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Abstract
Methane (CH4) is one of the major greenhouse gases in our atmosphere driving climate change, responsible for
about one quarter of the warming since pre-industrial times. Anthropogenic sources constitute a significant por-
tion of global methane emissions. A relatively small fraction of anthropogenic point sources contributes a dispro-
portionally large amount to total CH4 emissions. The TROPOspheric Monitoring Instrument (TROPOMI) has been
observing atmospheric total column CH4 concentrations with daily global coverage at a spatial resolution of 5.5×7
km2 since October 2017.
Rapid detection of point source emissions is vital to allow identification and mitigation. However, manual inspec-
tion of the very large TROPOMI dataset is infeasible. In order to automatically detect methane plumes originating
from point sources with an as small as possible delay after measurement, a Convolutional Neural Network (CNN)
has been designed in this study. The CNN consists of 9 layers in total, which was found to be optimal. This CNN
model was trained using data from the vast archive of TROPOMI observations. The training dataset consists of 407
scenes containing a plume, obtained by manual inspection of the TROPOMI data, and over 2000 scenes with no
plumes. The CNN is capable of detecting CH4 plumes originating from point sources, above the detection threshold,
based on single-overpass data. The CNN has learned the generalized features of a CH4 plume signal in TROPOMI
data based on this dataset. Subsequently, an accuracy of 97% was obtained on the test set.
In order to further improve the automated detection, the most difficult to classify scenes were mined after which
the model was further improved using this additional data. Several algorithms were developed to extract additional
metrics (Feature Engineering) from the scenes potentially containing a plume. These metrics were used as input for
a second model, a Fully-connected Neural Network (FcNN) which further separates real plumes and scenes which
look like plumes in the CH4 field but are in fact artefacts. This FcNN correctly classifies 88% of the plumes out of the
scenes flagged by the CNN in the second test set in an automated way.
These two Neural Networks combined correctly identified 86 out of 97 plumes with 29 false detections out of a total
of 17,243 scenes. The Feature Engineering algorithms also provide a plume mask and rough estimates of the source
location, the total emissions and the source rate for each detected plume.
This automated process of plume detection is applied to all available TROPOMI CH4 data of 2020, something which
would be unfeasible to do manually. This analysis provides insight into the spatial and temporal distribution of point
source emissions and provides an estimate on the total amount of CH4 emissions resulting from these point sources
for the year 2020. The detected point source emissions together are estimated to account for 1.82 Tg of CH4 emis-
sions. When extrapolating this, while taking the ratio of detections over valid retrieval scenes into account, we arrive
at an estimate of 17.2 Tg a-1. This is respectively 0.55% and 5.2% of global annual anthropogenic CH4 emissions.
The developed model can also be applied to recent measurements, with the potential to automatically detect a CH4

plume only 20 minutes after the TROPOMI CH4 data becomes available. The plumes which are detected in single
overpass measurements using this approach can be further analysed in order to attribute them to a specific source.
This can be done through further analysis of prior TROPOMI data or by targeting a high resolution satellite instru-
ment (e.g. GHGSat) based on the location of the identified plume.

Key Points
• A Convolutional Neural Network was designed which is capable of detecting CH4 plume-like features by mor-

phology.
• A Fully-connected Neural Network further distinguishes between plumes and artefacts.
• Estimates of source location, total emissions, source rate and a plume mask are automatically generated.
• A processing pipeline is used to automatically detect plumes unsupervised in new - recently measured - TROPOMI

CH4 data, effectively providing global monitoring.
• An inventory was created of all plumes detected in TROPOMI CH4 data for the year 2020. The detected plumes

are estimated to account for 1.82 Tg of CH4 emissions in total.

Keywords
TROPOMI, Methane, CH4, Plume, Super-emitter, Point source emissions, Machine Learning, Convolutional
Neural Network, CNN, Feature Engineering, Fully-connected Neural Network, FcNN
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Nomenclature
Physics Constants

Mai r mean molecular weight of air 28.96×10−3 kg mol−1

MC H4 molecular weight of methane 16.043×10−3 kg mol−1

g gravitational acceleration 9.80665 m s−2

η Avogadro constant 6.02214076×1023 mol−1

RE ar th Radius of the Earth 6.378×106 m

p0 Sea level standard pressure 101,325 Pa = 1013.25 hPa

Neural Network symbols

nH size of the height of the image

nW size of the width of the image

nC number of channels

p padding

s stride

I input image

K Kernel, sometimes referred to as filter

Ψ activation function

b bias

a arbitrary layer in the CNN

CONV convolutional operator

POOL pooling operator

φ pooling function

ŷ prediction of a certain sample

y true value, also referred to as label

J loss function

L cost function

m size of the training dataset

θ model parameters ( (filter)weights+biases )

G backpropagation function

κ Cohen’s Kappa (not to be confused with K )

T P true positive

T N true negative

F P false positive

F N false negative
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Nomenclature v

Other symbols

CH4 methane

CO2 carbon dioxide

CO carbon monoxide

µ mean value of a dataset

σ standard deviation of a dataset

R2 Coefficient of determination

δm a change in the atmospheric mass of a certain greenhouse gas kg

Definitions

a posteriori "from the later"

a priori "from the earlier"

GWP Global Warming Potential , "The time-integrated Radiative Forcing due to a pulse emission of a
given component, relative to a pulse emission of an equal mass of CO2." [1]

RF Radiative Forcing [W m-2] , "The resulting flux imbalance in the radiative budget for the Earth
system, caused by a change δm in the atmospheric mass of a greenhouse gas X." [2]

xch4 atmospheric methane total column dry mixing ratio [ppb] , "The total number of CH4 molecules
in a vertical column above a unit surface divided by the corresponding total number of molecules of
dry air in that column." [3]
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1
Introduction
This report documents a research study performed at The Netherlands Institute for Space Research (SRON) as part
of the TROPOMI CH4 Level 4 team. The Netherlands Institute for Space Research (SRON) is the institute responsible
for the scientific management of the TROPOspheric Monitoring Instrument (TROPOMI) Methane (CH4) product.
This research project was set out by Dr. J.D. Maasakkers and Prof. Dr. I. Aben. The context of this project is the
TROPOMI-GHGSat collaboration, in which SRON takes part. This collaboration is discussed in detail in Section 2.6.

The goal of this research project is to design a machine learning approach to automatically detect Methane (CH4)
plume emissions, originating from point sources, in TROPOMI CH4 Level 2 data with sufficient accuracy. The re-
search questions are stated in Section 3.4.
The context and theoretical background of this research study will be discussed in more detail in the first few chap-
ters.

Figure 1.1: An example of a large methane plume in TROPOMI
measurement data. The arrows indicate the direction and speed of the

wind.

An example of what a large methane plume looks like in
TROPOMI data is shown in Figure 1.1. A plume is char-
acterised by high atmospheric methane concentrations
(ppb, parts per billion) which are transported down-
wind from the location of emission. An example of a
methane plume is already shown here for convenience
and for clarity, before discussing other aspects of the re-
search.

In Chapter 2 the theoretical background on the sci-
entific fields which are part of this study is discussed.
The basics on atmospheric methane are covered and
the influence of methane on global warming is dis-
cussed. Next it is discussed how methane is put into
and taken out of the atmosphere (sources & sinks) and
which part anthropogenic (human) factors have in this.
Next the physical basic principles of measuring atmo-
spheric methane are discussed, with special attention
to how satellites are used for this. The TROPOMI and
also the GHGSat instruments are discussed in more de-
tail, as those are the instruments used in the TROPOMI-
GHGSat project. More details about this collaboration and how the instruments complement each other are dis-
cussed as well.

The context of the research project, the opportunities leading to this project and the relevance are discussed in Chap-
ter 3. This chapter is concluded with the research questions in Section 3.4 which this research project aims to answer.

Chapter 4 elaborates on the Machine Learning (ML) methodology used in this study and why this approach was
selected. It provides a conceptual description on the selected ML methodology, the Convolutional Neural Network
(CNN), and also a more in-depth mathematical description on the different components of a CNN. The performance
evaluation metrics which are later used to infer classification performance are defined here.

Chapter 5 focuses on how the TROPOMI CH4 Level 2 dataproduct can be converted to a suitable format for utilisa-
tion in a ML problem. The different atmospheric parameters included are discussed and the training data which is
used to train the CNN in order to detect CH4 plumes is discussed.

Chapter 6 is about the development of the architecture of the model. First a simple baseline model is made to com-
pare performance results against, then the different CNN models which were designed are discussed and compared
in terms of performance. After a functioning model was created, it is also discussed how further improvements were

1
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realized and how the optimal model was selected.

In addition to the CNN model, several feature engineering algorithms were developed in order to obtain valueable
information about a potential plume and in order to infer whether the potential plume is a real plume or an artefact.
The standardized format to which the TROPOMI data is converted (as discussed in Chapter 5) is key here. Those
feature engineering algorithms are elaborated in Chapter 7. In Chapter 8 it is elaborated how these metrics, result-
ing from those algorithms, are used by a second Neural Network (NN), a Fully-connected Neural Network (FcNN) in
order to further automate the detection process.

Figure 1.2 shows how the different parts of the model are related to one another and in which Chapter those are
described.

Figure 1.2: A schematic overview of the different components of the model which is developed.

The applications of the workflow and data pipeline which is developed during this research project are discussed in
Chapter 9. The main elements here are the applications within the TROPOMI-GHGSat project and an inventory of
detected plumes with high emission rates in the year 2020, which would not have been feasible to perform without
the developed NNs. Based on the detected plumes a rough estimate is made of the total emissions related to these
detected point source emissions.
The report is concluded with a chapter stating the conclusions and opportunities for further research.



2
Theoretical Background

2.1. Methane in the Earth’s atmosphere
Methane (CH4), which is an invisible and odorless gas, is one of the most important greenhouse gasses. After Carbon
dioxide (CO2), methane has the largest contribution to human induced global warming [4]. However the fraction of
the atmosphere consisting of methane molecules is much smaller compared to the fraction of carbon dioxide, the
effect per additional unit of mass of methane is much stronger. Before moving on to the relevance of methane as a
greenhouse gas, the basics of atmospheric methane are covered first.

The Earth’s atmosphere is the layer of air covering our rocky planet. It is the part of the biosphere humanity lives in
and most transportation phenomena of the natural planet occur in, such as weather. 99.999% of the particles (and
thus mass) of the atmosphere are located below an altitude of 80 km above sea level [2]. Relative to the radius of the
Earth (6378 km) this is just a very tiny layer. There is no upper boundary of the atmosphere, the air content decreases
further with altitude until it levels with the empty space around the Earth in outer space.
The mean pressure exerted by the Earth’s atmosphere at sea-level is 1.013 ·105 Pa, which is equal to 1013 hPa or 1
atm (atmosphere). The global mean pressure at the surface of Earth (which is on average a few kilometers above sea
level) is 984 hPa. From this the total mass of the atmosphere over the entire globe can be computed to be roughly
5.2 ·1018 kg [2].

Figure 2.1: General model of the pressure and temperature profiles
versus altitude in the exponential atmosphere model (latitude of 30°N,

March). [2]

The atmospheric pressure decreases exponentially with
altitude (US standard atmospheric model, [5]), this ex-
plains why the mass of the atmosphere is concentrated
at the bottom. Figure 2.1 displays this relation. Three
main "zones" within the atmosphere can be distin-
guished when we consider the domain below 80 km al-
titude, based on the temperature-regimes. The tem-
perature does not decrease exponentially with altitude,
but the gradient of the atmospheric temperature inverts
twice with respect to altitude within the domain be-
low 80 km. This flipping gradient causes the layers to
be separate, mixing does not occur between the sepa-
rate layers as easily as it does within a layer. This re-
sults in three altitude-domains called the Troposphere,
the Stratosphere and the Mesosphere, their rough alti-
tude ranges are indicated in Figure 2.1. The "bound-
aries" where the temperature gradient inverts are called
the boundary layers, those are the Tropopause and the
Stratopause.
Most of the atmospheric methane is located in the tro-
poshere, this will be discussed in more detail in the following sections. This is a relevant property for remote sensing
as we will see in Figure 2.8 in Section 2.4.1.

The gases which are most abundant in the atmosphere are N2, O2, Ar and H2O. In dry air the mixing ratios of these
abundant gases are 0.78, 0.21 and 0.0093 respectively. Large fluctuations in the amount of water vapor (H2O) are
present in the atmosphere. The dry mixing ratio denotes which fraction of the total amount of molecules in the
atmosphere (excluding H2O) is of the particular gas (i.e. 21% of the atmosphere is oxygen (O2)). The mixing ratio
remains constant when variable atmospheric properties such as temperature or pressure change, this makes it a ro-
bust measure of the gas-contents in the atmosphere. [2]. This principle is illustrated in Figure 2.9a.

Methane is one of the so-called trace gasses present in the Earth’s atmosphere. The mixing ratio of methane in the
atmosphere is roughly speaking 1.8 ·10−6 which is equivalent to 1.8 ppm (parts per million) or 1800 ppb (parts per
billion) [6] [2]. The concentration of methane in the atmosphere is usually denoted as parts per billion in literature.

3



2.2. The relevance of Methane as a greenhouse gas 4

To be more exact, the average mixing ratio of methane was 1803.2±2 ppb in 2011, which is 250.4% of the level before
the industrial era [4] (750 ppb is most commonly used as the baseline). The methane content in the atmosphere has
increased enormously since the beginning of the industrial era.
Palaeoclimatic records are a source for methane contents in the earlier ages of the Earth. Ice cores go back 740 kyr,
deep oceanic sediments go back several million years. The air trapped in those records has been thoroughly anal-
ysed by experts to find the atmospheric methane contents during those ages. The earth has gone through several
glacial-interglacial cycles the last half a million years, about 20% of these cycles is spent in the warm interglacial part.
Currently we are in an interglacial period. [7]

Methane levels have fluctuated between about 400 ppb and 700 ppb during glacial and inter-glacial periods [8]. At
pre-industrial times the methane content in the atmosphere was 720 ppb [6]. In 2011 the atmospheric methane
concentration was around 1800 ppb. Now, in 2021 the average concentration is getting closer to 1900 already in the
northern hemisphere.
The mean molecular weight of air (Mai r ) is 28.96·10−3 kg mol-1 [2]. As stated earlier, the total mass of the atmosphere
is 5.2·1018 kg. Taking into account the mixing ratio of methane (xch4) in the Earth’s atmosphere (approximately 1800
ppb) and the molecular weight of methane (MC H4 ) is 16.043 ·10−3 kg mol-1, an estimate of the total mass of methane
in the atmosphere can be computed. The total mass of methane in the atmosphere is about 5.2 ·1012 kg, 5.2 Gt, 5200
Mt or 5200 Tg.
This value helps to put in perspective yearly methane emissions in terms of magnitude compared to the current
composition.

2.2. The relevance of Methane as a greenhouse gas

Figure 2.2: The atmospheric absorption bands of CH4 and the total
atmosphere as a whole. The atmospheric window is clearly indicated in

blue.1

Methane is a well known greenhouse gas, after CO2

it has the largest contribution to global warming.
Over a period of 20 years (1 kg of) CH4 has a ≈ 84
times higher Global Warming Potential (GWP) (more
on GWP later in this section) compared to CO2.
[4]

Greenhouse gasses are gasses that absorb terrestrial ra-
diation emitted by the Earth (ranging from 5 to 50 µm).
Without these gasses the radiation would dissipate to
space, but since the gasses are present the radiation is
being trapped in the Earth system. Figure 2.2 shows
the radiation emitted by the sun and the Earth (with
the lines indicating the theoretical black bodies radia-
tion for the best fitting temperature) and the absorption
of the atmosphere at particular wavelengths by spe-
cific greenhouse gases. The absorption wavelengths are
schematised quite roughly in this figure. The shown
CH4 absorption feature at about 8 µm is the major ab-
sorption wavelength, but there are several. Methane
also has absorption features at 1.65 µm and 2.3 µm [6]
(the absorption feature at 2.3 µm is also visible in Figure
2.2). Those two are in the near-infrared (between visi-
ble and infrared), which means they can be measured
quite well by several instruments as will be discussed in
Section 2.4.1. CH4 absorbs radiation in these particular wavelengths because only this specific radiation can be used
by the molecule to increase the internal energy level since this is a quantized process [2].

The most important absorption band however is the band at about 8 µm. This band is within the atmospheric win-
dow, which ranges roughly speaking from 8 to 13 µm. Radiation from the surface of the Earth in this wavelength can
escape the atmosphere relatively easily, which is very important for the temperature balance of the Earth’s surface
[2]. Figure 2.2 shows the atmospheric window and the CH4 absorption band at around 8 µm.

While CO2 is present in much larger quantities and has a higher radiative forcing in total compared to methane
(compared to pre-industrial times), CH4 is also a very important greenhouse gas because of the absorption band

1https://commons.wikimedia.org/wiki/File:Atmospheric_Transmission.png last access: 19-05-2020

https://commons.wikimedia.org/wiki/File:Atmospheric_Transmission.png
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within the atmospheric window. The absorption bands of CO2 are almost entirely opaque already, which means
simply speaking, an increase in atmospheric CO2 content does less incremental damage than an increase in CH4

(in the atmospheric window) because additional methane has to potential to block a yet "open" part of the atmo-
spheric window. Of course this is overly simplified, and both CH4 and CO2 are also part of other chemical reactions
that influence the greenhouse effect. But still the atmospheric window is one of the reasons CH4 is an important
greenhouse gas.

2.2.1. Radiative forcing of atmospheric methane
An increase in greenhouse gas concentration leads to a radiative perturbation of the Earth system which leads to an
initial warming. This effect is refered to as Radiative Forcing (RF) in literature. A General circulation model (GCM)
can be used to estimate the effect of changes in the atmospheric composition to the Earth’s atmosphere system,
based on a greenhouse effect model. However these models can be quite complex, and consist of different kinds
of positive and negative feedback loops, almost all of them show a linear relation between changes in the surface
temperature and initial RF [2].

The Radiative Forcing [W m-2] is defined as: The resulting flux imbalance in the radiative budget for the Earth sys-
tem, caused by a change δm in the atmospheric mass of a certain greenhouse gas. [2]

By using a GCM with radiative forcing equilibrium, an addition of δm of a certain greenhouse gas leads to more
absorption of the outgoing radiation, which leads to a higher temperature due to the addition of the given amount
of mass of the greenhouse gas. A more standardised metric of the radiative forcing is the Global Warming Potential
(GWP), this is the RF resulting from an addition of 1 kg of a certain greenhouse gas injected into the atmosphere,
relative to 1 kg CO2. [2]
In Chapter 8 of the fifth Assessment Report by the IPCC [1], the Global Warming Potential (GWP) is defined as: "The
time-integrated Radiative Forcing due to a pulse emission of a given component, relative to a pulse emission of an
equal mass of CO2".

GHG Atmospheric lifetime* [yr] GWP** [20 yr] GWP** [100 yr]

CO2 ≈ 100−1000∗∗∗ 1 1
CH4 12.4 ±1.4 84-86 28-34

Table 2.1: The Global Warming Potential of CH4 by the IPCC’s Fifth Assessment Report
Chapter 8 [1].

* The Perturbation lifetime is used in these metrics. [1]
** The ranges indicate whether or not climate-carbon feedback is taken into account. [1]

*** It should be noted that the lifetime of CO2 is hugely simplified here, this is explained in
the text below. [9] [10]

Table 2.1 shows that the effect of an emis-
sion of 1 kg CH4 is very large compared to
1 kg of CO2. In the medium to short term
of 20 years, 1 kg of emitted CH4 leads to
84-86 times as much radiative forcing as
1 kg of CO2 [4].
It should be noted that the lifetime of
CO2 is simplified in Table 2.1. In real-
ity CO2 is mostly absorbed by the surface
ocean and after 1000 years only 60 to 85%
of the original emissions are absorbed,
although much uncertainty remains about this as of yet ([9] TFE7 & TFE7-Fig1). Several different processes exist
which remove CO2 from the atmosphere, with timescales ranging from years to decades to centuries and even mil-
lennia. CO2 removal from the atmosphere is a very complex process. A rough estimate about the short term CO2

absorption via land uptake and ocean invasion is a removal of about 55% in 100 years ([10] Box 6.1 Fig 1). The main
difficulty with removing CO2 from the atmosphere is that it has to go back into rocks eventually, which is a very slow
process.
In order to express the relative lifetime of atmospheric CH4 to atmoshperic CO2 (which is used as a sort of standard
unit to compare other GHG to) the value presented in Table 2.1 can be used an a very rough assumption. It is clear
that methane has a lower atmospheric residence time due to the reaction with the OH radical in the atmosphere.
[10] [9]
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(a) Radiative forcing budget. From [1]
(b) Radiative forcing over time. From [1]

Figure 2.3: Change in radiative forcing between 1750 and 2011. From the IPCC’s Assessment Report 5 (2014) [1]

Figure 2.3a shows the radiative forcing in 2011 compared to 1750 (pre-industrial times) as a baseline of 0. It is clearly
visible that CO2 is the major contributor to the anthropogenic forcing, CH4 is the largest contributor of the other
well-mixed greenhouse gases.
Figure 2.3b shows the development of the different forcing factors over time. It is visible that the anthropogenic GHG
emissions increase heavily and that the aerosols which are emitted by anthropogenic activities do have a negative
effect on the radiative forcing which is smaller.

It can be concluded from the IPCC report AR5 [1], from Table 2.1 and Figure 2.3 that anthropogenic CH4 emission is
one of the largest contributing factors to the radiative forcing budget of the Earth system, and thus one of the major
accelerators of climate change. Measured since pre-industrial times, the emission based radiative forcing of CH4 is
0.97 W m-2 (including effects on stratospheric water vapor and tropospheric ozone). Which is about 60% of that of
CO2 [9]. The relatively short lifetime and high GWP shown in Table 2.1 indicate that less methane emission on the
short term could help lower radiative forcing, and thus global warming, in the following decades. The radiative forc-
ing metric was introduced in its current form in 2007, which was thereafter used in the IPCC reports, as described in
Ramaswamy et al. 2019. [11]

Figure 2.4: Global mean surface temperature increase following a one
year pulse of carbon dioxide (black) or methane (red) in year 0 equal to

the annual global anthropogenic emission of each based on the year
2017. Source: [12] and 2

Figures 2.3a and 2.3b show the effects of CO2 and CH4
since the beginning of the industrial revolution (1750).
The effect of current annual emissions shows a different
relative importance.
When related to the actual annual anthropogenic emis-
sions of both CH4 and CO2 while also taking into ac-
count their atmospheric lifetimes and GWP their rel-
ative effects on temperature increase on the short
term are much closer as shown in Figure 2.4 . This
figure shows that while the total mass of antrho-
pogenic methane emissions are only roughly 10% of
carbon dioxide emissions, the effects on short- to
medium-term warming are similar. Carbon dioxide
is a larger problem on the long-term, but on the
short-term annual CH4 emissions are just as press-
ing.

Methane emissions originate from a wide variety of
sources as will be discussed in Section 2.3.3. Detecting
the few point-source super-emitters early on would al-
low for quick action to shut down those emitters [6]. This has a large potential to reduce the total mass of methane
emitted, which scales almost linear with the radiative forcing as was described before. More on this in Section 2.3.4.

2https://www.energypolicy.columbia.edu/research/commentary/nowhere-hide-implications-policy-industry-and-finance-satellite-based-methane-detection
last access: 12-01-2021

https://www.energypolicy.columbia.edu/research/commentary/nowhere-hide-implications-policy-industry-and-finance-satellite-based-methane-detection
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2.3. The global methane budget
On the human timescale the Earth can be assumed to be a closed system, and thus all particles circulating trough
different reservoirs of the Earth as well. Out-gassing of the upper layers of the atmosphere to space is a very small
flux compared to the other fluxes taking place between different spheres of the Earth system. The total sum of all
fluxes into and out of different spheres, also taking into account chemical reactions, has to add up to 0. This analogy
allows for budgets to be drafted, this is the common approach to quantify emissions in climate science and allows
for linking results from different disciplines of science together.

2.3.1. Sources and sinks
When looking at the methane cycle from the atmosphere perspective, sources are regions and categories which con-
tribute a net emission of methane into the atmosphere, resulting in an influx (positive flux) into the atmosphere.
Whereas sinks are regions or categories which take methane from the atmosphere, resulting in an outflux (nega-
tive flux) of atmospheric methane. If this influx out-weights the outflux of atmospheric methane, the total amount
of methane in the atmosphere will increase. The atmosphere can be seen as a buffer zone which absorbs all the
methane emitted by the sources and provides the methane used by the sinks. A global overview of categories of
sources and sinks will be given below.

The two main methods used in methane quantification are top-down and bottom-up estimations of the CH4 sources
and sinks. In the paper Three decades of global methane sources and sinks by Kirschke et al. [13] the writers describe
the kind of research they have performed into the changes in the methane sources and sinks over the 30 years be-
tween 1980 and 2010.

Both sources and sinks occur naturally and can also be induced by humanity, either regularly (mostly on well known
in advance as a by-product of human activities, such as flaring) or accidentally (i.e. as a blowout at a natural gas pro-
cessing facility). These different kinds of sources and sinks will be described in more detail in the following sections.

Figure 2.5: The sources, sinks, atmospheric mixing ratios and growth rate of Methane over the decades between 1980 and 2010. From [13]

An overview was presented by Kirschke et al. [13] which relates the bottom-up and top-down methods to the change
in atmospheric methane mixing ratios and growth rate from 1980 to 2010. Figure 2.5 is a very powerful visualization,
since it provides a total overview of the relation between the sources, sinks and imbalance between those and the
effect the imbalance has on the atmosphere. Small changes in the larger sources and sinks do make up the growth
of the methane concentration in the atmosphere.
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The general categories of sources and sinks shown in Table 2.2 are identified by Kirschke et al.

Both Figure 2.5 and Table 2.2 show the relative magnitude of the largest sources and sinks of atmospheric methane.
Both show that the sum of anthropogenic sources is larger than the sum of natural sources. Fossil fuels has a large
contribution to the total of sources, roughly speaking 1/6. The largest sink by far is the chemical reaction with the
radical OH in the Troposphere.

Top level Source or Sink Lower level Source or Sink Flux [Tg CH4 yr-1] uncertainty range

Natural sources 283 [179-484]
Natural wetlands 196 [142-284]
Other natural sources* 87 [37-200]

Anthropogenic sources 333 [273-409]
Agriculture and waste 204 [180-241]
Biomass burning 33 [24-45]
Fossil fuels 96 [77-123]

Sinks 606 [514-785]
Soils 30 [9-47]
Tropospheric OH 510 [483-738]
other chemical loss 66 [13-84]

imbalance 10 [-4 - 19]

Table 2.2: The CH4 sources and sinks as given by [13]. The fluxes in this table are based on the yearly averages between 2000 and 2010 (the
average was taken between top-down and bottom-up, or interpolated due to missing data).

However this data is slightly outdated (2013, just like IPCC AR5) and the fluxes vary slightly from year to year, this does give a good view of the
order of magnitude of the relative magnitude of the different contributing categories, which was the intention of this table. Do note this data

should not be interpreted as exact values
*Other natural sources include: Fresh water (lakes and rivers), Wild animals, Wildfires, Termites, Geological (incl. oceans), Hydrates and

Permafrost (excl. lakes and wetlands)

Figure 2.6: A schematic overview of the global cycle of CH4 indicating major sources, sinks and reservoirs. From the fifth Assessment Report by
the IPCC [10]
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Another schematic overview of the global cycle of CH4 is presented in the fifth Assessment Report by the IPCC. This
inventory shows a comparable fossil fuel source, but a higher yearly total atmospheric influx. Both inventories show
quite good agreement on the fossil fuel related sources of CH4. The fossil fuel source will be investigated in more
detail with a more recent source [14] in the following sections.
The fifth Assessment Report [10] was published in 2013, in the same year as Kirschke et al. [13], but uses a slightly
different approach and is based on a slightly different time period, but the conclusions and magnitudes of the fluxes
agree quite well. In late 2021 the sixth Assessment Report of the IPCC will be published, with an updated inventory
of the global CH4 sources and sinks, combining all the research performed in the past few years to form an as strong
consensus as possible.

