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Abstract—With the growing availability of large-scale datasets,
and the popularization of affordable storage and computational
capabilities, the energy consumed by Al is becoming a growing
concern. To address this issue, in recent years, studies have
focused on demonstrating how AI energy efficiency can be
improved by tuning the model training strategy. Nevertheless,
how modifications applied to datasets can impact the energy
consumption of Al is still an open question.

To fill this gap, in this exploratory study, we evaluate if data-
centric approaches can be utilized to improve Al energy effi-
ciency. To achieve our goal, we conduct an empirical experiment,
executed by considering 6 different AI algorithms, a dataset
comprising 5,574 data points, and two dataset modifications
(number of data points and number of features).

Our results show evidence that, by exclusively conducting
modifications on datasets, energy consumption can be drastically
reduced (up to 92.16%), often at the cost of a negligible or even
absent accuracy decline. As additional introductory results, we
demonstrate how, by exclusively changing the algorithm used,
energy savings up to two orders of magnitude can be achieved.

In conclusion, this exploratory investigation empirically
demonstrates the importance of applying data-centric techniques
to improve Al energy efficiency. Our results call for a research
agenda that focuses on data-centric techniques, to further enable
and democratize Green Al

Index Terms—Energy Efficiency, Artificial Intelligence, Green
Al Data-centric, Empirical Experiment

I. INTRODUCTION

We live in the era of artificial intelligence (Al): new intelli-
gent technologies are emerging every day to change people’s
lives. Many organizations identified the massive potential of
using intelligent solutions to create business value. Hence, in
the past years, the modus operandi is collecting as much data
as possible so that no opportunity is missed. Data science
teams are constantly looking for problems where Al can
be applied to existing data to train models that can provide
more personalized and optimized solutions to their operations
customers and operations [1].

Nevertheless, the energy consumption of developing Al ap-
plications is starting to be a concern. Previous studies observed
that Al-related tasks are particularly energy-greedy [2], [3].
In fact, since 2012, the amount of computing used for Al
training has been doubling every 3.4 months [4]. Controversy
has risen around particular machine learning models that have

been estimated to consume the energy equivalent of a trans-
American flight [5]. Hence, a new subfield is emerging to
make the development and application of Al technologies
environmentally sustainable: Green Al [6].

On a related note, the current research practice of collecting
massive amounts of data is not necessarily yielding better
results. Being able to collect high-quality data is more impor-
tant than collecting big data — a trend coined as Data-centric
AI'. Instead of creating learning techniques that squeeze every
bit of performance, data-centric Al focuses on leveraging
systematic, reliable, and efficient practices to collect high-
quality data.

Therefore, in this study, we conduct an exploratory empir-
ical study on the intersection of Green Al and Data-centric
Al. We investigate the potential impact of modifying datasets
to improve the energy consumption of training Al models. In
particular, we focus on machine learning, the branch of Al that
deals with the automatic generation of models based on sample
data — machine learning and AI are used interchangeably
throughout this paper. In addition to investigating the energy
impact of dataset modifications, we also analyze the inherent
trade-offs between energy consumption and performance when
reducing the size of the dataset — either in the number of
data points or features. Moreover, the analysis is performed
in six state-of-the-art machine learning models applied in the
detection of Spam messages.

Our results show that feature selection can reduce the energy
consumption of model training up to 76% while preserving
the performance of the model. The improvement in energy
efficiency is more impressive when reducing the number of
data points: up to 92% in the case of Random Forest. However,
in this case, it is not cost-free: the trade-off between energy and
performance needs to be considered. Finally, we also show that
KNN tends to be the most energy-efficient algorithm, while
ensemble classifiers tend to be the most energy greedy.

This paper provides insights to define the most relevant
and energy-efficient modifications of datasets used during
the development of the AI models while ensuring minimal

'Understanding Data-Centric Al https://landing.ai/data-centric-ai/. Ac-
cessed 24th January 2022.
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accuracy loss. We argue that more research in Data-centric Al
will help more practitioners in developing green AI models.
To the best of our knowledge, this is the first study to
explore the potential of preprocessing data to reduce the energy
consumption of Al.

The entirety of our experimental scripts and results are made
available with an open-source license, to enable the indepen-
dent verification and replication of the results presented in this
study: https://github.com/GreenAlproject/ICT4S22.

The remainder of this paper is structured as follows. Sec-
tion II presents the related work on the energy consumption
of Artificial Intelligence models. Section III details the overall
approach and the study design. Section IV describes the
results of the experimentation according to the different dataset
modifications, and Section V presents the related discussion.
The threats to the validity of this study are thoroughly analyzed
in Section VI. Finally, Section VII documents our conclusions
and future work.

II. RELATED WORK

Previous work has addressed the energy consumption of
software systems across different domains, levels and ecosys-
tems. There is ongoing research investigating how different
frameworks [7], data structures [8], programming languages
[9], [10], and so on, affect the energy consumption of soft-
ware. The main outputs of the research in this field — also
known as Green Software — aim at providing developers
with informed advice on how to design, develop, and deploy
their systems [11]-[16]. Some works have also attempted
at providing tools to help developers automatically improve
the energy efficiency of their code [17], [18]. Despite the
numerous contributions in this field, only a handful of studies
address the energy efficiency of Al-based systems [19].

While numerous studies focus on utilizing Al to address
sustainability concerns [20], [21], only a few investigate how
the sustainability of Al itself can be improved. Strubell et al.
provide a clear landscape that motivates a research agenda
in Al that considers their energy consumption [2]. They pin-
point concrete cases of energy-intensive Al applications and
compare the carbon emissions of training Natural Language
Processing (NLP) models to ordinary daily tasks — e.g., a car
commute or air travel. Their results showcase that training
a state-of-the-art NLP model can generate as much carbon as
five cars during their entire lifespan (including fuel). Although
our work also analyzes the energy consumption of training Al
models, we aim at identifying trade-off decisions that can be
generalized to other Al projects to reduce energy consumption.

