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A B S T R A C T

Nowadays the field of geo-information is undergoing major changes, and the transition from
2D to 3D is having a major influence. A significant amount of 3D datasets are stored in the
database. Experts are aware that new quality control mechanisms need to be built into the
database systems in order to secure and guarantee high-performing data.

Constraints are effective in providing solutions needed to avoid errors and enable maintenance
of data quality. Whereas constraints for 2D geographic datasets have already been the subject of
several research projects, studies into 3D geo-data constraints are largely unexplored. This thesis
research discovers a new approach to model, conceptualise and implement 3D geo-constraints
which can function in the database. At the outset, constraints can be formulated using natural
language. As natural language is subjective and varies between individuals, expressions can be
ambiguous and can easily cause confusion. So spatial constraints are abstracted using geometry
that depicts the exact shape, and also topology that reveals the spatial relationship between
geometries. This step makes the meaning of a constraint clearer to others. Furthermore, using
standardised UML diagrams and OCL expressions, geo-constraints can be formalised to an
extent that not only humans, but also machines can understand them. With model-driven
architecture supported by various softwares, OCL expressions can be automatically converted to
other models/executable codes (e.g. PL/SQL) just by a few clicks. And with small modifications,
database triggers can be formulated to carry out constraints check.

A database including various topographic objects (e.g. buildings, trees, roads, grass, water-
bodies and terrains) is used as a study case to apply the discovered approach. During this
research, a first attempt to formulate 3D geo-constraints in OCL has been made. These
expressions can be tested and translated to other models/implementations when the OCL
standard is extended with spatial types and operations.

In the implementation stage, the current 3D functions in Oracle Spatial database are found to
be insufficient. A new 3D function using existing 2D functions - plus additional code relating to
computational geometry - has been developed by the author to bridge the gap. Based upon this
function, a large group of spatial constraints which apply to objects in 3D space can be checked.

Bentley Map and Python IDLE are used to test the performance of constraints as well as
the visualisation of warning messages to clients. Database error messages are immediately
displayed on the front-ends when a modification that does not satisfy a constraint is attempted
to commit to the database.

During the case study, new classes of constraints are also discovered. They are higher-level
constraints, parameterised constraints, constraints allowing exceptional instances, extra-check
rules to detect conflicting constraints and constraints relating to multi-scale representations.
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S A M E N VAT T I N G

Het geo-informatie vakgebied ondergaat grote veranderingen met de overgang van 2D naar 3D represen-
taties. Een aanzienlijk deel van de 3D-datasets worden opgeslagen in databases. Het is belangrijk dat
nieuwe controlemechanismen worden ingebouwd om kwaliteit en consistentie te garanderen.

Geldigheidscondities (constraints) zijn een effectieve oplossing om data fouten te voorkomen en zo
de kwaliteit te bewaken. Constraints voor 2D topografische datasets zijn al eerder onderzocht, maar
voor 3D data is dit nog niet gebeurd. Het huidige onderzoek gaat hierop in: van conceptualiseren tot
implementatie. Er wordt een methode met vier fase voorgesteld. In de eerste fase worden de constraints
geformuleerd met behulp van natuurlijke taal. Natuurlijke taal blijkt soms dubbelzinnig en kan leiden
tot verwarring. Dus in de tweede fase worden de constraints verder geconceptualiseerd met behulp van
goed gedefinieerde geometrische primitieven en hun topologische relaties (volgens ISO 19107, spatial
schema). Deze stap maakt de betekenis van een constraint duidelijker voor anderen personen dan de
auteur zelf. In de derde fase worden met behulp van Object Constraint Language (OCL) expressies bij
de UML-diagrammen, de constraints geformaliseerd zover dat niet alleen mensen, maar ook machines
deze kunnen ze begrijpen. In de vierde fase kunnen dan, volgens de model gedreven architectuur (MDA)
aanpak, de OCL expressies automatisch worden omgezet naar uitvoerbare programmatuur. Bijvoorbeeld
PL/SQL code die triggers en procedures definiëren voor het uitvoeren van de constraint controles in de
database.

Een CityGML gebaseerde database met verschillende 3D topografische objecten (gebouwen, bomen,
wegen, gras, water en terrein) wordt gebruikt als een case study om de hierboven beschreven methodiek
toe te passen. Hiervoor is eerst een uitbreiding van OCL met 3D ruimtelijke typen en operatoren (volgens
ISO 19107) nodig. Er is vervolgens een eerste poging gedaan om een flink aantal 3D geo-constraints in
OCL te formuleren. Deze OCL uitdrukkingen kunnen worden vertaald naar database omgeving (met
dezelfde ISO 19107 uitbreiding) en worden getest met echte 3D data.

Tijdens de implementatie bleek dat de huidige 3D-functies in de Oracle Spatial database nog onvol-
doende zijn. Daarom is een nieuwe 3D-functie ontwikkeld voor het vaststellen van topologische relaties
in 3D. Op basis van deze functie kan een grote groep van 3D constraints worden gecontroleerd. Bentley
Map en Python IDLE worden gebruikt om de implementatie van de constraints te testen. Database
foutmeldingen worden weergegeven in de front-end (GUI) als na een edit-operatie de wijziging niet
voldoet aan een van de constraints.

Gedurende dit onderzoek zijn ook een aantal nieuwe klassen van constraints ontdekt: 1. constraints op
een hoger abstractie niveau (dus bijvoorbeeld op niveau van de generieke klasse city-object en daarmee
impliciet ook van toepassing op specialisatie klassen als gebouw en boom), 2. geparameteriseerde
constraints (afstand tussen gebouw en boom is ten minste X meter), 3. constraints die zorgen voor
consistentie tussen de verschillende detailniveaus (LoD’s in CityGML), en 4. goede oplossing voor ’moet’
(harde) en ’zou’ (zachte) constraints, bij de laatste is het mogelijk dat de gebruiker uitzonderingen toe
staat door de betreffende instanties expliciet te markeren. Tot slot is er in het onderzoek aandacht besteed
aan het ontdekken en voorkomen van tegenstrijdige constraints, welke anders als gevolg zouden kunnen
hebben dat (delen van) de database leeg blijven.
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1
I N T R O D U C T I O N

The aim of the Campus-Climate-City project is to turn the TU Delft campus into a showcase
for multi-disciplinary environment/weather research, and one of the best monitored and
understood campuses in the world. To help achieve this goal, the in-campus objects that
have a strong influence on the local climate, such as buildings, trees, sensors (stationary and
mobile), land (e.g. grass fields, water bodies, roads) and terrain are modeled and stored in a
database (Oracle Spatial 11g) by a group of students [Geomatics, 2010]. Buildings with certain
geometries block the wind and thus change the wind flow conditions in the neighbourhood.
Trees create shadows and water vapour, and reduce the speed of wind that goes through
its crown. Sensors that record observations, such as humidity, wind speed, carbon dioxide
emissions, temperature and rain fall, provides datasets for climate study. Land covered by
different ground materials has various stiffnesses and reflectivity coefficients and thus absorbs
and emits heat differently. And with the fluctuation of terrain, the ground water flow can be
simulated to find the converging place (possibly pond) of rainfall.

With these objects and their climate-influential attributes stored, the database plays the role
of a data warehouse (or even a key element of Campus Spatial Data Infrastructure) to store,
retrieve and exchange the information of in-campus objects for climate study, e.g. simulation
and analysis [Geomatics, 2010]. It will receive input from and give output to a multitude of
users that use different kinds of models. Many of the users are not geo-experts and do not
control the data quality and integrity at the same level. Any inconsistency or inaccuracy that
initially does not seem to be crucial, when retrieved by other users, may turn out to be harmful
later on. For example, it maybe enough for someone who is looking at air humidity to know
that the sensor is near a water body. But for someone wanting to simulate wind speed, a more
accurate distance from this wind speed sensor to the surrounding buildings is required. In
order to keep the quality and consistency of dataset, and avoid the conflicts between different
levels of accuracy requirements, the demand on data maintenance is high.

Constraints set up rules that must never be violated and thus are used to maintain the
data integrity. Literature study on this subject has revealed that many research projects into
constraints are still at a theoretical level, such as modelling and conceptualising. Very few
implementations at specific GIS application domain have been carried out. And most of them
are in 2D or 2.5D. On the other hand, 3D city/urban models are becoming increasingly popular
and the need for 3D data models is still growing. If 2D models have already created such a
big margin for errors and mistakes, how about adding one more dimension? Some examples
of constraints within the 3rd dimension of in-campus objects are: different buildings cannot
overlap; tree branches cannot enter buildings; static sensors which are installed in the weather
station cannot leave the station; mobile objects, once the route is defined as outdoor (or indoor),
cannot suddenly ’jump’ into (or out of) the building; each building should have its address
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match to the name of a street nearby (i.e. distance < 5m) and so forth. Obviously, there is a big
difference between the popularity and reliability of 3D data. An extension of current constraint
theory from 2D to 3D would be a great help.

Last but not least, the tools needed to implement constraints are available. For example, the
concept schema (UML/OCL) can be drawn in Enterprise Architecture. The execution of constraint
can be done by database triggers. And even open source toolkit (OCL2SQL) to generate SQL
triggers, which was further extended with 2D 9 intersection model, has been developed.

Therefore, with the fundamental theory presented, technical tools available, and user needs
pulling, a thesis to design and implement 3D constraints for the campus data model is required.
Hopefully this thesis will demonstrate how to handle challenging issues with regard to the
quality of 3D city models.

1.1 motivation

Constraints can be part of the definition of the object classes, types, functions and their
relationships, and the enforcements are not specified. For instance, when a telephone number
is defined as type integer, string will not be accepted. A road that is modelled as polyline(s)
cannot be assigned by point objects. More examples can be found in some general geographical
models such as Geographic Markup Language (GML), X3D, and Industry Foundation Classes
(IFC) [Werder, 2009].

Some constraints have extra definition and have specific enforcements. In order to define
the constraints, the classification of typical constraints has been studied. The main types of
traditional (explicit) constraints include domain constraints, key and relationship structural
constraints, and general semantic integrity constraints [Elmasri and Navathe, 2003]. These
classical types were then extended by [Cockcroft, 1997] with new ones: topological, semantic
and user-defined constraints, which were again elaborated by [Louwsma et al., 2006], and then
proven by [van Oosterom, 2006] with broader context. There are different ways to conceptualise
these constraints.

A commonly adopted approach suggested by [Casanova et al., 2000] [van Oosterom, 2006]
[Duboisset et al., 2005] [Pinet et al., 2007] [Louwsma et al., 2006] is Object Constraint Language
(OCL). OCL is a textual language used to describe the constraints applying to objects, and is
part of Unified Modelling Language (UML) which is a preferred concept modelling schema.
Beside OCL, there are also other ways to express constraints, such as the Constraint De-
cision Table (CDT) by [Wachowicz et al., 2008], meta data by [Cockcroft, 2004], ontology by
[Mas et al., 2005]. OCL formalisation of constraints will be discussed in section 3.3.3 and section
6.1.

Unlike the rich results of theoretical study, literature gives few examples of implementing
constraints in the GIS application domain. Some of them are found in a landscape design
system [Louwsma et al., 2006], field data capture system [Wachowicz et al., 2008], an agricul-
tural information system [Pinet et al., 2004], a cadastral data maintenance system (TOP10NL)
[van Oosterom, 2006], and a traffic flow control system [Reeves et al., 2006]. These examples
only deal with 2D constraint. So far, no research on implementing 3D constraints within specific
GIS application has been found.

3D GIS has been fast exploding and drawing much attention. Different 3D models, e.g. CAD,
KML, GML3 so forth have recently emerged to depict the events and objects in the real world.
One of the most quickly adopted and commonly used models is CityGML. It is an open data
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model and XML-based format for the storage and exchange of virtual 3D city models. More
information about CityGML will be given in section 2.1.

As the spatial model evolves from 2D to 3D, more and more database vendors have their
products supports 3D data storage. An example is Oracle. Since Spatial 11g, these being
to support 3D object data types, that is 3D (multi) points, (multi) lines, (multi) polygons
and (multi) solids. 3D data geometry can be validated according to GML 3.1.1 and ISO
19107 specifications, e.g. geometry validation via SDO_Geom.Validate_Geometry_With_Context

[Ora, 2010b]. With the hierarchy of single objects and composite objects, it enables storing
multi-LODs from CityGML, which can model regions, city/site and architectural interiors.
3D queries concerning 3D visibility, volumetric analysis and spatial/semantic attributes are
available in 11g [Ravada, 2008] as well.

Since the real 3D world contains more information than 2D and can be modeled in different
ways, the issue of data consistency and integrity in 3D is more sensitive. With SQL assertion,
which is specified in SQL-92 standard, the constraint can be coded in a machine-understandable
way [van Oosterom, 2006] [Louwsma et al., 2006]. However, despite the undoubted value of
assertion, the status that no mainstream DB vendors support direct assertion implementation
remains the same since [van Oosterom, 2006, 2006].

Triggers are found to be a proper alternative to implement the constraints. They are used to
monitor a database and take action when a condition occurs [Elmasri and Navathe, 2003]. They
are described using procedural code of SQL syntax and act upon particular tables or views of a
database. More information will be shown in section 2.3.

Nevertheless, in spite of the fact that 3D GIS is fast growing and database is able to implement
constraint, so far very little research concerning 3D constraints in the database has been carried
out. Some research regarding the validity of geometry [Kazar et al., 2008] and efficient 3D data
representation [Arens et al., 2005] has been presented at the conceptual and implementation
level. The results of these research projects will be borrowed to establish the 3D constraints
implementation within the database in this thesis work.

1.2 research questions

The final goal of this thesis is to design, conceptualize and implement constraints for 3D models of the
City-Campus-Climate project. Based upon this final goal, research questions will be:

To design necessary constraints regarding the spatial-temporal-semantic relationships between
the objects. Basically, these objects can be grouped as static 3D campus objects and mobile
sensor objects:

• 1. Which 3D and sensor objects are needed?

• 2. Which spatial, thematic, temporal and quantity constraints (according to classification
of [van Oosterom, 2006]) are necessary?

Once the raw constraints are discovered, the next concern is to conceptualize them:

• 3. What is the best way to formalize these constraints?

• 4. Which tools/software are the most suitable for this work?

To implement the constraints in DB environment. Concerns will be discovered such as:
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• 5. What is the best way to implement those constraints in database?

• 6. Which database, PostGIS or Oracle, performs better in realise 3D constraints?

• 7. Is it possible to have some visual feedback to report any error?

1.3 methodology

To approach the final goal, the first step is to discover which constraints are relevant. Studying
literature to find constraint examples is meaningful at this stage. A close examination of
the objects/attributes/relationships is also necessary to find out where errors can come in.
The classification method will be inspected so that any discovered constraints can be better
structured. This can be seen as a pre-work for specification. After that, different specification
and formalisation methods/languages will be checked out, which in turn can help express
the constraints in a formal manner. The tools that can help formalisation will be studied as
well. The next step is to implement the constraints in the database. On one hand, it involves
an in-depth inspection of the spatial part in Oracle Spatial, e.g. 3D geometry functions and
spatial objects storage. On the other hand, the mechanisms of the database also need to be
studied closely, which will in turn enable the constraints to be checked in run-time, and allow
message generation and visualisation. Finally, some front-end clients that are able to visualise
error messages from the database should also be tested.

1.4 chapters overview

Chapter 1 is the introduction of this thesis, which formulates the problem setting, motiva-
tion, research questions and approaches. In chapter 2 background information gives typical
tools/software in aspects such as 3D object modelling (CityGML), a formal representation of
conceptual models (UML), databases for both storage of 3D objects and implementation of
constraints (Oracle Spatial) and 3D visualisation (Bentley Map). Chapter 3 discusses constraint
expression in natural language, a classification of constraints, as well as some implemented
constraints in various applications and their approaches found from articles. Chapter 4 analyses
the objects, their attributes and relations in the CCC database, which is a pre-step to constraints
discovering. Chapter 5 takes a closer look at the constraints needed for the datasets and the
approach to express them in a more specific manner with geometry/topology. Based upon the
more specific expressions, attempt is given to formulate constraints in an OCL-like manner in
Chapter 6. Chapter 6 also discusses an open issue of translating OCL into database language
- SQL. Chapter 7 gives the implementation details of several constraints in Oracle database
using triggers and procedural code. A new 3D function developed to convey detailed surface
topological relationships is also described in this chapter. The visualisation of constraints are
tested in Bentley Map and Python IDLE. The snapshots are given in chapter 8. Chapter 9

contains the conclusion, and discusses future work and recommendations.
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2
B A C K G R O U N D I N F O R M AT I O N

To carry out this research, a few tools are important, regarding the object modelling, constraint
implementation and visualisation of 3D object. Section 2.2 shows how UML can conceptualise
modelling of city objects/classes. Oracle Spatial as a database that store 3D models (as was
introduced in section 1.1) and provide means to maintain cleanness of data will be discussed in
section 2.3. Bentley map as a graphic CAD/GIS software that can visualise and edit 3D objects
is also talked about in section 2.4.

2.1 citygml

As an extensible application schema of Geography Markup Language 3 (GML3), CityGML is
issued as a standard by OpenGIS. A rich amount of both geometry and semantics information
of urban objects could be modeled by CityGML core model, e.g. terrain, building, water body,
transportation, vegetation, land use and city furniture (like lamp, electricity pole etc.). For
example, trees as city vegetation object not only have the coordinates of their branches and
trunks, but also have attributes such as class, function, species, height, trunk diameter and
crown diameter. The model will be more meaningful and realistic, if rule as ’tree cannot float
in the air but attached on the terrain surface’ is given. Since the core modules of CityGML is
designed by Unified Modeling Language, it’s easy to extend with new classes and attributes, e.g.
Application Domain Extensions [CityGML, 2010]. Some extensions have been implemented in
concept of CityGML, such as geological features [W. Tegtmeier, 2003] and building information
modeling(BIM) [van Berlo and de Laat, 2010].

CityGML also supports multi-resolution modelling with Level Of Detail (LOD), which is
applicable from large areas to small local regions and to increase/decrease the complexity
in representing 3D objects. Taking the building model as an example (see figure 1). LOD1

building is simply an extrusion of 2D polygon (like block or solid), so the roof and walls are
completely flat. LOD2 building has more detailed roof and wall representations (like curve,
sharp tower top or any other kind of shape). LOD3 building allows to view the openings,
like window and door, and texture of the exterior. LOD4 building gives the furniture, ceiling,
room wall and floor in the building interior. Once LODs are involved, the same object can
have geometry represented in different detail levels, thus will lead to different definitions on
possible/impossible topological relations. For example, a block with flat roof top in LOD1 does
not overlap with some other structures overhead, but actual roof in LOD2 would form a spiky
tower and overlap with other structure. Section 5.1.4 has more illustrations and discussion
about LOD issue.
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2.2 uml

Unified Modelling Language (UML) is a standardised modelling language for object-oriented
system development. It offers diagrams that specify, visualise, modify, construct, implement,
document and analysis the objects and their relationships.

The urban environment is a complex environment contributed by many types of objects/at-
tributes and relationships. When modelling them to the digital system, e.g. database system,
class diagram is needed. Class diagram describes the structure of a system by showing the
system’s classes, their attributes, operations/methods and the relationships amongst the classes.
A class is a set of identified objects sharing similar properties. The description in diagram gives
the name of class, its subclasses and superclass, instances and their attributes.

The relationships in UML that are useful to for city modelling are generalisation, association,
aggregation and composition.

• Generalisation: indicates one class (the sub-class) is taken as a specialised form of the
other (the super-class) and the super-class is a generalisation of sub-class. In practice,
an instance from the sub-class (sometimes called child) is also an instance of super-class
(parent). For example, a house is a type of building; an oak is a type of tree. Moreover,
the sub-class can have properties (inheritance) from super-class.

• Association: depicts the static relationship shared amongst the objects from two classes. It
can work between two objects or amongst multiple objects. Binary associations can be
drawn as a line, with each end connected to an class box. Example ’a professor gives
lectures’ is a binary association relation. In terms of reading order, association have
several different types, bi-directional and uni-directional are the most commonly used. A
bi-directional association can be read from both ends, whilst uni-directional must be read
in a particular direction. An example of uni-directional relation is ’A person owns a house
as his property’ or ’A house belongs to an owner’. The marriage relation ’married-to’
between a couple applies to both ends (husband and wife) and thus is a bi-direction
association. An association can be named, and its ends can be annotated with multiplicity,
visibility, ownership indicators and other properties.

Figure 1.: Building models in different LODs in CityGML from [Kolbe et al., 2009]
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• Aggregation: denotes a binary association, in which one side means ’the whole’ and the
other side ’a part’. An example as such is ’an audio system can be aggregated by CD
player, record player, tuner, headphones, speaker and amplifier’.

• Composition: is a sub-type of aggregation but more emphasises the ’owns a’ relation. The
existence of ’a part’ is dependent on the existence of ’the whole’. For instance, a car has an
engine is more appropriate to be modelled by composition because a car cannot function
without an engine. The audio system example above is better illustrated by aggregation
because the individual components of the system can exist and function well without the
system.

As presented in figure 3, [Borrebæk and Myrind, 2005] gives a formal topographic mod-
elling schema which defines separate classes for geometric and thematic/temporal attributes
(originated from General Feature Model [ISO, 2005]). In the work of [Alberto Belussi, 2004]
this method is reformulated to describe the geometric and non-geometric attributes in one
class. In figure 3 the spatial attributes of the two feature classes are described as attributes of
the classes with geometric domain: both the geometric types have a prefix ’GU_’. The UML
<< BelongsTo >> stereotype transforms the ’RoadInNetwork’ association into a ’BelongsTo’
spatial association.

Figure 2.: A proposed UML application schema to model roads (from
[Borrebæk and Myrind, 2005]). The geometric attribute and thematic/tempo-
ral attribute are modelled in separate classes.

Figure 3.: A proposed UML application schema to model roads from [Alberto Belussi, 2004].
The spatial attribute of a feature type is described within the class.
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2.3 oracle

As was introduced in the section 1.1, Oracle Spatial 11g shows a growing interests in 3D database.
The other characteristic of interest in this thesis about Oracle is its database mechanisms to
allow the realisation of constraints. Two mechanisms are important for this research, exception
(or run-time error) and trigger.

• Exceptions: can occur because of design faults, coding mistakes, hardware failures, and
many other sources [Ora, 2010a]. The user-defined exception (Raise and Raise_Application_Error)
declared in subprogramme or package can be raised when a constraint is found violated.

• Trigger: can react upon a certain event happening in run-time. It can call the procedures
(which is coded with user-defined error) to enforce complex business rules, like geographic
constraints. Whenever a trigger causes a run-time error, the whole transaction the
triggering statement is executing is cancelled, and thus keep the existed data clean.

A simple trigger can fire before or after the data modification event, and whether it runs for
each event (statement-level trigger) or for each row (row-level trigger) affected by the event. If
two or more triggers with different timing points are defined for the same statement on the
same table, then they fire in this order:

• All BEFORE statement triggers

• All BEFORE row triggers

• All AFTER row triggers

• All AFTER statement triggers

When something causes an error, the control in executable part of PL/SQL block stops and
then is transfered to exception-handling part. After an exception handler runs, the message
is given and control goes to the next statement of the enclosing block. If there is no enclosing
block and the exception handler is in a subprogramme (e.g. procedure), then control returns to
the invoker, at the statement after the invocation.

One property about trigger is that if a table-trigger involves modifying more than one table,
when an error is raised all modifications are cancelled. One other issue to notice is the place
to have COMMIT command when DML inside a loop may cause run-time error. In practice,
when a DML statement is inside a loop and COMMIT command outside, raising of error will
roll back the effect from the whole loop. That is, even the correct modification will have to be
rejected along with the incorrect.

To avoid the unexpected rejection of correct records, COMMIT command should be placed
inside the loop so that DML effect is realised one row after the other (see the SQL statement and
error message in table 4 from section 7.2.4). One must beware of this property when modifying
a set of records. If these records should be seen as elements of one master object (like surfaces
that enclose and form a building), it is recommended to place COMMIT outside the loop. If
they should be treated separately (e.g. observations from different stationary sensors) then
COMMIT should be placed outside the loop.

A scenario of possible data change is that somebody updates the geometry of a building
surface. A trigger checks the possible intersection between this surface geometry and other city
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objects. Objects in the local neighbourhood (e.g. the trees planted nearby, road that is on the
side of the building, and other adjacent building) are most likely to be intersected by this new
geometry. To find out these neighbours, a select query should be carried out. But a row-level
trigger prevents the querying of the table that the trigger statement (here it is UPDATE) is
modifying. One of the adoption is to use compound trigger. The other is to use INSTEAD OF
trigger for views, which is not affected by the mutating-table restriction.

One thing to notice is that outside run-time error messages, DBMS_Output package in
Oracle database system enables generation of more flexible messages, [Database, 2010]. The
package is typically used for debugging, or for displaying messages and reports. The analysis of
topological relation, warnings of suspected violation (e.g. the ’should’ cases) and any detailed
information outside of error message are visualised and retrieved by these functions.

2.4 bentley map

Bentley Map is a desktop CAD/GIS software which is used to map, plan, design, build and
operate infrastructure. It enhances the MicroStation capabilities in precise geospatial data
creation, maintenance and analysis. An important feature when it comes to 3D city modelling
using Bentley is that it supports native 3D objects in Oracle Spatial and has smart 3D object
editing tools [ben, ]. Thus it is often used to visualise and modify the 3D objects that are in
Oracle database. One can connect to Oracle via Bentley Map connection (without registering a
project) or via Bentley Geospatial Administrator, which uses XML feature modelling (XFM). The
latter provides a more interactive graphic application to view the tables, views and attributes
that store 3D city models. A feature-locking mechanism ensures a consistency of data under
multi-user environments.

In the graphic user-interface of Bentley Map, Oracle error message is visible. One can edit
the geometry of an object in the GUI and then ’post’ it back to Oracle. This ’post’ is equivalent
to an ’update’ statement in the database and trigger can react upon it. In this manner, when
constraint check is coded in trigger, a ’post’ of incorrect data modification will launch it and
error message of database will be shown in ’Message Center’ of Bentley Map. So one will
beware of the rules defined in database system.
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3
R E S E A R C H O N C O N S T R A I N T S

Various research project concerning geographic constraints can be found when studying lit-
erature. Although hardly anything is said about 3d geo-constraints, references to general
constraints or geo-constraints in 2D/2.5D do exist and they pave the way for extending the
current state-of-art of constraint into a higher dimension. Some aspects of expressing constraints
in natural language are found in section 3.1. Two ways of stating the same constraints are intro-
duced and a general rule is presented to keep the constraint statements brief. And exceptions
to specific constraints will introduce a new class of constraints. Both ways will be addressed in
the expression of 3D geo-constraints. Section 3.2 talks about classifying geo-constraints which
can group the constraints into a clear structure. And different methods of modelling constraints
under some applications are reviewed in section 3.3, in which OCL is found to be the most
suited geo-constraint modelling tool.

3.1 constraints in natural language

Defining geographic constraints by natural language is a challenging task. Natural language
is not formalised as is machine language and it is very much dependent on the individual.
The words that a person uses to describe the same phenomenon can be very different from the
words used by another person. And a word in natural language can mean different things. Not
every rule can be expressed as clearly and precisely as some non-geographic rules can, e.g. ’a
book from the library can only be lent to one person at a time’, or ’the grade of a supervisor
must be higher than his supervisees’ grade’.

Take the statement ’a road cannot cross a building’ as an example. In the real world, there are
innovative architectural designs where a building appears to be crossed by a road (see figure
4(a)).

Here, three things need to be clearly defined, ’what is a building?’, ’what does cross mean?’,
and ’what is a road?’. Under the definition:

• A building: is a structure consisting of a set of surfaces that divide the whole space into
buildings interior and exterior;

• A road: is a path that allows vehicles to travel along it at a certain speed;

The event this rule means to forbid is rephrased below. Notice the ’through hole’ is not on
the building ’interior’.

”A road that has a part in the building ’exterior’ has the other part entering into the building
’interior’, and thereby allows the car to pass through the rooms (imagine a traffic light flashes
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in your office)”.

Then this figure is not a problem, because the ’hole through the building’ is on the exterior
and the road does not go through any room in the building (see figure 5).

(a) The road appears to ’cross’ the building. (b) The building appears to be float-
ing in mid-air.

Figure 4.: Conditions that are difficult to describe using natural language.

Figure 5.: Geometric model for figure 4(a). A is a road surface ’through’ the hole in solid
building B. In this case the rule ’road A cannot cross building B’ is fulfilled (i.e.
TRUE).
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3.1 constraints in natural language

Table 1.: Comparison between forced and restricted forms of constraint
Forced statement Restricted statement
grass that belongs to roof greening
must be placed on the roof of a
building

grass from roof greening cannot be
laid on the ground/underground,
on any of: road, water, bridge, park,
sport fields, and so on

a road must always go around,
above, below, etc. a building

a road cannot cross a building

two trees must be placed with more
than 2 meters in between

two trees cannot be placed at a dis-
tance of less than 2 meters

any piece of land must have a land-
use type

a land cannot be without a land-use

The other example is the relation between building and terrain, ’a building should not float
in the air’. For the building that stands on poles, this statement is not very clear (see figure
4(b)). The main body of the building, in other words the rooms (space) that are (is) lived in
by people and enclosed by walls, roof and floor appear to be a certain distance above the
ground. Someone who interprets the building’s location by its rooms’ location may perceive
it as a floating building. Therefore it is difficult, if not impossible, to avoid confusion when
formulating constraints merely by natural language.

3.1.1 Forced and Restricted Specifications

There are basically two ways to formulate a constraint in natural language, forced (positive:
must be / always have to) and restricted (negative, cannot / must not) [Louwsma, 2004]. Some
constraints stated in one way would appear to be much more clear and effective than stating
them in the other. For example, the condition ’grass always has to be green’ has the same
meaning as ’grass cannot have the colour black, white, gray, blue, red, yellow, purple’. The
former is a forced way and is much briefer than the latter, the restricted. As you may notice,
what matters is the number of defined situations/values. ’Grass colour should be green’ only
defines one situation, whilst the other way defines many situations. When using the latter, it is
also more likely to forget to mention a possibility that must be constrained (e.g. ’orange’), not to
mention that there are more restricted cases in the real world than the capacity of enumeration
(e.g. more unnamed colours that grass cannot have).

