
Save Time Fixing Broken CI Builds
Without Leaving Your IDE
Casper Boone

TESTAXIS: Save Time Fixing Broken
CI Builds Without Leaving Your IDE

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Casper Boone
born in Rotterdam, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
ewi.tudelft.nl

ewi.tudelft.nl

© 2021 Casper Boone. All rights reserved.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

TESTAXIS: Save Time Fixing Broken
CI Builds Without Leaving Your IDE

Author: Casper Boone
Student id: 4482107
Email: mail@casperboone.nl

Abstract

The most common reason for Continuous Integration (CI) build failures is failing
tests. When a build fails, a developer often has to scroll through hundreds to thousands
of log lines to find which test is failing and why. Finding the issue is a tedious
process that relies on a developer’s experience and increases the cost of software
testing. Providing CI build test results with additional context in the developer’s local
development environment could help solve failing tests more quickly. We propose
TESTAXIS, a test result inspection tool that brings CI test results to the Integrated
Development Environment (IDE) offering an experience similar to running a test locally.
Moreover, it surfaces additional information that is too expensive to collect in local
development, for example, a unique view of the code under test that was changed leading
up to the build failure. We implement TESTAXIS as a plugin for IntelliJ and conduct a
user study to evaluate its usefulness and performance benefits. The participants solve
programming assignments evaluating the three main features: the test results overview,
the test code editor, and the changed code under test display. We show that TESTAXIS
helps developers fix failing tests 13.4% to 30.4% faster. The participants found the
features of TESTAXIS useful and would incorporate it in their development workflow
to save time. With TESTAXIS we set an important step towards removing the need to
manually inspect build logs and bringing CI build results to the IDE, ultimately saving
developers time.

Thesis Committee:

Chair: Prof. dr. A.E. Zaidman, TU Delft
Committee Member: Dr. A. Katsifodimos, TU Delft
Committee Member: C.E. Brandt, TU Delft

mail@casperboone.nl

Preface

Nine months ago I started this turbulent journey called a thesis project. Apparently, that is a
thing people do to at the end of their Master’s, so I wanted to give it a try as well. Since you
are looking at a thesis that (at least) I consider to be finished, I think that worked out. While
I was working on my small project to improve a developer’s quality of life, many scientists
showed the world the importance and power of science by making extremely impressive
efforts towards fighting the global COVID-19 pandemic. Although these times required
physical isolation, I was never isolated from the many people that helped me make this thesis
possible.

First, I would like to thank my supervisors, Andy Zaidman and Carolin Brandt. Andy
supported my initial research idea for this thesis from the start and helped me refine it to a
concrete research proposal (while thankfully preventing me from wanting to do too much
on multiple occasions). I am very grateful for Andy’s openness to new ideas, feedback on
my work, and help in finding concrete solutions to certain problems. During the project, I
had the pleasure to discuss my work with Carolin every week. Carolin always provided very
useful and detailed feedback on my work. She motivated me to go the extra mile while also
making sure that I would finish my thesis according to planning.

Second, I would like to thank the participants of the experiment. All 16 participants
freed up 1,5 hours of their busy lives to provide me with invaluable feedback on the project.
I appreciate their willingness to participate in the experiment and their openness in sharing
their opinions.

Last, I obviously want to thank my family and friends for their support through this
journey. From the weekly thesis coffee break discussions with Joël, to their help in finding
participants for the (pilot) experiment. I could not have finished this work without the great
care and support of my boyfriend Bouke who always followed my thesis endeavors closely,
if only due to the working-from-home situation.

Casper Boone
Delft, the Netherlands

June 11, 2021

iii

Contents

Preface iii

Contents v

List of Figures ix

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 3
1.3 Approach . 6
1.4 Contributions . 7
1.5 Thesis Outline . 8

2 Conceptual Design and Features 9
2.1 TESTAXIS Features . 9

2.1.1 Presentation of CI Build Test Results 9
2.1.2 Test Failure Details and Test Code 10
2.1.3 (Changed) Code Under Test . 11
2.1.4 Build Notifications . 12
2.1.5 Test Health Warnings . 13

2.2 Requirements Analysis . 14
2.2.1 Functional Requirements . 14
2.2.2 Non-Functional Requirements . 16

2.3 Summary . 17

3 Development and Implementation 19
3.1 From a CI Service to the TESTAXIS Backend 19

3.1.1 CI-Service-Independent Communication 20
3.1.2 Collecting Test Reports . 20
3.1.3 Collecting Coverage Per Test Reports 21

3.2 From the TESTAXIS Backend to the IDE Plugin 22

v

CONTENTS

3.2.1 Processing of Incoming Reports 22
3.2.2 Communication . 22
3.2.3 Backend-Side Test Health Analysis 23

3.3 From the TESTAXIS IDE Plugin to the Developer 23
3.3.1 Getting Started . 23
3.3.2 Build Notifications . 24
3.3.3 Build and Tests Overview . 25
3.3.4 Test (Failure) Meta-Information 26
3.3.5 Test Code . 26
3.3.6 (Changed) Code Under Test . 27
3.3.7 Client-Side Test Health Analysis 28

3.4 Summary . 29

4 User Study Design 31
4.1 Overview of the Experimental Design . 31

4.1.1 Measured Variables . 34
4.2 Pre-Experimental One-Group Pretest-Posttest Study 34

4.2.1 Study Design . 34
4.2.2 Questionnaire Design . 35

4.3 Pre-Experimental Within-Subjects Study 37
4.3.1 Study Design . 37
4.3.2 Software Project Selection . 38
4.3.3 Assignment Design . 40
4.3.4 Assignment Ordering . 43

4.4 Selection of Participants . 44
4.5 Pilot . 45
4.6 Experiment Execution . 46

4.6.1 Structure of a Session . 46
4.6.2 Technical Experiment Setup . 48

4.7 Summary . 49

5 Results and Analysis 51
5.1 Results . 51

5.1.1 Participants . 51
5.1.2 Failure-Fixing Performance in the Assignments 56
5.1.3 Usefulness of The Tool . 59
5.1.4 Build Notifications . 62
5.1.5 Test Health Warnings . 63
5.1.6 Reflection on the Experiment . 63

5.2 Performance Analysis and Discussion . 65
5.2.1 Influence of Background and Experience 66
5.2.2 Statistical Significance of Performance Improvements 67
5.2.3 Meta Information in the IDE . 68
5.2.4 Failed Test Code in the IDE . 71

vi

Contents

5.2.5 (Changed) Code Under Test in the IDE 74
5.2.6 Influence of Assignment Ordering 80

5.3 Usefulness Discussion . 82
5.3.1 Build Notifications in the IDE . 82
5.3.2 Health Warnings . 83
5.3.3 Usefulness of TESTAXIS . 84

5.4 Threats to Validity . 85
5.4.1 Internal Validity . 86
5.4.2 Construct Validity . 87
5.4.3 External Validity . 88

5.5 Summary . 88

6 Related Work 91
6.1 Test Failures in CI Builds . 91
6.2 Assistance in Fixing Failing Tests . 92
6.3 Context of Failing Tests . 93

6.3.1 Collecting and Showing Test Results 93
6.3.2 Finding Code under Test . 94
6.3.3 Finding Changes Causing a Build Failure 96
6.3.4 CI Build Notifications and Results in the IDE 98

7 Conclusions and Future Work 103
7.1 Conclusions . 103

7.1.1 Failure-Fixing Time Performance 104
7.1.2 Usefulness . 105

7.2 Contributions . 107
7.3 Future Work . 107

Bibliography 111

A Glossary 119

B Questionnaires 121
B.1 Pretest Questionnaire . 121

B.1.1 Informed Consent . 121
B.1.2 Personal Background . 123
B.1.3 Experience . 123
B.1.4 Attitude towards software testing and continuous integration 125
B.1.5 Expectations of a CI build test execution visualization tool 126

B.2 Post-Assignment Questionnaire . 127
B.3 Posttest Questionnaire . 127

C Assignments 133
C.1 Assignment Ordering . 133
C.2 Assignment Descriptions . 134

vii

CONTENTS

D Experiment Participants Information Website 143

E Results 147
E.1 Pretest Questionnaire Results . 147

E.1.1 Personal Background . 147
E.1.2 Experience . 147
E.1.3 Attitude towards software testing and continuous integration 147
E.1.4 Expectations of a CI build test execution visualization tool 149

E.2 Post-Assignment Questionnaires Results 150
E.2.1 Assignment 1a . 150
E.2.2 Assignment 1b . 151
E.2.3 Assignment 2a . 152
E.2.4 Assignment 2b . 153
E.2.5 Assignment 3a . 154
E.2.6 Assignment 3b . 155
E.2.7 Assignment 4a . 156
E.2.8 Assignment 4b . 157

E.3 Assignment Timing Results . 158
E.4 Posttest Questionnaire Results . 158

viii

List of Figures

1.1 The relationship between the problems (Section 1.1), the research questions
(Section 1.2), and the features of TESTAXIS (Section 1.3). 5

2.1 An example of the presentation of CI build test results in the IDE implementation
of TESTAXIS. 10

2.2 An example of the presentation of test failure details in the IDE implementation
of TESTAXIS. 10

2.3 An example of the presentation of test source code in the IDE implementation
of TESTAXIS. 11

2.4 An example of how combining coverage and change information leads to more
focused potential issues that require attention. 12

2.5 An example of the (changed) code under test feature in the IDE implementation
of TESTAXIS. 12

2.6 An example of a build notification in TESTAXIS. 13

3.1 System Overview of TESTAXIS. 19
3.2 Example of the new build step to add TESTAXIS support to GitHub Actions. . . 20
3.3 An example of a JUnit XML test report [30]. 21
3.4 Example of a failing test in the TESTAXIS IDE plugin. 24
3.5 The expected user’s flow of interactions with the TESTAXIS IDE plugin. 24
3.6 The settings screen of the TESTAXIS IDE plugin. 25
3.7 Finding the predecessor build in the history of commits. 28
3.8 An example of a test health warning about a potentially flaky test. 28

4.1 Overview of the relation between the two parts of the experiment. 33
4.2 An initial pretest is followed by the introduction of TestAxis after which the

posttest is performed. 35
4.3 An example of how assignment variants are distributed for an experiment with

three categories and four participants. 43
4.4 The three steps that lead to the final ordering of assignments for a single participant. 44
4.5 The structure of an experiment session. 46

ix

LIST OF FIGURES

4.6 The support tool assisting the observer during the experiments. 48

5.1 Demography of the participants of the experiment. 52
5.2 Participants’ experience with software development. 53
5.3 Participants’ experience with software testing. 53
5.4 Participants’ experience with CI. 54
5.5 Participants’ software testing behavior and opinions. 55
5.6 Participants’ opinions on CI builds. 55
5.7 Participants’ build awareness behavior and opinions. 56
5.8 The failure-fixing time in seconds of both the without and with variant of all

assignments. 57
5.9 The number of hit time limits per assignment (lower is better). 58
5.10 Participants’ opinions on the usefulness of the main informational TESTAXIS

features. 59
5.11 Participants’ expectations before using the tool (orange square) versus the per-

ceptions after using the tool (purple square). 60
5.12 Participants’ opinions on the user experience of TESTAXIS. 61
5.13 Participants’ opinions on the IDE build notifications of TESTAXIS. 63
5.14 Participants’ opinions on test (suite) health. 64
5.15 Participants’ opinions on the test (suite) health warnings of TESTAXIS. 64
5.16 Participants’ perceptions of external factors that may have influenced them

during the experiment. 65
5.17 Participants’ view on the quality of the experiment. 66
5.18 The influence of the education level and professional occupation on the total

duration of the programming assignments part of the experiment. 67
5.19 The influence of past experience of the participants on the total duration of the

programming assignments part of the experiment. 67
5.20 Time spent on figuring out which tests failed indicated by the participant in

relation to the failure-fixing time of the assignments of category one. 69
5.21 Participants’ post-assignment feedback on the without (orange square) versus

the with (purple square) variants of the assignments of category one. 70
5.22 Participants’ post-assignment feedback on the without (orange square) versus

the with (purple square) variants of the assignments of category two. 72
5.23 Time spent on investigating the code under test indicated by the participant in

relation to the failure-fixing time of assignment 2b. 72
5.24 Time spent on investigating the test code indicated by the participant in relation

to the failure-fixing time of the assignments of category two. 73
5.25 Participants’ past experience in relation to the failure-fixing time of assignment 2b. 73
5.26 Participants’ past experience in relation to the failure-fixing time of the assign-

ments of category three. 75
5.27 Participants’ post-assignment feedback on the without (orange square) versus

the with (purple square) variants of the assignments of category three. 76
5.28 Time spent investigating the test code indicated by the participant in relation to

the failure-fixing time of the assignments in category four. 77

x

List of Figures

5.29 Time spent investigating the code under test indicated by the participant in
relation to the failure-fixing time of the assignments in category four. 77

5.30 Participants’ post-assignment feedback on the without (orange square) versus
the with (purple square) variants of the assignments of category four. 78

5.31 Participants’ opinion on effectiveness of integration/end-to-end tests in relation
to the failure-fixing time of the assignments in category four. 79

5.32 Years of programming experience in relation to the failure-fixing time of the
assignments in category four. 79

5.33 Influence of the assignment position in the participants’ assignment ordering on
the failure-fixing time per assignment. 81

5.34 Influence of the assignment position in the participants’ assignment ordering on
the average failure-fixing time. 82

6.1 A summary of the failing tests in GitLab’s Merge Request interface [45]. 94
6.2 The interface of SQA-Mashup shows an aggregation of data of various CI tools

[15]. 95
6.3 The test inspection interface of the TeamCity plugin [60]. 100
6.4 The interface of the Hudson/Jenkins Mylyn Builds Connector plugin [31]. . . . 100

xi

Chapter 1

Introduction

Continuous Integration (CI) is a common software engineering practice where functional
and quality attributes of a software application are verified after a change to the source code
of the application. CI is a wide-spread practice in both industry and open-source projects
[27, 62]. It was originally introduced by Booch et al. in 1994 [11] and it became part of the
Microsoft and the Extreme Programming practices a few years later [18, 5]. The goal is to
detect potential issues with the integration of a new change in the main codebase as soon as
possible by providing early feedback before a change makes it to production. This avoids
defects but also increases developer productivity [39], accelerates release frequency [24, 27],
and, as a side effect, improves communication of changes [20].

These potential issues are detected during a CI build that is usually triggered automatically
after the CI provider detects a change in the Version Control System (VCS). A typical CI
build comprises building the application to ensure the code compiles, executing the tests to
check whether the application still works as expected, and running static analysis tools to
safeguard the quality of the codebase and detect potential issues. If any of these steps fail,
the whole CI build is considered to be failing, which is sometimes referred to as a “broken
build”. In this thesis, we focus on builds that break due to failing tests, since failing tests are
the most common reason for build failures [7, 65, 48].

When a build fails, the developer has to find and investigate the cause of the build failure.
The build results are usually presented in the form of a build log consisting of hundreds
to thousands of lines of output by, for example, build tools, compilers, test frameworks, or
static analysis tools. The typical steps when encountering a build failure are inspecting the
build log, developing a hypothesis about why the build is failing, confirming this hypothesis
in a local development environment, and finally implementing a fix [67]. CI build logs
typically contain a lot of irrelevant information, and developers indicate to feel overwhelmed
by the amount of detail [2]. This makes finding the issue causing the failure a tedious and
challenging process that relies on a developer’s experience and intuition [67, 28] which
increases the cost of software testing [63]. Developers could be supported in the build-fixing
process by offering better debugging assistance that obviates the need for manual build log
inspection [28].

In case a build breaks due to a failing test, CI providers offer very limited inspection
and debugging functionality compared to a local development environment [27]. Commonly

1

1. INTRODUCTION

used techniques in a local development environment, such as a debugger or quick navigation
from tests to the code under test, are not available on CI platforms. Using such techniques
requires a context switch to an integrated development environment (IDE) after developing
an intuition on the CI platform. Providing access to more information about failing tests in a
developer’s local development environment could help them solve failing tests more quickly.

1.1 Problem Statement

We identify the following four problems that may arise in a developer’s typical CI or test-
fixing workflow:

1. Build Failure Cause Identification A In a build log of hundreds to thousands of
lines of code, it is difficult to identify why a build is failing [2, 28]. To make it easier to
find the cause of a failing build, better assistance is needed to guide developers through
the build log [28]. In this thesis, we mainly focus on failing builds due to test failures,
the major reason why builds fail [7, 65, 48]. Because developers are overwhelmed by
the amount of detail in a build log and want to “find the most faults while investigating
the fewest log lines possible” [2], it is important to make it easier for developers to
know which tests failed. Some CI providers show the failed tests after a build failure
[58, 45, 23], however, most CI providers do not provide enough interpretation of the
build log to make recognizing the failed tests easier and there is no general-purpose
solution.

2. Lack of Assistance When A Test Fails B A name and possibly a stack trace of a
failing test, the information that is typically shown in a build log, is often not enough
information to fix a failing test. From the name of a test, it is sometimes unclear what its
intent or actions are. Beller et al. found that developers switched windows within five
seconds after encountering a build failure [6], indicating the need for additional context
about the reason for the failure to fix a failing test. Furthermore, CI providers do not
provide developers any practical assistance while fixing tests, such as quick navigation
from a stack trace entry to the source code, making failing tests during CI builds
considerably harder to fix than when they fail in a local development environment [28].
By not providing the information in the local development environment, developers
must switch context between the CI platform and their local development environment,
which may be an interference in their development process. A deeper integration
between the local development environment and the CI provider is needed to assist the
debugging process [6].

3. Code Under Test Identification C While inspecting a test failure, it is useful to be
able to quickly identify the production code that is targeted by the test, the code under
test. In fact, reading production code is the first thing the majority of developers do
when they encounter a test failure [6]. In strict unit tests, the connection between a
test and the code under test is often obvious to the developer. However, most tests in
software projects are more involved [64] and for such higher-level tests, it is not always

2

1.2. Research Questions

easy to link a test to the code it is targeting. Discovering the links programmatically is
a nontrivial matter since there is rarely an explicit connection between the test method
and the code under test [52]. A commonly used technique to establish links is using
code coverage [47, 29]. This is, however, a resource-intensive process that slows down
local development because this information is only available after a complete test run.
Running tests with code coverage collection on CI platforms is less costly because all
tests are always run, but most coverage tools do not support tracing coverage back
to individual tests and most CI platforms do not offer a way to inspect these per-test
coverage results. There is also no further integration between the local development
environment and CI platform making use of potentially established links. However, the
large amount of code covered by higher-level tests can be overwhelming, resulting in
too many links between a test and the code it covers to investigate [13, 47]. Developers
need to be assisted in identifying the relevant links to fix the test failure.

4. Awareness of Build Failures D One of the goals of continuous integration is to
speed up the release cycle by having more confidence in the correct working of the
change. However, to make sure there are no unnecessary stalls in this process, it is
important to become aware of a build failure quickly so that the issue can be fixed as
soon as possible. Especially in a workflow where co-workers need to further process
the change or are dependent on it, the time that a build for a code change is failing
should be minimized. Kerzazi et al. found that, on average, it takes three hours
for developers to become aware of a build failure [32]. Also, only 28% of the 28
developers the authors interviewed pays attention to build notifications, for example
via email. A number of developers also indicate to mainly become aware of build
failures via colleagues. All mentioned notification approaches require developers to
leave their development environment to become aware of build failures. Thus, there is
a need for better build notifications in the local development environment.

1.2 Research Questions

We hypothesize that the problems sketched in Section 1.1 can be solved by showing CI build
results and additional context to test failures in an IDE. In this thesis, we investigate how
providing these different types of context influences the developer’s failure-fixing behavior.
We measure the impact this has on the time a developer needs to fix a failing test that
failed during a CI build and hypothesize that the additional context helps them to fix these
tests more quickly. The additional context includes the following aspects: presenting an
interactive stack trace, showing the test code, visualizing the changed code under test, and
raising warnings on the health and history of a test. To determine whether these aspects
save time and are perceived as useful, we pose the research questions below. The research
questions address one or more of the problems of Section 1.1. We depict their relationship in
Figure 1.1.

3

1. INTRODUCTION

RQ1

What is the influence of presenting a test failure in the IDE over a CI build log on
the time a developer needs to fix a failing test?

We want to determine the influence of showing which tests failed in the local development
environment over having to scroll through build logs, to confirm whether this aspect of
CI build test result inspection is a successful attempt at solving the Build Failure Cause
Identification A problem.

RQ2

What is the influence of showing the test code on the time a developer needs to fix
a failing test?

We want to determine the influence of showing the test code of a test that failed in a CI
build in the local development environment, to confirm whether this aspect of CI build
test result inspection is a successful attempt at solving the Lack of Assistance When A
Test Fails B problem.

RQ3

What is the influence of showing the code under test, where the changed code is
highlighted, on the time a developer needs to fix a failing test?

We want to determine the influence of showing the changed code under test of a test that
failed in a CI build in the local development environment, to confirm whether this aspect
of CI build test result inspection is a successful attempt at solving the Lack of Assistance
When A Test Fails B and the Code Under Test Identification C problem.