In the following subsections the different types of sources (& natural sinks) will be discussed in more detail.

2.3.2. Natural sources and sinks
In this section the naturally occurring sources and sinks will be described to get a better understanding of the
methane fluxes taking place in the Earth system, and how these relate to the atmospheric methane concentration.
Some of the major sources of atmospheric methane are natural. Most of the sinks can also be seen as natural, since
little to no human interaction takes place to influence the sinks. The amount of OH and CH4 in the atmosphere
heavily influence the rate in which CH4 is reacting with OH (more on this later in this section), it can be argued a
human effect on this is present, but this is a passive relation.
From the natural sources wetlands are by far the largest contributor, but uncertainties in the exact relative magni-
tudes of the sources and sinks have been found to be present in earlier inventories (such as Kirschke et al. (2013))
in more recent years [6]. In newer inventories estimates for wetlands are better. The influence of wetlands is visible
in satellite data (SCIAMACHY and GOSAT) data, where the northern part of South America and central Africa clearly
stand out with their known abundance of wetlands [15]. Other natural sources such as fresh water, termites, biomass
burning and geological sources also emit quite large fluxes, but all of those are dwarfed by wetlands.

The atmospheric methane sinks consist of the categories soils and loss due to chemical reactions. The soils can be
influenced by human activity and land-use, but this flux is small compared to chemical reactions taking place in the
atmosphere. Most reactions take place in the troposphere, since most of the particles of the atmosphere are located
there (Section 2.1). Another reason the troposphere is of most importance is because gases are usually emitted at the
surface [2]. About 10% of the loss occurs in the stratosphere, the other 90% in the troposphere. The major chemical
reaction taking place in the troposphere is the reaction of CH4 with OH radicals. This reaction is listed as a sink of
CH4, but this does not mean the methane simply disappears, the atoms continue to be present in the atmosphere in
the form of CH3 and H2 and ultimately CO2.
This is different from when for example CO2 is used by trees for photo-synthesis, this comes closer to the actual
"consumption and long-term storage", or removal of the greenhouse gas. Methane is not actually removed from the
atmosphere, just converted through chemical reactions.

When grouped together the natural sources provide about 40-45% of the total source of CH4, the other 60-55% is due
to anthropogenic sources. [13]
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2.3.3. Anthropogenic sources
Anthropogenic emissions are relatively largest in the rich and developed western world (North America + Europe)
and China together with the fossil-fuel producing countries of central Asia and eastern Europe [13]. This is one of the
reasons why the atmospheric concentration of CH4 is higher in the northern hemisphere compared to the southern
hemisphere. Agriculture and waste emissions are highest in emerging economies, fossil fuel emissions are highest
in richer, more developed countries.

Agriculture and waste are the largest contributing categories, emissions related to these categories are quite stable
and constant, they do not heavily fluctuate over the years, but they do within a year because of the periodic nature
of agriculture (due to the harvesting season et cetera). The main sources within the category of agriculture are rice
cultivation and cattle related. The combustion of fossil fuels emits a relatively small fraction of total CH4 emissions
but more of other greenhouse gasses. This is why the fossil fuel related part is relatively small in the total global yearly
CH4 emissions budget (Figure 2.2). When natural gas (of which the main component is methane) is burned before
release into the atmosphere, or flared, with a high combustion efficiency only little CH4 is emitted, but instead more
CO2.

Of all types of anthropogenic CH4 emissions, emissions related to fossil fuel exploitation are the most interesting for
mitigation. However the Agriculture and waste category is larger in the inventory of [13], emissions within this cat-
egory are way more difficult and less desirable to reduce. This category is way more spatially scattered, and mostly
consists of area sources instead of point-sources. This means the emissions per area are much lower, but the area
over which they occur is much larger.
Emissions related to fossil fuel exploitation are the opposite, usually large emissions arise from small areas or even
point-sources. Figure 2.7 shows an overview of different kinds of methane emissions related to fossil fuel exploita-
tion, the stream of the production process, and related losses for that phase, are indicated in the figure for the three
main categories of fossil fuels. In the study performed by Scarpelli et al. [14] the oil&gas related methane emissions
were subdivided into those categories in a resolution of 0.1° by 0.1°, similar to the Emission Database for Global At-
mospheric Research (EDGAR) bottom-up emissions inventory, but more detailed. The authors of the paper created
the gridded overview, but the data was obtained from the UNFCCC reported emission inventory. The relative sizes
of the categories oil, gas and coal are shows in Table 2.3 (from [14]). These fluxes can be seen in the bigger context by
comparing it to the category Fossil fuels in the Anthropogenic sources in Table 2.2, which is based on [13], (note that
the data does not describe the same year, meaning it is only suitable as a rough estimation).

Figure 2.7: A schematisation of the different categories of methane emissions related to fossil fuel exploitation. From [14]
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Sector Subsector CH4 emission [Tg yr-1]

Oil 41.5
Exploration 1.4
Production (leakage) 17.8
Production (venting) 21.6
Production (flaring) 0.5
Refining 0.1
Transport (leakage) < 0.1
Transport (venting) < 0.1

Gas 24.4
Exploration < 0.1
Production (leakage) 7.4
Production (flaring) < 0.1
Processing (leakage) 2.3
Processing (flaring) 0.1
Transmission (leakage) 7.1
Transmission (venting) 0.6
Storage (leakage) 1.0
Distribution (leakage) 5.7

Coal 31.3

total 97.2

Table 2.3: The global fossil fuel related CH4 emissions for 2016 for the main
categories of fossil fuels (no uncertainty ranges were provided in the

source). From [14]

Leakage is self-explanatory, but can be very dif-
ferent for different processes in oil&gas exploita-
tion and for different activities along the pro-
duction stream. Flaring is a process where ex-
cess gas, or unwanted gas is burned off to get
rid of it [16]. Venting is the process where gas
is released without burning it, this has signifi-
cantly stronger negative effects compared to emis-
sions from burning gas. Fracking is the pro-
cess where hydraulic pressure is used to force
open cracks and fissures in the ground in or-
der to extract oil or gas. This method has
been performed increasingly since 2005 in the
United States, and due to the uncontrolled and
open nature of the exploitation process it is re-
lated with high additional emissions such as leak-
age. For example, a large increase in emis-
sions has been observed in Permian Basin, the
largest oil&gas production basin in the United
States, likely due to fracking and a relatively
high ratio of flaring and venting compared to
other basins and because of the focus on oil.
[16]

Table 2.3 shows which parts of the production pro-
cesses of oil&gas production shown in Figure 2.7 re-
sult in most CH4 emissions. For oil the largest emis-
sions occur during production, for natural gas extraction this is more evenly spread across the production process
and for coal emissions are mostly related to the mining activities, so also on the production site. When searching for
point-sources related to fossil fuel production this is valueable information to know in which parts of the production
stream one might expect an emission event in the future.

Jacob et al. [6] state that within the anthropogenic fossil fuel related emissions, a small fraction of the point-sources
emits disproportionally large volumes of methane. These few large point-sources lead to the majority of emitted
methane [6]. This was also the result of a study by Zavala-Araiza et al. [17], which will be discussed more in the next
section. Because of the disproportionally large contribution of the few largest events it is worthwhile to investigate
these point-source super-emitters in more detail. Adressing methane point-soures is also a top-priority in the EU
methane strategy, released by the European Commission in October 2020 [18], this is discussed in more detail in
Section 3.3.1.

2.3.4. Super-emitter events
Jacob et al. [6] found that the top 1% of the point source emissions listed in the Greenhouse Gas Reporting Program
(GHGRP) in 2012 contributed 29% of the total point source emissions in the US of the GHGRP inventory. This sup-
ports the assumption that the few largest point-source leaks contribute a dis-proportionally large amount of the total
methane emissions. Such super-emitters can fall either under the category of fossil fuels or agriculture and waste,
depending on what the source is. In the 2012 inventory the super emitters were part of the categories waste, coal
mining and natural gas processing.

Zavala-Araiza et al. [17] performed research specifically into the topic of the classification of super-emitters. Natural
gas is in essence a cleaner alternative to conventional fossil fuels when combusted properly, but when the gas itself
is released into the atmosphere this advantage is reduced or even removed. extreme CH4 emissions events which
occur accidental during processing in oil&gas facilities are usually not quantified and remain unreported to invento-
ries such as EDGAR, and the responsible company is not held accountable, especially when the facilities are located
at a remote area [19].
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Recently two very large super emitters were identified early with the new TROPOMI instrument. One was a gas well
blowout in Ohio in Februari / March 2018 (≈ 60 kt) Pandey et al. [19]. The other was a leak at a gas compressor station
in Turkmenistan (≈ 142 kt) [20] which was detected by GHGSat. Another well known event was the Alison Canyon
gas leak in the fall and winter of 2015 (≈ 97 kt). The emission amounts are quite significant on a global scale. At
the time of writing another paper is in review by scientists from SRON and other authors about a blowout event in
Louisiana. [21]
These events and their emissions metrics are summarized in Table 2.4.

Event total CH4 [kt] duration peak rate [t hr-1] source

Alison Canyon ≈ 97 4 months ≈ 60 [20], [22], [23]
Turkmenistan 142±34 11 months* 43.3±12.0 [20]
Ohio blowout 60±15 20 days 120±32 [19]
Louisiana blowout 43 (21−63) 38 days 101 (49−127) [21]

Table 2.4: A non-exhaustive overview of some of the super-emitter point-source events in recent years.
* 11 months is the duration observed by GHGSat, corresponding to the emitted amount of CH4 listed here. In TROPOMI data the source can be

found from November 2017 onwards (1.5 years), which could mean it was active even before was TROPOMI launched. Prof. Dr. Aben noted a
signal might even have been present in SCIA data already.

Rough indication of order of magnitude of super-emitter events compared to global annual CH4 emissions

In order to be able to compare these emissions to the tables presented before (Table 2.2 & 2.3) describing the annual
global fossil fuel CH4 emissions, the values in the table can be converted as 1 Teragram [Tg] = 1000 Kiloton [kt].
If we compare these super-emitter events to the total global 2016 fossil fuel emissions from Table 2.3 (97.2 Tg) we can
conclude, for illustrative purposes only, that such a single super emitter event (assumed average of 100 kt) is roughly
responsible for about 0.1 % of the global annual fossil fuel related CH4 emissions, to indicate the order of magnitude
of such an event.

These are the kind of super-emitters that contribute a disproportionally large amount of the anthropogenic methane
emissions into the atmosphere. The anthropogenic CH4 emission can be lowered tremendously if such incidents in
remote areas could be identified rapidly for mitigation purposes [6]. The second entry in the table above was de-
tected using satellite measurements of atmospheric methane contents (by GHGSat, accidentally when inspecting
nearby mud-volcanoes), the first and third event listed were discovered from the ground.

In the next section the different methods to measure atmospheric methane will be discussed.

2.4. Measuring atmospheric methane
Atmospheric concentrations of methane can either be measured using using in-situ measurements of air samples or
by remote sensing techniques. Remote sensing techniques are most commonly applied, since in-situ measurements
only provide insight into local concentrations.
The other option is remote sensing, this is different from direct measurements as the entire CH4 column is measured,
either from an aircraft, from a satellite or from a ground based instrument. [13]. Regional mapping campaigns such
as AVIRIS-NG use an aircraft to inspect regions, like oil&gas production areas. Drones are also used for more local
and small scale inspections.
For methane two major ground-based networks exist, these are the Total Carbon Column Observing Network TC-
CON3 and Network for the Detection of Atmospheric Composition Change NDACC4. Both networks are affiliated
to one another. TCCON consists of about 30 ground-based Fourier Transform Spectrometers, which take measure-
ments in the near-infrared spectral region, located all over the world. NDACC is a network of more than 70 ground
based station which performs a lot of different measurements, including atmospheric trace gasses. Those networks
are used to verify the measurements of (new) satellites, and therefore also play and important role in satellite remote
sensing. [15]

3https://tccondata.org/ last access: 24-06-2020
4http://www.ndaccdemo.org/about last access: 24-06-2020

https://tccondata.org/
http://www.ndaccdemo.org/about
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2.4.1. The physical basic principles

Figure 2.8: The general sensitivity of
Short-wave infrared (SWIR) and Thermal

infrared (TIR) instruments versus
atmospheric pressure. From [6]

In Section 2.2 the absorption bands of methane (1.65 µm, 2.3 µm and
8 µm) were already discussed, as well as their relation to the atmo-
spheric window and global warming. However these absorption bands
are troublesome for the thermal balance of the Earth system in terms
of global warming since these cause the gasses to absorb terrestrial ra-
diation, they can also be used in order to detect the presence of
the gas using remote sensing, or more specifically, absorption spec-
troscopy.

A dip in the measured backscattered solar radiation by the Earth’s sur-
face at the wavelength of the absorption bands of methane can in-
dicate the presence of enhanced quantities of methane in the Earth’s
atmosphere (Figure 2.9b. This is the fundamental principle which
makes remote sensing of atmospheric tracegasses such as methane possi-
ble.

The 1.65 µm and 2.3 µm absorptionbands are within the SWIR domain, the
absorptionband at wavelength 8 µm is within the TIR domain of the electro-
magnetic spectrum. Both require different measurement techniques to be de-
tected.

SWIR instruments detect solar radiation which is backscattered by the Earth
and the Earth’s atmosphere. TIR instruments measure the re-emitted radiation
by the atmosphere. The sensitivity profiles versus atmospheric pressure (and
thus altitude) is shown in Figure 2.8. The figure shows that if one wants to measure the methane content in the
troposphere (Figure 2.1), then SWIR is the better option for satellite based observations since TIR cannot measure
accurately extending to the surface.

(a) An illustration of the advantages of using the dry-air mole fraction given the
sensitivity of the quantity to sources and sinks, but an indifference to high- and

low-pressure zones (surface pressure) and surface topography. This example
shows XCO2, but the principle is similar for XCH4. [3]

(b) The total column mixing ratio principle
visualized. Source: 5

Figure 2.9: The principles of atmospheric absorption spectroscopy and the unit in which atmospheric
concentrations are expressed illustrated.

The troposphere is
of most interest since
the majority of the
mass of the atmo-
sphere is located within
the troposphere and
emissions are usu-
ally located at the
surface. A com-
bined TIR measure-
ment however is very
useful to deduct a
vertical profile from
a SWIR measurement.
For SWIR instruments
it is important to
pass over a given lo-
cation at the same
local solar time, to
ensure consistency in
illumination and view-
ing geometry conditions. This ensures measurements at different moments in time are inter-comparable. This can
be achieved by launching the satellite carrying the instrument in a polar sun-synchronous low Earth orbit. [6]

An atmospheric trace gas concentration obtained by satellite remote sensing is most often expressed as "total col-
umn dry air atmospheric mixing ratio". It takes the total air column into account, from the surface all the way up to
where the pressure equalizes with outer space at multiple hundreds of kilometers above the Earth’s surface (Figure
2.9b). The advantage of this expression for the methane content is that it is insensitive to differences in surface alti-

4https://commons.wikimedia.org/wiki/File:Artist_rendition_of_the_CO2_column_that_OCO-2_will_see.jpg last access: 03-
02-2021

https://commons.wikimedia.org/wiki/File:Artist_rendition_of_the_CO2_column_that_OCO-2_will_see.jpg
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tude and high and low atmospheric pressure zones (Figure 2.9a). In other words: The dry-air mole fraction of CH4 is
defined as "The total number of CH4 molecules in a vertical column above a unit surface divided by the correspond-
ing total number of molecules of dry air in that column." [3]. The air column is retrieved from the total number of
O2 molecules. The unit of the atmospheric mixing ratio is parts per billion, or ppb.

An important detail to note is that satellite absorption spectroscopy instruments measure concentrations, not emis-
sions. The background concentration is always present, which makes it difficult to isolate emissions. This makes
CH4 emission detection more difficult than NO2. Furthermore concentrations resulting from emissions mix with
surrounding air volumes with lower a concentration, which means emission plumes do not just linger in the at-
mosphere after emission, but diffuse which spatially equalizes the local enhanced concentrations over time. The
mechanisms which drives plume dissipation is turbulent diffusion. [24]

2.4.2. Satellite remote sensing
The only viable method to provide global coverage in a reasonable temporal scale is satellite remote sensing, there-
fore this is the most commonly applied remote sensing technique. For methane, two techniques exist, which are
based on detecting methane in either the SWIR or TIR absorptionband.

Multiple instruments capable of measuring the radiation spectrum at the wavelengths of the absorption bands of
methane are currently in orbit. Jacob et al. [6] provided an overview of the history and near future of atmospheric
methane measurement techonologies with satellite instruments in 2016. The authors summarized this in a table
with all instruments and their details. From this a few categories and trends can be identified. Full details can be
found in [6] Table 1.
Measurements of methane in the atmosphere began in 1996 with a TIR instrument (IMG). The first SWIR instrument
was operated in 2003 (SCIAMACHY). Most earlier SWIR instruments measured in the 1.65 µm band, since this allows
also for CO2 detection. GOSAT was another important instrument in the context of atmospheric CH4 detection. It
was launched in 2009 and has been monitoring atmospheric CO2 and CH4 concentrations since then.

As technology improves with time, trends in the decreases of the pixel size and return time and an increase in the
global coverage can be identified. Most instruments focused on global coverage, in line with the desire from the sci-
entific community in the past 15-10 years to be able to create accurate global inventories of atmospheric methane.
[8]

In 2017 the TROPOMI was launched, currently the state of the art instrument for performing global detections of
methane. It measures methane in the 2.3 µm band. TROPOMI provides daily coverage of the entire Earth, and thus
has a repeat time of 1 day. The pixel size is 7× 5.5 km2 in nadir, which is a much higher resolution compared to
previous satellites providing full-Earth coverage. TROPOMI is therefore currently the state of the art instrument for
performing global detections of methane. [25]

In 2016 GHGsat-D was launched, this instrument is different from previous instruments which focused on global
coverage, resulting in a large pixel size. GHGSat focuses on a 12x12 km2 field of view of which it takes measurements
with a 50x50 m2 resolution. This is an unprecedented level of detail from space, but comes consequentially with the
downside of the small observed area and large return time.[26]

MethaneSAT6, which is scheduled for launch in 2022, will be in between TROPOMI and GHGSat in terms of spatial
resolution and coverage with a swath width of 260km and a pixel spatial resolution of 400x100 m, but lower revisit
times compared to TROPOMI. This will be a valuable addition, but for the purposes of global monitoring and exact
point-source detections TROPOMI and GHGsat will still be more suitable.

The CO2M mission in the context of ESA’s Copernicus Program is scheduled for launch in 2026. The main focus
of this mission is CO2, but methane will be a supporting product. The absorptionbands for methane and carbon-
dioxide overlap in the SWIR-1 band (1590-1675 nm) (Figure 2.2). With a spatial resolution of 4km2 and a revisit time
of a week above 40°latitude CO2M fits between the specifications of TROPOMI and MethaneSAT. [27]

Sentinel 5 is scheduled for launch in 2021/2022 and is intended to fill in the void left by TROPOMI after it’s opera-
tional lifetime.

The following sections will provide details specifically on TROPOMI and GHGSat.

6https://www.methanesat.org/fit-with-other-missions/, last access: 14-01-2020

https://www.methanesat.org/fit-with-other-missions/


2.5. TROPOMI 15

2.5. TROPOMI

2.5.1. Spacecraft and Instrument details

parameter value [unit]

Satellite Name Sentinel-5P
Payload TROPOMI
NORAD-ID 42969
orbit type near-polar, sun-synchronous
mean local solar time 13:30 [h]
semimajor axis 7205 [km]
mean altitude 834.0 [km]
eccentricity ≈ 0 (near circular) [-]
inclination 98.7 [°]
orbital period 101.4 [minutes]
orbital repeat cycle 227 (≈16) [orbits (days)]
Launch date October 13, 2017
Design lifetime 7 [years]

Table 2.5: The orbital properties of the Sentinel 5P satellite. Details
obtained from: 7 and

https://www.n2yo.com/satellite/?s=42969

The TROPOspheric Monitoring Instrument (TROPOMI)
[25] is the instrument on the Sentinel 5 Precursor (S5P)
satellite. S5P is part of the European Space Agency (ESA)
Sentinel program and focuses particularly on the atmo-
sphere. S5P bridges the gap in continuity of observa-
tions between Envisat and Sentinel-5 (launch scheduled
for 2021).
TROPOMI is a partnership between Airbus Defense and
Space, Royal Netherlands Meteorological Institute (KNMI),
SRON and TNO, commissioned by the NSO and ESA.
SRON and KNMI are responsible for the scientific man-
agement. TROPOMI is funded by the Dutch govern-
ment.

In 2017 the TROPOMI was launched, currently the state
of the art instrument for performing global detections of
methane. TROPOMI has daily coverage of the entire Earth,
and thus a repeat time of 1 day. The pixel size is 7×5.5 km2,
which is a much higher resolution compared to previous
satellites providing full-Earth coverage. This result is achieved by the push-broom mechanism of the instrument.
TROPOMI performs measurements in the 2.3 µm band (SWIR), in contrast to all previous TIR instruments which
used the 1.65 µm band.

S5P orbits the Earth in a near-polar frozen sun-synchronous orbit. The orbital altitude is about 834 km, the incli-
nation 98.7° and the mean local solar time at the ascending node is approximately 13:30h. The orbital period is 101
minutes, resulting in a bit over 14 orbit per day. The repeat cycle is 227 orbits, which is about 17 days [28]. A more
elaborate overview is presented in Table 2.5.

Figure 2.10: The orbital geometry of S5P (yellow) and NPP (red) 8

The 13:30h orbit is optimal for the S5P mission for
a number of reasons. The two most important ones
being the similarity to measurements of prior in-
struments (only OMI, SCIAMACHY had a morning-
orbit), which allows for comparison and validation,
and the synergy with the Visible/Infrared Imager and
Radiometer Suite (VIIRS) aboard the Suomi National
Polar-Orbiting Partnership (NPP) satellite. The VI-
IRS instrument provides high spatial resolution data
on clouds and aerosols, which can be used to opti-
mize the measurements performed by TROPOMI, such
clouds hinder some of the measurements. S5P’s or-
bit is designed in such a way that it trails behind
NPP with a delay of 5 minutes. Figure 2.10 shows
the orbital geometry and swath widths of both satel-
lites. The figure clearly shows the trailing behaviour of
S5P.

The data of the cloud coverage is used during the on-ground processing of the data. The solar zenith angle and the
viewing zenith angle are both important properties of atmospheric retrievals, therefore it is desireable to perform
new measurements under similar conditions as measurements taken by previous instruments. [25] [28]

7https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p/orbit last access: 03-06-2020
8https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p/orbit last access: 03-06-2020

https://www.n2yo.com/satellite/?s=42969
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p/orbit
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p/orbit
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Figure 2.11: A schematisation of the geometry of the TROPOMI measurement
principle. Credits shown within image.

The TROPOMI instrument is one of the
most advanced spectrometers currently in
use. The instrument is a nadir view-
ing grating UV-VIS-NIR-SWIR spectrometer
and therefore has spectral bands in multi-
ple wavelength-regions including the short-
wave infrared (SWIR, 2305 to 2385 nm)
which is used to measure methane. The
spectral resolution is 0.25 nm for SWIR. The
instrument observes the nadir direction in
a "push-broom" manner, covering 2600 km
in the cross-track direction every second,
while moving about 5.5 km (7 prior to early
2019) along track. This results in about 216
spectra per second. All ground pixels in
the cross-track direction are measurement
at the same time. This results in a spatial
resolution of 7×5.5 km2 in the nadir direc-
tion (directly ’underneath’ the spacecraft),
to the far sides of the swath the surface area
covered by a single measurement increases
by a factor of up to about 5. [25]
A schematisation of the measurement geometry is shown in Figure 2.11.

The science objectives of the mission are cited from Veefkind et al. [25]:
1. To better constrain the strength, evolution, and spatiotemporal variability of the sources of trace gases and

aerosols impacting air quality and climate.
2. To improve upon the attribution of climate forcing by a better understanding of the processes controlling the

lifetime and distribution of methane, tropospheric ozone, and aerosols.
3. To better estimate long-term trends in the troposphere related to air quality and climate from the regional to

the global scale.
4. To develop and improve air quality model processes and data assimilation in support of operational services

including air quality forecasting and protocol monitoring
The first three science objectives have relations to the CH4 measurements performed by the instrument.

For observing the troposphere, and more specifically methane in the troposphere, it is important the pixels are cloud-
free, since clouds obscure the line of sight of the measurement resulting in a failed measurement. This is why the
formation flying with NPP was implemented. The varying nature of the troposphere has been a driving factor in the
design of the instrument and orbit, resulting in the daily global coverage and high spatial resolution. The high re-
quirements for the TROPOMI instrument led to many of the Sentinel-5 design requirements being already met with
the S5P/TROPOMI design.

The part of the instrument which is used to detect methane consists of four modules. The telescope captures the
incident light, the SWIR spectrometer and relay optics grate the lightbeam. Then there are the instrument cooling
unit and the cooler, which are required to limit self-emission in the band of the SWIR detector of the instrument. The
SWIR spectrometer is thermally isolated from the other modules. The SWIR spectrometer consists of special filters,
a slit, mirrors and a immersed grating part. The immersed grating part is specifically developed for the TROPOMI
instrument. [25] [28]
The SWIR spectrometer instrument is expected to degrade over time in the space environment, this can be moni-
tored publicly at the TROPOMI Monitoring Portal9. A Quartz Tungsten Halogen lamp is incorporated in the design
in order to be able to calibrate the instrument on-board during the mission. This is done at the start of the mission.
Illumination from the Sun, Sun and Earth spectra and laser diodes will also be used in order to guarantee the quality
of the measurements. The design lifetime of the mission is 7 years, the instrument is designed in order to function
properly during this timeframe. [25]
How these measurements have been used in prior studies, with the TROPOMI instrument or both the TROPOMI and
GHGSat instruments together, are further processed and used in the TROPOMI-GHGSat project will be elaborated
in Sections 2.5.4 and 2.6.2.

9http://mps.tropomi.eu/monitoring last access: 08-09-2020

http://mps.tropomi.eu/monitoring
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2.5.2. Methane retrievals
As in common in a ESA satellite mission, the data is made available as a Level 2 dataproduct free to download. The
Level 2 Methane dataproduct is developed by SRON.
The Sentinel 5 precursor / TROPOMI KNMI and SRON level 2 Input Output Data Definition [29] provides a detailed
overview of the inputs and outputs of the Level 2 data (not methane specific).
Section 5.7 of the Algorithm Theoretical Baseline Document for Sentinel-5 Precursor Methane Retrieval [30] provides
a coverage of the algorithm, inputs and outputs in full detail including flowcharts (Figure 7 and 8 of [30]) which illus-
trate the data-flow from measurement to level 2 data.

As described in Sections 2.4.1 and 2.5.1 the measurement principle used by the TROPOMI instrument is to measure
backscattered spectra of sunlight from the Earth’s surface and atmosphere. This is done in the SWIR spectral range,
where the absorption features of CH4 molecules will leave a measureable sign [31]. In Figure 2.8 it is shown that in
the absence of clouds and high aerosol concentrations, SWIR measurements can penetrate towards to surface of the
Earth through the atmosphere, where the majority of sources are located.

