in the cylinder wake in relation to
other observations from the literature. The final part of the work dis-
cusses the requirements for statistical convergence of IMR to provide a
criterion for real-world experiments.

Il. THE IMR METHOD

The input to the IMR method is a relatively long sequence of LPT
data obtained with a coarse resolution, which is initially transformed
onto a Cartesian grid as discussed in Sec. IT A. The gridded data under-
goes an iterative modal decomposition procedure, as described in Sec.

ULR

LPT data

! g
~ -
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1B, which is used to build a reduced order model (ROM) of the
instantaneous velocity field at high spatial resolution, as discussed in
Sec. IT C. The computational complexity of the method is presented in
Sec. I D, together with an overview of the algorithm.

A. CGR of LPT data

Consider the set of particle trajectories obtained by LPT measure-
ments, as sketched in the left part of Fig. 1, and represented by scat-
tered velocity vectors at the particles’ locations. In the time domain,
Mtime SDapshots are acquired at a sampling frequency f,,. The sparse
velocity vectors are initially projected onto a coarse Cartesian grid (see
Fig. 1) of spacing hig through window-based averaging (i.e., binning)
to avoid data gaps (bins without velocity information) and prevent
biasing the modal decomposition toward regions of higher seeding
concentration. This is relevant, but not restricted to, for large-scale
PIV experiments involving the use of helium-filled soap bubbles
(HFSB) as tracers (Bosbach et al, 2009). As a rule of thumb, for an
average inter-particle distance 7, the bin size may be conservatively
chosen one order of magnitude larger than 7. This choice ensures that
bins include at least a few datapoints in regions of lower seeding
concentration.

Each snapshot of the blnned data may be reshaped into a row
vector ug, € e R , with ns representing the total number of spa-
tial elements, this is, nSLR = 3nynyn, after accounting for the three
velocity components. Appending all vectors returns the low-resolution
velocity data matrix Uy € R7amex

IMR is intended for statistically stationary processes, with the
modal analy31s targetmg the fluctuating component of the velocity field
only, U € R obtained via Reynolds decomposition as
uLRk = urg, — g, where s g € R™™" is the time- averaged velocity
field. The extension of the method to non-stationary processes is out
of the scope of the current work. The vectors of velocity fluctuations
are reshaped into a low-resolution fluctuating velocity data matrix
U}‘R e Rﬂnmgxn

In parallel, the scattered velocity vectors at the particles’ locations
are projected onto a finer Cartesian grid, as sketched in Fig. 2, of spac-
ing hpr (and n R spatial elements), with kg < hyg, through a similar
binning process. The value of iy is chosen according to the statistical
convergence of the ensemble of snapshots, as will be discussed in the

Time

FIG. 1. Sketch of the low-resolution velocity field, U, g, obtained from the LPT data, and the corresponding fluctuating component, U, obtained via Reynolds decomposition.
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FIG. 2. Sketch of the high-resolution (gappy) velocity field, Uz, the time-averaged flow field obtained from ensemble-averaging of the particle tracks, U g, and the fluctuating

part Uy g

remainder of the document. Because of the relatively small size of the
bins used in the high-resolution Cartesian grid, the resulting velocity
field, rearranged as Upp € R il contain gaps that do not
contribute to the modal reconstruction process. The time-averaged
velocity field at this spatial resolution, g € R7" , can be obtained
from an ensemble particle tracking approach (Cowen and Monismith,

1997; Kahler et al, 2012) instead of Reynolds decomposition for
improved accuracy (Tirelli et al, 2023). The row vector #yg can be
stacked to form a data matrix Upgg € R " and obtain the high
resolution fluctuating  velocity matrix Ul € Rrame " g
U}-IR = Upr — Ung.

B. Iterative modal decomposition

The low resolution CGR operation is employed to construct an
initial guess of the modal decomposition of the dataset, as illustrated in
Fig. 3, unaffected by the presence of gaps in the binned velocity repre-
sentation. As in the original implementation of the DEPTV method,
the spatiotemporal bases are obtained from POD, but other decompo-
sition choices are also possible (see, for instance, the work of Mendez
et al., 2019). The POD decomposition of U/LR, which can be imple-
mented via the singular value decomposition (SVD) of the data matrix,
reads

Ujp = PoXo®!, 1)
where ¥o = Y, Wi (uy,) | € R (Uik) and @y = [, ...,

¢'k(U’LR)] e R%"*(Uix) are the orthonormal matrices that contain
the so-called temporal (chronos) and spatial (topos) modes, respec-
tively. X, = diag[o, ..., a,k(U,m)]  R*(Ui)**(U) is the diagonal
matrix containing the energy contribution of each mode, which for the
case of velocity fluctuations represents the turbulent kinetic energy
content. The total number of modes is dictated by the rank of the data
matrix, rk(U’LR) = min(n,,-me, nSLR). The common choice of POD is a
result of the optimality of the decomposition from an energy perspec-
tive (using the L? error), as guaranteed by the Eckart-Young-Mirsky
theorem (Eckart and Young, 1936).