RQ4

To what extent do developers prefer to be actively notified of CI build failures in
the IDE over their current approach?

In an attempt to solve the Awareness of Build Failures D problem, we investigate the
hypothesis that CI build notifications in the IDE makes developers more aware of a build
failure.

4

1.2. Research Questions

Build Failure Cause
Identification

Lack of Assistance
When A Test Fails

Code Under Test
Identification

Awareness of Build
Failures

RQ 1 Build and Test
Results in the IDE

Easy Access
to Test Code

Changed Code
Under Test

Test Health Warnings

Build Notifications

RQ 2

RQ 3

RQ 4

RQ 5

RQ 6

Problems Research Questions TestAxis Features

A

B

D

C

1

2

4

3

5

Figure 1.1: The relationship between the problems (Section 1.1), the research questions
(Section 1.2), and the features of TESTAXIS (Section 1.3). For RQ6 about the usefulness, we
consider all aspects of TESTAXIS, indicated by the purple arrows.

RQ5

To what extent do developers find it useful to be warned about the health and
history of a failing test?

Based on the (historical) test execution data, developers can be warned about long-
running, often-failing, or flaky tests. This may help to solve the Lack of Assistance When
A Test Fails B problem if developers consider the warnings useful.

RQ6

To what extent do developers consider a CI build test result inspection IDE plugin
useful?

A part of the solution to all four problems could be to present CI build information in
an IDE plugin. When a build fails due to a failing test, additional context related to the
failing test can be provided. In RQ1-RQ3 we ask whether additional context aspects
can help developers solve issues more quickly, here we ask whether developers perceive
these aspects to be useful.

5

1. INTRODUCTION

1.3 Approach

To provide the basis for our research, we start by laying out the current state-of-the-art of
CI build test result inspection using three different investigations. First, we conduct an
exploratory literature study to identify the relevant research in this area. This research helps
to understand the (lack of) currently available solutions for the problems in Section 1.1.
It also gives insights into previous attempts at solving these problems and thus directs us
in what to investigate next. Second, we systematically study the available CI build result
inspection tools in the market places of two widely used IDEs. Lastly, we ask developers
about their current workflow when they encounter a failing build in our user study. This
gives us insights into whether CI build result inspection tools are commonly used.

To address RQ1-RQ6, we propose and design TESTAXIS: a CI build test result inspection
tool. During CI builds, TESTAXIS captures test execution and coverage information. This
information is used to present the build results in the TESTAXIS IDE plugin. The IDE plugin
shows all failing tests and obviates the need to look at the build log (RQ1, 1). For each
failing test, the plugin shows the name of the test, the failure message, and the corresponding
stack trace. Moreover, the test code is shown to make it easier to understand the intent of the
failing test (RQ2, 2).

TESTAXIS also features an overview of the relevant code under test (RQ3, 3). By
collecting coverage per test execution, TESTAXIS is capable of determining which parts of
the code are executed by which test. Combining this information with the code changes
leading up to the build failure allows TESTAXIS to pinpoint potential locations of issues in
the codebase.

By combining the CI build test results and code under test information, TESTAXIS warns
the developer, about often-failing, slow, or flaky tests (RQ5, 5). This information can be
useful in determining the cause of the failing test.

Furthermore, to improve build failure awareness, TESTAXIS sends out notifications after
a build has finished (RQ4, 4). The developer receives this notification in the IDE, where
they can immediately act on the failure.

We create a proof-of-concept implementation of TESTAXIS that we use to evaluate the
effectiveness and perceived usefulness of several aspects of CI build test result inspection
in our experiments. First, we implement a “backend” service that collects and analyzes the
build result data provided during CI build runs. Second, we implement an IDE plugin for
the IntelliJ IDEA Platform. The plugin provides access to all the features described above
to evaluate their effect on a developer’s failure-fixing experience. A demonstration of the
plugin is available at https://youtu.be/4sfnKsvqwKw.

In order to provide an answer to our research questions, we perform experiments with
the implementation of TESTAXIS in our user study. The user study consists of two parts: a
one-group pretest-posttest study and a within-subjects study. Both parts are pre-experimental,
meaning that the outcome of the experiment can only show that there is an effect after using
TESTAXIS but not that this effect is necessarily caused by TESTAXIS. The experiment
comprises an opening questionnaire, eight programming assignments, and a closing question-
naire. During the opening questionnaire, we ask participants questions about, for example,
their past experience and their habits. After the opening questions, we ask participants to

6

https://youtu.be/4sfnKsvqwKw

1.4. Contributions

fix eight randomly assigned failing tests that are part of four categories. Per category, they
solve one assignment without and one assignment with the help of TESTAXIS. For the
assignments without TESTAXIS, we gave the participants access to a GitHub pull request
together with a GitHub Actions build log. The four categories imply the usage of different
features of TESTAXIS: simple cases where the issue can be spotted in the stack trace alone
(RQ1), cases where the issue is in the test code (RQ2), simple cases where the issue is in the
code under test (RQ3), and advanced cases where the issue is in the code under test (RQ3).
See Figure 1.1 for the overview of the relationships between the research questions and the
features described above. The closing questionnaire asks participants about their perception
of the assignments, their experience with TESTAXIS, the aspects they found most useful
(RQ6), and their opinions on the build notifications (RQ4) and test health warnings (RQ5).

1.4 Contributions

The contributions of this thesis are fourfold:

1. TESTAXIS: A modular software system that collects and analyzes CI build test results,
and that visualizes these results with additional context (such as the test code or the
code under test) in the IDE. We make the following open-source software artifacts
available:

a) The TESTAXIS backend that collects and analyzes test reports, and exposes them
through an API1.

b) The TESTAXIS IDE plugin for IntelliJ Platform IDEs that presents build and
tests results to the developer2.

c) A Gradle plugin that collects and generates coverage reports per executed test3.

2. An evaluation of the effect of providing CI build test results with additional context
(such as the test code or the code under test) in the IDE on the failure-fixing time
performance.

3. An evaluation of the perceived usefulness of a CI build test result inspection tool for
the IDE.

4. A publicly available dataset containing the data collected during the experiments [12].
Among others, this includes the timing results, anonymized questionnaire results, notes
including observed time spent on actions, and analysis scripts.

1Available at https://github.com/testaxis/testaxis-backend
2Available at https://github.com/testaxis/testaxis-intellij-plugin
3Available at https://github.com/testaxis/coverage-per-test-gradle-plugin

7

https://github.com/testaxis/testaxis-backend
https://github.com/testaxis/testaxis-intellij-plugin
https://github.com/testaxis/coverage-per-test-gradle-plugin

1. INTRODUCTION

1.5 Thesis Outline

In Chapter 2, we sketch an overview of the conceptual design of TESTAXIS and describe its
feature set. Then, in Chapter 3, we present the implementation of the TESTAXIS backend
and IDE plugin. We describe the design of the user study in Chapter 4 and the results of the
questionnaires and programming assignments from the study in Chapter 5. In Chapter 5, we
also analyze and discuss the results to answer RQ1-RQ6. We sketch the current state-of-the
art of CI build result inspection and related tools in Chapter 6. Finally, we summarize our
findings and discuss opportunities for future work in Chapter 7.

8

Chapter 2

Conceptual Design and Features

While the features of TESTAXIS were shortly introduced in the introduction, in this chapter,
we lay out the conceptual design by describing the features in detail. The conceptual design
can be applied to different types of implementations of which we give one example in
Chapter 3. To describe how these features may be used in practice, we also describe the
use cases of TESTAXIS in the form of functional requirements as part of the requirements
analysis. This analysis also contains a discussion of the non-functional requirements of the
tool.

2.1 TESTAXIS Features

The functionality of TESTAXIS can be categorized into five main features. These features
are: the display of CI build results, the (meta) information about the failure of a test case and
its source code, the presentation of the changed code under test, the communication of build
failures through notifications, and the display of warnings about the quality of the test suite.

2.1.1 Presentation of CI Build Test Results

The core feature of TESTAXIS where the other features build upon is presenting the CI
build test results in a more accessible format than raw build logs. Through communication
between the CI build provider and TESTAXIS, the raw results can be parsed and interpreted
by TESTAXIS. This makes it possible to indicate the reason for the build failure and to
present an overview of the specific tests that failed, obviating the need to inspect the build
log manually. Where such build logs often provide a linear listing of the test failures that
occurred during the build, in order of the test runs, TESTAXIS groups failures by test class.
Figure 2.1 shows an example of test case executions grouped by their class. This provides
additional structure to the results, making it easier to identify in which part(s) of the system
the failures occur.

TESTAXIS includes the results of all tests, also the ones that passed. The tool can
therefore explicitly confirm that a certain test was executed and that it passes, for example
when it previously did not pass. It also enables the possibility to identify slow tests that
impact the build time, since TESTAXIS displays the run time for each executed test. Finally,

9

2. CONCEPTUAL DESIGN AND FEATURES

Figure 2.1: An example of the presentation of CI build test results in the IDE implementation
of TESTAXIS.

Figure 2.2: An example of the presentation of test failure details in the IDE implementation
of TESTAXIS.

it enables further inspection of successful tests using the features described below. This
can be useful in a debugging context where you want to compare a failed test run against a
successful run of the same test.

For CI build failures due to something other than tests, TESTAXIS indicates that the build
has failed due to a reason outside the scope of the tool.

2.1.2 Test Failure Details and Test Code

When a developer inspects a failing test, TESTAXIS shows the basic details of the test, such
as the test name, whether the test passed, the run time, and the execution date. While just
knowing which test failed may sometimes already provide enough hints to the developer to
identify the issue, often this information is too limited. Therefore, TESTAXIS also shows the
failure message of the test, as part of the stack trace, see Figure 2.2. The presentation of the
stack trace includes links to the mentioned files or classes and, by default, hides any internal
language or framework calls. This allows for quick navigation from the failure message to
the code which is not available in a CI build log.

In addition to the failure details and interactive stack trace, TESTAXIS also presents the
source code of the test under inspection. By providing an easy way to read the test code,

10

2.1. TESTAXIS Features

Figure 2.3: An example of the presentation of test source code in the IDE implementation of
TESTAXIS.

the need for manual search and navigation is obviated. On one hand, reading the test code
may give developers additional context to understand the intent of the test, making it easier
to understand why the test is failing. On the other hand, showing the test code may help
developers spot obvious mistakes more quickly. TESTAXIS presents the code of the test
case in the context of the full test file which potentially helps the developer to identify the
test context as well. The code of the test case under inspection is highlighted to provide a
visual hint to the developer. Figure 2.3 shows an example of what this looks like in the IDE
implementation of TESTAXIS.

2.1.3 (Changed) Code Under Test

The goal of the code under test feature is to highlight the parts of the production code that are
likely to contain the issue causing the test to fail. To find out which parts of the production
code the test is targeting, TESTAXIS makes use of code coverage. By collecting code
coverage per test during the CI build run, TESTAXIS knows which lines of the production
code are covered by a particular test. Since most CI builds run the whole test suite, collecting
coverage as a side-effect is a “cheap” operation in terms of the impact on build performance.
Especially compared to the cost of collecting coverage information locally, where it is not
always feasible to continuously run all tests.

While this coverage information could be specific enough to investigate failures of strict
unit tests with a small set of covered files, most tests are more involved and interact with
multiple parts of the codebase [64]. Such tests may therefore cover a large number of lines
of the production code, making it difficult to identify the issue. The amount of potentially
relevant lines to investigate can, however, be reduced by selecting the locations that were
recently changed. Assuming that the test fails due to an intrinsic issue in the code itself
[51], it is likely that the issue is located in a part of the production code that is covered
by the test but also changed in the commits leading up to the build failure. This cannot
be concluded for an extrinsic issue, such as a configuration problem. Since CI builds are

11

2. CONCEPTUAL DESIGN AND FEATURES

/**
 * Creates a new pellet.
 *
 * @return The new pellet.
 */
public Pellet createPellet(int points) {
 return new Pellet(
 PELLET_VALUE,
 sprites.getPelletSprite()
);
}

/**
 * Creates a new pellet.
 *
 * @return The new pellet.
 */
public Pellet createPellet(int points) {
 return new Pellet(
 PELLET_VALUE,
 sprites.getPelletSprite()
);
}

/**
 * Creates a new pellet.
 *
 * @return The new pellet.
 */
public Pellet createPellet(int points) {
 return new Pellet(
 PELLET_VALUE,
 sprites.getPelletSprite()
);
}

A) Covered B) Changed C) Covered and Changed

Figure 2.4: An example of how combining coverage and change information leads to more
focused potential issues that require attention.

Figure 2.5: An example of the (changed) code under test feature in the IDE implementation
of TESTAXIS.

commonly triggered after pushing new commits, TESTAXIS can make use of the full change
information that is available through the VCS. Applying this insight to the production code
results in a list of potential locations of the issue that can be suggested to the developer to
investigate. Figure 2.4 shows how intersecting coverage and change information reduces the
locations of interest that a developer must investigate. See Figure 2.5 for an example of the
implementation of this feature.

2.1.4 Build Notifications

The communication between the CI build provider and TESTAXIS when a build has finished,
provides an opportunity to immediately notify the developer of failing builds. In fact, using
the analyses of the build results that TESTAXIS performs, it already includes the reason
for the build failure in the notification. TESTAXIS can deliver these notifications in an
IDE without relying on external tools or services, such as email or messaging apps. By
providing the notifications in the local development environment, the need for a context
switch to a different application is obviated. From the notification messages, the developer is

12

2.1. TESTAXIS Features

Figure 2.6: An example of a build notification in TESTAXIS.

immediately guided to additional support (the other features of TESTAXIS) that may help
solve the build failure. Figure 2.6 shows an example of a build notification in TESTAXIS.

2.1.5 Test Health Warnings

To help developers maintain the quality of their test suite and alert them of potential issues,
TESTAXIS raises so-called “health warnings”. Once a build has finished, TESTAXIS performs
multiple analyses on the results and may compare the build to previous builds. TESTAXIS

detects three types of potential issues:

1. Slow Tests To make the developer aware of the impact of a particular test on the
performance of the test suite, a warning is shown on tests performing slower than other
tests in the codebase. A test is considered slow if the run time exceeds two times the
average run time of the tests.

2. Often-Failing Tests One of the key ideas behind TESTAXIS is that it has a deeper
understanding of what is going on during the testing phase of CI builds than the CI
providers do. This provides the opportunity to shift the axis from a history of build runs
to a history of test executions. Using this history, we can determine when a specific
test failed in the past and thus how often that test case fails. As a proof-of-concept, we
consider a test to be failing often when it failed 10% of the times in the last 50 builds.
A future study could determine what threshold is sensible to developers in practice, or
the threshold could be made configurable. If the threshold is crossed, the developer
is presented with a warning that suggests investigating why that test fails often and
checking whether the test is potentially flaky or too tightly coupled to the production
code.

3. Flaky Tests Flaky tests are tests that give unreliable and unpredictable results: they
sometimes pass and other times fail without any changes to the code [34]. Because
the results are non-deterministic, the outcome cannot be trusted. To detect potential
flaky tests, TESTAXIS combines the build results and the data from the code under test
feature. If a test fails for which there are no changes in the code it covers, the test is
likely showing flakiness. When TESTAXIS detects this, it warns the developer about
a potential flaky test. Eloussi found that this approach is successful in recognizing
flaky tests in more than 70% of the cases investigated in [22]. The warning includes
a disclaimer saying that the assumed flakiness may also be explained by an extrinsic
issue such as a configuration change because the applied technique will only reliably
detect intrinsic issues [51]. In those cases, however, the past behavior of the test is

13

2. CONCEPTUAL DESIGN AND FEATURES

relevant to figure out whether the test has shown flaky behavior before. The analysis
of often-failing tests described above may provide an answer to that.

2.2 Requirements Analysis

To determine the needs of an implementation of TESTAXIS, we analyze the requirements for
such a tool. The analysis consists of two types of requirements: functional and non-functional
requirements. The functional requirements also serve as an example of the use cases of the
TESTAXIS feature set described in the previous section.

2.2.1 Functional Requirements

We list the following functional requirements and describe their use cases in a developer’s
workflow:

1. Receiving Notifications

1.1. As a developer, I want to receive notifications in my local development environ-
ment when my build fails

1.2. As a developer, I want to click a build notification to inspect the failing build

When a developer creates a pull request or pushes changes, often a CI runner service
starts to build the code and execute the tests. When one of the tests is failing, this
results in a CI build failure. To become aware of a build failure, developers usually
check the build status on the CI platform or VCS platform manually, or they receive a
notification through email or a messaging app. As a developer, removing the need to
do manual checks or to switch to external services can increase build failure awareness.
This can be accomplished by displaying build notifications in an already used local
development environment (requirement 1.1). When a developer reads a notification,
they should be guided to the other features of TESTAXIS to support inspecting the
build failure (requirement 1.2).

2. Inspecting Build Results

2.1. As a developer, I want to know which tests failed during a CI build

2.2. As a developer, I want to review the history of failing builds to compare results
to the past

2.3. As a developer, I want to filter the history failing builds on branch, status, and
build type

When the developer inspects a failing build, by clicking the notification, for instance,
they can be helped by showing which tests caused the build to fail (requirement 2.1).
Usually, finding out that failing tests are the cause of a failing build and finding out
which tests are failing requires opening the website of a CI platform (for example
Travis CI or GitHub Actions) and scrolling through the logs. However, as a developer,

14

2.2. Requirements Analysis

this is a tedious process that can be avoided by presenting the build results in a more
accessible manner.

Moreover, when a developer wants to compare the results of a build or a specific test
from the past, they also can be helped by displaying the history of failing builds and
tests. To avoid this, the history should be filterable to assist the search for the right
build. It should support filtering on the build status: passed, failed due to tests, failed
due to a different reason, or unknown. Furthermore, when changes are pushed to a
branch belonging to a pull request, some VCS providers start two builds: a “push”
build that builds the current branch and a “pull request” branch that first merges the
branch with the main branch and then performs the build. TESTAXIS should therefore
also support filtering on build type. Finally, it should allow filtering on the branch.

3. Inspecting Failing Tests

• Details

3.1. As a developer, I want to know the name of a failing test (meta information)
3.2. As a developer, I want to see the failure message of a failing test
3.3. As a developer, I want to interact with the stack trace of a failing test

After the developer has used the functionality resulting from requirements 2.1-
2.3, they probably want to see more information about a failing test. The name
of the test and/or the stack trace of the failure containing the failure message
may already provide enough information to the developer to know why the test
is failing. This could for instance be the case when the developer is very familiar
with the project and can quickly think of the reason why the test is not passing.
To allow for easy navigation through the entries of the stack trace, similar to
other tools in their local development environment, the code files referenced in
the stack trace should be clickable.

• Test Code

3.4. As a developer, I want to quickly be able to inspect the test code of a failing
3.5. As a developer, I want to quickly navigate to the test code in my code editor
3.6. As a developer, I want to edit the test code from within the tool to make

quick fixes

The developer may have made an obvious mistake in the code of the test itself.
The test code should be shown in the overview of the failing test. The developer
can then quickly spot the failure and fix the issue inside the tool. The test code
can also be used as an information source to find out the intent of the failing test.

• Code Under Test

3.7. As a developer, I want to know what parts of the production code the test is
targeting

3.8. As a developer, I want to know the likely locations of the issue by reviewing
fragments of the code that are both covered and changed

15

2. CONCEPTUAL DESIGN AND FEATURES

3.9. As a developer, I want to see a full overview of the changes in a file

3.10. As a developer, I want to edit the code under test from within the tool to
make quick fixes

The developer may have made a mistake in the code under test. The tool should
try to show all relevant code under test that has changed in the commits leading
up to the failing build. The developer should be able to quickly browse through
the code snippets of the code under test, instead of having to navigate to all
related code files manually, to spot the issue and create a fix.

• Flakiness

3.11. As a developer, I want to know if flakiness is the reason for a failing test

The reason that the test fails might actually not be related to the code change at
all, as a result of flakiness. The tool should suggest this to the developer when
no code under test has changed. The suggestion is supported by executions of
the test in the past that may have resulted in the same failure.

4. Evaluating the Test Suite Quality

4.1. As a developer, I want to know which tests fail often to improve the quality of
my test suite and production code

4.2. As a developer, I want to know which tests impact the build time to improve the
quality of my test suite

As a developer, one wants to keep the overall quality of their production and test code
in a good shape. The tool should provide feedback on two quality measures: failure
rate (requirement 4.1) and test run time (requirements 4.2).

Tests that fail often could, among others, indicate the following issues: the test code
might be too tight to the production code (capturing how the code works instead of
what the code does), the production code might be too tightly coupled (the developer
could conclude that the test often fails for changes that are not related to the test), or
the test might be flaky.

The test run time could be used to identify long-running tests. The perspective of test
execution data provides the opportunity to show warnings about the run time of tests,
making it possible to address such tests.

2.2.2 Non-Functional Requirements

The quality of the tool is determined by non-functional requirements and makes the difference
between a well-received product and an unused one [50]. These requirements constraint the
design choices during the implementation and determine the structural properties of the tool.
Amriola et al. state the following six categories for non-functional requirements which we
apply to the requirements of the tool [3].