To turn this radiance spectrum into a column atmospheric concentration of methane (XCH4) a retrieval algorithm
is used. Clouds, which are optically thick scatterers are relatively easy to filter out, whereas optically thin scattering
also occurs in the atmosphere but is much harder to detect. This optically thin scattering makes the measured XCH4

value deviate from the true XCH4 value, and thus should be compensated for [32].
One option for retrieval is the proxy method. This method measures CO2 at the same time as CH4 and assumes
the scattering effects are similar, which enables the XCH4 to be decuded from the ratio of CH4 / CO2. However this
method requires simultanious measurement of the CO2 column and therefore is not suitable for application in the
TROPOMI mission. [31]
The alternative is the so-called physics-based method. This method consists of simultaneously measuring the CH4

concentration and the physical scattering properties of the atmosphere, such as aerosols and cirrus clouds. The
scattering properties of the atmosphere have a large influence on the perceived XCH4. The perceived XCH4 can
differ quite significantly from the actual XCH4 due to the influence of the physical properties of the atmosphere.
This method makes use of the O2 A-band in the NIR and the absorption band of CH4, this doesn’t require any prior
information on the CO2 concentrations. It should be noted however that the physics based model is more compli-
cated and is limited by measuring capabilities of aerosols. This method can also be affected by forward model errors
in describing the aerosol properties. The proxy method cannot be applied due to the wavelength bands in which
TROPOMI measures, therefore the physics based method is used for TROPOMI XCH4 retrievals. [31] [30]

The operational CH4 retrieval algorithm was based on RemoTeC [33]. This physics based algorithm was developed
for GOSAT and OCO observations, and has been fine-tuned for the use on TROPOMI during the development phase
of the mission. Put simply, the algorithm uses a model that computes a concentration given an atmospheric state.
The model should be able to make a good estimate of the measurement based on the atmospheric state. This esti-
mated measurement is compared to the actual measurement which is taken. The first estimate is made based on a
priori knowledge of the CH4 and CO profiles, temperature, humidity, scattering patterns, surface albedo and pres-
sure amongst others. (A full overview of the parameters taken into account in the model is presented by Hu et al. [31]
in Table 1). This first estimate is compared with the model to make the best possible fit which gives the XCH4 in 12
vertical layers, and then this procedure is iterated to find the best estimate. [30] [31]
Methane retrieval algorithms can be sensitive to atmospheric parameters such as surface albedo and aerosol optical
thickness, as is discussed in the paper by Ayasse et al. [34], however this is mostly compensated for by the retrieval
algorithms.
Given the way the atmospheric models are structured, the output methane product is given as a methane concen-
tration over 12 sub-layers. In the actual measurement this has little meaning however, therefore this is converted to
the column-averaged dry air mixing ratio XCH4 [31]. This is done by using a column averaging kernel Acol, this gives
an indication of the methane concentrations in the different sub-layers of the atmosphere. This process also yields
a standard deviation of the retrieval noise σXCH4 , which is a measure of the precision of the measurement. [31]
XCH4, Acol and σXCH4 are part of the level 2 dataset.

An overview of the parameters from the TROPOMI Level 2 CH4 dataproduct which are being used are listed in Table
A.1 in the Appendix.
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qa_value Condition Remark

1.0 Convergence, clear-sky Highest quality

0.8 Failed deconvoluted irradiance spectrum Not pixel specific
but row specific

0.4 Not confidentially clear-sky
SZA < 70°, VZA < 60°
Surface albedo > 0.02
Fraction of good spectral pixels > 70%
AOT < 0.3
CH4 noise related error < 10
χ2 < 100
SNR SWIR < 50

0.0 No convergence

Table 2.6: The conditions of the qa_values of the XCH4 Level 2 data product with their conditions. [35]

Several factors can influence
the quality of a methane mix-
ing ratio observation. An
overall bias was found in the
data when it was compared
with GOSAT [15], and with the
TCCON and NDACC ground-
based networks. This was then
corrected for, resulting in an
average bias of only 0.3%.
The factors and conditions
which influence the quality of
the measurements are sum-
marized in a quality score, the
qa_value parameter, for easy
filtering without the require-
ment for full knowledge about
the details behind it.
TROPOMI CH4 data is only available for Viewing zenith angle (VZA) below 60° and over land. Measurements too
far away from the sub satellite point yields problems with the illumination angles. Sea surfaces also pose problems
with reflections, those are filtered out during pre-processing. Oceans are often just too dark, but measurements from
sun-glint could be included in future dataproducts. [35]. The different levels of qa_values are shown in Table 2.6.

The Sentinel 5 precursor / TROPOMI KNMI and SRON Level 2 Input Output Data Definition [29] provides a detailed
overview of the inputs and outputs of the Level 2 data (not methane specific).
Section 5.7 of the Algorithm Theoretical Baseline Document [30] for Sentinel-5 Precursor Methane Retrieval [30] pro-
vides a coverage of the algorithm, inputs and outputs in full detail including flowcharts (Figure 7 and 8 of [30]) which
illustrate the data-flow from measurement to Level 2 data.

The TROPOMI Level 2 CH4 product is processed offline, which means that the measurements are heavily processed
before release. The data is generally made available in 48-72 hours. The reason for this delay is the demanding full-
physics retrieval model and the need for accurate cloud data from VIIRS. Other TROPOMI dataproducts, such as
Carbon monoxide (CO) are available in ±3 hours.

2.5.3. Other retrieved parameters next to methane
As discussed in the sections above, the TROPOMI instrument retrieves a range of other atmospheric parameters
next to CH4. Several other dataproducts exist, such as Nitrogen dioxide NO2, sulfur dioxideSO2, ozone O3 and car-
bon mono-oxide CO. Within the CH4 dataproduct itself other relevant parameters are included, such as the aerosol
optical thickness, cloud fraction, surface pressure and standard deviation of the CH4 retrieval noise. Some of those
are a priori parameters, other are retrieved from the measured spectra as described in the previous section.

2.5.4. Prior studies using the TROPOMI instrument
To indicate the capabilities of the TROPOMI instrument and in particular the scientific value of the Level 2 CH4 dat-
aproduct a few important prior studies using TROPOMI CH4 data will be briefly discussed.

In March 2018 the first paper about atmospheric methane concentration inferred with TROPOMI was published
[15]. This paper shows comparisons with the Greenhouse Gases Observing Satellite (GOSAT) (and thus indirectly
with TCCON) and shows that TROPOMI successfully captures large area enhancement expected from wetlands.
In 2019 a paper was published about a gas well blowout in Ohio on February 15, 2018 [19]. This paper demonstrates
TROPOMI can be used to identify individual large point-source emitters and that such events are even visible in data
from a single overpass. The paper also demonstrates that TROPOMI CH4 data can be used to detect and monitor a
blowout event until repair and to make an estimate about the total amount of emissions. This clearly highlights the
value of daily global continuous monitoring as opposed to targeted instruments.
In April 2020 a study on methane emissions in the Permian Basin, which is located in Texas, United States showed
that averaged data of a year can be used to quantify emissions of an entire oil&gas production basin and how the
standard Level 2 data can improved using further custom processing [16] [36].
A paper which is at the time of writing still in review describes how TROPOMI was used to quantify methane emis-
sions from a natural gas well blowout in Lousiana, United States. The paper describes the blowout event where part
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of the event a flare was lit in order to prevent further methane emissions, TROPOMI data was combined with VIIRS
data which was used to infer when the flare was lit and the volume of methane being flared. This paper demon-
strated that emission estimates could be made for the full blowout duration based on single overpass data, and that
the officially reported amount of methane leaked was incorrect. [21]

These studies highlight that TROPOMI not only can be used to detect and quantify such events over a longer time
span using averaged data, but that single orbit observations could potentially also be used in order to detect such
events when they happen already at the first overpass. It is also demonstrated that it is feasible to quantify large point
source emissions using single overpass TROPOMI CH4 data.
Studies in which the TROPOMI and GHGSat instruments were used together are briefly discussed in Section 2.6.2.

2.6. The TROPOMI-GHGSat project

2.6.1. The GHGSat instrument
GHGSat Inc.10 is a private company based in Montreal, Canada which is planning to operate a constellation of
microsatellites and which aims to quantify GHG emissions (including CH4) from individual point sources. Their in-
struments are optimized towards a very high resolution for a small coverage area, in order to zoom in on point-source
emissions and attribute those to exact facilities. GHGSat-D [26] (demonstration, nicknamed Claire) has been opera-
tional since 2016 and has been involved in multiple successful observations [20], [19]. GHGSat-C1 (nicknamed Iris)
was launched on September 2, 2020. At the time of writing GHGSat-C2 (nicknamed Hugo) had just been launched
on Janauary 24, 2021, performing the first successful measurement11 on January 30, 2021. Another successful obser-
vation (Figure 9.3) was made by GHGSat-C2 in early February, based on a location originally recommended by SRON
based on a detection in November (Figure 9.2) by an early version of the model developed in this study.
GHGSat aims to expand the current fleet into a constellation of about 10 satellites by the end of 2022 for better cov-
erage and lower revisit times.

The instrument on GHGSat-D is a wide-angle fixed-cavity Fabry-Perot (F-P) imaging spectrometer which also oper-
ates in the SWIR. The GHGSat instruments are, in contradiction to TROPOMI designed to measure methane column
plumes (XCH4 concentrations) over pre-selected 12×12 km2 domains at a spatial resolution of less than 50×50 m2

at a measurement precision of 1-5%. [26]
This allows for fine scale investigation of facility-level point-source emissions. Compared to other currently opera-
tional or planned CH4 observation missions, this very detailed spatial resolution is un-precedented [6].
The GHGSat-D instrument has been demonstrated to be applicable to longer term average emission quantification
from individual coal mine vents [37], though this is a different application than how it is used within the TROPOMI-
GHGSat project.

2.6.2. Prior studies using both the TROPOMI and GHGSat instruments
The TROPOMI and GHGSat instruments complement each others strengths and are therefore very well suited to
collaborate (more on this in the next section). This was first illustrated in the paper by Varon et al. [20].
Varon et al. [20] describe how the TROPOMI and GHGSat instruments worked together to detect and quantify a per-
sistent CH4 emission piont-source from an oil&gas production site in Turkmenistan. The location was discovered by
accident by GHGSat and was then confirmed by SRON based on TROPOMI data. Using the archive of daily global
data which is available for TROPOMI, the authors were able analyse the location earlier in time, to confirm that the
source had been active for months already, ranging as long as TROPOMI had been operational, and possibly even
longer.
This study underlines the strength of the synergy between both instruments and it highlights the value of the daily
global measurements archive of TROPOMI data, together with the capabiliy to detect point-source emissions in sin-
gle overpass TROPOMI data.

10https://www.ghgsat.com/ (last access: 13-01-2021)
11https://www.ghgsat.com/hugo-delivers-first-methane-plume-image/ last access: 03-02-2021

https://www.ghgsat.com/
https://www.ghgsat.com/hugo-delivers-first-methane-plume-image/


2.6. The TROPOMI-GHGSat project 20

2.6.3. SRON & TROPOMI in the TROPOMI-GHGSat project
Successful applications of the synergy between TROPOMI and GHGSat is described in the paper [20], several news
articles 12 13 14 15 16 and during a conference by Maasakkers [38] & Zehner [39].

The TROPOMI and GHGSat instruments are very well suited for a collaboration given their different specifications.
Figure 2.12 shows an artist impression (physically inaccurate, but clear and illustrative) of the synergy between
TROPOMI and GHGSat. TROPOMI scans the Earth for identification of potential points of interest, GHGSat investi-
gates those locations in high resolution.

Figure 2.12: An artistic impression of the TROPOMI-GHGSat project
collaboration. Credits shown in image.

Do note this image is an artistic impression, to show in a schematic way
how the two satellites cooperate. It should be noted that in reality both
satellites are in a more similar sun-synchronized near-polar orbit. The

displayed TROPOMI pixel size is not accurate.

TROPOMI has daily global coverage with a pixel size
of up to 7 × 5.5 km2 which is optimized for daily
global monitoring (Section 2.5.1), but it is difficult
to detect facility-level point sources with this reso-
lution. The spatial resolution of TROPOMI is high
enough to distinguish e.g. the city center of Rot-
terdam from the harbour of Rotterdam, but not to
further detail [25] [6]. It has been demonstrated
that it is possible to use TROPOMI data to de-
tect and locate persistent sources up to a kilome-
ter accuracy, but this relies on longer term averag-
ing, and is therefore not possible with single-overpass
data.

The GHGSat instrument on the other hand is opti-
mized towards high-resolution inspection of a small
field of view. GHGSat focuses on a 12x12 km2 field
of view of which it takes measurements with a 50x50
m2 resolution. This is an unprecedented level of detail
from space, but comes consequentially with the down-
side of the small observed area and large return time
[26].

This is where the synergy with the SRON Level 4 CH4

Science Team working with TROPOMI-data comes in.
Using TROPOMI, the locations of interest can be identi-
fied based on the daily global medium-sized pixel cov-
erage, which GHGSat can then observe in more detail in
order to identify the exact facility responsible for the emissions.

ESA (and thus indirectly SRON) and GHGSat have signed a Memorandum of Intent17 in 2019 in order to further
strengthen the collaboration.

The unprecedented performance of TROPOMI in daily global coverage together with the high-resolution capabil-
ities of GHGSat for a selected field of view allow for a workflow where point-sources which emit large amounts of
methane which is detectable in TROPOMI data can be linked to an exact source with the GHGSat instrument. This
exact source attribution allows for holding the polluter responsible and for corrective measures and mitigation in
order to seal off the source of emission and thereby lowering anthropogenic CH4 emissions (Section 2.3.3).
The sources which can be detected using this approach are the type of sources called super-emitters in the research
by Zavala-Araiza et al. [17] and those are also identified in the EU Methane Strategy (Section 3.3.1) by the European
Commission [18] as top-priority in reducing methane emissions.

12https://www.economist.com/science-and-technology/2020/02/01/using-satellites-to-spot-industrys-methane-leaks
last access: 12-03-2021

13https://www.nytimes.com/2020/11/11/climate/methane-leaks-satellite-space.html last access: 12-03-2021
14http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Detecting_methane_emissions_during_
COVID-19 last access: 12-06-2020

15https://nos.nl/artikel/2311530-groot-methaan-lek-ontdekt-vanuit-de-ruimte-en-aangepakt.html last access: 12-03-2021
16https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/New_Space_satellite_pinpoints_
industrial_methane_emissions last access: 29-07-2020

17https://www.esa.int/ESA_Multimedia/Images/2019/09/Working_together_to_monitor_greenhouse_gases last access: 31-01-
2021

https://www.economist.com/science-and-technology/2020/02/01/using-satellites-to-spot-industrys-methane-leaks
https://www.nytimes.com/2020/11/11/climate/methane-leaks-satellite-space.html
http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Detecting_methane_emissions_during_COVID-19
http://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Detecting_methane_emissions_during_COVID-19
https://nos.nl/artikel/2311530-groot-methaan-lek-ontdekt-vanuit-de-ruimte-en-aangepakt.html
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/New_Space_satellite_pinpoints_industrial_methane_emissions
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/New_Space_satellite_pinpoints_industrial_methane_emissions
https://www.esa.int/ESA_Multimedia/Images/2019/09/Working_together_to_monitor_greenhouse_gases


3
Research Definition

3.1. Opportunities for point-source detection
Since point sources contribute a disproportionally large fraction to global methane emissions [17] it is desirable to
know more about the spatial and temporal distribution of CH4 point sources. In Section 2.3.4 several super-emitting
events were discussed. With a fully automated global monitoring model, such events might potentially be detected
automatically in TROPOMI data in less than an hour after the data becomes available (which is 48-72 hours after
measurement). Therefore such an automated global monitoring model would be very valueable.

There are three main enabling developments which lead to this project:

• The large archive of TROPOMI data. TROPOMI was launched in October 2017 and has been measuring the
atmosphere eversince. This means over three years of observations are available at this point.

• The known locations where persistent emissions occur. Given that the TROPOMI-GHGSat project has been
on-going since 2019, and because hot-spots were identified in other contexts, these locations can be used to
extract numerous scenes with plume signals from the archive of TROPOMI data.

• Recent developments in the field of Machine Learning provide useful tools which can be utilized.

3.2. Opportunities in the TROPOMI-GHGSat project
The SRON side of the TROPOMI-GHGSat project is mostly focused on detecting potential CH4 emission hotspots,
which can then be communicated to GHGSat for local high-resolution observations.

Before the start of this project, mostly longer-term averages and ’jumps’ of a few dozen ppb from one day to another
were used to identify potential hotspots in the recent TROPOMI CH4 data. The longer-term averages work really well
to detect persistent sources, but the downside is that such an average can only be taken after data from months of
measurements is available. Also single large events tend to be suppressed by a larger number of lower concentra-
tions at that location, if the source is not persistent or only is persistent for e.g. a few days.
The other detection method which was in place before the start of this project was aimed at the detection of large
instantaneous increases in atmospheric CH4 mixing ratio relative to the previous day with valid measurements.
This method worked well to identify very large instantaneous emission events, but has limited success in detect-
ing smaller emissions and does not take into account the morphology of a plume, only high values. It also does not
differentiate between plumes and artefacts.

An approach which autonomously scans TROPOMI CH4 single-overpass data for plume-features as soon as the data
becomes available can contribute to the TROPOMI-GHGSat project. If it is possible to classify scenes in a standard-
ized, autonomous way, with a sufficient level of confidence this can decrease the workload in performing detections,
speed up the process and potentially lead to detection of more sources.

The TROPOMI-GHGSat project has been ongoing since the collaboration on the study by Varon et al. [20] in 2019.
At the start of this research study, multiple locations with consistent CH4 emissions had been detected already. To-
gether with the vast archive of TROPOMI CH4 data this enables the creation of a large dataset of plumes, without
the need to manually scan three years of TROPOMI CH4 data covering the entire Earth, which would definitely be
an infeasible strategy to locate combinations of location and date which can be exploited for a dataset of plumes as
training data for a machine learning approach.

The aim of this study is to meet these opportunities within the context of the TROPOMI-GHGSat project. In the Sec-
tion 3.4 the research questions which form the basis of this study are discussed.
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3.3. Relevance of this research project
Sections 2.2 and 2.3 and especially Subsections 2.3.3 and 2.3.4 illustrate the importance of research into methane
point-sources. Atmospheric methane is the second largest driver of global warming [4] and a large portion is caused
by anthropogenic activities, mostly fossil fuel exploitation or landfill related. Point-source emitters contribute a dis-
proportionally large fraction of the global anthropogenic CH4 emissions, the distribution is known to be heavy tailed
[17]. New satellite technologies for remote sensing of the atmospheric methane concentration provide important
data to detect and quantify point-sources, allow for rapid mitigation and hold polluters accountable (Sections 2.4.1,
2.4.2).
The TROPOMI-GHGSat project is especially well-suited for this purpose given the synergy between the characteris-
tics of both instruments (Section 2.6.3). The TROPOMI-GHGSat project can therefore help to lower global anthro-
pogenic CH4 emissions.

The expansion plans of GHGSat in the coming few years increases their observation capacity, which calls for more
and faster information on possible locations of interest provided from the TROPOMI data. In the next few years other
satellites will be launched as well which could be suitable for a similar synergy (Section 2.4.2). The current workflow
functions very well in the current set-up, but due to the required manual effort in performing detections with the
current project structure this approach is unfeasible to meet the growth of the collaboration expected over the next
few years. Parts of the detection chain have to be automated, and Machine Learning is a very good tool to do so.
There are also opportunities to lower the threshold of which emissions are detected..
As stated in Section 3.2, the biggest opportunity for improvement is detection of plumes in single-orbit data. This
approach contains some challenging aspects (discussed in Section 4.2.1), but could, when successfully applied, also
add a lot of value to the project by speeding up detections in a more autonomous way.

3.3.1. The EU Methane Strategy as part of the European Green Deal
The European Commission released 1 the EU Methane Strategy [18] in the context of the European Green Deal on
October 14th, 2020 (about halfway this project, as this project ranges from May 2020, to March 2021).
In the EU Methane Strategy [18] the European Commission stresses the significance of methane emissions to global
warming and presents a strategy on how to reduce methane emissions. As a technical leader on the world stage with
the Copernicus program the EU plans to take a leading role in remote sensing focused addressing of CH4 emissions.
In the EU methane strategy it is recognized that not just emissions within the borders of the EU, but also emissions
related to imported products like oil & gas need to be adressed.
The EU methane strategy is part of the European Green Deal 2.

In the Roadmap 3, leading up to the publication of the EU Methane Strategy [18], published by the European Com-
mission on July 8, 2020 the plans to decrease anthropogenic methane emissions are broadly outlined:

"At global level, at least half of the reduction in energy-related methane emissions is possible at no net cost to indus-
try. Methane can leak from coal, oil and gas installations, or be vented into the atmosphere. On average, 5% of the
sources contribute to 50% of emissions (“super-emitters”). A key challenge is also to improve actual measurement,
reporting and verification at private entity level. Finally, the EU imports most of the gas it consumes and the majority
of methane emissions associated with this gas are emitted before reaching the EU’s borders"
"In the energy sector, leak detection and repair programs, as well as finding and addressing ‘superemitters’ can be a
very effective action. The EU imports most of the gas it consumes and the majority of methane emissions associated
with this gas are emitted before reaching the EU’s borders, making it important for the EU to tackle methane emis-
sions throughout the energy supply chain"

These passages, published by the European Commission on July 8, 2020, clearly indicate the relevance of the global
search for point-sources by the TROPOMI-GHGSat project to which this Thesis research project aims to contribute.

1https://ec.europa.eu/commission/presscorner/detail/en/IP_20_1833 last access: 12-01-2021
2https://ec.europa.eu/energy/topics/oil-gas-and-coal/methane-gas-emissions_en last access: 27-07-2020
3https://ec.europa.eu/info/law/better-regulation/ last access: 27-07-2020

https://ec.europa.eu/commission/presscorner/detail/en/IP_20_1833
https://ec.europa.eu/energy/topics/oil-gas-and-coal/methane-gas-emissions_en
https://ec.europa.eu/info/law/better-regulation/
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3.4. Research Questions
The main research question of this thesis is:

"What is the most suitable machine learning algorithm to automatically detect plumes in TROPOMI
atmospheric methane data, and how can this model be optimized, implemented and utilized?"

This main research question will be answered by first answering the following lower-level research questions, of
which the answers together will provide the answer to the main research question.

• What is the most suitable type of machine learning model based on the kind of input data and the type of the
problem?

– Which potentially suitable machine learning models do exist?
– Which kinds of machine learning models are applied in similar scientific problems?
– What is a sufficient amount of training data? Can the input data be pre-processed for better results?

• What is the most suitable kind of input data (including training, validation and test data) to train the model
on?

– What is the best way to pre-process the TROPOMI CH4 data?
• How can the selected model be optimized?

– Which supporting data can be used to further optimize the model?
– How does the model perform, evaluated using the manual workflow and known results, in terms of the

amount of false positives and false negatives?
– How can the model be improved after a proof-of-concept version is created.

• How can the model be incorporated into the TROPOMI-GHGSat project in a sustainable, future-proof way?
– How can the model be incorporated into the TROPOMI-GHGSat project in an automated way, to reduce

manual work and visual inspections.
– How can the model be further improved on future newly detected plumes to enlarge the trainingset and

increase the performance of the model (if possible in an automated way)?



4
Machine Learning methodology
Even though the field is almost as old as the computer itself, Artificial Intelligence has seen an increase in recent
years in the application in scientific works and in attention of the general public. Artificial Intelligence (AI) is the
name of the entire field of knowledge. Parts of it are closely related to the field of Computer Vision (CV), but not
necessarily all. Close ties also exist with computer science, statistics and mathematics for the entire field of AI.

Figure 4.1: A basic overview of the field of Artificial
Intelligence (AI) and the hierarchical structure of the

subfields Machine Learning (ML), Neural Networks (NN)
and Deep Learning (DL).1

AI is a wide term and entails a wide variety of different algorithms
aimed at different applications, such as natural language process-
ing , autonomous robotics and knowledge representation. The hi-
erarchy of the different subfields within AI is shown in Figure 4.1.
ML is one of the most widely applied subfields of AI and focuses on
scenarios where a sufficient amount of data is available in order to
develop a model which learns the statistical properties of different
classes in the data in order to be able to make predictions about fu-
ture, new data.
The Neural Network (NN) is one of the most frequently applied sub-
fields of ML due to its capability to deal with highly non-linear data.
Deep Learning (DL) is a more modern, and complex version of NN.
Deep Learning is in essence not different from regular Neural Net-
works, it is a modern version of designing, training and applying
Neural Networks, but it is very similar to "regular" or "shallow" Neu-
ral Networks. In most cases the same software libraries are used to design NNs and DL models. The clearest demar-
cation, stating the difference between NN and DL models found, is from Ma et al. [40] stated as:
"Layers between the input and output are often referred to as “hidden” layers. A neural network containing multiple
hidden layers is typically considered as a “deep” neural network—hence, the term “deep learning”".

The main reason AI (and it’s subfields) is on the rise is the advance of powerful and relatively inexpensive graphical
processing units (GPU) [41]. Regular computers have CPUs, a central processing unit, which are optimized for serial
tasks. GPUs on the other hand are optimized for parallel tasks, exactly what AI and ML algorithms needs for learning.

Figure 4.2: Indication for the rise of usage of Deep Learning
techniques in scientific publications in the domain of Remote

Sensing. Figure from: Ma et al. [40].

Another factor influencing the rise in ML applications is the
availability of data. In recent times large datasets are more
and more available. On one hand this is due to cheaper
and larger storage solutions, as well as cloud-based storage
and processing systems. Within the field of Remote Sens-
ing, this trend is also clear. The TROPOMI instrument for
example produces 11 million valid observations per month.
The amount of data gathered by modern satellite instruments
has increased a lot over recent years, due to increased mea-
surement resolution, higher downlink bandwidth capabili-
ties, larger on-board storage capacity, and other innovations.
Another factor, which is both a cause and an effect of the
rise of AI and ML in a positive feedback loop, is the develop-
ment of tools and software libraries which makes these tech-
niques more accessible for a larger group of scientists and re-

searchers [41].
Two main survey papers about Deep Learning in remote sensing provide a firm background on this sub-field of study.
Ball et al. [41] (2017) and Ma et al. [40] (2019), the former being more elaborate, but also a bit more outdated. Ma et
al. [40] have provided a clear recent historic context on the shift from Machine Learning approaches to CNN and DL
in recent years in their survey paper.
The rise of DL in other fields, and successes obtained with these approaches in the years following 2014 has led to

1https://vas3k.com/blog/machine_learning/ last access: 15-07-2020

24

https://vas3k.com/blog/machine_learning/


4.1. Convolutional Neural Networks, a conceptual description 25

a shift to NN and DL within the field of Remote Sensing (see Figure 4.2). Numerous successes were obtained with
image analysis, object detection and land cover classification problems with DL in recent years. The most commonly
applied NN / DL techinique is the Convolutional Neural Network (CNN).

4.1. Convolutional Neural Networks, a conceptual description
The Convolutional Neural Network (CNN) [42] is a kind of Neural Network. A CNN can be applied for various differ-
ent purposes which is why CNN are the most frequently applied type of DL model within the field of remote sensing
[41] [40]. CNNs allow a computer to extract meaning from an image using feature maps in an automated way.
The CNN was designed for multiple channels of data and it was based on the human visual neocortex, which is the
part of the brain which processes visual input from the eyes [41]. The history of the development of CNN and the
relation to neuroscience is described in detail by Lindsay [43]. The way CNNs are similar to the brain on processing
images makes this kind of artificial neural network suitable for multi-band remote sensing data processing, which is
in format similar to visual input to the brain through the eyes (real-time rgb images) to the neocortex of the brain.

Figure 4.3: An overview of a frequently applied type of DL network, the Convolutional Neural Network (CNN).
This example shows an input image of a car, which is labeled as one of multiple classes of means of transportation. 2

Figure 4.3 gives a schematic representation of a CNN. A CNN typically consists of three types of hierarchical struc-
tures which are: convolutional layers, pooling layers and fully-connected layers (terms discussed later in more
detail are boldfaced). In the convolutional layers pixels are aggregated with their neighbouring pixels to generate a
feature map, those features are pooled and passed on to a next layer. Fully connected layers are "regular" NN layers.
The distinction between the convolutional and pooling layers is shown in Figure 4.3. Pooling reduces the dimen-
sionality of features by only propagating a statistical feature of feature groups.
Multiple convolutional layers with different aggregation schemes can be added in sequence. At the end of the model
sequence a fully-connected NN performs the classification based on the outputs of the feature maps. Due to the con-
volution structure of the model, abstract features present in the data can be learned. Another advantage of grouping
the abstract features is that the training is more efficient compared to a fully connected network since there are less
parameters, because the parameters are shared since a given kernel is applied to the entire image.