In a similar direction, Schwartz et al. present the dichotomy
between Red Al and Green AI. While traditional (Red) Al
only aims to improve accuracy metrics, Green Al includes
computational cost as a performance metric. Green Al favors
the selection of algorithms that have comparable accuracy
while consuming less energy. In their work, Schwartz et al.
highlight the need for more research in the area of Green Al,
showcasing the exponential growth of computational power
required to train models over the past six years. Our work
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follows their call for a new research agenda in Al that
brings energy consumption into the landscape of training an
Al model. However, we take a step further by empirically
investigating the potential of using data-centric over model-
centric approaches to enable Green Al.

More research has been calling for a new research agenda in
Al Bender et al. [5] provide a list of high-level recommenda-
tion to mitigate the unprecedented growth in the size of state-
of-the-art NLP models. Recommendations include investing
resources to curate datasets and reflecting on the potential
risks entailed by models before developing them, to address
Al sustainability. A different work reported concrete numbers
on how the growth of Al is impacting the entire infrastructure
of datacenters which need to grow in bandwidth, data storage,
and power capacity [22]. While not focusing directly on Al
sustainability, in other studies, researchers investigated the
impact that utilizing smaller models [23] or down sampled
datasets [24] can have on accuracy. Our study paves the way
in directly addressing Al sustainability concerns by providing
empirical evidence on how dataset modifications can be used
to drastically save Al model training energy at a negligible
accuracy loss.

Martin et al. [25] focused on studying the energy consump-
tion of a specific machine learning algorithm, namely the Very
Fast Decision Tree (VFDT). The authors analyzed the energy
consumption of VFDT at the function level, investigating how
different parameters affect the energy consumption across all
functions of the training algorithm. Their results demonstrate
how function-level energy profiling can lead to improvements
of up to 70% in energy efficiency with minimal impact on
the accuracy of the algorithm. In our research, we consider
six different machine learning algorithms rather than a single
one, as pinpointed in Section III-D1. Besides, we investigate
for the first time if data-centric approaches can improve the
energy efficiency of machine learning algorithms.

Previous work has studied the impact of machine learning
algorithms in the context of mobile applications [26]. The
authors compare eight mobile implementations of well-known
training algorithms (e.g., k-Nearest Neighbor, Decision Trees,
etc.) in terms of accuracy and energy consumption. In sum,
the work shows that 1) energy consumption is often related
to the algorithmic complexity of the algorithms, and 2) to
achieve optimal energy efficiency practitioners ought to factor
in application-specific variables — e.g., whether the model
needs to be regularly updated. Our work differentiates by
1) focusing on general-purpose implementations of machine
learning algorithms rather than mobile-based ones and 2)
providing a thorough analysis of the impact of the input data
in the energy consumption of training a model.

Finally, a recent study analyzed the energy consumption
of using different deep learning frameworks — namely, Py-
Torch and TensorFlow [27]. Results suggest that TensorFlow
achieves better energy performance at the training stage,
while PyTorch is more energy-efficient at the inference stage.
Our work differs by approaching energy efficiency from a
data-centric perspective rather than a comparative analysis of
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different frameworks and libraries.

III. STUDY DESIGN AND EXECUTION

In this section we document the empirical experiment
executed for this study, in terms of goal (Section III-A), re-
search questions (Section III-B), study subject (Section III-C),
experimental procedure (Section III-D), and data analysis
(Section III-E).

A. Goal

The aim of this research is to conduct an investigation
into what influences the energy consumption of Al-based
systems. More formally, by utilizing the Goal-Question-Metric
approach [28], this objective can be described as follows:

Analyze the energy consumption of model training

For the purpose of identifying the impact

With respect to dataset modifications

From the viewpoint of software practitioners and researchers
In the context of artificial intelligence.

B. Research Questions

In order to achieve our goal, we address the following three
research questions (RQ):

RQ1 Do AI algorithms differ in terms of energy consump-
tion?

By answering this introductory research question, we aim at
understanding if Al algorithms impact differently the energy
consumption of their underlying hardware, and in the affirma-
tive case, the extent of this difference. The results gathered
for this first research question allow us to gain sufficient
knowledge on potential energy consumption difference of Al
algorithms through which the following research questions,
focusing on data-centric green Al, can be assessed.

RQ2 Does modifying the dataset impact the energy efficiency
of Al algorithms?

While RQ; focuses on the potential difference in energy
consumption of algorithms, with RQ2 we explicitly focus
on data-centric green Al i.e., if modifications of the dataset
used by the algorithms can impact their energy consumption.
Specifically, we split R(Q)2 into two sub-RQs to study the
potential impact of different facets of the dataset on the energy
consumption of Al algorithms:

RQ2.1 Does the size of the dataset impact the energy con-
sumption of Al algorithms?

RQ2.2 Does the number of features impact the energy con-
sumption of Al algorithms?

With RQ)2; we aim at understanding if utilizing only a
portion of a dataset, instead of its entirety, can lead to a
significant energy consumption difference of Al algorithms.
Similarly, with RQs.2, we study if varying the number of
features, i.e., the dimensionality of the dataset, can lead to
a significant energy consumption variation.