16

2.3. Summary

1. Efficiency TESTAXIS must be an efficient tool in terms of performance: the build
results should be available quickly after the CI build has finished, and exploring the
results in the tool should be fast enough to not interrupt a developer’s workflow.

2. Portability TESTAXIS must provide support for Windows, macOS, and Linux as a
part of the IntelliJ IDEA platform IDEs. The tool must support Java and Kotlin.

3. Maintainability The code of TESTAXIS should be well maintainable. By choosing a
modular architecture that allows for change and extension, maintainability should be
achieved. Moreover, testing and static analysis tools should ensure that the quality of
the code is maintained.

4. Expandability The modular architecture of TESTAXIS should ensure easy expandabil-
ity and open the possibility to create alternative clients for other platforms. Within the
codebases, TESTAXIS should have an architecture that allows for easy extension. Also,
it should be possible to add additional programming languages and test frameworks
with reasonable effort.

5. Robustness The tool should be able to deal with incomplete, corrupt, or failing
builds and process the results accordingly. Missing information should not hinder the
developer’s user experience.

6. Safety The data stored by TESTAXIS should be stored securely. The data per user
should be separated and no information about unauthorized projects should be acces-
sible. TESTAXIS should implement a proper authentication mechanism to identify a
user.

Additionally, we also consider the following two non-functional requirements:

7. Usability The tool should be easy to use for developers and match their way of working.
Developers are a different type of target audience than end-users and typically quickly
understand the intuitions of a software application. Therefore, the focus should be
on displaying information as concise and quick to understand as possible without any
interference.

8. User Experience The experience of using the tool should resemble the fixing process
of a local test failure as closely as possible. The tool should integrate seamlessly into
the local development environment.

2.3 Summary

In this chapter, we laid out the feature set of TESTAXIS, consisting of five major features,
that form the conceptual design of the build result inspection tool. TESTAXIS displays the
current CI build results but also allows browsing through past builds. For test results, it
displays the meta-information, such as the name of a test, and gives access to an interactive
stack trace that can be used to explore the test failure. The changed code under test feature

17

2. CONCEPTUAL DESIGN AND FEATURES

provides clear hints of the potential location of the issue causing the test to fail based on
code coverage and VCS changes. Furthermore, the developer is notified of failing builds
through build notifications in the local development. Finally, TESTAXIS raises so-called
health warnings about the quality of the test suite about slow, often-failing, or flaky tests.

To confirm the usefulness of these conceptual features, we analyze the requirements of
the implementation of a tool with these features. The first part of this analysis describes
user stories explaining the potential use cases. The second part is about the non-functional
requirements of the application, such as security and user experience.

18

Chapter 3

Development and Implementation

We created a prototype implementation of TESTAXIS that implements the conceptual design
of Chapter 2. The implementation of this prototype tests the practical realizability of a
CI build test result inspection tool as described in the previous chapters. We also use this
prototype as part of the user study to expose users to TESTAXIS.

We present an overview of the system in Figure 3.1. TESTAXIS consists of two main
parts: the backend and the IDE plugin. The backend is an application that runs on a server.
It receives and processes incoming reports from CI build providers and prepares them for
usage by a client. The application exposes an API that clients can use to retrieve the build
results, among others.

An example of such a client is the IDE plugin we developed. We developed a plugin for
IDEs built on the IntelliJ Platform, such as IntelliJ IDEA or Android Studio. The plugin
presents the build results to the user for inspection. A demonstration of the plugin is available
at https://youtu.be/4sfnKsvqwKw.

In this chapter, we discuss how the build and test information is gathered, processed, and
distributed between the four different components in Figure 3.1. This follows the information
flow from the source to the user.

3.1 From a CI Service to the TESTAXIS Backend 1

The first component in the information flow is the CI build provider. As part of a CI build,
the CI service is responsible for sending the build results to TESTAXIS. The build results
consist of two parts: the test reports and the code coverage reports.

Communicate
Build Results

Backend

Upload
Build Reports

CI Build Provider
Inspect

Build Results

IDE Plugin

User

1 2 31

Figure 3.1: System Overview of TESTAXIS.

19

https://youtu.be/4sfnKsvqwKw

3. DEVELOPMENT AND IMPLEMENTATION

− name: Upload test results to TestAxis
run: bash <(curl −s https://testaxis.io/testaxis−upload.bash) −s build/test−results/test/ −c build/coveragepertest/xml −p ${{ job.status }}
if: always()
env:

TESTAXIS TOKEN: ${{ secrets.TESTAXIS TOKEN }}

Figure 3.2: Example of the new build step to add TESTAXIS support to GitHub Actions.

3.1.1 CI-Service-Independent Communication

To start using TESTAXIS in a software project, developers need to add a new step to their
build scripts. In this step, the CI build runner downloads a bash script from the TESTAXIS

backend. The bash script is based on Codecov’s bash uploader1. The script detects the
CI build provider and gathers meta information such as the current build, commit, branch,
repository, etc. Then, it uploads the build reports (see Section 3.1.2 and 3.1.3) to TESTAXIS.

The bash script can auto-detect 27 CI build providers such as Jenkins, Travis CI, or
GitHub. For those providers, it will automatically detect all the meta-information. For
unsupported providers, these meta properties can be set manually using command line argu-
ments. The report upload phase of TESTAXIS therefore does not depend on any specifically
supported CI build providers.

The new build step must be included after compiling the code, running static analysis
tools, and executing the tests. Therefore, the developer needs to ensure in their build
configuration that the upload step is executed even when the build failed in an earlier step.
Otherwise, TESTAXIS will not receive any information about the build and would thus be
unaware of the existence of the build. In Figure 3.2, we show an example of what the build
step would look like when one would implement it in a GitHub Actions build script. The
uploads are protected by the user’s access token, see Section 3.3.1.

3.1.2 Collecting Test Reports

Once a build has finished, the test result reports are sent to the TESTAXIS backend. These
reports are XML files in the JUnit XML format [30]. This format is supported by many test
frameworks, such as JUnit, Jest, pytest, and PHPUnit. Implementation-wise we focused on
the JUnit reports outputted by Gradle. While the reports from other tools are supported in
theory, small deviations from the structured format may require customizations for specific
test frameworks or build tools.

The XML reports include the name, location, failure message, stack trace, and run time
of each executed test. Figure 3.3 shows an example of such a report.

The user is responsible for setting up their build tools to generate these test reports. A
path to the reports can be specified as an argument to the upload script (see Section 3.1.1).
Gradle outputs the test reports by default and places them in the build directory. Figure 3.2
shows the corresponding argument for the upload script.

1The bash script by Codecov is available open-source at https://github.com/codecov/codecov-bash

20

https://github.com/codecov/codecov-bash

3.1. From a CI Service to the TESTAXIS Backend

<?xml version=”1.0” encoding=”UTF−8” ?>
<testsuites id=”20140612 170519” name=”New configuration (14/06/12 17:05:19)” tests=”225” failures=”1262” time=”0.001”>

<testsuite id=”codereview.cobol.analysisProvider” name=”COBOL Code Review” tests=”45” failures=”17” time=”0.001”>
<testcase id=”codereview.cobol.rules.ProgramIdRule” name=”Use a program name that matches the source file name” time=”0.001”>

<failure message=”PROGRAM.cbl:2 Use a program name that matches the source file name” type=”WARNING”>
WARNING: Use a program name that matches the source file name
Category: COBOL Code Review − Naming Conventions
File: /project/PROGRAM.cbl
Line: 2

</failure>
</testcase>

</testsuite>
</testsuites>

Figure 3.3: An example of a JUnit XML test report [30].

3.1.3 Collecting Coverage Per Test Reports

To enable the code under test and test health warning functionality, TESTAXIS can also
collect coverage reports. Regular code coverage tooling, however, aggregates the covered
lines of all tests of the test suite into a single report. This way, it is not possible to determine
which test covered which lines. We need this information to highlight fragments that are
both covered and changed in the code under test feature and to analyze potential flakiness for
the test health warning feature. Some tooling does allow collecting coverage per test [57, 42]
but does not integrate with build tools and cannot output XML reports. SonarQube used to
have support for inspecting such coverage but has dropped this feature [25].

Therefore, we developed a custom Gradle plugin2 that allows collecting coverage and
generating reports per test using JaCoCo. It implements an approach similar to the technique
proposed in [21]. The plugin registers a JUnit 5 extension with a before-each and after-
each callback that gets run whenever a developer executes their tests3. The extension
communicates with JaCoCo’s IAgent interface. This agent exposes methods to set a custom
session ID and to get the raw execution data. The before each callback sets the session ID to
an identifier based on the method name of the test so that the results can be traced back to the
right test. The after-each callback gets the current coverage execution data from the IAgent
in raw bytes and writes it to an .exec file. JaCoCo typically uses this file type to output its
full results, however, we create such a file per test. We now run the regular Gradle JaCoCo
coverage report task to take the raw output and convert it into an XML report. Instead of
doing this just once, our plugin re-runs this task for each test.

Similar to the test reports, developers can specify a path to the output location of the
coverage reports as an argument to the upload script. TESTAXIS accepts JaCoCo coverage
reports with session IDs in the format fully.qualified.class.name##methodName. The
Gradle plugin outputs the reports in this format, however, a similar plugin outputting the
same format could be created for other build tools as well.

2The Coverage Per Test Gradle plugin is available at https://github.com/testaxis/coverage-per-t
est-gradle-plugin

3The extension implements lifecycle callback for JUnit 5, see https://junit.org/junit5/docs/snaps
hot/user-guide/index.html#extensions-lifecycle-callbacks-before-after-execution

21

https://github.com/testaxis/coverage-per-test-gradle-plugin
https://github.com/testaxis/coverage-per-test-gradle-plugin
https://junit.org/junit5/docs/snapshot/user-guide/index.html#extensions-lifecycle-callbacks-before-after-execution
https://junit.org/junit5/docs/snapshot/user-guide/index.html#extensions-lifecycle-callbacks-before-after-execution

3. DEVELOPMENT AND IMPLEMENTATION

3.2 From the TESTAXIS Backend to the IDE Plugin 2

The next part in the information flow is communicating the build and test results from the
TESTAXIS backend to the IDE plugin. The TESTAXIS backend is a Spring Boot application
written in Kotlin. The application is responsible for processing incoming build reports,
performing analyses on the results, and exposing the gathered information through an API.

3.2.1 Processing of Incoming Reports

TESTAXIS processes two types of incoming reports: test reports (see Section 3.1.2) and
coverage reports (see Section 3.1.3). Once a test report is uploaded, TESTAXIS is made
aware of the existence of a new build, even when the report is empty or absent. It creates a
build in the database linked to a project and a user’s account. For a new build, we persist the
build status, the branch name, the commit hash, the repository name, the tag name, the PR
number, the CI build service, and the external CI build ID and URL. TESTAXIS returns the
internal build ID after the test report upload which can be used to upload coverage reports
for the same build.

The incoming XML reports are parsed to an internal representation. For each test case
execution, we persist the test name, the test class name, the run time, the passed status, the
failure message, and the failure stack trace. This information is persisted in the database of
the backend application and is linked to a user’s account and one of their projects. If the CI
build service indicates that the build has failed, the failure reason is either set to tests or to
unknown when no reports are present or all tests passed.

The incoming coverage reports are large in size because they also contain information
about non-covered lines of code and several statistics. Therefore, we store the coverage
information in a more condensed format where we leave out all information that is irrelevant
to TESTAXIS. Each incoming coverage report contains the coverage results for a single test.
In that report, we collect all the covered lines per source file, ending up with a mapping from
source file names to covered line numbers. Using the session ID in the coverage reports (see
Section 3.1.3) we find the corresponding test case execution of the build in the database and
append the coverage mapping.

3.2.2 Communication

The TESTAXIS backend communicates with the IDE plugin using two different techniques.
It uses WebSockets to instantly push messages about finished builds for build notifications
and a REST API for all other communication.

The REST API exposes all information gathered by the TESTAXIS backend4. This
includes a listing of projects and their builds but also the information of all test case executions
corresponding to a build. The API also features endpoints to retrieve the full details of a test
case execution like the covered lines or the stack trace information. Furthermore, it offers the
possibility to conduct a test health analysis on a given test case execution (see Section 3.2.3).

4The API documentation of TESTAXIS is available at https://documenter.getpostman.com/view
/14162304/TVzSjGs1.

22

https://documenter.getpostman.com/view/14162304/TVzSjGs1
https://documenter.getpostman.com/view/14162304/TVzSjGs1

3.3. From the TESTAXIS IDE Plugin to the Developer

The API requires authentication using a JWT Bearer token. This token can either
be retrieved by logging in using GitHub or creating a user account in TESTAXIS itself.
Therefore, the API also features endpoints to register an account or log in. The project,
builds, and test information can only be retrieved by users that have access to the project.

3.2.3 Backend-Side Test Health Analysis

We conduct the test health analysis partly in the backend application and partly in the IDE
plugin. Since the backend application does not interact directly with the git repositories,
we perform the analyses that need access to change information in the IDE. The backend
application conducts the health checks for often-failing or slow tests. The TESTAXIS backend
conducts the analyses upon explicit request of the client (see Section 3.2.2).

Slow Tests To determine whether a test is performing slower than average, we perform a
run-time analysis. We first compute the average run time of a test of the current build. Then,
we check if the test performs more than two times slower than the average run time. If this
is the case, we raise the following warning: “The performance of your test suite may be
improved by speeding up this test. It performs slower than twice the average. The average
test execution time is X ms.”

Often-Failing Tests We consider a test to fail often when it has failed in more than 10%
of the last 50 builds. Contrary to CI providers, TESTAXIS has a more granular history on
the level of tests instead of builds. This allows us to analyze whether a test fails often by
investigating the history of a particular test case across multiple builds. It considers a test
from a previous build the same when it has the same name and is in the same class. If we
find that the number of times the test has failed exceeds the threshold, we raise the following
warning: “This test is failing often (X times in the last 50 builds). This may be an indication
that your test is too tightly coupled to your production code or that the test may be flaky.”

3.3 From the TESTAXIS IDE Plugin to the Developer 3

The IntelliJ Platform IDE plugin is the last step in the information pipeline. From the
plugin, TESTAXIS communicates the build information to the developer. Figure 3.4 shows
an example of a failing test in the IDE plugin. Interaction with the plugin is likely to start
upon receiving a build notification. Then, the developer can use the build and test overview
to select a (failing) test to get access to the failure information, test code, and code under test.
We show the interaction flow in Figure 3.5 and describe the implementation of the shown
features below. However, we first describe how to set up TESTAXIS on the first usage.

3.3.1 Getting Started

Before the IDE plugin can be used, the user first needs to log in or register an account. This
can be done in the settings screen of IntelliJ, see Figure 3.6 for an example. The user can
either choose to log in through GitHub or to create an account using their email address.

23

3. DEVELOPMENT AND IMPLEMENTATION

Figure 3.4: Example of a failing test in the TESTAXIS IDE plugin.

Build Notification
A

Build and Tests
Overview

Test (Failure)
Meta-Information

Test Code

Code Under Test

Test Health
Warnings

B

C

D

E

F

Figure 3.5: The expected user’s flow of interactions with the TESTAXIS IDE plugin.

After the user has set up their CI build to upload results to TESTAXIS and the first build
of a project has been completed, the project will show up in the settings screen. The user can
select this project to link it to the currently active IntelliJ project.

To set up the upload script as a part of the CI build steps, an access token is required.
After the user is logged in, TESTAXIS shows this access token in the settings screen.

Under “Advanced Settings”, the user can set up the host of the TESTAXIS backend server.
This way, a user can decide to run their own backend infrastructure and connect it to the IDE
plugin.

3.3.2 Build Notifications A

The starting point of a user’s journey through TESTAXIS is likely to be a build notification
indicating that a new build has finished. By default, TESTAXIS notifies the user of both
successful and failed builds but this behavior is configurable. From the build notification, see
Figure 2.6 for an example, a user can click “Inspect Results” to open the TESTAXIS tool
window and analyze the results of the CI build.

TESTAXIS shows a build notification as soon as it gets notified over the WebSocket
connection (see Section 3.2.2). When such a message comes in, the plugin also updates the
build and tests overview so that the build information is ready to be inspected by the user.

24

3.3. From the TESTAXIS IDE Plugin to the Developer

Figure 3.6: The settings screen of the TESTAXIS IDE plugin.

3.3.3 Build and Tests Overview B

On the left of the tool window (see Figure 2.1), TESTAXIS shows an overview of past builds.
The information in this list is retrieved from the TESTAXIS backend through the REST
API. When a user selects a build, the list expands to a tree and shows all the test classes
of which tests are executed during the build. This information is loaded asynchronously to
avoid retrieving lots of unnecessary information and therefore making it possible to show a
larger history of builds. The class names can be expanded to show the tests per class. In this
overview, we also show the run time and the pass/fail indicator. This looks similar to locally
running multiple tests in IntelliJ.

To make the builds recognizable for the developers, TESTAXIS also shows the name
of the commit that triggered the build. This information is not available when the test
reports are uploaded to TESTAXIS and thus we must retrieve it at a later stage. We leverage
the availability of the git plugin in IntelliJ which abstracts over native git command-line
interactions. We communicate with this plugin to retrieve the name of the commits and, in a
later stage, also to retrieve the build history for the (changed) code under test feature and the
test health warnings.

Above the builds tree, the plugin shows filtering options (see Figure 2.1). It is possible to
filter by branch, build status, and build type (PR builds). The filtering is performed at the
client-side in the plugin.

25

3. DEVELOPMENT AND IMPLEMENTATION

3.3.4 Test (Failure) Meta Information C

Once the user selects a test in the builds overview, the tool window will show more informa-
tion about the test case execution. The information is split in three tabs: Execution Details,
Test Code, and Code Under Test. The first tab shows meta-information about the test failure,
see Figure 2.2 for an example. This includes the name of the test, the name and package of
the test class, the run time, the pass/fail status, and the execution date. It also shows a button
to navigate to the test in the main IDE window. Clicking this button will open the test class
at the start of the test method. In Section 3.3.5, we discuss how we find the method in the
codebase based on the class and method name originating from the uploaded test reports.

Moreover, the meta-information also includes the stack trace. The stack trace originates
from the test reports uploaded by the CI build runners. TESTAXIS displays the stack trace
in an interactive manner similar to how IntelliJ presents the results of native test runs. This
means that all entries in the stack trace are clickable. Clicking such an entry will navigate
the user to the mentioned file at the right location. Also, TESTAXIS hides internal Java or
platform calls to keep the focus on the relevant entries. In terms of implementation, we
re-use the UI component used in native parts of IntelliJ to make this possible.

The Execution Details tab also shows the test health warnings. We discuss these warnings
in more detail in Section 3.3.7.

3.3.5 Test Code D

The second tab with context of the test case execution is the Test Code tab. This one shows
the code of the test that was executed. To allow putting the test in the right perspective,
TESTAXIS shows the surrounding test class as well. It highlights the specific test method of
the test that was executed and opens the file at the start of this method, see Figure 2.3.

To show this file, we first need to find it based on the package name and class name of
the test method. From the uploaded test reports, we know the fully qualified class name
and the name of the test. To find the file that implements this class, we make use of the
Program Structure Interface (PSI) of IntelliJ. The PSI allows us to find a reference to the file
in IntelliJ’s internal file system by providing the fully qualified class name. Furthermore, it
exposes program structure information allowing us to get a reference to a specific method, in
our case the test method, as well. This allows us to identify the lines within the file that need
to be highlighted or to navigate to the test method.

These interactions with the PSI are language-specific since the constructs of namespaces
and modules differ per language. TESTAXIS offers support for Java and Kotlin projects. This
is the only part of TESTAXIS where the support for programming languages is limited and
thus where customization is needed when support for other languages would be added.

TESTAXIS shows the local version of the test file. This means, when the user is investi-
gating a build of a different commit or branch than they are currently working on, the shown
test code may be inaccurate. The plugin makes the user aware of this by showing a warning
indicating that the currently checked-out revision does not match the build revision. The
warning is shown at the top of the editor and offers the options to check out the right branch
or commit by clicking a button in the warning message.

26

3.3. From the TESTAXIS IDE Plugin to the Developer

The shown editor is an extension of the LanguageTextField provided by the IntelliJ
platform. In this editor, most IDE functionality (auto-completion, navigation to references,
refactoring, etc.) is available. This should give developers a user experience that is familiar
to them. The code shown can immediately be edited from our editor as well.

3.3.6 (Changed) Code Under Test E

The Code Under Test tab shows the files that were covered by the test, see Figure 2.5. Files
that were changed in the commits leading up to the build run are labeled and shown first in
the list. When a user selects a file from the list, they see the contents of the file on the right.
The file is shown in the same type of editor as in the Test Code tab, see Section 3.3.5.

The lines of code in the file are highlighted using three different colors. Yellow indicates
the lines that are covered by the test. The coverage information originates from the coverage
reports uploaded to TESTAXIS during the CI build run. Green indicates the lines that were
changed between the previous build and the current build. Lines that are both covered and
changed are highlighted in purple. These are presumably the most relevant lines to the
developer since it is likely that the issue causing a test to fail is in a part of the codebase that
has changed and is tested by the current test.