The initial guess of the temporal basis is employed to increase the
spatial resolution of the spatial modes (see Fig. 3), from the grid spac-
ing hig to hyg in an iterative manner, denoted by the subscript ,,. This
is achieved by projecting ¥, (represented as ¥,_; in the iterative pro-
cess) onto the high resolution fluctuating velocity data matrix, thus
creating an updated representation of the spatial modes in a similar
fashion to the extended POD modes discussed by Borée (2003). To
account for the sparsity of Uy, the projection step must be normal-
ized to compensate for changes in seeding concentration across the
measurement volume. For every spatial bin (or column of Uly),
counting the number of velocity entries is used to construct a vector of
temporal occurrences, n; € R After normalizing by the total
number of snapshots 7yime, as #y = My /Nyime, this information can be
stacked to  generate the matrix of temporal —occurrences
N, e R* Uie) %" \which leverages the projection operator. Taking
this into account, the projection of the temporal basis onto Ul
returns

2@, = (Y5 Uly) ONy, ©)

where © denotes the Hadamard (element-wise) division operator. Inspection

of Eq. (2) reveals that the spatial resolution of @, € R % (Uik) has been
increased according to the grid spacing hpg. The updated POD
modes may, be sorted according to their new energy contribution,
¥, € R™Yie)**(Uiz) " and the minor loss of orthogonality intro-
duced in the projection step is corrected via reduced QR factoriza-
tion of @,,.

While in the DEPTV method the high-resolution spatial modes
are combined with the initial guess of the temporal coefficients to
reconstruct the instantaneous velocity field, IMR uses @, to further
update the temporal modes, and the process is repeated until conver-
gence of the decomposition. This is achieved by reprojecting @, onto
Ul after accounting for the spatial sparsity of the snapshots. In an
analogous fashion, for every snapshot (or row of U)y), counting the
number of velocity entries is used to construct a vector of spatial occur-
rences, n, € R"me>!, After normalizing by the total number of spatial
elements, as 7, = n,/nfR, this 1nf0rmat10n can be stacked to generate
the matrix of spatial occurrences N, € R Uix). This matrix
accounts for the changes in particles’ concentration along time, which
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FIG. 3. Sketch of the initial POD decomposition from the coarse binning data U, and projection of the temporal coefficients ¥ onto the high resolution (gappy) velocity field

U}, to increase the spatial resolution of the spatial modes @.

is usually rather minor compared to the changes across space.
Including this contribution, the reprojection step reads

¥, = (U, ®.2,') ON.. (3)

The process is completed by restoring the orthogonality of ¥, via
reduced QR factorization and by checking the convergence of the pro-
cess. The latter is implemented by requiring a relative change of X,
with respect to the previous iteration of less than 1%, considering the
L* norm (max vector norm).

C. High resolution instantaneous reconstruction

The result of the iterative modal decomposition is a set of
rk(U}) orthogonal modes, ranked by their energy contribution, that
provide a statistical representation of U’y after accounting for its spar-
sity. A representation of the instantaneous velocity field on a Cartesian
grid of spacing hpr, Upg, may be obtained by a combination of the
time-averaged flow field obtained via ensemble-averaging of the parti-
cle tracks, Uppg, and the contribution of r dominant modes, as illus-
trated in Fig. 4, which may be written as

Upr = Ur + Z Vo0, (4)
=1
The resulting flow field is the void of gaps irrespective of the choice of
hpr and r, but the means for setting both coefficients will be discussed
in the remainder of the document.

D. Computational complexity

The current implementation of IMR is memory demanding.
While for 3D fluid mechanics problems, where the number of spatial
elements is usually much bigger than the number of time realizations,
the current norm for POD implementation is the so-called snapshot
POD strategy (Sirovich, 1987), IMR requires storing the entire U’y
data matrix for minimal overhead, to be used in the projection steps.
However, for very sparse matrices, the requirements can be simplified
using sparse indexing. Alternative implementations of the method
could load batches of the data matrix on demand at the cost of compu-
tational time.

On the other hand, the evaluation of the computational cost is
relatively simple. The dominant term is the projection (and reprojec-
tion) step, a matrix multiplication. For Eq. (2), a standard implementa-
tion of the operation would have a cost O(rk(Uy) nime - n%),
although more advanced algorithms do exist. Since the process is
repeated during n iterations until convergence, the total cost reads
(’)(rk(U’LR) Mgie - nIR - n). A simple trick for further time reduction
is to compute only a subset of modes, 1,,, with n,, < rk(U}y), thus
reducing the cost to O(nm Mtime nfm . n).

The requirements of IMR for the experimental assessment case
presented in Sec. I1I are summarized in Table I and compared to linear
interpolation and the VIC# method for reference. All computations
are performed in a workstation with 64 GB of installed RAM and Intel
Xeon E5-1620 CPU.

The proposed algorithm is summarized as a pseudocode in
Appendix A and also by the flow chart shown in Fig. 5.
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FIG. 4. Sketch of the high resolution instantaneous reconstruction. The velocity field U is obtained by a combination of the time-averaged flow field Uz and dominant IMR

modes.

lll. EXPERIMENTAL ASSESSMENT: CYLINDER WAKE

The experimental case considered for the evaluation of the IMR
algorithm is the Kdrmdn-Benard wake behind a circular cylinder dis-
cussed by Scarano ef al. (2022). The experimental setup is described in
Sec. IIT A. The LPT analysis is discussed in Sec. I1I B, followed by a
description of the assessment method in Sec. III C. The flow field
under study is presented in detail in Sec. IIT D, both in terms of instan-
taneous reconstruction and modal analysis.

A. Experimental apparatus and procedures

Experiments are conducted in the OJF (open jet facility), a large-
scale low-speed wind tunnel at the laboratories of the aerospace engi-
neering faculty of TU Delft. The OJF features an exit cross section of
2.85 x 2.85 m”. A 2-m-long cylinder of diameter D = 10 cm is installed
vertically and immersed in the free-stream flow at U,, =4 m/s. The
resulting value of the diameter-based Reynolds number is 27 000. The
domain of interest is the near wake of the cylinder. The measurement
covers a domain of 5D(x) x 6D(y) X 3D(z).