It was concluded that the CNN is likely to be the best approach in the context of this project based on the literature
study. The challenge within this project is for the model to detect the morphology of CH4 plumes, a CNN is very
suitable for this objective. Once pre-processed, the TROPOMI data can be suitable as input for a CNN. The relatively
low resolution of the images will pose to be challenging though [44], as will be discussed later on. Many different
types of CNN exist, but the core building blocks of which the models are constructed are similar for standard models
and for custom models alike.

The main advantages of the CNN in the context of detecting CH4 plumes in TROPOMI data are:
• Rotational and translational indifference Where a certain feature is located in an input image is does not

matter, due to the convolutional structure features are detected anywhere in an image. This is important since
the plumes will not always be e.g. in the center of an image. FcNN do not have this property.

• Parameter sharing The kernels used in the convolutional layers are applied all over the image. Complex fea-
ture structures can be learned by a kernel, which can then be detected all over input image.

• Transparancy It is possible to visualize which parts of the input image the CNN bases the predictions on.
The next sections describe the mathematical foundation of CNN. This theoretical framework will be referred to in
Chapter 6 where the model which was developed in this study is discussed.
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4.2. From TROPOMI data to input Image for the CNN
Before we proceed to the mathematical description of the CNN, first the input data is discussed in order to be able to
relate the general equations and layers discussed in the next section to the context of methane plumes in TROPOMI
data.

Figure 1.1, in the Introduction, showed an example of a very clear plume in TROPOMI CH4 data. Figure 4.4A shows
another example of a clear plume and Figure 4.4B shows the same plume after it is re-projected to the format which
is used for the input samples. 4.4C shows a zoomed in version of subfigure B, which shows that the measurements
of TROPOMI can be converted to a matrix of values, suitable for Computer Vision algorithms, like Neural Networks.

Figure 4.4: Subfigure A shows an example of a methane plume in TROPOMI data in latitude-longitue space. Subfigure B shows the same scene
as an input sample. Subfigure C shows a zoomed in area of Subfigure B. Later in this chapter this is referred to as Image in a genral context.

This results in a 2d-matrix with values representing the atmospheric mixing ratio of CH4. If only the atmospheric
mixing ratio is taken into account this is the only input, when other atmospheric parameters are passed as input
several of these 2D matrices are stacked in the third dimension.
The details of the data preparation are elaborated in Chapter 5, but an example is shown here for convenience and
clarity.

4.2.1. Challenging aspects of methane plume detection using CNN
The automated detection of methane plume signals in TROPOMI data is a challenging problem. Figure 4.4 illus-
trates several of the challenging aspects related to this problem. First of all we have the low resolution, generally a
CH4 plume signal in TROPOMI data is only represented by 10-20 pixels (Figure 4.4C). This mean the information
about a plume signal is represented by only a very small number of datapoints.
Furthermore the physical phenomenon of CH4 point source emissions is not a binary phenomenon. A plume signal
in TROPOMI data has to stand out above the measurement noise. Point source emissions with small source rates,
which cause weak singal, are much harder to distinguish from the background noise. Manually labeling the training-
data also poses challenges, as it is only possible to apply a binary label on samples which clearly contain a plume or
clearly do not contain a plume signal. There are also in-between cases, which are even difficult for a human expert to
label. This is different for example when one wants to design a classifier which separates apples from tomatoes. This
is a truly binary problem, for which in theory a classifier with 100% accuracy can be designed. These photographs
are also in a higher resolution most likely.
With methane plumes there are also multiple atmospheric parameters which can have influenced the methane re-
trieval (Section 2.5.2). This results in artefacts which can cause false signals in the xch4 field, which means the xch4
field on itself does not contain all information on itself. This is issue will also have to be addressed, and this is de-
scribed further in Section 6.5 and Chapters 7 & 8.
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4.3. Mathematical foundation of the Convolutional Neural Network (CNN)
The images used in this section are obtained from this source [45]. The notation convention in those images is
sticked to throughout this section in order to maintain consistency between the equations and the figures. The math
was verified with other sources [46], [47], [42].
The images show a 3-channel dataset but the equations hold for any number of channels, three is most convenient
for visualisations and is most commonly applied in general since visual imagery like photographs are made up of a
red, green and blue channel.

4.3.1. The elementary components applied within the layers of a CNN
Features can be extracted from images by multiplying parts of the image with a filter or kernel matrix in order to cre-
ate an output matrix. By applying the purple 3x3 filter on the example image (blue) in Figure 4.5a, an output image
which is a feature map containing information about vertical edges in the original input image is created. The values
in the kernel define the type of feature which is being extracted, in this case vertical edges. The filter, or kernel, is
iterated over the entire input image to produce a feature map of the original image. This process is better known as
edge detection and is widely applied, also in remote sensing, for example for agricultural field demarcation in visual
satellite imagery. [48]
The filters in a CNN work similarly, to produce an output image from an input image, but the weights of those are
not predetermined but learned (Figure 4.5b), or optimized, during the training phase.

(a) Filter processing with pre-defnied filter. [45]

(b) A filter of which the weights are not predetermined, but
learned based on how to best an objective when multiplied with

the input. [45]

Figure 4.5: Elementary filter operations visually shown. [45] An example of an Image (blue) in the context of methane plume is shown in Figure
4.4B

Figure 4.5a shows that the application of a filter reduces the dimensions of the input image. Moreover, from Figure
4.5a it stands out that the values on the edge of the input image have less influence on the output image than values
which are not on an edge. This means not all information of the image is used to the full extent. By adding a band of
zeroes around the image, this effect can be counteracted. This procedure is called padding p, more then one band
of zeroes can be added, depending on what is required by the filtersize.
Figure 4.5a shows how the kernels applied to the Input image (green, yellow, red squares) result in a single value in
the output Image. The 5×5 Image is turned into a 4×4 image, this happens because the filtersize is 3 and the stride
s is 1. For larger images it is possible to use a stride larger than 1, resulting in an even smaller output image, but for
small images it is better to use a stride of 1 to capture as much information from the image as possible.
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the convolution product

Figure 4.6: The concolutional product operation, the core component of the CNN. Do note the
weights of the Filter or Kernel are not pre-defined as shown in this image, but these are learned, like

in Figure 4.5b. [45]

Figure 4.5a shows the procedure
for a 2D matrix, here the out-
put values are the sum of the el-
ementwise product of the input
image and the filter (either pre-
defined or learned). A Convo-
lutional Neural Network (CNN)
can consist of more than one
channel, which makes the prob-
lem 3 dimensional, like in Figure
4.6.

The dimensions of the image are
defined as:

dim( image , I) = (nH ,nW ,nC )
(4.1)

where nH is the size of the
height of the image, nW is the size of the width of the image and nC is the number of channels. For the most com-
mon application of NN, photographs or other images visually interpretable by humans, the number of channels is 3,
namely red, green and blue. The number of channels does not necessarily have to be 3, any positive integer number
of channels is possible (N>0 ). Independent of the number of channels, the problem remains three-dimensional.
In order for the elementwise multiplication to be valid the 3D filter or kernel K must consist of the same number of
channels nC , which results in the following dimensions of the kernel K :

dim( kernel , K) = (
f , f ,nC

)
(4.2)

where f is the width/height of the kernel, or filtersize, nC is the number of channels and the kernel K is assumed to
be square and the dimension to always be an odd number {1,3,5, ..} in order for the kernel to consider all elements
around a pixel from the image I .

Given these dimensions the convolutional product between an image I and kernel K results in a 2D output matrix.
The elements in this matrix are the sum of the elementwise multiplication of the kernel and a sub-region of the
input image as illustrated in Figure 4.6. The convolutional product (Equation 4.3), and its dimensions (4.4), can be
mathematically described as [45]:

conv(I ,K )x,y =
nH∑
i=1

nW∑
j=1

nC∑
k=1

Ki , j ,k Ix+i−1,y+ j−1,k (4.3)

dim(conv(I ,K )) =
(⌊

nH+2p− f
s +1

⌋
,
⌊

nW +2p− f
s +1

⌋)
; s > 0

= (
nH +2p − f ,nW +2p − f

)
; s = 0

(4.4)

where the output image dimensions are floored when not an integer. In the example in Figure 4.6, no zero-padding
and a stride of 1 is applied, resulting in an output (feature map) of shape (4,4,1), relative to the input image of shape
(nH = 6,nW = 6,nC = 3) (Equation 4.4).

In order to get the same dimensions for the output image as the input image I , the condition p = f −1
2 has to be sat-

isfied. With a filtersize f of 3, one band of zeros (p = 1) has to be added to the input image I before convolution.

the pooling operation

Another tool which gives control over the sizes of subsequent layers is pooling. The features of an image can be
pooled by applying a function on the feature maps. The most commonly applied pooling functions are average
pooling and max pooling. With pooling, an empty filter is applied to the image, usually with the filtersize f and
stride s equal, in order to have no overlap, the larger s and f the bigger the reduction in size. At the end of the
(empty) convolution, the pooling functionφ is applied on the selected element, resulting in an output layer of which
the dimensions are defined in Equation 4.5 and where the output image dimensions are floored when not an integer.
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dim( pooling ( image )) =
(⌊

nH+2p− f
s +1

⌋
,
⌊

nW +2p− f
s +1

⌋
,nC

)
; s > 0

= (
nH +2p − f ,nW +2p − f ,nC

)
; s = 0

(4.5)

activation function

Figure 4.7: Some of the most commonly applied
activation functions. From: [47]

The activation functionψ[l ] is a function which the output of a layer
is passed through before it is added to the output layer. An activa-
tion function makes sure the output is within a certain range (0 -
1 or -1 - 1). A kernel can potentially produce some very high out-
comes, the activation function compresses the output to the de-
sired range of values in order to avoid the values exploding over
several layers. Figure 4.7 shows this principle, no matter the in-
put x, the output of the activation function ŷ is in the range (e.g.
[0...1] or [−1...1]). Which of the activation functions works best de-
pends on the specific situation. Sigmoid is most often used in Fully-
connected NNs and ReLu is most often used in convolutional lay-
ers.
The softmax activation function is used for multi-class labels. The
softmax function is useful because it converts the scores to a nor-
malized probability distribution, which is more insightful.

σ(~z)i = ezi∑C
j=1 ez j

(4.6)

where ~z is the vector of scores corresponding to different classes, σ is the softmax output and C is the number of
classes. For each of the scores corresponding to a class the normalized probability is computed.
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4.3.2. The layers of a CNN
With the elementary components of the previous sections as building blocks, we will now move on to the layers of
which a CNN consists. Three types of layers exist within a convolutional neural network. A CNN can consist of any
number of layers, therefore in this section an arbitrary layer a[l ] will be discussed, which takes as input image layer
a[l−1] (= I in previous section).

Convolutional layer

Figure 4.8: The convolutional layer visually shown for a scenario with three channels and three kernels. [45]

Figure 4.8 shows an overview of a convolutional layer [42]. Image a[l−1] is the input, with dimensions=
(
n[l−1]

H ,n[l−1]
W ,n[l−1]

C

)
(Equation 4.1). The kernel K (n) has the dimension =

(
f [l ], f [l ],n[l−1]

C

)
(Equation 4.2). The number of channels in the

input image a[l−1] defines the number of channels in the kernel. n is the number of convolutions, and thus deter-
mines the number of kernels which determines the number of channels in the output image a[l ].
The bias of convolution n is denoted as b[l ]

n and the activation function used in this layer is denoted as ψ[l ]. The

padding and stride at layer l are denoted as p [l ] and s[l ]. The output size dim(a[l ]) is =
(
n[l ]

H ,n[l ]
W ,n[l ]

C

)
.

Mathematically a convolutional layer (expanding on Equation 4.3) is expressed as, for each convolution n:

∀n ∈
[

1,2, . . . ,n[l ]
C

]
:

conv
(
a[l−1],K (n)

)
x,y

=ψ[l ]

n[l−1]
H∑

i=1

n[l−1]
W∑
j=1

n[l−1]
C∑

k=1
K (n)

i , j ,k a[l−1]
x+i−1,y+ j−1,k +b[l ]

n

 (4.7)

dim
(
conv

(
a[l−1],K (n)

))
=

(
n[l ]

H ,n[l ]
W

)
(4.8)

which can be elaborated to the output layer a[l ] as, when split for each n, applying Equation 4.3:

a[l ] =
[
ψ[l ]

(
conv

(
a[l−1],K (1)

))
,ψ[l ]

(
conv

(
a[l−1],K (2)

))
, . . . ,ψ[l ]

(
conv

(
a[l−1],K

(
n[l ]

C

)))]
(4.9)

which results in an output shape di m(a[l ]) of:

dim
(
a[l ]

)
=

(
n[l ]

H ,n[l ]
W ,n[l ]

C

)
(4.10)

as the number of convolutions was defined to equal to n[l ]
C .
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The height and width of the output image result from these equations (image is assumed to be square) as:

n[l ]
H/W =

⌊
n[l−1]

H/W +2p[l ]− f [l ]

s[l ] +1

⌋
; s > 0

= n[l−1]
H/W +2p [l ] − f [l ] ; s = 0

(4.11)

Equation 4.11 shows the size of the output is the size of the input image plus two times the padding parameter p,
minus the filtersize f . See Figure 4.8.

The parameters which can be learned, or optimized during training, are the filters/kernels and the biases. There
are n[l ]

C kernels, which all have the shape di mK ( f [l ], f [l ],n[l−1]
C ). Resulting in ( f [l ] × f [l ] ×n[l−1]

C )×n[l ]
C parameters to

be learned in the kernels of this convolutional layer. Each kernel also has a bias value which can be learned which
results in an additional (1×1×1)×n[l ]

C parameters to be learned.

bias

Equation 4.7 (and Figure 4.8) contains a bias value, denoted as b[l ]
n . The bias value is a learnable parameter which

is not part of the kernel itself. This value is used to provide a means to linearly offset or shift the output of a kernel,
conceptually similar to the 0th order term in linear regression (the b in y = a · x +b).

Pooling layer

Figure 4.9: The pooling layer, shown for a scenario with three channel, each channel is separately pooled (dashed lines). [45]

As discussed above, the pooling layer is meant to downsample the input. The number of channels nC is not affected,
therefore n[l ]

C = n[l−1]
C . As described above, a pooling layer uses an empty filter, with size f [l ] and a pooling function

φ[l ]. The most common pooling functions are max pooling and average pooling, which result in either the maximum
or average value of the subset being forward to the output layer as shown in Figure 4.9.

A pooling operation is applied on a single channel, which makes the mathematical formulation simpler. For each
channel z, the pooling function is iterated in the x and y directions (width and height).

pool
(
a[l−1]

)
x,y,z =φ[l ]

((
a[l−1]

x+i−1,y+ j−1,z

)
(i , j )∈[1,2,..., f [l ]]2

)
dim

(
a[l ]

)= (
n[l ]

H ,n[l ]
W ,n[l ]

C

) (4.12)
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The dimensions of the output layer are given by the expression below, once again those depend on the dimensions
of the input layer, the padding p, stride s and filtersize f .

n[l ]
H/W =

⌊
n[l−1]

H/W +2p[l ]− f [l ]

s[l ] +1

⌋
; s > 0.

= n[l−1]
H/W +2p [l ] − f [l ] ; s = 0

n[l ]
C = n[l−1]

C

(4.13)

The pooling layer has no learnable parameters, the only use is to downsample the input layer, but this can be very
important if the network is faced with a large input image or many channels (either in the input, or due to convolu-
tions).

Fully-connected layer

Figure 4.10: The fully-connected layer, linking every node along the input
vector with every node in the output layer with a specific weight. [45]

The last type of layer in a CNN is the fully-
connected layer. This type of layer is what a reg-
ular neural network consists of exclusively. In a
CNN, this type of layer is usually applied at the
end, after all of the convolutional and pooling lay-
ers. A fully-connected neural network takes a vec-
tor as input and also has a vector as output layer.
Each entry, or node, of both vectors is connected
to all nodes from the other layer. These nodes
have trainable weights, which can be optimised
like the parameters of the kernel K in a convo-
lution product. The value of a node in the out-
put layer, layer a[i ], is computed by summing the
product of all nodes in layer a[i−1] multiplied with
the weight w of the particular connection and
multiplying that sum with the activation func-
tion ψ[i ]. This activation function can be differ-
ent from, or equal to, the activation function used
at a particular convolutional layer. (do note that
where before l was used to indicate the layer, now
i is used consistent with the convention of Figure
4.10, l in this image indicates which node of the
input layer is regarded.)
In mathematical terms this is described as:

z[i ]
j =∑ni−1

l=1 w [i ]
j ,l a[i−1]

l +b[i ]
j →

a[i ]
j =ψ[i ]

(
z[i ]

j

) (4.14)

When considering the fully-connected layers in the context of final layers in a CNN, those outputs of earlier layers

are layer i −1, therefore the dimensions of a[i−1] are =
(
n[i−1]

H ,n[i−1]
W ,n[i−1]

C

)
. As discussed earlier, a FcNN takes a 1D

vector as input, thus the input images need to be flattened, resulting in an input shape of =
(
n[i−1]

H ×n[i−1]
W ×n[i−1]

C ,1
)
.

Multiple FcNNs can be stacked after one another.

The number of nodes in input layer a[i−1] can be formulated as n[i−1]
H ×n[i−1]

W ×n[i−1]
C . The number of learned param-

eters are the weights plus the biases. Since both sets of nodes are fully-connected, the number of weights is ni−1×ni .
Each node at the output layer also has a bias which is also a parameter, resulting in a total number of parameters of:

ni−1 ×ni +ni =
(ni−1 +1)×ni

(4.15)

This formulation of learnable parameters makes it clear that applying a fully-connected NN at large images, or in
deep fully-connected networks is infeasible, since the number of nodes increases proportionally to the numbers of
nodes in both layers. This proof underlines the statement at the end of Section 4.1: CNN are efficient due to the
sharing of the learned parameters in the kernels, which is then applied throughout the entire image, as opposed to
weights in a FcNN where each input and output are connected with each other.
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4.3.3. Overview of the CNN structure

Figure 4.11: A schematic overview of a CNN, with the sections of the network which are commonly repeated
together indicated. [45]

Figure 4.11 shows the gen-
eral structure of a CNN
where N , M , & F represent
the number of convolu-
tion layers within a block
before it is pooled at the
end, the number of such
blocks in sequence and
the number of hidden lay-
ers in the fully-connected
NN at the end of the net-
work.

Figure 4.12: A schematic overview of a CNN, separated in the feature extraction part and the fully-connected
neural network. This figure provides a more realistic view on what the different layers look like. [45]

The first part is called
the feature extraction part,
here abstract features are
extracted from the (multi-
channel) image. Based
on these abstract features,
higher level features are
represented in subsequent
feature maps. In the
context of a photograph
this could be e.g. first
edges and contrasts, then
shapes, then structures,
then objects. Those hier-

archical features are best fed through the network if the feature maps decrease in size (nH ,nW ), but increase in
number nC .

The feature maps and the fully connected NN are conceptually shown in relation to one another in Figure 4.12. This
figure shows a similar architecture to the CNN in Figure 4.3 in Section 4.1 and to the images showing the individual
layers in more details, Figures 4.8, 4.9 and 4.10.

4.3.4. training algorithm
This sections will elaborate how the trainable parameters of the CNN are optimized. The model has to be fitted to
optimally differentiate between the different classes which are present in the dataset.
Neural Networks learn from existing examples, from training data, and so do CNN. The available data is split into
two categories, the training set and the test set. The training set is where the majority of the data is, this data is used
by the model to learn. This is done by splitting the data into a training subset and a validation subset. The validation
subset is also used during the training phase, but this data is not actively used for training, but used for comparison
(this is explained in more detail later in this subsection). The test set is not used during training, but is used after the
model has been trained in order to test whether the model is generalized well. The data in the test set is ’new’ for the
model, therefore this can be used to infer how well the model performs when applied to new data.
All of the data samples are assigned an integer representing the class (plume versus no plume) it belongs to. This can
be two separate classes (0 & 1), or multiple. During training the parameters of the model are adjusted in such a way
that for an input sample xi which is processed by the model the resulting prediction ŷi is as close as possible to the
true value yi , the integer representing the class. For the entire dataset this can, in the simplest form be expressed as
J =∑

(yi −model (xi )) or
∑

(yi − ŷi ), which is to be minimized. J is called the loss function.

The model is optimized by applying a combination of forward propagation, where the data is propagated through
the network and the loss J is computed, and backpropagation where the parameters are improved using the gradi-
ents of the cost function. This process can either be done for the entire training set, or batches of data (discussed
later in this section).

This process is repeated for N epochs in which the datasamples (or the batch) are fed through the network in a ran-
dom order. Before starting the training phase, the model parameters (kernel values, weights of the fully-connected
layers and the biases) are initiated with a random value.
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In mathematical terms this process is expressed as:

∀ i ∈ [1,2, . . . , N ] :

ŷθi = modelθ(xi ) (4.16)

J (θ) = 1

m

m∑
i=1

L
(

ŷθi , yi

)
(4.17)

where J is the loss function, L is the cost function, m is the size of the training set and θ is model parameters. This
way the loss J for an entire epoch is computed. Different kinds of cost functions L exist, like the root mean-square
error (RMSE) or (binary/categorical) cross-entropy. [46]

At the end of the epoch, the parameters of the model θ are updated and replaced with backpropagation:

θ =G (θ) (4.18)

where G is a function which computes the gradients in which direction the models parameters can best be adjusted
in order to perform better on the same dataset in the next epoch. An example of an optimization method is the
stochastic gradient descend algorithm or ADAM.

This process is repeated until the model is sufficiently trained. Once the validation loss, which is computed at the
end of each epoch starts increasing while the training loss keeps on decreasing, the model starts to overfit and worse
performance will be obtained from application on the test set if training continues further. This effect is called over-
fitting and is analogous to polynomial fitting with a too high order.

batch normalization

When the learning algorithm is applied using batches, it is possible to apply batch normalization [46] (original paper
[49]) before the forward propagation part. x is replaced by x̂ which is the normalized version of x. For batch β, x̂ can
be computed as follows:

x̂i =
xi −µβ√
σ2
β
+ε

(4.19)

where ε is a small positive value preventing division by 0, µβ (the mean value of the batch) and σβ (the standard
deviation of the batch) are computed as:

µβ =
1

M

m∑
i=1

xi σ2
β =

1

m

m∑
i=1

(
xi −µβ

)2 (4.20)

where m is the size of the batch, and M is the size of the total dataset. Batch normalization speeds up training,
because it stabilizes the training and therefore greatly reduces the number of epochs required for training. Batch
normalization is also shown to result in a lower final loss and a more stable loss curve, less bumps during training,
as one might expect if the batches β have highly different means and standard deviations.

dropout

Figure 4.13: Dropout applied to a simple NN, visualised.
The crossed units have been dropped out in this example.

From: [50]

Pixels can be missing due to the cloud filter in the TROPOMI L1B
data pipeline, or because the quality (qa_value) of the retrieval is
not good enough to converge to a CH4 mixing ratio in the retrieval
algorithm (see Table 2.6).
Neural Networks and other Machine Learning models have diffi-
culty with handling missing input data, therefore this is a crucial
challenge to overcome for whatever type of ML model is to be ap-
plied within the TROPOMI-GHGSat project.

Dropout can be used to prevent overfitting in the fully-connected
layers. [47] [46]. In the original paper introducing the dropout
method [50] dropout is discussed to also be possible to be applied
on the input layer. This is in some ways the same as passing inputs
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with missing ( zero ) values in the input image grid (which will be the case for TROPOMI data). Dropping out a
unit means temporarily removing it from the network, along with all its incoming and outgoing connections [50],
this is schematically shown in Figure 4.13. Training a network on a dataset with a wide enough variety of plumes in
TROPOMI data might render the network to capture the relevant features, as if it was trained using dropout on the
input layer. This is not exactly the same, as with dropout the nodes which are dropped out circulate for different
iterations, which is not the case with input data with missing pixels.

4.4. Performance evaluation metrics
Several different ways to assess the performance of a trained model exist, and those can be applied to different
subsets of the dataset which is used for training. In Section 4.3.4 the training procedure was discussed as well as how
the data used for training is split into the three categories. The fourth category is different, this is ’in-situ’ data, which
is not part of the initial dataset, which the trained model will be applied on.

• Labeled dataset
– Training set
– Validation set
– Test set

• In-situ data (not part of the dataset used for the training procedure)

All of the data which is used during the training phase (the first three datasets, eventhough the test set is not used for
training, but for evaluation of the trained model) were labeled before the training procedure, where a 0 indicates "no
plume" (or a negative) and a 1 indicates a plume (or a positive). The model (either with randomly initiated weights
at the beginning of training, or after the weights were updated several times) outputs a floating number ŷ ∈ [0, . . . ,1]
for each input sample. During the training process, subsets from the training and validation datasets are randomly
selected and the model is optimized on this data by minimizing the loss function J (Equation 4.17) by subsequent
forward and backward propagation (Section 4.3.4).
Once the training phase is finished the trained model is used to perform predictions on the test set, which is a ran-
dom subset of the entire labeled dataset which is used for the training procedure, and therefore is assumed to be
representative of the entire labeled dataset, and of new ’in-situ’ data. The test subset was not used during the train-
ing phase, and therefore inferring the performance on the test set provides insight in how well the model is expected
to perform on new data.

Figure 4.14: The confusion matrix which provides a
visual summary of the performance of a model on the
testset. This figure clearly shows which four groups a

prediction can belong to.

The trained model is then used to make a prediction based
on each of the samples of the test set resulting in a predic-
tion score (a floating number ∈ [0, . . . ,1]). The threshold, or
classification threshold, value determines where the demarca-
tion is drawn, 0.5 being the logical initial value for the thresh-
old.

Each of the samples of the test set is part of one of four categories:
• (TP) True Positive
• (TN) True Negative
• (FP) False Positive
• (FN) False Negative

Where a True Positive means that the network estimates the sam-
ple to be a positive (or a plume) and that is actually the case. With
a False Negative, the models estimates the sample to be a negative
(no plume) which is false, because the sample actually does contain
a plume, and so on.
Those results are commonly summarized in a confusion matrix
[48], Figure 4.14, where the total number of the occurrences is
shown in the table. Based on these definitions some metrics can
be defined, which indicate the performance of the model.

Accuracy = T P +T N

T P +T N +F P +F N
Precision = T P

T P +F P
Recall = T P

T P +F N
(4.21)

Another metric which, unlike accuracy, compensates for class imbalance is Cohen’s Kappa (κ). [48] This metric is
useful when dealing with imbalanced classes, which is the case in this context as scenes without plumes are much
more frequent than scenes without plumes.
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κ= po −pe

1−pe
= 1− 1−po

1−pe
(4.22)

where po is the relative observed agreement among raters (truth & model estimate) and pe is the hypothetical prob-
ability of change agreement. κ values above 0.8 are considered to indicate very good agreement.
The F1-score [48] is a metric which combines precision and recall into the harmonic mean of the two, when both
precision and recall are of importance, the F1-score is useful.

F1 = 2 · precision× recall

precision+ recall
(4.23)

An insightful visualization is the precision-recall graph for a varying classification threshold, this graph visualizes
how costly it is in terms of additional FP (lower precision) to have less false negatives (higher recall). This is particu-
larly interesting in problems where the detection of a rare class (plumes) is the objective, but one also wants as little
false positives as possible in order to reduce the amount of manual effort required in verifying the model outcomes.



5
Data Preparation
TROPOMI has been in orbit since November 2017, which means three years of historical data is available at the time
of writing. A large dataset of TROPOMI observations is therefore available, this vast amount of trainingdata allows
for the application of a Machine Learning approach in order to detect plumes in the TROPOMI CH4 data.
In order to be able to apply Deep Learning algorithms to the TROPOMI CH4 data, this data has be to remapped into
a suitable format first (as was conceptually shown in Figure 4.4). This chapter describes how the TROPOMI Level 2
CH4 dataproduct is turned into a suitable format, how this data is filtered, and how a set of training data was created.

5.1. The TROPOMI Level 2 Methane dataproduct
SRON is the institute responsible for developing the TROPOMI Level 2 CH4 dataproduct. This is the dataproduct
which is used during this study.