Since we want to highlight all changes between the previous build and the current build,
we first need to determine the predecessor of the current build. Establishing this predecessor
relationship is not trivial. While the history of executed builds is linear, the history of
commits triggering the builds is not (see Figure 3.7a). Thus, the previous build is not always
the predecessor of the current build. Hence, we need to map the builds to the commit history
and find the predecessor build in that mapping. In our implementation, we reverse this
problem. From the perspective of a single commit, there is a linear history that led up to
that commit. Instead of looking at which build belongs to which commit, we request git to
provide this linear history. Using this timeline of commits, we start at the newest commit and
go back in time and check for each commit whether it triggered a CI build. If it did, we have
found the predecessor. Figure 3.7b shows the linear timeline based on the commit history in
Figure 3.7a. In this example, we do not mark commit/build 9 as the predecessor since it is
not in the history of commit 10, our starting commit. The first commit that has both triggered
a CI build and is present in the history of commit 10, is commit 7. If the predecessor build
passed and the current build failed, we know that it is likely that the changes between the
two builds caused the issue which made the build fail.

Once we know the commit that triggered the previous build, we request the git plugin of
the IntelliJ platform to provide all the commits between the current and the previous build.
For all of these commits, we compute the code change diff resulting in a list of all added,
modified, or deleted lines. We combine this list with the coverage information to determine
which lines need to get highlighted with the color depending on whether the line is only
covered, only changed, or both covered and changed. In the editor, we do not show deleted
code fragments since they are not part of the file that is under test. However, TESTAXIS does
indicate when code fragments have been deleted at the bottom of the editor. It also provides a
button to open the full code change diff to compare all changes between the current revision
of the file and the revision corresponding to the predecessor build.

27

3. DEVELOPMENT AND IMPLEMENTATION

1

2 3

4 5 6 7

8

9

10

(a) Example of a Commit History

1 2 3 4 5 6 7 8 10

(b) Example of a Linear History

Figure 3.7: Finding the predecessor build in the history of commits. The circles indicate
commits. Green circles represent commits that triggered a CI build. The red circle is the
commit with a build for which we are looking for its predecessor.

Figure 3.8: An example of a test health warning about a potentially flaky test.

Similar to the Test Code tab, a warning is shown when the user is inspecting a build of
a different revision than the one that is checked out locally to ensure the state of the files
matches the files during the build.

3.3.7 Client-Side Test Health Analysis F

In Section 3.2.3, we described the first part of the test health analyses that are conducted
server-side. The flaky test analysis, however, is performed client-side in the IDE plugin.
From the user’s perspective, this does not result in any visual difference in how the tool
shows the warnings. Figure 3.8 shows an example of how the flakiness warning is presented
to the user. TESTAXIS shows these warnings on the Execution Details tab of the plugin.

Potentially Flaky Tests To determine whether a test is potentially flaky, we perform a
code change and coverage analysis. Using the same information that we use for the code
under test feature, we can detect potential flakiness. We consider a test to be potentially flaky
when it does not cover any of the changes. In this case, there is either an extrinsic issue [51],
such as a configuration issue, that causes the test to fail, or the test shows flakiness. We alert
the user about the potential flakiness with the following warning: “This test did not fail due
to code changes. The test failure may be caused by flakiness or an extrinsic issue such as a
configuration change.”

28

3.4. Summary

3.4 Summary

We developed a prototype of TESTAXIS. The prototype consists of two main parts: the
backend application and the IntelliJ IDE Plugin. The CI build providers share the build
results with TESTAXIS using a bash upload script that developers can include in their builds.
The backend application then processes and analyzes these results. The backend shares the
results with the IDE plugin using a REST API and a WebSockets connection for instant build
updates. The plugin for the IntelliJ Platform shows all build and test information to the user.
In the implementation, the IDE plugin re-uses components of IntelliJ to get easy access to
code files or change information. The code under test feature highlights all changes between
the previous and the current build. To establish the previous build, it uses git’s ability to give
a linear history of a single commit and finds the first commit in that history that has a CI
build attached. The test health analysis gives interpretation to the collected information and
is partly performed in the backend and partly in the IDE plugin.

29

Chapter 4

User Study Design

TESTAXIS attempts to improve the workflow of discovering and fixing failing builds. It
introduces new functionality that has not been available in earlier tools by aggregating build
and test information, by presenting new types of information such as the changed code under
test, and by moving it to the context of the local development environment.

Because such a tool is new to developers, we do not know if the proposed features in
fact help towards improving a developer’s workflow and decreasing the time needed to fix
a failing build. Therefore, we conduct a user study in which we ask developers to try out
TESTAXIS and reflect on their experiences. The results of this user study should help us
provide an answer to the research questions on performance and usefulness.

In the study, participants fill out a number of questionnaires and conduct assignments
with and without TESTAXIS. We give an overview of the experiment in the first section.
The experiment consists of two parts. The first part has a pre-experimental one-group
pretest-posttest design. The participants conduct the second part of the experiment, which
has a pre-experimental within-subjects design, in between the pretest and the posttest of the
first part. We describe the design of both parts in the second and third section. Before we
conducted the experiment, we first ran a pilot to evaluate the design of the experiment. Based
on the pilot we made a number of improvements. We then carried out the experiment with
16 participants. In this chapter, we describe the design of the user study and explain how we
conducted the experiments.

4.1 Overview of the Experimental Design

The goal of the experiment is to answer research questions RQ1-RQ6. In the experiment, we
let a group of users try out and evaluate TESTAXIS to measure the potential performance
improvement and perceived usefulness (see Section 4.1.1). On the one hand, we want to
measure the quantitative performance improvement in time needed to solve failing tests
using TESTAXIS. We collect this information in the pre-experimental within-subjects study.
This information is useful to answer RQ1-RQ3.

31

4. USER STUDY DESIGN

RQ1

What is the influence of presenting a test failure in the IDE over a CI build log on
the time a developer needs to fix a failing test?

RQ2

What is the influence of showing the test code on the time a developer needs to fix
a failing test?

RQ3

What is the influence of showing the code under test, where the changed code is
highlighted, on the time a developer needs to fix a failing test?

On the other hand, we want to capture qualitative usefulness feedback on the use of a
CI build test result inspection tool like TESTAXIS. We collect this information in the pre-
experimental one-group pretest-posttest study. This qualitative feedback provides insights to
answer RQ4-RQ6.

RQ4

To what extent do developers prefer to be actively notified of CI build failures in
the IDE over their current approach?

RQ5

To what extent do developers find it useful to be warned about the health and
history of a failing test?

RQ6

To what extent do developers consider a CI build test result inspection IDE plugin
useful?

Figure 4.1 shows an overview of the experiment. The first part of the experiment has
a one-group pretest-posttest pre-experimental design A , which we describe in detail in
Section 4.2. It consists of two main phases: the pretest and the posttest phase. After the
pretest established a baseline, TESTAXIS is introduced and the second part of the experiment,
the pre-experimental within-subjects study B (see Section 4.3), is conducted. In this part
the participants perform a number of programming assignments. Once that part is completed,
we use the posttest to measure the improvement of TESTAXIS over the baseline from the
pretest to evaluate the usefulness.

During the pretest, we ask participants to fill out a questionnaire 1 about their past
experiences and their expectations of a tool like TESTAXIS (see Section 4.2.2 for an overview
of the design of all questionnaires). The participants then conduct four assignments without
TESTAXIS and four assignments with TESTAXIS 2 . The ordering is mixed to avoid the
influence of any learning effects on the results. We describe the assignment ordering in more

32

4.1. Overview of the Experimental Design

Pre-Experimental
One-Group Pretest-

Posttest Study

Pre-Experimental
One-Group Pretest-

Posttest Study

Pre-Experimental
Within-Subjects Study

Posttest
Questionnaire

Introduce
TestAxis

Pretest
Questionnaire

1 4Assignments

Post-Assignment
Questionnaires

2

3

A AB

Figure 4.1: Overview of the relation between the two parts of the experiment.

detail in Section 4.3.4. After each assignment, the participants fill out a post-assignment
questionnaire 3 . At the end of the experiment, they share their feedback and experiences in
the posttest questionnaire 4 . The information gathered from the questionnaires provides
the qualitative feedback that we use to answer RQ4-RQ6.

In total, the experiment has eight assignments divided over four categories (see Sec-
tion 4.3.3). All assignments have two variants: with and without TESTAXIS. For each
assignment, we present a CI build that failed due to failing tests. The participants have to find
out which tests fail and why. Then, they have to come up with a fix. We time the performance
of the participants on these assignments to gather the quantitative data to answer RQ1-RQ3.
Per category, we divide the participants in two groups so that each participant conducts one
assignment per category without and one assignment with TESTAXIS. We can then compare
the results of the two variants of the first assignment (performed by different groups) and
see whether it shows the same trend as the second assignment (to rule out sampling biases).
During the assignments, we also take notes that may help explain the results or provide
additional qualitative feedback over the questionnaires.

Before the participants start the assignments, they first watch two instruction videos.
One shows the architecture and structure of the codebase of JPacman, which is the software
project the participants use for the assignments (see Section 4.3.2). The other one shows and
explains the functionality of TESTAXIS.

The experiment is approved by the Human Research Ethics Committee (HREC) of the
Delft University of Technology and follows the guidelines set by the committee. At the start
of the experiment, participants read and sign an informed consent form (approved by HREC,
see Appendix B.1) indicating that they understand what data will be collected and how it
will be used. As the experiment was carried out during the COVID-19 pandemic, all sessions
with the participants were fully remote.

33

4. USER STUDY DESIGN

4.1.1 Measured Variables

Using the quantitative and the qualitative feedback by the participants of the experiment, we
can measure the following dependent variables:

• Performance The time needed to fix a CI build that fails due to one or more failing
tests.

• Usefulness The perceived usefulness and usability of aspects of a CI build test result
inspection tool.

For the three main features of TESTAXIS (presentation of CI build results, test code, and
code under test) the outcome of these variables provides a direct answer to the performance
questions RQ1-RQ3 and a part of the answer to usefulness question RQ6. The usefulness
variable also captures the perception of build notifications (RQ4), test health warnings (RQ5),
and the overall usability (RQ6).

The independent variable of the experiment is the use of TESTAXIS. Therefore, we
measure the dependent variables before and after the introduction of TESTAXIS.

4.2 Pre-Experimental One-Group Pretest-Posttest Study

The first part of the experiment is a one-group pretest-posttest pre-experimental study. This
part of the study is mostly focused on evaluating the usefulness of TESTAXIS and its features.
In this section, we give an overview of the design of the study and the questionnaires that
capture the participants’ opinions before and after using TESTAXIS.

4.2.1 Study Design

The experiment has a one-group pretest-posttest pre-experimental design [16]. This is an
alternative to the classical controlled experiment where you compare the results of a control
group to an experimental group. In our design, we only have a single group of participants,
the experimental group. All participants are therefore exposed to the same elements of
the experiment. The results of the control group are replaced by a so-called pretest. This
pretest measures the dependent expectations on the usefulness variable, before introducing
the independent variable, TESTAXIS, to the participants, see Figure 4.2. The introduction of
the independent variable and execution of the assignments is called the intervention (this
includes our second study, see Section 4.3). The posttest is conducted as the last step of the
experiment after the intervention.

From the results, we may conclude that there is an effect after the intervention, however
we cannot conclude that this effect is necessarily caused by the intervention [38]. If we can
conclude that such an effect exists, we can provide the basis for and justify a more in-depth
experiment. We choose a pre-experimental design due to a limitation of resources (in terms
of time and staffing) that rule out the possibility for any larger scale experiment types such as
a controlled experiment (requires a high number of participants) or a case study (requires a
long period of time). Since the cost of these “true” experimental studies is significant, a more
explorative study, like ours, can be useful to determine whether the cost of such a future
experiment is justified.

34

4.2. Pre-Experimental One-Group Pretest-Posttest Study

Intervention
Introduce TestAxis
Solve Assignments

Pretest

Questionnaire

Posttest

Questionnaire

Figure 4.2: An initial pretest is followed by the introduction of TestAxis after which the
posttest is performed.

In the pretest, participants fill out a questionnaire and conduct several assignments
without TESTAXIS. This questionnaire has three parts: the first part asks about a participant’s
past experience, the second part asks about their views on software testing and continuous
integration, and the third part asks about the participant’s expectations of a CI build test
result inspection tool.

The posttest also features a questionnaire. It asks about the participant’s experience with
using TESTAXIS and their perception of how the experiment went. Moreover, the third part
of the pretest questionnaire is compared to the first part of the posttest questionnaire, which
asks the same questions.

4.2.2 Questionnaire Design

While the dependent performance variable can be measured quantitatively by timing the
assignments, the usefulness variable can only be answered using qualitative information.
Therefore, we ask participants to fill out two questionnaires. The first questionnaire is at the
start of the experiment, during the pretest. We use this questionnaire to ask the participant
about their past experience, opinions on a number of matters, and establish a baseline in what
they expect of CI build test result inspection tools. We compare the latter to the information
we gain from the posttest questionnaire. Furthermore, the posttest questionnaire also asks
about the experience with the tool and the experiment itself.

The questionnaires mostly contain statements that participants rate on a 1-5 Likert scale
[33], where 1 means “strongly disagree” and 5 means “strongly agree”. There are also a few
open questions. Appendix B shows the full questionnaires.

Pretest Questionnaire

The pretest questionnaire contains questions on four different topics. The information gained
from the topics about a participant’s personal background and experience may be used to
explain some of the results in the experiment. For example, a more experienced developer
may find the assignments easier to solve, or may easier fall back to their own habits. To be
able to provide insights into what a developer’s normal test-fixing habits are, we also ask
developers about their attitude towards software testing, continuous integration, and their
current workflow. The last topic poses statements about what a participant expects from a
CI build test result inspection tool so we can measure whether TESTAXIS meets a user’s
expectations.

35

4. USER STUDY DESIGN

• Personal Background
Open and dropdown questions about a participant’s education level, professional
occupation, and years of programming experience.

• Developer Experience
Statements about a participant’s experience with developing software applications,
software testing, and CI usage. Some of the statements are about specific tools or
libraries used in the assignment to measure the impact of this specific knowledge on
the results.

• Attitude Towards Software Testing and Continuous Integration
Statements regarding a participant’s software testing and CI behavior, and their view
on their current workflow. The questions are about a participant’s workflow when a
build fails (open), how the participant usually becomes aware of a failing build, when
and where they usually run tests, how they interpret CI build logs, and the attitude
towards the concepts for which test health warnings are raised.

• Expectations of a CI Build Test Result Inspection Tool
For the statements in this topic, the following high-level introduction of a CI build test
result inspection tool was given:

“A visualization tool for the results of tests executed during a CI build should improve
the build fixing experience of the developer. The tool should show test failures in a
more approachable manner than build logs.

Furthermore, the tool should show information relevant to the test failure such as an
interactive stack trace, the test code, and the modified code under test, in addition to
information usually available in a build log.

This should help fix failing tests quicker and make the fixing experience closer to a
locally failing test. Moreover, the tool should actively notify developers of failing
builds.”

The statements are about the participant’s expectations of such a tool and whether they
would consider using a tool like this in their development workflow.

Posttest Questionnaire

The posttest questionnaire is conducted after the participants have completed all assignments
and have been introduced to TESTAXIS. This questionnaire contains questions in the
following eight topics:

• Verification
Statements about the meta aspects of solving the assignments. We ask the participants
whether the assignments were challenging and interesting, whether external factors
influenced their ability to fix the test, and whether the presented cases match issues they
ran into in their own projects. Note that we also ask participants about the difficulty of
individual assignments in the post-assignment questionnaire.

36

4.3. Pre-Experimental Within-Subjects Study

• Usefulness of Informational Elements
Statements regarding the usefulness and the adequacy of the different context elements
that TESTAXIS shows to the developer.

• Build Notifications
Statements about the usefulness of the build notifications participants encountered
during the experiment. We ask participants about how they perceived the TESTAXIS

build notifications and whether they could replace their current solution

• Test Health Warnings
Statements about the usefulness of the presented test health warnings, and whether
participants would act on them.

• TESTAXIS IDE Plugin User Experience
Statements about the user experience and integration within the IDE of TESTAXIS.

• Expectations of a CI Build Test Result Inspection Tool
The same set of statements as in the pretest to measure whether TESTAXIS meets a
user’s expectations. The results can be compared to the results from the statements in
the pretest.

• General Comments
Open questions to leave general comments on TESTAXIS, potential missing features,
and the experiment specifically.

• Experiment
Statements regarding the quality and enjoyment of the experiment.

4.3 Pre-Experimental Within-Subjects Study

In the pre-experimental within-subjects study, we evaluate the quantitative dependent variable
performance. We measure the performance in terms of failure-fixing time in seconds. All
participants solve eight assignments for which we measure the time.

In this Section, we first explain the within-subject design of the study. Then, we describe
the selection process of JPacman, the software project that the participants use in the
assignments. Finally, we show the designed assignments and explain the per-participants
ordering of the assignments.

4.3.1 Study Design

The study has a pre-experimental within-subjects design [46]. We conduct this experiment
with the same group of participants as in the pre-experimental one-group pretest posttest study
(see Section 4.2). Both studies are pre-experimental, which means that the performance
results can only show whether the usage of TESTAXIS has any influence on the results

37

4. USER STUDY DESIGN

at all but not that the influence is necessarily caused by TESTAXIS. While the within-
subjects design could also be employed in a true experimental setting, the limited number of
participants in our study makes a pre-experimental study more appropriate.

In a within-subjects experiment, all participants are exposed to the same treatment which,
in our case, means that all participants solve the same assignments [46]. The order in which
they complete the assignments varies to counterbalance learning or order effects that could
occur due to execution of previous assignments. We explain the assignment order in more
detail in Section 4.3.4 The participants conduct four assignments with TESTAXIS and four
assignments without TESTAXIS. These two sets of assignments are also mixed and balanced
to avoid learning effects caused by working with the same software project.

The participants solve assignments without TESTAXIS to determine the baseline of the
dependent performance variable. To compare the performance results of an assignment
without TESTAXIS to an assignment with the use of TESTAXIS within the same group, there
are two options. The first option would be to split the group in two and ask one half to solve
the without assignment and one half to solve the with assignment. This is very much like
a controlled experiment, and, given the small sample size, would be influenced too much
by the experience of individual participants. The second option is to have participants solve
both the with and without assignment, however, this requires two very similar assignments.
At the same time, the assignments can also not be too similar because the results could then
be influenced by a learning effect. It is not feasible to design assignments that meet these
requirements.

Therefore, we opt for a design that is a mix of these two approaches. We design two
assignments, say A and B, for each of the four assignment categories (see Section 4.3.3).
Per category, we split the group in two. The first group conducts assignment A without
TESTAXIS and assignment B with TESTAXIS, and the second group conducts assignment A
with TESTAXIS and assignment B without TESTAXIS. Per assignment, we can now compare
the performance of the first group against the second group. When we see the same effect for
both assignments, we know that the composition of the group did not influence the outcome.

After each assignment, we ask the participants to fill out a questionnaire regarding
their behavior while performing the assignment and their reflection on the assignment itself
(see Appendix B.2). The statements in this questionnaire ask the participant whether the
assignment was too difficult and on which tasks (for example, finding out which tests failed or
looking at the test code) they spent the most time. The participants can also share any general
remarks to offer a possibility for direct feedback. For the assignments without TESTAXIS

this questionnaire measures the “experience of fixing failing test without the tool” and for the
assignments with TESTAXIS it measures the “experience of fixing failing test with the tool”.

4.3.2 Software Project Selection

The assignments of the experiment ask participants to fix failing test cases that are designed
to mimic test failures that occur while working on real software projects. Obviously, the
simulation of realistic test failures requires that the designed test cases are part of a software
project that is sufficiently complex and close to the real-life projects the participants have

38

4.3. Pre-Experimental Within-Subjects Study

experience with. We picked JPacman, a simple Pacman-style game implemented in Java that
is written for software testing education at the Delft University of Technology.

We used the following criteria to select the software project:

• Easy to Understand Within a Short Time Since many of the participants will have
no or little prior experience with the software project, they must be able to grasp the
project within a short time. The understanding of the software project may influence
the results when the participants spend more time understanding the general structure
of the codebase of the project than working on solving the assignment. Therefore, it
must be possible to explain the project in a short time and participants must quickly
feel confident working in the software project.

• Non-Trivial Codebase While the project must be easy to understand, it must also not
have a trivial implementation. A project that is too simple may not drive developers to
show their usual development behavior. It also does not allow for designing suitable
test failures for the assignments. This could result in different behavior while using
TESTAXIS than what a developer would do outside the experiment in their own
projects.

• Only Common Language Features and Dependencies To enable a quick under-
standing of the project and to support quick familiarization, the chosen project must
be a Java project that only uses common language features. It also should not use any
libraries or other types of dependencies that are uncommon or influence the way code
is written. Obviously, the project does need to use at least a testing framework such as
JUnit.