While improving the energy efficiency of Al algorithms is
at the core of our investigation, ensuring that energy efficiency
improvements do not drastically deteriorate the effectiveness
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of AI algorithms, and hence defy their final purpose, is
paramount. In order to systematically address this concern with
our final research question, we investigate potential trade-offs
between energy efficiency and algorithm accuracy (in terms
of Fl-score). This is expressed in R(Q)s as follows:

RQgs Can we improve the energy efficiency of Al algorithms
through a data-centric approach without compromising
their accuracy?

C. Experimental Subject

In order to answer our RQs, we consider as experimental
subject the SMS Spam Collection dataset [29]. The SMS
Spam Collection is a dataset of labeled SMS messages
collected for mobile phone spam research. The complete
dataset is made publicly available at the University of Cal-
ifornia Irvine Machine Learning Repository? and comprises
5,574 text message instances, labeled either as legit (“ham”
label, 4,827 instances) or spam (“spam” label, 747 instances).
The dataset is also made available via the data science platform
Kaggle?, where it was downloaded over 86,8K times, and used
in more than 700 Jupiter notebook projects.

To preprocess our dataset, i.e., prepare the raw SMS Spam
Collection data for the subsequent “ham”/“spam” classi-
fication, we make use of widely adopted standard techniques.
Specifically, given that the SMS Spam Collection entails
a text classification problem, we use a method involving
term frequency—inverse document frequency (tf-idf), whereby
words are tokenized based on their appearance in the dataset,
and subsequently the term-frequency metric for each token
is calculated. To execute the tokenization and term-frequency
calculation, we utilize the standard implementation as provided
in the Python package scikit-learn 1.0 In total, the
dataset includes 8169 features (i.e., 8168 token occurrence
frequencies and a last feature corresponding to the length of
the SMS messages).

In order to train and test our models, we utilize a 70%/30%
train/test split. We do not allocate a portion of the dataset
for validation purposes since, as further discussed in the
threats to validity section (Section VI), model optimization
via hyperparameter tuning falls outside the scope of this
investigation.

D. Experimental Procedure

1) Experimental design: Our controlled empirical experi-
ment is characterized by a set of Dependent Variables (DV')
and Independent Variables (I1). We design the experiment
as a set of treatments, i.e., “sub-experiments” considering
a specific combination of independent variable values.’ For

each sub-experiment, we exclusively vary one independent
Zhttps://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection.  Accessed
3rd January 2022.
3https://www.kaggle.com/uciml/sms-spam-collection-dataset. Accessed 3rd
January 2022.
“https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text. Tfidf Transformer.html. Accessed 5th January 2022.
SWhile independent variable values vary among sub-experiments, the same
set of dependent variables are collected for all sub-experiments.
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variable, while fixing all the other ones to a default level.
This allows us to independently study the potential impact
that each independent variable has on our dependent variables,
while allowing us to adopt a straightforward and transparent
research design.

In addition, to answer our research questions, we are
required to adopt a blocking factor, namely the factor Al
algorithm (IV7). This entails that our sub-experiments are
divided into different sets (or blocks), according to the specific
utilized Al algorithm.

More specifically, in order to answer R(Q);, we consider the
entire experimental dataset by fixing the number of data points
(IV5) and the number of features (I'V3) to their default level
(i.e., 100%), while exclusively varying the used Al algorithm
(IV3). This allows us to compare the energy consumption of
Al algorithms (DV}) in their “default” setting, i.e., without
carrying out any ad hoc manipulation of the original dataset.

To study the impact of dataset size (R(Q)2.1) instead, we
vary both the used Al algorithm (/V3) and the number of
data points (I'V3), by keeping the number of features (I/V3)
to its default value. This allows to study the impact that
the number of data points, i.e., the size of the dataset, has
on the energy consumption of each algorithm (DV}), while
avoiding potential variation of experimental measurements due
to different numbers of features.

Similarly, to answer (R(@)2.2), we vary the used Al algo-
rithm (/V;) and the number of features (/V3), while fixing
the number of used data points (/V5) to its default value. This
enables us to investigate the potential impact that the number
of features has on the execution of Al algorithms (DV7), while
avoiding the potential impact on energy consumption due to
variations of the number of data points.

Finally, to answer (R(Q)s3), we apply both experimental
techniques employed to answer R(Q)q, i.e., we vary Al al-
gorithms (IV7) and alternatively either the number of data
points (I'V5) or number of features (IV3), while fixing the
other independent variable (I'V3 or IV5) to its default value.
This approach allows us to study independently the impact that
the number of data point and the number of features have on
accuracy (DV3), while also enabling us to consider the data
collected for R()2 to systematically answer this last RQ.

To ensure we gather statistically significant data, and to
mitigate potential threats to internal validity, we repeat the
execution of each sub-experiment 30 times. In addition, to
mitigate the impact of potential confounding factors (e.g., an
unnoticed execution of a background process affecting our
energy measurements), rather than simply repeating sequen-
tially the 30 executions of a sub-experiment, we shuffle the
executions of sub-experiments uniformly at random.

An additional confounding factor may arise from the tem-
perature of the utilized hardware. To mitigate this threat, prior
to the execution of our experiment, we perform a dummy
CPU-intensive warm-up operation, carried out by calculating
a Fibonacci sequence for approximately 5 seconds, and hence
ensure that the hardware is not experiencing a “cold boot”
when the first execution is run.
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Finally, to avoid the potential influence of subsequent runs
on our energy measurements, we introduce a sleep time equal
to 5 seconds between each run, to allow the hardware to cool
down, and execute all runs under the same initial hardware
conditions.

2) Experimental Variables: Our experiment is character-
ized by a total of 3 independent variables and 2 dependent
variables.