Neutrally buoyant, sub-millimeter helium-filled soap bubbles
(HFSB) are used as tracers, produced by a seeding rake comprising
204 bubble generators, and installed ahead of the wind tunnel contrac-
tion. With the seeding rake installed, turbulence intensity in the test
section is reported to increase from the nominal 0.5% of the freestream
(Lignarolo et al., 2014) to approximately 0.8% (Giaquinta, 2018). After

TABLE 1. Memory and CPU time requirements for the evaluation of the cylinder
wake data (20000 snapshots) using linear interpolation, VIC# and the proposed IMR
method (with nine iterations until convergence).

Memory (RAM) CPU time
Linear interpolation <1GB 40 min
VIC# 2GB 5 days
IMR 50 GB 1h

the contraction, a seeded streamtube of an approximate diameter of
60cm is obtained. Tracers are illuminated by two LaVision LED-
Flashlight 300 directed along the span of the cylinder. The light scat-
tered by the tracers is recorded using three Photron Fastcam SA 1.1
CMOS cameras (1024 x 1024 pixel, 12-bit, 20 um pixel pitch)
equipped with Nikon 50 mm focal length objectives, set at a numerical
aperture f3 = 22. The experimental setup is illustrated in Fig. 6.

A sequence of #me = 2000 frames is obtained at f,; = 2 kHz.
Approximately eight shedding cycles are observed during the experi-
ment, corresponding to a Strouhal number of St = fU—D = 0.2, in agree-
ment with the literature (Williamson, 1996). Data réccording and LPT
processing operations are performed in the DaVis 10 software.

B. Particle tracking analysis

The images are pre-processed with a Butterworth high-pass filter
in the time domain (Sciacchitano and Scarano, 2014) to reduce back-
ground illumination. A raw-to-world mapping function is obtained by
calibration with a translating target and refined with the volume self-
calibration technique (Wieneke, 2008). An optical transfer function
(Schanz et al., 2013) is computed prior to the evaluation of the particle
images using the LPT Shake-the-Box algorithm (Schanz et al, 2016).
Accepting only tracks comprising at least four consecutive
samples results in an average concentration of tracks across the volume
of C = 0.12 tracks/cm’, corresponding to an average inter-particle dis-
tance of 7 = {/3/(4nC) = 1.25 cm. An illustration of particle tracks
captured during ten snapshots, color-coded by streamwise velocity, is
shown in Fig. 7 (left) (Multimedia view).

C. IMR assessment method

In order to evaluate the ability of the IMR method to accurately
reconstruct the instantaneous flow field from sparse data, a downsampling-
resampling approach has been adopted. Since the exact velocity field
is unknown, a common approach in the experimental research con-
sists of generating a reference solution from another experiment.
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FIG. 5. Flowchart of the proposed IMR algorithm. The LPT data initially undergoes two CGR procedures at different spatial resolutions. The fluctuating component of the low-
resolution version, Ujg, is used to construct an initial modal decomposition using POD. The temporal modes, ¥, are projected onto the sparse high resolution fluctuating
velocity, U}z, to obtain a representation of the spatial modes, @, at high spatial resolution. This process is repeated until convergence of the decomposition. Finally, an instan-
taneous representation of the velocity field at high resolution, Uy, is extracted from the time-averaged flow field U g combined with the dominant modes.

This may be done employing another experimental measurement
technique (Boomsma et al., 2016), the same one but at higher resolu-
tion (Sciacchitano et al, 2015) or using more accurate evaluation
methods (Sciacchitano et al., 2013). Similarly, one may artificially
downsample the data in time (Schneiders et al., 2014) or space (Cai
et al., 2024; Schneiders and Scarano, 2016) and construct the refer-
ence solution with the full dataset. This way, a ground truth can be
constructed for evaluation of a proposed methodology, while at the
same time the dataset preserves the nature of the experimental mea-
surements, including a certain level of noise or presence of outliers,
for example. In the current study, the latter approach is taken for the
assessment of the IMR method. The LPT dataset is artificially

coarsened by downsampling it to 1:10 of the total number of tracks.
The remaining tracks are appended to the dataset, thus creating a
sequence of #4me = 20,000 snapshots at one tenth of the original
concentration, this is, C = 0.012 tracks/cm?, corresponding to an
average inter-particle distance of 7 =2.7 cm. An illustration of parti-
cle tracks at this concentration is given in Fig. 7 (right).

From the full concentration of tracks, the reference instantaneous
velocity field is obtained using the VIC# algorithm (Jeon et al., 2022)
on a Cartesian grid with a spacing of # = 7.3 mm, following the crite-
rion suggested by Schneiders and Scarano (2016), h = iC’m. The
resulting grid contains n, = 69, n, = 82, and n, = 41 elements,
respectively, and therefore n; = 695 934.
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FIG. 6. Schematic side-view of the experimental setup in the OJF.

From the downsampled dataset, a coarse representation of the
instantaneous flow field (Ug) is obtained through a binning proce-
dure, whose parameters are summarized in Table II. Please note that
rk(Uz) = min (yme, ntR) = n® and therefore the total number of
available IMR modes is dictated by the number of spatial elements.
Since the goal is to obtain a high-resolution representation of the flow
field, comparable to the reference situation discussed in Sec. I11 C for
the original LPT dataset, the target resolution for IMR is set equal to
that of the reference. This represents an eight-times increase with
respect to the coarse binning operation. At this resolution, a gappy rep-
resentation of the flow field (Upy) is obtained through a binning pro-
cess summarized in Table II. The time-averaged velocity field at this
spatial resolution (U pg) is obtained from the ensemble-average of par-
ticle tracks by fitting a second-order polynomial inside each bin
(Agiiera et al., 2016).