Table 1 gives a comparison of constraints formulated in forced and restricted ways. In
example 1, the description is much briefer in the ’forced way’ than in the ’restricted way’, whilst
in example 2 it is vice versa. In example 3 and 4, the two sides do not have much difference in
complexity. In order to reduce the complexity of constraint specifications, a constraint design
principle is that:

’all constraints should be compared using both methods. The method that requires fewer
values should be used’.
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3.1.2 Severity and Exception

A city can be a complex environment with various kinds of phenomena. Some conditions do
not have to be strictly forbidden for the whole city. They may in general be unusual or irregular
but in certain cases can nevertheless happen. For instance, in most cases, the condition ’a tree
and a building have at least 2 meters distance between them’ is satisfied. But in some specific
instances, the tree just leans on the wall or stands closer to a building than the allowed distance.
It is good to reveal the common distance relation between building and tree and keep the
distance, but it is difficult to give a clear-cut rule which describes all situations that have to be
rejected.

Exceptions are therefore introduced to make constraints more usable and realistic. Instead of
using ’must be’ or ’cannot have’ and the exact value, this example distance rule can be stated
using ’should be’ as:

’a tree and a building should be 2 meters apart’.

The ’should be’ constraints can accept violating instance when the specific instance is explicitly
marked as an ’exception’. In other words, the enforcement of ’should be’ constraints is the
same as ’must be’. The only difference is that ’should be’ can be by-passed when an instance is
exceptional. This idea is implemented, as will be described in section 7.2.2.

In order to broaden the results to more generic city models, constraints within this thesis
will be divided into two groups, ’do not accept’ (i.e. never accept) and ’accept based upon
the exception’. The former group consists of constraints that in no way can be excused (see
also constraints in the column ’Do not accept’ in table II from appendix A.2). The latter
group consists of constraints that allow exceptions (see column ’Unusual but accepted’ in the
same table). In expressions of natural language, the forbidden constraints will be stated with
words such as ’must/must not’ and ’can/cannot’, and the excusable constraints will use words
’should/should not’, ’may/may not’ and ’is better to be’.

3.2 classification of constraints

A single real world object can be described by its geometry, property and appearance in the
computer system.

• Geometry: (sometimes also called ’spatial property’) indicates an object’s location, orien-
tation, size, shape, etc. that can easily be seen by eyes.

• Property: (or non-spatial property) describes the function, usage, meaning, class and so
forth. It can be further categorised as:

Thematic: to specify the meaning of an object and what it stands for (or how to
classify and name an object in different application themes).

Temporal: to describe, represent, reason about time factor. A temporal property can
mean a point or a period on the time line.

• Appearance: or visualisation properties, namely texture, colour, lighting and etc., is how
close the depicted digital model is to the real object.
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For two objects or multi-objects a relationship often delivers useful information. Spatial
relationships, which includes topological relationships and metric relationships and temporal,
quantitative relationships will be discussed in the next subsection.

Depending on how many objects are involved, objects’ relations can be binary relations (two
objects), or multiple relations (more than two objects). The object relationships explained in this
section only deal with binary relationships and are expressed outside the description of indi-
vidual classes. The object relationships can also cover aspects of spatial (local neighbourhood),
thematic/semantic, temporal, and quantitative properties.

3.2.1 Spatial Relationships

The spatial relationship unveils the interrelation and connection between objects in the geometric
round. Not only the absolute position of an object is known, e.g. longitude, latitude and height;
but also the relative location, namely how it relates spatially to its local neighbours. According
to [Egenhofer, 1989], spatial relationship can be formalised by:

Topological relationships: invariant regardless of topological transformations, such as scaling
and rotation. Disjoint and neighbour are examples as such. Spatial order and strict order
relationships: rely on the definition of the order. For example, behind is a spatial order relation
with the converse relationship in front of. Likewise, below is a spatial order relation reversed
w.r.t. above.

Metric relationships: exploit the existence of measurements, e.g. distances and directions.
For instance, ’5 meters above the ground’ is a distance measurement and ’in the south of city A’
is a directional measurement.

Topological and metric relationships are described with more details below.

• Topological relationship
A commonly seen topology model within the geo-information models uses topological
primitives, interior, exterior and boundary to describe the interrelation between objects.
The interior, exterior and boundary of object A are denoted as A◦, A−, ∂A and those of
object B are B◦, B−∂B, respectively. The combination of pairwise intersection results in 9

intersection as:

R(A, B) =

 A◦ ∩ B◦ A◦ ∩ ∂B A◦ ∩ B−

∂A ∩ B◦ ∂A ∩ ∂B ∂A ∩ B−

A− ∩ B◦ A− ∩ ∂B A− ∩ B−


The 9 intersection model can be used for both 2D and 3D. There are many possible
relations and some are impossible to be described or distinguished by the 9I model and
so they are not discussed here. Figure 6 shows an example that cannot be distinguished
by 9I. However, according to [Eliseo Clementini and van Oostero, 1993], the dimension of
intersection can be extended from the 9I model with different dimension values in each
set. Theoretically this gives 59 topological relationships, although many of which will not
exist in reality.

– �: empty intersection.

– 0D: point intersection.

– 1D: line intersection.
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– 2D: surface intersection.

– 3D: volume intersection.

Therefore, the two cases in figure 6 can be expressed in 2 different matrices as (first matrix
shows the case in the left ’point intersect’ and second matrix shows the case in the right
’line intersect’):

R(A, B)(le f t) =

 � � 2
� 0 1
2 1 2



R(A, B)(right) =

 � � 2
� 1 1
2 1 2



Figure 6.: The two cases cannot be distinguished by the 9I model but can be by the Dimension
Extended Method (DIM).

The commonly seen terms (in 9IM) ’disjoint’, ’overlap’, ’meet’ (or touch), ’inside’, ’equal’,
’cross’ between 2D object A and object B can be defined by the following topological
primitives (see figure 7):

1. If the interiors and boundaries of objects A and B have no intersection at all, then their
topological relation is disjoint.

2. If part of the interior and boundary of object A intersects with part of interior and
boundary of object B, then these two objects intersect.

3. If the boundary of object A intersects with boundary of object B, without any intersection
in the interiors, then their relation is meet (or touch).

4. If the complete interior and boundary of object A intersects with only the interior of
object B, then object A is inside object B.

5. If both intersections of boundary and interior are not empty whilst the two boundary-
interior intersections are empty, then the relation is named equal.

6. If two objects have common interior and no intersection in the boundaries, then they
have cross relation. The cross relationship only applies to line-line and line-area situations.

Egenhofer [Egenhofer, 1995] give definitions of terms disjoint, contains, inside, equal,
meet, covers, coveredBy and overlap to identify solid-solid relations in figure 8.

• Metric Relationship
Metric relations depict measurements in space, such as direction and distance. These
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relations need a referential origin and scale. The distance is a value measured between
two objects by a scale (or unit). In addition to units, a ratio scale of distance can be
specified by ’closer than’, ’further than’, or ’between’. For example, a railway is narrower
than 5 meters, a tree is ’taller’ than 2 meters, and a dike is ’in between’ 2 to 5 meters
above the sea level. Or a town hall is ’close to/far from’ the city center can also give an
additional hint about the distance between the two objects.

Directional relation is the position of an object in comparison to another object. The
reference can be to an object in the relation, or to some origin defined within a certain
coordinate reference framework. It also requires an azimuth, e.g. in degrees in the range of
[0◦, 360◦], or a description in natural language, North, South, East, West, or a combination
of these four primary words. Since 3D objects have height information, the relationship
’below’/’above’ is useful in order to specify the relative position in the third dimension.

For point objects it is easy to identify the directional relation and distance. For non-point
objects, the directional relation is calculated by the centroid of the objects. The centroid
has to be clearly defined, e.g. for a circle object it is the point equidistant from the points
on the edge. And the closest distance from any point in one object to any point in the
other object is the distance between these two objects.

Figure 7.: Topological relations in 2D

Figure 8.: Topological relations between two 3D solids

17



research on constraints

3.2.2 Temporal Relationship

A time can be either described by a timing point, e.g. the moment when an event takes place
or a period of time (time interval), e.g. how long the event lasts. A timing point can be
’before’, ’after’ or ’the same as / equal to’ the other timing point. For a relation between a
timing point and a period of time, the timing point can be before the period starts, after the
period finishes, at the beginning point of the period, during the period or at the ending point.
[Kwon et al., 1999] defined a prototypical model to describe temporal relations between two
time intervals (periods). Given two intervals, there are seven distinct ways in which they are
related. These relations (known as Allen’s relations) are: before, meets, overlaps, finishes, during,
starts and equals (figure 9). To make the time point more clear, the terms ’finishes’ and ’during’
can be replaced by finished-by and during-until, respectively.

Figure 9.: Temporal relations between two time intervals from [Kwon et al., 1999]

As was found in [van Oosterom et al., 2002] [Jun and Jie, 1998] [Raafat et al., 1994], temporal
models can largely help manage the historical data. Take urban design as an example, the
land-use type of suburban areas may change through the years. By comparing the land-use
map from different years, the urbanisation process could be monitored. A constraint ’A piece
of land cannot have different land-use types at the same time’ would avoid confusing different
historic versions of the same piece of land. Because the time factor has nothing to do with the
spatial dimension, the same description about time can apply to objects in both 2D and 3D (e.g.
the age of a building).

Examples of other temporal constraints are ’the lifespan of a water pipe is less than 100 years’
and ’the duration of the sunshine recorded by a solar panel in the winter time should not
exceed 8 hours’.
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3.2.3 Thematic Relationship

There are relationships that deal with the meaning, function, usage, class, etc. of an object. A
building structure could be interpreted differently in various themes. It can be marked as a
house in the cadastral registry; a hospital in the emergency calling center; a node in the network
inside the system of an electrical plant. The thematic relation only deals with the meaning of
an object and its relations to the others in a certain application. If it is modelled in the cadastral
theme, then it must have an address containing the name of a road, which is geometrically
connected to it.

3.3 modelling geo-constraint

There are various ways to model geographical constraints. They are different from the usual (or
other types) constraints. Three of them are studied in this section: ontology, GML and OCL.
Example rules that are modelled by them are given under each subsection. Some of them come
from application cases that are running in real systems, whilst some others come from data
specifications at a conceptual level. OCL is found to be the most commonly used approach for
modelling geo-constraints. An attempt to use OCL for expressing geo-constraints will also be
described in section 6.1.

3.3.1 Ontology

Ontology in theory is defined as a ’formal, explicit specification of a shared conceptualisation’
[Gruber, 1993]. In information science it is a formal representation of knowledge as a set of
concepts within a domain, and the relationships between those concepts. Common components
of ontologies are: individuals (instances), classes (concepts), attributes, relations, function terms,
restrictions, rules, axioms and events. The business logics or constraints in ontologies are
defined by components Rules and Axioms. Rules are statements in the form of an ’if-then’
sentence that describe the logical inferences that can be drawn from an assertion in a particular
form. Axioms are assertions (including rules) in a logical form that together comprise the
overall theory that the ontology describes in its domain of application.

In the paper from [Mas et al., 2005], a system in a mobile device to do field data capture is
realised with constraint check by ontology. A rule that means ’a clearing is always within a
forest’ can be described as:

<ruleml : imp>
<ruleml : _body>

<swrlx : classAtom>
<owlx : Class owlx : name= ’ ’ Clearing ’ ’ />
<ruleml : var>x1</ruleml : var>

</swrlx : classAtom>
<swrlx : classAtom>

<owlx : Class owlx : name= ’ ’ Forres t ’ ’ />
<ruleml : var>x2</ruleml : var>

</swrlx : classAtom>
</ruleml : _body>
<ruleml : _head>
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<swrlx : individualPropertyAtom swrlx : property = ’ ’ within ’ ’ >
<ruleml : var>x1</ruleml : var>
<ruleml : var>x2</ruleml : var>

<swrlx : individualPropertyAtom>
</ruleml : _head>

</ruleml : imp>

3.3.2 GML

Geography Markup Language is an XML grammar defined by OGC that has a set of standards
for the encoding and transmission of spatially referenced data. It provides a rich set of XML
based schema for describing spatial data, including geometry, topology, coordinate systems,
coverage and grids, temporal data and observations [ISO, 2010]. In application GML is often
extended from the base abstract feature model to a user defined application schema.

In the work from [Reeves et al., 2006], a set of traffic rules regarding geometry is modelled
in GML 3.1. They develop an application schema for UK zebra crossing regulations with
extended geometry types such as offset lines. The width and min/max value of ’Zebra Stripes’
that occur along the center of the road marking in figure 10 are modelled by custom feature
level parameters ’StripeWidth’, ’sfr:min’, ’sfr:max’ in GML fragment shown in figure 11. The
parameters ’StudOffset’ and GivewayOffset’ are used to hold the offset distances of the stud
lines and giveway lines from the edge of the zebra stripes respectively. A single polyline is to
represent the center of zebra crossing, around which the other elements in its geometry are
positioned.

Figure 10.: UK Zebra crossing regulations from [Reeves et al., 2006]

3.3.3 OCL

Object Constraint Language (OCL) is a notational language to build and analyse software
models. It is a standard ’add on’ to the UML diagram standardised by the Object Management
Group (OMG). Every expression written in OCL relies on the types (i.e. the classes, interfaces,
properties, relationships) that are defined in UML diagrams.

Expressions written in OCL describe the important information of the modelled artefacts.
This information cannot be expressed in a UML diagram. With the help of OCL, queries,
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referencing values, or stating conditions and business rules in a model can be written in a clear
and unambiguous manner [Warmer and Kleppe, 2003].

The link between an entity in a UML diagram and an OCL expression is called the context
definition of that OCL expression. Context definition specifies the entity for which the OCL
expression is defined. This is usually a class, interface, data type or component. Sometimes it is
an operation or an instance. Each OCL expression is written in the context of an instance of a
specific type. Some other commonly used notations (operations) are:

• Self: is used to refer to the contextual instance. For example, if the context is a Flight, then
self denotes an instance of Flight. The attribute seat, which tells how many seats are in a
flight, can be denoted as self.seat.

• Implies: appears as notation ’a implies b’. It states that the result of the total expression is
true if the first Boolean operand (a) is true, and the second Boolean operand (b) is also
true. If the first Boolean operand is false, the whole implies expression always returns
true (does not really check the second operand).

Some predefined functions are:

• isBefore: has syntax a.isBefore(b), in which a and b are both date time type. It returns
true is time a is before time b.

• isAfter: is reversed function of isBefore.

Figure 11.: Representation of the XML instance defining a Zebra Crossing as in UK regulations
from [Reeves et al., 2006]
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• substring: has syntax substring(str,n,len), which returns the substring of a string str that
begins at the nth character and is of length len.

One of the commonly used OCL symbols is ’:’, which specifies the type casting. For example,
p:Integer means p is an integer type. Arrow operator ’->’ is another commonly seen symbol,
which indicates a collection operation. It is often placed before a collection operator, like ’size()’
(calculate the number of elements) and ’sum()’ (calculate the addition of all elements in the
’()’). The following are operations that often appear with ’->’, which evaluate if the collection of
elements passed into them is true for a certain expression. Other operations that work with
collection are [Warmer and Kleppe, 2003]:

• Exists(expr): evaluates to true if at least one element that are passed into this notation
returns true in the expr.

• forAll(expr): returns true if expr is true for all elements from source collection.

• isEmpty(): returns true if the collection returns no element.

• notEmpty(): returns true if the collection returns at least one element.

Some useful types of the OCL expression are invariants, pre-conditions, post-conditions.
[OCL, 2010a]

• Invariant
An invariant, denoted by inv, is a Boolean type expression that returns true if the invariant
is met. It can be used to restrict all instances of class, type or interface. An invariant must
true all the time. To specify a flight with type ’A02’ can only have max. 200 seats, an
invariant can be formed as:
inv: self.type = ’A02’ and self.seat <= 200

• Pre-condition
A pre-condition is a Boolean expression that must be true at the moment when the
operation is about to be executed. If a pre-condition is not met the operation will not be
executed.

• Post-condition
A post-condition is a Boolean expression that must be true at the moment when the
operation ends its execution. The post-condition must evaluate to true, otherwise the
operation has not executed correctly.

A few research papers show the possibility of using OCL+UML as a geo-constraint mod-
elling and formalisation tool with necessary extensions. Examples as such can be found
in agricultural sewage sludge monitoring systems from [Pinet et al., 2007], tree planting sys-
tems [Louwsma et al., 2006], land administration [Hespanha et al., 2008], part of a spatial data
infrastructure GRID project [Werder, 2009]. As well as fundamental concept in [INSPIRE, 8 26].

The paper from [Duboisset et al., 2005] shows they integrate the 9 intersection model into
OCL to specify topological constraints. One example is ’each town hall building b associated to
a town t must be spatially inside t’:
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context Town_Hall_Building
inv: self.geometry -> Inside(self.Town.geometry)

This constraint must be satisfied for each Town_Hall_Building instance (denoted by self).
And the ’self.Town’ returns the Town instance associated to self.

Another extension of OCL called GeoOCL from [Werder, 2009] also gives interesting exam-
ples of OCL expression, e.g. having minimum length or maximum curvature. The operator
maxCurvature returns the max curvature in degrees.

context Breakline
inv: self.geometry -> length() >= 10

inv: self.geometry -> maxCurvature() < 70

Another constraint states that noise abatement walls are disjoint from street geometries.
context NoiseAbatementwall

inv: Streets.allInstances() -> forAll(s:Street | s.geometry -> disjoint(self.geometry))
In INSPIRE data specifications, which are shared and applied within EU countries, differ-

ent OCL expressions appear to be spatial-related as well. One example can be seen in the
specifications for Addresses [INSPIRE, 4 26a].

A constraint ’AddressCountry’ specifies ’An address must have an admin unit address
component spatial object whose level is 1 (Country)’ is expressed in OCL as:
inv: self.component -> forAll (a1 | exists(a1.parent.oclIsTypeOf(AdminUnitName) and a1.parent.level
= 1))

The other example is from the Cadastral parcels specification [INSPIRE, 4 26b] for geometry
type. Constraint ’geometryType’ specifies that ’Type of geometry has to be GM_Surface or
GM_MultiSurface’ (ISO19107 spatial types) in OCL which can be expressed as:
inv: geometry.oclIsKindOf(GM_Surface) or geometry.oclIsKindOf(GM_MultiSurface)
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4
3 D C I T Y M O D E L

As was discussed from last chapter, spatial constraints can apply to geographic objects, their
attributes, and relationships between them. These features in the model have to be closely
examined before constraints can be defined. This research means to design generic constraints
that can serve a broad scope of city modelling. Based on this motivation, the database from
Climate-City-Campus project that models general topographic objects in urban environment is
selected to design constraints from.

The CCC mission is introduced in section 4.1. In order to achieve this goal, a database is built
by students, and the useful objects and their attributes in campus for climate study are stored.
The selection of objects will be told in section 4.2. The attributes (spatial and non-spatial) and
relationships chosen to design constraints from are discussed in section 4.3. Relating to this
section, an attempt of data specification for general city objects, from which the constraints can
be developed, is presented in table I - ’Normal Situations’ in appendix A.1. This specification
attempt can be refined, considered and integrated to CityGML core model.

4.1 ccc mission

Urban climate refers to climatic conditions in an urban area that differ from neighbouring
rural areas or large scale, i.e. national and global scale. When performing research about
urban climate, the study area is limited in several kilometers, namely the local area and micro-
scale phenomena. Micro-climatic effects of the city objects can be identified and so are of
significant interests. The topography, building materials, plants, roads, people, water body and
so forth, greatly influence the local region and its micro-climate situation. When these different
scales (micro, local, regional, national and global) come to integrate in a model, the boundary
conditions (continuity and consistency) needs to be considered. All these different types of
objects, and concerns about modelling a city, raises a need to have storage being capable of
handling geometric and thematic characteristics in an efficient manner and consistent.

On the other hand, urban climate is a spatio-temporal entity. Or it can be said it is a 4

dimensional phenomenon (3D space + 1D time). For instance, the temperature at street level
would be different from the temperature at the roof level. And the influential parameters vary
not only with location but also with time, e.g. the same road would experience different carbon
dioxide densities in one day, depending on the traffic flows in the peak time and non-peak time.
Collecting climatic data therefore requires a sensor to take measurements with a time factor
and a position factor, i.e. a mobile platform with sensors.

CityGML is chosen as a storage model to fulfill all the CCC requirements. It is an information
model to represent 3D urban objects, which also considers multi-scales modelling. Although
it does not define constraints, the classes and relationships of objects in a city, including their
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geometric, topological, semantic and appearance characteristics are modelled (also see the
hierarchy in figure 12).

• Spatial Model
With four levels of detail (LODs) for building and terrain, the same object can have
multiple geometries and thus allows climate research in different scales. This exactly fits
the CCC mission. For example, a building can be treated as an extrusion (cube) without
any distinctions on roof/wall surfaces, or a structure consisting of different surfaces.
The cube model would be sufficient to simulate the wind flow passing through local
neighbourhood, but not detailed enough to enable study of radiative transfer in different
sides of building. Spatial model also describes relationship between different geometric
primitives and how they aggregate to more complex geometries in different dimensional
levels. Several single points form a multi-point object (0D), likewise do a group of solids
form a multi-solid object (3D).

• Appearance Model
The appearance model provides means to store and manage appearance attributes of
an object, namely observable properties of surfaces. Examples of such information are
visible properties as texture and colour, and non-visual properties, i.e. material (shininess,
transparency, etc.). This is the model to store static climate parameters such as reflectivity,
heat capacity and roughness.

• Thematic Model
The 3D topographic data in a city is categorised by themes in CityGML. One theme
models a type of object. For instance, the building theme store spatial and non-spatial
information about building objects. Other themes are transportation, waterbody, landuse,
vegetation, etc.

4.2 object selection

From the study of Geomatics Synthesis Project [Geomatics, 2010], building, tree, terrain, road,
grass, water are found that would largely influence climate condition in urban area. Buildings
have their multi-geometry in all levels of detail (LOD1-LOD4), seemingly from extrusion to
walkable interior environment, in which different roof shapes and surface material is identifiable.
A tree has 1 level of detail (LOD2) and can be attached with a certain species. In this LOD tree
is a ball-like convex hull, which shows the crown shape. A species has information about its
size, age and vegetation parameter i.e. leaf area index (LAI), normalised difference vegetation
index (NDVI). Terrain is stored with 2 LODs, the coarser models the whole study area (almost
flat) whilst the finer models two small hilly neighbourhoods (near Mekelpark). Road, grass and
water are derived from TOP10NL 2D maps and stored as land use theme in the CityGML.

Sensor as an input of the climatic parameters is of significant interests in urban environment
study. By the time the synthesis project finished, the university was found having some weather
instruments on almost every building roof. Outside the campus, a fully equipped weather
station is accessible in the botanical garden. These weather sensing platforms are connected to
servers and give real-time data. On the other hand, sensing data from mobile platforms, along
with the location and measuring time of each record, were measured and stored using CityGML
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model. In section 6.1 a generic rule for sensors will be abstracted to ensure the smaller value
change in time.

Beside the positioning and tracking devices that can pinpoint a sensor and moving path of its
platform, sensors that could be used for climatic parameters measurements are categorised as:

• Thermometer - temperature sensors: can be either mobile or stationary and can tell the
temperature in the air. From the physics point of view, too fast changes of temperature in
time or space are not possible.

• Barometer - barometric/air pressure sensors: can be fixed or carried in moving platforms,
but usually are installed on fixed/ground-based weather stations. They are used to
measure atmospheric pressure in the means of water, air or mercury. Since air pressure is
a larger scale (than campus scale) phenomena, sudden pressure change in the campus
area may not be correct.

• Hygrometer - humidity sensors: can be put on mobile or static platforms. They measure
relative humidity, that is the amount of water vapour in the air. The relative humidity
indicates the likelihood of precipitation, e.g. rain, dew, fog, etc. and evaporation and is
closely related to the temperature.

• Anemometer and Wind vanes sensors: are found in static weather stations. They measure
wind speed and thus shows the wind pressure difference. Wind vanes are devices to tell
the direction of the wind and are usually placed at the highest point of a building.

Figure 12.: An overview of CityGML hierarchy from [Kolbe et al., 2009]. Every city object has a
geometry (described in Spatial Model), a visualisation property (Appearance Model)
and belongs to a certain class (Thematic Model).
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• Rain gauge - precipitation sensors: are normally fixed in weather stations. A rain gauge
gathers and measures the amount of liquid precipitation over a set period of time. It is
important to control the amount of water reaching the ground and whether this amount
meets the need for vegetation.

• Disdrometer - drop size sensors: are found in fixed weather stations. A disdrometer is an
instrument used to analyse rain by measuring the drop size distribution and velocity of
falling hydrometeors.

• Pollution sensors: can be either fixed or mobile. Pollutants are known as substances in
the air that are harmful to humans and the environment, e.g. CO2 and fine dust. The
pollutant can either stay in the air as gases, or cause ground contamination when it
reaches the ground as solid particle or liquid drop.

4.3 the city model in ccc

Some object, geometries or properties do not exist in current CityGML, but from the CCC
model and constraint point of view, it it necessary to have them. Based upon the concept of
influential factors and objects in urban climate, and core model of CityGML, a city model for
constraint study is given in the following section. Including description of different geometries
that an object is often modelled with, and the generic properties that an object in this class
would have.

4.3.1 Object Geometries

A real world object can be modelled by different geometric types. For example, mass point,
contour line, break lines, triangulated irregular network and grid could all be used to represent
the terrain. The implementation of the constraint on the same object would vary when dealing
with different geometric types. According to CityGML, the common geometric representations
for the chosen city objects are proposed as:

• Building
A building can be modelled as a solid (in some places called body or polyhedron) or a
collection of closed surfaces (multi-surfaces or composite surface) (see figure 13).

• Tree
A tree can be modelled as a solid or a set of closed surfaces. In some field [Palagyi et al., 2003]
and [Gorte and Pfeifer, 2004], network (line) model and point cloud are also applicable
for tree (see figure 14). For some constraint about tree knowing the location of a tree is
sufficient. So it is assumed that a tree can be simplified as a point (in its trunk bottom).

• Sensor
There is no sensor object in current CityGML by default. A sensor, e.g. a GPS device, a
temperature meter, is modelled in CCC as 3D point. To study the constraint for plane
sensor (e.g. solar panel), 3D surface will be used.

• Road
Road is represented as linear network in LOD0. (see figure 15). For LOD1 and higher the
road is modelled as 3D surfaces.
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• Grass
A grass field can be modelled as 3D surface or solid.

• Water
A water body can be a 3D surface or a solid. In LOD0 it is a top and horizontal surface of
water which is often used to model water property. In LOD1 or higher, a waterbody is a
solid enclosed by surfaces acting as boundaries between water and air, and between water
and ground (see figure 17). When it is river the line geometry can be used.

• Terrain
Elevation model has various geometric types to model with, triangulated irregular network
(TIN), grid, break lines or mass points (see figure 18).

(a) Solid representation. (b) Surface representa-
tion.

Figure 13.: A building modelled by solid geometry and surface geometry

(a) Solid representation. (b) Surface representa-
tion.

(c) Line representation. (d) Point cloud represen-
tation.

Figure 14.: A tree modelled by different geometric types

4.3.2 Object Properties

The structure and general properties of CityGML model is give from [Kolbe et al., 2009] (shown
in figure 19). Of all the presented classes, the ReliefFeature (for terrain), _VegetationObject (for
tree), LandUse(for grass, road, water), _AbstractBuilding (for building) are used.
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Not every property is interesting to set up constraints. The non-spatial properties that will
be established with constraints are listed below. Some of them are present in CityGML. Some

(a) Surface representa-
tion.

(b) Line (network) repre-
sentation.

Figure 15.: A road modelled by surface (polygon) geometry and line geometry

Figure 16.: A grass field modelled by surface geometry and solid geometry from
[Kolbe et al., 2009].

Figure 17.: A waterbody modelled by surface boundaries from [Kolbe et al., 2009].
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others are not in CityGML but are common in a city environment. They are extended in CCC
for this thesis research. The constraints together with these non-spatial attributes are listed in
table II of appendix A.2. Some of them will be tried to formalise in OCL in section 6.1.

• Building
A building, regardless the theme it is used for, has an address, name, owner, usage/func-
tion, construction date and, if it is historical data, demolition date.

(a) TIN representation. (b) Grid (network) representation.

(c) Break lines representation. (d) Mass points representation.

Figure 18.: The elevation modelled by different geometric types

Figure 19.: Structure and general properties of core model in CityGML
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3d city model

• Tree
Common attributes seen in tree model are species, height, age (or planted date), crown
diameter and trunk diameter.

• Sensor
The proposed general attributes of a sensor are location where the measurement is taken,
the time when the value is recorded, sensor type (e.g. thermometer, barometer, wind
speed sensor) and mobility (fixed platform or moving platform).

• Road
General properties of a road can be road name, usage (e.g. highway, bridge, alley),
construction date and, if it is historical, also demolition date.

• Grass
Common attributes are usage (e.g. sport field, urban greening) and area (can be calculated
from its geometry).

• Water
General attributes of a water body can be name (or identifier, if it is not named), usage
(e.g. canal, lake or sea) and area (can be calculated from its geometry).

• Terrain
Digital terrain model means to depict the topography (geometric characteristic) of the
ground and thus rarely has any general non-spatial attribute.