Independent Variables (IVs). The independent variables
of our experiment, i.e., the factors we adopt, and their cor-
responding values, are reported below. The default value of
each independent variable (see Section III-D1) is distinguished
with an under strike (except for the Al algorithm independent
variable, as it is our experimental blocking factor).

o AI Algorithm (IV;): Support-Vector Machine,
Decision Tree, Multinomial Naive Bayes,
K-Nearest Neighbour, Random Forest,
Adaptive Boost, Bagging Classifier.

o Number of data points (IV3): 10%, 20%, 30%, ...,
100% of the total number of data points. To select data
points, we adopt stratified sampling, and pick points of
our population uniformly at random from each stratum
(i.e., messages labeled as “spam” and “ham”).

o Number of features (IV3): 10%, 20%, 30%, ..., 100%
of the total number of features. To select features, we
adopt the Chi-Square Test (Chi2) [30], to ensure that only
the most relevant features are considered for each level.

The set of Al algorithms (/'V;) was chosen by considering
the most popular ones. We use the implementation provided
in the Python library scikit-learn®, which was used to
implement the algorithms for this study. The discretization step
size of the number of data points and features (10%) was in-
stead adopted to ensure sufficient granularity of results, while
guaranteeing an a-priori feasible number of experimental runs.

Dependent Variables (DVs). In terms of metrics used to
answer our research questions, i.e., our observed dependent
variables, we consider the following ones in our experiment:

o Energy consumption (DV;): the energy consumed by
the hardware on which the Al algorithms are executed,
measured in Joules (J);

e Fl-score (DV3): Overall accuracy measure of the model,

defined as F'1 = 2« 5_’;%, where P is the model precision,

and R the model recall.

The energy consumption (DV;), measured during the ex-
ecution of Al algorithms, is the dependent variable used to
answer R(); and RQs. The Fl-score (DV5) is instead adopted
to answer R(Q)3. The Fl-score is chosen over precision (P) and
recall (R) metrics, as it allows us to gain an encompassing
summary overview of the overall accuracy of Al algorithms,
while overcoming potential representation problems due to the
uneven distribution of labels present in the dataset used (see
Section III-C).

6https://scikit—learn.org/stable/whats_new/v 1.0.html#version-1-0-0.
Accessed 3rd January 2022.
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3) Experimental Setting: All sub-experiments are run on a
machine equipped with a 2.4GHz Quad-Core i5 processor and
16 GB 2133 MHz LPDDR3 of memory. The entirety of the
experiment and data analysis is implemented in Python 3.10.
In order to measure energy consumption (DV7), we leverage
codecarbon?®, a Python package allowing to estimate the
energy consumption of code running on Intel and AMD CPU
processors. All the Al algorithms (/V}) follow the implemen-
tation as provided in the Python package scikit-learn
1.0, and use the standard hyperparameters as defined in the
library.

In total, by considering the combination of independent
variables and sub-experiment repetitions, 3.6K experimental
runs are executed to gather data to answer our research
questions.

E. Data Analysis

In this section, we report the data analysis procedure that
we adopt to derive our results from the gathered data.

As a preliminary step, in order to assess if the energy
consumption (DV7) data we collected is normally distributed,
we carry out a visual normality assessment by means of
quantile-quantile (Q-Q) plot, followed by a Shapiro-Wilk
normality test. From the inspection of the generated Q-Q plot,
and the Shapiro-Wilk test result (1//=0.52 and p-value=2.2e-
16), we can confidently conclude that the data collected is
not normally distributed. Hence, for each sub-experiment, we
sample the data gathered in the run reporting the median
energy consumption value. Subsequently, in order to evaluate
if a correlation exists between our dependent and independent
variables, we leverage the calculation of the one-tailed Spear-
man’s rank correlation coefficient (p). We adopt Spearman’s p
as it provides a non-parametric measure, and can be used to
calculate the potential correlation between our ordinal (I'V;-
1V3) and continuous variables (DV; and DV5). Finally, to pro-
vide further insights into our results, we calculate percentage
changes to summarize the difference in energy consumption
and Fl-scores between different algorithms, number of data
points, and number of features.

IV. RESULTS

In this section, we report the results of our empirical
experimentation according to the research questions guiding
this study (see Section III-B).

A. Results RQ1: Energy Consumption Variability of Al Algo-
rithms

With our first research question, we aim at investigating
the potential difference between the energy consumption of
Al algorithms. An overview of the median consumption of
each Al algorithm, as measured in our empirical experiment,
is depicted in Figure 1.

Thttps://www.python.org/downloads/release/python-3100/. Accessed 3rd
January 2022.
8https://github.com/mlco2/codecarbon. Accessed 3rd January 2022.
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Fig. 1. Median Energy Consumption of AI Algorithms

By inspecting Figure 1, we can immediately notice that the
energy consumption drastically varies among Al algorithms.
More specifically, Random Forest results to be the most
energy greedy algorithm, with a median energy consump-
tion of 1.98 Joules per run, followed by AdaBoost, which
nevertheless resulted to consume less than half (48.9%) of
the energy required by Random Forest. The most energy
efficient algorithm results to be KNN, which reports a median
energy consumption of 0.01 Joules, followed by Decision Tree,
which requires 0.12 Joules. By considering minimum and
maximum variation values, we note that energy consumption
varies between algorithms from a minimum decrease of 20%
(Bagging Classifier - SVM) up to a 99.49% decrease in energy
consumption (Random Forest - KNN).

B. Results RQo: Impact of dataset modifications on energy
consumption

With R(Q-, we aim at investigating if dataset modifications,
and more specifically the number of data points (R()2.1) and
the number of features (R(Q)2.2), may have an impact on the
energy consumed by Al algorithms. An overview of the results
we collected for R() are depicted in Figure 2, and are further
described below.