The dry atmospheric mixing ratio is the unit in which the methane measurements are commonly expressed (Section
2.4.1). These quantities are concentrations, influenced by both local emissions and background levels, therefore
emissions can never immediately be retrieved. This is illustrated in Figure 2.9a.

Figure 5.1: A schematisation of during which part of the orbit measurements are being performed.1

In the final design the flight direction is reversed, this image is from the preliminary design phase.

The retrieved CH4 data is pro-
vided by SRON aggregated by
orbitnumber, since observations
are only performed during the
sun-lit section of the orbit (as is
shown in Figure 5.1) and there-
fore the data can be split in dis-
tinct sets numbered by the or-
bitnumber.
Alongside methane, several other
atmospheric parameters are re-
trieved. A priori information is
added to the Level 2 CH4 dat-
aproduct as well. A full overview
of the data used from the Level 2
CH4 dataproduct is stated in Ta-
ble A.1.
Figure 5.2 shows a visualiza-
tion of the most commonly used
parameters where the data is
plotted in a Mercator projec-
tion. This figure shows a clear
plume. Alongside xch4 also the
surface albedo measured in the
SWIR, the aerosol optical thick-
ness also measured in the SWIR
and the surface pressure are dis-
played. In the top-center image
the local windfieldfrom GEOS-FP [51] is shown as well.

1https://sentinel.esa.int/web/sentinel/missions/sentinel-5/instrument-payload last access: 24-07-2020
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Figure 5.2: A latitude-longitude (Mercator) representation of the CH4 TROPOMI data showing a clear plume. The pixels are defined as shown in
Figure 5.3.

5.2. Re-mapping the TROPOMI pixel format

Figure 5.3: A schematisation of the groundpixels of the
measurements performed by the TROPOMI instrument
as defined in the Sentinel 5P Level 2 data product. The
orbital inclination of 98.7°results in this flightpath and

pixel geometry relative to Meridians and Parallels of the
Mercator projection (with coordinates in latitude and

longitude). From [32]

In order to be able to apply a Neural Network (NN) or Deep
Learning (DL) method on TROPOMI CH4 data, the data for-
mat has to be altered. The most commonly applied Merca-
tor projection with the standard TROPOMI pixel shape can not
be used as input for a NN. The data has to be in the shape
of a 2/3D array, or more generally, a tensor. Figure 5.3 shows
how the TROPOMI pixel is defined with four corner coordi-
nates.

Two ways to turn the TROPOMI pixel format into a suitable format
were investigated.
The first option is to oversample the data in the Mercator projection
with a, say, 0.1°×0.1° pixel size. This option would yield an orthog-
onal dataset. However this option is suitable when using all orbits
of a day, which results in global coverage, or for longer term aver-
ages. When using single orbit data, this option has multiple down-
sides. The edges are not straight, but are saw-tooth shaped. Also
given that the size of TROPOMI pixels in the along-orbit direction
are more or less constant (5.5 km since September 2019, before this
update 7km) but not in the across-orbit direction, where the pixel
size varies between 7km in nadir to about 35km at the edges of the swath, this would yield strange patterns in the
data. For a high resolution multiple adjacent pixels used for the NN input would be exactly the same value since
they fall entirely within one TROPOMI pixel, and the datasize increases since the number of values to store is greatly
increased. When selecting a sufficiently low resolution to counter those effects, a lot of information is lost. Another
problem with the Mercator projection is the distortion at high latitudes (resulting in Greenland appearing to be as
large as Africa with a Mercator project while the surface area is actually 15 times smaller).
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Figure 5.4: The ground-track based reference frame. Showing the shapes of the
continents of this orbit together with several parameters and a zoomed-in

plume. More details are provided in the text.

The other option is to define a reference frame
which is not earth-centered, and not satellite-
centered but ground-track centered, with the x-
axis parallel to the line 0-1 and the y-axis par-
allel to the line 0-3 in Figure 5.3. This refer-
ence frame solves the issue of the zigzag saw-
tooth pattern along the edges of the single or-
bit data. Also in this reference frame the orig-
inal TROPOMI pixels within an orbit are per-
pendicular (see Figure 5.3). More importantly,
this also increases the compatibility between
different orbits, since the observation geome-
try is constant (the effect of orbital decay is
small).
This approach does however introduce the is-
sue that the pixel area is not constant, but the
alternative approach also struggles with this is-
sue as is described above (This is an impor-
tant issue though, and how it was dealt with
regarding the training of the network is dis-
cussed in Section 5.5). Another advantage is
the fact that the entire orbitfile is not resam-
pled (which is a computationally expensive op-
eration), but only remapped. This speeds up
the detection process, which can be vital once
more steps towards a near-real time approach are
made.
Figure 5.4 shows what this ground-track based
reference frame looks like for an entire or-
bit (∼4200 × ∼230 pixels). The surface type
parameter of the Level 2 CH4 dataproduct is
plotted at the left in order to show the land-
masses which are observed during this par-
ticular orbit, from bottom to top: Antarctica,
Africa, south-western Europe, the United King-
dom, Iceland and at the top Greenland. The
next image shows the cloud fraction product
obtained by VIIRS (Section 2.5.1) where black
denotes thick clouds and white indicates clear
skies. The xch4 plot shows cloud-free ob-
servations over land and shows a clear dif-
ference in CH4 concentrations between the
northern and southern hemisphere. When
zooming in a plume signature can be ob-
served. In the very right plot the eastern-
western windspeed at the time of observa-
tion at that particular location on Earth is
shown. This illustrates how this external data
is matched to the TROPOMI data, this wind-
data will be discussed in more detail later
in this section. An animation showing the
orbital geometry of a full orbit of observa-
tions is available on the official TROPOMI web-
site2.

The windfield shown in Figure 5.4 is from GEOS-
FP, an external source mapped to the TROPOMI
pixels, it is not available within the TROPOMI

2http://www.tropomi.eu/gallery/bringing-air-pollution-focus last access: 18-01-2020

http://www.tropomi.eu/gallery/bringing-air-pollution-focus


5.2. Re-mapping the TROPOMI pixel format 40

Level 2 CH4 dataproduct. In the figure, only the eastern winds (western winds are denoted as negative values) are
shown, but the northern wind product is also added to the TROPOMI pixels.

The GEOS-FP windfiles3 distributed by National Aeronautics and Space Administration (NASA)’s Global Modeling
and Assimilation Office (GMAO) are used in order to be able to deduce where a plume visible in the TROPOMI data
originates from. These windfiles are a reanalysis version of a full-physical atmospheric model. The wind data is
available every hour (XX:30) with a resolution of about 25× 25 km2. The lowest grid-points in the model are 60m
above the surface, but an estimate of the windspeed 10m above the surface is provided as well. These are used in the
project, since this is the most relevant wind regime for plume emissions. [24]

Figure 5.5: A zoomed-in version of the plume visible in
Figure 5.4. The colorscale here stretches only the local

min and max, rendering a much clearer view of the plume
compared to Figure 5.4.

When combining the eastern and northen windfiles, these can
be plotted as quiver plot, which gives insight in the direction
and velocity of the winds over a certain area of interest. Plumes
move downwind from point-sources, therefore these windfiles
can be used to investigate where a point-source is likely to
be located based on an area showing high methane concen-
trations in the atmosphere together with the direction of the
wind.
The GEOS-FP data is added to the TROPOMI dataproduct
in an automated way by matching the center of a certain
TROPOMI pixel (see Figure 5.3 to the spatially nearest GEOS-FP
pixel.

Next, the full-orbit data is split into images of a suitable size as in-
put for a Neural Network. Given the morphological scale at which
the phenomena of CH4 plume emissions ranges, an image size of
32 × 32 pixels (nH = nW = 32) is chosen. Figure 5.5 shows the
same plume which was highlighted in Figure 5.4, as a single sam-
ple, which shows more contrast in color. The coordinates in Figure
5.5 are a local reference frame, the vector [y_ref, x_ref] indicates the

origin of this local reference frame in the ’global’ reference frame of the entire orbit.

Figure 5.6: A schematisation of how a single orbit file like the one shown in figure
5.4 is processed to the standardized sample format shown in Figure 5.8.

The full orbit data is split into data samples
of size nH = nW = 32 by applying the "mov-
ing window" approach with a stride, or overlap,
of 50%. This approach allows isolates a poten-
tial plume with its close surroundings which is
most suitable as input for the CNN. Because it
is not known beforehand whether the sample
does contain a plume and where in the sam-
ple the plume is located, the 50% overlap en-
sures that if a plume is cut in half by the edge of
the sample, it will be in the middle of the next
sample. This approach was earlier applied by
Kumar et al. [52]. Figure 5.6 shows the steps
involved, subfigure A shows the Mercator pro-
jection of a full orbit of data, with the nadir
groundtrack in red. This is then converted to
the format shown in Figure 5.4 in subfigure B.
Subfigure C shows how the moving window ap-
proach is applied to the full orbit into inidivid-
ual samples like Figure 5.5. Subfigure D shows
the front view of the ground-track, whereas A,
B and C show the ’top-view’ or satellite view-
point, subfigure D also illustrates why the pixels
further away from nadir cover more area on the
surface of the Earth, this is a result of the obser-
vation geometry.

3https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/das/ last access: 11-06-2020

https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/das/
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5.3. A posteriori filtering, albedo correction and de-striping

parameter filtervalue data filtered out

xch4 precision 10 >
aerosol optical thickness (SWIR) 0.10 >
latitude -60, 75 <, >
cloud fraction (SWIR) 0.10 >
aerosol optical thickness (NIR) 0.30 >
Solar zenith angle (SZA) 70° >
Viewing zenith angle (VZA) 60° >
albedo (SWIR) 0.02 <
albedo (SWIR & NIR combined) 0.95 >

Table 5.1: A posteriori filtering, the filtersettings.
A description on the different parameters can be found in Table A.1 and [32].

The TROPOMI Level 2 CH4 dataproduct
contains both a "raw" CH4 dataproduct, and
a bias-corrected dataproduct. Within the
scope of this project, additional filtering was
applied in order to improve un-supervised
performance. Also the Arctic, Antarctic (lati-
tudes > 75° and <−60°), Greenland and Ice-
land were always filtered out, as the xch4
dataproduct is less accurate in snowy scenes
(see the red area in Figure 5.9).
Since nan-values are a problem for the Neu-
ral Network based approach, it is preferable
not to use the advised quality settings (qa =
1, Table 2.6) but instead use a lower quality
filter (qa = 0.4) and manually filter out only a
select part of the data. An overview of these filters is provided in Table 5.1.

Figure 5.7: The a posteriori processing is applied on subfigure A (before), resulting in subfigure B
(after). Subfigure C shows the corresponding albedo field, subfigure D shows the differences per pixel

resulting from the operation.

On top of this two other oper-
ations were applied. The xch4
data was corrected with regards
to biases in the albedo field
as described by Lorente et al.
[53]. The xch4 field was also
de-striped, with TROPOMI data,
one of the known issues is a
striping effect in the along orbit
direction. This effect is present
in the dataproduct of several of
the retrieved atmospheric trace
gas concentrations. The stripe-
correction approach which was
applied in a study about Car-
bon monoxide (CO) pollution
on city-level scale by Borsdorff
et al. [54], this has since been
modified for CH4 and is applied
a posteriori on the xch4 data4.
This procedure is applied on an
entire orbit file at once, the re-
sult of the different filtering and
modifications is shown in Figure
5.7 for a single sample, where
the effect of the de-striping al-
gorithm and the effect of the
albedo correction can clearly be

distinguished.
The standard Level 2 bias-corrected xch4 dataproduct is shown in Figure 5.7A. Figure 5.7B is the custom a posteriori
pre-processed xch4 sample (after filtering, albedo-correction and de-striping). The difference between the two is
illustrated in Figure 5.7D. It is clear that in Figure 5.7B the background is much smoother and also the effects of the
striping on the plume (clearly visible in the standard dataproduct in Figure 5.7A) are smoothed out, revealing the
plume morphology. The effects of the albedo correction are also clearly visible.

4The de-striping was modified for CH4 by J.D. Maasakkers based on the CO de-striping by Borsdorff et al. [54], the improved albedo correction
was developed by Lorente et al. [53]. The total set of filters and a posteriori modifications to the standard xch4 dataproduct was designed by J.D.
Maasakkers and applied by all students under his supervision for consistency.
I have included the steps taken here during preprocessing for reproducability, but the design is not my own work.
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5.4. The different parameters included in an "input sample"
Table A.3 in the appendix shows which parameters are included in each of the datasamples. A visual representation
of which parameter (or layers or channels) are part of a single datasample is shown in Figure 5.8. The scene shown
in Figure 5.8, is the same one as in Figures 5.5, 5.4 and 5.2.

Most parameter are self-explanatory or were described before. Most parameters are part of the TROPOMI Level 2
CH4 dataproduct, except for the GEOS winddata which is mapped to the TROPOMI pixels from an external source
as described in Section 5.2. The albedo (SWIR), aerosol optical thickness (SWIR) and surface pressure are the most
relevant atmospheric parameters to distinguish artefacts from real plumes.
The surface area covered by a pixel is computed using the haversine function to compute the distance along the sur-
face of the WGS-84 globe model between two pairs of coordinates. The source mask field is used to visualize where
the source is located for samples with a known source (the plumes in the training data, discussed in the next section).
The timestamp, latitude and longitude values of each pixel are used to pinpoint the date and time and the location
on Earth of a plume.
The enhancement is the xch4 minus the a priori estimated CH4 atmospheric mixing ratio based on simulations by
Copernicus Atmosphere Monitoring Service (CAMS), but this remains unused because of sometimes strange values
of the a priori xch4. The quality value gives an indication about the quality of an observation, the values were de-
scribed in Table 2.6.
The cloud fraction (SWIR), the orthometric (relative to the sea level) and surface type are three a priori parameters
added to the TROPOMI Level 2 CH4 dataproduct which are useful for identifying why certain pixels are filtered out.
The cloud fraction denotes cloudy scenes, too cloudy pixels are filtered out, but slightly cloudy pixels can still be use-
ful, but might have an influence on measured xch4 levels. The orthometric surface altitude can show the topography
of the surface, revealing mountain ranges and valleys, which can explain accumulation effects of methane (do note
that accumulation is different from the difference in column height due to surface elevation, which was discussed
in Section 2.4.1 and Figure 2.9a). The land surface type is a bitmask layer which differentiates in about forty types
of surfaces, however this is simplified to either water or land in order to be able to visually identify coastal scenes or
lakes.
These last three parameters are particularly useful in manual inspection, since those are not filtered out together
with missing xch4 values, as they are a priori values. They can provide insight in to why a certain pixel is most likely
missing, and provide context about the surface and atmospheric conditions under which the measurement was per-
formed, also for pixels with missing xch4 values.

The parameters of a sample, visualized in Figure 5.8, could all potentially be used as channels in a CNN by matching
the number of channels, nC , to the number of parameters used. Some parameters are unfit to serve as inputs to the
NN approach, since it is preferable to keep the samples indifferent of locations and conditions to prevent overfitting
on this information, but those parameters can still be useful for other purposes as will be described in Chapters 7
and 9.
A full overview of all parameters included in an input sample (some unused) is given in Table A.3. The dimensions
of a set of samples are [m,nH ,nW ,nC ] = [m,32,32,nC ], where m is the number of samples.

The plume in Figure 5.8 is actually one of the easiest to detect, since it is such a large plume with high enhance-
ments (potentially the clearest plume of 2020). Two other such overviews are shown in the appendix in Figures A.4 &
A.6. Especially Figure A.6 gives some insight in what more difficult to detect plumes look like as this image contains
cloudiness close to the plume, high enhancements elsewhere in the sample which are not part of the plume, large
differences in surface altitude and a non-uniform albedo field.
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Figure 5.8: An overview of the most relevant parameters included in a sample. The different parameters share their height and width
coordinates. A full overview of all parameters included in the standard sample format is given in Table A.3
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5.5. Generating training samples
The approach of generating standardized images from the full-single orbit datasets results in compatible historic and
future datasets. The image which will later be used as input in a CNN is a local, regional representation of the XCH4

field and other atmospheric parameters. Given this standardized way of preprocessing, the network is indifferent to
the date and location of an observation.
Observations from the past can be used to train a NN which will be able to detect plumes similar to those it has
been trained on in future observations, using the features (feature maps) learned the CNN. At the time of writing,
TROPOMI has been operational for over three years, which means a vast library of TROPOMI CH4 data is available.
This earlier data is used in order to create a trainingset. Knowledge gained during the TROPOMI-GHGSat project
about locations with consistent CH4 emissions before the start of this project is used in order to construct a dataset
of images containing a wide variety of methane plumes with different morphologies.

Figure 5.9: An overview of the spatial distribution of the locations which were used for the
trainingdata, chosen to be as diverse as possible. The red areas indicate which area of the

globe is filtered out by default in new single orbit data.

In Section 5.2 the issue of different
surface areas per pixel depending on
where in the swath (viewing angle) the
observation is taken was mentioned.
In order to counter this effect, it is im-
portant to include plumes which were
measured all over the swath into the
training set. Therefore care is taken to
also include numerous off-nadir de-
tections. This way the network will
learn plume morphologies both for
low and high viewing angles.

5.5.1. The initial training set
27 different locations which were ear-
lier identified as locations with fre-
quent large methane emissions were
used to generate a dataset of plumes.
A limited number of locations within
the same country was used, and a di-
verse mix of categories of sources (Fig-
ure 5.10, Oil&Gas, Urban/Landfill or
Coal (Section 2.3.3)) was used. Figure 5.9 shows the locations which were selected.
Visualisations for days with enough coverage and

Figure 5.10: The types of sources of the
plumes of which the positives dataset

consists. (also see Section 2.3.3)

enhancements near the known source location were made. This information
was used to generate samples in the correct format, resulting in a dataset of
407 plumes.

Negative samples, samples which do not contain a plume, were generated by
applying the data preparation workflow on a total of eight orbits, and manu-
ally inspecting each of the resulting samples. Any plumes which were present
in those orbits were masked out, resulting in 2135 negative samples in this
dataset.
Each of those samples was manually verified after it had been turned into the
correct format.

Dataset A consists of relatively many plumes, when compared to a regular sin-
gle orbit file (like in Figure 5.4, which only contains one plume in all samples

resulting from this single orbit file). This is done on purpose in order to allow the network to learn what the features
of a plume look like.

Name nr of samples nr of positives nr of negatives

Dataset A 2542 407 2135

Table 5.2: An overview of which kinds of samples Dataset A consists of. The plumes in this dataset are obtained from the locations shown in
Figure 5.9.



6
Model Architecture development and Training
With the training dataset in place, the CNN model can now be constructed and trained.

6.1. Simple baseline model, Bayesian classifier based on Kurtosis
Before moving on to developing a CNN model, first a simple Bayesian classfier algorithm is designed in order to
infer how well the dataset can be classified using a baseline model. CH4 plumes are characterised by enhancements
relative to the surrounding area, therefore it makes sense to use the kurtosis of the pixels within a single sample of
32× 32 pixels (nH = nW = 32). The kurtosis statistical parameter gives insight in how ’heavy-tailed’ a probability
distribution is, something which we would expect the distribution of mixing ratio values in a sample containing a
plume to be (e.g. see Figure 5.5). The kurtosis is defined as:

Kurt[X ] = E

[(
X −µ
σ

)4]
(6.1)

where µ is the mean of the distribution, σ is the standard deviation and X are the values of the distribution (xch4
values in this case). The kurtosis Kurt[X ] is the expected value of the right part of the equation, this equation shows
that values far in the tail are weighted heavily which makes the kurtosis a suitable parameter for this purpose.

Figure 6.1a shows the probability density functions (gaussian kernel density estimate) of the subsets of the train-
ingdata containing plumes and no plumes. Left of the threshold the normalized probability of a random sample
to belong to the set of empty scenes is higher than the probability of the sample being a plume, and the other way
around for kurtosis values above the threshold. This threshold is used as a very simple classifier and the results are
displayed in the confusion matrix shown in Figure 6.1b.

(a) The distributions of the kurtosis values for the subset of plumes and the subset
of empty scenes.

(b) Confusion matrix showing the results of the simple Bayesian classifier
based on kurtosis.

Figure 6.1: The results of the modified Bayesian classifier on the kurtosis values of training dataset A.

The metrics in the confusion matrix show an example of how accuracy can be misleading as a metric, especially for
imbalanced datasets (here containing many more negatives than positives). This basic classifier illustrates how the
variation of concentrations in a single sample can be distilled into a single value (the kurtosis) which is still somewhat
representative of the original image (this approaches is continued upon in Chapter 7 about Feature Engineering).

45
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This example, however, also illustrates that is not sufficient to only infer whether high concentration enhancements
are present in the image (which is represented in the kurtosis value here) it shown it is also important to take the
spatial distribution of these high values and the morphology into account. The Convolutional Neural Network is
very well suited for this approach.

6.2. Data pre-processing (normalization & augmentation)
Data normalization

Since the background concentration is not equal for the different samples, the samples have to be normalized before
they can be compared and used in the CNN. First of all there is the yearly trend in the atmospheric CH4 mixing ratio,
described in Section 2.3.1 and illustrated in Figure 2.5. Since the trainingdata is obtained from observations rang-
ing from early 2018 to August 2020, this effect is not negligible. In addition there are also the seasonal variations and
spatial effects both on large scale (dependent on hemisphere) and smaller scale effects (due to weather/atmospheric
transport effects and the interaction between sources and sinks (Section 2.3.1) ).
Since we are interested in detecting plume signatures, the enhancement in mixing-ratio relative to the the local back-
ground is of interest, not the exact xch4 value. Therefore the xch4 channel of the samples is normalized before using
it as input to the network.
A logical first attempt was to subtract the prior based on atmospheric simulations by Tracer Model 5, The global
chemistry transport model (TM5) [55], which is used in the TROPOMI CH4 retrieval algorithm (described in Section
2.5.2, original paper [31]) to compute the enhancement and use this as input. However, as the prior is a simulated
value computed long beforehand, it is not always representative of the in-situ background level, therefore the en-
hancement is not always correct and shows strange artefacts.
A better option turned out to be to use the local background of the sample itself, as the 32×32 pixels (nH = nW = 32)
dimensions of each sample usually yield sufficient pixels to compute a local background level by masking out the
plume (this is discussed later in Section 7.1.1) and computing the mean of the background (pixels which are not part
of the plume mask).

Another problem to be tackled in the input format is missing pixels (Table 2.6, Figure 4.4), represented as NaN-values
in the TROPOMI Level 2 CH4 product. Missing values are known to pose a problem for NN in general, the most com-
mon way to deal with missing values is to replace them with the mean of the distribution of the parameter, though
this does not make sense in a physical way in the case of atmospheric mixing ratio. Because xch4 samples contain
a background level, noise and potentially a plume the distribution is skewed with only one tail, which is the part of
interest. Replacing missing value with the mean of the xch4 in the sample would be to assume there are enhanced
concentrations at that point which is not clear. This would be correct if the missing values are part of the plume, but
this is cannot be known and therefore an interpolation would be unfounded.
The Dropout mechanism (Section 4.3.4) is commonly applied near the deepest layers on a NN. It disables several
parameters (pixels in this case) in order to make the network less dependent on the connections of a particular node
(Figure 4.10) or Kernel parameter in a CNN. When missing values in the input samples are substituted with zeroes
this principle can (to some extend) be applied but then on the input layer, since those particular pixels will pass on
no information to the next layer when they are multiplied by the kernel of a convolutional layer.
Substituting missing values with zeroes also makes the most sense from a physical point of view, since the concentra-
tion is unknown in those pixels it is best to assume the background concentration. Another option is to substitute it
by a (large) negative value, this is also commonly applied, but can cause problems when a large fraction of the input
consists of missing values. Both approaches, with several different alterations were tested, an overview of all tested
normalization schemes is shown in Table A.2. The normalization scheme which was selected is shown in Table 6.1.

lowest input highest input NaN value after min value after max value after

Normalization scheme mean - std mean + 100 ppb 0 0 1

Table 6.1: The selected normalization scheme to pre-processing the xch4 channel of the samples. An overview of all normalization schemes is
given in Table A.2, normalization scheme N5 is shown in this table.

The normalization scheme listed in Table 6.1 was found to perform best as it preserves information about the abso-
lute enhancement in ppb to some extent, as opposed to the normalization schemes which normalize the maximum
value to 1. This normalization scheme therefore maintains the information about high enhancement, next to the
relative morphology of the plume. Figure 6.2 shows what the xch4 sample, normalized or pre-processed with the
selected normalization scheme looks like.
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Data augmentation

Figure 6.2: Normalization scheme N5 applied to the original xch4 sample. NaN values (missing pixels)
are transparent in the left image.

In order to artificially increase
the amount of trainingdata
the samples in the training
dataset were rotated by 90°,
180° and 270° [56]. The in-
putdata format is indifferent
to the location on Earth be-
cause of the standardized in-
putformat. As long as the
parameter-channels with lati-
tude and longitude are not in-
cluded and all other parame-
ters are rotated along there is
no issue in rotating the sam-
ples and applying it as addi-
tional trainingdata. In the first
version of the model, the shal-
low CNN, only the samples containing a plume were rotated in order to reach a more balanced dataset As (see Table
6.2). In later models the entire dataset was rotated, because a way was found to properly correct for the imbalance
of the dataset by using class weights during training.

6.3. Design and training of the (shallow) Convolutional Neural Network

Name/subset split # samples # positives # negatives

Original Dataset A (Table 5.2) - 2542 407 2135

Augmented Dataset A 1.0 10168 1628 8540

- Training set A 0.8 8134 1331 6803
— Training subset 0.8×0.8 - - -
— Validation subset 0.8×0.2 - - -

- Test set A 0.2 2034 297 1737

Augmented Dataset As 1.0 3763 1628 2135

- Training set As 0.8 3039 1331 1708
— Training subset 0.8×0.8 - - -
— Validation subset 0.8×0.2 - - -

- Test set As 0.2 724 297 427

Table 6.2: Dataset A, split into a Training, Validation and Test set. Dataset As indicates the dataset used
to train the shallow CNN where only the positive samples were augmented.

Next the CNN can be de-
signed. One of the challeng-
ing aspects is the low resolu-
tion of the data, some plumes
are only 3-5 pixels large. When
working with high-resolution
images an object of inter-
est within the image, like a
bus in a photograph, could
easily be made up of hun-
dreds or thousands of pix-
els. Such a scenario is what
CNNs were initially designed
for. Koziarski and Cyganek
[44] performed a study on
the effects of low-resolution
imagery in image recognition
problems using DL models,
they found decreased perfor-
mance for lower resolution
versions of the same images,
which indicates low resolution
imagery is more challenging to
correctly classify.

With the trainingdata in place and pre-processed, the CNN can be designed.
First Dataset As is split into a training, validation and test set. The number of samples in each subset is shown in
Table 6.2. In this first CNN only the plumes are augmented, not the negatives, resulting in a ratio of 1628:2135 (Table
6.2). Only the xch4 channel is being taken into account, therefore the shape of the training set As is:

[m,nH ,nW ,nC ] −→ [3039,32,32,1] (6.2)

where m is the number of samples, and the image size is nH = nW = 32 pixels with one channel. The channel which
is used is xch4 with the normalization scheme which was discussed in the previous section.



6.3. Design and training of the (shallow) Convolutional Neural Network 48

A shallow CNN is designed based on the format of the training data. It consists of two blocks of a single convolutional
layer followed by a max-pooling layer (Figure 4.11). No padding is used p = 0, the kernel-size K of the convolutional
layers is [3×3] (Figure 4.8) and the activation function which is used is the Rectified Linear Unit (ReLU) (Figure 4.7),
this is the same for both convolutional layers. The kernel has a suitable size to detect the plume morphology. The
first convolutional layer consists of 32 kernels K , and the second convolutional layer has 64 kernels. The [3×3] ker-
nels of the convolutional layers are able to capture the plume-like morphology which takes place at this scale.
The max-pooling layers use a stride s of 2 and a kernel-size (without parameters) of [2× 2], resulting in an output
image with half the size of the input image (n[l ]

W = n[l ]
H = 1

2 n[l−1]
W = 1

2 n[l−1]
H ), (Figure 4.9). The output of the second

max-pooling layer is flattened to a vector and connected to a single output neuron via a Dense FcNN (Figure 4.10).
The activation function used at the output node is the sigmoid activation function (Figure 4.7). During training 50%
of the 2305 nodes are temporarily disabled in order to prevent too heavy dependence on a few neuron connections,
this is done using the dropout layer (Figure 4.13). The output of the last node is a value between 0 and 1, where 0
indicates a confident prediction of a scene without a plume, and a 1 indicates a confident prediction that the scene
does contain plume-like features.