4.3.3 Spatial Properties and Relations in CCC Objects

Urban environment is artificially-built and has a diversity in objects and their spatial relations.
Some relations that do not exist in one city could be seen in another, i.e. buildings touching
in an unusual way, or trees planted in a very strange location. When looking at them in the
computer model, someone may think it is a mistake and should be restricted, whilst others do
not really care or see it as a possible exception. In other word, these arguable relations may
disturb the recognition of errors. Before giving the constraints, it is necessary to state what
spatial relations are correct from aspect of this research. Later, according to the fine cases, the
relations that are very different from them will be marked as constrained cases.

’Table I-Normal Situations’ in appendix A.1 includes spatial properties for single object
(unary) and spatial relations between two objects (binary) that are considered as fine cases in
CCC model. The spatial characteristics that are very different from them are discussed in next
section as constraints. The interests include issues of dimension (2D or 3D), multi-geometries
(LODs), severity and exception of constraint. The 3D spatial constraints are main subject in
this research. So relationship for 2D (or 2.5D) objects, namely terrain, road, grass, water and
landuse, is less interesting and is not very developed in this thesis.
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5
C O N S T R A I N T S F O R C C C M O D E L

After a close looking of the objects, their attributes and the relationships, a data specification
are presented in natural language in table I - ’Normal Situations’ (of appendix A.1) from last
chapter. The items from this table will be used to develop constraints in this chapter.

From section 3.1 an natural language is found ambiguous to specify geo-constraints. And
a certain abstraction of objects, e.g. geometry, seems necessary to achieve a more specific
expression. This finding is like a spark for the approach in this thesis to specify geo-constraints.
First they are stated in natural language (see subsection 5.1.1). Then because of the ambiguity
of natural language in describing geospatial phenomena, the objects (nouns in the sentences)
and the relations (verbs in the sentences) are abstracted by geometric primitives and topological
relationships, respectively (see subsections 5.1.2 and 5.1.3).

Furthermore, in chapter 6 the objects can be translated into classes in UML class diagrams.
Their binary topological relationships can be visualised as links between classes. After that
OCL can be used to further formulate the constraints to an unambiguous manner.

5.1 spatial constraints

The stating of spatial constraints are grouped into two classes regarding strictly forbidden and
unusual but can accept (if a specific instance is recognised as exception). Each constraint is
given a code in table II - ’Constrained Situations in Natural Language’ under different objects
and relations. The reason why these rules should be considered is told in subsection 5.1.1.

Subsection 5.1.2 and subsection 5.1.3 will show the geometric and topological abstraction.
Right after the object geometry is an unavoidable consideration of multiple geometries of

single object. Subsection 5.1.4 will talk about two interests about it. One is constraints between
multiple versions of the same object (LOD multi-geometries) to keep them consistent and
in harmony. The other is about how changing geometry from one LOD to the other would
influence specific spatial constraints.

5.1.1 Description in Natural Language

According to normal spatial characteristics that are proposed earlier, the situations that are very
different from them are found and considered to be constrained cases. This includes unary and
binary relationship. These constraints are sorted out in two severities, ’do not accept’ (must not)
and ’unusual but accept’ (should not). The latter one deals with the doubtful or exceptional
cases (see 2nd and 3rd column in table II in appendix A.2). For example, a normal condition of
a land is defined as ’a land has a land use type’. The situations that ’a land has more than one
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landuse type at the same time’ and ’a land does not have any landuse type’ are very different
from it. These two situations then need to be constrained. Below is the explanation of the
constrained cases (in table II) and the reason why they are considered as forbidden or just
unusual.

• Building constraints
There are 13 constraints discovered for building class. Building is treated as a composi-
tion of different parts. Each part can be modelled independently. When putting them
together to form a complete building, some junctions may be disconnected and then leave
strange openings (i.e. the edge of surfaces does not match). Constraint b11 is to make
sure the building boundaries are all together seal a closed volume in LOD1 (extrusion
representation). In some other cases, the opening on the inside of a building is necessary.
For example, in LOD4 a house (modelled as only one building) consists of two parts and
a corridor in between (see figure in constraint b12). For this house, the whole interior is a
connected space, which means a person can walk from the left-hand side to the right-hand
side. So the walls connected to the passage must have holes on them to allow people’s
travelling.

Building objects have different kinds of shape. Giving a neighbourhood, there is only
limited space to place a building. It is important to make sure the building do not clash
into its neighbours (i.e. other building, tree) or stand on the wrong place (e.g. on the
road, water). Many constraints are inspired by this principle, i.e. bb1/bb2, bt1/bt2, br11,
bg1, bw1. So a general rule can be given to summaries all these specific constraints. For
instance, a building can be adjacent to other building or separate, or touched by a tree.
The road can go around, below or above a building. But if a building/tree is inside the
other building (bb1 and bt1), or a building standing on the road (br11), there must be
something wrong. This rule can further be abstracted into a general level as ’on one
location there is only one object’. Notice the situation that two buildings share a point, as
will be discussed later, is a bit doubtful in reality but not completely impossible. So it is
treated as unusual instead of wrong.

The address of a building comes from its surrounding road. If a building in the model
has a name that cannot be found in its local neighbourhood, this building maybe placed
in a wrong location. As a result, a relational constraint is given to make sure a building is
put in the right local area (see br12).

Sometimes a specific value in the constraint is difficult to give, i.e. cases t1 and tt1. A
tree can be planted around a building, and the crown can grow as time goes by and get
very close (even touch) to the wall. But it is better to keep the tree (especially the root)
some meters away from a building. How much interval should be there requires extra
knowledge about urban design and plant physiology and is not clear to the author. The
value can vary with tree types and specific local conditions. So the exact distance value is
not given and the rule is put under the unusual cases.

Another interesting phenomenon is the roof greening, which has got grass object and
building object involved (see bg2 and gt2). Normally the grass should be planted on the
ground. When one sees the grass floating in the air (especially when the building is not
displayed), he may suspect it as an error. It maybe just because the building has grass on
the roof, and the greening layer is modelled as grass object. Therefore bg2 is placed as
unusual case with roof greening explicitly permitted.
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5.1 spatial constraints

A common mistake found in 3D urban models is that the building foundation does
not always match the underlying terrain. Sometimes holes are found in between the
wall/ground floor and the terrain. This would cause problem when a building is used for
wind simulation, i.e. the wind goes into a building from its ground floor. To avoid it, a
restriction is specified by constraint n1.

When dealing with building-water relation, a special attention is paid to the boat house
(see bw2). Usually, a building should not be found in the water. If in the computer model
a building is floating on the water surface, it is very likely to be a mistake. Depending on
the modelling method, house objects can be treated as building and then the boat house
becomes a building. Constraint bw2 is presented to be an unusual case. This research will
attempt to recognise it and distinguish it from the actual error.

• Tree
There are 6 constraints found in tree class. Every species of tree has a different limited
size. It is unusual to see some bush growing to the size of an oak tree. So a rule to
avoid unrealistic size of tree is given in t1. Tree object has also particular area to be
planted in. In other word, it cannot be planted everywhere, i.e. bt1, tr11/tr12 and tw1.
Depending on the species, some aquatic plant can grow or even only grow in the water,
whilst more others cannot survive if they would have been put in the water. Hence the
relation between tree and water object needs to consider the species variety (tw1).

• Sensor
There are 2 constraints for sensor. Many mobile sensing devices nowadays provide a
memorisation function, i.e. memory card, to store a small amount of measurements. The
mobile sensor, while is hovering around in the field, sends a set of temporarily-stored
data to a database system, which provide better storage mechanism. There are different
things that would go wrong during this process. From the aspect of this research, spatial
information is of great interest, so a focus here is how correct the location information is
modelled.

Notice the rule for building and mobile sensor (mb1). Giving the building model, assumed
that somebody carried a temperature meter together with positioning device, to measure
the temperature inside and outside a certain building, as well as the location, and added
the measurements to the data (see figure 20). Somehow some points that are recorded
from outdoor, especially those that are near the building wall, are understood by machine
as from indoor. Then a scientist that wants to study the thermal comfort inside the
building may use a spatial query to retrieve the all the measurements from inside the
building. He will get some outdoor measurements, which are actually errors for him and
will reduce the quality of his research (e.g. in winter time the indoor/outdoor temperature
have sharp difference). Thus it is necessary to state that the mobile sensor is not expected
to have sudden jump into or out of a building. If this rule is violated, the position of door
is necessary to tell if it is really an error. This will be discussed further in implementation
from subsection 7.2.4.

This constraint is a sample to study the spatial constraints of mobile objects in urban
environment. The idea and implementation approach can be expanded to generic moving
objects in the future, e.g. car, human, bike, boat and etc.

There are solar sensors (panel) equipped on some weather station and building roof that
are now working in the campus to measure solar energy. Usually the solar panels are
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installed on the roof or in the outside (wall) of building. Just shifting the panel object
into building by 1 meter can make its position become inside the building. This shift may
not be very obvious in terms of metric distance, but it definitely breaks the principle of
using solar panel, which requires a direct reception of sunshine. Regarding this possible
incident the relational constraint sb1 between solar panel (as a stationary sensor) and
building is designed.

• Road, Grass and Water
There are overall 10 constraints for ground objects (including terrain). The grass, road
and water features are from land use type. A common relation between these land use
features is that they do not overlap each other (think about a land used as road and grass
at the same time). This leads to constraints rr2, rg1, rw1, gg2 and l1. An unusual thing
of landuse is that in the midst of an area that the usage type is known, there is a gap
(like a hole) with no type. It could be a missing of data. So to promote that the landuse
has full coverage over a known area, constraint l2 is added and marked as unusual cases.
However, how to specify them in a formal way like OCL is difficult.

Although the ground objects come from land use information (2D), they are stored with
3D coordinate (z value in each point). So the constraints for them will consider all three
dimensions (rr2, rg1, rw1, rt1, gt2, wt1). When the road is modelled as polygon, the
junction is separately stored so there is no crossing between roads. In this manner, the
overlapping of two roads is strange. Therefore rr2 is given in the unusual group to pick
up the doubtful overlap.

• Terrain
The important characteristic of terrain is that the ground objects are laid upon it. According
to this role constraint n1 is designed to avoid floating objects. Instead of repeating
the match of terrain and different ground objects, enforcing Not Empty to the terrain
intersection curve (TIC, see [Cit, 2008]) for all objects is must simpler.

Figure 20.: Some outdoor temperature measurements maybe understood as indoor measure-
ments and may cause discrepancies in the spatial query results.
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5.1 spatial constraints

5.1.2 Geometric Abstraction for Spatial Constraints

During the specification of spatial constraints, the various real world city objects and their
relations are found complex and difficult to clarify by natural language. An adopted solution
is to discuss them in the digital model, which models the objects by clearly-defined geomet-
ric primitives (like solid, surface, line, point), and depict the relationship by interaction of
topological primitives.

As was explained earlier, one kind of city object can be modelled by different geometric
features. The road can be modelled in line geometry in the transportation use. This usage is
not included in the current CCC model so will not be discussed here. Since surface and point
can be push down to 2D, it is necessary to explicitly mention the dimension, e.g. 3D-point,
2D-point, etc. The 3D geometries selected in the spatial constraints include: solid, surface (in
this thesis research is actually 3D-polygon) and point. The city objects that are modelled by
them are:

• Solid
Tree and building.

• Surface
Building, road, grass, water and terrain.

• Point
Tree and sensor.

One advantage of such abstraction is that the same constraint can be reused for different
city objects. For example, the constraints about building-building (bb1) and building-tree (bt1)
both restrict intersection. According to the description of different geometric types of tree and
building, they can both be modelled as solid. So one constraint ’solid should not intersect
solid’ works for both. And the constraint that checks if two road overlaps can be reused for
grass-water, since they are all modelled as surface. This kind of higher-level/abstract rules will
then be used as generic constraints. To model them, one can put them in the abstract object
class in UML, then all other subclasses will inherit. The refinement of generic rules can to be
done for specific classes/attributes. For example, when both solids are tree objects, relationship
’intersection’ is allowed.

The other advantage of using geometric types is that the same object represented in one
type is easier to deal with than using another. For two object that are both building, constraint
’two buildings intersect’ (bb1) can be checked by solid-solid, solid-surface or surface-surface
relations. The solid-solid relation only compares two single solids. But the surface-surface
relation has to be calculated between two sets of surface. Later in implementation the most
optimistic geometric primitive (checks constraint with the lest calculation) will be chosen for
each object.

The constraints about building obviously need 3D. For instance, a building has a part
stretching out overhead some a tree (see figure 21(a)). In 2D it may look like that half of the tree
is inside the building, which is forbidden. So is with the case (building overhead a building)
shown in figure 21(b).

Another example comes with the bridge/flyover (see also figure 22). The bridge or flyover
often go over some other objects underneath, e.g. canal, road, tunnel. In 2D model, without the
z value, the bridge and canal (or flyover and road) are modelled as crossing in the same location.
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If a tree is on the bridge, it will be also seen as on the river. A constraint that prevents tree from
standing on the water would tell that it is wrong. This is only a insufficient interpretation of
the real world situation. But in 3D, the height information is known and this is not a problem
any more.

5.1.3 Topological Abstraction for Spatial Constraints

The topological primitives (interior A◦, boundary ∂A and exterior A−) introduced in 9 inter-
section model is found significantly helpful to clarify the spatial relationship. As long as the
interior, exterior and boundary for city objects are known, the spatial relations can be made
clear by the intersection of them. Once intersection is clear, one can decide what to do with it,
i.e. forbid or allow.

For 3D geometric primitives, the interior, exterior and boundary of the used geometries are
defined by [Egenhofer, 1992] below. Notice that in other contexts such as
citeSisiPhD surface can be curved. In this thesis research, ’surface’ is used to mean planar
surface (3D polygon) only.

(a) A building has a wing
extending over a tree. In
2D half of the tree may be
inside the building.

(b) A building has a wing
extending over another
building. In 2D the build-
ing underneath may ap-
pear to be inside its neigh-
bour.

Figure 21.: Examples of building constraints that have to be checked in 3D.

(a) When a tree is planted
on a bridge that goes over
a road, in 2D the tree may
appear to be standing on
the road.

(b) When a road goes
above a building, in 2D
the road may appear to
be crossing the building.

Figure 22.: Examples of constraints applicable to roads that have to be checked in 3D.
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5.1 spatial constraints

• Point
A point in the space has only interior and no boundary.

• Line
A line in the space has two or more disconnected boundaries. The part between boundaries
is interior. Line object is not in the CCC model so will not be further discussed in this
thesis.

• Surface
A surface has its boundary (line segments) enclosing an area, and dividing the space into
interior and exterior.

• Solid
A solid consists of surfaces that enclose a space and form the boundary. The space closed
inside is the interior and outside is the exterior.

The terms used in specification from tables in appendices A.3 and A.4 use Egenhofer 9I model.
Many relations between solid-surface and surface-surface, as presented in [Zlatanova, 2000],
do not have names yet. During the research these relations are investigated. Some relations
can exist but in reality they do not occur so often. But in solid-surface and surface-surface
relations, a surface can be touched on its boundary or its interior. When it is accompanied
with the meaning (semantics), these two cases can be treated differently in constraints. The
former one can be fine and the latter may be wrong. For instance, a solid touches a surface in
the surface interior could be a building standing on the road (see figure 23(a)), which should
not happen in an regular urban environment. But if a solid touches a surface at the surface
boundary, it could be a road laying next to a building (figure 23(b)), which is fine.

Therefore, a name ’strong-touch’ is proposed here to distinguish touching a surface on its
interior from touching surface merely in the boundary. The expression ’A strong-touches B’
(A can be surface or solid but B has to be surface) is equal to the 9I matrix in matrix below. It
does not matter whether or not boundary A has intersection with boundary B (can be 0 or 1

in that set). This term is also detectable, as is developed and described in section 7.2.1. Plus
the meaning of objects, whether or not two city objects, e.g. two different buildings, have a
restricted relationship is also implemented in this research, as you will see in section 7.2.1.

R(A, B)(Astrong− touchesB) =

 � � 1
1 �/1 1
1 1 1


In order to easily rephrase each constraint by the geometric and topological primitives, the

two columns ’Do not accept’ and ’Unusual but accepted’ in table II are separately discussed in
two tables, ’table III-Situations that cannot be accepted’ (appendix A.3) and ’table IV-Situations
that are unusual but acceptable’ (appendix A.4) respectively.

Here some examples are given about how the spatial constraints in natural language are
foramalised by geometric and topological primitives. Look at the constrained br11 in 2nd
column of table III. Giving that a building is modelled as a solid and a road a surface, spatial
relation br11 is represented as ’surface A strong-touches or intersects solid B’. When building
is modelled as surfaces, the representation becomes ’two surfaces intersect’. In practice, this
check needs to be applied to every surface from building, or the most likely intersected surfaces
from the building, to make sure there is absolutely no interior intersection between a road
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and a building. So is with the bg1, bw1 constraints. Either the closest building surface to the
grass/water should be pick up first, or the same check should be run for every building surface.
However even if all surfaces give ’disjoint’ it is still not the moment to say two solids really
’disjoint’ (e.g. a tree floating inside a house). This will be discussed in implementation (see
section 7.2.1).

Building class has two unary constraints (b11 and b12) that are difficult to be formalised by
topological terms. The one about closeness (b11), when a building is treated as single solid,
can be checked by geometry validity function from Oracle. When a building is modelled as a
composition of surfaces, these surfaces should altogether seal a valid solid (be it according to
a specific definition, like Oracle). In other word, their orientation should be correct and must
not have faces intersecting or adjacent faces with some distance. Otherwise the formulating of
solid will not result in a sealed volume. The constraint b12 calls to inspect if a surface is with or
without hole. If there is a passage between different building structures, when the building
boundary seals a volume, on the detailed interior structure there must be a hole on the wall
surface to allow passing.

The other example of abstracted translation is about tree-road relation. The tr11 relation ’tree
stands on the road’ can be translated to ’a point is on the surface’, when a tree is modelled by
its ground point and road as surface. Under the same geometric primitives, the tr12 relation
about distance between tree and road becomes ’distance from point A to surface B smaller than
value n’. Here a general issue is also drawn that constraints can have parameters which must
be specified by user.

Some constraint cannot be rephrased only by geometry because they requires information
from other categories (thematic, temporal and quantitative). A thematic information is required
in building-solar panel constraint (sb1). When both building and solar panel are surface objects,
the check calls for a selection of the building boundary surface first. If the selected surface is a
wall inside the building, the check will be pointless. The address matching (br12) is another
example. The road that is within a distance of a building should be first found out. Then the
matching of the road name and building address can tell if there is something wrong with the
address. The exceptional cases also require thematic checks. Examples can be found in roof
greening (bg2 and gt2) in table IV, bridge (rw1) and tree species (tw1) in table III.

(a) Building stands on the
road, which is a type
of ’touch’ relation but
should be avoided.

(b) Building stands next
to the road, which is also
a type of ’touch’ relation
but is acceptable.

Figure 23.: Here are two situations reflecting ’a solid touches a surface’. These two cases can be
treated differently in constraints.
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The quantitative check can be used to specify spatial constraint also. Notice that the spatial
characteristics about size of tree is already modelled in its attributes, height, crown diameter
and trunk diameter. The spatial constraint can be specified by restricting the values for these
properties. Therefore, situation t1 is translated as ’attributes (height, crown diameter or trunk
diameter) exceeds a certain value’.

Still, there are some constraints difficult to be formalised by geometric and topological
primitives in this stage, because the algorithm is not fixed yet. For example, if we would
consider a mobile sensor as point object and building a solid. For situation mb1, knowing the
relation between an individual point and the building is not sufficient. A method is to collect
the points recorded in one go. By comparing the position of its previously-measured point and
later-recorded point, one may be able to tell if mb1 situation happens. In geometry, it means
a set of points are marked in a time sequence, which actually means a spatial-temporal line.
And then by checking the line-solid (sensing route-building) relation the jumping points may
be exposed. The algorithms will be discussed in the implementation (see section 7.2.4).

The other constraint difficult to specify is the landuse constraint l2. An idea to check it is to
select the local area and use a board of puzzles. Then fill all pieces of ’puzzle’ (lands) in and see
if there is a hole somewhere. But how to find this hole, and how to let an individual ’puzzle
piece’ understand its neighbour is missing is open for effective algorithm.

A more formalised view of object constraints is unveiled in UML diagrams, together with
pseudo-OCL expressions in section 6.1.
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5.1.4 LOD Issue for City Objects

Since a single building object can be represented in multi-scale geometries (LODs), one con-
sideration falls on the consistency between different LODs of the same object. Consistency
of multi-scale spatial objects is often discussed under contexts such as maps generalisation
(terrain continuity/connectivity [Kolar, 2004]. And is found in various researches such as multi-
representations in geo-database [Sheeren et al., 2005], [Breunig et al., ], consistent geometry
between different dimensions [GROGER and PLUMER, 2005]) and (dynamic) visualisation in
computer graphics ([Malik, 2000], [Godse, 2009]). A recent study about the topological con-
sistency between building LODs is presented in [Ghawana et al., 2010]. The issue of keeping
consistent data is also mentioned in specifications of INSPIRE ([INSPIRE, 8 26]), which gives
general suggestions and requirements to keep data from different themes and regions consistent
and coherent. As is originated from [Sheeren, 2005], when comparing data at two levels of
detail, it is necessary to distinguish between difference and inconsistency. Difference is a result
that are expected and can be found in the data specification (level of detail), whilst inconsistency
is difference that is not explained by the specification.

The data specification from General Conceptual Model [INSPIRE, 8 26] defined LOD by:

• the type of information (the spatial object type and its properties)

• the selection rules (explaining which entities of the real world are represented in the data
set)

• the accuracy of the attributes

• the semantic granularity (e.g. CityGML LODs)

• the type of geometries (3D, 2.5D, or 2D; volume, surface, curve or point)

• the accuracy of the geometries

To tell if two levels of detail are consistent, an analysis on the relationships between spatial
objects in these levels is necessary. These relationships can come from:

• aggregation: for example the built-up area at coarser level is composed of buildings at
finer level.

• generalisation/type hierarchies: a spatial object at coarser LOD is represented in finer
LOD by several spatially connected objects.

• object selection: a set of spatial objects of a class in coarser LOD depicts a selection of the
main spatial objects of a larger set at finer LOD (e.g. the road or river network).

• simplification/reduction of geometric dimension: for example a river from surface to
curve, or a building from surface to point.

Only when the formalisation of theoretical relationships between different LODs are identified
will the detection of inconsistencies become possible. The data specification of CityGML does
not specify the change between different LODs in such a formal manner. The original description
[Cit, 2008] about building LODs says:

’LOD1 is the well-known blocks model comprising prismatic buildings with flat roofs. In
contrast, a building in LOD2 has differentiated roof structures and thematically differentiated
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surfaces. LOD3 denotes architectural models with detailed wall and roof structures, balconies,
bays and projections. High-resolution textures can be mapped onto these structures. LOD4

completes a LOD3 model by adding interior structures for 3D objects. For example, buildings
are composed of rooms, interior doors, stairs, and furniture.’

In this research the 3D geometric attributes is of interests. Therefore, based upon this descrip-
tion, certain rules concerning geometry changes of the same building object are abstracted and
proposed to exemplify the identification of inconsistencies. (Again the parameters can vary
along with the modelling process, a different data specification and so forth.)

• Locations should be the same: deviation of locations from different LODs must be less
than, say 1 meter, in campus level.

• Heights/Widths/Lengths of the main part of building should be the same: in this sense
the small building extensions (e.g. fence, flag pole, antenna and etc.) are not included in
the calculation.

• Volumes of building from LOD3 and LOD4 should be the same: this is based upon the
fact that LOD4 is simply exterior from LOD3, plus the interior structures.

Another consideration is about the influence of multi-geometries in spatial relationship
between objects. Because an object can have different geometric representations, it is necessary
to clarify which representation(s) should be checked when it comes to a specific constraint. This
consideration is shown in table III and table IV (see appendix A.2) with column ’Sensitive LOD’.
In practice, the LODs mentioned in this column will be checked before one can tell whether the
model really has constrained situations from first column (natural language) or not.

One example of why LOD matters is that the change of roof shape affects a building-building
relation (figure 24) (see also table III). In real world, a building A has a part stretching out and
hanging over its neighbour B, which has a sharp roof (figure 24(a)). This relation is clearly
depicted in LOD2. However, in LOD1, building B is only an extrusion (a cube) with a flat
roof (24(b)). Their upper parts appear to be intersecting, which is forbidden by constraint ’two
building cannot intersect’.

(a) Real world situation:
sharp roof.

(b) LOD1 representation:
flat and intersecting roof.

Figure 24.: Relationship between two buildings changes with LOD.

Another consideration of how LOD matters is about the supporting structures (i.e. pillar) of
building. A building standing on the poles often has some other city object laying below, i.e.
road (br1), grass (bg1) or water (bw1). The poles in LOD1 sometimes are neglected, and the
building is only extruded from its 2D footprint. Thus it appears that a building is interfering
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the object below, i.e. building stands on the road, which is not true (see figure 25). In LOD2 or
higher, the pillar is modelled so this problem does not exist anymore.

(a) LOD2, or a higher
level, models the pillar.

(b) LOD1 may miss the
pillar.

Figure 25.: Poles of buildings may be missed in LOD1 thereby causing an inaccurate relationship
between a building and the object(s) below.

The last two examples only talk about difference between LOD1 and LOD2. When dealing
with the building interior, i.e. connectivity of a complex building consisting of different parts,
LOD2 is not enough. In constraint b12, a building has two parts connected by a passage (see
figure 26). To know if the interior structure is correctly modelled, a useful constraint is to check
if there are holes on the walls allowing people to travel through. The figures 27 show how this
building is modelled in all 4 LODs. Only in LOD4 is the hole on the wall recognisable.

Figure 26.: A complex building modelled as a single volume, which has three structures, i.e.
two rooms plus a connecting passage.

5.2 non-spatial constraints

The 3D spatial constraints in this thesis work are more specific. The non-spatial constraints
are more common and used elsewhere, so they are not very developed here. The temporal,
quantitative and thematic constraints are less ambiguous than 3D spatial relationship so they
have only one severity: cannot have/must not. Most of them are dealing with unary relationship
(see also non-spatial constraints in table II - ’Constrained Situations in Natural Language’).
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• Temporal Constraints
The temporal constraint means to avoid confusion in time factor. Constraints b1 and
r1 are in this class. As shown in section 4.3.2, the artificial structures, namely building
and road, that have construction date and demolition date, share a common constraint
’the construction date must be earlier than demolition date’. This would be useful when
dealing with historical dataset.

The other interesting temporal constraint is the subsequent version of the same object
must have matching times, e.g. old_version.EndTime = new_version.StartTime. This is
not shown in table II for specific objects but can be abstracted for generic objects. The
current CityGML storage does not assign any id to different versions of an object in time.
And there is not a clear hint to indicate that two records in the database actually mean
the same object in two different periods of time. Therefore it is difficult to specify this
constraint. A solution could be to compare the objects at the same location and see if they
match in shape. If they do then they may mean different versions in time for the same
object.

• Quantitative Constraint
Sensing data, which includes all different kinds of climate observations (see section 4.2)
and sensitive to erroneous value, is the main subject that desires for quantitative constraint
(see constraint s1 for example). The min/max value, unit and space/surface density (also

(a) LOD1 models extrusion (cube). (b) LOD2 models roof shape.

(c) LOD3 models openings. (d) LOD4 models interior passages.

Figure 27.: LOD1-LOD4 representations of two halls connected by a passage.
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spatial) are the main properties to be constrained. Because the constraint of sensing data
requires very detailed information about different types of sensing device, which is not
the main goal of this research, they are not discussed in detail here.

How a quantitative constraint can help is exemplified by temperature measurement.
Given temperature meter that records the air temperature with only units Fahrenheit and
Celsius. A useful constraint is to avoid misusing these two units, e.g. ’every temperature
measurement should have a unit, either Fahrenheit or Celsius’. The min/max temperature
can also be specified, depending on the region, season and historical record. For a region
that never has temperature higher than 25 Celsius degree from November to February,
the value 30

◦C is impossible, which may be an erroneous measurement of device or a
true value but actually using Fahrenheit degree. Constraint s1 shows the attention to too
fast change in the temperature value. The threshold again may differ from one location to
the other and needs to be specified by user.

Beside sensing data, quantity constraint can also apply to other city objects, i.e. tree size,
road width, building height and grass area.

• Thematic Constraint
Some of the discovered thematic constraints are mixed with spatial, temporal and quanti-
tative characteristics. For example, every building should have the address the same as
name of road close by (say, dist<3m) is a spatio-thematic (as shown in constraint br12,
table II, appendix A.2). Constraints under this category are very much developed in other
fields so not many of them are designed in this thesis work.
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6
F O R M A L I S AT I O N O F C I T Y O B J E C T C O N S T R A I N T S

As a result of reading various articles on formalisation approaches applicable to geo-constraints
(see section 3.3.3), the UML diagram together with OCL notation has been found to be a suitable
tool to express the designed constraints, together with the 3D geometries defined in ISO19107

standard [ISO, 2008]. An advantage of this approach, comparing it to its text-only competitors
(such as GML, XML, Ontology), is that it unveils the relationships between objects visible in
diagrams. The OCL notations give formal (well defined and unambiguous) meanings that can
be understood for both humans and machines. And with the flexibility of OCL, which can be
extended with spatial data types and operations, the geometric features and topological terms
can be written in a formal manner.

A first attempt to formulate the designed geo-constraints (proposed in section 5.1.1) using
UML+OCL is made in section 6.1. Section 6.2 will discuss the possible contradictions between
constraints and show a possibility of detection by rewriting constraints in first order logic.
Section 6.3 will show different tools that can be used to translate OCL expressions and discuss
their pros and cons in dealing with geo-constraints.

6.1 formalisation using uml/ocl

Section 2.2 has indicated that the UML class diagram is useful to describe topographic objects.
Figure 28 displays the city model which includes attributes and relationships that are useful to
study constraints.