• Open-source Software To enable reproducibility of the experiment, we require the
software to be an open-source project.

• High Variety of Tests The software project must have tests of different types. To
evaluate the different features of TESTAXIS, we need a project that has unit tests,
integration tests, and system/end-to-end tests.

• Realistic Test Cases To ensure the generalizability of the results, the failing test cases
in the assignments must be realistic. This requires the test cases in the chosen software
project to be realistic and of a quality level comparable to an industry project.

JPacman fits these requirements. The project only uses basic language features and apart
from static analysis dependencies only makes use of JUnit, AssertJ, Mockito, and list helpers
from Google Guava. It features a variety of tests of different types with high code coverage.
The project is available open-source on GitHub1. We created a fork of the project where we
made the project compatible with newer Java versions and where we made modifications to
the project to support more interesting cases for the experiment. Our fork is also available on
GitHub2.

1JPacman is available at https://github.com/SERG-Delft/jpacman
2Our JPacman fork is available at https://github.com/testaxis/jpacman

39

https://github.com/SERG-Delft/jpacman
https://github.com/testaxis/jpacman

4. USER STUDY DESIGN

4.3.3 Assignment Design

We designed eight assignments in four categories. These categories cover the three main
features of TESTAXIS (build result, test code, and code under test inspection) and enable
collecting feedback about build notifications and test health warnings as a side-effect. Each
category has two assignments. The assignments ask participants to fix the test that failed in a
given CI build. The categories are separated by the location where the issue causing a test to
fail can be spotted most easily.

All eight assignments have two variants: one without TESTAXIS and one with. For both
variants, the participants first read the description of the change. This description is written
in a style that reflects typical pull request (PR) descriptions. The goal of the descriptions
is to convey the intent of the code change. This is important to rule out the trivial solution
of fixing a failing test: changing the assertions to match the state of application just before
the test fails. For the without-variants, the participants cannot use TESTAXIS but are given
access to a GitHub PR introducing the change. This PR also provides access to the GitHub
Actions CI build log and gives an overview of the changed files. In the with-variants, we
give the participants access to TESTAXIS to solve the assignment. For these assignments, the
participants do not have access to GitHub or the CI build log. In both cases, the participants
may use any (other) feature of IntelliJ and any other tool that they would normally use in
their workflow.

We designed the assignments with the intent to be similar to issues that may occur in
real-life projects. We verify this by asking participants if the cases were indeed similar to
the ones they encountered in their projects in the posttest questionnaire. We describe the
assignments per category below. Appendix C.2 lists the descriptions of the changes that the
participants read before starting the assignment. We list the categories and the corresponding
assignments below.

Category 1: Test Failure Metadata

For the assignments in this category, the reason for the failure can be spotted from the test
failure metadata (the name of the test and the stack trace).

Assignment 1a TIME LIMIT 5:00

In this assignment, a test resource file is renamed “for consistency” while the references
to the file in the tests are not updated. This causes multiple tests to fail. The participant
can spot this issue from the stack trace of the test failures. By clicking the entries in the
stack trace, the participant can find the location of the reference to the file and update
the filename.
https://github.com/testaxis/jpacman/pull/3

40

https://github.com/testaxis/jpacman/pull/3

4.3. Pre-Experimental Within-Subjects Study

Assignment 1b TIME LIMIT 5:00

The maps of the levels of JPacman are described in text files that the game parses. Each
element on the map is represented by a different character. In this assignment, a new
map element with a corresponding character is added to the game. However, while this
new element is placed in the map on several locations, the new parser code contains a
small mistake causing it to throw an exception. The exception indicates that the map
character is not recognized. This is because the author of the change accidentally wrote
code that recognizes a different character. The participants can spot this issue in the
stack traces of multiple failing tests or by looking at the changed files. The first entry
in the stack trace refers to the parser method with the mistake.
https://github.com/testaxis/jpacman/pull/4

Category 2: Test Code

For the assignments in this category, the reason for the failure can be spotted in the test code.

Assignment 2a TIME LIMIT 5:00

The changes for this assignment add a new method with tests to find an element on the
map by a relative position to another element. The added production code is relatively
complex and it takes a lot of time to fully understand it. The issue, however, is in
the test code. In the test, a small board is created with three elements. “By accident”,
the same element is added twice, simulating a copy/paste error, and the map thus has
only two unique elements. The test code then tries to fetch an element relative to the
third element that is not present on the map, resulting in a NullPointerException
somewhere in the production code. The participants can spot and fix this issue by careful
inspection of the test code.
https://github.com/testaxis/jpacman/pull/5

Assignment 2b TIME LIMIT 5:00

In this assignment, a method to retrieve the winning player is added together with a
number of tests. These tests involve mocking and have a relatively complicated setup.
The issue is in the test code where one of the stubbed methods indicating the alive
status of a player returns false instead of true. The participants can spot and fix this
issue by careful inspection of the test code.
https://github.com/testaxis/jpacman/pull/6

Category 3: Code Under Test

For the assignments in this category, the reason for the failure can be spotted in the code
under test.

41

https://github.com/testaxis/jpacman/pull/4
https://github.com/testaxis/jpacman/pull/5
https://github.com/testaxis/jpacman/pull/6

4. USER STUDY DESIGN

Assignment 3a TIME LIMIT 5:00

A pacman game typically contains little dots a player can collect to earn points, called
pellets. This assignment adds a new type of pellet with a random score. The changes
include modifications of the parser, a new overloaded method to create this pellet type,
and a number of tests. The overloaded method is a copy of the original method and while
it accepts a parameter for the amount of points, it is never used. The participant can
spot this issue by inspecting the code under test.
https://github.com/testaxis/jpacman/pull/7

Assignment 3b TIME LIMIT 5:00

To refactor existing code, this assignment adds a new method to get an opposite
cardinal direction. In the implementation, the method returns the wrong direction for
the south and west directions. The participant can spot this issue by inspecting the code
under test.
https://github.com/testaxis/jpacman/pull/8

For both assignments in this category, the assignment variant without TESTAXIS requires
a manual analysis of the changed files that may be relevant. This is a tedious task because
the changes also include code additions and modifications that are not related to why the test
is failing. In TESTAXIS the issue is part of the set of changed code under test fragments
making it easier to spot the issue.

Category 4: Advanced Code Under Test

For the assignments in this category, the reason for the failure can also be spotted in the code
under test. However, these assignments are more advanced.

Assignment 4a TIME LIMIT 10:00

The participant’s task in these assignments is different than in the previous assignments.
In this assignment, a number of power-ups are added to the game throughout the whole
codebase. The power-ups are active within certain score or steps ranges. Because of
the new game behavior, the high-level smoke test fails. The task is to find out which
of the three added power-ups causes this test to fail. Once a participant has found the
right power-up, they need to change the range in which the power-up is active to make
sure it is not triggered during the failing smoke test. All power-ups are implemented
as an if-statement. With access to TESTAXIS the issue can be spotted by looking at
the changed code under test and checking which of the bodies of the if-statements are
covered.
https://github.com/testaxis/jpacman/pull/9

Assignment 4b TIME LIMIT 10:00

This assignment is the same as assignment 4a but has a different set of newly added
power-ups.
https://github.com/testaxis/jpacman/pull/10

42

https://github.com/testaxis/jpacman/pull/7
https://github.com/testaxis/jpacman/pull/8
https://github.com/testaxis/jpacman/pull/9
https://github.com/testaxis/jpacman/pull/10

4.3. Pre-Experimental Within-Subjects Study

Category B

Category C

Category A
Without TestAxis With TestAxis

Assignment A1

Assignment A2

Assignment A2

Assignment A1

Assignment A2

Assignment A1

Assignment A1

Assignment A2

Andy

Ben

Caro

Dean

Assignment B1

Assignment B2

Assignment B2

Assignment B1

Assignment B2

Assignment B1

Assignment B1

Assignment B2

Assignment C1

Assignment C2

Assignment C2

Assignment C1

Assignment C2

Assignment C1

Assignment C1

Assignment C2

Andy

Ben

Caro

Dean

Andy

Ben

Caro

Dean

Figure 4.3: An example of how assignment variants are distributed for an experiment with
three categories and four participants.

4.3.4 Assignment Ordering

The order in which the participants perform the assignments is an important factor when
trying to minimize the learning effect on the results. If the assignments are not distributed
carefully, a situation may occur in which the participant first does all the assignments without
TESTAXIS and then all assignment variants with TESTAXIS, for example. In such a situation
the participant would have learned about the codebase during the first round and could
therefore be faster while solving the assignments with TESTAXIS. We would then not be able
to conclude that the introduction of TESTAXIS caused the improvement. We try to mitigate
the learning effect by varying the assignment order in a way that effects caused by the order
are counterbalanced [46].

First, we remove the strict separation between assignments without TESTAXIS, which
serve as the baseline, and the assignments with TESTAXIS. This allows us to create an
ordering of assignments in which the assignments with TESTAXIS are interleaved by the
assignments without TESTAXIS.

Second, as described in Section 4.3, for each category the participant solves two different

43

4. USER STUDY DESIGN

Without

Dean

Assignment A11

With Assignment A22

Without3

With4

Without5

With6

Assignment B1

Assignment B2

Assignment C2

Assignment C1

A) Ordering based on per-
category group assignment

B) Balanced randomization
of variants

C) Pair-wise variant difference
preserving assignment randomization

Without Assignment A1

With Assignment A2

Without

With

Without

With

Assignment B1

Assignment B2

Assignment C2

Assignment C1

Without Assignment A1

With Assignment A2

Without

With

Without

With

Assignment B1

Assignment B2

Assignment C2

Assignment C1

Figure 4.4: The three steps that lead to the final ordering of assignments for a single
participant.

assignments. In general, each category has two assignments, and each assignment has two
variants. Thus there are four assignment variants per category. A participant only solves one
variant of the assignments. For each category, the participants are randomly distributed into
two groups of equal size. The first group performs the first assignment without TESTAXIS

and the second assignment with. The second group performs the first assignment with
TESTAXIS and the second assignment without. Figure 4.3 shows an example of how the
group distribution per category works.

At an individual level, we now have the starting point of the ordering of assignments.
Figure 4.4a shows an example for the ordering of assignments for Dean, based on Figure 4.3.

Third, we randomize the order of the with/without-variant per category, see Figure 4.4b.
This reduces any advantages and learning effects of always having performed a somewhat
similar assignment without TESTAXIS before an assignment with TESTAXIS.

Finally, we shuffle the whole ordering while preserving the difference in variants per two
assignments to remain the previous mitigation of the learning effect. To further reduce this
effect, this step re-orders the assignments to reduce the effect of having seen a similar test
failure in the previous assignment. The randomization favors assignments from categories
that are not equal to the category of the previous assignment.

The ordering of assignments is pre-generated before the experiment to ensure the assign-
ment is fair and balanced3. Appendix C.1 lists the assignment order per participant.

4.4 Selection of Participants

To conduct the experiment and gain useful insights about the results, we needed to recruit a
large enough number of participants. Although the assignments are not extremely difficult,

3The script to generate the ordering is available in the replication package [12].

44

4.5. Pilot

we required participants to at least have experience with Java and CI. This ensures a somewhat
equal baseline and the ability for participants to reflect on and compare with their CI build
fixing workflows.

At the same time, we also wanted a diverse group of participants and therefore used
a phased participant recruitment process with different target audiences per step. We first
reached out to acquaintances, which are mostly (PhD) students. Then, we placed a message
on the internal messaging platform of Computer Science teaching assistants of the Delft
University of Technology, with a similar target audience. To target industry developers, we
posted a collection of tweets on Twitter illustrating the capabilities of TESTAXIS and asking
for a developer’s help to improve the project. Finally, we also posted on LinkedIn with the
same target audience in mind.

In the promotional posts and messages, potential participants were directed to a website
with detailed information about the experiment and the ability to sign up. Appendix D
shows the information on this website. To thank the participants for their time and to
increase engagement, we raffled four 15 euro gift cards among the participants. In total, 16
participants signed up for the experiment. Before the experiments, we also conducted a pilot
with 1 participant.

4.5 Pilot

To ensure a smooth run of the experiments, we first conducted a pilot. This pilot was set up
in the same way as we planned the main experiments. The only difference in the setup was
that we did not apply any time limits to the assignments yet to determine how much time is
reasonable for each assignment. Based on the feedback provided by the participant and our
own observations, we made the following changes:

• Assignment Order In the pilot, the assignments were ordered chronologically per
category. Also, the without variant always came before the with variant. This ordering
benefited the results for the with variants because the assignments within a category are
somewhat similar, and the without variant always came first. Therefore, we improved
the assignment order to be less predictable, as described in Section 4.3.4.

• Technical Experiment Setup The pilot took 136 minutes in total while we estimated
90 minutes. While this difference is partly caused by the lack of time limits, the
switches between assignments also took longer than expected. Thus, we automated
these switches to reduce the amount of time needed for the experiment and to smoothen
the experience from a participant’s perspective, see Section 4.6.2.

• Introduction to TESTAXIS and JPacman Before the participant starts with the as-
signments, we introduce them to TESTAXIS and JPacman by giving an overview of the
features of TESTAXIS and the code structure of JPacman. We observed that repeating
these explanations for each experiment would take a lot of time of the experiment and
create inconsistencies in the base knowledge that is provided. Therefore, we created
two explanation videos in which we can keep the information concise.

45

4. USER STUDY DESIGN

• Code Under Test Assignments It was too easy to quickly spot the issue in the code
under test assignments, both in TESTAXIS and on GitHub. This was because the
failure-introducing change touched very few lines of code. We added more (related)
changes to the PRs belonging to these assignments to make the PR more realistic.

• Minor Tweaks We made minor tweaks in several parts of the experiment based on
the pilot. In the questionnaires, we fixed accidental double questions and added a
question about Gradle experience, as suggested by the participant. In the assignment
descriptions, we fixed a few small mistakes. Finally, we fixed one of the build logs by
rerunning the build because the log showed an unrelated TESTAXIS authentication
error.

4.6 Experiment Execution

We conducted the experiment in March 2021, for three weeks in multiple sessions per day.
Due to the COVID-19 pandemic at the time, the experiment was fully remote. All sessions
were individual and guided by an observer. During a session, the observer took notes of
interesting things that happened or were said during the experiment. The observer also timed
the assignments. A session took about 90 minutes depending on the time needed to fill out
the questionnaires or solve the assignments. Participants could request a break whenever
they wanted.

The execution of the experiments went well and without any major issues. Midway
through the experiments, we updated the assignment description of the assignments of
category 4. The description mentioned that certain thresholds needed to be increased while
it should have said changed.

4.6.1 Structure of a Session

Figure 4.5 depicts the flow of the experiment. All experiment sessions were performed
according to the following script:

Assignments

Assignment A1
with TestAxis

Assignment C1
without TestAxis

Assignment B1
without TestAxis

Assignment B2
with TestAxis

....

Assignment A2
without TestAxis

Post-Assignment
Questionnaire

Post-Assignment
Questionnaire

Post-Assignment
Questionnaire

Post-Assignment
Questionnaire

Post-Assignment
Questionnaire

Posttest
Questionnaire

Welcome

GDPR Informed
Consent

Pretest
Questionnaire Practice Task

Explanation of
the Assignments

JPacman
Introduction

TestAxis
Introduction

Without TestAxis With TestAxis

1

2

3

4

5

6

7

8

9

Pre-Experimental
One-Group Pretest-

Posttest Study

Pre-Experimental
One-Group Pretest-

Posttest Study

Pre-Experimental Within-Subjects Study

Figure 4.5: The structure of an experiment session.

46

4.6. Experiment Execution

1. Welcome Explanation of the general structure of the experiment and optimizing the
technical setup (for example, screen resolution or key bindings).

2. GDPR Informed Consent Form Explanation of the privacy aspect of the collected
research data and filling out and signing the informed consent form, see Appendix B.1

3. Pretest Questionnaire Filling out the pretest questionnaire. The questionnaire was
presented on the experiment machine the participant had remote access to.

4. Explanation of the Assignments Overview of the goal and rules of the assignments.
We gave participants the following information:

You will get 8 assignments in total. In these assignments you have to fix failing CI
builds that fail due to a failing test. You will complete these assignments with or
without TestAxis, which is the tool we developed. We will measure the time you use to
find the issue of the failing build. The issues could be in the code under test as well as
the test code itself. The issue is always a test failure, never compilation or build tool
issues. After each assignment, we ask you a few questions about your experience.

The difficulty varies, some assignments will take more time than others. Some cases
can be spotted quickly, others need more work. The order of the assignments is random,
so the difficulty may jump up and down. If you have not found the solution after a
certain amount of time which varies per assignment, we may ask you to stop and move
on to the next assignment.

Your task is to find out why the tests are failing. Once you have found the issue, try to
come up with a fix. The fixes should never take more than a few lines of code. When
you have applied the fix, please say this out loud. For two assignments, the task is a
bit different but this will be explained once we are there.

We ask you to think out loud while performing the assignment. When you can
use GitHub, you are not allowed to use TESTAXIS. When you are allowed to use
TESTAXIS, you cannot use GitHub. Other than that, you are free to use any tool you
want to solve the failing test.

5. JPacman Introduction An introduction video of JPacman4 explaining the highlights
of the architecture and structure of the project.

6. TESTAXIS Introduction A introduction video of TESTAXIS5 explaining the main
features.

7. Practice Task A small task in which participants have to find the Launcher class of
the software project and start the game. This task is included to get participants more
comfortable with the remote setup and ensure that everything is working correctly.

4The JPacman introduction video is available at https://youtu.be/Pzv1d2AzpJM
5The TESTAXIS introduction video is available at https://youtu.be/2y3RzwfCnRQ

47

https://youtu.be/Pzv1d2AzpJM
https://youtu.be/2y3RzwfCnRQ

4. USER STUDY DESIGN

8. Assignments Execution of the assignments. For each assignment, the participants
first read the assignment description. Afterward, they either switch to the browser
to review the PR on GitHub or to the IDE to see the TESTAXIS output. Participants
find the GitHub PR by clicking the link in the assignment description. In assignments
with TESTAXIS, they receive a build notification in the IDE which they can click to
open TESTAXIS. Between each assignment, the development environment is reset
to a default state and prepared for the next assignment. This includes, for example,
undoing all code changes, closing all tabs and tool windows, and checking out the right
branch. After each assignment, we ask the participant to fill out the post-assignment
questionnaire. If the participant was not able to solve the assignment, we tell them the
issue and the fix after filling out this questionnaire.

9. Posttest Questionnaire Filling out the posttest questionnaire once all assignments
have been completed. The questionnaire was presented on the experiment machine the
participant had remote access to.

4.6.2 Technical Experiment Setup

The experiments were conducted through Zoom. The participants had remote control of
the experiment machine and were not required to have anything installed other than Zoom.
The experiment machine ran macOS and since Zoom does not convert keybinding, the
participants had to be careful when using a keyboard without the macOS keyboard layout.

To support smooth transitions between the different elements of the script and between
assignments, we created an application that could run actions on the experiment machine

Figure 4.6: The support tool assisting the observer during the experiments.

48

4.7. Summary

remotely. This way we could show the explanation videos or one of the questionnaires with
a single button press from another computer. The application also supported assignment
switching which would reset the state of the IDE by closing any windows or tabs, undoing
code changes, and checking out the right branch. It also shows the assignment description
PDFs to the participant. Furthermore, it offers the ability to fire TESTAXIS CI build notifica-
tions for predefined builds corresponding to the assignments. The application also showed
the pre-generated assignment order for the participants. Figure 4.6 shows the client of the
support application. The server controlled the experiment machine through AppleScripts, git
interaction, and TESTAXIS API communication.

The participants had access to IntelliJ Community Edition with TESTAXIS installed,
Google Chrome, and any application that is available in a standard macOS installation.

4.7 Summary

We presented the design of the experiment. The experiment consists of a one-group pretest-
posttest study and a within-subjects study which we use to measure the performance im-
provement and usefulness. The pretest and posttest of the first part contain questionnaires. In
between, TESTAXIS is introduced and the participants perform a number of programming
assignments. The study has a pre-experimental design that can be used to determine whether
the introduction of TESTAXIS has any effect at all and may justify the need for more in-depth
experiments.

The experiment features eight different programming assignments in four categories: test
failure metadata, test code, code under test, and advanced code under test. Each assignment
has two variants: in one the use of TESTAXIS is not allowed (pretest) and in the other, it is
allowed (posttest). For each category, the group of participants is divided into two. Each
participant performs one without variant and one with variant per category. The assignments
are ordered randomly per participant.

The experiment takes 90 minutes per participant and is conducted remotely. The partici-
pants were recruited through communication with personal acquaintances, internal university
communication channels, and social media. The experiment design and setup were improved
after a pilot was conducted.

49

Chapter 5

Results and Analysis

To answer the research questions posed in our study, we conducted the experiment as
described in the previous chapter. In this chapter, we present, analyze and discuss the results.
First, we provide an overview of the results from the time measurements of the assignments
and the questionnaires. Then, we analyze and discuss the failure-fixing time performance
results of the assignments. We also discuss the usefulness results, based on the questionnaire
feedback. In both discussions, we formulate an answer to the six research questions based
on the findings in our study. To put the results in the right context with the constraints of the
study, we also discuss threats to the validity of the results.