Layername (type) Output Shape # Parameters

input_1 (InputLayer) [(None, 32, 32, 1)] 0
conv2d (Conv2D) (None, 30, 30, 32) 320
max_pooling2d (MaxPooling2D) (None, 15, 15, 32) 0
conv2d_1 (Conv2D) (None, 13, 13, 64) 18496
max_pooling2d_1 (MaxPooling2D) (None, 6, 6, 64) 0
flatten (Flatten) (None, 2304) 0
dropout (Dropout) (None, 2304) 0
dense (Dense) (None, 1) 2305

Total parameters: 21,121
Trainable parameters: 21,121
Non-trainable parameters: 0

Table 6.3: The architecture of the shallow CNN.

The model is trained on the Dataset
As. In order to balance the dataset
for optimal learning, the augmented
version of the postives (each sample
4x rotated) is used combined with the
un-augmented version of the nega-
tives. This resulted in a dataset of
1628+2135=3763 samples. At the start
the weights of the connections be-
tween the nodes and the parameters
of the convolutional kernels θ (train-
able parameters in Table 6.3) are ran-
domly initiated. Then the model is
trained on batches of trainingdata.
This is done through optimization of
the loss function J (Equation 4.17) by

use of forward propagation and back-propagation (Equation 4.18). The metric which is optimized is the loss on the
validation set. The trainingset part of Dataset As is randomly split into a training subset (80%) and a validation sub-
set (20%) each epoch (Table 6.2). The model is trained for a maximum number of 100 epochs, but halts the training
process after no improvement has been observed for 20 consecutive epochs after which the weights are restored to
those corresponding to the epoch with the lowest loss J on the validation set. The loss function which is used is
binary crossentropy, which is the most suitable option for binary classification problems.

(a) The training loss and validation loss shown to improve both
during the training of the model.

(b) The confusion matrix of the shallow CNN applied to testset A.

Figure 6.3: The results of the training of the shallow CNN on dataset A.

Figure 6.3a illustrates
how the model per-
formance improves
for subsequent epochs
during training. The
figure shows how the
performance is ini-
tially quite poor (both
losses are high), due
to the randomly ini-
tiated model param-
eters θ, Gradually over
the course of several
epochs the perfor-
mance on the train-
ing and validation
subsets improves be-
cause the model pa-
rameters are improved.
Around epoch 30-40
however the loss on
the training subset keeps improving, but the loss on the validation subset starts to increase. This is a sign that the
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model is overfitting on the training subset, further learning leads to too much specialization on the training subset,
which lowers the performance on a general dataset. This difference is clearly visible near epoch 60, which is why the
training process is halted and the weights of epoch 38 are restored, since the performance on the validation subset
with the model parameters θ of that epoch was optimal.

Next the trained model is applied to the test subset. The test subset of As was not used during the training process
and therefore is completely new for the model, it is used as an indication of how well the model would perform on
new data, which is the objective. The results on the testset are shown in the confusion matrix in Figure 6.3b. This
confusion matrix shows that the performance of the shallow CNN on the test set is quite good, much better than the
simple Bayesian classifier, as is shown in the comparison in Table 6.4. The vast majority of the samples is correctly
classified and an accuracy of 93% is obtained.

model dataset (size) TP TN FP FN Acc. Prec. Recall F1

Bayesian Classifier A (2034) 208 1753 382 199 0.7714 0.3523 0.5111 0.4173
Shallow CNN A (753) 292 409 19 33 0.9309 0.9389 0.8985 0.9182

Table 6.4: A comparison of the performance of the simple Bayesian classifier and the shallow CNN.

Figure 6.4: Performance of the shallow CNN on testset A, the predictions scores of both classes are shown in a
histogram, showing the false positives and false negatives.

Figure 6.4 shows an-
other view of the per-
formance of the shal-
low CNN on the test
set, with on the x-
axis the predictions
score that each sam-
ple was assigned by
the CNN and on the
y-axis the number of
occurrences as a his-
togram. The per-
formance would be
perfect if all plumes
would have been as-
signed a score > 0.5,
and all empty scenes < 0.5. The false positives and false negatives can be clearly seen in the zoomed-in version of
the histogram.

It can be concluded that the shallow CNN approach functions well to correctly classify most samples in the test set.
The shallow CNN is able to correctly capture the morphology of the plumes and is able to identify the relevant re-
gions (plumes) within the samples. The performance on the test set is good, but the performance should also be
investigated on new ’in-situ’ data.

Dataset As has been created in such a way that the model is able to learn from it how to recognize the morphology of
plumes and to extract those features and use them for classification. However the ratio between plumes and scenes
without a plume is not realistic for a single orbit of TROPOMI CH4 data or a full week of measurements. Therefore
the performance on a single orbit, which is known in advance to contain just one plume, and on a full week of data
is assessed in the following subsection.
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6.3.1. Application of the trained shallow CNN to a known single orbit and full week of data

Figure 6.5: The four samples with the highest prediction scores in a single orbit file,
showing the moving-window and translational invariance principles.

First the trained shallow CNN was applied
to a single orbit which was known before-
hand to only include one plume. Figure
6.5 shows the four samples with the highest
predictions out of this orbit.
This figure shows that the same plume fea-
ture is present in four different samples due
to the moving-window approach (Section
5.2).
This result shows that the moving-window
approach works as intended, because if one
of the samples would have been filtered out
due to a lack of suitable pixels, or if the
plume would have been cut in half by the
edge of the sample, the other samples would
still be included showing the plume. These
results also illustrate that the CNN is in-
different to where exactly in the image the
plume is present, it detects it in all four sam-
ples with a prediction score of > 99%.
This translation-invariance is one of the
most important reasons why a CNN was se-
lected (Section 4.1), since due to the auto-
mated sample pre-processing from a full-
orbit datafile, it is not known beforehand where in a sample a plume might be present. This translational-invariance
arisis due to the same kernels being applied to all of the sample (Section 4.3.1 & 4.3.2). This is not the case for a FcNN
consisting solely of fully-connected (dense) layers (Section 4.3.2).

Figure 6.6: A histogram of the prediction scores by the shallow CNN on all samples from a full week of observations. The figure on the right is a
zoomed-in version of the histrogram in the left figure.

Next, the shallow CNN was applied to a full week of data (the ratio of plumes versus empty scenes is different for a
full week of data then it was for dataset A( or As), which makes it important to verify the performance [56]). Figure
6.6 shows the prediction scores on all the samples resulting from those 113 orbits (1 week of measurements).
The ’banana-shape’ in this histogram clearly shows what one would expect, most samples being predicted to be
negatives, some on which the network is doubtful on in the middle and an increase in occurrence again closer to 1
where the network is confident about the predictions of the samples.
(This analysis was performed again for a later version of the model, which lead to much better performance. This is
shown in Figure 6.11.)
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6.4. Class Activation Map
In order to get a better insight into which parts of the input image leads to a high prediction by the network the Class
Activation Map (CAM) algorithm was applied [57]. A CAM is a lower resolution representation of which parts of the
image trigger activations for a certain class. In this case there is only one class (1, plume). The resolution of the
deepest convolution or pooling layer (Table 6.3), which is 6×6 in the case of the shallow CNN, is the resolution of
the CAM.
A similar approach was also used by Sheng et al. [58] who applied a version of DenseNet & ResNet in order to detect
oil&gas facilities in high resolution aircraft remote sensing imagery, also making use of a CAM to identify which parts
of an image caused their network to be triggered.

Figure 6.7: The Class Activation Map (CAM) together with the xch4 image it was based on.

Figure 6.7 shows the
CAM for a certain in-
put image. Figure
6.7A shows a xch4
field to which the
CAM in Figure 6.7B
corresponds. Fig-
ure 6.7C is an up-
sampled version of
Figure 6.7B to match
the original resolu-
tion of the input im-
age. The upsam-
pling has no real meaning and the exact outcome depends on the upsampling algorithm which is applied. Figure
6.7C is added only for more convenient visual matching, it contains values > 1 and < 0 due to the bi-cubic upsam-
pling algorithm.
The CAM is a useful tool to gain more insight into how a prediction has come into place. A common complaint about
CNN and NN & DL in general, is that the predictions are a ’black-box’. This is true to some extent when compared to
a hard-coded algorithm, but the CAM provides useful insights into how the CNN came to a certain prediction.
The CAM is also useful when one wants to infer how a false-positive came to be, for example when a sample is pre-
dicted to be a plume, but actually is an artefacts. The next section will discuss artefacts in further detail.

Figures A.4 and A.6 show two other examples of what the CAM plot looks like for a specific xch4 field.
The CAM in Figure A.6 illustrates that the model is not triggered by all high values, but only by plume-like morphol-
ogy in the xch4 field. The enhancements at the left do not trigger the network, only the plume triggered the network.
Possibly there might even be a second smaller plume in the right part of the sample, this is best observed in the
top-right image. The CAM triggers also on that plume, but not as much as on the main plume.

6.5. Reducing False Positives & False Negatives (artefacts & difficult negatives
mining)

The shallow CNN was shown to be functioning properly in the previous sections, performing much better compared
to the reference model (Bayesian classifier, Section 6.1) and obtaining an accuracy of over 93% on the test Dataset
As. But the performance can be further improved.

From the third week of October 2020 onwards, the shallow CNN has been utilised to detect plumes in recent TROPOMI
CH4 data in the context of the TROPOMI-GHGSat project (Section 2.6 & 9.1). These continuous detections were on
the one hand useful within the TROPOMI-GHGSat project, but were also used to identify which kinds of plumes the
shallow CNN struggled with to properly classify.
The performance on Dataset A can easily be inferred, as all the samples in this (test) dataset were manually labeled
beforehand. When the model is applied to ’new’ data no labels are available since the samples have not yet been
manually inspected and classified. The CNN was developed in order to perform these classifications, but there is no
other way to double-check whether the predictions of the CNN are actually correct, other than to visually verify the
predictions, which is very time consuming. All that is available is the prediction score assigned to the sample by the
shallow CNN (like in Figure 6.6).

Although visual confirmation is quite common in problems like this [58], it is desireable to minimize the need for it.
Improving the classification performance comes down to either decreasing the number of false negatives or de-
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creasing the number of false positives, since a decrease in either of the two by definition leads to an increase in true
positives or true negatives and therefore this consequently improves all of the performance metrics.

False negatives are the most difficult to identify since the vast majority of the samples of a single orbit, or a week of
data, are classified as negative (Figure 6.6). For most of those samples, this classification is correct, but for some it
might be incorrect, meaning those samples actually do contain a plume. A week of data usually consists of 10,000-
15,000 samples after pre-processing. Due to the vast number of samples which are predicted by the shallow CNN to
be a negative, it is very difficult to identify the false negatives out of the vast majority of true negatives. In Chapter 7
the algorithms which were developed in order to compute metrics and generate visualizations which could be used
to detect false negatives from the set of samples which were predicted to be negatives are discussed.

False positives are easier to identify as only a relatively small fraction of samples from a week of data is predicted to
be a positive (right part of Figure 6.6). Therefore it is feasible (though still time consuming) to manually inspect all
samples which were classified as positives in order to separate the false positives from the true positives.

Two categories of false positives can be distinguished. One is referred to as difficult negatives because they do not
contain a plume-like feature in the xch4 field, but somehow ended up being classified as a positive which means they
are difficult for the network to classify correctly. The other is artefacts, these look like a plume based on just the xch4
field, but are actually not a plume. The difficult negatives could in theory be filtered out by an even better model,
artefacts can only be identified based on external features, outside of the xch4 field, such as other atmospheric pa-
rameters like the aerosol optical thickness or surface albedo [34]. Adding those parameters to the input as additional
channels is discussed in Section 6.6.3.

The most predominant types of artefacts are:
• albedo artefacts
• cloud-boundary artefacts
• coastal artefacts
• accumulation artefacts (not actually artefacts, but no emission plumes either)

Two examples of artefacts are shown in Figures 7.4 & 7.6.
Some of the feature engineering algorithms which were mentioned before and are elaborated in Chapter 7 can also
help to separate true positives from false positives (difficult negatives and artefacts).

6.5.1. An additional training dataset, focused on separating artefacts from real plumes
In order to be able to better train the model on these difficult negatives and artefacts, an approach similar to difficult
negatives mining is used. The most difficult samples out of the entire set are isolated, and the model is trained fur-
ther with the focus on this subset of samples.

Because separation of true positives (real plumes), difficult negatives and artefacts is feasible by visual inspection,
this was done for all TROPOMI CH4 measurements performed between December 1st, 2020 and January 22nd, 2021.
Only the samples which were assigned a predictions score of > 80% and passed filters (discussed in Chapter 8) based
on the metrics of the feature extraction algorithms which will be discussed in Chapter 7 were manually inspected.
These samples are only the highest scoring subset of all samples from that period of time, just 1267 out of 86,127.
This approach loosely follows the procedure of ’hard negative mining’ applied before by Kellenberger et al. [56] who
faced similar difficulties with an imbalanced dataset in the context of detecting wildlife in drone footage.

This resulted in an additional dataset which could be used for further training, as well as in the detection of recent
plumes which could be used within the TROPOMI-GHGSat project.

Table 6.5 shows the statistics of the samples in this dataset. It is important to realize that this dataset does only
contain the plumes (true positives) and the most difficult negatives together with artefacts.
Using the obtained knowledge from applying the shallow CNN to ’new, in-situ’ data from the third week of October,
2020 onwards combined with Dataset A and Dataset B, the original model was improved. The next section describes
which steps were taken in attempts to improve the model and whether or not this lead to an improvement of the
classification performance.
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Name/subset split # samples # true positives # difficult negatives # artefacts # doubts

All samples 01-12-20/22-01-21 - 86,217 - - - -

Dataset B total (incl doubts) - 1267 273 584 216 194
Dataset B total 1.0 1073 273 584 216 -

- Training set B 0.8 858 209 473 176 -
— Training subset 0.8×0.8 - - - - -
— Validation subset 0.8×0.2 - - - - -

- Test set B 0.2 215 64 111 40 -

Table 6.5: Dataset B, split into a Training, Validation and Test set.

6.6. Attempts to improve the CNN model
Next, using both Dataset A and Dataset B (which is focused on the most difficult to identify samples of seven weeks
of detections) an attempt is made to create a model with improved classification performance. First a complex stan-
dard model with many more parameters is tested. Then a custom network is developed. Additional parameters in
addition to xch4 are added and at the end of this section the performance of the different developed models is com-
pared.

6.6.1. ResNet

Figure 6.8: The shortcut module of
the ResNet or Residual Neural
Network shown in a schematic

block diagram. [47]

The ResNet50V2 model [59], or in general Residual (convolutional neural) Net-
work (ResNet), with over 23.5 million parameters is one of the very deep DL mod-
els [47]. This model is 50 layers deep and is optimized to still function well at
this depth using shortcut connections. Deep CNN models and other DL mod-
els can be troubled by the vanishing gradient problem, which simply put is that
backpropagation does not properly work anymore because the gradients become
too small, because of the depth of the model. The main strength of the ResNet
model is the shortcut connections which propagates some unmodified informa-
tion from a previous block to the next, to decrease the effect of this common is-
sue.

After various tests it was concluded that ResNet is not suitable for this particular
problem. The performance on the training set was good, but performance on new
data was worse.
However it was not possible to point to a reason for this with certainty, it is specu-
lated that the format of the inputdata (32×32) and the size of the trainingset is just
too small for such a deep network (issues with deep networks and low resolution
imagery were discussed in Section 6.3 [44]). This lead to overfitting and worse gen-
eralization compared to the shallower CNN. ResNet was developed for the ImageNet
challenge of 2015, comprising of 1 million images and 1000 well defined and sepa-
rate classes [47], which is quite different from this problem with just one class which actually is not even binary. For
this problem it makes sense a less deep CNN will have better performance as it is better suited to learning the more
abstract morphology of plumes in these relatively low resolution images.[44]
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6.6.2. Deep CNN

Layername (type) Output Shape # Parameters

input_1 (InputLayer) [(None, 32, 32, nC )] 0
conv2d (Conv2D) (None, 32, 32, 64) 640
conv2d_1 (Conv2D) (None, 32, 32, 64) 36,928
max_pooling2d (MaxPooling2D) (None, 16, 16, 64) 0
conv2d_2 (Conv2D) (None, 16, 16, 64) 36,928
conv2d_3 (Conv2D) (None, 16, 16, 64) 36,928
max_pooling2d_1 (MaxPooling2D) (None, 8, 8, 64) 0
flatten (Flatten) (None, 4096) 0
dropout (Dropout) (None, 4096) 0
dense (Dense) (None, 64) 262,208
dense_1 (Dense) (None, 1) 65

Total parameters: 373,697
Trainable parameters: 373,697
Non-trainable parameters: 0

Table 6.6: The architecture of the deep CNN.

With the knowledge gained from the
design of the shallow CNN discussed
in Section 6.3 and from the tests
with a very deep CNN ’ResNet’, a
CNN of medium depth is designed.
This CNN is referred to as the ’deep
CNN’ as opposed to the earlier shal-
lower model discussed in Section
6.3.
It is kept in mind that the model
should not be too deep in order to
maintain the favorable ’generalizabil-
ity’ of the shallow CNN, this is, it
should be able to use the features
learned from one plume and apply
these to detect different, but in some
ways similarl plumes without over-
fitting on the specific details of the
plumes of the trainingset.

Figure 6.9: A visual representation of the developed "deep" CNN. The different layers are shown as operations with their outputs shown above.
The dimensions of the outputs are shown in brackets and the number of parameters (or weights) in the operations are displayed below.

Figure 6.10: Confusion matrix of the performance of the
deep CNN trained on normalized xch4.

The architecture of the developed model is shown in Table 6.6 and
Figure 6.9. The model consists of more convolutional layers and an
extra fully-connected layer is added at the end. This allows for more
detailed information to be learned by the model, compored to the
shallow CNN (section 6.3). Furthermore a zero-padding on p = 1
(Section 4.3.1) is introduced in order to maintain the same dimen-
sions in adjacent convolutional layers and to maintain powers of 2
as the image size when pooling. When propagating further down
the network, this principle is applied consistently, this was not the
case for the shallow CNN. The number of parameters is increased
from 21,121 to 373,697, but is still much lower than the 23.5 million
parameters of ResNet. With the amount of trainingdata available,
this depth of the model is found to be optimal.
The shallow CNN was trained on Dataset As where the samples with
a plumes were augmented [56], but the samples without a plume
were not, in order to create a well-balanced dataset.
Here all augmented samples are used, which leads to an imbal-
anced dataset, but this is corrected for by applying a class weight
[56]. This means the samples belonging to the underrepresented
class, plumes, are weighted heavier during the backpropagation
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part of the training phase to compensate for their lower relative abundance.

Figure 6.11: A histogram of the prediction scores by the deep CNN on 12318 samples resulting from 8 days of
observations in the February 2021.

The model is trained
on xch4 samples
(nC =1) with the de-
scribed normalization
scheme. Figure 6.10
shows the performance
of the model on test-
set A, after training
on trainingset A (Ta-
ble 6.2). An accu-
racy of 97% was ob-
tained. Figure 6.11
shows the prediction
scores on eights days
of data in early Febru-
ary 2020. When comparing this to Figure 6.6, the improved performance is clearly visible in the smaller number of
samples with a mediocre predictions score.
Later, an attempt was also made to perform a training procedure with similarities to the hard negative mining ap-
proach proposed in [56]. First the model was trained on the original dataset A, then for a few epochs the model was
exposed to the difficult samples of dataset B. The rationale behind this is that the model first learns to correctly iden-
tify the plume morphology as before, and then ’finetunes’ itself by learning the subtle differences between plumes
and artefacts & difficult negatives of dataset B (Section 6.5.1). Several attempts with adaptations to the approach
were made to perform this procedure, but model performance decreased every time. Therefore this approach was
abandoned and different ways to correctly classify the most difficult samples were explored.

6.6.3. Utilising additional parameters next to xch4 for training
As discussed in Section 6.5, artefacts can be distinguished from plumes by using additional atmospheric parameters.
Artefacts are sometimes remnants of small local inaccuracies in the retrieval algorithm which lead to enhancements
in xch4 without actual enhanced concentrations of methane being present.
In order to separate artefacts from real plumes it would make sense to use these additional parameters (see Figure
5.8) as input channels next to (pre-processed) xch4 in order for the network to learn the difference. As this was recog-
nized early in the study, all relevant parameters present in the TROPOMI CH4 Level 2 dataproduct were incorporated
in the standardized sample format.

Several different combinations were tested, of which xch4, surface albedo and aerosol optical thickness is the most
promising one. However since the different channels used are multiplied pixelwise at the first convolutional layer
(Figure 4.8), as was discussed in the section about the mathematics of the Convolutional Neural Network in Section
4.3, the information in the different channels is not properly utilized to the fullest extent by the model.

Another problem with this approach is that e.g. the entire albedo field itself is not really of interest here, only if it
caused an artefact at the location where the model is convinced a plume might be present based on the xch4 field.
Therefore using the information of the additional parameters in this way does not work. Another approach where
several convolutional parts of CNNs are trained on different channels in parallel and then are concatenated before
the fully-connected part of the CNN would face similar challenges.
This leads to the assumption that another approach, dedicated to extracting as much relevant information from a
sample as possible and using this in the classification process in order to determine whether a sample does contain
a plume or an artefact, separate from the CNN, would be better. This approach is explored in Chapters 7 & 8.
The performance of the different combinations of channels which were tested are shown in the next section in Table
6.7.
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6.7. Performance comparison on Datasets A & B
Table 6.7 shows the performance of different models with different combinations of channels used as input. The
metrics shown in the table are the same as in a confusion matrix (Figures 6.10)
All models were trained on the training subset of dataset A (Table 6.2) and were then tested on the testset of dataset
A, and on dataset B as a whole (since the training part of dataset B was not used for training it can be used for testing
as well). The only exception on this is the shallow CNN which was trained on trainingset As with only the plume
samples augmented, not the negatives (Section 6.6.2). The random split between training and validation data and
the random initiation of model weights was seeded in order to allow for comparison between the models developed
without differences in the trainingdata which might bias this experimental setup.
Dataset B represents the most difficult to correctly classify samples, this is a subset of all the samples of the seven
weeks of observations these samples were taken from. Performance on a dataset containing all samples from that
period would be much representative, as all easy to classify samples were omitted now. This could not be done due
to the practical limitations of labeling all those samples.

Based on the results in Table 6.7 the deep CNN trained on the channel with xch4 pre-processed with the normaliza-
tion scheme appears to perform best, but it is difficult to confidently conclude this only based on the classification
performance metrics in this table. It stands out though that adding additional channels does not improve perfor-
mance, as could be expected with this limited number of training samples. Another method will have to be developed
to further classify the scenes which were identified to contain plume-like features in the xch4 field. Chapters 7 and 8
will dive into this topic, but first the differences in performance between the shallow CNN, the deep CNN and ResNet
are investigated in more detail in the next section.

model channels testset (size) TP TN FP FN Acc. Kappa Prec. Recall F1

Bayesian Clsfr. xch4 (kurtosis) Atest (2034) 208 1753 382 199 0.7714 x 0.3523 0.5111 0.4173

Shallow CNN xch4 (normlzd) AS-test (753) 292 409 19 33 0.9309 x 0.9389 0.8985 0.9182
Btotal 273 0 800 0 0.2544 x 0.2544 1 -

Deep CNN xch4 (normlzd) Atest (2034) 302 1672 31 29 0.9705 0.8920 0.9069 0.9124 0.9096
Btotal 577 1148 1024 71 0.6117 0.2764 0.3604 0.8904 0.5131

Deep CNN xch4 (normlzd N6) Atest (2034) 305 1664 39 26 0.9680 0.8846 0.8866 0.9215 0.9037
Btotal 562 983 1189 86 0.5479 0.2003 0.3210 0.8672 0.4685

Deep CNN xch4, albedo, AOT Atest (2034) 300 1663 40 31 0.9651 0.8733 0.8824 0.9063 0.8942
Btotal 559 1040 1132 89 0.5670 0.2182 0.3306 0.8627 0.4780

Deep CNN xch4, albedo, AOT Atest (2034) 278 1676 27 53 0.9607 0.8509 0.9115 0.8399 0.8742
wind E, wind N Btotal 440 1254 918 208 0.6007 0.1852 0.3240 0.6790 0.4387

ResNet xch4 (normlzd) Atest (2034) 257 1686 17 74 0.9553 0.8236 0.9380 0.7764 0.8496
Btotal 471 1443 729 177 0.6787 0.3012 0.3925 0.7269 0.5097

Table 6.7: A comparison of the performance of the simple Bayesian classifier and the shallow CNN and the deep CNN for different combinations
of channels as input.

6.8. More detailed comparison between best performing model architectures
It is difficult to conclude from Table 6.7 which CNN performs best. It did stand out though that a CNN trained only
on the xch4 field performs better compared to additional parameters.
It looks like the Deep CNN performs best, but differences in performance on the test set of Dataset A & B are quite
small. Therefore a more detailed comparison is required to be able to confidently select the optimal CNN.

All samples resulting from TROPOMI data in a timespan of two weeks, 2020-12-25/2021-01-07, (which is a subset of
Dataset B) were analysed and classified using the shallow CNN, deep CNN and ResNet. This timespan was selected
for convenience as it had been mostly manually labeled already in the context of the TROPOMI-GHGSat project. The
samples which were flagged as plume by any of the networks was manually inspected and labeled as either "plume",
"artefact" or "scene without plume / empty". Some samples were identified as a plume by each of the CNNs, others
only by one or two. This allowed for constructing a Venn diagram, which clearly shows the overlap between the pre-
dictions of the different CNN models. The Venn diagram is shown in Figure 6.12. With this approach it is not certain
that none of the 21,803 samples which were not classified as a plume by any of the networks actually does contain a
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plume in fact, but for comparison between these models this does not matter. The performance metric investigated
here is Recall.

Figure 6.12: A Venn diagram displaying the number of plumes detected by each of the three models,
and the overlap between the models. The number in black between brackets is the total number for
that model (color), the number in white is the number of plumes detected exclusively in that part of

the Venn diagram. The shapes are not to scale.

It is also relevant how many
false positives result from each
model, as this number should
be as small as possible (high pre-
cision). This is more clearly il-
lustrated in a separate confu-
sion matrix for each model as
shown in Figure 6.13. In the con-
fusion matrix the samples which
were labeled as empty or arte-
fact were also included which
allows for the precision to be
computed. The accuracy is also
computed but is meaningless
since there are 21,485 samples
(assumed to be all true nega-
tives) which are not being taken
into account here when com-
puting the accuracy. When tak-
ing these into account (and if
they truly are negatives) the ac-
curacy is >99% for each model. Therefore those are omitted to highlight the subtle differences. The precision is
unaffected by the omission of these samples, as these missing samples were not classified as plumes by the model.
In the Venn diagram only the samples in the second row, which were labeled as plume by any of the models, are
included. The column with artefact predictions is empty, as the CNNs only make a distinction between "plume" and
"no plume / empty". In computing the metrics the "empty" and "artefact" cells are grouped, as the classes need to
be binary.

Both Figure 6.12 and 6.13 show that the performance of the Deep CNN is best. Both the precision and recall of the
Deep CNN are better compared to those of the other models. These results also show that however the Deep CNN
is quite good at detecting plume-like features, there are still quite a lot of false positives. The next two chapters aim
to address this issue. Since the CNN only utilises the xch4 channel, a lot of additional information can be extracted
from each sample from the additional parameters.
The fact that the recall is much better than the precision is a good thing, as false positives can still be filtered out later
in the pipeline, but false negatives are lost. This is part of the design.