Almost every class has its thematic attribute, except terrain surface. Stationary sensors
and dynamic sensors are generalised to an abstract sensor class. Both sensor groups have
’sensorType’ attribute. The stationary sensor can either be surface (e.g. ’solar panel’) or point
type (e.g. ’temperature meter’). A building can be treated as a composite solid formed by
different building parts which are solids. Both ’Building_Parts’ class and ’Building’ class have
temporal attributes from their ’starting_date’ (construction) and ’end_date’ (demolition). Grass
is modelled by surface and trees by solid. They inherit from abstract class ’vegetation’. The
grass class has a theme that shows its function/usage (e.g. roof greening), which can be used in
constraint check. Tree class has attribute ’species’ to help identify its species-related behaviour
(e.g. size, living environment - aquatic or non-aquatic). Together with road, terrain and water,
they inherit from the most abstract class CityObject.

Currently, there is not an association link in UML2.2 to indicate pure constraint. When
two object classes associate, be it thematic, temporal or spatial (see also section 2.2 for spatial
associations), it is not too difficult to mention a relationship constraint, since the constraint can
be attached to the association. But when two object classes do not directly associate in space,
or in theme/time, the method to mention constraints about their relationships could lead to
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discussion. For example, in general a tree class and a building class may not be considered to
be associating with each other. However, when a tree instance and a building instance come
close in space, some spatial association such as distance (from which the distance constraints
can be developed) between them may need to be considered.

In this research an attempt is made to notate the spatial constraints using OCL and attach
them in UML class diagram. The current UML standard does not have a specific link to describe
constraints. The lack of a constraint link makes it difficult to express constraints in OCL. A
reason for this is that OCL itself does not support constraints for multiple classes. In normal
OCL formula, to specify the distance rule between a building instance and a tree instance, the
class ’Tree’ must be available in the context ’Building’. In other words, the class ’Tree’ should
have a property that is of ’Building’ type, or ’Building’ class should have a property that is
of ’Tree’ type. But in this example of a distance constraint, neither ’Building’ nor ’Tree’ has a
property to type (typify) each other. So an expression using multiple classes would be:

’context Tree
inv: Building.allInstances() -> forAll(b | distance(b.geometry, self.geometry) > minDistTreeBld)’

Therefore an extension of OCL is necessary to enable the use of multiple classes. Examples
expressions using multiple classes can be found in the pseudo OCL listings 6.5, 6.4, 6.7, 6.8,
6.12 and 6.12.

The association link with a different colour ’brown’ is thus used to depict constraints and
distinguish constraint links from normal association links. As a sequence of ’borrowing’
association, a consideration is where the multiplicity should be. No doubt it must be mentioned
in OCL expressions. But should it be also attached to the UML class diagram? Attaching it to
the UML makes the multiplicity visible. However, when it exists in both UML diagram and
OCL expressions, it must be guaranteed that the multiplicity from these two places is consistent.

To avoid the possible inconsistency of multiplicity between a class diagram and its attached
OCL expressions, multiplicity will only exist in OCL. And for a brief and tidy visualisation
of constraints in the diagram, the association together with constraint names written on it
is used to describe constraints in binary relationships (instead of using floating notes that
explicitly show the content of constraints). When a spatial constraint acts on relation between
two instances from the same class, an association link coming out from and going into that
class is used (reflexive association) (see also ’oneobj_oneloc’ from figure 28 and ’MinDist2Tree’
from figure 30).

Because all the designed constraints are always ’True’ for all instances of the same class, and
do not vary before or after any operation (e.g. DML statement insert/update/delete), the static
Boolean expression ’invariant’ is used. The constraints in the resultant UML diagrams are
quoted by a pair of curly brackets ’{ }’.

48



6.1 formalisation using uml/ocl

Figure 28.: UML class diagram for constraints study in general city modelling.
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An initial formulation of OCL regarding some constraints in table II - Constrained Situations
in Natural Language (see appendix A.2) is included below. To ensure the correctness of syntax
and semantics they still need to be tested, together with the UML model, in OCL parsers like
Dresden OCL2 toolkit [Wilke et al., ] (see also future work in section 9.2). An extension for the
use of multiple classes is also needed in OCL to complete the parsing. Each constraint together
with its unique code can be found in table II.

Beside the standard types in OCL (see section 3.3.3), the well-defined 3D geometric primi-
tives from ISO19107:2003 standard [ISO, 2008] are used as spatial types in these pseudo OCL
expressions, including:

• GM_Point

• GM_Curve

• GM_Surface

• GM_Solid

and the aggregational and compositional types of them.
Extensions of spatial operators are borrowed from ISO19107 as well. Since later on the

implementation of constraints will be carried out in Oracle Spatial, some spatial functions in
the database are useful and so are added here.

ISO operators:

• distance(GM_Object, GM_Object): a number valued operator that returns the distance
between two GM_Objects. This distance is defined to be the greatest lower bound of
the set of distances between all pairs of points from each of the two GM_Objects. This
function is also supported in Oracle [ISO, 2008].

Oracle operators:

• inside(GM_Object, GM_Solid): a Boolean valued operator that returns true if a GM_Object
is ’inside’ (Egenhofer 9IM) the GM_solid [Ora, 2010b].

Some operators are important in this research but do not exist in neither ISO standard or
Oracle specification, they are:

• interrupt(Object, Object): a Boolean valued operator that returns true if two city objects
have geometric intersection that should be forbidden. Defining the forbidden intersection
involves a check on the meaning of input objects, and is difficult to specify merely by
geometry types (see also section 5.1.2 about different reactions on tree-tree intersection
and building-building intersection in this constraint). Later on, it is realised for building-
building intersection in section 7.2.1.

• composeValidSolid(GM_MultiSolid): returns a Boolean value if the input collection of
solids altogether form a valid (according to Oracle definition) solid.

• jump(GM_MultiPoint, GM_Solid): returns true if a multipoint object, esp. mobile sensor,
is found to be jumping in and out of a building solid during movement. This function is
also realised and will be described in section 7.2.4.
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6.1 formalisation using uml%ocl

• Abstract Constraints
Some constraints can actually apply to all the instances of city objects. Instead of repeating
them everywhere, and also to keep the UML diagram clean and brief, they are abstracted
to a general level and apply to the highest abstract class City_Object (see also figure 28).

1. Oneobj_oneloc: ensures that at one location there is only one object. Self-defined
function ’interrupt’ is used here. This summarises constraints bb1, bt1, br11, bg1, bw1,
tr11, rg1, rw1, rr2, rg2 and gw1. Obj1 and obj2 here are two different CityObject instances.

Listing 6.1: Oneobj_oneloc� �
context CityObjec t
inv Oneobj_oneloc : s e l f . a l l I n s t a n c e s ( ) −> forAll ( obj1 , ob j2 | obj1 <> obj2

Implies i n t e r r u p t ( obj1 , ob j2 ) = ’FALSE’ )� �
2. Correct_Timeorder: (generalised from b1 and r1) checks that the starting time of an
object does not occur after its end time.

Listing 6.2: Correct_Timeorder� �
context CityObjec t
inv Correct_Timeorder : s e l f . s t a r t i n g _ D a t e < s e l f . end_Date� �

• Building Constraints
Building constraints are attached to the UML diagram in figure 29.

1. ValidSolid: (expression of b11) checks if geometries (solids) of all building parts that
belong to one building together form an (Oracle) valid solid. This presumes conditions
such as all the building parts are topologically correct (no gaps between adjacent ones
and also no intersections).

Listing 6.3: valid solid� �
context Building
inv v a l i d S o l i d : s e l f . Bui ld ing_Par ts −> composeValidSolid ( geometry ) = ’TRUE’� �

2. MinDist_TreeBld: (expression of bt1) checks if between one tree and one building the
distance is larger than a minimum threshold. The min distance can be specified by the
user.

Listing 6.4: Min distance between tree and building� �
context Building
inv MinDist_TreeBld : Tree . a l l I n s t a n c e s ( ) −> forAll ( t | d i s t a n c e ( t . geometry ,

s e l f . geometry ) > minDistBld2Tree )� �
3. Address_matches_roadname: (expression of br12) checks if within a certain distance to
a building there exists a road which has a name that precisely matches the whole or part
of the building address.

Given one building instance ’self’, this expression selects all the road instances that are
in the neighbourhood. Then in the comparison of string, exactly one road instance must
have its name equal to part (or the whole) of the building address. Here a standard
OCL function ’substring’ is used to fetch the road name from the building address. The
parameters ’lowpos’ and ’highpos’ are depending on the format. For example, if an
Address would be ’Jaffalaan9, Delft, NL’, then lowpos = 1 and highpos = 10.
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Listing 6.5: Building address matches road name� �
context Building
inv Address_matches_roadname : Road . a l l I n s t a n c e s ( ) −> one ( r | d i s t a n c e ( s e l f .

geometry , r . geometry ) < maxDist AND s e l f . Address . subs t r ing ( lowpos , highpos )
= r .Name)� �

Figure 29.: UML model of constraints relevant to building object class.

4. Correcttimeorder_in_composition: (expression of b1 in composition of building) checks
the time order between a building assembly and its parts. It defines that different building
parts compose a building, so a part could not exist before the assembly being there first.
In other words, the lifespan of building parts should be within that of the assembly.

Listing 6.6: Correcttimeorder_in_composition� �
context Building
inv : s e l f . Bui ld ing_Par ts −> forAll ( b | b . s t a r t i n g _ D a t e >= s e l f . s t a r t i n g _ D a t e )
inv : s e l f . Bui ld ing_Par ts −> forAll ( b | b . end_Date <= s e l f . end_Date )� �

• Tree Constraints
1. MinDist2Tree/Road: (expressions of tt1 and tr12) ensures min distances between two
tree instances and between a tree instance and a road instance. Each distance rule can
have a different min distance threshold (i.e. the min distance of tree-tree ’minDistT2T’
would be different from tree-road ’minDistT2R’).
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Listing 6.7: Tree distance rules� �
context Tree
inv MinDist2Trees : s e l f . a l l I n s t a n c e s ( ) −> forAll ( t1 , t2 | t1 <> t2 Implies

d i s t a n c e ( t1 . geometry , t2 . geometry ) > minDistT2T )

context Tree
inv MinDist2Road : Road . a l l I n s t a n c e s ( ) −> forAll ( r | d i s t a n c e ( s e l f . geometry , r .

geometry ) > minDistT2R )� �
2. Aquatic_Close2Water: (expression of tw1) checks if an aquatic plant is close enough
(comparing to a user-defined threshold) to water.

Listing 6.8: Aquatic_Close2Water� �
context Tree
inv Aquatic_Close2Water : Water . a l l I n s t a n c e s ( ) −> e x i s t s (w | s e l f . s p e c i e s = ’

Aquatic’ AND d i s t a n c e ( s e l f . geometry , w. geometry ) <= maxDist_Aquatic2Water )� �
3. Limited_Size: (expression of t1) restricts the size of a tree. The species-maxCrownvalue/Height/Trunkvalue
are constants for each species. But the value can differ from one species to another.

Listing 6.9: Limited size of tree� �
context Tree
inv : s e l f . crown_Diameter < SpeciesmaxCrownvalue
inv : s e l f . he ight < SpeciesmaxHeight
inv : s e l f . trunk_Diameter < SpeciesmaxTrunkvalue� �

• Sensor Constraints
The inheritance from generalisation is helpful in optimising the property constraints for
sensors (static and mobile types). The necessity of having measurements of location and
time for all sensors and smooth value changes is specified in the abstract type sensor so
that they can be automatically inherited by mobile sensors and static sensors (see figure 31).

1. SmoothValueChange: (expression of s1) restricts too fast a change in the measurement
values of a sensor within a period of time. The expression ensures that between two
sensor instances from the same type the value change is within a threshold. The threshold
can be derived from change per time interval (can be second, minute, hour, etc.) and vary
with sensor type. Since this rule applies to every sensor object, it is added to the abstract
class.

Listing 6.10: SmoothValueChanges� �
context Sensor
inv SmoothValueChange : s e l f . sensorType = ’Userdefined_Type’ Implies s e l f .

a l l I n s t a n c e s ( ) −> forAll ( s1 , s2 | s1 <> s2 Implies abs ( ( s1 . value − s2 . value
) / ( s1 . measuring_Time − s2 . measuring_Time ) ) <= Userdefined_maxChangeRate ) }� �

2. Solarpanel_Outside: (expression of sb1) ensures that the solar panel is not inside any
building. The geometry of solar panels is GM_Surface.
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Listing 6.11: Solar panel outside� �
context Sta t ionary_Sensor
inv Solarpane l_outs ide : Bui lding . a l l I n s t a n c e s ( ) −> forAll ( b | s e l f . sensorType =

’Solar Panel’ Implies Ins i de ( s e l f . geometry , b . geometry ) = ’FALSE’ )� �
3. No_Jump: (expression of mb1) checks if a mobile sensor is jumping in and out of
a building. The mobile sensor is treated as multipoint that is in a series of time and
the input building is a solid. The distance function selects the building instances b that
are in the neighbourhood of this multipoint first. And then function Jump() checks if
this multipoint is jumping w.r.t. b. See also the realisation of function Jump in section 7.2.4.

Listing 6.12: No_Jump� �
context Dynamic_Sensor
inv No_jump : Building . a l l I n s t a n c e s ( ) −> forAll ( b | d i s t a n c e ( b . geometry , s e l f .

geometry ) < maxDist Implies jump ( s e l f . geometry ,
b . geometry ) = ’FALSE’ )� �

• Road, Grass, Water and Terrain
The main check within road, grass and water objects is to avoid their intersection. This is
already abstracted in the general constraint ’Oneobj_oneloc’ in pseudo OCL expression 6.1.
The constraint relative to terrain in urban area is to match with ground objects (constraint
n1). This can simply be achieved by saying ’terrain intersection curve (TIC, see [Cit, 2008])
of a CityObject instance cannot be empty’ and thus is not formulated as an OCL constraint
here.
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Figure 30.: UML model of constraints relative to tree object class.
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Figure 31.: UML model of constraints relative to sensor object class.
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6.2 contradicting constraints

6.2 contradicting constraints

As you may have already noticed, there are quite a few constraints which hold for the same
object class, either about single instance or about multiple instances. When the amount of
constraints gets larger, it may happen that some rules contradict, which means no solution
can be found to satisfy them all. In practice, no instance of a certain class can be stored in the
database (some tables will always be empty). Although the currently implemented constraints
are proposed carefully by human reasoning and the amount is not that large, in the future
when more rules are established, this issue has to be considered.

Checking constraint consistency is a research topic by itself. During this thesis research,
several aspects that are useful for geographic database constraints are inspected, that is, an
unambiguous definition of Geo-DB constraints inconsistency, specification of additional check-
rules and tools for automated constraints comparison.

At the beginning, ’contradict’ seems intuitively clear at a glance, that is, several constraints
together cause an impossible solution. Later as more content about general constraints consis-
tency issue is studied, which exists in fundamental mathematics, it is found necessary to give a
clear definition to distinguish consistency of geo-database from the rest.

The explanation of what ’contradict’ means can be borrowed from usual mathematical notion,
which states: The truth of a formula is defined w.r.t to a certain mathematical structure that
describes the world, which is usually called a model. A database can be treated as a model, so
is any particular table therein which represents a class of real world objects. A constraint is a
formula. A statement like ’the model M satisfies the formula F’ means basically that constraint
F is satisfied in a table or several tables M. If formula F1 and formula F2 contradict, it means
that F1 AND F2 − >FALSE. This is equivalent to ’no model M exists to satisfy both F1 and F2’.
So there is no object from table(s) M that can have F1 and F2 both satisfied. Generalised to a
set of formulas/constraints it becomes: a set of constraints is inconsistent if there are no real
world object that satisfies all of them. Therefore, ’unsatisfiable’ is a better definition of what
’inconsistent’ really means in this research.

An example will be made up to test how the database system actually reacts upon unsatisfiable
constraints (see section 7.2.5). Three parametric rules regarding distances amongst tree, building
and road are proposed as:

• Tree-Building: tree must be placed within a distance of 5 meters from building.

• Building-Road: there must always be at least 10 meters distance between a building and a
road.

• Tree-Road: tree must be put within a distance of 2 meters from a road.

An illustration is given in figure 32. Assume that the building is already stored in database.
Then a road object that is 10 meters from the current building is added. As you can see, after
that it becomes impossible to have a tree object anymore, because it will either be close to the
building (fulfills Tree-Building rule) but far away from the road (satisfies Tree-Road rule) or the
other way around. The result is the tree table will always be empty.

Despite this strange outcome, the database can exist and keep functioning under such
situation, just that it will not have tree object. When taking a second thought, what this outcome
really contradicts is a common sense that can be expressed as ’it must be possible to have
tree objects in the database’. More generally, every object class (table) the database schema is
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designed to model must be allowed in the database. Explicit statement of this type of rule (let’s
call it extra check-rule), which reflects human intuition or common sense, is subtle (easy to
neglect) and yet important for constraints reasoning.

More specifically, to avoid the possible conflict from the example distance rules, an extra
check-rule to gurrantee the existence of tree object can be:

’between building and road that are more than 10 meters apart and have no other building or
road in between, it must be possible to have tree(s)’.

Note that this rule also contains two other conditions that can be expressed separately as:

’it must be possible to have buildings’ and

’it must be possible to have roads’.

This logic can be expressed as formulas in OCL but is difficult to be enforced as a standard
constraint. A reason is due to the characteristic of constraint. It is easy to formalise and enforce
a constraint that holds for all time. But a rule like ’tree is possible to exist’ does not say when.
The possibility/existence can be manifested at any moment and is difficult to specify.

One can of course choose to just specify this extra check-rule as it is now in UML model
for database designer to read. A better way is to input a series of constraints, plus extra
check-rules, and then run a comparison to find out the counter-rules. Phrasing the extra rule in
a machine-understandable way can pave the way, which is found in logic programming, e.g.
first-order logic [Jeremy Avigad, 2007]. First-order logic (FOL) allows rewriting a statement,
in our case a geo-constraint, into several predicates (or axioms) as input in theorem prover.
Each predicates can be examined according to definition of them (from user), and then brought
together to form a more complex rule. Then the theorem prover, i.e. Prover9 [pro, 2009], can
be used to compare the FOL axioms and find out the counter-rules. For example, to describe
the possible existence of tree, a formula F_t can be F_t = Exists x (tree(x)). Given the rules that
are to be checked in the theorem prover, F_1 ... F_n, if (F_1 AND F_2 ... F_n AND F_t − >
FALSE is calculated, which is equivalent to (F_1 AND F_2 ... AND F_n − > NOT(F_t), then the
constraints are conflicting and disallowing expected tree object.

Figure 32.: A possible scenario of inserting a tree when tree-building-road distance constraints
apply.
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The three example distance rules can be expressed as formulas in FOL:

F_tb = ForAll b, t (IF Building(b) AND Tree(t) THEN dist(b, t) <= 5)

F_br = ForAll b, r (IF Building(b) AND Road(r) THEN dist(b, r) >= 10)

F_tr = ForAll r, t (IF Tree(t) AND Road(r) THEN dist(t, r) <= 2)

Also the extra check-rule can be rewritten in a FOL-like manner and then together with the
three formulas evaluated by theorem prover to find out counter-rules.

Exists b, r(

building(b) AND

road(r) AND

dist(b, r) > 10 AND

NOT(

Exists x(

between(x, b, r) AND

(building(x) OR road(x))

)

) AND

Exists t(tree(t) AND between(t, x, r))

)

Notice in FOL the notation blah(x, y) can mean two things, either a predicate (or proposi-
tion/statement in some contexts) that says blah is true for (x, y) combination, or a function
(or operator) that denotes the result of applying blah to (x, y) combination. In the example
expressions here the terms Building(), Tree() and Road() are unary predicates saying that the
object within the bracket ’()’ belongs to the object class, e.g. Building(b) holds if b is a building
object. And dist() is a function about binary relationship that denotes the result of distance
calculation between two objects within the bracket, e.g. dist(b,r) returns the distance between
object b and r. And between() is a ternary predicate showing that the 2nd object is spatially
between the 1st and the 3rd object, e.g. between(b,x,r) means object x is spatially between object
b and object r.

To conclude, consistency of geo-database constraints in this research means a series of
constraints do not forbid object that should be possible to exist in database. Depending on
the number and relation (or structure) of constraints, the inconsistent constraints can be very
obvious to human, as is exemplified by distance rules. Or they can be hidden and difficult to
find out. How several different constraints applying upon the same object would influence each
other and what the outcome might be is a more complicated reasoning issue.

Nevertheless, to achieve the evaluation of possible contradiction, extra check-rules have to
be explicitly specified so that both human and machine reader can understand. They can be
specified as formulas in OCL as was shown, but almost impossible to address as constraints
like a usual database constraint can. A workaround is to rewrite them in first-order logic.
And then with well-defined structure of axioms, it is possible to do automated comparison in
theorem prover. However, FOL does not understand the spatial predicates/functions yet, e.g.
’distance()’, ’overlap()’, ’buffer()’, etc. How much workload has to be given to translate a single
geo-constraint to axioms so that the FOL theorem prover can understand is not tried yet. A
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general conception is the FOL theorem provers hardly support geographic rules. If human
knowledge input necessary in FOL in order to ’automate’ the reasoning requires more effort
than doing the comparison by human reasoning, then it is not ’automatic’ as one really means.

6.3 translation of conceptual model

The Model Driven Architecture principle, being supported by Object Management Group
(OMG), provides a framework to define how models in one domain-specific language can
be translated to models in the other languages ([Kleppe et al., 2003]). Considering that the
constraints will finally be implemented in the database system, it is of great help if UML/OCL
model can be automatically translated to SQL script. Some useful tools are explored and their
strengths and weaknesses are given below.

• Enterprise Architect
Enterprise Architect (EA) is used in this study to draw UML diagrams. With DDL
(Data Definition Language), a UML model can be translated to SQL script and create a
corresponding database schema. It provides OCL writing as was used in a research project
presented in [Hespanha et al., 2008]. But except the referential key (PK/FK) constraints
and check constraints, the current version does not support the translation of OCL
constraints to DDL. In the research of this thesis, the syntax checking of EA is found to be
rather weak and unreliable. Statements which are obviously incorrect in syntax can still
be validated successfully.

• Hibernate (Spatial)
Hibernate is a model translation library for Java language. It has a SQL-like dialect
called Hibernate Query Language to translate an object-oriented domain model to a
traditional relational database [hib, 2011a]. One of its primary function is mapping from
Java classes to database tables. Hibernate has an extension, Hibernate Spatial, to handle
the geographic data [hib, 2011b]. With the help of HQL, it can translate the spatial features
coded in Java to spatial database tables/attributes. It is more like a Java library and does
not give a graphic user interface to do translation as EA or Eclipse supports. Using it calls
for a Java programming skill. For people that are not familiar with Java and just want to
drag-and-draw it does not seem to be a good choice.

• Dresden OCL2

Dresden OCL toolkit works in Eclipse environment and provides a set of tools to parse
and evaluate OCL constraints on various models, i.e. UML, EMF (Eclipse Modelling
Framework), Java metamodel and XML [Wilke et al., ]. Basically, it converts a rule to SQL
query that finds out all the records that do not satisfy this rule. The input of code generator
includes UML diagram of the appointed model and the associated OCL notations. Giving
a UML model (or EMF or XML) together with correctly parsed constraints in Eclipse
system, within several clicks an executable SQL script can be generated.

From the actual use of OCL2SQL tool, it is found out that whilst UML drawing is
standardised and always the same regardless of platform, the UML file (XMI) is not well
understood or shared amongst different software/platforms. An output XMI from EA
UML model cannot be understood by Eclipse, not saying the attached OCL expressions.
And the constraints have to be separately coded than attached to the UML model. An
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alternative is to draw UML (or EMF) model in native Eclipse environment which also can
avoid UML translation from one platform to another.

To conclude for model translation, for one that does not want to do much Java programming,
Dresden OCL2SQL tool seems the easiest to generate SQL code from OCL expressions of
non-spatial constraints. Within few clicks SQL code can be achieved, if the core model (like
UML) is understood by Eclipse, and OCL expressions correctly parsed.

For spatial constraints, the 3D geometries standardised in ISO19107 and 9I topological names
are not yet included in OCL library. Articles from [Pinet et al., 2007] and [Werder, 2009] show
the possible extensions for 2D objects and 2D topological relationships. To achieve automatic
SQL generation the extensions toward 3D spatial types and operators are still required.

Furthermore, although Oracle supports ISO19107 spatial predicates and types, they are
mainly 2D. If we would have the spatial constraints in OCL translated into SQL, still not many
corresponding 3D operators/functions in DBMS can be used to immediately implement them
(see the 3D functions in table 6 from appendix B.1). Therefore an immediate implementation of
3D geo-constraints is to do programming in database. This will be described at next chapter.
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As was discussed in the last chapter, the current model translation technique does not support
immediate and automatic translation from spatial OCL to SQL. Plus the fact that pseudo
OCL expressions from section 6.1 may not be perfect, an optimistic way to implement the
3D geo-constraints is to programme them in database with PL/SQL. In this sense, the power
of data maintenance and geospatial functions from database can be combined to have 3D
geo-constraints integrated in database seamlessly.

An in-negligible fact is that the existed 3D functions in Oracle Spatial are relatively new
and not widely extended. Many constraint checks can not be immediately implemented yet.
To be able to compute the detailed topological relationship, as required from the designed
geo-constraints in section chapter 5, new functions need to be developed. Section 7.1 will take
a close look at implementation of a new 3D spatial function. This function is able to tell a
more detailed topological relationship between two surface objects so that constraint about
’Oneobj_oneloc’ in listing 6.1 (from section 6.1) can be realised for two building instances. The
using of this function to carry out the constraint will be described in subsection 7.2.1.

The realisation of constraint that allows exceptional instances is achieved by different triggers
and will be discussed in subsection 7.2.2. A non-spatial constraint regarding small change of
sensor observation value is implemented in section 7.2.3. The ’No_Jump’ constraint (constraint
mb1 from table II in appendix A.2) about moving pattern of mobile object is realised in
subsection 7.2.4. And the function to tell event ’jump’ (proposed in pseudo OCL in section 6.1)
is also discussed in that subsection. After that is a realisation of three contradicting constraints
(about distances amongst tree-building-road) proposed from section 6.2. This implementation
shows how the trigger mechanism would react upon conflicting constraints. And the last
implementation, as you will see in section 7.2.6, is about LOD consistency of single object.

7.1 a new geometric function : sdo_surfacerelate

As was discussed in section 5.1.2, distinction between 9IM ’touch’ and ’intersect’ is necessary to
realise constraint such as ’Oneobj_oneloc’ from section 6.1. In ’touch’ relationship the refinement
to see ’strong-touch’ differently from ’touch’ is also necessary. The most related function in
Oracle Spatial database for this work is a 3D function SDO_AnyInteract. It is able to detect if
two 3D objects are ’disjoint’ or not. But it does not tell more details about what is happening in
the ’non-disjoint’ side. That is to say, two geometries which have ’touch’ and ’intersect’ do not
make any difference to it. Considering the demand of necessary discrimination in topological
relationship, a new function named ’3D_SurfaceRelate’ is developed here.

As the building objects in database are currently modelled by separate surfaces, a possible
relationship between two surfaces from different buildings is ’overlap’ (9IM). There are two
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variants which need to be treated differently under this situation. One variant is two buildings
share a common face because they are adjacent and have connection (a fine case). The other is
one building is ’coveredBy’ (9IM) by the other. This variant is seen as ’a building intersecting
another building’ which violates constraint ’Oneobj_oneloc’ (a wrong case). A close examination
of the surface storage indicates that these two variants can be discriminated by checking the
orientation of surface vertices. If ’overlap’ is caused by adjacent buildings, the orientations of
two overlapping surfaces will be opposite. If it is caused by ’coveredBy’ situation the orientations
will be the same. The former will be called ’overlap-opposite’ and the later ’overlap-parallel’.

Therefore, function 3D_SurfaceRelate is designed so that given two planar surfaces as input,
it will be able to tell if two geometries ’intersect’, ’overlap-opposite’, ’overlap-parallel’, ’strong-
touch’, ’touch’ or ’disjoint’ (see figure 33 for its I/O). It combines self-developed algorithm from
computational geometry with SDO_AnyInteract and existed 2D operators/functions of Oracle.

Figure 33.: The I/O of new function ’3D_SurfaceRelate’.

The principle of this algorithm is that each planar surface belongs to a plane (infinite
boundary). When two planes are not parallel, they meet in a line of intersection. If any surface
from one plane should have any contact spatially with a surface from the other plane, it can
only be somewhere along the line of intersection. If two surfaces intersect, this line will cross
both interiors (see figure 34(a)). If A strong-touches B, the line will cross B’s interior and go
through A’s boundary, and vice versa (figure 35(a)). If they merely touch, this line will only
intersects the boundaries (figure 36(a)).

Algorithm details are explained below (see also code in listing C.1 presented in appendix
C.1):

Given any valid (in Oracle) surface A and surface B, if they have any contact, function
SDO_AnyInteract() returns True (step 0). (Although the ring test indicates that AnyInteract
may see a disjoint case as interact, it does not miss interact cases. So if AnyInteract gives result
FALSE then two surfaces indeed have no spatial contact.) Then these two objects are passed to
the further check (see flowchart in figure 37).

• Step 1.
Check if either surface is vertical.
If yes, rotate them (the same rotation and same random angle for both) in 3D space until
both are non-vertical.
(See module 3D_Rotate in listing C.3 and line 97-102 in listing C.1).
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• Step 2.
Calculate the parameters of plane each surface belongs to and see if planes are parallel.
If yes, then calculate the relation their projections in 2D (x,y) plane have (using SDO_GEOM.RELATE
2D available masks).
If the relation indicates two interiors have intersection, be it EQUAL or CONTAINS or
COVERS or COVEREDBY or INSIDE or OVERLAPBDYINTERSECT, then check also the
orientation. For it can be two adjacent walls from different buildings (opposite orienta-
tions, two normal vectors point to opposite directions, which is fine), or one building
surface placed in a wrong position (same orientation, two normal vectors point to the

(a) In 3D, the line of intersection from two planes
crosses both A1 and B1’s interiors.