1) Results RQo.1: Impact of the number of data points
on energy consumption: The first row of diagrams reported
in Figure 2 depicts the median energy consumption of each
algorithm at a varying number of data points (reported on
the z-axis). As we can intuitively notice from the linear
regression lines reported in the plots, the energy consumption
appears to be correlated with the number of data points.
This observation is confirmed by the Spearman’s rank corre-
lation coefficient values reported in Table I. By considering
the p values reported in Table I, we note that there is a
definitive positive correlation between the number of data
points and the energy consumption, of either strong nature
(ie., 0.70 < p < 0.89 for KNN, Random Forest, Bagging
Classifier) or very strong nature (i.e., p > 0.90 for SVM,
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TABLE I
CORRELATION ANALYSIS BETWEEN ENERGY CONSUMPTION (DV7) AND
NUMBER OF DATA POINT (/V32) OR NUMBER OF FEATURES (IV3)

Algorithm (I'V7) Indep. Variable P p-value
SVM Num. data points (/V2) 095  7.16e-151
Decision Tree Num. data points (IV2) 0.92  9.58e-120
KNN Num. data points (/V2)  0.80 3.24e-68
Random Forest Num. data points (IV2)  0.87 4.25e-95
AdaBoost Num. data points (IV2) 091  6.64e-115
Bagging Classifier =~ Num. data points (IV2)  0.87 3.07e-92
SVM Num. features (/V3) 0.69 3.09¢-43
Decision Tree Num. features (I'V3) 0.75 2.29e-56
KNN Num. features (IV3) 0.04 0.54
Random Forest Num. features (I'V3) 0.64 2.02e-36
AdaBoost Num. features (IV3) 0.79 6.01e-66
Bagging Classifier =~ Num. features (I'V3) 0.76 4.54e-58

Decision Tree, and AdaBoost). The corresponding p-values
showcase that the identified correlations are with very low
probability due to chance.

By considering the energy reduction achieved by using
fewer data points, we notice that this independent variable
(I'V3) influences the considered Al algorithms differently, and
can lead to a maximum energy reduction ranging from 61.72%
(KNN) up to 92.16% (Random Forest).

2) Results RQs.5: Impact of the number of features on
energy consumption: The second row of diagrams reported in
Figure 2 depicts the energy consumption for each algorithm at
a varying number of features (reported on the z-axis). From
the distribution of median energy consumption values, and
the linear regression lines, the number of features and the
energy consumption appear to be correlated for most algo-
rithms. The relationship is confirmed by the Spearman’s rank
correlation coefficient values p reported in Table I. In com-
parison with the number of data points (see Section IV-B1),
the number of features results to possess an overall weaker
positive correlation with the energy consumption, while still
being either strongly (i.e., 0.70 < p < 0.89, for Decision
Tree, AdaBoost, Bagging Classifier) or moderately correlated
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(0.40 < p < 0.69 for SVM and Random Forest). Interestingly,
varying the number of features does not noticeably affect the
energy consumed by KNN, by showcasing only a very weak
correlation (0.0 < p < 0.19), which was with high probability
dictated by chance (p-value=0.54).

For all algorithms other than KNN, the energy reduction
obtained by varying the number of features results to be lower
than the one obtainable by varying the number of data points,
while still being appreciable. As for the number of data points,
varying the number of features affects differently the energy
consumption of the considered Al algorithms. Interestingly,
for KNN, lowering the number of features leads in numerous
cases to a higher energy consumption w.r.t. the case of using
all features. In addition, the best energy efficiency achieved
by KNN by lowering the number of features results to be
only a 0.92% decrease. In comparison, the algorithm which
showcases the highest energy efficiency by varying the number
of features is AdaBoost, which achieves up to a 75.8% energy
reduction when compared to its baseline.

C. Results RQs: Trade-offs between energy consumption and
accuracy

With RQ3, we aim at investigating if potential trade-offs
between Al energy efficiency and accuracy are possible. An
overview of the accuracy results, in terms of F1-score collected
via our empirical experiment, is reported in Figure 3. As
described in the figure, both by varying the number of data
points (IV5, first row of Figure 3) or the number of features
(IV3, second row of Figure 3) we generally do not observe a
notable Fl-score decrease (reported on the y-axis, Figure 3),
with both numbers of data points and features not being
correlated to F1-scores.

More detailed insights into the correlation analysis are
provided by the Spearman’s rank correlation coefficient values
p reported in Table II. From the p values reported in the table,
we notice that, when considering the number of data points
as independent variable, most algorithms report only a very
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TABLE II
CORRELATION ANALYSIS BETWEEN F1-SCORE (DV32) AND NUMBER OF
DATA POINTS (IV35) OR NUMBER OF FEATURES (I V3)

Algorithm (/V7) Indep. Variable p p-value
SVM no_datapoints -0.018 0.960
Decision Tree no_datapoints 0.733 0.016
KNN no_datapoints 0.661 0.038
Random Forest no_datapoints 0.855 0.002
AdaBoost no_datapoints -0.006 0.987
Bagging Classifier  no_datapoints 0.661 0.038
SVM no_features N.D. N.D.
Decision Tree no_features -0.042 0.907
KNN no_features 0.954 1.788e-05
Random Forest no_features 0.541 0.106
AdaBoost no_features 0.585 0.075
Bagging Classifier  no_features 0.316 0.374

weak correlation with F1-scores (for SVM and AdaBoost) or
a moderate correlation (for KNN and Bagging Classifier). The
only exceptions are the algorithms Decision Tree and Random
Forest, both reporting a strong correlation between number of
data points and F1-score. The relative p-values indicate that
such correlation is statistically significant, i.e., w.h.p. not due
to chance.