Figure 6.13: The confusion matrices for the three CNNs applied to all samples for which any of the models has predicted it to be a plume. The
true negative cell actually contains a lot more samples.
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Feature Engineering
Samples which are flagged by the CNN to contain a plume can be manually double checked, but it is preferable to
automate this process as much as possible since this is infeasible to perform manually for large datasets.
The standardized image size of 32× 32 pixels (nH = nW = 32) allows for the application of automated algorithms
which compute useful additional information and metrics (feature engineering) based on a single sample.
The feature engineering algorithms were developed to:

• Identify the plume from the background using a plume mask
• Estimate the pixel most likely to be the source of emissions based on the plume mask and windfield
• Make an initial rough estimate for the quantification of emissions
• Infer correlations between xch4 and the albedo, aerosol optical thickness & surface pressure fields in order to

detect possible artefacts
• Infer how influenced a plume could be by adjacent cloudy pixels, as this is the predominant type of artefact
• Derive the angle of the principal eigenvector of the plume (elongated direction) and the mean windvector

7.1. Emission quantification estimate

7.1.1. Plume mask
The goal of the plume mask is to identify the pixels which are part of the plume from the background. This is both
useful for the other algorithms as well as for visual inspection and it could potentially be used in the future as the
mask for a pixel-based NN approach.

Figure 7.1: The output of the plume mask and source finder algorithms.

The main assumption of
the automated plume mask
algorithm is that the pixel
with the highest enhance-
ment is assumed to be
part of the plume. The
plume mask originates at
the pixels with the high-
est xch4 value and dilates
outwards, with a step of
1 pixel in each direction,
only adding pixels with a
value above the high con-
fidence threshold. After a
study on a limited amount
of samples from the train-
ingset, a suitable value
for the high confidence
threshold was found to be
1.8× the standard devia-
tion of all xch4 values in
the sample. A suitable
value for low confidence
threshold was found to be

0.8× the standard deviation. This dilation is iterated until the high confidence mask no longer expands. In the next
iteration the threshold is lowered to the low confidence threshold and the dilation continues until this converges as
well. For almost all applications only the high confidence mask is used, but the lower confidence mask adds infor-
mation about which adjacent pixels with slightly lower concentrations could also be part of the plume. The only
exception is the source location estimate, which performs better results in general when the low confidence mask is
utilesed.
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The main advantage of this approach is that noise pixels, randomly high-valued pixels which are not part of the
plume, are not included in the mask. The spatial proximity criterion makes sense, given the physical continuity pro-
cesses involved in plume dispersion.
An example of the input of the algorithm in shown in Figure 7.1A, showing the atmospheric methane mixing ratio
and the windfield as quivers indicating direction and magnitude. The high and low confidence masks which are the
output of the algorithm are shown in Figure 7.1B and in C presented in a different way.

7.1.2. Source finder
The next algorithm is the Source Finder algorithm which estimates the most likely pixel to contain the source of the
plume given the plume mask and the wind-field. The output of the source finder algorithm for a trivial windfield is
shown in Figure 7.1. In this section the algorithm will be elaborated based on a scenario with a more challenging
plume mask and wind-field.

Figure 7.2A & B show a scene with a complex windfield and the high & low confidence plume masks. Figure 7.2C
shows the current estimate (second iteration) of the source as the black pixel in the middle of the plume and the pink
pixel denotes the true source, which is known in this case since this scene is one of the training sample. The source
estimate started at the pixel with the highest xch4 value.
Figure 7.2D shows how the algorithm iterates. The gridded along-orbit vs. across-orbit format is dropped and in-
stead each pixel of the low confidence plume mask is plotted in latitude-longitude space. Originating from each
pixel is the windvector at that pixel. The low confidence mask, instead of the high confidence mask was selected
since the source pixel was often located outside of the high confidence plume mask, which resulted in better perfor-
mance using the low-confidence mask. The problem is approached in the latitude-longitude space since this closely
resembles the most realistic scenario of using a 2d domain where distances along the surface of the Earth would be
measured in meters. In the regional scope of an image size of 32×32 pixels (nH = nW = 32), for latitudes [−60° < lat
< 75°] the error caused by this approximation is limited.

Figure 7.2: Figures illustrating the way the source finder algorithm works, both in along-orbit vs
across-orbit space, and in latitude-longitude space in the background.

In Figure 7.2 the current pixel is
shown in red, and the eight ad-
jacent pixels (if they are part of
the plume mask) are shown in
blue. As methane in a plume
is transported downwind, the
source is most-likely located up-
wind from the highest enhance-
ments within the plume. There-
fore the algorithm iterates up-
wind from the pixel with the
highest xch4 by computing a
line segment, which is directed
180° opposite from the wind di-
rection. The distance from each
of the eight pixels adjacent the
current pixels to the line seg-
ment is computed. The line seg-
ment is given a slight offset up-
wind in order to favour upwind
pixels. The pixel located closest
to the line segment (except for
the current pixel) is selected as
the next pixel. This process is it-
erated until convergence.
This methodology allows for
some limited sideways move-
ment if no upwind pixels are
available. This methodology
performs well for most wind-
fields and plume masks, but it is however prone to local minima. The latitude and longitude of the optimized source
pixel estimate can be used as a startingpoint for further analysis.
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7.1.3. Integrated Mass Enhancement (IME) emission quantification estimate
The plume mask and source finder are useful on their own, but they can also be used as inputs for a third algo-
rithm which estimates the CH4 emissions in the scene. This is done using the Integrated Mass Enhancement (IME)
method. This method was originally proposed within the field of CH4 plume quantification by Frankenberg et al. in
2016 [60], and described in more detail by Varon et al. in 2018 [24].
Next to the IME method, other methods exist to estimate total emissions and source rates such as the Gaussian
plume inversion method, the source pixel method and the cross-sectional flux method [20]. Those algorithms re-
quire custom tuning and/or are not possible to use with only the data present in a sample, therefore the IME method
was selected.

The IME method relates the total enhancement of CH4 mass in the plume, relative to the background, to the source
rate based on the time methane spends within the plume. First the column mass enhancement is computed.

∆Ω= MC H4

Mair
Ωair ∆X (7.1)

Figure 7.3: Output of the IME algorithm, showing a
visual representation and the most important metrics

such as the total mass of enhanced methane [kt] and the
source rate [t/h].

where ∆Ω denotes the column mass enhancement [kg m−2], MC H4

is the molecular mass of methane [kg mol−1], Mai r is the molec-
ular mean mass of dry air [kg mol−1], Ωai r is the column of dry
air [kg m−2] and ∆X [ppb] is the enhancement relative to the lo-
cal background Xb [ppb]. ∆X is found by subtracting Xb from the
column average dry molar mixing ratio xch4 [ppb], ∆X = xch4 −Xb .
[20]

Equation 7.1 can be modified such that the parameters in the stan-
dard sample can be used:

∆Ω= MC H4

Mair
·Ωair ·∆X = MC H4 ·∆X · Ωair

Mair
= MC H4 ·∆X ·Nai r (7.2)

where Nai r is the number of moles of air in a column from the sur-
face to the top of the atmosphere per m2 [mol m−2].

Next the equation for atmospheric surface pressure is used.

P = F

A
= m · g

A
−→ m = P · A

g
(7.3)

Where P is surface pressure [Pa = kg m−1 s−2], F is the force exerted by
the atmosphere on the surface [N], m is the mass of the atmosphere
over the surface [kg], A is the area [m2] and g is the gravitational ac-
celeration 9.80665 [m s−2]. If we set A to 1 m2, the mass becomes the
mass per unit of area.
Next we divide this mass per area by the molecular mean mass of air
Mai r in order to arrive at Nai r . We first define A = 1m2 to convert the
equation to per unit of area.

Nai r = m

Mai r
= P ·1

Mai r · g
= P

Mai r · g
(7.4)

Next we combine Equations 7.2 and 7.4 which results in:

∆Ω= MC H4 ·∆X ·Nai r = MC H4 ·∆X · P

Mai r · g
(7.5)

In Equation 7.5, only P and ∆X are variables, the other parameters
are constants. The surface pressure P can be directly obtained from
the sample and the xch4 enhancement ∆X above the background
concentration can be obtained from the xch4 field. This is done by
computing the mean background concentration which can be found
by applying the plume mask in order to determine which pixels are
part of the background. Therefore this equation can be computed
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per pixel of the plume mask in order to compute the CH4 mass enhancement per m2.

Next the Integrated Mass Enhancement (IME) for the entire plume is computed, taking into account the surface area
per pixel by applying:

IME =
N∑

j=1
∆Ω j A j (7.6)

where N is the number of pixels which are part of the plume mask and j ∈ [1,2, . . . , N ]. The area per pixel which is
also part of each sample is used here. The total CH4 mass enhancement of the plume can be related to the source
rate Q [kg s−1] using the residence time τ [s] of CH4 within the plume as Q =IME τ−1. [20]

τ can be expressed as τ= L U−1
e f f where L is the plume size [m] and Ue f f is the effective wind speed within the plume

[m s1]. Combining those expressions with Equation 7.6 results in:

Q = 1

τ
IME = Ueff

L
IME = Ueff

L

N∑
j=1
∆Ω j A j (7.7)

This equation assumes uniform transport of the methane in the plume to terminal distance (at the end of plume
length L). The actual mechanism for plume dissipation is turbulent diffusion. This process takes place in all di-
rections, not just in the downwind direction along L, however it is a reasonable assumption commonly applied in
literature [20] [60].

The plume length L can be estimated by L = p
AM where AM [m2] is the area of the total plume mask [20]. In the

case ’cigar-shaped’ plumes of the plume shown in Figure 7.3, this leads to an underestimation of L and thus an
overestimation of Q.
Ue f f is more difficult to estimate. In [20] a relationship between U10 [m s−1] and Ue f f [m s−1] is found, where U10 is
the windspeed at the source at an altitude of 10 meters above the surface, as this windspeed is most representative for
plume transport through the atmosphere. In this study, the U10 parameter is obtained from the GEOS-FP dataset,
which is available globally each hour, but in a relatively low resolution (see Section 5.2). In [20], high resolution
synthetic data is used, whereas this study uses low resolution measured data. The relation found between U10 and
Ue f f by [20] is used which is:

Ueff =α1 · logU10 +α2 (7.8)

where α1 = 0.9 [-] and α2 is 0.6 [m s−1]. These values were found using Large Eddy Simulations (LES), and are there-
fore also used in this study. Varon et al. use the windspeed at the source location, but since here we are dealing with
much larger areas, a weighted average (by area) of the wind speeds in all pixel which are part of the plume is used
instead, since this is more representative for large-scale transport phenomena.

These three algorithms provide a first estimate of the emissions in a sample. Since this is an automated method it is
sensitive to errors in the plume mask and/or inaccuracies in the GEOS-FP windfield. A detailed study for a particular
emission-event will result in a more accurate estimate. These results should therefore be interpreted as a first esti-
mate indicating the order of magnitude of emissions. The clearer the plume signature in the sample, the better the
estimates. Figure 7.3 shows the output of IME algorithm applied on the sample which was shown earlier in Figures
7.1.

In Section A.1 in the Appendix, the steps which were taken to verify the outcomes of the automated IME algorithm
against a thoroughly studied case [21] are described.
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7.2. Additional filtering
In this section we define additional filters to detect artefacts in the data that are incorrectly flagged as plumes by the
CNN. We can perform more sophisticated filtering (not pixel based, like was described in Section 5.3), but sample-
wide taking into account the meaning of different adjacent pixels and multiple parameters. This can be used in
order to filter out artefacts which solely based on the xch4 field might look like real plumes. Three algorithms were
developed to this end, which will be elaborated in the following sections.

7.2.1. Correlation metrics
In order to detect artefacts without visual inspection it can be useful to infer the correlation between the xch4 field
and the most important retrieval parameters. In order to do this the Coefficient of determination, denoted as R2,
between xch4 and another parameter is computed for different subsets of pixels in the sample relative to the high
confidence plume mask.

Figure 7.4: A visual summary of the correlation metrics between xch4 and the most important atmospheric
parameters for artefacts.

Figure 7.4 shows a
sample, the xch4 field
in subfigure C shows
some enhancements
near coordinates [10,
20], which based solely
on the xch4 field looks
like a plume. When
compared to Figure
7.4D though, it turns
out the area with
enhancements coin-
cides with an area of
lower values in the
albedo field. Sub-
figure B shows five
categories of pixels,
where red is the high
confidence plume mask,
green is the low con-
fidence plume mask,
orange is one dila-
tion around the low
confidence mask, brown
is two dilations and
grey is the background.

Both the xch4 and albedo fields are separated into these categories and linear regressions are performed for the pixels
in the categories:

• high + low confidence plume mask & 1 dilation
• high + low confidence plume mask & 2 dilations
• high + low confidence plume mask & the entire background

The results of these linear regressions between the xch4 and albedo subsets of the sample and their coefficient of
determination are shown in Figure 7.5. The coefficient of determination is displayed in the title, and also shown in
Figure 7.4A as the three pink dots. The same procedure is applied for the aerosol optical thickness and surface pres-
sure parameters. Varying the part of the background with which the plume is compared can give insight in whether
the correlation effect is local around the plume, or exists throughout the entire image. Here the values are similar for
the three subsets, but this is a coincidence due to the low xch4 / high albedo band in the right part of the sample.
Generally speaking a strong correlation around the plume, but a lower correlation throughout the entire sample sig-
nals an artefact.



7.2. Additional filtering 63

Figure 7.5: Scatter plots of the three different subgroups of the background, plotted together with the pixels which make up the plume.
The plume subset (blue) is the same in all three figures, only the amount of background that is taken into account, together with the plume

pixels, is varied.

7.2.2. Cloud boundary artefact metric
The dominant type of artefacts is the cloud boundary artefact, where high xch4 values are located close to a cloud
(Figure 7.6A&B). These pixels are not filtered out since at the particular pixel the cloud fraction and aerosol optical
thickness (both SWIR and Near infrared (NIR)) values in the TROPOMI CH4 dataproduct do not indicate clouds. This
is probably due to inaccuracies in the cloud product and this results in higher values in the xch4 field which are most
likely artefacts.
Another reason these artefacts to not cause a high R2 value is that pixels with an aerosol optical thickness of over 0.10
are filtered out. Computing the correlations has limited use to filter out cloud boundary artefacts as the pixels which
would indicate the presence of clouds (high aerosol optical-thickness values) are filtered out. This calls for another
approach.

Figure 7.6: The inputs and outputs of the cloud boundary algorithm.

Instead the cloud fraction parame-
ter is used in combination with xch4
since this parameter does contain
data on pixels where the xch4 is
filtered out. This can be particu-
larly useful to detect whether a miss-
ing pixel in the xch4 field next to
an enhanced value was filtered out
due to cloudiness or not. If this is
the case, the enhancement in the
xch4 field might be less trustwor-
thy.

The developed procedure is visual-
ized in Figure 7.6. Subfigures A and
B are layers of the sample format, the
binary high confidence plume mask
is shown in subfigure C. First the
cloud fraction image is zero-padded
with p = 1, that is a band of zeroes
is added to the edges of the image,
making the dimensions (nH = nW =
34). Next for each pixel pmi , j of the
binary plume mask (nH = nW = 32) the eight adjacent pixels, and the pixel itself, of the cloud fraction image are
selected.
Next the sum of the product of the plume mask pixel with each of the nine cloud fraction pixels is computed. If the
plume mask value is 0 (indicating "no plume"), the output will be 0. If the plume mask value is 1, but all 9 adjacent
cloud fraction values are 0 (indicating "no cloud"), the output will also be 0. But if the plume mask value is 1 and not
all adjacent cloud fraction values are 0, then the output will be > 0 indicating the pixel in the plume mask is adjacent
to a cloudy pixel.
Since the cloud fraction values are a floating number between 0 and 1, the magnitude of the output also serves as
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indication of how cloudy the scene is.
The output of the example is displayed in Figure 7.6D, which shows cloud adjacency in the correct pixels when visu-
ally verified with subfigure E. The number of pixels and the sum of values in the output (and thus indirectly also the
average) are stored and can be used as a metric to describe how much a plumemask might be affected by a cloud.
However adjacency to a cloud does not always mean the enhancement is an artefact instead of a real plume, when
moving to a more automated workflow, it can be useful to put limitations on how much adjacency to clouds there
can be in order to reduce the number of false positives. In the scenario of fully automated detections a false positive
might be worse than a false negative.

7.2.3. The angle between the mean wind direction & the principal eigenvector of the pixels in
the plume mask

Plumes are generally elongated in the downwind direction, as this is where the Methane is transported from the
source. Mathematically speaking, this can be inferred by computing the angle between the mean windvector and
the principal eigenvector of the plume mask.

This principle is clearly illustrated in Figure 7.7. Figure 7.7A shows a xch4 sample with the background shaded. Fig-
ure 7.7B shows the pixels of the plume mask, plotting in latitude-longitude space together with the windvectors of
each pixel. The eigenvector has to be computed in latitude-longitude space as the along-orbit & across-orbit space
is not area equal and is therefore distorted, this effect is visible when comparing subfigures A and B.
The eigenvectors of the pixels of the plume mask in latitude-longitude space are computed using a Principal Com-
ponent Analysis (PCA) which can be used to compute the mean and the eigenvectors of a dataset. In Figure 7.7C the
results are plotted on top of the same pixels as shown in Figure 7.7B. The red line indicates the principal eigenvector,
the blue line indicates the secondary eigenvector which is perpendicular to the principal eigenvector. The mean of
the dataset is indicated with the orange X. The mean windvector of the pixels of the plume mask is shown as the
orange line.
Next the angle between the principle eigenvector and the mean windvector can be computed. For real plumes a
small angle is expected. Larger angles are expected to occur for cloud boundary artefacts (The artefact in Figure 7.6,
has an angle of over 60°since the mask does is not coherent with the windfield) and accumulation artefacts which
are shaped by topography and not the windfield.
As addition a weighted version of the PCA is computed as well, where the pixels in the plume mask are weighted by
the enhancement in ppb above the background concentration. In most cases the difference is relatively small. The
black line in the plot indicates the wind vector at the estimated source location which was described earlier, but this
is for visualization purposes only.

Figure 7.7: The output of the principal component windvector angle algorithm. Figure A shows the input sample, Figure B shows the pixels in
latitude-longitude space and Figure C shows the mean windvector and the eigenvectors of the pixels in the plume mask.



8
Classification of plume-like samples based on
metrics

8.1. Automating manual classification of promising samples using a fully-connected
neural network

In Chapter 7 the various feature engineering algorithms which were developed were elaborated. Based on the clas-
sification by the CNN (ranging from 0 to 1, indicating how confident the network is that plume-like morophology
is present in the xch4 field of the sample) and the figures from the feature engineering algorithms, it is possible to
visually determine whether or not a sample does contain a plume or not. (Figure A.4 + A.5 & Figure A.6 + A.7).
The feature extraction algorithms are, next to the visualizations shown in Chapter 7, used to compute metrics for
each sample. A few examples of those metrics are the number of pixels in the plume mask, the estimated source
rate [t/h] and the correlation between the xch4 and surface albedo field near the plume mask. Some of these metrics
can be used to confidently filter out some samples based on a single metric. The first and foremost is ofcourse the
prediction score of the CNN. Others are a low source rate, little pixels in the plume mask or a very high correlation
between albedo and xch4 near the plume mask.

metric Source

CNN prediction score Section 6.3
# valid pixels -
sample mean xch4 above bg -
sample xch4 standard deviation -
sample xch4 skewness -
sample xch4 kurtosis -
count low confidence plume mask Section 7.1.1
sum low confidence plume mask Section 7.1.1
count high confidence plume mask Section 7.1.1
sum high confidence plume mask Section 7.1.1
source windspeed north Section 7.1.2
source windspeed east Section 7.1.2
IME [kt] Section 7.1.3
Q [t/h] Section 7.1.3
L [m] Section 7.1.3
Amask [m2] Section 7.1.3
Ueff [m s-1] Section 7.1.3
tau [s] Section 7.1.3
albedo R2, 1 dilation Section 7.2.1
albedo R2, 2 dilations Section 7.2.1
aerosol OT R2, 1 dilation Section 7.2.1
aerosol OT R2, 2 dilations Section 7.2.1
surface pressure R2, 1 dilation Section 7.2.1
surface pressure R2, 2 dilations Section 7.2.1
Cloud boundary pixel sum Section 7.2.2
Cloud boundary pixel count Section 7.2.2
Angle PCA - mean windvector Section 7.2.3
Angle PCA - mean windvector weighted Section 7.2.3

Table 8.1: The metrics (mostly resulting from the feature engineering
algorithms) which are used as inputs by for the classification of potentially

plume-like samples to plumes, artefacts and difficult negatives by the FcNN.

These are some filters which can be applied based
on a single parameter, but higher dimensional
filters are also a possibility. This chapter de-
scribes how this last manual step where one has
to visually inspect the samples is automated us-
ing a FcNN, which is trained on Dataset B (Table
6.5).
The metrics which are used are listed in Table
8.1. For each sample, this results in a vector
containing 28 numerical values. Because Dataset
B is used for training, all values for the cate-
gory ’CNN prediction score’ are > 0.8, as this is
how Dataset B was created. One could argue
this introduces a bias to this network, but the
sole purpose of this network is to further clas-
sify samples which were earlier selected by the
CNN.
Leaving out the samples labeled as doubtful, 1073
samples remain which are either a true positive, a
difficult negative or an artefact.
The labeling of Dataset B was done by visually in-
specting the sample itself as well as the figures
which were generated, and metrics which were
computed, by the post-processing algorithms. By
training a FcNN on these same metrics, with the
corresponding manually assigned labels as a tar-
get, the objective is to (partially) replace the man-
ual inspecting by a human by using a second
NN.

Because the values of the metrics in Table 8.1 differ
wildly in magnitude (e.g. IME in [kt] vs CNN predic-
tion score [0-1]), each metric is normalized by sub-
tracting the mean of that category (e.g. the mean of
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all the albedo R2 (1 dilation) values ) and divided by
the standard deviation of the trainingset. This results in a distribution for each parameter where the mean is 0 and
the standard deviation is 1. This approach is similar to batch-normalization (Section 4.3.4), but then applied to the
entire trainingset at once, before training.
The network learns which (normalized) parameters (or combinations of parameters) are important for the classifi-
cation of the samples, and therefore increases the weight of those connections, while lowering those of less relevant
parameters.

Layer (type) Output Shape # Parameters

Input (None, 28) -
dense (Dense) (None, 128) 3840
dense_1 (Dense) (None, 64) 8256
dense_2 (Dense) (None, 64) 4160
dense_3 (Dense) (None, 1) 65

Total params: 16,321
Trainable parameters: 16,321
Non-trainable parameters: 0

Table 8.2: The architecture of the fully-connected NN.

The network which was designed is a
Fully-connected Neural Network (FcNN),
this is different from the Convolutional
Neural Network (CNN) which was dis-
cussed in Section 6.3. This network only
consists of fully-connected layers (Section
4.3.2). This type of network is more
suited for vector input, which is why
it was selected for this purpose. The
network architecture is shown in Table
8.2.

The network consists of three layers, starting
from the input shape of a vector with 28 values and resulting in a value on a continuous scale between 0 and 1. Dur-
ing training a distinction is made between empty scenes and artefacts, but for the computation of the classification
performance both are assigned a 0, as the main objective is to separate the plumes from non-plumes. This is done
because the classification performance metrics (like recall etc.) require binary input.

Figure 8.1: The confusion matrix of the fully-connected NN applied to
the testset of Dataset B (Table 6.5)

The network is trained on the training set of Dataset
B. Dataset B is the subset of all samples gener-
ated from the TROPOMI CH4 measurements be-
tween December 1st, 2020 and January 22nd, 2021.
Only the samples which were assigned a prediction
score of > 0.8 by the CNN were added to Dataset
B..

The training procedure is similar to that of the CNN.
Again a training-test split of 80-20 is used. Categorical
cross-entropy was used instead of binary cross-entropy
as the loss function. Softmax is used as the activation
function at the end of the model, this results in a per-
centage of chance the samples belongs to that particu-
lar class for each of the three classes.
The optimal weights of the model are obtained within
10 epochs. The results of the application of the trained
FcNN model on the testset of Dataset B are shown in the
confusion matrix in Figure 8.1.
Although manual labeling is more precise, as it will re-
sult in a accuracy, precision and recall of 1.0, this FcNN
based approach can help speed up the process of mak-
ing detections.
Every single sample in Dataset B has features in the xch4
field which look more or less like a plume (since the
CNN assigned them with a score > 0.8). With this in mind, an accuracy of 86% on the hardest to distinguish samples
is quite good and can therefore be used to speed up the (manual) classification of the samples which are highlighted
by the CNN. However, this approach does not outperform manual inspection, but has as an advantage that it is fully
automated.
If this approach is carried on for several months, an updated version of Dataset B with many more samples can be
created, which is expected to result in improved performance of the FcNN. This is further discussed in Section 9.2.2.



9
Applications of the trained Model

9.1. Application within the TROPOMI-GHGSat project
Figure 9.1 shows how the different components discussed in this report fit together and how those are applied to-
gether as a workflow, amongst others in the TROPOMI-GHGSat project.

Figure 9.1: Flowchart showing the workflow as applied in the TROPOMI-GHGSat project based on the research described in this report.
Blue boxes indicate input or output, green boxes indicate the application of one of the two NNs and the orange box indicates manual effort is

required. The number at the bottom right of each box indicates in which section of the report this step is further elaborated.
A summarized version of this figures was shown in the Introduction in Figure 1.2.

As soon as a new TROPOMI CH4 Level 2 Single Orbit file becomes available it can be converted to the standardized
sample format [m, nH = 32, nW = 32, nC ]. This can also be done for longer time periods at once, depending on the
application. Then it is normalized and the Convolutional Neural Network (CNN) performs a prediction on whether
the sample does contain plume-like morphology in the xch4-field, and where in the image it is located. Next the
different feature engineering algorithms as discussed in Chapter 7 are applied to the sample, masking the potential
plume, performing a first estimate for the coordinates of the source and performing a first rough estimate of the
emissions based on the IME method. Also several metrics are computed which can help to indicate whether the
enhancements are a plume or an artefact. This information about the sample, also including the date and the time
and a unique identifier of the sample are stored together with the metrics.
Then the samples are filtered mostly based on the prediction score the CNN assigned to the sample, but also on
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conservative thresholds resulting from the Feature Engineering algorithms.
Then there are two possible next steps, the manual step where the figures resulting from the feature engineering
algorithms are inspected to infer whether a candidate sample is a plume, artefact or does not contain a plume (a
difficult negative). The other option is to use the Fully-connected Neural Network (FcNN) which was trained on the
metrics of the samples of dataset B. Using the FcNN to make this final classification is less accurate, but this turns
the workflow in Figure 9.1 into a fully automated process.
Next the figures of the plumes are stored and the metrics are added to an archive and the information about the
samples can be used for further training of the NNs in the future. The blue box at the bottom right of Figure 9.1
provides a list of the most noteworthy information and parameters stored for each sample which is flagged as a
plume.
Processing a week of data to the suitable inputformat takes about 20 minutes (for 10-15,000 samples). Running the
entire process starting from the suitable inputformat takes about 25 minutes (excluding the visualizations). For the
visualizations other data has to be preprocessed to make the latitude-longitude plots, when this is available it takes
about 15 seconds per sample to generate the figures. This is done entirely based on the metrics stored in the archive,
all information about a sample is condensed here, no new metrics are computed for the visualizations.
This workflow with the two neural networks and the archive was constructed as a project which can expand over
time, with the archive of detections growing and therefore providing a larger dataset which can be used for further
training of both models.

9.1.1. An example of a successful detection by GHGSat based on a detection in TROPOMI data

Figure 9.2: The first detection by a preliminary version of
the CNN in November leading to the recommendation of

this location to GHGSat, following further analysis at
SRON. The windfield is questionable.