5.1 Results

We present the questionnaires and assignment performance results in six categories. Based
on the pretest questionnaire, we show the demography, experience, and background of
the participants in Section 5.1.1. In Section 5.1.2, we use the performance results and the
post-assignment questionnaires to present the results of the execution of the assignments.
We show the participants’ opinions on the tool itself and its usefulness in Section 5.1.3. We
also asked participants to reflect on the build notifications and test health warnings, which
we present in Sections 5.1.4 and 5.1.5. Finally, we present the participants’ perception of
their behavior during the assignments and of the quality of the experiment in Section 5.1.6.
Appendix E shows the full results of the experiment.

5.1.1 Participants

The following results are part of the outcomes of the one-group pretest-posttest experiment.

The pretest questionnaire asked about a participant’s personal background, their experience
with software testing and continuous integration, and their opinions on several statements
about software testing. Appendix E.1 shows the full results of the pretest questionnaire. In
this section, we describe the group of participants using the information gathered in the
pretest questionnaire. In total, 16 people participated in the experiment.

51

5. RESULTS AND ANALYSIS

1
3

1
2

1
2

1

4

1

4 5 6 7 8 9 10 11 12
0
2
4
6
8
10

Pa
rti
ci
pa

nt
s

(a) Years of Programming Experience

3
5

8

PhD Engineer Student
0
2
4
6
8
10

(b) Occupation

4

9

3

BSc MSc PhD
0
2
4
6
8
10

(c) Education Level

Figure 5.1: Demography of the participants of the experiment.

Demography

The participants of the experiment have at least four years of experience in programming.
The most experienced participants have programmed for 12 years. The other participants
are relatively equally distributed between 4 and 12 years, see Figure 5.1a. 31.3% of the
participants work in industry as a software engineer, while the main occupation of the
remaining participants is student or PhD student. Figure 5.1b shows an overview of the
professional occupations of the participants. All participants have an academic background.
The current or highest education level of most participants is MSc (56.3%) as shown in
Figure 5.1c. The other participants were either BSc (25%) or PhD students (18.8%) at the
time of the experiment.

Experience

Figure 5.2 shows the experience in software development of the participants. The figure
shows the questions from the pretest questionnaire, the average score, and the distribution
over the Likert scale. We visualize the Likert-scale results with diverging stacked bar charts
[49]. In these charts, we plot the frequency as a percentage of the ratings 1 and 2 (strongly
disagree and disagree) left of the center, rating 3 (neutral) on the center, and ratings 4 and
5 (agree and strongly agree) right of the center. The 16 participants consider themselves
to be experienced software developers (● 4.0 1). They are experienced with developing
Java applications (● 3.8) in IntelliJ (● 3.9). One participant indicates that they are
not experienced developing software in Java. Some of the participants have experience
developing software applications professionally (● 3.4), whereas others do not have any
experience in this area.

While the participants are experienced with software development, they are less ex-
perienced with software testing (● 3.6 , see Figure 5.3). We observe that some of the
participants indicated to be very experienced in testing, while others indicated to not be
experienced at all. We see similar results for specific elements of software testing. The
participants rate themselves as averagely experienced with using mocks (● 3.4). We see
a comparable distribution for the experience with inspecting code coverage reports after
running tests with coverage collection enabled (● 3.6).

1To present the Likert-scale results we show the average score indicated by the purple-colored dot. The
small bar chart gives a rough indication of the distribution of the answers that the participants gave.

52

5.1. Results

18.8% 37.5%

12.5% 25.0% 6.2%

25.0% 25.0% 37.5%

12.5%

6.2%

18.8% 56.2%

18.8%

6.2% 37.5% 25.0% 31.2%

12.5%

12.5% 25.0%
18.8% 31.2%

25.0% 50.0% 25.0%

−100 −80 −60 −40 −20 0 20 40 60 80 100

I consider myself to be experienced in using
Gradle

2.6

I have used JPacman before and am still aware of
the project structure 2.4

I consider myself to be experienced using
IntelliJ (or another JetBrains IDE)

3.9

I consider myself to be experienced in
developing Java applications 3.8

I develop software applications professionally 3.4

I consider myself to be experienced in
developing software applications 4.0

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.2: Participants’ experience with software development.

6.2%

6.2% 25.0% 50.0%

12.5%

12.5% 37.5%

12.5% 37.5%

6.2%

18.8%

12.5% 50.0%

12.5%

6.2% 37.5% 43.8%

12.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

I consider myself to be experienced in running
tests with coverage collection enabled

3.6

I consider myself to be experienced in using
Mockito

2.8

I consider myself to be experienced using mocks
in my tests 3.4

I consider myself to be experienced in software
testing 3.6

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.3: Participants’ experience with software testing.

The results on the experience with CI show a different trend, see Figure 5.4. The
participants rate themselves as highly experienced in using CI build tools (like Travis CI,
GitHub Actions, or Jenkins; ● 4.2) and inspecting the output logs when a build fails
(● 3.9). They also indicate to have regularly worked with pull requests on a git platform
like GitHub (● 4.4).

In terms of some of the tooling used in the experiment, we observe mixed levels of
experience. The minority of participants (43.8%) indicate to have some experience in using
GitHub Actions (● 2.2 , see Figure 5.4). Gradle, the build tool that produces the CI build
logs, is rated slightly higher (● 2.6) but also has a significant number of participants
(56.3%) that have no to very little experience using the tool (see Figure 5.2). Mocking plays
a role in one of the assignments. JPacman uses the Mockito framework in its tests. The
participants have varying degrees of experience in using Mockito (● 2.8 , see Figure 5.3).

53

5. RESULTS AND ANALYSIS

37.5%

18.8% 25.0%
18.8%

12.5% 43.8% 43.8%

12.5% 31.2% 56.2%

−100 −80 −60 −40 −20 0 20 40 60 80 100

I consider myself to be experienced in using
GitHub Actions

2.2

I consider myself to be experienced in using CI
build tools and inspecting the output logs

4.2

I consider myself to be experienced in using
GitHub Pull Requests

4.4

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.4: Participants’ experience with CI.

The experiment was conducted using JPacman: a simple Pac-Man style game used for
software education at Delft University of Technology. Some of the participants have used
JPacman earlier in their studies. However, none of the participants indicated to still be very
aware of JPacman or its project structure (see Figure 5.2. In general, a minority of the
participants have some previous experience with the software project (● 2.4).

Opinions and Habits

We cover the opinions and habits of the participants in three categories: testing behavior, CI
behavior, and build failure awareness.

Testing Behavior Most participants usually run their tests inside their IDE (● 4.1 , see
Figure 5.5) and can therefore compare using TESTAXIS to solving a test failure using the
IDE. When a CI build breaks due to a failing test, the majority of the participants investigates
the build log to find the specific failing test and rerun it locally (● 3.9). A smaller group
reruns the entire test suite locally instead of only the failing test (● 3.0). Participant 10
notes that “Build logs can be quite verbose and therefore it may be hard to find which test is
failing. Sometimes it is easier to just rerun all tests locally.”

We asked participants about their opinions on the importance of integration or system/end-
to-end over unit tests to see whether that influences their view on TESTAXIS. Most partic-
ipants do not think that writing integration or system/end-to-end tests is more effective at
catching issues than unit tests (● 2.5). A possible explanation could be the cost of writing
and maintaining higher-level tests as participant 9 mentioned that “System tests often take
more effort to set up even though they are useful, and therefore I think that unit tests are a
better time investment.”

CI Behavior To support our assumptions of how developers handle failing tests they
encounter in broken CI builds, we asked them to describe their workflow after encountering
such a test. Appendix E.1 shows the full results. We expected that developers would first
inspect the CI build log to see which test is failing. Then, if the available error message
would not provide enough information to immediately come up with a fix, rerun the test
locally. By inspecting the stack trace, they would fix the issue, then optionally locally verify

54

5.1. Results

6.2% 43.8% 43.8% 6.2%

6.2%

6.2%

12.5% 43.8% 31.2%

18.8%

12.5% 37.5%
12.5%

18.8%

6.2%

6.2%

12.5% 25.0% 50.0%

−100 −80 −60 −40 −20 0 20 40 60 80 100

I think writing more integration or end-to-end
tests is more effective than writing unit tests

2.5

When a build fails, I inspect the build log and
run the specific failing test locally

3.9

When a build fails, I often (re)run all tests
locally to find out which test is failing 3.0

While developing, I run my tests inside the IDE 4.1

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.5: Participants’ software testing behavior and opinions.

25.0% 25.0% 31.2%

18.8%

12.5% 56.2% 31.2%

6.2% 50.0% 37.5% 6.2%

−100 −80 −60 −40 −20 0 20 40 60 80 100

Test failures in a CI build are as easy to solve
as "local" failures

2.4

I like the way the cause of failing builds is
presented in CI build logs

2.2

CI build logs give me enough information to
point to the issue causing a failing test

2.4

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.6: Participants’ opinions on CI builds.

whether the test passes. Finally, we expected they would push the changes and as participant
4 put it “hope for the best”. All participants confirmed our hypothesis in the description of
their workflow.

Interestingly, three participants indicated they would first write a new test locally to
reproduce the issue. Also, three participants indicated that they use the debugger to find
the issue of the failing test. Participant 12 described an alternative to the hypothesis using
additional tooling: “I look at the aggregated TeamCity logs to see what tests fail (if tests
failed) and amend a fix to the commit and push it directly. TeamCity also offers the ability to
see if the test is ”flaky” - in this case, I simply re-start the build.”

In Figure 5.6, we show the results of the participants’ opinions on CI builds. The
participants indicate that they do not like the way failure information is presented in CI build
logs (● 2.2) and that the information does not help them enough to fix the issue (● 2.4).
One of the participants did, however, mention that Azure DevOps provided better-formatted
test result reports than a raw build tool output, which they preferred. The majority of the
participants also think that test failures they encounter in CI builds are more difficult to fix
than the ones they encounter in their local development environment (● 2.4).

55

5. RESULTS AND ANALYSIS

12.5% 37.5% 25.0% 25.0%

6.2%

12.5%
6.2% 25.0% 50.0%

18.8% 50.0% 6.2%

6.2%

18.8%

−100 −80 −60 −40 −20 0 20 40 60 80 100

My current notification approach makes me aware
of build failures quickly

3.6

I primarily check the PR status checks or CI
tool to become aware of a build failure

4.0

I primarily use email notifications to become
aware of a build failure

2.6

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.7: Participants’ build awareness behavior and opinions.

Build Failure Awareness To verify our assumptions on the need for improving build
failure awareness, we asked participants about their current approach of getting informed
about build failures. Figure 5.7 shows the results. Platforms like GitHub often offer email
notifications as the default option to be notified outside of the platform. However, only 25%
of the participants indicate that this is their primary method of becoming aware of build
failures (● 2.6). Most participants primarily perform manual checks on their pull request
to see the status of the build and are thus not actively notified (● 4.0)

The participants also indicated alternative ways of getting informed about build failures.
Three participants are informed by colleagues, six indicate to use notifications in chat services
like Slack or Microsoft Teams, and one participant uses mobile push notifications.

The participants are not unhappy about their current approach of becoming aware of build
failures (● 3.6) but there is still room for improvement. During the pretest questionnaire,
participant 14 stated that “While I’m still working on a PR, I don’t really need to be made
aware of build failures quickly, only once it’s ready to go to production.”

5.1.2 Failure-Fixing Performance in the Assignments

The following results are part of the outcomes of the within-subjects experiment.

The 16 participants conducted a single variant of all 8 assignments. Each variant was thus
solved by 8 participants.

We measured the time between starting an assignment variant and fixing the issue.
Figure 5.8 shows the results per assignment per variant. In all cases except 4a, we see that
the median time to fix the issue is lower for the with variant than the without variant. For the
assignments in the second and fourth category, we observe a high variability in the results.
In Appendix E.3, we show the individual timing results for each participant.

Table 5.1 shows the mean failure-fixing time of all assignment variants. The percentages
show the difference in performance between the without and the with variant. For category
one, we see an overall improvement of 13.4%. For category two, this is 13.8%. The
assignments in category three show the greatest performance improvement, on average
48.6%. Although assignment A of category four shows a performance decrease, on average

56

5.1. Results

1a 1b 2a 2b 3a 3b 4a 4b

0

50

100

150

200

250

300

350

400

450

500

550

600 Assignment Variant
Without TestAxis
With TestAxis

Assignment

D
ur

at
io

n
(s

)

Figure 5.8: The failure-fixing time in seconds of both the without and with variant of all
assignments. The first six assignments have a time limit of 5 minutes (300 seconds). For the
last two assignments the limit is 10 minutes (600 seconds).

the performance difference of category four is 12.1%. Overall, the four assignment variants
with TESTAXIS are conducted 22.0% faster.

The participants did not manage to solve all assignments within the time limit. When
a participant hit the limit, we consider their failure-fixing time to be the maximum time of
5 minutes for categories one-three and 10 minutes for category four. Figure 5.9 shows an
overview of how many times the time limit was hit per assignment variant. We observe
a high number of hit time limits for category two. In general, we see a lower number of
hit time limits for the with TESTAXIS assignment variants, except for assignment 4a. This
corresponds to the results shown in Figure 5.8.

In the results, we left out one timing result for assignment 2b with TESTAXIS due to
a miscommunication in the experiment introduction. The participant understood that the
issue could never be in the test code and that it was not allowed to change the test code. As a
result, participant hit the time limit for this assignment. The miscommunication was solved
before assignment 2a was conducted.

57

5. RESULTS AND ANALYSIS

Table 5.1: Average failure-fixing of the assignment variants in seconds with the performance
improvement (%) per assignment.

Assignment A Assignment B
Category Without With % Without With %
1 86 80 7.0% 143 115 19.8%
2 271 223 17.6% 224 201 10.1%
3 264 191 27.7% 231 65 69.5%
4 448 479 -6.9% 489 337 31.0%

6

4

3 3

2

4

3

2

1

3

2

1a 1b 2a 2b 3a 3b 4a 4b
0

1

2

3

4

5

6

7

8
 Assignment Variant

Without TestAxis
With TestAxis

Assignment

N
um

be
r

of
 P

ar
tic

ip
an

ts

Figure 5.9: The number of hit time limits per assignment (lower is better).

Another correction was made for one of the timing results of assignment 4a with
TESTAXIS. The assignment description mentioned that the thresholds of the power-ups
introduced in this assignment should be increased to fix the issue, while it should have said
changed. After encountering the right location of the issue during the assignment, the partici-
pant tried to increase the threshold but this did not result in the right fix. The participant hit
the time limit of the assignment. After we showed them the correct fix, they pointed out the
error in the assignment caused them to not try this fix but instead increased the threshold.
Therefore, we corrected the timing result to the point where the participant increased the
threshold. We updated the assignment description for the remaining participants.

Finally, one of the participants concluded they did not have enough knowledge about
the codebase of the software project and therefore they gave up on one of the assignments
(assignment 4b in the with variant). The participant stopped after 9 minutes. We corrected
this to 10 minutes, the time limit of this assignment.

After each assignment, we conducted the post-assignment evaluation questionnaire.
See Appendix E.2 for the full overview of the results of these questionnaires. One of the
participants erroneously did not submit the questionnaire for assignment 4 without TESTAXIS

which is therefore not included in the results. We explore some of the results in more detail in
the next section where we attempt to explain the timing results. Overall, an interesting result
is the decrease in the average score of having to run the test locally to get more information

58

5.1. Results

6.2%

12.5% 81.2%

12.5% 37.5% 50.0%

18.8%

12.5% 31.2% 37.5%
6.2% 62.5% 31.2%

6.2% 43.8% 50.0%

−100 −80 −60 −40 −20 0 20 40 60 80 100

The CUT feature would be less useful if changes
were not highlighted

4.6

The CUT tab of in TestAxis is useful and gives
relevant information to find the issue 4.4

The test code tab of in TestAxis is useful and
gives relevant information to find the issue

3.9

The details tab of in TestAxis is useful and
gives relevant information to find the issue

4.2

The shown information helps me understand a test
failure better and fix it quicker 4.4

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.10: Participants’ opinions on the usefulness of the main informational TESTAXIS

features.

from 3.4 to 1.6. Also, the perceived time spent on finding out which test(s) failed dropped
from 2.1 to 1.2, on average.

5.1.3 Usefulness of The Tool

The following results are part of the outcomes of the one-group pretest-posttest experiment.

We evaluate multiple aspects of the implementation of TESTAXIS that the participants used
in the experiment: how useful the participants found the different informational elements,
whether the tool meets the expectations of the participants, how the users experienced the
tool, and what features they missed.

Usefulness of the Informational Elements

The majority of the participants find that the information provided by TESTAXIS in the
various features helps them understand a failure better and fix it more quickly (● 4.4 , see
Figure 5.10). The participants consider the details tab containing meta-information such as
the test name and the interactive stack trace and the changed code under test feature most
useful (● 4.2 and● 4.4 , respectively). Participant 5 even indicates that they “already
like just having the overview of failed tests a lot over a build log where I can see the name of
the [failing] test but not much more”. However, the participants rate the usefulness of the
test code feature slightly lower (● 3.9). Participant 8 mentioned that the test code tab
may be unnecessary since there is already an “Open Test” button that opens the test in the
main window of the IDE. The participants signal the importance of highlighting changes
in the code under test tab and consider it an important part of the code under test feature
(● 4.6). Participant 13 explained why they think this feature is relevant: “The highlights
of CUT are very important since that’s what you would normally do manually by thinking

59

5. RESULTS AND ANALYSIS

6.2% 37.5% 56.2%

12.5% 87.5%

31.2% 68.8%
6.2% 12.5% 37.5% 43.8%

6.2% 50.0% 25.0% 18.8%

12.5% 25.0% 62.5%

18.8% 50.0% 31.2%

12.5% 25.0% 62.5%

6.2% 31.2% 62.5%

6.2% 12.5% 43.8% 37.5%

6.2% 31.2% 50.0% 12.5%

18.8% 37.5% 43.8%

−100 −80 −60 −40 −20 0 20 40 60 80 100

TestAxis solves a real problem
4.5 ■

TestAxis makes sense to be integrated in an IDE
4.9 ■

TestAxis provides benefits over inspecting CI
build logs 4.7 ■

TestAxis would become a part of my workflow
4.1 ■

TestAxis by itself would be able to provide me
with enough information to fix a failing build 3.6 ■

Using TestAxis will save me time
4.5 ■

TestAxis solves a real problem
4.1 ■

TestAxis makes sense to be integrated in an IDE
4.5 ■

TestAxis provides benefits over inspecting CI
build logs

4.6 ■

TestAxis would become a part of my workflow
4.1 ■

TestAxis by itself would be able to provide me
with enough information to fix a failing build

3.7 ■

Using TestAxis will save me time
4.2 ■
Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.11: Participants’ expectations before using the tool (orange square) versus the
perceptions after using the tool (purple square).

about what changed and what the test could have covered. And this shows you everything
automatically without any margin for error.”

Expectations versus Perceptions

Figure 5.11 shows the results of the questions that were present in both the pretest as the
posttest questionnaire. In the pretest, the questions were about an abstract description of a CI
build test result inspection tool, whereas in the posttest they were explicitly about TESTAXIS.
This measured the expectations of the participants and how they perceived TESTAXIS.

The results show that TESTAXIS meets or exceeds the expectations almost completely.
After using the tool, the participants became more aware of how TESTAXIS solves a real
problem and could save them time. Also, they found that integrating a CI build test result
inspection tool into an IDE made more sense. However, after having seen an implementation
of the features that were described abstractly in the pretests, participants are slightly less con-
vinced that TESTAXIS would give them enough information to fix a failing build. Participant
12 mentioned that they considered it to not be enough because their builds “often fail due
to configuration issues or issues with Docker containers for instance”. While TESTAXIS

captures such extrinsic issues [51], it does not offer much support to fix these issues.

User Experience

In the experiment, participants got to use TESTAXIS extensively. Based on their experiences,
we asked them about the usability of the IDE plugin. Figure 5.12 shows the results.

Overall, the participants found that TESTAXIS was easy to use (● 4.5) and thought
that most people would learn to use TESTAXIS quickly (● 4.6). They did not think
TESTAXIS should be a standalone (web) tool (● 1.6) and did think that TESTAXIS was

60

5.1. Results

6.2%

12.5% 31.2% 50.0%

25.0% 75.0%

62.5% 25.0% 6.2%

6.2%

100.0%

6.2% 43.8% 50.0%

12.5%

12.5% 50.0% 25.0%

50.0% 37.5%
12.5%

37.5% 62.5%

50.0% 50.0%

−100 −80 −60 −40 −20 0 20 40 60 80 100

It was clear to me what the different code
highlighting colors in the "CUT" tab meant

4.2

The ordering of covered files, where modified
files are shown first, was useful to me

4.8

I would have preferred to not see the
surrounding test class in the "Test Code" tab 1.6

Bugs in TestAxis influenced my user experience 1.0

TestAxis integrates well with IntelliJ 4.4

TestAxis provides a similar experience to
inspecting IntelliJ test run results 3.9

The functionality of TestAxis would be better as
a standalone tool, not integrated in the IDE

1.6

I would imagine that most people would learn to
use TestAxis very quickly

4.6

I thought TestAxis was easy to use 4.5

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.12: Participants’ opinions on the user experience of TESTAXIS.

well-integrated with IntelliJ (● 4.4). The participants rated the statement asking whether
TESTAXIS provides a similar experience, in terms of presented information, as locally
running a test in IntelliJ a bit lower (● 3.9). However, some of the participants explained
their reasoning out loud and stated that TESTAXIS has more features and that they, therefore,
rated the statement negatively. None of the participants were interrupted by any bugs that
occurred in TESTAXIS (● 1.0 , unanimous).