When considering the correlation between number of fea-
tures and F1-score, a different picture emerges. In fact, from
the p values reported in Table II, we can observe for most
algorithms that the number of features is correlated to the F1-
score either via a very weak correlation (for Decision Tree and
Bagging Classifier), or a moderate one (for Random Forest and
AdaBoost). The p value is not definable (N.D.) for SVM, as
no variation is observed in F1-score values, i.e., the covariance
between number of features and F1-score is zero. Interestingly,
KNN is the only algorithm which reports a p value indicating
a very strong correlation between number of features and F1-
score. By inspecting the relative p-value, we can conclude that
such correlation is statistically significant.

V. DISCUSSION

This empirical experiment provides exploratory evidence
of the potential of using data preprocessing techniques to
reduce the energy consumption of Al. Below, we answer each
research question by analyzing the results of our experimenta-
tion. Several conclusions are drawn with regard to the energy
consumption of Al models and the impact of the input dataset
modifications.

A. Do Al algorithms differ in terms of energy consump-
tion? (RQ1)

Yes, different training algorithms yield considerably differ-
ent energy footprints. The algorithm with the least energy
consumption is KNN, using almost 200x less energy than
Random Forest. However, that does not necessarily mean
that KNN should always be chosen, as we prove later with
research questions R()2 and R()s3. Nevertheless, the energy
consumption data collected with our experiment showcases the
importance of logging such information. Practitioners resort
to different performance metrics when selecting and tuning
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models. In agreement with previous work [6], we argue that
practitioners will consider different models when they are
aware of these differences w.r.t. energy consumption. Hence,
selecting a machine learning model should be a trade-off
analysis encompassing not only accuracy metrics but also
energy metrics.

Random Forest, AdaBoost, and Bagging classifiers were the
most energy greedy algorithms. This is somehow expected
since they all belong to a class of algorithms known as ensem-
bles, which combine the results of training multiple classifiers
(ak.a. weak learners) using slightly different parameters or
training datasets. In other words, the energy consumption
of ensembles is equivalent to training multiple models: it is
affected by the number of weak learners being used internally
and their individual energy consumption.

To make energy metrics available to machine learning
practitioners, we need better and more accessible ways of
measuring energy consumption. As seen in this study, collect-
ing energy consumption is not a trivial task. We need simple
techniques to approximate energy consumption. Although this
is out of the scope of this study, other studies suggest looking
at duration, CPU usage, or the number of floating point
operations [2], [31], [32]. Ideally, metrics could estimate
energy consumption before even training the models — i.e.,
by using static analysis approaches.

The experimental nature of machine learning can also
magnify the energy consumption reported in this paper. Prac-
titioners have to retrain their models several times before
converging to a final model. Previous studies have suggested
this to increase energy consumption by a factor of roughly
2000x: Strubell et al. [2] show that, while training one of their
natural language processing models has an electricity cost of
$5, the electricity cost of performing the full R&D required
to develop that model is estimated to be $9,870. Hence, small
improvements in energy efficiency in the early stages of the
pipeline can lead to large savings in the long run.

Main findings RQ; (Algorithm Energy Consumption
Comparison): Different algorithms yield completely
different energy footprints. The difference goes up to
a 99.49% energy consumption decrease, with KNN
being the most energy-efficient algorithm, and Random
Forest Energy the least energy-efficient one. We ar-
gue that easy-to-use energy metrics are quintessential
when selecting the best model for a machine learning
project.

B. Does modifying the dataset impact the energy efficiency of
Al algorithms? (RQ)>)

Yes, except for KNN, all algorithms yield less energy con-
sumption when we reduce the dimensionality of the dataset.
In other words, there is a positive correlation between the size
of the dataset and the measured energy consumption: using
fewer data leads to more energy efficiency. Improvements go
up to 92% when reducing the number of rows and up to
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numbers of features (second row).

76% when reducing the number of features. Hence, instead
of collecting the biggest amount of data, we must aim for
smaller but meaningful datasets.

Our results demonstrate the importance of adding
data-centric Green Al as a key topic in the research agenda
of Al development. For example, recent work on core set
extraction (i.e., extracting the smallest subset that keeps the
key dataset properties) and dataset distillation have shown
promising results in Al applications [33]-[35]. We argue that
such strategies have a potential on Green Al that has been
overlooked in previous research.

Although this work focuses on the dimensionality of data,
it paves the way to study other properties of the input
data. For example, one can expect that the data types used
when loading the data into memory lead to different energy
footprints when training the model. However, this kind of
control is not fully supported by Al libraries/frameworks. For
example, the widely utilized library adopted for this study,
scikit—-learn, automatically converts all data to floating-
point with 64 bits (as of version 0.24.2). Users have no way
of intervening in this data transformation. It is not yet known
whether using data types with unnecessarily high precision
can lead to unnecessary energy costs. We argue that this is
a missed opportunity in Al libraries. This is amplified if we
consider IoT systems, where small devices are used to collect,
process, and transmit data. Depending on the use case, these
devices may operate with different precision levels — e.g., 16
or 32 bits. Developers of Al libraries ought to reconsider some
design choices, to give back control to their users and enabling
further energy efficiency opportunities.

Based on our results, we foresee potential in studying
data-centric techniques to democratize Green Al. Several Al-
leading organizations are aiming to be carbon-free by 2030.
This requires massive investments in infrastructure and is far
from being a realistic norm for the rest of the AI industry.
For example, previous work on Green Al bring awareness to
the importance of using energy-efficient hardware, datacenters

2000 4000 6000 8000
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in locations with better access to clean energy, etc. [3], [36].
While such measures are important, they might be inaccessible
to most practitioners and organizations that operate on tight
budgets. Our results show that, with very simple techniques
available to any Al practitioner, one can effectively reduce the
carbon footprint of developing Al models.