D. Reference instantaneous reconstruction and modal
decomposition

As discussed in Sec. 111 C, the reference solution is obtained from
the full concentration of trajectories using the VIC# data assimilation
algorithm. An instantaneous representation of the three-dimensional
flow field is shown in Fig. 8 (Multimedia view) using isosurfaces of
vorticity, color coded by their sign and component. The illustration
reveals the dominant spanwise-coherent vortices (Kdrman street),
visualized through isosurfaces of spanwise vorticity ), (red and blue),
that are shed with an alternating sign. The two-dimensional

ARTICLE pubs.aip.org/aip/pof

TABLE II. Main parameters of the binning procedures for the cylinder-wake dataset.

Bin size (mm) Overlap factor h (mm) 7R
Low resolution 233.6 75% 58.4 2079
High resolution 292 75% 7.3 695934

t = 160 ms

FIG. 8. Instantaneous visualization of the three-dimensional flow field using isosur-
faces of spanwise (red and blue, @, = +70 s~") and streamwise (green and yel-
low, oy = *70 s~ ") vorticity, obtained using the VIC# algorithm. Represented both
using side (upper row) and top (bottom row) views, for two different time instants:
t = 160 ms (left) and t = 940 ms (right). Multimedia available online.

homogeneity of the flow is altered in several ways, as abundantly
reported in the literature (Williamson, 1996). The main rollers may
feature locally and occasionally an oblique orientation to the cylinder
axis (oblique shedding, Prasad and Williamson, 1997; Szepessy and
Bearman, 1992). Furthermore, the rollers may exhibit undulations of
wavelength several times larger than the cylinder diameter, similar to
the reported mode A exhibited in the laminar shedding regime
(Williamson, 1996). Finally, thin, elongated structures interconnecting
the main rollers are often observed and visualized through the domi-
nant vorticity component , (green and yellow). These structures,

0 200 400 0 0
x [mm]

FIG. 7. Visualization of particle tracks reconstructed with Shake-the-Box (left) and coarsened measurement (only 10% of the data are retained). Tracks including 10 frames are
color-coded by streamwise velocity. Only a slab of 10 cm depth is shown for clarity. Multimedia available online.
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FIG. 9. Relative and cumulative modal energy contributions of the hundred most
dominant modes obtained from the POD decomposition of the reference velocity
field.

usually referred to as fingers or ribs, have been mostly visualized at the
Reynolds number on the order of Re = 10°-10* (Mode B, Kanaris
et al, 2011; Prasad and Williamson, 1997; and Williamson, 1996),
while their coherence is reported to decrease with an increasing
Reynolds number (Parnaudeau et al., 2008), although still present up
to Re = 5000 (Scarano and Poelma, 2009).

The instantaneous flow visualization is provided for two different
time instants to illustrate the changes in the spanwise coherence of the
main vortices. Inspection of Fig. 8 (right) reveals a condition whereby
the main rollers are shed at an angle with respect to the cylinder.
Figure 8 (left), instead, shows evident undulation of the rollers. In both
examples, the rollers feature strong local distortions from the inception
of the fingers.

%}
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y [mm]

-200

200
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-200
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The interpretation of the flow field is further elucidated by the
analysis of the POD decomposition of the reference velocity field,
which will later also serve as a reference evaluating the results obtained
with the IMR technique. The decomposition is summarized by the
spectrum of energy captured in each mode given in Fig. 9, alongside
the cumulative energy; the three-dimensional representation of the
eight most dominant spatial modes shown in Fig. 10, and the corre-
sponding temporal coefficients, given in Fig. 11 together with their fre-
quency spectra. To the authors™ best knowledge, only a handful of
publications (namely, the simulations of Ma and Karniadakis, (2002),
for Rep =185, and Wang et al, (2012), for Rep =1000) provide a
three-dimensional representation and interpretation of cylinder wake
modes. In the following, we tackle the fully turbulent regime
(Rep =27 000) and extensively discuss not only the dominant Karman
wake modes (namely, modes 1 and 2), representing the advection of
spanwise-coherent vortical structures, but also higher-order ones
(spanwise distributed, like mode-A and with the introduction of
streamwise-binormal vorticity, like mode-B), inherently three-
dimensional.

The modal energy distribution returns the first two modes
accounting for approximately 60% of the total turbulent kinetic energy,
in agreement with existing two-dimensional experiments performed at
a comparable Reynolds number (Zhang et al., 2014). These two modes
capture the most global feature of the Karman wake. Because the vor-
tex street is convected, such as a traveling wave homogeneously along
the span, this first fluid dynamic mode requires two POD entries
phase-shifted of a quarter wavelength (7/4). The spatial arrangement
of the modes corroborates the oblique shedding discussed above, and
the frequency spectra of the temporal coefficients confirm that the vor-
tices are shed at St = 0.2.

POD entries 3 and 4 also exhibit a similar level of energy.
Furthermore, their pattern is very similar and shifted of /4, which is a
strong indication that these two entries form an additional convective
mode. In this case, the spatial distribution is not homogeneous along
the span. Instead, a phase jump is exhibited, whereby the transverse
motions invert their sign. The spatial arrangement of these modes

FIG. 10. Top view of the eight most domi-
nant spatial POD modes obtained from
the reference velocity field, represented
using isosurfaces of ¢" (positive and neg-
ative, red and blue, respectively).
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suggests the presence of a spanwise wavelength, 4, that exceeds the
measurement domain, such that % > 6. In addition, the spectra of the
associated temporal coefficients also reveal a peak around St = 0.2,
indicating that these entries are still related to the Karman street.