The workflow described above has been applied within the con-
text of the TROPOMI-GHGSat project (Sections 2.6.2 & 2.6). From
the last week of October 2020 onwards preliminary versions of
the CNN, and later also the FcNN were used to detect loca-
tions with potential plumes. These locations were then fur-
ther analysed by scientists at SRON, also with TROPOMI ob-
servations over a long timespan at the location of interest in-
cluded.
Figure 9.2 shows the first detection which lead to the recommen-
dation of a location in Turkmenistan. This plume is not a textbook
example, but the source at the location was found to be consistently
emitting after further analysis.
GHGSat has performed a successful observation (Figure 9.3) at
this location with their third satellite, GHGSat-C2 "Hugo", in early
February about a week after launch.
Over the past few month several other locations were detected and
recommended to GHGSat after further analysis at SRON. A selec-
tion of recent detections is shown in Figure A.3.

Figure 9.3: Multiple CH4 plumes detected by GHGSat-C2 "Hugo" in Turkmenistan in the first week of February at a site following a detection
with an early version of the CNN, and multiple more later on.1

1https://www.bloomberg.com/news/articles/2021-02-12/new-climate-satellite-spotted-giant-methane-leak-as-it-happened
last access: 07-03-2021. Image credit: GHGSat Inc.

https://www.bloomberg.com/news/articles/2021-02-12/new-climate-satellite-spotted-giant-methane-leak-as-it-happened
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9.2. A point source emissions inventory of 2020 using TROPOMI data
A dataset with all samples resulting from the TROPOMI measurements of 2020 was made, ranging from orbitnum-
ber 11487 to 16679. Pre-processing these 5192 single orbit files resulted in 648,547 samples. Figure 9.6A shows the
number of samples of which the center coordinates are within a certain gridcell of 2°×2°. High latitudes only show
a limited number of samples since the pre-processing does contain a snow filter.
The automated workflow discussed in Section 9.1 and shown in Figure 9.1 was applied to the samples resulting from
the pre-processing of all observations of 2020. Stricter filtersettings were used compared to when only analysing
several weeks of data in the context of the TROPOMI-GHGSat project.

Figure 9.4: The temporal distribution of all samples of 2020 and the detections out of
this larger dataset. Both distributions are shown normalized and are grouped by date

per week.

Out of the 648,547 samples, 2195 samples
were classified to contain plume-like fea-
tures by the CNN, then passed the filter-
ing and finally were classified as plume by
the FcNN. When inspecting the global dis-
tribution of detections some were found to
be located at sites with known issues in
TROPOMI retrievals. The samples at those
locations were manually inspected and re-
moved if need be. 2084 detections remained
after this manual inspection, of which 1400
were unique combinations of date & loca-
tion. The spatial distribution is shown in
Figure 9.5.
These results are as expected, with lots
of detections at known clusters such as
the Permian Basin in the USA, the Hassi-
Messaoud oilfield in Algeria, several coal
mines in China and multiple different
sources in Turkmenistan. There are also
several detections at various locations along
two major natural gas pipelines in western
Russia.

Figure 9.5: An overview of all detected plumes in 2020 shown in red (alpha=0.2). The persistent source which were earlier identified are shown in
blue.
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Figure 9.6: A gridded overview of A) all samples resulting from preprocessing of all 2020 data, B) all detections in the 2020 dat and C) the ratio of
B/A which yields insight into the persistence of sources in different areas.
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Figure 9.4 shows the difference in the normalized temporal distribution between all samples of 2020 and the samples
which were classified to contain a plume. Both distributions show an above average fraction during the summer on
the northern hemisphere, this signal is stronger in the detections distribution. Since most landmasses are located in
the northern hemisphere this effect is to be expected due to the illumination of high latitudes during the summer on
the northern hemisphere, during the winter these areas are not illuminated. This effect is most likely strengthened
by the snow filter in the pre-processing pipeline.

Figure 9.6B shows the detections of Figure 9.5 resampled to 2°×2° gridcells, matching the format of Figure 9.6A. The
colorbar is capped at 30, but the maximum value is 150, this is done to allow some color contrast for the lower and
medium values.
Figure 9.6C shows the ratio of detections (Figure 9.6B) over the available samples (Figure 9.6A). This metric provides
insight into how persistent one or more sources in a given gridcell are. This metric would be more representative
when compared for exact sources, but this is infeasible as the source finder algorithm is not always perfectly accu-
rate. Therefore the detections were grouped in gridcells instead. This provides the same insight, but one a more
regional scale.

9.2.1. A rough estimate of total CH4 point source emissions in 2020

Figure 9.7: The distribution of source rates corresponding to the detections of 2020,
which are shown in Figure 9.5.

For each of the detections in the 2020
dataset, the source rate Q [t h-1] was com-
puted in an automated way (Section 7.1.3).
The resulting distribution is shown in Figure
9.7.
A rough estimate of the total emissions
resulting from the point source emission
sources which were detected is made.
Each of the detected point source emis-
sions is assumed to be active during the
12 hours before and after the observa-
tion. Because of the daily coverage, the
revisit time on each location on Earth is
24 hours (or less), which means a new
datapoint from which the source rate can
be computed is available every 24 hours
(if the data is valid), hence this assump-
tion.

The total emissions resulting from the de-
tected point sources for all of 2020 are com-
puted as follows:

Qtot al =
∑

(Qsample ·24 h) = 1824404.53 t = 1.82 Mt (= Tg) (9.1)

1.82 Tg is roughly 0.5% of global annual anthropogenic emissions (Table 2.2). These are the emissions from the de-
tected plumes only, when assuming these are all active for 24 hours.

Using the ratio of detections over the valid samples per cell of 1°×1°, it is possible to derive the ratio of how often
plumes are present out of all TROPOMI observations which result in valid retrievals at a particular location on Earth.
This principle was illustrated in Figure 9.6C (shown with a resolution of 2°×2° in order to make sure the figure is still
readable, the computation is done with gridcells of 1°×1° though).

This ratio allows for a rough estimate of the yearly flux resulting from point source emissions from a particular grid-
cell. Equation 9.1 is applied again, but now per gridcell, which is elaborated in Equation 9.2. We assume that a source
is active for 24 hours, then sum the source rates of each of the detected plumes in that gridcell and divide it by the
number of detected plumes in that gridcell to arrive at an average mass of emitted CH4 per day on which a plume
was detected for that particular gridcell.
This average amount of emissions per day is multiplied by the ratio between detections and total samples, and is
then multiplied by 365 days to arrive at the estimated total yearly emission flux resulting from point source emis-
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sions within that gridcell. This is based on the assumption that the ratio between detected plumes and total number
of samples is also representative for days when there is no coverage. Finally, this number is summed for all gridcells.
The obtained result is 17.2 Tg a-1, which is equal to 5.2% of total annual anthropogenic CH4 emissions (Table 2.2).
This is roughly equal to the annual CH4 emissions by the European Union in 2018, which was 17.8 Tg.2

Qg r i dcel l_i _ j _av g =∑N
1 (Qsampl e ·24 h) / number of detections t d−1

AFg r i dcel l_i _ j = Qg r i dcel l_i _ j _av g · detections
all samples ·365 ·10−6 Mt a−1 (= Tg a−1)

AFg l obal = ∑180
i=−180

∑90
j=−90 AFg r i dcel l _i _ j Mt a−1 (= Tg a−1)

(9.2)

Where AFg r i dcel l _i _ j is the annual CH4 flux per gridcell, N is the number of detections in the given gridcell, i denotes
the longitude index, j denotes the latitude index and AFg l obal is the estimated global annual CH4 flux resulting from
point sources.

Figure 9.8: The area of study in the analysis by Zhang et al. [16]. source: [16]

This same principle is applied to a smaller,
well studied area, instead of the entire globe.
The area selected was the Permian Basin,
USA. Zhang et al. [16] published a study in
early 2020 where the annual CH4 flux of the
4° × 4° area around the Permian Basin was
computed. Using Bayesian atmospheric in-
verse modeling, the authors showed that
emissions were higher than was previously
thought based on the bottom-up Environ-
mental Protection Agency (EPA) inventory
(2.9 instead of 1.2 Tg a-1, Figure 9.8).
The same area of study (30°− 34° N, 101°−
105° W) was selected and using the approach outlined above, a rough estimate of annual CH4 emissions resulting
from point sources in the area which can be automatically detected using the developed NNs was made. In Figure
9.9 an enlarged version of the relevant parts of the maps of Figure 9.6 are shown. The right subfigure of Figure 9.9
shows the estimates of the annual CH4 flux per gridcell.

The total rough estimate for the emissions by point sources for the area studied by Zhang et al. [16] is 0.33 Tg a-1,
which is 11.4% of the value found by the authors of the paper who used Bayesian atmospheric inverse modeling. A
difference of this magnitude was expected because this study only includes emissions in the form of point sources,
opposed to the other study. The methodology used by Zhang et al. [16] included all emissions, including area sources,
and is therefore is actually much better for this purpose. The Permian basin is known to mostly be an area source,
with sporadic point source emissions as a result of venting or fracking.
However, this analysis gives insight into which fraction of total emissions is emitted as a point source and is de-
tectable in an automated way using the developed NNs and automated source rate estimation (based on IME, Sec-
tion 7.1.3).

Figure 9.9: The same area of study as analysed by Zhang et al. [16]. The results shown here are from the rough estimate of annual CH4 flux
emissions resulting from point source emissions which were detecting using the approach discussed in Section 9.1.

2https://di.unfccc.int/detailed_data_by_party last access: 11-03-2021

https://di.unfccc.int/detailed_data_by_party
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9.2.2. Detected plumes archive
As stated before, a ’plume archive’ was created which contains all metrics which resulted from the feature engineer-
ing algorithms, together with additional information on the location and date of detection for all detected plumes.
The corresponding Figures 5.8, 5.2, 6.7, 7.1, 7.3, 7.4, 7.6 and 7.7 are grouped together for each individual sample and
stored for later reference. Two examples of the figures are shown in the Appendix, (Figure A.4 + A.5) and Figure A.6
+ A.7).

This plume archive contains all plumes from datasets A & B, the detections in the 2020 dataset and additional detec-
tions which were performed in the context of the TROPOMI-GHGSat project from January 22nd, 2021 onwards.
The metrics are stored in such a way that the local coordinate system [0...32, 0...32] can be projected back to the
entire orbit in along-orbit vs across-orbit coordinates (e.g. from Figure 5.5 back to Figure 5.4). This does allow for
plume masks per full orbit file to be constructed, this could be useful for future research on TROPOMI CH4 plumes,
and allows for the plume masks generated here to be remapped to any other desired projection (like an oversampled
latitude-longitude grid for example).

This archive also allows for further statistical analysis of the properties of CH4 plumes in TROPOMI data and it can
be used to generate larger training datasets on which future models could be trained.
This archive will be extended with new detections made with the developed model in the context of the TROPOMI-
GHGSat project as discussed in Section 9.1.

9.2.3. Interactive map showing detections and supporting figures

Figure 9.10: A screenshot of the world map showing CH4 plume
detections as dots on the map with information about the detection as

label.

The archive discussed in the previous section can be ac-
cessed through an interactive map.
Hovering over a detection on the map displays the most
relevant information about the detection, such as the
coordinates of the estimated source location, the date of
the observation and an estimate of the source rate. The
samples are uniquely identified by the orbit_number +
sample_number combination. This provides an inter-
face in which all of the figures and information of all of
the detections made can be conveniently accessed for
further analysis. Two examples of the figures are shown
in the Appendix, one which is a very clear plume (Figure
A.4 + A.5) and one which is more challenging to inter-
pret (Figure A.6 + A.7).
The source finder algorithm is the one most prone to
errors, because it is difficult to backtrace the plume in
some windfields in an automated way. Therefore, the
location shown on the map might be a few pixel (tens of
kilometers) off from the most likely source location a human reviewing the figures would select.
Figure 9.5 is a screenshot of this interface displaying all 2020 detections.
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Conclusions & Future work
Conclusions

The main research question of this thesis, as outlined in Section 3.4, is:

"What is the most suitable machine learning algorithm to automatically detect plumes in TROPOMI
atmospheric methane data, and how can this model be optimized, implemented and utilized?"

It can be concluded from this research that the objective of this study has been met. It was shown to be feasible to
design a machine learning model which can detect CH4 plumes in TROPOMI data in a mostly autonomous workflow
with sufficient accuracy. The sub-research questions are answered below.

A literature study was performed on the available types of machine learning models and which of those were com-
monly applied in remote sensing problems. The Convolutional Neural Network (CNN) was selected as the most
promising type of model because of the 2D input format which means it takes into account the spatial relations and
the ability to detect features anywhere in the input image due to the shared kernels. Also any number of channels
could be used and a CNN can be designed to be either shallow or very deep. The CNN outputs a value between 0 and
1, for which a manual threshold can be set to arrive at a binary classification. However, CH4 emission plumes are
not a binary phenomenon, plumes vary in source rate, with low source rates being harder to distinguishable from
the measurement noise. Binary classification is the most suitable approach, but it was shown to lead to doubtful
predictions for scenes which are difficult to classify.

The TROPOMI CH4 Level 2 dataproduct had to be turned into a suitable format for a machine learning approach,
preferably in a standardized, automated way. Given that a CNN requires gridded input, that is in a matrix or 2D/3D
tensor, two feasible options were identified. The option which is used, utilizes the groundtrack as a local reference
frame with local along-orbit by across-orbit coordinates. The downside of this approach is that off-nadir pixels cover
a larger surface area, but this format is more suitable for single-orbit data and is more suitable for a standardized
approach. A downside is that it is TROPOMI-specific.

The along-orbit by across-orbit reference frame can be split into [32× 32] pixel images using the moving-window
approach with a stride of 50% and a threshold of 20% pixel coverage. This approach ensures that if a plume is cut
off, then it is in the center of the next image. This approach results in a standardized format, to which any number
of parameters present in the TROPOMI CH4 Level 2 dataproduct can be added as additional channels. Furthermore
the xch4 data is filtered a-posteriori, de-striped and corrected for the albedo biases. Before being fed to the network
the xch4 field is normalized relative to the local background in order to make all samples consistent.
As trainingdata, scenes with plumes were extracted from locations which were earlier identified within the TROPOMI-
GHGSat project, those were manually identified, pre-processed to the correct format and double-checked. For the
negatives in the trainingset eight orbits were used, of which all plumes were filtered out resulting in only empty
scenes. The samples in the trainingset were augmented by applying rotations.

Next a CNN of limited complexity (shallow) was designed. This CNN is trained on the prepared dataset achieving
a correct classification accuracy of 93%. By extracting a Class Activation Map (CAM) from the network it could be
verified that the network correctly identifies plume-like features to base its predictions on and is not triggered on
every high enhancement.
Several attempts were made to further improve the performance of the network. A very deep CNN ResNet with over
23.5 million parameters was tested, but it was concluded that such a network is too deep for a binary classification
problem with input images of shape 32×32 and a relatively small trainingset.
Next an attempt was made to improve performance by finetuning the network on some of the most difficult to clas-
sify samples, which are referred to as difficult negatives and artefacts. Artefacts are enhancements in xch4 field not
due to actual emissions but due to correlations with other atmospheric parameters, such as the surface albedo. Next
to xch4, several other parameters of the sample were added, but this did not lead to improved performance. The de-
crease in performance is expected to occur because the elementwise multiplication in the convolutional operation

74



75

for multi-dimensional input (Figures 4.6 & 4.8) does not properly capture the information contained in the layers
with additional parameters, this suggests the information contained in those additional layers is better extracted
separte from the CNN.
Therefore a custom CNN of medium depth was designed and trained only on the xch4 field as input. This network
attained an accuracy of 97%. After a detailed comparison, it was concluded the deep CNN with only the xch4 field as
input performed best.

Instead of filtering the artefacts in the CNN, another method had to be developed to filter out artefacts, this is why
several automated feature engineering algorithms were developed. The outputs of those algorithms are a plume
mask, an estimate for the source location, a rough estimate of the amount of emitted CH4 and source rate, correla-
tion coefficients between xch4 and the atmospheric parameters most commonly causing artefacts, a check whether
an enhancement is on the boundary of a cloud and comparison of the principal eigenvector of the plume with the
windvector. Using metrics based on those algorithms a second Neural Network, a Fully-connected Neural Network
was trained to classify samples which were classified by the CNN to contain plume-like morphology in the xch4 field
as either true plumes, artefacts or difficult negative. This network attained an accuracy of 86% on a subset of the
most difficult to classify ∼ 1000 samples out of ∼ 80,000 from seven weeks of observations. Depending on the appli-
cation it might be favourable to manually inspect the samples classified by the CNN or to rely on this FcNN.
This approach shows that the additional information from the other included retrieved atmospheric parameters in
the TROPOMI dataproduct are best handled outside of the first CNN. Using specialized algorithms, much more in-
formation can be extracted from a single sample.

This workflow was incorporated in the TROPOMI-GHGSat project. From the third week of October onwards the pre-
liminary versions of the CNN were used to make detections in recent observations. From December 1st onwards the
metrics of the feature engineering algorithms were stored to an archive, which is since then being expanded with
new plume detections. This archive can be used to improve both the CNN and FcNN later on, when more observa-
tions have been made.
The workflow which has been developed can now be applied to perform detections of plumes in the new recent
TROPOMI CH4 data. The model which was developed can therefore be used for global monitoring.

Using the developed automated workflow an overview of all detectable point sources in the year 2020 could be made,
without this automated data pipeline this would have been unfeasible. Pre-processing resulted in 648,547 samples.
and the detection process led to 2195 detected plumes. Manual inspection of detections at locations known to be
challenging for TROPOMI retrievals, lead to identification of several coastal artefacts, and noisy scenes over rain-
forests. After this manual inspection 2084 samples remained, of which 1400 were unique combinations of date &
location.
These detections were mainly clustered around a small number hotspots for pointsource emissions. Most of these
locations had been already indentified using preliminary versions of the model since October, or before this project
was started. A number of new potential hotspots were identified as well and are further investigated at the time of
writing.
A relative increase in detections during summer on the northern hemisphere is observed, which is speculated to be
mainly caused by Russia being illuminated and snow free. Using the source rate estimate which was computed for
each of the pointsource emissions an estimate of the total emissions resulting from the detected pointsources could
be computed.

When each of the pointsources is assumed to be active for 24 hours (the time between two TROPOMI observations
at a constant source rate, the estimated total emissions resulting form these pointsources is 1.82 Tg. This is roughly
0.5% of global annual anthropogenic emissions of all categories (Table 2.2).
When the ratio of detections over all valid samples is computed per gridcell of 1°×1° gridcells, a rough estimate can
be made about annual global emissions resulting from point sources. With the assumption that this ratio, and the
average source rate of the days where there is a detection is representative for the days without data, an estimate
of the annual CH4 flux is computed. This was found to be 17.2 Tg a-1, which is 5.2% of annual antrhopogenic CH4

emissions, and is roughly equal to all CH4 emissions by the European Union in the year 2018.
The same analysis was performed on the Permian Basin, a 4°× 4° area studied in detail by Zhang et al. [16]. An
estimate of 0.33 Tg a-1 is found, which is 11.4% of the value the authors found using Bayesian atmospheric inverse
modeling, which also includes area sources. This result gives insight into which fraction of emissions is emitted as a
point source and is detectable in an automated way using the developed NNs and automated source rate estimation.
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Future work

Several opportunities for improvements or follow-up studies were identified during this research:

• The most convenient opportunity for future work is to train the same two Neural Networks again on a larger
dataset which was obtained from the implementation of the workflow within the TROPOMI-GHGSat project
and the 2020 year overview. The limiting factor for further improvement was most likely the lack of additional
trainingdata. These detections which can be used as trainingdata are stored in a convenient format.

• The approach outlined in this research was applied to all data of 2020. Since TROPOMI was launched in Octo-
ber 2017 , it could also be applied on the observations of the years 2018 and 2019. However for this application
it should be noted that the TROPOMI pixel size changed in September 2019 from 7 km to 5.5 km in the along-
orbit direction.

• The filtersettings used in this study could be reviewed and improved where possible.

• The plumes detected in the archive can also be used for other follow-up studies than continuation of this study.
The plume masks are stored in such a way that the information can be extracted and remapped to any desired
format.

• Several other machine learning approaches which might be feasible for this problem can be attempted, taking
advantage of the created archive of plumes for training. Image segmentation networks are an approach where
samples are not labeled binary, but where a segmentation mask is produced. This segmentation mask indi-
cates which part of the image corresponds to the target class. This approach does require segmentation masks
as input during training, therefore it was not a viable option at the start of this project. Now, the plume masks
generated for each plume could be used for this purpose. An image segmentation approach might however
encounter difficulties in a problem setup with only two classes, and the question is whether this would yield
better results than the plume mask algorithm which was developed. Therefor this approach was not pursued
in this research.

• Several of the feature engineering algorithms could be improved and additional feature engineering algorithms
could be added.
The source-finder algorithm can be improved as the estimate of the source location can be off by a few pixels,
which quickly adds up to tens of kilometers given the surface area covered by a single TROPOMI pixel.
The IME algorithm could also be improved by computing a more detailed plume length.
The source finder and PCA/windvector angle analysis operate in latitude-longitude space. It would be more
accurate to project the datapoints to a flattened 2D Earth surface with dimensions in km × km. The windvec-
tors of the GEOS-FP dataproduct are given in m s-1, which is on a local scale not that different from latitude-
longitude space, but this projection to km × km space would improve the accuracy.
If new feature engineering algorithms are developed, the metrics resulting from those can also be utilized in
order to further improve the performance of the FcNN.

• The approach which is described in this research could potentially also be applied in other contexts (with
some modifications) with other (future) instruments measuring CH4 (Sentinel 5, CO2M, MethaneSAT) or to
other trace gasses, like CO or NO2 measured by TROPOMI.

• The models and workflow developed in this research could potentially be applied to measurements from Sen-
tinel 5 once operational. If the specifications of the instrument, and the resulting pixel properties are similar,
this workflow should be able to be implemented with only very limited modifications. Potentially the NNs
trained on TROPOMI CH4 plumes could be used to detect plumes in Sentinel 5 observations shortly after
launch already, thus without the need to first build up a training dataset.



Data Availability

TROPOMI CH4 data are available at ftp://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/10_9/.
GEOS-FP data are available at https://portal.nccs.nasa.gov/cgi-lats4d/opendap.cgi?&path=.

The developed models and model output is available upon request via email:

B.J.Schuit@sron.nl / berendjschuit@gmail.com (author) or
J.D.Maasakkers@sron.nl (supervisor)
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A
Appendix

A.1. IME verification with thoroughly studied Louisiana blowout case

Figure A.1: comparison of source rate estimate versus
thoroughly studied results in [21]

In order to verify the automated IME algorithm, it was com-
pared to a thoroughly studied case of a gas wellpad blowout
[21]. The emissions arising from this event were studied in de-
tail and quantified accurately. As a comparison, for the four
days with clear plumes the corresponding 32 × 32 pixel sam-
ples were selected and the automated plume mask, source finder
and IME algorithms were applied with standard settings without
any finetuning or tweaking. The results are shown in Figures
A.2 and A.1. A reasonably well agreement was found, but the
automated IME estimate does consistently underestimate emis-
sions, a phenomena which is well known for such emission esti-
mates. Furthermore, in the study of the Louisiana blowout, the
TROPOMI retrieval were enhanced and filtersettings were loos-
ened specifically for that particular scene on those days in or-
der to obtain more data. Therefore the standard 32 × 32 pixel
sample which was used by the IME contains less valid pix-
els.
This comparison, even-though only consisting of four samples does
show that the automated IME algorithm is able to provide a useful
first estimate for the source rate.

Figure A.2: Comparison of source rate estimate versus the thoroughly studied results (including uncertainty bounds) per day for the Louisiana
Blowout event in 2019 discussed in [21]
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A.2. Additional Tables and Figures

SRON column name CH4 Level 2 dataproduct location Unit Typical value
range

lat_corn
(lat0, lat1, lat2, lat3)

PRODUCT-SUPPORT_DATA-GEOLOCATIONS-
latitude_bounds

°N [-90, 90]

lat PRODUCT-latitude °N [-90, 90]

lon_corn
(lon0, lon1, lon2, lon3)

PRODUCT-SUPPORT_DATA-GEOLOCATIONS-
longitude_bounds

°E [-180, 180]

lon PRODUCT-longitude °E [-180, 180]

xch4 (bias corrected) PRODUCT-methane_mixing_ratio_bias_corrected ppb (1e-9) ≈ 1850

xch4_uncor PRODUCT-methane_mixing_ratio ppb (1e-9) ≈ 1850

qa PRODUCT-qa_value (Table 2.6) - [0, 0.4, 0.8, 1]

weekday from date - [0, 6]

year from date - [2017, 2020]

day from date - [1, 31]

month from date - [1, 12]

albedo_swir PRODUCT-SUPPORT_DATA-DETAILED_RESULTS-
surface_albedo_SWIR

- [0, 1]

aerosol_op PRODUCT-SUPPORT_DATA-DETAILED_RESULTS-
aerosol_optical_thickness_SWIR

- [0, 0.2]

aerosol_num PRODUCT-SUPPORT_DATA-DETAILED_RESULTS-
aerosol_number_column

m-2 ≈ [14,17]

ch4col (surfpres * xch4 * η / mdr y_ai r / g / 1e4) /
6.022141e19

mol m-2 [0.50, 0.70]

surfpres PRODUCT-SUPPORT_DATA-INPUT_DATA-
surface_pressure

hPa [970, 1010]

prior (prior_col / surf_pres / η * mdr y_ai r * g * 1e4) *
6.022141e19

ppb (1e-9) ≈ 1850

prior_col PRODUCT-SUPPORT_DATA-INPUT_DATA-
methane_profile_apriori

mol m-2 [0.50, 0.70]

orbitnr specified in .nc filename - [0, 15000]

time PRODUCT-time & PRODUCT-time_delta s (ms accu-
racy)

seconds
from TAI2010
reference

Table A.1: Description of the Level 2 data used. [32]

Normalization scheme lowest input highest input NaN value after min value after max value after

N1 min(sample) max(sample) 0 0 max(sample)
N2 min(sample) max(sample) 0 0 1
N3 min(sample) max(sample) 0 0.10 1
N4 min(sample) max(sample) -10 0.10 1
N5 (threshold) mean - std mean + 100 0 0 1
N6 (threshold) mean - 2std mean + 150 0 0.10 1

Table A.2: The normalization schemes used for pre-processing the xch4 samples.
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index normalization scheme Plumes Dataset A All other datasets

0 xch4 xch4
1 lat lat
2 lon lon
3 surf_pres surf_pres
4 albedo albedo
5 aerosol aerosol
6 qa_val qa_val
7 time time
8 enh enh
9 empty surf_alt
10 empty cloud_frac_VIIRS_SWIR
11 empty surf_class
12 wind_north_V wind_north_V
13 wind_east_U wind_east_U
14 plume_mask plume_mask
15 source_mask source_mask
16 pixel_area pixel_area
17 empty albedo_nir
18 empty aerosol_nir
19 empty cloud_frac_VIIRS_NIR
20 empty xch4_bias_cor
21 empty xch4_uncor
22 empty xch4_elevation_cor
23 N1 dataprep_normed_zero dataprep_normed_zero
24 N2 dataprep_normed_zero_scaled dataprep_normed_zero_scaled
25 N3 dataprep_min_10p dataprep_min_10p
26 N4 dataprep_min_10p_nan_min10 dataprep_min_10p_nan_min10
27 N5 dataprep_norm_by_std_fixed dataprep_norm_by_std_fixed
28 N6 dataprep_norm_by_std_fixed_min10 dataprep_norm_by_std_fixed_min10

Table A.3: The different layers in the standardized sample format. Mostly xch4 is used as the only channel (nC = 1), but when more channels are
selected the datasets containing the samples of single orbit / week of data / year of data have the dimensions: [m,nH ,nW ,nC ] = [m,32,32,nC ].

Figure A.3: Examples of detections in recent data using the fully-automated detection workflow.
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Figure A.4: Visualization of sample 16967_212, clear plume, first half
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Figure A.5: Visualization of sample 16967_212, clear plume, second half
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Figure A.6: Visualization of sample 16939_200, challenging plume, first half
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Figure A.7: Visualization of sample 16939_200, challenging plume, second half
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