It is important to note that there is an energy consump-
tion overhead when we manipulate the number of rows and
columns. We did not factor in this overhead as we focus on
studying the impact of the dataset shape and not preprocessing
techniques. This is an important detail since machine learning
techniques such as cross-validation or parameter tuning will
require training the model multiple times with the same pre-
processed data. Nevertheless, assuming that each development
cycle executes model training and data preprocessing exactly
once, we observed an overhead revolving around 5% on
average. Moreover, most machine learning projects already
resort to data reshaping methods for other purposes beyond
energy efficiency. More research is needed to help practitioners
define trade-offs, but our results show evidence that, as a rule
of thumb, row sampling and feature selection should always
be considered.

Another remark relates to the fact that improvements in the
efficiency of Al are being followed by a massive increase
in the usage of Al-based systems — the so-called rebound
effect. This is also referred to in another fields as the Jevons
paradox [37], i.e, there is a correlation between the usage of
natural resources and the improvements in the efficiency of a
given technology. In particular, improvements in the energy
efficiency of Al are often targeted at leveraging more Al
models in contexts where energy resources are prohibitively
scarce — for example, Al-based apps for smartphone devices.
In these contexts, improvements on energy efficiency aim
at delivering more Al systems, failing to reduce the overall
carbon footprint of Al. We argue that our study is less prone
to this rebound effect, as it provides meaningful advice that
can be used by an Al project and lead to immediate savings on
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energy consumption. Nonetheless, we call for more research in

Green Al that investigates the rebound effects in this context.
Main findings RQ2 (Impact of dataset modifications
on energy consumption): Extracting smaller datasets
poses a great opportunity to reduce the energy con-
sumption of our machine learning models. Improve-
ments in energy efficiency go up to 92% when we
reduce the size of the dataset. Our results call for
more research on data-centric techniques to enable
and democratise Green Al and for Al frameworks to
give more control over how data is manipulated.

C. Can we improve the energy efficiency of Al algorithms
through a data-centric approach without compromising their
accuracy? (RQ3)

Yes, one can use data preprocessing techniques to improve
energy efficiency without compromising the accuracy of the
models. When reducing the number of features (I'V3) in the
dataset, the trained models perform the same, in terms of
accuracy, while consuming less energy. In other words, we
prove that using more data does not always mean better
models, while it leads to energy efficiency improvements.

The exception to this rule is KNN, which shows a strong
positive correlation between the Fl-score and the number of
features in the dataset. This observation gets more interesting
if we combine it with the results from R(Q)-, where we observe
that reducing the feature space does not yield any significant
energy improvement. Reducing the number of features not
only does not influence the energy efficiency of KNN, but
also hinders the performance score.

Using SVM did not produce a model with a Fl-score above
0.6, denoting an overall very low accuracy of the generated
model relative to the other algorithms examined. A parameter
tuning strategy to accommodate the imbalance and sparsity
of our data could have yielded models with higher accuracy.
However, we did not delve into optimization strategies (see
Section VI for more details), since we wanted to compare
the energy consumption between different algorithms in a fair
and intuitive way. Hence, the energy improvements observed
for SVM in RQ- require further scrutiny before drawing
generalizable conclusions.

Random Forest consistently yields the best performance.
Despite being the most energy-greedy algorithm, it trained the
most accurate model. Other algorithms, AdaBoost, Bagging
Classifier, and Decision Tree follow close behind, showing
competitive results. Nevertheless, it is not possible to fairly
say which algorithm is the best. Different algorithms may work
better with different problems. Once again, our observations
reiterate that energy metrics provide useful information when
selecting the best machine learning model, and are quintessen-
tial for Al development.

When it comes to the number of data points (I'V3), Ad-
aBoost and Bagging Classifier yield no correlation between
the size of the dataset and F1-score, meaning that the energy
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improvements shown earlier in RQ)2 do not bring any cost in
the performance of the models.

For the remaining algorithms, the results are not as unani-
mous. Random Forest, Decision Tree, and KNN yield a posi-
tive correlation between cardinality and F1-score. This means
that, despite the benefits in energy consumption, reducing the
number of data points might prompt losses in the accuracy of
these models. Nevertheless, this is worth considering because
the models still showcase reasonable performance: with Deci-
sion Tree and Random Forest, F1-score drops less than 0.05
when we use at least 20% of the original dataset. Depending
on the use case, such a drop in F1-score might be appropriate.

Main findings RQs (Trade-offs between Al energy
consumption and accuracy): In the vast majority of
cases, decreasing the number of data points / features
drastically reduces energy consumption, while imply-
ing only a negligible accuracy deterioration (e.g., by
reducing features, Random Forest can achieve a maxi-
mum of 74.81% energy reduction at the cost of only a
0.06% F1-score reduction). However, this observation
does not hold for all algorithms. For example, feature
selection when using KNN has almost no impact on
energy consumption, while considerably reducing its
model performance (with a maximum of 0.92% energy
reduction, associated to a 98.05% F1-score loss).

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our study,
by following the categorization provided by Wholin et al. [38].

A. Conclusion Validity

A threat to conclusion validity in our study could be
constituted by low statistical power of the tests used to answer
our RQs. To mitigate this threat, we systematically collected
and analyzed data by following a process defined a priori. By
considering the combination of factor, treatments, and reruns,
a total of 3.6K data samples were used to answer our RQ.