In the design of the tool, we made several assumptions about how information should be
presented. For example, we chose to show the entire test class of the failed test case on the
test code tab, and not only the body of the test method. The test method is highlighted to still
be visually recognizable. The participants indicate that they agree with the choice as they
would not prefer to see only the test method (● 1.6).

Another assumption is showing the changed files at the top of the list of covered files in
the code under test tab before unmodified covered files. The changed files are also labeled as
such. The participants thought this was a useful feature (● 4.8). The different highlighting
colors for covered, changed and covered and changed fragments were clear to the participants
(● 4.2). Although one participant found the difference in highlighting colors between
the code under test and the test code feature confusing and was missing a legend in the
test code tab. A different participant also missed the legend on the code under test tab for
non-modified files. Finally, one participant would have liked to have the ability to toggle the
different highlighting colors because they found the code under test feature overwhelming.

61

5. RESULTS AND ANALYSIS

Table 5.2: Missing features in TESTAXIS indicated by the participants of the experiment.

Feature Number of Times Mentioned
Re-run the failing test locally 8
Open code under test in main editor 5
Right-click a test in the builds overview for a context
menu

3

Suppress test health warnings 3
Full diff (including removed code) on the CUT tab 2
Easier navigation to highlighted CUT 2
Navigate from the stack trace links to the CUT tab 1
Show full PR details 1
Navigation from a line of code to a PR 1

Missing Features

During the execution of the assignments, participants mentioned features they missed in
TESTAXIS. Also, they entered suggestions for features that would have improved their
abilities to fix a test failure in the posttest questionnaire. Table 5.2 shows the missing features
the participants indicated, sorted by the number of times a participant suggested the feature.

50% of the participants missed the ability to re-run a test locally to verify whether their
attempted fix was indeed correct. Five participants would like to be able to open the files
shown on the code under test tab in the main editor, either directly or by double-clicking a
file. To directly navigate to a certain feature of TESTAXIS or to re-run a test, 3 participants
missed the feature to right-click a failing test case in the builds overview for a context menu.
The test health warnings currently do not offer any interactions. However, 3 participants
indicated that they would like to able to suppress the warnings. For example, for “tests that I
know will take longer (such as a smoke test)” as participant 8 mentioned.

5.1.4 Build Notifications

The following results are part of the outcomes of the one-group pretest-posttest experiment.

For each assignment with TESTAXIS, the participants got shown a build notification. In the
posttest questionnaire, we asked their opinions on these notifications, see Figure 5.13.

The participants did not think the notifications were too intrusive (● 1.1). They
consider the notifications to contain enough information to recognize the triggering commit
or PR (● 3.8). Most participants do not prefer their current approach over the TESTAXIS

IDE notifications (● 2.3). Thus, most of the participants liked this method of being
notified (previous average score inverted 3.7). However, not all participants like being
notified in the local development environment. Participant 12 mentioned: “The problem is
that builds take 9, 20, 30 minutes and then I’m already working on something else. I would

62

5.1. Results

25.0% 37.5%

18.8%

18.8%

6.2% 37.5% 31.2% 25.0%
12.5%

18.8% 31.2% 37.5%

87.5%

12.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

I prefer my current approach of becoming aware
of build failures over IDE build notifications

2.3

The build notifications had enough information
to recognize the triggering code change

3.8

I think build notifications in the IDE would
make me aware of a build failure earlier 3.9

The build notifications were too intrusive 1.1

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.13: Participants’ opinions on the IDE build notifications of TESTAXIS.

find it annoying to be distracted [by build notifications].” The majority of the participants
do think that they would be notified earlier when they receive the notification in the IDE
(● 3.9).

5.1.5 Test Health Warnings

The following results are part of the outcomes of the one-group pretest-posttest experiment.

In the pretest questionnaire, we asked participants about their view on the three test health
aspects, see Figure 5.14. The participants care about the improved run time of their test
suite (● 3.7) and think that flaky tests are difficult to recognize (● 3.8). We also
asked whether the participants think that tests that fail often are as meaningful as tests that
seldom fail. Since both the participants that thought these tests are more important and the
participants that thought the tests are less important disagree with the statement, it is difficult
to interpret the result (● 3.2).

We showed the participants several test health warnings during the experiment. In the
posttest, we asked the participants how they experienced these warnings. Figure 5.15 shows
the results.

The majority noticed the warnings (● 3.9) and a slightly smaller number of partici-
pants would act on them (● 3.5). The participants consider the warnings on often-failing
tests and potential flaky tests to be useful (● 3.7 and● 4.1 , respectively). The partici-
pants neither agree nor disagree that the warnings on slow tests are useful (● 3.0).

5.1.6 Reflection on the Experiment

The following results are part of the outcomes of the one-group pretest-posttest experiment.

The first part of the posttest questionnaire asks participants to reflect on the assignments.
This tells us whether the assignments are suitable for the experiment and if the behavior of
participants in an experimental setting influenced the results. Figure 5.16 shows the results.

63

5. RESULTS AND ANALYSIS

6.2% 37.5%

12.5%

18.8% 25.0%

6.2%

6.2%

12.5% 50.0% 25.0%

6.2%

18.8%

12.5% 25.0% 37.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

Tests that fail often are as meaningful as tests
that fail almost never.

3.2

Flaky tests are difficult to recognize. 3.8

I care about improving the speed of my test
suite.

3.7

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.14: Participants’ opinions on test (suite) health.
6.2%

12.5%

12.5% 43.8% 25.0%

37.5% 31.2% 25.0% 6.2%

6.2%

18.8% 37.5% 37.5%

18.8% 31.2% 31.2%

18.8%

6.2%

6.2%

6.2% 50.0% 31.2%

−100 −80 −60 −40 −20 0 20 40 60 80 100

I consider the test health warning on a often
failing test (3) to be useful

3.7

I consider the test health warning on a slow
test (2) to be useful 3.0

I consider the test health warning on a
potential flaky test (1) to be useful

4.1

If I was working on my own software project, I
would act on the health warnings

3.5

I noticed the test health warnings while
performing the tasks 3.9

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.15: Participants’ opinions on the test (suite) health warnings of TESTAXIS.

The participants consider the assignments challenging and interesting (● 4.4), and
sometimes similar to issues they encounter when working on software projects (● 3.2).
Participant 2 described the assignments as “quite representative while still doable test tasks”.
Participant 8 agrees on this but also indicates that “usually the fix usually requires more
work than a small change”. According to the participants, we provided enough guidance
to conduct the assignments (● 4.9). Participant 4 found that the assignments were

“sometimes really easy and did not always highlight the benefits of TESTAXIS”. They found
that some assignments could be fixed easily by a code review but that their opinion may be
influenced by the fact that the participants act more as a reviewer than a code author in the
assignments.

A minority of the participants would have solved the assignments easier or quicker
outside the experimental environment (● 2.8) or felt pressure due to the time limits
(● 2.6). During the experiment, participant 3 mentioned two times that they felt like
they were changing their tactics “to find the result quicker within the time limit”. Most
participants, however, applied the same tactics as they would have done in their own software
projects (● 4.0). Participant 9 indicated that they would have made more use of the

64

5.2. Performance Analysis and Discussion

12.5% 87.5%

12.5%

18.8% 25.0% 25.0%

18.8%

12.5%

18.8% 31.2% 37.5%

18.8%

12.5%

18.8% 50.0%

18.8% 37.5%
12.5%

12.5%

18.8%

18.8% 25.0% 37.5%
18.8%

6.2% 50.0% 43.8%

−100 −80 −60 −40 −20 0 20 40 60 80 100

Enough guidance was provided to solve the
assignments

4.9

The assignments represented test failures
similar to the ones I encounter 3.2

My abilities to solve failures were influenced
by my lack of pre-existent codebase knowledge

2.9

I used the same tactics to solve the assignments
as I would have used outside of this experiment

4.0

I would have solved the assignments
easier/quicker outside this experiment 2.8

The time limit made me feel pressured 2.6

The assignments were challenging and/or
interesting to complete 4.4

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.16: Participants’ perceptions of external factors that may have influenced them
during the experiment.

debugger outside the experiment but that they are “not extremely familiar with the debugger
in IntelliJ”. A potential lack of pre-existenting knowledge about the codebase of JPacman
influenced some of the participants’ abilities to fix the assignments (● 2.9).

We also asked participants to reflect on the experiment as a whole, see Figure 5.17. The
participants indicated that the quality of the assignments (● 4.5) and the questionnaires
(● 4.6) was high. They also felt that the explanations of both the TESTAXIS IDE plugin
and JPacman were clear (● 4.8) and that there were enough opportunities for feedback
(● 4.9). Participant 13 mentioned that they were able to understand JPacman quickly.
They also said that “The project choice was really good for the experiment. It was not overly
complicated like many open source projects. The scale of the project was not too simple
but also not too complex.” In contrast, participant 14 indicates that because it is not very
complicated it does not represent the “much messy and less accessible” codebases they
usually encounter. However, most participants still think that JPacman allowed for interesting
assignments that helped them provide an answer to the questions in the questionnaires
(● 4.3). Overall, the participants enjoyed the experiment (● 4.8). Participants 2 and
14 indicated that they liked the assignments because they felt like solving little puzzles.

5.2 Performance Analysis and Discussion

Based on the results presented in the previous section, we now analyze the failure-fixing
time performance results of the assignments. We explore these results by comparing them
against several questions asked in the questionnaires. These comparisons may show a

65

5. RESULTS AND ANALYSIS

18.8% 81.2%

12.5% 87.5%

6.2% 56.2% 37.5%

25.0% 75.0%

37.5% 62.5%

50.0% 50.0%

−100 −80 −60 −40 −20 0 20 40 60 80 100

I enjoyed performing the experiment 4.8

There was enough opportunity to give feedback 4.9

The project choice of JPacman allowed for
interesting/suitable cases

4.3

The explanations of TestAxis and JPacman were
clear 4.8

The quality of the questionnaire was high 4.6

The quality of the assignments was high 4.5

Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

Figure 5.17: Participants’ view on the quality of the experiment.

correlation between a participant’s answer to a questionnaire question and their performance
in a particular assignment, which may explain some of the timing results.

First, we investigate the influence of the background and the experience of the partic-
ipants on the overall timing results to put the per-assignment results into perspective, see
Section 5.2.1. Then, we analyze and discuss the assignments of the categories that belong
to the three major informational features: meta information and test failure details (Sec-
tion 5.2.3), test code (Section 5.2.4), and (changed) code under test (Section 5.2.5). These
sections formulate an answer to RQ1-RQ3. Finally, we investigate the potential influence of
the assignment ordering on the results in Section 5.2.6.

5.2.1 Influence of Background and Experience

The following analysis of the influence of background and experience on the performance results is
based on the results of the within-subjects experiment presented in Section 5.1.2 and are compared
with the results of the one-group pretest-posttest experiment presented in Section 5.1.1.

Before we analyze the results per assignment category, we first explore the overall influence
of the experience and background of the participants. This shows us which per-assignment
trends we will observe later are noteworthy because they differ from the global trends. To
show this potential influence we compare the total duration of the programming assignments
part per participant against their answers to the pretest questionnaire.

Figure 5.18 shows the average total assignment duration for the different backgrounds
of the participants. In Figure 5.18a, we observe that the education level influences how
quickly a participant is able to solve the assignments. The participants that are currently
doing or have completed a PhD solved the assignments most quickly. This also follows
from Figure 5.18b, where we see that the participants currently involved in a PhD were the

66

5.2. Performance Analysis and Discussion

BSc MSc PhD
0

5

10

15

20

25

30

35

Av
er

ag
e

To
ta

l A
ss

ig
nm

en
t D

ur
at

io
n

(m
in

)

(a) Education

PhDEngineerStudent
0

5

10

15

20

25

30

35

Av
er

ag
e

To
ta

l A
ss

ig
nm

en
t D

ur
at

io
n

(m
in

)

(b) Occupation

Figure 5.18: The influence of the education level and professional occupation on the total
duration of the programming assignments part of the experiment.

1 2 3 4 5
0

10

20

30

40

Likert-Scale Rating (1-5)
I consider myself to be experienced in

developing software applications

To
ta

l A
ss

ig
nm

en
t D

ur
at

io
n

(m
in

)

(a) Software Development

1 2 3 4 5
0

10

20

30

40

Likert-Scale Rating (1-5)
I consider myself to be experienced in software testing

To
ta

l A
ss

ig
nm

en
t D

ur
at

io
n

(m
in

)

(b) Software Testing

Figure 5.19: The influence of past experience of the participants on the total duration of the
programming assignments part of the experiment.

quickest, closely followed by the software engineers.
Another trend we observe in the results is that more experienced developers were able

to solve the assignments more quickly. This trend is visible for all pretest questions about
the participant’s experience. Figure 5.19 shows two examples: the influence of general
experience with software development and the influence of software testing experience.
Overall this shows us that the participants were able to rate their own experience accurately.

5.2.2 Statistical Significance of Performance Improvements

The following analysis of the statistical significance of the performance improvements is based on
the results of the within-subjects experiment presented in Section 5.1.2.

In Section 5.1.2, we presented the performance results of all assignment variants. For all

67

5. RESULTS AND ANALYSIS

Table 5.3: Statistical significance of the observed performance improvements.

Assignment U p Reject H0
1a 24.0 0.215
1b 19.0 0.095
2a 20.0 0.092
2b 22.0 0.255
3a 12.5 0.022 X
3b 4.0 0.002 X
4a 28.0 0.355
4b 17.0 0.059

assignments except one, we observe an improvement of the average failure-fixing time when
using TESTAXIS. We now analyze whether these improvements are statistically significant.

We use the two-tailed Mann-Whitney U test [35] to attempt to reject our null hypothesis
(H0): “there is no difference between performing an assignment without or with TESTAXIS”.
Based on the evaluation of Q-Q plots of the data, we cannot assume normality and thus need
a non-parametric test [40]. Moreover, our sample sample size (8 participants) per assignment
variant is small. Therefore, the Mann-Whitney U test is an appropriate choice [40].

We want to reject our H0 when p ≤ 0.05. A p-value indicates the probability that the
performance improvement occurred by random chance. The Mann-Whitney U test does not
give a p-value directly but the U statistic that is based on a ranking of the results. This means
that we reject the H0 when U ≤ 13 based on the critical values of a two-tailed Mann-Whitney
U test with sample size 8 for both samples with the criterion p≤ 0.05 [55].

Table 5.3 shows the U values per assignment. It also shows p-values using a normal
approximation. For assignment 3a and 3b, U ≤ 13 holds, thus we can reject H0 and conclude
that these improvements are statistically significant. For all other assignments, we cannot
conclude whether the performance improvement is statistically significant. This is mostly
due to the small sample sizes, a higher number of participants with the same observed
performance improvements would result in lower U /p values. For small sample sizes, the
significance test only detects large effects [40].

5.2.3 Meta Information in the IDE

The following analysis and discussion of the performance improvements in the assignments of the
first category is based on the results of the within-subjects experiment presented in Section 5.1.2.

To measure the influence of presenting a test failure in the IDE rather than in a CI build log,
we conducted the assignments in category one: Test Failure Metadata (see Section 4.3.3).
These assignments are solvable by just looking at the meta-information (the name of the
failing test, and the stack trace of the failing test). Since the issues are relatively easy,
the impact of showing an interpreted overview of the failed tests over scrolling through a
build log should be visible in the amount of time spent on figuring out which tests failed.

68

5.2. Performance Analysis and Discussion

1 2 3 4 5
0

50

100

150

200 Assignment Variant
1a-without
1a-with

Likert-Scale Rating (1-5)
I spent most time finding out which test(s) failed

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(a) Assignment 1a

1 2 3 4 5
0

100

200

300
Assignment Variant

1b-without
1b-with

Likert-Scale Rating (1-5)
I spent most time finding out which test(s) failed

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(b) Assignment 1b

Figure 5.20: Time spent on figuring out which tests failed indicated by the participant in
relation to the failure-fixing time of the assignments of category one.

Other TESTAXIS features are less useful for these assignments putting the focus on the
meta-information.

We measured the influence in terms of failure-fixing time performance. As explained
in Section 4.3, we consider there to be an effect when both assignments show the same
trend between the with and without TESTAXIS variants. Only in those cases, we know that
the performance is not influenced by the group distribution per category. The results in
Section 5.1.2 show that for both assignments the with variant was conducted more quickly.
Thus, we can conclude there is a positive effect on the failure-fixing performance when using
TESTAXIS for the assignments in category one. On average, the participants were 13.4%
faster using TESTAXIS for the assignments in this category (test failure metadata).

In both assignments, we see that for the variants without TESTAXIS, participants indicate
that they spent more time figuring out which tests failed (see Figure 5.20). This suggests
that it is easier to find which tests failed using TESTAXIS. In Figure 5.20a we observe that
the participants of the without variant of assignment 1a that spent more time figuring out
which tests failed, also took longer to solve the entire assignment. This trend, however, is
not visible in the results of assignment 1b, see Figure 5.20b. This could be explained by
the fact that assignment 1b is more involved and requires participants to spend more time
investigating the code relative to figuring out which test failed.

Since the issues of these assignments can be easily spotted from the stacktraces, we would
expect that participants spent the most time looking at the stacktrace and afterward quickly
spot the issue in the code. However, the results in Figure 5.21 show that the participants
rated the time spent on looking at the metadata relatively low for both the with and without
variants. This may again be explained by the fact that the time they have to look at the stack
trace is relatively short and that actually looking at the code and typing the change in the test
code takes more time. For both assignments, we see that the participants spent more time
looking at the location of the issue: the test code in assignment 1a (see Figure 5.21a) and the
code under test in assignment 1b (see Figure 5.21b).

An interesting observation is that while in assignment 1a almost none of the participants
ran the failing test locally, the majority of the participants in the without variant of assign-

69

5. RESULTS AND ANALYSIS

87.5% 12.5%

50.0% 25.0% 25.0%

87.5% 12.5%

37.5% 12.5% 25.0% 12.5% 12.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 1.1 ■

I spent most time on looking at the metadata of
the failure 2.0 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

1.5 ■

I spent most time on looking at the metadata of
the failure

2.5 ■
Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

(a) Assignment 1a

87.5% 12.5%

25.0% 25.0% 50.0%

75.0% 12.5% 12.5%

12.5% 12.5% 25.0% 50.0%

25.0% 12.5% 62.5%

37.5% 25.0% 25.0% 12.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 1.5 ■

I spent most time on looking at the code under
test 4.0 ■

I spent most time on looking at the metadata of
the failure 1.6 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

3.9 ■

I spent most time on looking at the code under
test

3.6 ■

I spent most time on looking at the metadata of
the failure

2.2 ■
Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

(b) Assignment 1b

Figure 5.21: Participants’ post-assignment feedback on the without (orange square) versus
the with (purple square) variants of the assignments of category one.

ment 1b did (see Figure 5.21). The issue in assignment 1a is a resource renaming issue
that many of the participants could solve by intuition. Assignment 1b is more involved and
requires participants to take a closer look at why and where the test is failing. Here it is
clearly visible that the participants did not get enough information from the CI build log and
had to run the tests locally to get a deeper understanding of the issue.

RQ1

What is the influence of presenting a test failure in the IDE over a CI build log on
the time a developer needs to fix a failing test?

Key Points

• Developers solve test failures more quickly when the failure information is pre-
sented in the IDE over a CI build log. In the experiment, we saw an average
performance increase of 13.4%.

• Developers indicate they need less time to find which test is failing using
TESTAXIS.

• When the failure information is presented in an accessible format, developers do
not need to run tests locally for failure details.

70

5.2. Performance Analysis and Discussion

5.2.4 Failed Test Code in the IDE

The following analysis and discussion of the performance improvements in the assignments of
the second category is mostly based on the results of the within-subjects experiment presented in
Section 5.1.2. We compare some of the observations to the results of the one-group pretest-posttest
experiment and in these cases state this explicitly.

We designed the assignments in category two to measure the impact of providing quick
access to the test code of a failing test. This may help to spot mistakes in the test code
itself and in understanding the intent of the test. Both assignments in this category can be
solved by carefully reading the test code. Since the assignments add both new tests and new
production code, the participants may also use the code under test feature to see what code
the test is supposed to check.