Mode 5 represents that part of flow motions where spanwise vor-
ticity has been largely tilted along the streamwise direction and
stretched under the action of the two counter-rotating rollers. These
structures are frequently observed in Karman wakes at higher values of
the Reynolds number and feature a pattern and wavelength resembling
mode B of the transitional cylinder wake, characterized by %z 1
(Williamson, 1996), which is in agreement with the current observa-
tions. Also, this mode is expected to convect alongside the main rollers
and it is expected that two POD entries, with similar phase shift to the
above, compose this fluid-dynamic motion. However, the energy cap-
tured by this mode is similar to that of modes 6 and 7, and the mode
ranking by energy becomes no guarantee that subsequently ranked
POD entries pertain to the same fluid dynamic mode. Instead, mode 5
shows a stronger resemblance with mode 8, both in terms of spatial
arrangement and spectra of temporal coefficients, and are therefore
represented together. These entries do not show a clear phase correla-
tion with a shift of 7/4, arguably due to the fact that in the turbulent
regime, the ribs occurrence is less regular and they may require more
POD entries to fully capture their motions. Furthermore, their spectra
are dominated by lower frequencies, requiring a longer time sequence
for further evaluation of this phenomenon.

Instead, modes 6 and 7 form another convective pair associated
with the main rollers, in this case introducing a non-homogeneity
along the span governed by 7 ~ 4, similar to what is reported in the
literature for mode A (Williamson, 1996). As for previous entries, the
peak of the spectra around St = 0.2 links them to the main rollers.

IV. RESULTS

The proposed IMR method is applied to the downsampled LPT
dataset. The role of the number of spatiotemporal occurrences is illus-
trated in Sec. IV A. The resulting decomposition, compared to that
obtained from the reference dataset and the DEPTV method, is dis-
cussed in Sec. IV B. Section IV C covers the instantaneous high-

resolution reconstruction of the flow field, and finally Sec. IV D dis-
cusses the statistical convergence of the proposed methodology.

A. Number of spatiotemporal occurrences

One of the key aspects of the IMR algorithm is the normalization
introduced in the projection (and reprojection) step, which accounts
for the changes in the seeding concentration in time and space, inher-
ent to experimental LPT approaches. For the current dataset, changes
across the measurement volume are significant. The normalized vector
of temporal occurrences, 7, is shown in Fig. 12 (left) at the mid-span
of the domain (y = 0 mm), indicating a higher concentration of trajec-
tories closer to the cameras (positive z).

On the other hand, only minor changes in the number of spatial
occurrences are observed (continuous seeding), as shown in Fig. 12
(right). Significant drops in n; are only present in the initialization step
of the Shake-the-Box algorithm, which propagates through the ten
stacked sequencies of the downsampled dataset. On average, almost
80% of the spatial bins contain no velocity information, an unprece-
dented value when making use of modal analysis for flow reconstruc-
tion (Raben et al., 2012; Venturi and Karniadakis, 2004).

B. Modal decomposition

The modal decomposition obtained with IMR is compared to
that obtained from the coarse binning operation summarized in Table
1T and the reconstruction from DEPTV. Furthermore, the results are
benchmarked against the reference (Sec. 111 D). The modal energy con-
tribution (squared elements of X normalized by nmen;s to provide a
grid-independent estimation) is shown in Fig. 13 for the first hundred
modes. The spatial modulation introduced in the binning operation
causes an overall energy drop with respect to the reference data. The
energy is largely recovered by DEPTV for the first twenty modes. After
that, the lack of statistical convergence and the presence of experimen-
tal noise contaminate the modal distribution and the DEPTV solution
shows a flatter decay (Cortina-Fernandez et al., 2021), unable to repro-
duce the filtering effect introduced by the VIC# methodology. The iter-
ative approach of IMR yields an energy distribution in agreement with
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FIG. 12. Number of normalized temporal occurrences, n;, at the mid-span of the domain (left) and number of normalized spatial occurrences, n; (right).

the reference data for the first four modes. After that, it progressively
overestimates the contribution of high-order ones. As discussed in the
following, this results from the appearance of high-frequency noise in
the DEPTV and IMR spatial modes. For DEPTV, the added energy
arising from noise is compensated by the poor reconstruction of the
temporal coefficients, thus yielding an energy distribution that agrees
better with the reference.

The high-resolution spatial modes obtained with the proposed
methodology are compared to the other methods as shown in Fig. 14.
The visualization represents one entry of the four most dominant
mode pairs discussed in Sec. 1T D, drawn using isosurfaces (positive
and negative, in red and blue, respectively) of the vertical (z) compo-
nent of the spatial modes, ¢". The spatial averaging introduced by the
binning process is now evident when looking at modes 1 and 3. For
modes 5 and 6, the output of the binning method falls below the
threshold chosen for representation. The DEPTV and IMR show simi-
lar patterns, both in good agreement with the reference data. A degree
of granularity (high-frequency noise) is observed for all modes. While
Cortina-Fernandez ef al. (2021) suggest the use of a low-pass filter to
counter this effect for DEPTV, the approach has not been pursued, in
the absence of a theoretical justification for it.

—e—Reference
0 ——Binning
107} DEPTV (IMR 1%it.)|]
_ -=-IMR 3" .
2 4 ~o~IMR 61 it.
S ——IMR 9" it.
P02
£10¢
iy 0 N 2
10 10 10

Mode number, %

FIG. 13. Comparison of the grid-independent modal energy contribution of the hun-
dred most dominant modes obtained from the reference POD decomposition, the
coarse binning operation, DEPTV and IMR.