(b) In 2D, the projected intersection line crosses
the shared geometry of both polygons. In this
case A1_proj and B1_proj share a polygon (see
the green hole).

Figure 34.: Intersecting polygons in 3D, their projections in 2D and the line of intersection. The
hollow in 2D is the shared geometry.

(a) In 3D, the line of intersection crosses A3’s interior
and B3’s boundary (so it is B3 Strong-Touches A3).

(b) In 2D, the shared geometry is also a polygon.
But projection of the intersection line crosses only
the boundary. And crossing occurs on A3_proj’s
interior and B3_proj’s boundary.

Figure 35.: Strong-touching polygons in 3D, their projections in 2D and the line of intersection.
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same direction, which cannot be accepted). The former returns a string ’overlap-opposite’,
and the latter ’overlap-parallel’.

• Step 3.
If two surfaces are not parallel or vertical, calculate the parameters of line of intersection
where the planes meet.
Then choose two points on this line to make up a 3D line. Since the next step is to check
the relation between a 2D line and another 2D object (polygon or line or point). If the
end point of the line would be intersected, there will be more topological relationships
returned than the expected (cross or contain).
To simplify the computation, the line is made to be like infinite to the surfaces. Thus the
end points are selected from a broader extend, that is, double-sized bounding rectangle.

• Step 4.
Project surface A and surface B, and line of intersection to 2D (x,y) plane. Then we get two
polygons and a line. The polygons will share a common part, which can be polygon(s) or
line(s) or point(s).
Use Spatial function SDO_Intersection to retrieve the common parts (if two polygons
overlap, it returns the overlapping region; if two polygons touch, it returns the shared
line(s)/point(s)).
Check relation the line has with the common part.
If the shared geometry is on both interiors and is crossed by the line, then two surfaces in
3D intersect (see example figure 34(b)).
If the line only goes through boundaries of both polygons two surfaces touch (example
figure 36(b)).
If the line disjoints the common part then it is disjoint (this is designed especially for the
DISJOINT situations where AnyInteract() would return ’TRUE’).

• Step 5.
For the touch relation, use SDO_Intersection to obtain the shared part of intersection line

(a) In 3D, two touching polygons share a part of bound-
ary (in this case it is a point), which is contained by the
line of intersection.

(b) In 2D, the shared geometry (the overlapping
triangle) only touches the line of intersection.

Figure 36.: Touching polygons in 3D, their projections in 2D and the line of intersection.
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Figure 37.: Flowchart of the new spatial function 3D_SurfaceRelate.
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and the shared geometry from two polygons.
If this shared geometry is inside either polygon’s interior two surfaces strong-touch (see
example figure 35(b)).
If it is interior of polygon A (projection of surface A), and boundary of polygon B, then
the result returns ’A strong-touches B’ or ’A strong-touched-by B’, and vice versa.
If no intersection at all on either interior then it remains touch.

A group of 3D polygons are used to test the performance of 3D_SurfaceRelate, including
special cases like concave/convex polygons, polygons with/without hole. In appendix B.3 the
tests polygons are organised as:

• polygons that it returns ’intersect’ are in figure group 44

• polygons that it returns ’strong-touch’ are in figure group 45

• polygons that is returns ’touch’ in figure group 46)

During the test SDO_AnyInteract appears to be problematic in two cases, both of which
contain a (valid) 3D ring (3D polygon with a hole). In one test, the other object is a normal
surface that goes through the hole without any contact (see figure 38(a)). In the other test,
the other object is also a 3D ring, which chains this ring, but has no contact with the inner
ring (see figure 38(b)). However, as is displayed in the figure, SDO_AnyInteract returns TRUE
for both cases. This problem with ring object remains the same in SDO_GEOM.RELATE
(mask=’ANYINTERACT’) which does not use spatial index as SDO_AnyInteract but rather
actual geometry.

(a) A 3D polygon goes through a 3D ring and no touch-
ing occurs on the ring’s inner boundary.

(b) Two 3D rings chain together and no touching occurs
on the inner boundaries.

Figure 38.: Two disjoint tests (with ring) that AnyInteract returns ’TRUE’.
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The other problem is found in function SDO\_Inside along the way. The expression SDO_INSIDE(geometry1,
geometry2) evaluates to TRUE for when geometry1 has the INSIDE topological relationship
w.r.t. geometry2, and FALSE otherwise. The geometry1 can be any Oracle geometry type but
geometry2 must be solid. According to the definition of topological relationship in Oracle
Spatial 11g2, INSIDE relation is the opposite of CONTAINS, which means ’The interior and
boundary of one object is completely contained in the interior of the other object’ [Ora, 2010b].
The example from document does not show anything 3D. The 3D line and solid tests against
this operator works fine. But a strange situation happens on 3D point object. When a 3D point
is exactly on the boundary of a solid (be it face, edge or vertex), this operator returns also
’TRUE’.
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7.2 implemented constraints in ccc database

Five constraints are implemented and each implementation is explained in detail in the fol-
lowing sections. They are implemented to show constraints in conceptual level from table II
(appendix A.2) and OCL expressions in section 6.1 can be realised in database system. These
implementations can be extended to include more city objects and attributes in the future.

• Building_Interrupt_Building: uses function 3D_SurfaceRelate and realises the constraint
bb1 from table II in appendix A.2.

• Tree-building min distance exception: realises distance rule (bt2 in table II, appendix A.2)
allowing exceptions (see section 3.1.2) for individual instances.

• Smooth temperature change: realises constraint (s1 in table II, appendix A.2) about
maximum changing rate of sensor observation in time.

• Moving object restriction: checks moving pattern of mobile object (see constraint mb1 in
table II, appendix A.2) and forbids ’jump’ (proposed function from section 6.1).

• Contradicting constraints: three made-up contradicting rules proposed in section 6.2
are realised with triggers. It shows what the outcome of having contradicting rules in
database can be.

• LODs consistency: guarantees the multi-scale geometries of the same object are consistent.
A bug in Spatial 11g 3D function SDO_AGGR_MBR is found when realising this constraint.

All the constraints are coded as procedures within a PL/SQL package (see appendix C.2)
and called by fired trigger. Notice the roles of row-level trigger and statement-level trigger in
this implementation are different. The former one assigns values to global variables shared in
the procedures. The reason to identify the modified row is that the geometries of surface in
3DCityDB are all stored in one table. Running a geometric constraint check, say, intersection of
surface, every time through all the records would consume a lot of time.

A better way to have geometric intersection check is to select the objects that are close in
space to the modified object. Then in these likely-intersected objects the check can be run and
thus desires less time and resource. This requires a spatial query at run-time, which has to be
called by trigger. However Oracle row-level trigger about database table has a mutating-table
restriction. That is, the table at the time that a trigger statement is trying to modify cannot be
queried/modified. A statement-level trigger does not have this restriction but the modified row
is not identifiable in it. Therefore either type of trigger cannot manage to have row information
and select query at the same time.

A workaround is to have a global variable specifying the modified row (or a particular
attribute in the row) in the procedures, which is similar to default variable :NEW (and its
attributes). Then use the row-level trigger to assign values from its :NEW to the variable in
procedure (see triggers in listing C.7 from appendix C.3). And then in a statement-level trigger
call the procedure that does spatial query according to this assigned row-like variable.

7.2.1 Building_Interrupt_Building

A general rule abstracted in section 6.1 shows a necessary restriction of city objects intersection.
Almost all the existed city objects in CCC database are modelled by surface geometry, except
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sensor which is by point geometry. Therefore the new function 3D_SurfaceRelate that examines
the detailed relationship between a surface pair is of great use. With 5 object classes (building,
tree, road, water, grass) the number of all binary relationship, either between instances from
two classes or between two instances from the same class, is 5x5 = 25. If only the geometry of
surface is necessary to determine object intersection it is better to have a general procedure that
can be called in all situations.

However, giving the relationship returned by 3D_SurfaceRelate, the meaning of input surfaces
is also needed. As was explained before, the same relationship, say ’INTERSECT’, is considered
differently between two trees and between two buildings. The former one can be accepted but
the latter cannot. So each relationship string needs to be evaluated differently in each objects
pair. Furthermore, the calculation with all 25 possible objects pairs may consume quite a few
time. So it is better to code every objects pair separately.

In this sense, what the procedure that detects geometric interruption of objects should do
first is to know the geometric relation with 3D_SurfaceRelate. Then a conditional statement
interprets the relation with the meaning of surfaces. Then in relations that are considered as
intersection for that particular pair of objects a run-time error is raised to warn user and rejects
the data change.

This approach is implemented by an example procedure building_interrupts_building

which checks if a modified building surface (updated or inserted surface geometry object)
intersects any surface from other buildings (see also code in listing C.5, line 3-176). When the
AFTER EACH ROW trigger passes the modified row into the package, the procedure selects
surfaces from other buildings that have spatial interaction (using SDO_AnyInteract()) with this
modified one. Then the surfaces are passed to function 3D_SurfaceRelate to calculate the exact
spatial relation. For each relation, there is a counter and a list variable to store how many
surfaces hold this relation with the modified record, and what their IDs are. The counters and
ID lists will then make up the report (see table 2).

When all interacted surfaces are examined, if there is any instance with relation ’Intersect’ or
’Overlap_Parallel’, then at least two surfaces are interrupting, which is seen as an error and data
modification must be rejected. A predefined run-time error is raised. Then a (DBMS_Output)
message is printed to tell which surface(s) intersects/overlaps this modified record and who
they are (their IDs). After that, a user-defined error (Raise_Application_Error) is given to show
there is something wrong in the data change. Raising of this error will automatically roll back
the effect of change (see also raising of exception at the beginning of this chapter 2.3). Therefore
the table remains the same as if nothing has happened.

The test of core function 3D_SurfaceRelate has been shown in appendix B.3. The test of
procedure is carried out with two cubes, one of which is smaller than the other. It is allowed by
constraint to have relation ’Strong-Touch’ (reversed ’Strong-Touched-By’) or ’Overlap_Opposite’
or ’Touch’. These situations between two surfaces from different buildings will be considered
as two buildings are adjacent. A report telling which surface holds what relation against this
modified record will be given.
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Table 2.: Messages produced by constraint relative to Building Intersection.
Error Message Warning Message / Analysis Report
-20001, ’Spatial Constraint: The

building surface(s) interrupts the

other building(s). Please correct

the intersecting and overlapping data

detected in the diagnosis.’

The updated surface

intersects/overlaps surfaces of ID

= 124, 125, 137.

- 3 surfaces have contact with surface

ID = 140. It strong-touches 2

surfaces(s) of ID = 126, 138. It is

strong-touched by 1 surface(s) of ID =

139. It touches 1 surface(s) of ID =

129.

- The target surface does not have

any contact with the other building

surfaces. But it is not clear if

it really disjoints from them or it

is inside another building without

touching the faces. It is better to

visualise the surfaces.

As you may notice, the relation between building solids is computed in surface level. One
reason is that Oracle does not provide operators on solid relationships more than simple check,
e.g. SDO_Inside. And the solid from CityGML is currently stored in Oracle as a collection
of surface objects and linked by referential keys, rather than a single solid instance. The
surface-level approach directly takes available data as input without any a-priori comprising.

A difficulty is found in unambiguously telling if the disjoint of surfaces really means disjoint
between solids. For instance, after comparing every surface from one building to all the surfaces
from the other, the relation turns out to be disjoint. Now it can be that one building is inside
the other, and simply has no contact with the other’s bounding faces. To tell this condition
from the real disjoint, a possible solution is to form a solid (by composing the surfaces from
one solid) for each building, and then check the relation between solids. This can easily become
a huge computation due to the storage structure of a building solid in CityGML.

The default database schema from 3DCityDB [Kolbe et al., 2009] does not assign meaning
of geometry in the geometry table, but indicates it in the other table and uses referential key
to make the link. In practice, to reveal the meaning and the object a surface belongs to, two
columns are added, CLASS_TABLE and CLASS_OBJECT_ID. The former shows the meaning of
object. For example, if a geometry comes from a road then this column has value ’Road’. The
latter column tells the ID of the assembly object in that semantics table. If a road face belongs
to a record in table LANDUSE with ID = 15, then this column has value 15.

7.2.2 Tree-building min distance exception

From database point of view, given any situation a constraint is either satisfied or violated.
There is no middle way or gray-area. To deal with uncommon and yet real situations which
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make constraints more realistic and usable, especially parametric rules, a workaround is to
move the instance explicitly marked as exception elsewhere. In practice, it rejects the change on
the target table but stores the suspected cases elsewhere in database.

The exception about the distance rule between tree and building is implemented as an
example. The rule states that a tree should be at least 2 meters away from a building. But tree
with a shorter distance to a building does exist in reality. Hence when this rule is violated,
the data should not be thoroughly rejected. But the specific tree instance should be added to
exceptions.

What the implementation does is once a tree object being added is found to be a violation, it
will not be committed directly to the table it means to go to. But rather, it will be moved by
trigger to a special table that stores exceptional cases (see EXCEPTION block in listing C.6, line
252-277). The special table has all columns the original table has, plus two extra attributes. One
is a flag with only values ’TRUE’ or ’FALSE’ (by default is FALSE), and the other the reason
why this record is there (comes from message generated by DBMS_Output, e.g. ’this tree object
is found too close to building’). The user can look into the instance himself in this table. If he
the instance turns out to be an exception, he can change the flag from ’FALSE’ into ’TRUE’.
After that a trigger is fired, which inserts this instance into the original table (see trigger in
listing C.10). And this instance just remains in the special table (for convenience of further
check). A work flow of two triggers is shown in figure 39.

Figure 39.: Work flow of triggers for constraint exceptions.

The test data is a made-up cube as a building and a made-up surface as a tree instance, whose
distance to one cube face is less than the min distance. At the beginning, to not let the exception
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go into the original table, raise-application-error was used in the trigger. However, when a
trigger causes an error, it will cancel all the transactions from DML statement (insert,update
and delete), including the insertion to the special table. It is not possible to have error and any
update/insertion happening at the same time. So an alternative is chosen, which deletes the
record in the original table explicitly and then displays the message using DBMS_Output (see
message content in table 3).

Table 3.: Messages produced by constraint exceptions relating to tree-bld min distance.
Error Message Warning Message / Analysis Report
- The (part of) tree object with id = 23 is too close

(dist < 2m) to building surface(s) of id = 45. The

updated/inserted tree is suspected to be an error, and

has been moved to table SURFACE_GEOMETRY_EXCEPTIONS.

Please check the instance(s) yourself, and change the

value in ‘Accepted‘ into ‘TRUE‘ if the instance is

alright.

- The exception instance has been inserted / updated in

table SURFACE_GEOMETRY, and deleted from the exception

lists. Free_Entry_Flag is set back to ‘FALSE‘.

In principle, more properties can be added to the table of exceptional instances. For example,
if the data is inspected by different users, adding properties as updater, date of change and
reason why the instance is correct can help a better management.
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7.2.3 Smooth Temperature Change

Restriction of temperature changing rate in time is the only realised temporal-thematic constraint.
The parametric threshold is ’at most 3 Celsius degrees change in 1 minute’. This value is just
set by experience of the temperature measurements in campus. It can be redefined by more
scientific statistics. The realisation of this rule is only an example of implementation of temporal
constraints on other sensor measurements. Test data is real temperature measurements. The
error message is -20006, ’Temporal Constraint: The modified temperature changes too

fast! Max. rate is 3 Celsius degrees per minute.

Please check DBMS_OUTPUT message for detailed diagnosis.’. This message can be also
seen in Python IDLE (figure 42) when inserting a group of sensor observations from a text file.

7.2.4 Moving Object Restriction

Temperature observations were captured by a person carrying temperature meter and position-
ing device. A presumed transaction is insertion of a set of points that is measured in one go.
Usually in one go a carrier moves either completely outdoors/indoors or from outdoor into
indoor. When sensor is close to the building boundary from outdoor, just a small degree of
deviation in positioning would cause the location shifted to somewhere indoors (a ’jump’), and
vice versa (see figure 40).

To tell if there is a jump, looking at an individual point does not give much clue. A series
of points in time have to be considered in order to understand the moving pattern. An earlier
attempt was made to construct a line object that is considered as moving path from the sensor
points within one go. And then compare the topological relationship between this line and the
building footprint. If somewhere in the middle of the line it crosses the footprint, it would then
be considered as a jump.

This approach is pretty dependent on the frequency of recording. In other word, when the
time interval between two measurements is large, some important points (points of turning)
in between maybe missing. For example, a carrier is moving along the boundary of building.
When he makes a turn at the corner, the positioning device only records the points before and
after the turning. In the construction, a line linking these two points may cross the building
corner, which will confuse the constraint check. Another problem is with the line approach it is
difficult to identify which points of the line cause the crossing, since points are sort of ’hidden’
in the coordinate string. It is preferred to give user a detailed message about what is found out
from the dataset by the constraint check. So simply saying ’the line object is suspected to cross
building A’ is not good enough.

Whilst weighting the pros and cons of the approach above, another solution in point level
comes on the scene and becomes the final implementation. This implementation uses a window
of three sequential points in time is used to ’scan’ through all the sensor measurements. Given
3 sequential points, compare the relative location of each point with the building footprint. If
the triplet relations are in pattern of ’inside, outside, inside’ or ’outside, inside, outside’, then
the 2nd point is very likely to be a ’jump’ case. The former one is seen as sensor jumping out of
building, and the latter as jumping into building. After checking through points of the whole
insertion, the jumping cases are recorded and delivered as a message to the user (see message
content in table 4).
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The test data is real observation carried by student. During the inspection of sensing data
some points are found too far away from its precedent or following points. In other word, the
speed of travelling between these points pairs looks too fast for human carrier (say, 40m in 10

seconds). Hence an extra check that limits the speed of mobile object is also implemented. The
report is realised as an error message.

(a) On one of the moving paths, the
sensor location moves from outside
to inside the building.

(b) Another example of a moving
path is when the sensor moves
around and into a building through
the entrances.

(c) An example of ’jump’. The car-
rier only hovers around the building
but some locations appear to be in-
doors. Please note that the triplet
where jumping point occurs in the
2nd position, follows a pattern of ’out-
side, inside(i.e. jump), outside’.

Figure 40.: Possible moving patterns and ’jumps’ produced by mobile sensor(s). Red crosses
represent indoor points.
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7.2 implemented constraints in ccc database

Table 4.: Messages produced by the ’No_Jump’ constraint.
Error Message Warning Message / Analysis Report
-20002, ’Tempo-Spatial

Constraint: The speed of

moving object is beyond its

limit!

-

- There are points possible to be JUMPING-in. They

are with id = 79, 83, 90.

- There are points possible to be JUMPING-out. They

are with id = 45, 56, 69.

There are several improvements that can be made upon this approach, depending on the
carrier’s moving pattern and how detailed the information of building is stored in database.
Mobile sensing data in CCC database is carried by human and mainly on the ground. And the
building model where the measurements took place around is a simple cuboid model without
any interior structure, e.g. floors and stairs. So the topological calculation is done with the
building footprint, which is actually a 2D polygon. And the sensing location, although stored
with three dimensional coordinates, are also pushed down to ground level (2D) to simplify the
computation. If the carrier goes upstairs and takes measurements from different floors, the 3rd
dimension may need to be taken into account.

Also when possible jumping is detected, it could be a case that a carrier goes into (or comes
out from) a building and then comes out (goes into). Thus the locations of entrance/exit of
building becomes important to unambiguously tell if that really is a jumping or not. Information
of the openings like doors are only available in LOD3 or above, which is not yet stored in this
database. Because of this lacking information and the ambiguity, the current implementation
does not give error when it sees a jump, but simply delivers a diagnosis.

7.2.5 Contradicting Constraints

The distance rules about tree-building, building-road and tree-road exemplified in section 6.2
are implemented by trigger. Each rule is checked by one trigger (see listing C.5 line 286-387)
and produces an error message (see table 5). No warning messages are generated. The triggers
about the same object, when defined in database upon the same spatial table, will run all in one
go. When building and tree objects are already in the database, adding a road instance will fire
the check of Building-Road and Tree-Road constraints. If nothing violates, the road instance
will be accepted. Then it is impossible to modify any tree instance anymore.

Test data uses a cube representing building, a polygon (rectangle) as road and another polygon
as tree. When inserting the tree polygon, which is within the max distance to the road polygon
but beyond the max distance to the cube, error message from constraint Tree2House will pop up.
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implementing constraints

Table 5.: Messages produced by three contradicting distance constraints
Constraint Error Message
Tree2House max. distance -20003, ’Spatial Constraint: Tree is

too far (dist > 5m) from the house.’

Tree2Road max. distance -20004, ’Spatial Constraint: Tree is

too far (dist > 2m) from the road.’

Road2House min. distance -20005, ’Spatial Constraint: Road is

too close (dist < 10m) to the house.’

7.2.6 LODs Consistency of Single Object

As was mentioned earlier, considering a single building as a solid object and its MBB a
cube, the consistency check between 2 LODs becomes a comparison between two cubes. The
centroid of cube gives location and magnitudes in x, y, z axises represent width, length and
height, respectively. For a building object in CityGML is stored as a collection of surface
instances, the MBB of building is actually a cube that enclose all its surfaces. As mentioned
before, SDO_AGGR_MBR, which calculates a single bounding box enclosing specified (multiple)
geometries, is a key operator on this realisation.

However, during tests function SDO_AGGR_MBR is found problematic. When giving more
than one 3D polygon as input it returns an output with either incorrect SDO_Elem_Info_Array
or incorrect coordinates. For the time being, LODs consistency constraint is not realised. If
function/operator that aggregates 3D geometry becomes possible, it will not be difficult to
carry out this example implementation.
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8
C O N S T R A I N T S V I S U A L I S AT I O N

As was described earlier, there are two types of message, error message and DBMS_Output
message. Once a constraint is violated, database will give an error message. This will always
be delivered to the client. In contrast, DBMS_Output message is not guaranteed visible to all
clients.

Although SQL Developer as a Oracle default data browser and analysis tool can display
both messages, not everyone would manipulate with data using SQL Developer like a database
developer or administrator would. More would modify data through clients like mobile devices
(PDA, smart phone) that can capture observations in the field, or a CAD editor on a desktop
(e.g. MicroStation) that enables visualisation and easy editing of geometries. The field data from
mobile devices, outside automatic uploading from the chip, usually is manually uploaded by a
piece of script (e.g. Python or Java programming language). A convenient and easily-recognised
visualisation of database constraints in the front-end will largely expand their usability. In
this research, Bentley Map and Python IDLE are tested to see how good the constraints are
visualised.

Constraint from subsection 7.2.1 is tested here in Bentley Map. Imagine that a user loads
campus model into Bentley Map to modify geometry of some building. He is not aware that
one building intersects another building and thus he creates an unrealistic data. When he posts
the modification back to database, he will see something similar to figure 41.

An advantage of having constraints in the central storage like database is that it is independent
from platforms. No matter what way one is accessing the database through, as long as
constraints detect something wrong the user can always be alerted.

The constraint to test in Python is ’smooth value change’ from subsection 7.2.3. Imagine
someone uploads a collection of temperature records. But somehow the records are found to
contain two or more values, measured within 10 seconds, that have sharp difference (say 5

degrees). An error message regarding the unusual change thus is sent to Python and directly
displayed in IDLE (see figure 42).

Since Oracle error message is not designed to contain lots of text and the raising of it by
default rejects every real-time transaction, more abundant, detailed and specific information
telling what really goes wrong or is likely to be wrong are given to user with DBMS_Output
functions. However, DBMS_Output messages is not visible in Bentley Map’s GUI, neither is it
by default in Python IDLE (has to be configured manually). Although other clients are not tried,
it is very likely that DBMS_Output message is invisible, or even is not recognised, to many of
them. Hopefully Oracle database system will enable DBMS_Output messages to be visible to
more clients as it has already done with the error message.
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constraints visualisation

Figure 41.: The database trigger has detected that two buildings are intersecting. Oracle database
then sends an error message to Bentley Map, and this message is then displayed at
the Message Center which means it is easy to see on the GUI.
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constraints visualisation

Figure 42.: The database trigger has detected that some temperature fluctuations have occurred
too quickly within a short space of time. Then Oracle database sends an error
message to Python, and this message is displayed directly on the IDLE interface.
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9
C O N C L U S I O N A N D F U T U R E W O R K

The objective of the research carried out in this thesis is to design, conceptualise and implement
3D geographic constraints in a database. To achieve this goal, the Climate-City-Campus database
which stores topographic city objects and attributes, is studied as a sample. Constraints are
first discovered from this database and then expressed using natural language. Then objects
in the statements are abstracted with geometric primitives and their spatial relationships with
topological relationships. By doing so, spatial constraints are further specified into expressions
with geometric primitives and topological terms. Following well-defined spatial types and
operations as proposed in the ISO19107 standard, and with support using various tools, an
attempt has been made to formalise these constraints using OCL. The pseudo OCL expressions
are attached to the UML class diagram and thus can be considered a part of the model. Finally,
some constraints are realised in the database by PL/SQL trigger mechanisms.

Results of this research, namely the answering of the research questions raised in the introduc-
tion (see chapter 1), are given in section 9.1. Some suggestions for researchers wanting to carry
out further investigations into geo-constraints are included in section 9.2. Recommendations
for improvements of standards and software are given in section 9.3.

9.1 results

During the study process, the research questions asked initially have been addressed, including
current state-of-art geographic constraints modelling, their specification and formalisation, im-
plementation and visualisation, conversion to executable code, ability/maturity of 3D functions
in database. Other questions regarding a broader scope are also considered. Most of the initial
research questions are answered:

1. Which 3D and sensor objects are needed?
All objects in the CCC database need constraints, namely building, tree, temperature sensor,

road, grass, water and terrain objects. In the beginning, extra types of sensors (see section 4.2)
were expected to be stored. Therefore considering that a sensor has some special properties
that the rest of the campus objects do not have, e.g. mobility, high frequency of observation in a
time interval (which means a constant change of value), various types that produce different
parameters, a distinction meant to be made between other 3D objects (actually static campus
objects) and sensor objects by this question.

As the research proceeded, no other sensor measurements appeared to be available, so the
focus was shifted to 3D campus objects. And the existing temperature measurements made by
mobile devices were studied in order to analyse moving patterns relating to mobile objects.
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conclusion and future work

2. Which spatial, thematic, temporal and quantity constraints are necessary?
All the initially proposed constraints are shown in section 5.1.1 and tables in appendix

A.2, of which 22 are spatial, 2 thematic, 1 temporal, 2 quantity. Some spatial constraints
are then abstracted into a general constraint, e.g. intersection of objects and consistent LOD
representations. The reduced number of constraints plus some new ones found during research
(see table II in appendix A.2) are then expressed in OCL as given in section 6.1.

What constraints are necessary depends on what the purpose of having constraints is. This
research aims to give a general methodology for designing and implementing 3D constraints
so that the city model in a geographic database can be kept clean. Various research projects
have been carried out in constraint categories e.g. spatial, thematic, temporal, quantity and a
combination of them. So spatial constraints, esp. 3D, as a category that has not been studied
in any great depth so far, become the main focus and also a refinement of current theory
concerning spatial constraints in general (both 2D and 3D). Therefore most of the designed
constraints belong to this class.

Examining answers relating this question will result in a better understanding of other
different types of constraints:

• Higher-level/Abstract Rules Some rules such as intersection of city objects (explained in
section 6.1) can be generalised to a higher level and then applied to more object classes so
that they will not be duplicated in every class. And a refinement of these general rules
can be made for a specific class/attribute/relationship.

• Parameter-Based Rules The parameter-based constraints constraining values of objects
and their properties can be placed in a category by themselves. The same parameterised
rule for one object class would vary from instance to instance, depending on the type
(also explained in section 6.1). And the parameters can be defined by users to achieve a
greater efficiency.

• Exceptional Rules The rules that accept exceptional instances can be in one class (see
concept in section 3.1.2 and their implementation is referred to in section 7.2.2). Having
this class makes it possible to include the unusual yet existing city object instances in a
database system.

• Extra Check Rules To find out the contradicting constraints, extra check rules need to be
explicitly formulated. They are like rules of rules and may not directly apply to a specific
object/attribute/relationship in the model. Therefore they should form a different class
to the others.

• Multi-scale geometry consistency rules When a data area is modelled with different
scales, e.g. CityGML LODs and climate modelling, constraints that check the consistency
between two different scales should also be taken into consideration and would form a
class in itself.

3. What is the best way to formalise these constraints?
Overall OCL is the best formalisation tool (see section 6.1). It is used in the ISO standard

and INSPIRE data specification and supported by various and growing numbers of model
translation tools. Most of the constraints are spatial constraints. For non-spatial constraints,
regarding categories of thematic, quantity and temporal, current OCL standard statement is
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9.1 results

sufficient. For spatial constraints, the geometric/topological abstraction of real world objects
makes it more specific and thereby paves the way to a more formal specification in OCL.

There are other reasons to bring OCL forward. Firstly, it is in principle a language for
formally specifying object constraints, although the current standard does not support spatial
types and functions yet. Secondly, there are well-defined spatial types and predicates presented
in ISO19107 standard, so with this standard the OCL library can be expanded. Thirdly, OCL can
be rewritten in First Order Logic or any other High Order Logic languages and then checked
by a theorem prover to see if there are any contradicting constraints.

4. Which tools/software are the most suitable for this work?
As far as drawing UML and writing OCL is concerned, EA is a sufficient tool. When it comes

to model translation from OCL to SQL, EA appears to be insufficient because it does not convert
OCL expressions to DDL code (see also section 6.3).

Dresden OCL2SQL tool kit, which is embedded in the Eclipse system and can translate OCL
constraints to SQL select commands, seems to bridge the gap of code conversion. There are
three major issues to cope with (see section 6.3). The first is that the UML diagram from EA is
not recognised in Eclipse by default. A middleware to recognise and use EA UML models in
Eclipse, called MDG Integration for Eclipse, was supposed to cope with this first issue. But
somehow in practice it did not function as was expected. So either another conversion tool
should be found or the UML class diagram (or any other core model like Ecore or XML) should
be made using the Eclipse system. The second issue is that the geometry types and topological
names are not currently supported in OCL. This can be dealt with by extending OCL based on
the ISO19107 standard. The third issue is that very few of them are recognised by databases at
the moment.