As a threat to the reliability of measures, unknown tasks run-
ning in the background during the execution of our experiment
may have acted as confounding factors, hence influencing our
energy measurements. To mitigate this threat, prior to the ex-
periment execution, we ensured that only the piece of software
necessary to run the experiment was running and/or able to be
executed. In addition, each experiment was repeated 30 times,
by shuffling the executions of sub-experiments uniformly at
random, to avoid that potential confounding factors could
influence only a specific set of sub-experiments.

B. Internal Validity

A threat to internal validity, related to history, could be
constituted in our experiment by the influence that executing
subsequent runs could have had on our measurements (e.g.,
due to hardware increasing temperature). To mitigate this
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threat, each experimental run was preceded by a 5-second
sleep operation, to allow all runs to be executed under identical
hardware conditions. Similarly, a warm-up operation was
performed to ensure the first run was executed under the same
conditions as the subsequent ones (see Section III-D1).

C. Construct Validity

A mono-method bias may have affected the results of
our study, as we utilized a single metric to measure energy
consumption (DVj, Section III-D2) and calculate algorithm
accuracy (DV3, Section III-D2).

Regarding energy consumption, we do not deem that adopt-
ing only energy consumption as dependent variable constitutes
per se a prominent threat in our experiment. In addition,
utilizing exclusively energy consumption measurements is
a common practice in the field of software energy effi-
ciency [15], [39]-[41]. However, relying on a specific tool
to estimate the energy consumption (namely CodeCarbon),
could have influenced the construct validity of our experiment.
To mitigate this threat, we ensured that the tool was made
available as an open-source project (hence allowing us to
independently scrutinize the appropriateness and correctness
of the implementation), and that the tool relied on a widely
used estimation method provided by a prominent technology
company — as we investigated, CodeCarbon uses the Intel®
Power Gadget® tool under the hood.

Regarding accuracy, we adopted a single metric, namely
the Fl-score. We chose this metrics over other ones, e.g.,
precision, recall, or logarithmic loss, as Fl-score allowed us
to provide a summary and intuitive presentation of the overall
model accuracy via a single, well established, metric. To
further mitigate potential threats related to the adoption of the
Fl-score, during the experiment execution, we also collected
measurements of precision and recall, that are made available
for scrutiny in the replication package of this study.

D. External Validity

A prominent threat to the external validity of our study is
posed by the adoption of a single experimental subject and
a subset of Al algorithms. To mitigate this threat, we chose
our experimental subject and independent variables to be as
representative as possible. Specifically, we selected a common
Al classification problem, namely text classification, selected
a widely utilized peer-reviewed dataset [29], and considered a
total of 6 different algorithms provided in the largely adopted
Python library scikit-learn.

As a further external validity threat, the experimental setup
of this study did not integrate all the life cycle stages of
Al models, as outlined by [42], and was limited to certain
aspects of the model training phase. This outlines the in vitro
nature of our empirical experiment, which focused on studying
data-centric approaches, and disregarded other aspects of Al
model training (e.g., hyperparamether tuning) which would

9https://www.intel.com/content/www/us/en/developer/articles/tool/
power-gadget.html. Accessed 28 January 2022.
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have commonly appeared in an in vivo experimentation. The
narrow focus on energy consumption of data pre-processing
of our study is intentional. More specifically, this research
aimed at providing exploratory insights on the impact that Al
data-centric approaches can have to Al energy consumption,
and not how these approaches can be integrated in practice.
As a result, numerous performance-optimization techniques
common in a typical Al pipeline are excluded from our exper-
iments, e.g., hyperparameter tuning, dimensionality reduction,
and linear separability tests.

Albeit our best efforts, given the discussed threats to ex-
ternal validity, the results presented in this exploratory study
have to be considered only as promising introductory insights,
paving the way for future research on data-centric Green Al.

VII. CONCLUSION AND FUTURE WORK

With the popularization of large-scale datasets and afford-
able computational/storage capabilities, the energy consumed
by Al is experiencing an unprecedented growth, which can
no longer be neglected. With this study, we aim at exploring
Green AI from a novel angle. Specifically, we investigate if
modifying exclusively datasets, rather than the model training
strategies, can optimize Al energy efficiency. To achieve our
goal, we conduct an empirical experiment by considering 6 Al
algorithms, two dataset modification strategies, and a dataset
of over 5K data points.

The results we obtained provide the first empirical evidence
that not only data-centric strategies can be used to optimize
Al energy efficiency, but also that such techniques can lead
to a drastic energy consumption reduction. While Al accuracy
may be negatively impacted by data-centric strategies, we also
observed that in most cases such accuracy loss is negligible.

From a practitioner perspective, our results highlight the
high impact that dataset modifications have on Al energy
efficiency, demonstrating that often “designing for less” while
preprocessing a dataset can drastically reduce the energy
consumed, while not sacrificing accuracy.

For researchers, our results open a new area of inves-
tigation, namely data-centric Green Al, which, by consid-
ering the results documented in this research, demonstrates
very high potential to address the sustainability of Al-based
software-intensive systems.

As future work, we plan to generalize our results by
considering other Al application areas, e.g., image and audio
recognition, and by utilizing additional large-scale datasets.
Furthermore, we intend to investigate how other dataset mod-
ifications (e.g., data representations) may impact Al energy
efficiency and related accuracy. Finally, we aim to conduct
in vivo experiments on data-centric Green Al, in order to
investigate how data-centric techniques can be integrated in
real-world Al pipelines, and how combining data-centric with
other Green Al techniques (e.g., model training strategies) may
impact energy efficiency and accuracy of Al models.
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