Regarding the modal decomposition, the main upgrade of IMR
consists of providing an updated representation of the temporal
modes after the computation of spatial modes at higher resolution.
The effect is illustrated in Fig. 15 by comparing four dominant tem-
poral modes with those extracted from the other methods. As
expected, no significant differences are observed for modes 1 and 3,
since these are well represented by the binning procedure already.
However, higher-order modes are not resolved with binning and
therefore depart from the reference ones. Instead, the iterative proce-
dure of IMR is able to recover the main shape of the temporal coeffi-
cients, thus providing a significant upgrade for the use of modal
decomposition as a tool for instantaneous high-resolution recon-
struction. The good agreement of the temporal coefficients, com-
bined with the granularity of the spatial modes discussed above, is
argued to be responsible for the overestimate in modal energy contri-
bution observed in Fig. 13 for IMR.

The comparison of temporal coefficients is extended to higher-
order ones by computing the zero-lag cross correlation coefficient
with respect to the reference modes, as a means to indicate the
degree of correlation that IMR can recover. The results are given in
Fig. 16 for the hundred most dominant modes. For DEPTV, the
trend decays sharply after the first four modes, which could already
be observed in Fig. 15. The iterative process allows us to recover
agreement with the reference for modes that were not resolved by
the coarse binning procedure, thus suggesting the possibility of
building a more accurate reduced order model by involving more
modes in the reconstruction.

C. High-resolution instantaneous reconstruction

An instantaneous high-resolution reconstruction of the flow field
can be built using the IMR decomposition, as discussed in Eq. (4), by
choosing a number of dominant modes r. The obtained velocity field
is compared, relative to the reference dataset, to that obtained using
linear interpolation from the scattered trajectories, the physics-based
VIC# approach (also obtained from the downsampled set of tracks,
not to be confused with the reference solution) and the DEPTV
method. In every case, the target spatial resolution is set to h = 7.3
mm. For VIC#, the criterion h = iCil/ % is no longer verified. For
every situation, a mean reconstruction error, &, is built from the differ-
ence between the reconstructed velocity field, U(x, t), and the refer-
ence solution, U,s (x,t),as
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FIG. 15. Comparison of grid-independent four dominant temporal modes obtained from the reference POD decomposition, the coarse binning operation, DEPTV and IMR.
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For the sake of simplicity, only the first sequence of 7me = 2000 snap-
shots is considered in the remainder. The mean reconstruction error
obtained with every data assimilation approach is shown in Fig. 17, in
terms of the number of modes considered for the DEPTV and IMR
algorithms. While the modal-based methods show an error decrease
when compared to linear interpolation and VIC#, the relative differ-
ences are minor with respect to the error relative to the reference. For
both methods, the reconstruction error initially decreases when

40 '
— Linear interpolation
— VIC#
DEPTV
357 —~-IMR
X300
W

g5l Tl ] LA

20 :
10° 10! 10
Number of modes, »

FIG. 17. Mean reconstruction error with respect to the reference velocity field,
obtained using linear interpolation, VIC#, DEPTV, and IMR. For the modal-based
approaches, the result is given in terms of the number of dominant modes used in
the reconstruction.
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considering more modes in the reconstruction since this involves a
more detailed representation of the flow field. At a certain point, a
minimum error is reached, after which the error increases due to the
excessive presence of noise in higher-order modes. For IMR, the mini-
mum is achieved when considering more modes than for DEPTV, a
direct consequence of the better representation of the temporal modes
achieved with the proposed methodology, as discussed in Sec. IV B.

To provide further insight into the reconstruction process, the
streamwise spectra of vertical velocity, E}", are obtained for every
method. The spectra, represented in terms of the streamwise wave-
number Kk, = i—", where Z, represents a streamwise wavelength, are
averaged over the span and time for convergence. The results, shown
in Fig. 18 (left), have been compensated using the square of the wave-
number to magnify the behavior of the medium and small scales. For
DEPTV and IMR, the number of dominant modes used for the recon-
struction are chosen from the minimum mean error shown in Fig. 17
(five and twenty modes, respectively). The reference spectrum is domi-
nated by the streamwise spacing between spanwise-coherent rollers
and harmonics. While the linear interpolation solution underestimates
the content of the dominant large scales, the VIC# one shows the
opposite trend. For both situations, the poor representation of domi-
nant scales may be responsible for the higher mean reconstruction
error. The DEPTV method captures the first peak of the spectrum at
Ky =27 m~ "' rather accurately since the main rollers are mostly
described by the first two modes (see Fig. 14). Beyond that point, the
spectrum shows a strong decay, arguably due to the fact that medium
scales are contained in higher-order modes. By including more
modes in the reconstruction, the IMR solution shows a much better
agreement with the reference up to x, ~ 100 m™'. However, the
high-frequency noise that could already be observed in the shape of
the spatial modes introduces an overestimation of the small-scale
content.

The role of the number of dominant modes used in the IMR
reconstruction is further illustrated in Fig. 18 (right), by showing the
spectra obtained changing this parameter. As expected, choosing
a small number of modes causes an underestimation of the
medium-scale content. While the best agreement with the reference,
up to i, ~ 100 m™ ', is obtained when considering thirty modes, the
added small-scale contribution results in a slightly weaker reconstruc-
tion in terms of the mean error (see Fig. 17).