5. What is the best way to implement constraints in a database?
Because immediate model translation is not available right now, the implementation was

coded by hand with triggers in Oracle PL/SQL, which can combine the power of spatial
functions and database mechanisms that are able to detect run-time error (see chapter 7).

To improve the performance of constraint checks, especially spatial constraints, spatial query
should be used in triggers. Row level triggers, due to the mutating-table restriction, which
does not allow query of table when it is being modified, only passes the row value to global
variables in procedures. Statement level triggers (After-Statement) then call the procedures that
use the assigned variables to do necessary query (see explanation about triggers in section 2.3
and implementation in section 7.2).

For 3D spatial computation, since the demand for spatial function capability was discovered,
the current 3D geometric functions, e.g. SDO_AnyInteract, SDO_Inside, in Oracle Spatial appear
to be insufficient (see section 7.1). Therefore a new function 3D_SurfaceRelate that detects more
detailed topological relationships is built on top of the existing 2D geometric functions, plus
some simple calculations from computational geometry. With the relationships detected from
this function and the meaning of surface objects, it is possible to fulfill the rule ’one object in
one location’.

6. Which database, PostGIS or Oracle, performs better in realising 3D constraints?
This question was not studied during the research. Instead the mission is handed to the

development of a new function in Oracle.
7. Is it possible to have some visual feedback to report errors?

85



conclusion and future work

Yes this is possible by means of two types of messages generated in Oracle. One is user-
defined run-time error messages, and the other is DBMS_Output messages. Error messages can
automatically reject a data change when an error is raised. DBMS_Output messages can contain
more detailed information and are also used. When some data modification of other tables is
needed, it does not enforce rejection, which becomes a good alternative message carrier (see
section 7.2.2).

A difference in terms of visualisation is that error messages are visible to all platforms but
DBMS_Output messages are not. Clients such as Bentley Map and Python IDLE, both of which
can connect to database and perform modifications, are tested and the error messages are
visible on their GUIs (see section 8). In contrast, DBMS_Output is visible only within the Oracle
developing tools (SQL Plus and SQL Developer). Bentley Map and Python IDLE have problems
of seeing this type of messages without extra configuration.

The new questions confronted along the way are:

1. How to make sure there are no contradicting constraints?
The human mind is able to perform its analysis but this of course varies from individual

to individual. If the number and diversity of constraints go beyond the capability of human
reasoning, then machines have to be introduced to perform the finer checks.

A solution to this problem would be to rewrite constraints in First Order Logic (FOL), that is,
to express every term in geographic constraints into FOL predicates and FOL functions, and
then run them in a theorem prover that computes the counter-rules. If counter-rules are found,
then one must look into them and find a solution for them, by either modifying the rules so
that they do not conflict or deleting the troublemakers. However, it is very likely that FOL does
not understand spatial types, e.g. ’point’ and ’polygon’, and predicates, e.g. ’distance()’ and
’overlaps()’.

2. How to check that multi-geometries (LODs) are consistent for single objects?
A data specification that unambiguously addresses the expected change of different LODs and

relationships between them is required at the first stage, as is discussed in the general concept
of one of the INSPIRE documents [INSPIRE, 8 26]. Then the differences that are unexpected can
be treated as inconsistencies. After that corresponding constraints can be realised in database
systems to check them.

An attempt was made by abstracting a rule from current data specifications about LODs,
regarding size differences. In principle, MBR of the single object can handle comparisons of
these factors. But in practice, a core function SDO_AGGR_MBR from Spatial database, which
calculates the enclosing bounding box of a collection of objects, is found to return incorrect
geometry information. Therefore, this rule cannot be realised in the end.

9.2 future work

Suggestions for future work for researchers wishing to extend the work carried out in this thesis
are:

1. 3D_SurfaceRelate can be extended to take over SDO_AnyInteract when dealing with binary
surfaces relations. Now the first check is SDO_AnyInteract, when two polygons are found to be
’non-disjoint’, the new function will take a secondary computation. But it still requires some
improvement in detecting ’disjoint’ cases. Hopefully in the future, given two random (Oracle
valid) 3D polygons, this new function will be capable of telling everything.
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2. Further study can be conducted into detecting contradicting constraints. Here the
constraints types can be both spatial and non-spatial. So far there seems to be two ways, one is
using OCL verification tools, and the other is using FOL and theorem provers. If someone would
consider studying OCL verification tools, those that appear in OCL workshop proceedings
[OCL, 2010b], e.g. HOL-OCL, UMLtoCSP are worth trying out. The second approach requires
a great deal of input to enable FOL to understand geographic predicates and types.

3. It would be interesting to develop a city model constraints library, and then integrate it
into CityGML data specifications. One aspect discovered initially in design constraints was that
there are no data specifications stating what is normal/usual and what is abnormal/undesirable
for a general 3D city database. So constraints have to be constructed by the researcher himself.
Those that have already been proposed in table I - ’Normal situations’ from appendix A.1, can
be further extended, formulated and then added to the 3DCityDB schema.

4. The pseudo OCL expressions from section 6.1 need to be tested in conjunction with the
UML diagrams so that translation to SQL code can be easier to achieve. Those expressions
are the first attempt to formalise various 3D spatial constraints in OCL. They include new
predicates and spatial types that are not currently supported by standard OCL.

5. It would be useful to extend EA, or Dresden OCL2SQL tool or any other OCL code
generation tools to enable automatic model translation from OCL (esp. spatial constraints) to
SQL. This requires mature Java programming since most of the MDA tools are developed in a
Java environment. However, this can also be provided by software developers.

6. When pseudo OCL is tested and are translated to SQL, in order to implement those
predicates, corresponding functions in database need to be developed. The existing geometric
functions, either 2D or 3D, can be extended.

9.3 recommendations

During this research, tools/software and standards have been studied and used. The experience
gained in using them has led to the conclusion that some improvements could be made by
manufacturers/developers and organisations.

Standards

• OCL: It would be highly productive to extend current OCL standards with 3D spatial
types/operations and topological relationships. Some extensions are found in articles
but are not yet in the standards and most of them are only in 2D. The ISO19107 standard
or Oracle specifications are good references for the extension of OCL standards. It is
important to bear in mind that Oracle and ISO standards are different when it comes to
defining geometry, e.g. volume.

• UML: It would be an excellent idea (see section 6.1) to create a symbol for a constraint
link which applies to the binary relation in the UML diagram.

• FOL: First order logic standard predicates and functions could be extended and adapted
with geographic terms so that automatic or semi-automatic counter-rule reasoning will
be more available. Considering that geometry is actually a series of ordinates (numeric
values), and the spatial types such as point, line and polygon and topological relationships
are comparable to predicates/propositions in FOL, this adaption is achievable.

• CityGML: It would be advisable to have geo-constraints incorporated into the UML model
so that city modelling could be more concise and well-defined.
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The CityGML data specifications could be more developed to enable the multi-geometries
(LODs) consistency check.

Software

• Oracle
1. A positive input would be to enable communication between DBMS_Output message
and clients so that more abundant information about constraint check results, could be
visible on different platforms. (Of course more input is also to be expected on the part of
front-end clients.)

2. More spatial functions relating to 3D and solids are desired from Oracle Spatial in
order to meet the rising demands of dealing with 3D data.

3. Likewise, an important aspect to address is the improvement of functions that are
currently not working properly.

a SDO_AnyInteract: problems with surface going through the inner ring (see prob-
lematic tests in figure 38 in section 7.1.

b SDO_Inside: problems with points on the boundary (vertex, edge, face) of solids
(also see section 7.1).

c SDO_AGGR_MBR: problems with mismatching between SDO_Gtype and Elem_Info_Array
(see section 7.2.6).

• Enterprise Architect
1. A function that would make EA more usable would be to enable the OCL code
generation in the DDL code generation. In this sense, constraints expressed in OCL can
easily be converted to be a part of the database design.

2. The current OCL validation is rather undeveloped in EA. As was explained in section
6.1, some OCL statements that are obviously incorrect in syntax can still be validated
successfully.

• Bentley Map
The DBMS_Output messages cannot be immediately seen in Bentley Map at the moment.
As this type of message provides more details of what an error in the input data can be,
and Bentley Map is commonly used as an editor for geometric objects in Spatial database,
it would be valuable to visualise DBMS_Output messages on the GUI of Bentley Map.
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e17126-04 edition. 756 pages.
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C O N S T R A I N T L I S T

a.1 normal situations
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Object(s) Proposed spatial characteristics

Building structures of one building and are connected and all surfaces are closed;

Building - building
structures from two different buidings are separate or touched (adjacent 

building);

Building - tree building and tree are separate or touched (tree leaves touch the wall);

Building - road

a road doesn't cross building (can go below or above building);

building address is the same as the name of a nearby road;

Building - grass

building doesn't stand on the grass field;

building roof/wall is covered with grass (roof greening, air garden);

Building - water

building doesn't float on water (except boat house);

building stands on special structure like poles upon water surface;

Building - terrain building foundation connects to the terrain or go underground;

Building - mobile sensor mobile sensor doesn't suddenly jump into or out of building through wall;

Building - stationary sensor The solar (panel) sensor should be installed outside the building;

Tree tree with a certain species has limited size;

Tree - tree trees are planted not too close;

Tree - road tree doesn't stand on the road;

Tree - grass -

Tree - water certain species grow in water, others on the land;

Tree - terrain tree trunk connects to the land or go underground;

Tree - mobile sensor -

Tree - stationary sensor -

Road -

Road - road -

Road - grass road and grass are separate (grass doesn't stand on the road);

Road - water road doesn't float on the water surface;

Road - terrain road doesn't disconnect from the ground;

Road - mobile sensor -

Road - stationary sensor -

Grass -

Grass - grass different grassfields are separate and don't overlap;

Grass - water grass and water are separate/adjacent and don't overlap;

Table I - Normal Situations



Object(s) Proposed spatial characteristics

Grass - terrain grass lays on the ground or even on building roof;

Grass - mobile sensor -

Grass - stationary sensor -

Water -

Water - water -

Water - terrain water surface lay on the terrain;

Water - mobile sensor -

Water - stationary sensor -

Land use every piece of land has a landuse type;

Table I - Normal Situations (continued)



constraint list

a.2 constrained situations in natural language
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Object(s) Do not accept Unusual but accepted

Building

b11 - the building object is not closed;

b12 - no hole on the wall to allow 

passing when there is a passage;

-

Building - building
bb1 - two buildings intersect or one 

building is inside the other;
bb2 - two buildings share a point;

Building - tree
bt1 - building and tree intersect or tree 

inside building;
bt2 - tree trunk too close to building;

br11 - road intersects with building; -

br12 - address of building doesn't 

match name of the road nearby;
-

Building - grass
bg1 - building stands on the grass land 

or grass intersects building;

bg2 - grass attaches to building surface (e.g. 

roof/wall greening);

Building - water
bw1 - building footprint intersects with 

water;

bw2 - building floats upon water (except the 

boat houses);

Tree t1 - tree exceeds its limited size; -

Tree - tree tt1 - trees are too close; -

Tree - road
tr11 - tree stand on the road;

tr12 - tree is too close to the road;
-

Tree - water
tw1 - tree of aquatic species is too far 

from water;
-

Mobile sensor - 

building

mb1 - mobile sensor jump into/out of 

building without going through 

opening first;

-

Stationary sensor - 

building

sb1 - solar sensor (panel) that should 

be installed outside the building 

becomes inside;

-

Road - -

Road - road - rr2 - road overlaps with road;

Road - grass rg1 - road crosses grass; -

Road - water
rw1 - road crosses water without any 

suporting structure (like bridge);
-

Grass - -

Grass - grass - gg2 - different grass fields overlap;

Grass - water gw1 - grass placed on the water; -

Grass - terrain -

gt2 - grass doesn't connect to the terrain 

(could be attached to be building wall or 

roof);

Building - road

Table II - Constrained Situations in Natural Language

Spatial Constraints



Object(s) Do not accept Unusual but accepted

Water - -

Water - water - -

Building

b1 - A building should have its 

construction date earlier than its 

destruction date; -

Tree - -

Road

r1 - A road should have its 

cnostruction date earlier than its 

destruction date; -

Grass - -

Water - -

Sensor
s1 - Change of measurement value 

must not be too fast; -

Landuse
l1 - A piece of land have different 

landuse types at the same time;

l2 - In the midst of a known area, a piece of 

land doesn't have any landuse type;

Terrain
n1 - An object doesn't have terrain 

intersection curve;
-

Special Issue - LOD d1 - two LOD geometric 

representations must be consistent;

Table II - Constrained Situations in Natural Language (continued)

Non-Spatial Constraints



A.3 situations that cannot be accepted

a.3 situations that cannot be accepted
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O R A C L E

b.1 geometry functions

Table 6 is a complete list of all functions/operators/subprogrammes (2D and 3D) that are
studied within this research. For more detailed information, please check Oracle Spatial
Developer’s Guide 11g Release 2 [Ora, 2010b].

Table 6.: Geometry functions in Oracle Spatial that are studied within this research
Function Name Short Description
SDO_ANYINTERACT (2D and
3D)

Checks if any geometries in a table have the ANY-
INTERACT topological relationship with a specified
geometry.

SDO_FILTER (2D and 3D) Uses the spatial index to identify either the set of
spatial objects that are likely to interact spatially
with a given object.

SDO_INSIDE (3D only) Checks if any geometries in a table have the INSIDE
topological relationship with a specified geometry.

SDO_NN (2D and 3D) Uses the spatial index to identify the nearest neigh-
bors for a geometry.

SDO_WITHIN_DISTANCE (2D
and 3D)

Uses the spatial index to identify the set of spatial
objects that are within some specified distance of a
given object.

SDO_AGGR_MBR (2D and 3D) Returns the minimum bounding rectangle (MBR) of
the specified geometries, that is, a single rectangle
that minimally encloses the geometries.

SDO.RELATE (2D and 3D) Uses the spatial index to identify either the spatial
objects that have a particular spatial interaction with
a given object. It support 3D only with ’ANYINTER-
ACT’ and ’INSIDE’ masks.

SDO_GEOM.RELATE (2D and
3D)

Examines two geometry objects to determine their
spatial relationship. Similar to SDO_Relate but sup-
ports 3D only with ’ANYINTERACT’ mask.

SDO_GEOM.SDO_AREA (2D and
3D)

Returns the area of a 2D or 3D polygon.
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Table 6.: (Previous table continued)
SDO_GEOM.SDO_DISTANCE (2D
and 3D)

Computes the distance between two geometry ob-
jects.

SDO_GEOM.SDO_LENGTH (2D
and 3D)

Returns the length or perimeter of a geometry object.

SDO_GEOM.SDO_MAX_

MBR_ORDINATE (2D and
3D)

Returns the maximum value for the specified ordi-
nate (dimension) of the minimum bounding rectan-
gle of a geometry object.

SDO_GEOM.SDO_MBR (2D and
3D)

Returns the minimum bounding rectangle of a ge-
ometry object, that is, a single rectangle that mini-
mally encloses the geometry.

SDO_GEOM.SDO_MIN_

MBR_ORDINATE (2D and
3D)

Returns the minimum value for the specified ordi-
nate (dimension) of the minimum bounding rectan-
gle of a geometry object.

SDO_GEOM.SDO_VOLUME (3D
only)

Returns the volume of a three-dimensional solid.

SDO_GEOM.VALIDATE_

GEOMETRY_WITH_CONTEXT (2D
and 3D)

Performs a consistency check for valid geometry
types and returns context information if the geome-
try is invalid.

SDO_GEOM.VALIDATE_LAYER_

WITH_CONTEXT (2D and 3D)
Examines a geometry column to determine if the
stored geometries follow the defined rules for geom-
etry objects, and returns context information about
any invalid geometries.

SDO_GEOM.WITHIN_DISTANCE (2D
and 3D)

Determines if two spatial objects are within some
specified distance from each other.

SDO_GEOM.SDO_INTERSECTION

(2D only)
Returns a geometry object that is the topological in-
tersection (AND operation) of two geometry objects.
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B.2 oracle topological names

b.2 oracle topological names

Some of the topological terms originated from Max Egenhofer 9I model are realised in Oracle
Spatial 11g2. They are possible results from operator SDO_Relate. Spatial uses the following
names (see also figure 43):

• DISJOINT: The boundaries and interiors do not intersect.

• TOUCH: The boundaries intersect but the interiors do not intersect.

• OVERLAPBDYDISJOINT: The interior of one object intersects the boundary and interior
of the other object, but the two boundaries do not intersect. This relationship occurs, for
example, when a line originates outside a polygon and ends inside that polygon.

• OVERLAPBDYINTERSECT: The boundaries and interiors of the two objects intersect.

• EQUAL: The two objects have the same boundary and interior.

• CONTAINS: The interior and boundary of one object is completely contained in the
interior of the other object.

• COVERS: The interior of one object is completely contained in the interior or the boundary
of the other object and their boundaries intersect.

• INSIDE: The opposite of CONTAINS. A INSIDE B implies B CONTAINS A.

• COVEREDBY: The opposite of COVERS. A COVEREDBY B implies B COVERS A.

• ON: The interior and boundary of one object is on the boundary of the other object (and
the second object covers the first object). This relationship occurs, for example, when a
line is on the boundary of a polygon.

• ANYINTERACT: The objects are non-disjoint.

Figure 43.: Topological relations that Spatial realises.
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b.3 test polygons for 3d_surfacerelate

(a) Two perpendicular
polygons intersect.

(b) Intersection of a polygon with
hole and a polygon without hole.

(c) A polygon goes through a hole
of the other and intersects from the
inner ring.

(d) A concave polygon intersects a con-
vex polygon.

Figure 44.: Tested polygons that all return ’INTERSECT’.

(a) A convex polygon
strong-touches a concave
surface.

(b) One concave surface
strong-touches the other
by a point.

(c) A polygon with hole
strong-touches a concave
polygon with its outer
boundary.

(d) A ring strong-touches
a concave polygon with
its inner boundary.

Figure 45.: Tested polygons that all return ’STRONG-TOUCH’.
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B.3 test polygons for 3d_surfacerelate

(a) Two regular polygons
share an edge.

(b) A convex polygon
touches the other at one
point (with its vertex).

(c) A concave polygon
touches the other polygon
at one point.

(d) Two concave poly-
gons touch at two points.

(e) A polygon goes
through a ring and
touches the inner
boundary at two points.

Figure 46.: Tested polygons that all return ’TOUCH’.
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C
C O D E

Constraints in this research are all coded as procedures within database packages and called by
triggers. Functions (e.g. to calculate surface relation) are not included in a particular package
so can be called within the whole database. Codes of functions and procedures are given below.

c.1 functions

3D_SurfaceRelate is to calculate relation between 2 3D polygon objects (see listing C.1). It in-
cludes several modules: ’3D_PlaneParameters’ (listing C.2) calculates parameters of a 3D plane,
’3D_Rotate’ (listing C.3) rotate a 3D object about a user-defined axis, ’3D_MBR2NormalGeom’
(listing C.4) converts a rectangle represented by 2 points into a usual representation with
all points. This function returns string ’Disjoint’ or ’Touch’ or ’Overlap_Parallel’ or ’Over-
lap_Opposite’ or ’Intersect’

Listing C.1: Self-developed function 3D_SurfaceRelate� �
CREATE or REPLACE FUNCTION 3 D_SurfaceRelate (

2

−− Geometries of the s u r f a c e s
geom1 SDO_Geometry ,
geom2 SDO_Geometry )
RETURN VARCHAR2

7

AS
sur f_a SDO_Geometry ; −− Geometry of s u r f a c e A.
surf_b SDO_Geometry ; −− Geometry of s u r f a c e B .

12 −− Geometry of p r o j e c t i o n of the i n t e r s e c t i o n l i n e .
p r o j _ l i n e SDO_Geometry ;

−− Geometry of the i n t e r a c t i n g part of two s u r f a c e s .
common_surf_geom SDO_Geometry ;

17

−− Geometry of the common touching part ;
common_touch_geom SDO_Geometry ;

c o s _ t h e t a NUMBER( 2 0 , 10 ) ;
22 r e l a t i o n VARCHAR2( 5 0 ) ; −− The r e l a t i o n between two input s u r f a c e s

−− Geometry of the minimum bounding r e c t a n g l e of two s u r f a c e s .
union_mbr SDO_Geometry ;
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27 −− Coordinates of the lower l e f t corner from union mbr .
x l l_union NUMBER( 2 0 , 10 ) ; y l l_union NUMBER( 2 0 , 10 ) ;

−− Coordinates of the upper r i g h t corner from union mbr .
xur_union NUMBER( 2 0 , 10 ) ; yur_union NUMBER( 2 0 , 10 ) ;

32

−− Geometry of the new minimum bounding r e c t a n g l e
−− ( double s i z e ) t h a t CONTAINS both o b j e c t s .
doublesize_mbr SDO_Geometry ;

37 −− Coordinates of the lower and upper corner of the new MBR.
x l l _ b i g NUMBER( 2 0 , 10 ) ; y l l _ b i g NUMBER( 2 0 , 10 ) ;
xur_big NUMBER( 2 0 , 10 ) ; yur_big NUMBER( 2 0 , 10 ) ;

−− ord ina tes of points t h a t are on the p r o j e c t i o n
42 −− of i n t e r s e c t i o n l i n e

pt1_x NUMBER( 2 0 , 10 ) ; pt1_y NUMBER( 2 0 , 10 ) ;
pt2_x NUMBER( 2 0 , 10 ) ; pt2_y NUMBER( 2 0 , 10 ) ;

−− For one s u r f a c e
47 −− Ordinates of the 1 s t point .

xa1 NUMBER( 2 0 , 10 ) ; ya1 NUMBER( 2 0 , 10 ) ; za1 NUMBER( 2 0 , 10 ) ;

−− Ordinates of the 2nd point .
xa2 NUMBER( 2 0 , 10 ) ; ya2 NUMBER( 2 0 , 10 ) ; za2 NUMBER( 2 0 , 10 ) ;

52

−− Ordinates of the 3rd point .
xa3 NUMBER( 2 0 , 10 ) ; ya3 NUMBER( 2 0 , 10 ) ; za3 NUMBER( 2 0 , 10 ) ;

−− For the other s u r f a c e
57 −− Ordinates of the 1 s t point .

xb1 NUMBER( 2 0 , 10 ) ; yb1 NUMBER( 2 0 , 10 ) ; zb1 NUMBER( 2 0 , 10 ) ;

−− Ordinates of the 2nd point .
xb2 NUMBER( 2 0 , 10 ) ; yb2 NUMBER( 2 0 , 10 ) ; zb2 NUMBER( 2 0 , 10 ) ;

62

−− Ordinates of the 3rd point .
xb3 NUMBER( 2 0 , 10 ) ; yb3 NUMBER( 2 0 , 10 ) ; zb3 NUMBER( 2 0 , 10 ) ;

−− The v a r i a b l e s from plane equation A x + By + Cz + D = 0 .
67 aa1 NUMBER( 2 0 , 10 ) ;

bb1 NUMBER( 2 0 , 10 ) ;
cc1 NUMBER( 2 0 , 10 ) ;
dd1 NUMBER( 2 0 , 10 ) ;

72 aa2 NUMBER( 2 0 , 10 ) ;
bb2 NUMBER( 2 0 , 10 ) ;
cc2 NUMBER( 2 0 , 10 ) ;
dd2 NUMBER( 2 0 , 10 ) ;

77 −− A small number to ensure non−zero value in the d i v i s o r
d i v i s o r NUMBER( 2 0 , 10 ) ;

BEGIN

82 −− Assign d e f a u l t values to sur f_a and surf_b
sur f_a := geom1 ;
surf_b := geom2 ;

118



C.1 functions

−− Convert the MBR to a normal r e c t a n g l e geometry
87 IF geom1 . sdo_elem_info ( 3 ) = 3 AND geom1 . sdo_ordinates .COUNT = 6

THEN
sur f_a := 3D_mbr2normalgeom ( geom1 ) ;

END IF ;
IF geom2 . sdo_elem_info ( 3 ) = 3 AND geom2 . sdo_ordinates .COUNT = 6

92 THEN
surf_b := 3D_mbr2normalgeom ( geom2 ) ;

END IF ;

−− F i r s t r o t a t e the s u r f a c e s i f e i t h e r i s v e r t i c a l
97 WHILE ( sdo_geom . sdo_area (SDO_UTIL . REMOVE_DUPLICATE_VERTICES( sdo_cs . make_2d ( sur f_a ) ,

0 . 0 0 5 ) , 0 . 0 0 5 ) = 0 OR sdo_geom . sdo_area (SDO_UTIL . REMOVE_DUPLICATE_VERTICES(
sdo_cs . make_2d ( surf_b ) , 0 . 0 0 5 ) , 0 . 0 0 5 ) = 0 ) LOOP

sur f_a := 3 D_Rotate ( sur f_a ) ;
surf_b := 3 D_Rotate ( surf_b ) ;

END LOOP ;

102 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The part BELOW can be coded in a funct ion , whose input
i s a planar s u r f a c e geometry , and output i s the plane
parameters t h i s s u r f a c e belongs to .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

107

−− Ordinates of 3 points on the 1 s t plane
xa1 := sur f_a . sdo_ordinates ( 1 ) ;
ya1 := sur f_a . sdo_ordinates ( 2 ) ;
za1 := sur f_a . sdo_ordinates ( 3 ) ;

112

xa2 := sur f_a . sdo_ordinates ( 4 ) ;
ya2 := sur f_a . sdo_ordinates ( 5 ) ;
za2 := sur f_a . sdo_ordinates ( 6 ) ;

117 xa3 := sur f_a . sdo_ordinates ( 7 ) ;
ya3 := sur f_a . sdo_ordinates ( 8 ) ;
za3 := sur f_a . sdo_ordinates ( 9 ) ;

−− Parameters of the 1 s t plane
122 aa1 := 3 D_planeparameters ( sur f_a ) ( 1 ) ;

bb1 := 3 D_planeparameters ( sur f_a ) ( 2 ) ;
cc1 := 3 D_planeparameters ( sur f_a ) ( 3 ) ;
dd1 := 3 D_planeparameters ( sur f_a ) ( 4 ) ;

127 −−−−−−−−− Ordinates and parameters of the 1 s t plane Finished −−−−−−−−−−−−−−

−− Ordinates of 3 points on the 2nd plane
xb1 := surf_b . sdo_ordinates ( 1 ) ;
yb1 := surf_b . sdo_ordinates ( 2 ) ;

132 zb1 := surf_b . sdo_ordinates ( 3 ) ;

xb2 := surf_b . sdo_ordinates ( 4 ) ;
yb2 := surf_b . sdo_ordinates ( 5 ) ;
zb2 := surf_b . sdo_ordinates ( 6 ) ;

137

xb3 := surf_b . sdo_ordinates ( 7 ) ;
yb3 := surf_b . sdo_ordinates ( 8 ) ;
zb3 := surf_b . sdo_ordinates ( 9 ) ;

142 −− Parameters of the 2nd plane
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aa2 := 3 D_planeparameters ( surf_b ) ( 1 ) ;
bb2 := 3 D_planeparameters ( surf_b ) ( 2 ) ;
cc2 := 3 D_planeparameters ( surf_b ) ( 3 ) ;
dd2 := 3 D_planeparameters ( surf_b ) ( 4 ) ;

147

−−−− Ordinates and parameters of the 1 s t plane Finished −−−−−−−−

−− Make sure the d i v i s o r won’ t be ZERO.
IF aa1 = 0 THEN

152 aa1 := 0 . 0 0 0 0 1 ;
ELSIF bb1 = 0 THEN

bb1 := 0 . 0 0 0 0 1 ;
ELSIF cc1 = 0 THEN

cc1 := 0 . 0 0 0 0 1 ;
157 ELSIF aa2 = 0 THEN

aa2 := 0 . 0 0 0 0 1 ;
ELSIF bb2 = 0 THEN

bb2 := 0 . 0 0 0 0 1 ;
ELSIF cc2 = 0 THEN

162 cc2 := 0 . 0 0 0 0 1 ;
END IF ;

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The part ABOVE can be coded in a funct ion , whose input

167 i s a planar s u r f a c e geometry , and output i s the plane
parameters t h i s s u r f a c e belongs to .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

−− Check i f the two planes are coplanar by c a l c u l a t i n g
172 −− the angle in between .

c o s _ t h e t a := ( aa1∗aa2 + bb1∗bb2 + cc1∗ cc2 ) /
( s q r t ( aa1∗aa1 + bb1∗bb1 + cc1∗ cc1 )
∗ s q r t ( aa2∗aa2 + bb2∗bb2 + cc2∗ cc2 ) ) ;

177 −− I f p a r a l l e l then cos ( t h e t a ) = 1 , and the r e l a t i o n in 2D
−− r e p r e s e n t s the a c t u a l 3D r e l a t i o n ;
IF abs ( c o s _ t h e t a − 1 ) <= 0 . 002 THEN

r e l a t i o n := SDO_GEOM. Rela te (SDO_CS . Make_2D ( sur f_a ) ,
’determine’ , SDO_CS . Make_2D ( surf_b ) , 0 . 0 0 5 ) ;

182

−− I f they overlap then the o r i e n t a t i o n s of two s u r f a c e s
−− are the same , and one one s o l i d the s u r f a c e comes from
−− i s i n s i d e the other .
IF r e l a t i o n = ’OVERLAPBDYINTERSECT’ OR r e l a t i o n = ’EQUAL’

187 OR r e l a t i o n = ’INSIDE’ OR r e l a t i o n = ’CONTAINS’

OR r e l a t i o n = ’COVERS’ OR r e l a t i o n = ’COVEREDBY’ THEN
r e l a t i o n := ’Overlap_Parallel’ ;

END IF ;

192 −− I f opposi te then cos ( t h e t a ) = −1, and one s o l i d the s u r f a c e
−− comes from i s ad jacent to the other , e . g . sharing a common f a c e .
ELSIF abs ( c o s _ t h e t a + 1 ) <= 0 . 002 THEN

r e l a t i o n := SDO_GEOM. Rela te (SDO_CS . Make_2D ( sur f_a ) , ’determine’ ,
SDO_CS . Make_2D ( surf_b ) , 0 . 0 0 5 ) ;

197

IF r e l a t i o n = ’OVERLAPBDYINTERSECT’ OR r e l a t i o n = ’EQUAL’

OR r e l a t i o n = ’INSIDE’ OR r e l a t i o n = ’CONTAINS’

OR r e l a t i o n = ’COVERS’ OR r e l a t i o n = ’COVEREDBY’ THEN
r e l a t i o n := ’Overlap_Opposite’ ;
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202 END IF ;

−− IF two planes are not coplanar
ELSE

union_mbr := SDO_GEOM.SDO_MBR(SDO_GEOM. SDO_Union
207 ( sdo_cs . make_2d ( sur f_a ) , sdo_cs . make_2d ( surf_b ) , 0 . 0 0 5 ) ) ;

−− Assign the values of ord ina tes from MBR
xl l_union := union_mbr . sdo_ordinates ( 1 ) ;
y l l_union := union_mbr . sdo_ordinates ( 2 ) ;

212 xur_union := union_mbr . sdo_ordinates ( 3 ) ;
yur_union := union_mbr . sdo_ordinates ( 4 ) ;

−− Form the corner coodinates of the bigger MBR, which w i l l
−− sure ly CONTAIN the o b j e c t s .