The possibility of having a reference dataset to select the domi-
nant number of modes for the reconstruction is typically not available
for experimental measurements. The appropriate choice of this param-
eter has been a topic of research since the introduction of modal analy-
sis for building reduced order models, and dates back to the classic
scree test plot (Cattell, 1966) method of finding an elbow in the modal
energy distribution (as the ones showed in Fig. 13). More accurate
methods have been also proposed (Gavish and Donoho, 2014), even
some tailored to experimental PIV data (Epps and Krivitzky, 2019;
Raiola ef al., 2015), but cannot be directly applied to IMR since the
method does not involve a canonical POD decomposition of the
experimental data. A more robust approach, purely based on the topol-
ogy of the spatial modes, has been proposed by Brindise and Vlachos
(2017) and is suggested as suitable for the implementation of IMR.
The method targets the spatial differences between modes containing
relevant flow structures and those corrupted by random noise. It is
implemented via calculation of the Shannon entropy of the spatial
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FIG. 18. Compensated streamwise spectra of vertical velocity, averaged in time and over the span, for different data assimilation methods (left) and obtained with IMR changing

the number of dominant modes used in the reconstruction (right).

modes after a change of basis using the discrete cosine transform.
Extending the procedure described by Brindise and Vlachos (2017) to
a three-dimensional situation returns an optimum threshold of nine-
teen modes, in excellent agreement with the error-based minimization
with respect to the reference dataset discussed in Fig. 17.

Reference

Linear interpolation

z [mm]
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\ il
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L= 40
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FIG. 19. Instantaneous visualization of the three-dimensional flow field using isosur-
faces of spanwise (red and blue, w, = =70 s~") and streamwise (green and yel-
low, wy= =70 s') vorticity, for the reference solution (top-left), linear
interpolation (top-right), the VIC# algorithm (bottom-left) and IMR with r = 19 (bot-
tom-right). Multimedia available online.

The topology of the reconstructed flow field may be inspected in
Fig. 19 (Multimedia view). A comparison is made between the refer-
ence solution, linear interpolation, the VIC# algorithm and a recon-
struction using IMR with r = 19. The visualization shows isosurfaces
of spanwise vorticity, w, = £70 s~ ! (red and blue), and also isosurfa-
ces of streamwise vorticity, w, = =70 s ' (green and yellow). The
interpretation of the instantaneous organization of the flow field, from
the reference solution, has already been discussed in Sec. III D. Linear
interpolation fails to represent the shear layers and most of the
streamwise-oriented vortical structures. In general, the solution is
strongly affected by the spatial differentiation operator required for the
visualization of the vorticity field. The VIC# algorithm produces a
solution that appears contaminated by the presence of small structures,
arguably due to the fact that the grid resolution has been chosen
beyond the presence of particle trajectories, causing an ill-posed mini-
mization problem. The IMR reconstruction shows better agreement
with the reference, but certain features are worth being discussed.
While the vorticity in the shear layers and the main rollers are accu-
rately reconstructed, some of the ribs (green and yellow structures) do
not appear in the reconstructed flow field (especially for x > 400 mm),
likely because their representation involves higher-order modes. On
the other hand, some structures are introduced that do not find a cor-
respondence in the reference case (around x = 300 and y = 200 mm),
arguably because they do appear in other shedding cycles of the full
acquisition. In general, this situation highlights the capabilities of IMR
in reconstructing instantaneous vortical structures that are not accu-
rately sampled by the particle trajectories but at the same time the diffi-
culty of dealing with certain turbulent events for which providing a
statistical description is challenging.

D. Statistical convergence of the IMR method

As for any modal-based reconstruction method, IMR relies on
the statistical convergence of a series of flow events, represented by
modes, with high-energy modes typically requiring less instantaneous
realizations to converge. As discussed in Sec. I1I C, the IMR method

Phys. Fluids 36, 075107 (2024); doi: 10.1063/5.0209527
© Author(s) 2024

36, 075107-13

61:25:0L ¥20Z AInr 0L


pubs.aip.org/aip/phf

Physics of Fluids

—o—Reference

-4-]IMR (2000 snapshots)
-=-IMR (10000 snapshots)
——IMR (20000 snapshots)| |

[ S é; £5) --:- ________________________
) §10 SR __“_‘:
102 ¢
-4 ‘
10
10° 10" 10°

Mode number, 7%

FIG. 20. Comparison of the grid-independent modal energy contribution of the first
100 POD modes obtained from the reference POD decomposition and the IMR
method applied to nime = 2000, nime = 10 000, and ngme = 20 000 snapshots.

has been applied to a downsampled version of the LPT dataset, pro-
ducing ten stacked sequences of #yme = 2000 snapshots each. The
obtained modal decomposition and instantaneous reconstruction are
compared here to those extracted from considering only a subset of
the total number of snapshots available.

The modal energy distributions are shown in Fig. 20, obtained
from the POD decomposition of the reference flow field and the IMR
method applied to #gme = 2000, 7me = 10000, and #ngme = 20 000
snapshots. As expected, using more snapshots reduces the discrepancy
with respect to the reference. The first two modes converge rather well,
while the discrepancy increases for higher-order ones. After approxi-
mately mode number ten, the three IMR curves show a parallel trend,
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as dictated by the noise level of the experimental dataset (Cortina-
Fernandez et al., 2021).