217 x l l _ b i g := x l l_union − abs ( ( xur_union − xl l_union ) / 2 ) ;
y l l _ b i g := yl l_union − abs ( ( yur_union − yl l_union ) / 2 ) ;
xur_big := xur_union + abs ( ( xur_union − xl l_union ) / 2 ) ;
yur_big := yur_union + abs ( ( yur_union − yl l_union ) / 2 ) ;

222 −− Find out the ord ina tes of two points that ’ re on the l i n e
pt1_x := x l l _ b i g ;
pt2_x := xur_big ;

d i v i s o r := bb1 − cc1∗bb2/cc2 ;
227 −− Make sure the d i v i s o r won’ t be zero .

IF d i v i s o r = 0 THEN
d i v i s o r := d i v i s o r + 0 . 0 0 0 0 1 ;

END IF ;

232 −− Compose a l i n e o b j e c t f o r p r o j e c t i o n
pt1_y := ( cc1∗dd2/cc2 − dd1 − ( aa1 − cc1∗aa2/cc2 ) ∗pt1_x ) / d i v i s o r ;
pt2_y := ( cc1∗dd2/cc2 − dd1 − ( aa1 − cc1∗aa2/cc2 ) ∗pt2_x ) / d i v i s o r ;

p r o j _ l i n e := MDSYS.SDO_GEOMETRY( 2 0 0 2 , null , null ,
237 MDSYS.SDO_ELEM_INFO_ARRAY( 1 , 2 , 1 ) ,

MDSYS.SDO_ORDINATE_ARRAY( pt1_x , pt1_y , pt2_x , pt2_y ) ) ;

common_surf_geom := SDO_GEOM. SDO_Intersect ion (SDO_CS . Make_2D ( sur f_a ) ,
SDO_CS . Make_2D ( surf_b ) , 0 . 0 0 5 ) ;

242

−− Here i s the e s s e n t i a l d i s t i n c t i o n amongst d i f f e r e n t r e l a t i o n s
IF SDO_GEOM. Rela te ( p r o j _ l i n e , ’determine’ , common_surf_geom , 0 . 0 0 5 )

= ’OVERLAPBDYDISJOINT’ THEN
r e l a t i o n := ’Intersect’ ;

247 ELSIF SDO_GEOM. Rela te ( p r o j _ l i n e , ’determine’ , common_surf_geom , 0 . 0 0 5 )
= ’DISJOINT’ THEN
r e l a t i o n := ’Disjoint’ ;

ELSE
r e l a t i o n := ’Touch’ ;

252 END IF ;

−− Retr ieve the shared part from the i n t e r s e c t i o n of
−− two polygons and the p r o j e c t e d l i n e .
common_touch_geom := SDO_Geom. SDO_Intersect ion ( p r o j _ l i n e ,

257 common_surf_geom , 0 . 0 0 5 ) ;

−− Dis t inguish Strong−touch and Touch
−− I f the common geometry i s l i n e
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IF r e l a t i o n = ’Touch’ THEN
262 −− When the shared part i s l i n e o b j e c t

IF common_touch_geom . sdo_gtype = 2002 THEN
IF SDO_GEOM. r e l a t e ( common_touch_geom , ’determine’ ,

SDO_CS . Make_2D ( sur f_a ) , 0 . 0 0 5 ) != ’ON’ THEN
r e l a t i o n := ’Strong -Touched -By’ ;

267 ELSIF SDO_GEOM. r e l a t e ( common_touch_geom , ’determine’ ,
SDO_CS . Make_2D ( surf_b ) , 0 . 0 0 5 ) != ’ON’ THEN
r e l a t i o n := ’Strong -Touch’ ;

END IF ;
END IF ;

272

−− When the shared part i s point o b j e c t
IF common_touch_geom . sdo_gtype = 2001 THEN

IF SDO_GEOM. r e l a t e ( common_touch_geom , ’determine’ ,
SDO_CS . Make_2D ( sur f_a ) , 0 . 0 0 5 ) != ’TOUCH’ THEN

277 r e l a t i o n := ’Strong -Touched -By’ ;
ELSIF SDO_GEOM. r e l a t e ( common_touch_geom , ’determine’ ,

SDO_CS . Make_2D ( surf_b ) , 0 . 0 0 5 ) != ’TOUCH’ THEN
r e l a t i o n := ’Strong -Touch’ ;

END IF ;
282 END IF ;

END IF ; −− I f the r e l a t i o n i s Touch
END IF ; −−Check i f two s u r f a c e s are p a r a l l e l

RETURN( r e l a t i o n ) ;
287 END 3 D_SurfaceRelate ;� �

Listing C.2: Module function 3D_PlaneParameters� �
CREATE or REPLACE FUNCTION 3 D_planeparameters (

3

/∗ Given a planar s u r f a c e geometry as input , t h i s funct ion
re turns the parameters of plane t h i s s u r f a c e belongs to . ∗/

geom MDSYS. SDO_Geometry )
8 RETURN p l a n e _ p a r a _ l i s t

AS
−− Declare the v a r i a b l e s f o r one s u r f a c e
−− Ordinates of the 1 s t point .

13 x1 NUMBER( 2 0 , 10 ) ;
y1 NUMBER( 2 0 , 10 ) ;
z1 NUMBER( 2 0 , 10 ) ;

−− Ordinates of the 2nd point .
18 x2 NUMBER( 2 0 , 10 ) ;

y2 NUMBER( 2 0 , 10 ) ;
z2 NUMBER( 2 0 , 10 ) ;

−− Ordinates of the 3rd point .
23 x3 NUMBER( 2 0 , 10 ) ;

y3 NUMBER( 2 0 , 10 ) ;
z3 NUMBER( 2 0 , 10 ) ;

−− The v a r i a b l e s from plane equation A x + By + Cz + D = 0 .
28 aa NUMBER( 2 0 , 10 ) ;

bb NUMBER( 2 0 , 10 ) ;
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cc NUMBER( 2 0 , 10 ) ;
dd NUMBER( 2 0 , 10 ) ;

33 s u r f SDO_Geometry ;

−− A v a r i a b l e of p l a n e _ p a r a _ l i s t f o r r e s u l i n g a , b , c , d
plane_para p l a n e _ p a r a _ l i s t := p l a n e _ p a r a _ l i s t ( 0 , 0 , 0 , 0 ) ;

38 BEGIN

−− Check i f i t ’ s a MBR geometry , i f yes i t ’ s to be converted
−− to a usual geometric r e p r e s e n t a t i o n ( a l l v e r t i c e s ins tead
−− of 2 corner points )

43 IF geom . sdo_elem_info ( 3 ) = 3 AND geom . sdo_ordinates .COUNT = 6

THEN
s u r f := 3D_mbr2normalgeom (geom) ;

ELSE
s u r f := geom ;

48 END IF ;

−− Begin the c a l c u l a t i o n s
x1 := s u r f . sdo_ordinates ( 1 ) ;
y1 := s u r f . sdo_ordinates ( 2 ) ;

53 z1 := s u r f . sdo_ordinates ( 3 ) ;

x2 := s u r f . sdo_ordinates ( 4 ) ;
y2 := s u r f . sdo_ordinates ( 5 ) ;
z2 := s u r f . sdo_ordinates ( 6 ) ;

58

x3 := s u r f . sdo_ordinates ( 7 ) ;
y3 := s u r f . sdo_ordinates ( 8 ) ;
z3 := s u r f . sdo_ordinates ( 9 ) ;

63 plane_para ( 1 ) := y1 ∗ ( z2 − z3 ) + y2 ∗ ( z3 − z1 ) + y3 ∗ ( z1 − z2 ) ;
plane_para ( 2 ) := z1 ∗ ( x2 − x3 ) + z2 ∗ ( x3 − x1 ) + z3 ∗ ( x1 − x2 ) ;
plane_para ( 3 ) := x1 ∗ ( y2 − y3 ) + x2 ∗ ( y3 − y1 ) + x3 ∗ ( y1 − y2 ) ;
plane_para ( 4 ) := −(x1 ∗ ( y2∗z3 − y3∗z2 ) + x2 ∗ ( y3∗z1 − y1∗z3 )

+ x3 ∗ ( y1∗z2 − y2∗z1 ) ) ;
68

RETURN( plane_para ) ;

END 3 D_planeparameters ;� �
Listing C.3: Module function 3D_Rotate� �

CREATE or REPLACE FUNCTION 3 D_Rotate (
/∗ Rotate a given 3D o b j e c t about a user−defined a x i s . ∗/

4 −− Geometry of the o b j e c t that ’ s gonna be r o t a t e d in 3D space .
geom SDO_GEOMETRY,

−− The d i r e c t i o n vector , which i s p a r a l l e l to the r o t a t i n g a x i s
a x i s _ v e c t o r d i r _ v e c t o r DEFAULT d i r _ v e c t o r ( 1 , 1 , 1 ) ,

9

−− The point t h a t the vec tor goes through
s t a r t _ p o i n t c o l l i n e a r _ p o i n t DEFAULT c o l l i n e a r _ p o i n t ( 0 , 0 , 0 ) ,

−− The angle the geometry i s r o t a t e d by , counter−clockwise
14 angle NUMBER DEFAULT 5 0 . 0 )
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RETURN SDO_GEOMETRY

AS
−− Declare v a r i a b l e s

19 new_geom SDO_Geometry ;
normal_geom SDO_Geometry ;

−− The parameters of d i r e c t i o n vec tor .
u NUMBER; v NUMBER; w NUMBER;

24

−− The point to be r o t a t e d
x NUMBER( 2 0 , 5 ) ; y NUMBER( 2 0 , 5 ) ; z NUMBER( 2 0 , 5 ) ;

−− The point t h a t the vec tor goes through
29 aa NUMBER; bb NUMBER; cc NUMBER;

BEGIN

−− Convert the MBR to normal s u r f a c e geometry
34 IF geom . sdo_elem_info ( 3 ) = 3 AND geom . sdo_ordinates .COUNT = 6 THEN

normal_geom := 3D_mbr2normalgeom (geom) ;
new_geom := normal_geom ;

ELSE
−− The i n i t i a l value of the new geometry i s the same as the old .

39 normal_geom := geom ;
new_geom := normal_geom ;

END IF ;

u := a x i s _ v e c t o r ( 1 ) ;
44 v := a x i s _ v e c t o r ( 2 ) ;

w := a x i s _ v e c t o r ( 3 ) ;

aa := s t a r t _ p o i n t ( 1 ) ;
bb := s t a r t _ p o i n t ( 2 ) ;

49 cc := s t a r t _ p o i n t ( 3 ) ;

FOR i IN 1 . . normal_geom . sdo_ordinates .COUNT LOOP
IF mod( i , 3 ) = 1 THEN
−− The cursor i s a t the x ordinate .

54 x := normal_geom . sdo_ordinates ( i ) ;
y := normal_geom . sdo_ordinates ( i + 1 ) ;
z := normal_geom . sdo_ordinates ( i + 2 ) ;

−− Rotate x value .
59 new_geom . sdo_ordinates ( i ) := ( aa ∗ ( v∗v + w∗w) − u∗ ( bb∗v

+ cc∗w − u∗x − v∗y − w∗z ) ) ∗ (1 − cos ( angle ) ) +
x∗cos ( angle ) + (−cc∗v + bb∗w − w∗y + v∗z ) ∗ s in ( angle ) ;

−− Rotate y value .
new_geom . sdo_ordinates ( i + 1 ) := ( bb∗ (u∗u + w∗w) −

64 v∗ ( aa∗u + cc∗w − u∗x − v∗y − w∗z ) ) ∗ (1 − cos ( angle ) ) +
y∗cos ( angle ) + ( cc∗u − aa∗w + w∗x − u∗z ) ∗ s in ( angle ) ;

−− Rotate z value .
new_geom . sdo_ordinates ( i + 2 ) := ( cc ∗ (u∗u + v∗v ) −

w∗ ( aa∗u + bb∗v − u∗x − v∗y − w∗z ) ) ∗ (1 − cos ( angle ) ) +
69 z∗cos ( angle ) + (−bb∗u + aa∗v − v∗x + u∗y ) ∗ s in ( angle ) ;

END IF ;
END LOOP ;

RETURN( new_geom ) ;
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74 END 3 D_Rotate ;� �
Listing C.4: Module function 3D_MBR2NormalGeom� �

1 CREATE or REPLACE FUNCTION 3D_MBR2NormalGeom(

/∗ Convert a MBR geometry to a usual s u r f a c e geometry . ∗/

mbr_geom SDO_Geometry )
6 RETURN SDO_Geometry

AS
normal_geom SDO_Geometry ;
x1 NUMBER( 2 0 , 1 0 ) DEFAULT 0 ;

11 y1 NUMBER( 2 0 , 1 0 ) DEFAULT 0 ;
z1 NUMBER( 2 0 , 1 0 ) DEFAULT 0 ;

x2 NUMBER( 2 0 , 1 0 ) DEFAULT 0 ;
y2 NUMBER( 2 0 , 1 0 ) DEFAULT 0 ;

16 z2 NUMBER( 2 0 , 1 0 ) DEFAULT 0 ;

x3 NUMBER( 2 0 , 1 0 ) DEFAULT 0 ;
y3 NUMBER( 2 0 , 1 0 ) DEFAULT 0 ;
z3 NUMBER( 2 0 , 1 0 ) DEFAULT 0 ;

21

x4 NUMBER( 2 0 , 1 0 ) DEFAULT 0 ;
y4 NUMBER( 2 0 , 1 0 ) DEFAULT 0 ;
z4 NUMBER( 2 0 , 1 0 ) DEFAULT 0 ;

BEGIN
26

−− When the s u r f a c e i s a MBR, i t only has 2 points
−− and i s p a r a l l e l to xy or yz or xz plane .
IF mbr_geom . sdo_elem_info ( 3 ) = 3 AND

mbr_geom . sdo_ordinates .COUNT = 6

31 THEN
normal_geom := mbr_geom ;

x1 := mbr_geom . sdo_ordinates ( 1 ) ;
y1 := mbr_geom . sdo_ordinates ( 2 ) ;

36 z1 := mbr_geom . sdo_ordinates ( 3 ) ;

x3 := mbr_geom . sdo_ordinates ( 4 ) ;
y3 := mbr_geom . sdo_ordinates ( 5 ) ;
z3 := mbr_geom . sdo_ordinates ( 6 ) ;

41

IF x1 = x3 THEN
x2 := x1 ;
y2 := y3 ;
z2 := z1 ;

46 x4 := x1 ;
y4 := y1 ;
z4 := z3 ;

ELSIF y1 = y3 THEN
x2 := x3 ;

51 y2 := y1 ;
z2 := z1 ;
x4 := x1 ;
y4 := y1 ;
z4 := z3 ;
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56 ELSIF z1 = z3 THEN
x2 := x3 ;
y2 := y1 ;
z2 := z1 ;
x4 := x1 ;

61 y4 := y3 ;
z4 := z1 ;

END IF ;

normal_geom . sdo_ordinates .EXTEND( 9 ) ;
66

normal_geom . sdo_ordinates ( 4 ) := x2 ;
normal_geom . sdo_ordinates ( 5 ) := y2 ;
normal_geom . sdo_ordinates ( 6 ) := z2 ;

71 normal_geom . sdo_ordinates ( 7 ) := x3 ;
normal_geom . sdo_ordinates ( 8 ) := y3 ;
normal_geom . sdo_ordinates ( 9 ) := z3 ;

normal_geom . sdo_ordinates ( 1 0 ) := x4 ;
76 normal_geom . sdo_ordinates ( 1 1 ) := y4 ;

normal_geom . sdo_ordinates ( 1 2 ) := z4 ;

normal_geom . sdo_ordinates ( 1 3 ) := x1 ;
normal_geom . sdo_ordinates ( 1 4 ) := y1 ;

81 normal_geom . sdo_ordinates ( 1 5 ) := z1 ;

normal_geom . sdo_elem_info ( 3 ) := 1 ;

RETURN( normal_geom ) ;
86

ELSE
dbms_output . pu t_ l i ne ( ’The input geometry is NOT 3D

or a minimum bounding rectangle!’ ) ;
RETURN( mbr_geom ) ;

91 END IF ;

END 3D_MBR2NormalGeom ;� �
c.2 procedures

Listing C.5: Package of all constraints� �
CREATE or REPLACE PACKAGE 3D_CCC_CONSTRAINTS

2 IS
/∗ The codes saved here can be used in the t r i g g e r s , procedures

and f u n c t i o n s . ∗/

−− A globa l v a r i a b l e to s t o r e the row that ’ s being modified
7 −− a t t a b l e SURFACE_GEOMETRY

s u r f r e c o r d _ i o surface_geometry%rowtype ;

−− A globa l v a r i a b l e to s t o r e the IDs of rows being modified
−− a t t a b l e CITYOBJECT_GENERICATTRIB .

12 mobi le_senspts_ ids i d s _ l i s t := i d s _ l i s t ( ) ;

126



C.2 procedures

−− I f an except ion candidate in the t a b l e of except ions i s s e t ’TRUE’
−− in the f l a g ’ Accepted ’ , then f r e e _ e n t r y _ f l a g i s s e t ’TRUE’ a l s o .
−− Then pass the d a t a s e t without the same check t h a t would again

17 −− move i t to the t a b l e of except ions .
f r e e _ e n t r y _ f l a g CHAR( 5 ) DEFAULT ’FALSE’ ;

−− I n t e r s e c t i o n of c i t y o b j e c t , taking bui lding as an example .
PROCEDURE 3 D_bui ld ing_interrupt_bui ld ing ;

22

−− Exception f o r ’ should ’ cases , taking tree−bui lding min d i s t a n c e
−− as an example .
PROCEDURE 3 D_tree_mindist2_bui lding ;

27 /∗ 3 make−up r u l e s about d i s t a n c e amongst t ree−building−road
t h a t are c o n f l i c t i n g . ∗/
−− Tree should be < 5m from the house
PROCEDURE 3 D_tree2house_maxdist ;

32 −− Road should be > 10m from the house
PROCEDURE 3 D_road2house_mindist ;

−− Tree should be < 2m from the road
PROCEDURE 3 D_tree2road_maxdist ;

37 /∗ 3 make−up r u l e s about d i s t a n c e amongst t ree−building−road
t h a t are c o n f l i c t i n g . ∗/

−− Detect JUMP points in sensing route of temperature measurements .
−− An example to study the s p a t i a l c h a r a c t e r i s t i c of mobile c i t y o b j e c t .

42 PROCEDURE 3 D_mobilesensor_building ;

−− Check i f a modified temperature exceeds the max . changing r a t e .
−− An example c o n s t r a i n t f o r c l i m a t i c measurements
PROCEDURE smooth_temp_change ;

47

END CCC_SPATIO_CONSTRAINTS ;� �
Package Body

Listing C.6: All procedures that code constraints� �
CREATE or REPLACE PACKAGE BODY 3D_CCC_SPATIO_CONSTRAINTS AS

2 −− An example of s p a t i a l i n t e r s e c t i o n of c i t y o b j e c t s
PROCEDURE 3 D_bui ld ing_interrupt_bui ld ing
AS

r e l a t i o n VARCHAR2( 5 0 ) DEFAULT ’Disjoint’ ;
7

e x c l u d e _ i n s i d e _ c o n t a i n e r SDO_Geometry ;

−− Check how many MBR conta ins the updated s u r f a c e
−− t h i s i s to make sure the s u r f a c e i s not i n s i d e

12 −− the other bui lding
inside_mbr_ids i d s _ l i s t := i d s _ l i s t ( ) ;

−− The id of other bui lding s u r f a c e s t h a t i n t e r a c t with
−− the updated s u r f a c e

17 i n t e r a c t _ i d s i d s _ l i s t := i d s _ l i s t ( ) ;

coords geoms_l i s t := geoms_l is t ( ) ;
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−− The amount of s u r f a c e r e l a t i o n s in each category
22 s u r f i d s _ i n t e r s e c t i d s _ l i s t := i d s _ l i s t ( ) ;

i n t e r s e c t _ c o u n t INTEGER DEFAULT 0 ;

s u r f i d s _ o v e r l a p _ p a r a l l e l i d s _ l i s t := i d s _ l i s t ( ) ;
p a r a l l e l _ c o u n t INTEGER DEFAULT 0 ;

27

sur f ids_over lap_oppo s i te i d s _ l i s t := i d s _ l i s t ( ) ;
opposite_count INTEGER DEFAULT 0 ;

sur f ids_s t rong_touch i d s _ l i s t := i d s _ l i s t ( ) ;
32 strong_touch_count INTEGER DEFAULT 0 ;

sur f ids_strong_touch_by i d s _ l i s t := i d s _ l i s t ( ) ;
strong_touch_by_count INTEGER DEFAULT 0 ;

37 sur f ids_ touch i d s _ l i s t := i d s _ l i s t ( ) ;
touch_count INTEGER DEFAULT 0 ;

b u i l d i n g s _ i n t e r r u p t EXCEPTION ;

42 BEGIN

IF s u r f r e c o r d _ i o . class_name = ’BUILDING’ THEN
dbms_output . p ut_ l i ne ( ’The changed ID is ’ ||

s u r f r e c o r d _ i o . id || ’.’ ) ;
47

/∗ S e l e c t the geometries of bui lding t h a t
i n t e r a c t with t h i s updated s u r f a c e . ∗/
SELECT geom1 . geometry , geom1 . id

BULK COLLECT INTO coords , i n t e r a c t _ i d s
52 FROM surface_geometry geom1 , surface_geometry geom2

WHERE geom2 . id = s u r f r e c o r d _ i o . id
−− make sure geom2 i s a d i f f e r e n t bui lding
AND geom1 . roo t_ id <> geom2 . roo t_ id
AND geom1 . class_name = ’BUILDING’

57 AND SDO_Anyinteract ( geom1 . geometry , geom2 . geometry ) = ’TRUE’ ;

−− Detect the r e l a t i o n
IF coords .COUNT > 0 THEN

FOR i IN 1 . . coords .COUNT
62 LOOP

−− Compare a s u r f a c e from bld_root_ id with every
−− s u r f a c e from bui lding2

r e l a t i o n := 3 D_SurfaceRelate ( s u r f r e c o r d _ i o . geometry , coords ( i ) ) ;

67 IF r e l a t i o n = ’Intersect’ THEN
i n t e r s e c t _ c o u n t := i n t e r s e c t _ c o u n t + 1 ;
s u r f i d s _ i n t e r s e c t .EXTEND ;
s u r f i d s _ i n t e r s e c t ( i n t e r s e c t _ c o u n t ) := i n t e r a c t _ i d s ( i ) ;

ELSIF r e l a t i o n = ’Overlap_Parallel’ THEN
72 p a r a l l e l _ c o u n t := p a r a l l e l _ c o u n t + 1 ;

s u r f i d s _ o v e r l a p _ p a r a l l e l .EXTEND ;
s u r f i d s _ o v e r l a p _ p a r a l l e l ( p a r a l l e l _ c o u n t ) := i n t e r a c t _ i d s ( i ) ;

ELSIF r e l a t i o n = ’Strong -Touch’ THEN
strong_touch_count := strong_touch_count + 1 ;

77 sur f ids_s t rong_touch .EXTEND ;
sur f ids_s t rong_touch ( strong_touch_count ) := i n t e r a c t _ i d s ( i ) ;
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ELSIF r e l a t i o n = ’Strong -Touched -By’ THEN
strong_touch_by_count := strong_touch_by_count + 1 ;
sur f ids_strong_touch_by .EXTEND ;

82 surf ids_strong_touch_by ( strong_touch_by_count ) := i n t e r a c t _ i d s ( i ) ;
ELSIF r e l a t i o n = ’Overlap_Opposite’ THEN

opposite_count := opposite_count + 1 ;
sur f ids_over lap_oppo s i te .EXTEND ;
sur f ids_over lap_oppo s i te ( opposite_count ) := i n t e r a c t _ i d s ( i ) ;

87 ELSIF r e l a t i o n = ’Touch’ THEN
touch_count := touch_count + 1 ;
sur f ids_ touch .EXTEND ;
sur f ids_ touch ( touch_count ) := i n t e r a c t _ i d s ( i ) ;

END IF ;
92 END LOOP ;

−− Two bui ld ings have s u r f a c e s i n t e r s e c t e d or p a r a l l e l
IF s u r f i d s _ o v e r l a p _ p a r a l l e l .COUNT > 0 OR

s u r f i d s _ i n t e r s e c t .COUNT > 0 THEN
97 RAISE b u i l d i n g s _ i n t e r r u p t ;

ELSE
dbms_output . p ut_ l i ne ( coords . count

|| ’ surfaces have contact with surface ID=’

|| s u r f r e c o r d _ i o . id || ’.’ ) ;
102

−− Display the strong−touch d e t a i l s
IF strong_touch_count > 0 THEN

dbms_output . pu t_ l i ne ( ’It strong -touches ’

|| strong_touch_count || ’ surface(s)’ ) ;
107 dbms_output . put ( ’which are of ID=’ ) ;

FOR i IN 1 . . sur f ids_s t rong_touch .COUNT LOOP
dbms_output . put ( sur f ids_s t rong_touch ( i ) || ’ ’ ) ;

END LOOP ;
END IF ;

112

−− Display the strong−touched−by d e t a i l s
IF strong_touch_by_count > 0 THEN

dbms_output . pu t_ l i ne ( ’It is strong -touched_by ’ ||
strong_touch_by_count || ’ surface(s)’ ) ;

117 dbms_output . put ( ’which are of ID=’ ) ;
FOR i IN 1 . . sur f ids_strong_touch_by .COUNT LOOP

dbms_output . put ( surf ids_strong_touch_by ( i ) || ’ ’ ) ;
END LOOP ;

END IF ;
122

−− Display the touch d e t a i l s
IF touch_count > 0 THEN

dbms_output . pu t_ l i ne ( ’It touches ’ || touch_count ||
’ surface(s)’ ) ;

127 dbms_output . put ( ’which are of ID=’ ) ;
FOR i IN 1 . . sur f ids_ touch .COUNT LOOP

dbms_output . put ( sur f ids_ touch ( i ) || ’ ’ ) ;
END LOOP ;

END IF ;
132

dbms_output . p ut_ l i ne ( ’ ’ ) ;
END IF ;

/∗ When no s u r f a c e s are found i n t e r a c t i n g , i t ’ s necessary
137 −− to check i f two bui ld ings are r e a l l y d i s j o i n t or
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−− one i s a c t u a l l y i n s i d e the other .
−− BUT HOW? ∗/
ELSE

/∗ S e l e c t two s e t s of s u r f a c e s and c o n s t r u c t
142 an aggregat iona l MBR ∗/

dbms_output . p ut_ l i ne ( ’The target surface does not have

any contact with the other building surfaces. But it is not

clear if it really disjoints from them or it is inside another

building without touching the faces. It is better to visualise

147 the surfaces.’ ) ;
END IF ;

END IF ;

EXCEPTION
152 WHEN b u i l d i n g s _ i n t e r r u p t THEN

−− Show the number of i n t e r s e c t i o n s
IF i n t e r s e c t _ c o u n t > 0 THEN

FOR i IN 1 . . s u r f i d s _ i n t e r s e c t .COUNT
LOOP

157 dbms_output . p ut_ l i ne ( ’The updated surface intersects

surfaces of ID=’ || s u r f i d s _ i n t e r s e c t ( i ) || ’ .’ ) ;
END LOOP ;

END IF ;

162 −− Show the number of overlappings ( means t h i s s u r f a c e
−− touches the other bui lding from i n s i d e .
IF p a r a l l e l _ c o u n t > 0 THEN

FOR i IN 1 . . s u r f i d s _ o v e r l a p _ p a r a l l e l .COUNT
LOOP

167 dbms_output . p ut_ l i ne ( ’The updated surface overlaps surfaces

of ID=’ || s u r f i d s _ o v e r l a p _ p a r a l l e l ( i ) || ’ .’ ) ;
END LOOP ;

END IF ;
r a i s e _ a p p l i c a t i o n _ e r r o r (−20001 , ’Spatial Constraint:

172 The building surface(s) interrupts the other building(s).

Please correct the intersecting and overlapping data

detected in the diagnosis.’ ) ;

END 3 D_bui ld ing_interrupt_bui ld ing ;
177

−− Exception f o r ’ should ’ cases
PROCEDURE 3 D_tree_mindist2_bui lding
AS

should_tree_ ids i d s _ l i s t := i d s _ l i s t ( ) ;
182

−− The whole :New row of surface_geometry
treegeom_record surface_geometry%rowtype ;

−− The l i s t of bui ld ings t h a t are too c l o s e ( < 0 . 5 ) to
187 −− t h i s updated/ i n s e r t e d t r e e s u r f a c e

b l d s u r f _ t o o c l o s e _ i d s i d s _ l i s t := i d s _ l i s t ( ) ;

−− Have the message t e x t s s tored in column ’ Reason ’ , which shows
−− why the i n s t a n c e i s l i k e l y to be an except ion

192 b u f f e r VARCHAR2( 1 0 0 0 ) ;
s t a t u s INTEGER ;

−− The number of columns in surface_geometry t a b l e
surf_geom_column_count INTEGER ;
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197 −− and the clone t a b l e f o r except ions .
surf_geom_exc_column_count INTEGER ;

t r e e _ t o o c l o s e 2 b l d EXCEPTION ;

202 BEGIN

IF s u r f r e c o r d _ i o . class_name = ’TREE’ THEN
/∗ S e l e c t the bui lding s u r f a c e s t h a t are within min d i s t a n c e

to t h i s ( part of ) t r e e . ∗/
207 SELECT bld1 . id BULK COLLECT INTO b l d s u r f _ t o o c l o s e _ i d s

FROM surface_geometry bld1

WHERE bld1 . class_name = ’BUILDING’

AND SDO_Within_Distance ( bld1 . geometry , s u r f r e c o r d _ i o . geometry ,
’distance=2m’ ) = ’TRUE’ ;

212

SELECT COUNT(∗ ) INTO surf_geom_column_count
FROM user_tab_columns
WHERE table_name = ’SURFACE_GEOMETRY’ ;

217 SELECT COUNT(∗ ) INTO surf_geom_exc_column_count
FROM user_tab_columns
WHERE table_name = ’SURFACE_GEOMETRY_EXCEPTIONS’ ;

−− I t ’ s forbidden to have t r e e c l o s e r to a bui lding than 2 meters .
222 IF b l d s u r f _ t o o c l o s e _ i d s .COUNT > 0 THEN

−− Check whether i t ’ s from surface_geometry t a b l e or from
−− except ions t a b l e .