The effect of the number of snapshots in the reconstructed veloc-
ity field is studied by comparing the mean reconstruction error with
respect to the reference, shown in Fig. 21 (left), and the time- and
spanwise-averaged streamwise spectra of vertical velocity, shown in
Fig. 21 (right). The mean error trends demonstrate that improving the
statistical convergence of the decomposition allows not only reducing
the global error but also makes it possible to include more modes in
the reconstruction before they become too much affected by random
noise. The latter is confirmed by looking at the spectra, obtained using
r =20 for every situation. For the case #me = 2000 snapshots, a
strong overestimation of the medium and small-scale contributions is
observed, direct consequence of the presence of noise in some of the
modes employed for the reconstruction.

The analysis of the statistical convergence of IMR highlights one
of the main limitations of the proposed methodology, which is inher-
ent to experimental time-resolved measurements. The sequence of
Nime = 2000 snapshots considered in this study does only capture
approximately eight shedding cycles (see Fig. 15). While the high
acquisition frequency is necessary for particle tracking, the resulting
snapshots are strongly correlated (Sciacchitano and Wieneke, 2016).
For modal-based reconstruction methods, it is advisable to collect
more than one sequence of time-resolved information for improved
statistical convergence. This will especially affect higher-order modes
and would make possible extending the IMR method to spectrally
richer flows.

V. CONCLUSIONS

A method has been proposed for the dense reconstruction of the
three-dimensional velocity field from sparse measurements obtained
with LPT. The IMR technique leverages upon the principle of proper
orthogonal decomposition in a similar way as introduced recently with
DEPTYV. However, attention is placed on the consistency of the tempo-
ral coefficients, alongside that of the spatial modes. This result is
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FIG. 21. Mean reconstruction error with respect to the reference velocity field, obtained using linear interpolation, VIC# and IMR applied to njme = 2000, ngme = 10000, and
nime = 20000 snapshots (left). Compensated streamwise spectra of vertical velocity, averaged in time and over the span, for the reference velocity field and the IMR method

applied to ngme = 2000, Nime = 10000, and nime = 20 000 snapshots (right).
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obtained by iteratively projecting the initial temporal and spatial POD
modes onto the measured particle velocity field. The higher level of
spatial resolution is used to build a reduced order model from the
dataset.

The IMR method is evaluated on experimental data obtained in
the turbulent wake of a circular cylinder and a comparison is afforded
with existing approaches, based on linear interpolation, local averaging
(binning), and data assimilation (VIC#). Furthermore, the method is
compared to the existing modal-based DEPTV method. The data are
artificially coarsened by sub-sampling the particle tracers, such as to
yield a low-concentration measurement, to compare all methods,
whereas the data at the original higher resolution is used to provide a
reference.

The spatial modes obtained using IMR follow with good fidelity
the reference data for the first 8 entries and cumulative energy of 75%.
Furthermore, the phase relations between pairs contributing to the
same fluid dynamic mode are more clearly restored with the IMR
algorithm, compared to DEPTV. This condition entitles to a robust
interpretation of the modes and their combination into pairs, when
dealing with convective instabilities. In addition, the iterative approach
allows recovering the shape of the temporal coefficients that were not
captured by the initial window-based averaging approach. This shows
that IMR has potential to recover information at spatial scales compa-
rable to the inter-particle distance of the LPT dataset.

A reduced order model is built using the first 20 modes, yielding
with clarity the main motions exhibited in the unsteady flow and in
good agreement with the reference high-resolution data. The obtained
flow field shows that IMR can correctly model the shear layers on both
sides of the cylinder, the main spanwise-coherent shed vortices, and
also the smaller streamwise-oriented structures interconnecting those.
In general, the method outperforms the state-of-the-art data assimila-
tion methodologies in terms of reconstruction error, spatial spectra,
and coherence of the reconstruction. Future works will explore the
applicability of the method to other flow problems featuring a broader
distribution of the modal energy.
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APPENDIX: IMR PSEUDOCODE

1) % IMR pseudocode
2) % Grille Guerra et al. (2024)

3)

4) % Initialize CGR velocity fields

5) U r = Low resolution instantaneous velocity field

6) Upr = High resolution instantaneous velocity field
(gappy)

7) U yr = Time-averaged velocity field at high spatial
resolution

8)

9) % Perform POD decomposition of low-resolution velocity

fluctuations

10) ULR = mean(ULR)

11) Ur=Uwr— U

12) [V,X, @] =svd(Ujy)

13)

14) % Obtain high-resolution velocity fluctuations (gappy) and
spatiotemporal occurrences

15) Ui = Umr — Upr

16) [1s, Ntime] = size(Uy)

17) n; = Count number of non-zero elements in every

snapshot

18) N, = n, /1

19) n; = Count number of non-zero elements in every

girid point

20) N; = nt/ntime

21)

22) % Iterative approach

23) converged = FALSE

24) while converged == FALSE

25) % Project temporal coefficients
onto high-resolution velocity
fluctuations

26) sigma_phi = (¥'U);) © N,

27)

28) % Calculate modal energies and sort
modes according to their energy
contribution

29) 2 = norm(sigma_phi)

30) [2, sorting] = sort(X)

31) sigma_phi = sigma_phi

(sorting)

32)

33) % Obtain orthogonal spatial modes via
QR factorization

34) @ = qr(sigma_phi)

35)

36) % Update temporal coefficients from spa-
tial modes reprojection onto velocity
fluctuations
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37) ¥ = (U #X7') 0N,

38)

39) % Restore orthogonality via QR factorization

40) Y =qr (P)

41)

42) % Check for convergence of modal energies

43) if max(abs((Z(k) — X(k — 1)))/Z(k — 1))

< threshold

44) converged = TRUE

45) end

46)

47) k=k+1

48) end

49)

50) % Estimate high-resolution velocity field using  domi-
nant modes

51) Ung = Unr + >, ¥,0:;

52)
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