−− Assume t h a t t h i s i s the 1 s t attempt to i n s e r t /update , R e j e c t !
227 dbms_output . put ( ’The (part of) tree object with id=’ ||

s u r f r e c o r d _ i o . id || ’ is too close (dist < 2m) to

building surface(s) of id=’ ) ;

FOR i IN 1 . . b l d s u r f _ t o o c l o s e _ i d s .COUNT LOOP
232 dbms_output . put ( b l d s u r f _ t o o c l o s e _ i d s ( i ) || ’,’ ) ;

END LOOP ;
dbms_output . p ut_ l i ne ( ’ .’ ) ;

−− Get the message t e x t i n t o v a r i a b l e as the value
237 −− f o r column ’ Reason ’

dbms_output . g e t _ l i n e ( buffer , s t a t u s ) ;

RAISE t r e e _ t o o c l o s e 2 b l d ;

242 ELSE
dbms_output . p ut_ l i ne ( ’The (part of) tree object with id=’

|| s u r f r e c o r d _ i o . id || ’ is placed in a proper distance

(> 2m) from building(s).’ ) ;
END IF ;

247 END IF ; −− I f the changed o b j e c t i s from t r e e c l a s s .

EXCEPTION
WHEN t r e e _ t o o c l o s e 2 b l d THEN
−− The mutating−t a b l e r e s t r i c t i o n doesn ’ t apply to EXCEPTION?

252 DELETE FROM surface_geometry
WHERE id = s u r f r e c o r d _ i o . id ;

−− Strange t h a t the rowtype doesn ’ t work ? !
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INSERT INTO surface_geometry_except ions VALUES (
257 s u r f r e c o r d _ i o . id ,

s u r f r e c o r d _ i o . gmlid ,
s u r f r e c o r d _ i o . gmlid_codespace ,
s u r f r e c o r d _ i o . parent_id ,
s u r f r e c o r d _ i o . root_id ,

262 s u r f r e c o r d _ i o . i s _ s o l i d ,
s u r f r e c o r d _ i o . is_composite ,
s u r f r e c o r d _ i o . i s _ t r i a n g u l a t e d ,
s u r f r e c o r d _ i o . i s _ x l i n k ,
s u r f r e c o r d _ i o . i s _ r e v e r s e ,

267 s u r f r e c o r d _ i o . geometry ,
s u r f r e c o r d _ i o . class_name ,
s u r f r e c o r d _ i o . c l a s s _ o b j e c t _ i d ,
’FALSE’ ,
b u f f e r ) ;

272 /∗ In t r i g g e r the I n s e r t i o n /Update doesn ’ t need to COMMIT. ∗/

/∗ Actual ly a l l the t r a n s a c t i o n s ( change of data ) i s canceled
by r a i s i n g a p p l i c a t i o n e r r o r . Which means the i n s e r t i o n to
the clone t a b l e can ’ t be done ! ∗/

277 dbms_output . p ut_ l i ne ( ’The updated/inserted tree is suspected to be

an error , and has been moved to table SURFACE_GEOMETRY_EXCEPTIONS.

Please check the instance(s) yourself , and change the value in

‘Accepted ‘ into ‘TRUE ‘ if the instance is alright.’ ) ;

282 END 3 D_tree_mindist2_bui lding ;

/∗ Make−up r u l e s t h a t are c o n f l i c t i n g ∗/
−− Tree should be < 5m from the house
PROCEDURE 3 D_tree2house_maxdist

287 AS
bldsurf_within5m_ids i d s _ l i s t := i d s _ l i s t ( ) ;
t ree_ toofar_ f rom_bld EXCEPTION ;

BEGIN
292

IF s u r f r e c o r d _ i o . class_name = ’TREE’ THEN
−− S e l e c t the bui lding s u r f a c e s t h a t are within 5m
−− from the i n s e r t e d /updated t r e e o b j e c t .
SELECT s1 . id BULK COLLECT

297 INTO bldsurf_within5m_ids
FROM surface_geometry s1

WHERE s1 . c l a s s _ o b j e c t _ i d = 602 AND s1 . class_name = ’BUILDING’

AND SDO_Within_Distance ( s1 . geometry , s u r f r e c o r d _ i o . geometry ,
’distance=5m’ ) = ’TRUE’ ;

302

−− When there i s no bui lding within 5 meters
IF bldsurf_within5m_ids .COUNT = 0 THEN

RAISE tree_ toofar_ f rom_bld ;
ELSE

307 dbms_output . p ut_ l i ne ( ’The tree is within 5m from the house ,

which is good!’ ) ;
END IF ;

END IF ;

312 EXCEPTION
WHEN t ree_ toofar_ f rom_bld THEN

RAISE_APPLICATION_ERROR(−20003 , ’Spatial Constraint: Tree is
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too far (dist > 5m) from the house.’ ) ;

317 END 3 D_tree2house_maxdist ;

−− Road should be > 10m from the house
PROCEDURE 3 D_road2house_mindist
AS

322 bldsurf_within10m_ids i d s _ l i s t := i d s _ l i s t ( ) ;
road_tooc lose_to_bld EXCEPTION ;

BEGIN
NULL ;
IF s u r f r e c o r d _ i o . class_name = ’ROAD’ THEN

327 −− S e l e c t the bui lding s u r f a c e s t h a t are within 5m from
−− the i n s e r t e d /updated t r e e o b j e c t .
SELECT s1 . id BULK COLLECT

INTO bldsurf_within10m_ids
FROM surface_geometry s1

332 WHERE s1 . c l a s s _ o b j e c t _ i d = 602 AND s1 . class_name = ’BUILDING’

AND SDO_Within_Distance ( s1 . geometry , s u r f r e c o r d _ i o . geometry ,
’distance=10m’ ) = ’TRUE’ ;

−− When there i s a bui lding within 10 meters
337 IF bldsurf_within10m_ids .COUNT <> 0 THEN

RAISE road_tooc lose_to_bld ;
ELSE

dbms_output . p ut_ l i ne ( ’The road is further than 10m from

the house , which is good!’ ) ;
342 END IF ;

END IF ;

EXCEPTION
347 WHEN road_tooc lose_to_bld THEN

RAISE_APPLICATION_ERROR(−20003 , ’Spatial Constraint: Road

is too close (dist < 10m) to the house.’ ) ;

END 3 D_road2house_mindist ;
352

−− Tree should be < 2m from the road
PROCEDURE 3 D_tree2road_maxdist
AS

roadsurf_within2m_ids i d s _ l i s t := i d s _ l i s t ( ) ;
357 t ree_toofar_from_road EXCEPTION ;

BEGIN
NULL ;
IF s u r f r e c o r d _ i o . class_name = ’TREE’ THEN
−− S e l e c t the bui lding s u r f a c e s t h a t are within 5m from

362 −− the i n s e r t e d /updated t r e e o b j e c t .
SELECT s1 . id BULK COLLECT

INTO roadsurf_within2m_ids
FROM surface_geometry s1

WHERE s1 . c l a s s _ o b j e c t _ i d = 9001

367 AND s1 . class_name = ’ROAD’

AND SDO_Within_Distance ( s1 . geometry , s u r f r e c o r d _ i o . geometry ,
’distance=2m’ ) = ’TRUE’ ;

−− When there i s no road within 2 meters from the t r e e
372 IF roadsurf_within2m_ids .COUNT = 0 THEN

RAISE tree_toofar_from_road ;
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ELSE
dbms_output . p ut_ l i ne ( ’The tree is closer to the road

than 2m, which is good!’ ) ;
377 END IF ;

END IF ;

EXCEPTION
382 WHEN t ree_toofar_from_road THEN

RAISE_APPLICATION_ERROR(−20003 , ’Spatial Constraint: Tree

is too far (dist > 2m) from the road.’ ) ;

END 3 D_tree2road_maxdist ;
387 /∗ Make−up r u l e s t h a t are c o n f l i c t i n g ∗/

−− Detect the sensing route of mobile sensor , temporal+ s p a t i a l const .
PROCEDURE 3 D_mobilesensor_building
AS

392 p o i n t s _ l i s t geoms_l is t := geoms_l is t ( ) ;
pt1 SDO_Geometry ;
pt2 SDO_Geometry ;
pt3 SDO_Geometry ;

397 −− The f o o t p r i n t geometry of re ferenced bui lding
r e f _ b l d _ f o o t p r i n t SDO_Geometry ;

i n s i d e b l d _ i d s i d s _ l i s t := i d s _ l i s t ( ) ;
outs ideb ld_ ids i d s _ l i s t := i d s _ l i s t ( ) ;

402 jumpin_ids i d s _ l i s t := i d s _ l i s t ( ) ;
jumpout_ids i d s _ l i s t := i d s _ l i s t ( ) ;

speeds i d s _ l i s t := i d s _ l i s t ( ) ;
s t a r t i n g _ i d INTEGER ;

407 end_id INTEGER ;

beyond_speed_limit EXCEPTION ;

BEGIN
412

s t a r t i n g _ i d := mobi le_senspts_ ids ( 1 ) ;
end_id := mobi le_senspts_ ids ( mobi le_senspts_ ids .LAST) ;

SELECT sdo_geom . sdo_distance ( c1 . geomval , c2 . geomval , 0 . 0 0 0 0 5 ) /
417 ( ( c1 . dateval − c2 . dateval ) ∗86400 + 0 . 0 0 0 1 ) −− Speed in d i s t /second

BULK COLLECT INTO speeds
FROM c i t y o b j e c t _ g e n e r i c a t t r i b c1 , c i t y o b j e c t _ g e n e r i c a t t r i b c2

WHERE c1 . id <= end_id − 1 AND c1 . id >= s t a r t i n g _ i d
AND c2 . id <= end_id AND c2 . id >= s t a r t i n g _ i d + 1

422 AND c1 . id = c2 . id − 1 ;

SELECT geomval BULK COLLECT INTO p o i n t s _ l i s t
FROM c i t y o b j e c t _ g e n e r i c a t t r i b
WHERE id <= end_id AND id >= s t a r t i n g _ i d ;

427

FOR i IN 1 . . speeds .COUNT LOOP
IF speeds ( i ) >= 3 THEN

RAISE beyond_speed_limit ;
END IF ;

432 END LOOP ;
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−−−−−−−−−−−−−−−−−−−−Jump Check−−−−−−−−−−−−−−−−−−−−−−−
SELECT pts . id BULK COLLECT INTO outs ideb ld_ ids
FROM c i t y o b j e c t _ g e n e r i c a t t r i b _ t e s t pts , surface_geometry s u r f

437 WHERE pts . id <= end_id AND pts . id >= s t a r t i n g _ i d
AND s u r f . id = 60056

AND sdo_geom . r e l a t e ( sdo_cs . make_2d ( pts . geomval ) , ’determine’ ,
sdo_cs . make_2d ( s u r f . geometry ) , 0 . 0 0 0 0 5 ) = ’DISJOINT’ ;

442 SELECT pts . id BULK COLLECT INTO i n s i d e b l d _ i d s
FROM c i t y o b j e c t _ g e n e r i c a t t r i b _ t e s t pts , surface_geometry s u r f
WHERE pts . id <= 131 AND pts . id >= 119

AND s u r f . id = 60056

AND sdo_geom . r e l a t e ( sdo_cs . make_2d ( pts . geomval ) , ’determine’ ,
447 sdo_cs . make_2d ( s u r f . geometry ) , 0 . 0 0 0 0 5 ) <> ’DISJOINT’ ;

−− OTB i s the r e f e r e n c e bui lding in t h i s case , with ID = 60056

SELECT SDO_CS . make_2d ( geometry ) INTO r e f _ b l d _ f o o t p r i n t
FROM surface_geometry

452 WHERE id = 60056 ;

−− I f the i n s e r t e d points are a l l i n s i d e or outs ide
−− the bui lding then n e g l e c t the check .
IF outs ideb ld_ ids .COUNT = mobi le_senspts_ ids .COUNT THEN

457 dbms_output . p ut_ l i ne ( ’All inserted measurements are

captured outdoors.’ ) ;
ELSIF i n s i d e b l d _ i d s .COUNT = mobi le_senspts_ ids .COUNT THEN

dbms_output . p ut_ l i ne ( ’All inserted measurements are

captured indoors.’ ) ;
462 ELSE

−− Not a l l are outdoor or indoor . Then i t needs a
f u r t h e r check of p o s s i b l e JUMP points .
/∗ Let user s p e c i f y Indoor or Outdoor ? ∗/
FOR i IN 1 . . ( p o i n t s _ l i s t .COUNT − 2 ) LOOP

467 −− Compare the geometries in 2D ( x , y ) plane .
pt1 := SDO_CS . make_2d ( p o i n t s _ l i s t ( i ) ) ;
pt2 := SDO_CS . make_2d ( p o i n t s _ l i s t ( i + 1 ) ) ;
pt3 := SDO_CS . make_2d ( p o i n t s _ l i s t ( i + 2 ) ) ;

472 −− I f pt2 i s indoor by i t s two neighbours are outdoor
−− Then pt2 i s suspected to be a ’ jump−in ’ point .
IF SDO_Geom. r e l a t e ( pt1 , ’determine’ , r e f _ b l d _ f o o t p r i n t ,

0 . 0 0 0 0 5 ) = ’DISJOINT’

AND SDO_Geom. r e l a t e ( pt2 , ’determine’ , r e f _ b l d _ f o o t p r i n t ,
477 0 . 0 0 0 0 5 ) <> ’DISJOINT’

AND SDO_Geom. r e l a t e ( pt3 , ’determine’ , r e f _ b l d _ f o o t p r i n t ,
0 . 0 0 0 0 5 ) = ’DISJOINT’ THEN

jumpin_ids .EXTEND ;
jumpin_ids ( jumpin_ids .LAST) := mobi le_senspts_ ids ( i + 1 ) ;

482 END IF ;

IF SDO_Geom. r e l a t e ( pt1 , ’determine’ , r e f _ b l d _ f o o t p r i n t ,
0 . 0 0 0 0 5 ) <> ’DISJOINT’

AND SDO_Geom. r e l a t e ( pt2 , ’determine’ , r e f _ b l d _ f o o t p r i n t ,
487 0 . 0 0 0 0 5 ) = ’DISJOINT’

AND SDO_Geom. r e l a t e ( pt3 , ’determine’ , r e f _ b l d _ f o o t p r i n t ,
0 . 0 0 0 0 5 ) <> ’DISJOINT’ THEN

jumpout_ids .EXTEND ;
jumpout_ids ( jumpout_ids .LAST) := mobi le_senspts_ ids ( i + 1 ) ;
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492 END IF ;
END LOOP ;

IF jumpin_ids .COUNT > 0 THEN
dbms_output . put ( ’There are points possible to be JUMPING -in.

497 They are with id = ’ ) ;
FOR i IN 1 . . jumpin_ids .COUNT LOOP

dbms_output . put ( jumpin_ids ( i ) || ’, ’ ) ;
END LOOP ;
dbms_output . p ut_ l i ne ( ’ ’ ) ;

502 END IF ;

IF jumpout_ids .COUNT > 0 THEN
dbms_output . put ( ’There are points possible to be JUMPING -out.

They are with id = ’ ) ;
507 FOR i IN 1 . . jumpout_ids .COUNT LOOP

dbms_output . put ( jumpout_ids ( i ) || ’, ’ ) ;
END LOOP ;
dbms_output . p ut_ l i ne ( ’ ’ ) ;

END IF ;
512

END IF ;

EXCEPTION
WHEN beyond_speed_limit THEN

517 r a i s e _ a p p l i c a t i o n _ e r r o r (−20005 , ’Tempo -Spatial Constraint:

The speed of moving object is beyond its limit!’ ) ;
END 3 D_mobilesensor_building ;

−− Prevent temperature measurement from changing too f a s t .
522 PROCEDURE smooth_temp_change

AS
quickchange_ids i d s _ l i s t := i d s _ l i s t ( ) ;
valchangetooquick EXCEPTION ;

BEGIN
527 SELECT temp . id BULK COLLECT

INTO quickchange_ids
FROM c i t y o b j e c t _ g e n e r i c a t t r i b _ t e s t temp
WHERE temp . id <> sensor_ io . id

AND abs ( ( sensor_ io . i n t v a l − temp . i n t v a l ) / ( ( sensor_ io . dateval
532 − temp . dateval ) ∗86400 + 0 . 0 0 0 1 ) ) > (3/60 ) ;

IF quickchange_ids .COUNT > 0 THEN
RAISE valchangetooquick ;

END IF ;
537

EXCEPTION
WHEN valchangetooquick THEN

dbms_output . put ( ’The modified temperature value changes

too fast w.r.t. records of id= ’ ) ;
542 FOR i IN 1 . . quickchange_ids .COUNT LOOP

dbms_output . put ( quickchange_ids ( i ) || ’, ’ ) ;
END LOOP ;
dbms_output . p ut_ l i ne ( ’.’ ) ;

547 RAISE_APPLICATION_ERROR(−20101 ,’Temporal Constraint: The modified

temperature changes too fast! Max. rate is 3 Celsius degrees per minute. Please check

DBMS_OUTPUT message for detailed diagnosis.’ ) ;
END smooth_temp_change ;
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END CCC_SPATIO_CONSTRAINTS ;� �
c.3 triggers

After row triggers, which are used to pass the row level value to procedural variables for
constraints check.

Listing C.7: Row-level triggers to assign row values� �
CREATE or REPLACE TRIGGER GET_SURF_INFO_ALL
AFTER INSERT OR UPDATE ON surface_geometry
FOR EACH ROW

4

BEGIN
IF : new . geometry IS NOT NULL THEN
−− Assign the new row to rowtype v a r i a b l e column by column
c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . id := : new . id ;

9 c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . gmlid := : new . gmlid ;
c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . gmlid_codespace := : new . gmlid_codespace ;
c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . parent_id := : new . parent_id ;
c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . root_ id := : new . root_ id ;
c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . i s _ s o l i d := : new . i s _ s o l i d ;

14 c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . is_composi te := : new . is_composi te ;
c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . i s _ t r i a n g u l a t e d := : new . i s _ t r i a n g u l a t e d ;
c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . i s _ x l i n k := : new . i s _ x l i n k ;
c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . i s _ r e v e r s e := : new . i s _ r e v e r s e ;
c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . geometry := : new . geometry ;

19 c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . class_name := : new . class_name ;
c c c _ s p a t i o _ c o n s t r a i n t s . s u r f r e c o r d _ i o . c l a s s _ o b j e c t _ i d := : new . c l a s s _ o b j e c t _ i d ;

END IF ;

END;
24

CREATE or REPLACE TRIGGER GET_SENSOR_INFO_ALL
AFTER UPDATE OR INSERT OF dateval , i n t v a l
ON c i t y o b j e c t _ g e n e r i c a t t r i b _ t e s t

29 FOR EACH ROW

BEGIN
−− Assign the new row to globa l v a r i a b l e column by column
c c c _ n o n s p a t i o _ c o n s t r a i n t s . sensor_ io . id := : new . id ;

34 c c c _ n o n s p a t i o _ c o n s t r a i n t s . sensor_ io . attrname := : new . attrname ;
c c c _ n o n s p a t i o _ c o n s t r a i n t s . sensor_ io . datatype := : new . datatype ;
c c c _ n o n s p a t i o _ c o n s t r a i n t s . sensor_ io . s t r v a l := : new . s t r v a l ;
c c c _ n o n s p a t i o _ c o n s t r a i n t s . sensor_ io . i n t v a l := : new . i n t v a l ;
c c c _ n o n s p a t i o _ c o n s t r a i n t s . sensor_ io . r e a l v a l := : new . r e a l v a l ;

39 c c c _ n o n s p a t i o _ c o n s t r a i n t s . sensor_ io . u r i v a l := : new . u r i v a l ;
c c c _ n o n s p a t i o _ c o n s t r a i n t s . sensor_ io . dateval := : new . dateval ;
c c c _ n o n s p a t i o _ c o n s t r a i n t s . sensor_ io . geomval := : new . geomval ;
c c c _ n o n s p a t i o _ c o n s t r a i n t s . sensor_ io . b lobval := : new . blobval ;
c c c _ n o n s p a t i o _ c o n s t r a i n t s . sensor_ io . c i t y o b j e c t _ i d := : new . c i t y o b j e c t _ i d ;

44 c c c _ n o n s p a t i o _ c o n s t r a i n t s . sensor_ io . surface_geometry_id := : new . surface_geometry_id ;
−− dbms_output . p ut_ l i ne ( ’ This t r i g g e r to get newly i n s e r t e d row i s f i r e d ! ’ ) ;
END;
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CREATE or REPLACE TRIGGER GET_SENSOR_PTS_INFO
49 AFTER INSERT ON CITYOBJECT_GENERICATTRIB_TEST

FOR EACH ROW
BEGIN

c c c _ s p a t i o _ c o n s t r a i n t s . mobi le_senspts_ ids .EXTEND ;
c c c _ s p a t i o _ c o n s t r a i n t s . mobi le_senspts_ ids ( c c c _ s p a t i o _ c o n s t r a i n t s . mobi le_senspts_ ids .

LAST) := : new . id ;
54 END� �

After statement triggers.

Listing C.8: Building intersection detection� �
1 CREATE or REPLACE TRIGGER BUILDING_GEOM_UPDATE

AFTER UPDATE OF GEOMETRY
ON SURFACE_GEOMETRY

BEGIN
6 −− Check i f there i s any i n t e r r u p t i o n between bui ld ings

c c c _ s p a t i o _ c o n s t r a i n t s . 3 D_bui ld ing_interrupt_bui ld ing ;
END;� �

Listing C.9: Move exceptions-like instance to special table� �
CREATE or REPLACE TRIGGER "EXCEPTIONTEST_TREE2BLD_MINDIST"

2 AFTER INSERT OR UPDATE
ON SURFACE_GEOMETRY

BEGIN
IF c c c _ s p a t i o _ c o n s t r a i n t s . f r e e _ e n t r y _ f l a g = ’TRUE’ THEN

7 /∗
−− The modifying of the t a b l e t h a t the t r i g g e r i s working on
−− may be impossible due to mutating−t a b l e r e s t r i c t i o n .

−− DELETE FROM surface_geometry_except ions
−− WHERE id = c c c _ s p a t i o _ c o n s t r a i n t s . s u r f i d _ i o ;

12 ∗/

c c c _ s p a t i o _ c o n s t r a i n t s . f r e e _ e n t r y _ f l a g := ’FALSE’ ;

dbms_output . pu t_ l i ne ( ’The exception instance has been inserted/updated

17 in table SURFACE_GEOMETRY , and deleted from the exception lists.

Free_Entry_Flag is set back to ‘FALSE ‘.’ ) ;

ELSE
c c c _ s p a t i o _ c o n s t r a i n t s . 3 D_tree_mindist2_bui lding ;

22 END IF ;
END;� �

Listing C.10: Insert the verified exceptional instance back to the table it aims to go to� �
CREATE or REPLACE TRIGGER MOVE_EXCEPTIONS_BACK

2 AFTER UPDATE OF ACCEPTED
ON SURFACE_GEOMETRY_EXCEPTIONS
FOR EACH ROW
BEGIN

IF : new . accepted = ’TRUE’ THEN
7 c c c _ s p a t i o _ c o n s t r a i n t s . f r e e _ e n t r y _ f l a g := ’TRUE’ ;
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INSERT INTO surface_geometry VALUES
(

: new . id ,
12 : new . gmlid ,

: new . gmlid_codespace ,
: new . parent_id ,
: new . root_id ,
: new . i s _ s o l i d ,

17 : new . is_composite ,
: new . i s _ t r i a n g u l a t e d ,
: new . i s _ x l i n k ,
: new . i s _ r e v e r s e ,
: new . geometry ,

22 : new . class_name ,
: new . c l a s s _ o b j e c t _ i d

) ;

/∗ The TRUE except ion should stay f o r a f u r t h e r check from other t r i g g e r . ∗/
27 END IF ;

END;� �
Listing C.11: Trigger to call the check about jumping points in mobile sensors.� �

CREATE or REPLACE TRIGGER CHECK_JUMPING_SENSORPTS
2 AFTER INSERT

ON CITYOBJECT_GENERICATTRIB_TEST
BEGIN

c c c _ s p a t i o _ c o n s t r a i n t s . 3 D_mobilesensor_building ;
END;� �

Listing C.12: Three made-up constraints that contradict and never can be satisfied.� �
CREATE or REPLACE TRIGGER 3 D_tree2house_maxdist
AFTER INSERT OR UPDATE OF GEOMETRY

4 ON SURFACE_GEOMETRY
BEGIN

dbms_output . pu t_ l i ne ( ’The 3D_tree2house_maxdist trigger fires!’ ) ;
c c c _ s p a t i o _ c o n s t r a i n t s . 3 D_tree2house_maxdist ;

END;
9

CREATE or REPLACE TRIGGER
"3D_road2house_mindist"

AFTER INSERT OR UPDATE OF GEOMETRY
ON SURFACE_GEOMETRY

14 BEGIN
dbms_output . pu t_ l i ne ( ’The 3D_road2house_mindist trigger fires!’ ) ;
c c c _ s p a t i o _ c o n s t r a i n t s . 3 D_road2house_mindist ;

END;

19 CREATE or REPLACE TRIGGER 3 D_tree2road_maxdist
AFTER INSERT OR UPDATE OF GEOMETRY
ON SURFACE_GEOMETRY
BEGIN

dbms_output . pu t_ l i ne ( ’The 3D_tree2road_maxdist trigger fires!’ ) ;
24 c c c _ s p a t i o _ c o n s t r a i n t s . 3 D_tree2road_maxdist ;

END;� �
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Abstract

Nowadays the field of geo-information is undergoing major changes, and the 
transition from 2D to 3D is having a major influence.  A significant amount of 
3D datasets are stored in the database.  Experts are aware that new quality 
control mechanisms need to be built into the database systems in order to 
secure and guarantee high-performing data. 

Constraints are effective in providing solutions needed to avoid errors and 
enable maintenance of data quality.  Whereas constraints for 2D geographic 
datasets have already been the subject of several research projects,  studies 
into 3D geo-data constraints are largely unexplored.  This thesis research 
discovers a new approach to model, conceptualise and implement 3D geo-
constraints which can function in the database.  At the outset, constraints can 
be formulated using natural language.  As natural language is subjective and 
varies between individuals, expressions can be ambiguous and can easily cause 
confusion.  So spatial constraints are abstracted using geometry that depicts 
the exact shape, and also topology that reveals the spatial relationship 
between geometries.  This step makes the meaning of a constraint clearer to 
others.  Furthermore, using standardised UML diagrams and OCL expressions,  
geo-constraints can be formalised to an extent that not only humans, but also 
machines can understand them.  With model-driven architecture supported by 
various software, OCL expressions can be automatically converted to other 
models/executable codes (e.g. PL/SQL) just by a few clicks.  And with small 
modifications, database triggers can be formulated to carry out constraints 
check.

A database including various topographic objects (e.g. buildings, trees, roads, 
grass, water-bodies and terrains) is used as a study case to apply the 
discovered approach.  During this research, a first attempt to formulate 3D 
geo-constraints in OCL has been made.  These expressions can be tested and 
translated to other models/implementations when the OCL standard is 
extended with spatial types and operations.

In the implementation stage, the current 3D functions in Oracle Spatial 
database are found to be insufficient.  A new 3D function using existing 2D 
functions - plus additional code relating to computational geometry - has been 
developed by the author to bridge the gap.  Based upon this function, a large 
group of spatial constraints which apply to objects in 3D space can be checked.

Bentley Map and Python IDLE are used to test the performance of constraints 
as well as the visualisation of warning messages to clients.  Database error 
messages are immediately displayed on the front-ends when a modification 
that does not satisfy a constraint is attempted to commit to the database.  

During the case study, new classes of constraints are also discovered.  They are 
higher-level constraints, parameterised constraints, constraints allowing 
exceptional instances, extra-check rules to detect conflicting constraints and 
constraints relating to multi-scale representations.
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