We again measured the failure-fixing time to determine the influence of showing the test
code. In the results from Section 5.1.2, we observe an improvement in the performance for
both assignments in this category. Therefore, we conclude that there is a positive effect on
the failure-fixing time, that is not caused by the random participant distribution when the test
code feature is made available. On average, the participants performed 13.8% faster in the
assignment variants with TESTAXIS.

Assignment 2a has the highest number of participants that hit the time limit, see Sec-
tion 5.1.2. While the issue to be spotted in the test code is simple, the added production
code is more complex. This is reflected in the perceived difficulty of the assignment which
is higher (average score 2.9, see Figure 5.22a) for the without variant (6 hit limits out of 8)
than the with variant (average score 1.8, 3 hit time limits out of 8). Possibly, if given more
time, the participants would have been able to solve the assignment, which would likely have
increased the performance improvement since the without variant had a high number of time
limits.

Since the production code of assignment 2a is complex, we also see that most participants
spent the most time investigating the code under test rather than the test code where the
issue is located (see Figure 5.22a). We observe the same trend for the with variant of
assignment 2b in Figure 5.22b but not for the without variant. However, the relevant code
under test highlighted by TESTAXIS consists of only three lines, making it unclear why the
participants spent a similar (or more) amount of time on the code under test as on the test
code. The participants that spent more time looking at the code under test also solved the
assignment the slowest as shown in Figure 5.23. This may be because the participants could
be more inclined to look for the issue in the production code than in the test code since there
are only 2 out of 8 assignments where the issue is located in the test code.

An interesting observation is that the participants that spent the most time looking at the
test code solved the assignments the quickest, see Figure 5.24. This may be because these
participants simply focused more on the test code and therefore spotted the issue earlier
which would make the relative amount they spent on the test code higher than for participants
that also investigated the code under test. However, it also supports the hypothesis that it is
useful to provide quick access to the test code to solve an issue earlier.

The newly added tests in assignment 2b make use of mocks. When we look at the
pretest questionnaire of the one-group pretest-posttest experiment, we see that some of

71

5. RESULTS AND ANALYSIS

87.5% 12.5%

25.0% 25.0% 50.0%

62.5% 25.0% 12.5%

50.0% 37.5% 12.5%

25.0% 25.0% 50.0%

12.5% 12.5% 50.0% 25.0%

62.5% 25.0% 12.5%

25.0% 37.5% 37.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 1.2 ■

I spent most time on looking at the code under
test 4.2 ■

I spent most time on looking at the test code
2.5 ■

This assignment was too difficult to solve in
the given amount of time 1.8 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

3.8 ■

I spent most time on looking at the code under
test

3.6 ■

I spent most time on looking at the test code
2.5 ■

This assignment was too difficult to solve in
the given amount of time

2.9 ■
Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

(a) Assignment 2a

62.5% 25.0% 12.5%

25.0% 12.5% 25.0% 37.5%

12.5% 12.5% 37.5% 12.5% 25.0%

25.0% 12.5% 12.5% 50.0%

12.5% 62.5% 12.5% 12.5%

12.5% 12.5% 25.0% 50.0%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 1.8 ■

I spent most time on looking at the code under
test 3.5 ■

I spent most time on looking at the test code
3.2 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

3.5 ■

I spent most time on looking at the code under
test

2.2 ■

I spent most time on looking at the test code
4.1 ■
Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

(b) Assignment 2b

Figure 5.22: Participants’ post-assignment feedback on the without (orange square) versus
the with (purple square) variants of the assignments of category two.

1 2 3 4 5
0

100

200

300

Assignment Variant
2b-without
2b-with

Likert-Scale Rating (1-5)
While figuring out the cause of the test failure, I spent most

time on looking at the code under test

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

Figure 5.23: Time spent on investigating the code under test indicated by the participant in
relation to the failure-fixing time of assignment 2b.

72

5.2. Performance Analysis and Discussion

1 2 3 4 5
0

100

200

300

Assignment Variant
2a-without
2a-with

Likert-Scale Rating (1-5)
While figuring out the cause of the test failure, I spent most

time on looking at the test code

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(a) Assignment 2a

1 2 3 4 5
0

100

200

300

Assignment Variant
2b-without
2b-with

Likert-Scale Rating (1-5)
While figuring out the cause of the test failure, I spent most

time on looking at the test code

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(b) Assignment 2b

Figure 5.24: Time spent on investigating the test code indicated by the participant in relation
to the failure-fixing time of the assignments of category two.

1 2 3 4 5
0

100

200

300

Assignment Variant
2b-without
2b-with

Likert-Scale Rating (1-5)
I consider myself to be experienced using mocks in my tests

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(a) Mocking

1 2 3 4 5
0

100

200

300

Assignment Variant
2b-without
2b-with

Likert-Scale Rating (1-5)
I consider myself to be experienced in developing software

applications

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(b) Software Development

Figure 5.25: Participants’ past experience in relation to the failure-fixing time of assign-
ment 2b.

the participants are less experienced with the concept of mocking. We show the impact
of this on the performance results in Figure 5.25a). However, this the trend aligns with
general experience with software development indicated in the same pretest questionnaire
(see Figure 5.25b) and is no different from what we observed in other assignments.

Similar to what we observed in assignment 1b, the participants rate the need for rerunning
a failing test locally significantly lower when using TESTAXIS. Figure 5.22 shows that the
average score for this need went down from 3.8 and 3.5, respectively, to 1.8 and 1.2.

73

5. RESULTS AND ANALYSIS

RQ2

What is the influence of showing the test code on the time a developer needs to fix
a failing test?

Key Points

• Developers solve test failures more quickly when they have quick access to the
test code as part of the failure information. In the experiment, we saw an average
performance increase of 13.8%.

• When there is an issue in the test code, developers almost never run tests locally
when using TESTAXIS to gain more details.

5.2.5 (Changed) Code Under Test in the IDE

The following analysis and discussion of the performance improvements in the assignments of
the third and fourth category is mostly based on the results of the within-subjects experiment
presented in Section 5.1.2. We compare some of the observations to the results of the one-group
pretest-posttest experiment and in these cases state this explicitly.

We evaluate the (changed) code under test feature using the assignments from the third and
fourth category: code under test and advanced code under test.

(Simple) Code Under Test

We timed the execution of the assignments in category three: code under test. Section 5.1.2
presents the timing results. The participants solved the assignments in this category 48.6%
faster with TESTAXIS than without (see Section 5.1.2). We observe an increase in perfor-
mance for both assignments and thus conclude that TESTAXIS has a positive effect, not
caused by the participant distribution, on the failure-fixing time on the type of failing tests in
this assignment. In Section 5.2.2, we concluded that the performance improvement for both
assignments in this category is statistically significant.

The way TESTAXIS presents the changed code under test may not be familiar to devel-
opers based on their experience. The combination of coverage data and change information
was a new concept for most participants that they had to get used to. The closest existing
feature is the inspection of code coverage information. Using Figure 5.26a and 5.26c we ex-
plored whether code coverage experience influenced the failure-fixing time. The participants
indicated their experience level in the pretest questionnaire of the one-group pretest-posttest
experiment. We found that, although the participants with more code coverage experience
were able to solve the assignments quicker, this trend is also visible in all other assignments.
It also aligns with the general experience in developing software applications indicated in the
same pretest questionnaire (see Figure 5.26b and 5.26d), and therefore we may conclude that
code coverage experience had no additional influence on the results over general experience.
In fact, for assignment 3b we observe that the participants conducting the with variant that

74

5.2. Performance Analysis and Discussion

1 2 3 4 5
0

100

200

300

Assignment Variant
3a-without
3a-with

Likert-Scale Rating (1-5)
I consider myself to be experienced in running tests with

coverage collection enabled and inspecting the results

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(a) Assignment 3a - Code Coverage Experience

4 6 8 10 12
0

100

200

300

Assignment Variant
3a-without
3a-with

Years
How many years of experience in programming do you have?

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(b) Assignment 3a - Years of Experience

1 2 3 4 5
0

100

200

300

Assignment Variant
3b-without
3b-with

Likert-Scale Rating (1-5)
I consider myself to be experienced in running tests with

coverage collection enabled and inspecting the results

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(c) Assignment 3b - Code Coverage Experience

4 6 8 10 12
0

100

200

300

Assignment Variant
3b-without
3b-with

Years
How many years of experience in programming do you have?

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(d) Assignment 3b - Years of Experience

Figure 5.26: Participants’ past experience in relation to the failure-fixing time of the assign-
ments of category three.

are more experienced with code coverage took longer to solve the assignment. However, this
also follows the general experience trend in Figure 5.26d.

The participants indicated they spent the most time looking at the code under test for
both assignments (see Figure 5.27). This is not surprising as the issues are located in the
production code. The specific changes in the production code causing the issues, however,
are more prominently highlighted in TESTAXIS because it only shows the changes covered
by the test. The other changes are not all covered by the failing tests in the assignments.
Thus reviewing the changes on a platform like GitHub will take more time. This explains
that although the results show that developers spent a similar relative amount of time on the
code under test (according to their own rating), their absolute failure-fixing time is lower
when using TESTAXIS.

Like previous assignments, we see a significant drop in the number of participants that
had to run the test locally in assignment 3a between the without and with variants (see
Figure 5.27a. For assignment 3b, this drop is less obvious (from average score 2.4 to 1.4).
This is likely because several participants were able to solve this assignment by careful
review of the introduced changes without any additional information.

75

5. RESULTS AND ANALYSIS

75.0% 12.5% 12.5%

37.5% 62.5%

25.0% 37.5% 37.5%

50.0% 37.5% 12.5%

25.0% 12.5% 62.5%

50.0% 50.0%

12.5% 87.5%

25.0% 37.5% 25.0% 12.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 1.6 ■

I spent most time on looking at the code under
test 4.6 ■

I spent most time on looking at the test code
2.1 ■

I spent most time on looking at the metadata of
the failure 1.6 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

3.9 ■

I spent most time on looking at the code under
test

4.5 ■

I spent most time on looking at the test code
2.8 ■

I spent most time on looking at the metadata of
the failure

2.2 ■
Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

(a) Assignment 3a

87.5% 12.5%

12.5% 37.5% 50.0%

25.0% 25.0% 37.5% 12.5%

62.5% 25.0% 12.5%

62.5% 12.5% 25.0%

12.5% 37.5% 50.0%

50.0% 25.0% 25.0%

75.0% 12.5% 12.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 1.4 ■

I spent most time on looking at the code under
test 4.4 ■

I spent most time on looking at the test code
2.4 ■

I spent most time on looking at the metadata of
the failure 1.5 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

2.4 ■

I spent most time on looking at the code under
test

4.2 ■

I spent most time on looking at the test code
2.0 ■

I spent most time on looking at the metadata of
the failure

1.4 ■
Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

(b) Assignment 3b

Figure 5.27: Participants’ post-assignment feedback on the without (orange square) versus
the with (purple square) variants of the assignments of category three.

Advanced Code Under Test

The timing results of the assignments in the fourth category are more surprising. While there
is an average performance improvement of 12.1% (see Section 5.1.2), the participants of
the with variant of assignment 4a were actually 6.9% slower than the participants of the
without variant. Assignment 4b does show an improvement (31.0%). By the design of our
experiment, this means we cannot conclude that the effect is caused by the introduction of
TESTAXIS because the results of the two assignments do not show the same trend. This
may indicate that the results are influenced by the random participant distribution. However,
the levels of experience and background knowledge indicated by the participants in the
pretest questionnaire are similar across the two groups. Thus, the results are less likely to be
influenced by the background of the participant groups.

Similar to the assignments of category three, the experience with coverage does not have
an impact on the timing results that does not follow the general experience trend.

In Figure 5.28a, we see that the participants of the with variant of assignment 4a,
especially the ones that were the slowest, spent more time understanding the test code (while

76

5.2. Performance Analysis and Discussion

1 2 3 4 5
0

200

400

600

Assignment Variant
4a-without
4a-with

Likert-Scale Rating (1-5)
While figuring out the cause of the test failure, I spent most

time on looking at the test code

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(a) Assignment 4a

1 2 3 4 5
0

200

400

600

Assignment Variant
4b-without
4b-with

Likert-Scale Rating (1-5)
While figuring out the cause of the test failure, I spent most

time on looking at the test code

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(b) Assignment 4b

Figure 5.28: Time spent investigating the test code indicated by the participant in relation to
the failure-fixing time of the assignments in category four.

1 2 3 4 5
0

200

400

600

Assignment Variant
4a-without
4a-with

Likert-Scale Rating (1-5)
While figuring out the cause of the test failure, I spent most

time on looking at the code under test

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(a) Assignment 4a

1 2 3 4 5
0

200

400

600

Assignment Variant
4b-without
4b-with

Likert-Scale Rating (1-5)
While figuring out the cause of the test failure, I spent most

time on looking at the code under test

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(b) Assignment 4b

Figure 5.29: Time spent investigating the code under test indicated by the participant in
relation to the failure-fixing time of the assignments in category four.

the issue is in the code under test). A possible explanation could be that test code is more
emphasized in TESTAXIS, while in GitHub you may be drawn more to looking at the Files
Changed, which first shows the production code. An alternative explanation is that the
participants that spent more time on the test code may have had more trouble understanding
the problem. A reverse trend is visible in Figure 5.29a, where the participants that spent
the most time looking a the code under test fixed the issue more quickly. In contrast to
assignment 4a, we do not observe that the participants in the with variant of assignment 4b
spent more time reading test code according to their own rating of how they spent their time
(see Figure 5.28b). We do see the same trend that people that spend more time looking at
the test code took longer to fix the issue. Again, we see the reverse trend for the code under
test, see Figure 5.29b: the participants that spent the most time looking at the code under test
found the issue more quickly. Figure 5.30 gives an overview of what parts the assignments
indicated to have spent the most time on while figuring out the cause of the failing test. It

77

5. RESULTS AND ANALYSIS

62.5% 12.5% 12.5% 12.5%

12.5% 37.5% 50.0%

62.5% 12.5% 12.5% 12.5%

62.5% 37.5%

25.0% 25.0% 25.0% 25.0%

12.5% 12.5% 12.5% 62.5%

12.5% 50.0% 37.5%

12.5% 25.0% 37.5% 25.0%

37.5% 37.5% 12.5% 12.5%

25.0% 12.5% 25.0% 25.0% 12.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 2.0 ■

I spent most time on looking at the code under
test 4.1 ■

I spent most time on looking at the test code
2.8 ■

I spent most time on looking at the metadata of
the failure 1.4 ■

This assignment was too difficult to solve in
the given amount of time 3.5 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

4.1 ■

I spent most time on looking at the code under
test

4.2 ■

I spent most time on looking at the test code
2.8 ■

I spent most time on looking at the metadata of
the failure

2.1 ■

This assignment was too difficult to solve in
the given amount of time

2.9 ■
Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

(a) Assignment 4a

50.0% 37.5% 12.5%

50.0% 50.0%

75.0% 25.0%

62.5% 25.0% 12.5%

25.0% 12.5% 37.5% 12.5% 12.5%

28.6% 14.3% 57.1%

14.3% 28.6% 57.1%

14.3% 57.1% 14.3% 14.3%

28.6% 57.1% 14.3%

14.3% 42.9% 42.9%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 2.2 ■

I spent most time on looking at the code under
test 4.5 ■

I spent most time on looking at the test code
2.2 ■

I spent most time on looking at the metadata of
the failure 1.5 ■

This assignment was too difficult to solve in
the given amount of time 2.8 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

4.0 ■

I spent most time on looking at the code under
test

4.4 ■

I spent most time on looking at the test code
2.3 ■

I spent most time on looking at the metadata of
the failure

1.9 ■

This assignment was too difficult to solve in
the given amount of time

2.7 ■
Avg

Strongly Disagree AgreeNeutralDisagree Strongly Agree

(b) Assignment 4b

Figure 5.30: Participants’ post-assignment feedback on the without (orange square) versus
the with (purple square) variants of the assignments of category four.

shows that most participants spent most time looking at the code under test, the topic of this
category.

The failing test in the assignments in this category is an end-to-end smoke test of the
application. Interestingly, we observe in Figure 5.31 that the participants that think writing
such tests is more effective than writing strict unit tests were also quicker in solving the
assignments. The participants gave their opinion on this matter in the pretest questionnaire
of the one-group pretest-posttest experiment.

Another interesting observation is that we observe that the more experienced participants
within the two participant groups of this category, perform worse with TESTAXIS than the
less experienced participants, see Figure 5.32. The participants indicated their experience
level in the one-group pretest-posttest experiment. The changed code under test feature is a

78

5.2. Performance Analysis and Discussion

1 2 3 4 5
0

200

400

600 Assignment Variant
4a-without
4a-with

Likert-Scale Rating (1-5)
When employing software testing, I think writing more

integration or system/end-to-end tests is more effective than
writing unit tests

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(a) Assignment 4a

1 2 3 4 5
0

200

400

600
Assignment Variant

4b-without
4b-with

Likert-Scale Rating (1-5)
When employing software testing, I think writing more

integration or system/end-to-end tests is more effective than
writing unit tests

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(b) Assignment 4b

Figure 5.31: Participants’ opinion on effectiveness of integration/end-to-end tests in relation
to the failure-fixing time of the assignments in category four.

4 6 8 10 12
0

200

400

600

Assignment Variant
4a-without
4a-with

Years
How many years of experience in programming do you have?

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(a) Assignment 4a

4 6 8 10 12
0

200

400

600

Assignment Variant
4b-without
4b-with

Years
How many years of experience in programming do you have?

A
ss

ig
nm

en
t D

ur
at

io
n

(s
)

(b) Assignment 4b

Figure 5.32: Years of programming experience in relation to the failure-fixing time of the
assignments in category four.

new type of tooling that developers are likely not used to. A possible explanation might thus
be that the more experienced participants stuck to their known inspection and debugging
habits. The less experienced participants may find it easier to incorporate a new tool into
their workflow.

Figure 5.30 shows that while still more participants had to run the tests locally when
they did not use TESTAXIS, the number of participants that had to do this with TESTAXIS is
slightly higher than in the previous assignments. This likely has to do with the difficulty of
the assignments (average scores 2.9 and 2.7 for the without variant, 3.5 and 2.8 for the with
variant) which is rated above average (2.1 for all variants without and 1.9 for all variants with
TESTAXIS). During the execution of the assignments, we also observed that the participants
that did run the test locally either did this to confirm whether their fix worked or when they
had not found the solution after a given amount of time.

79

5. RESULTS AND ANALYSIS

RQ3

What is the influence of showing the code under test, where the changed code is
highlighted, on the time a developer needs to fix a failing test?

Key Points

• Developers solve simple test failures more quickly when they have an overview of
the changed code under test. In the experiment, we saw an average performance
increase of 48.6%. This improvement is statistically significant.

• The results cannot tell us whether there is a performance increase when using the
changed code under test failure to solve failures of more complicated tests, such
as end-to-end tests. In the experiment, we saw an average performance increase
of 12.1% but cannot rule out the effect of the participant distribution per category.

• More experienced developers are less efficient than less experienced developers
when using the code under test feature.

• When there is an issue in the code under tests, developers have a smaller need to
run the failing test(s) when using TESTAXIS to gain more details.

5.2.6 Influence of Assignment Ordering

The following analysis and discussion of the influence of the assignment ordering on the results is
based on the results of the within-subjects experiment presented in Section 5.1.2.

The ordering of the assignments may influence the results because the participants become
more familiar with TESTAXIS and the codebase of JPacman over time. We analyze the
duration of assignments per position in the ordering to see if such a learning effect is visible
in the results.

Figure 5.33 shows the duration of the eight participants per assignment. It shows the
duration per position in the assignment ordering, which is different for each participant.
11/16 of the plots suggest the influence of a learning effect because the assignment ordered
later were completed more quickly. Obviously, we do need to take into account that the
number of participants per assignment per position is small, about one.

In Figure 5.34, we show the mean and median time to complete all assignments ordered
at a certain position. It is important to note that some assignments take a little over a minute
to solve, on average, while others take about eight minutes on average. This explains the high
variance (indicated by the vertical lines in the plot) per ordering position. The overall trend
suggests that assignments at the end were solved more quickly than assignments positioned
earlier in the ordering.

We conclude that there is an observable learning effect. In Section 5.4, we discuss the
impact of this effect on the results and explain the measures we have taken to mitigate the
impact.

80

5.2. Performance Analysis and Discussion

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

Position Position Position Position

D
ur

at
io

n
(s

)
D

ur
at

io
n

(s
)

D
ur

at
io

n
(s

)
D

ur
at

io
n

(s
)

1a-without 1a-with 1b-without 1b-with

2a-without 2a-with 2b-without 2b-with

3a-without 3a-with 3b-without 3b-with

4a-without 4a-with 4b-without 4b-with

Figure 5.33: Influence of the assignment position in the participants’ assignment ordering on
the failure-fixing time per assignment.

81

5. RESULTS AND ANALYSIS

2 4 6 8

100

200

300

400

500
Mean Time
Mean Trend
Median Time

Position

D
ur

at
io

n
(s

)

Figure 5.34: Influence of the assignment position in the participants’ assignment ordering on
the average failure-fixing time.

5.3 Usefulness Discussion

We evaluate the usefulness of three different aspects. First, we discuss the participants’
opinions on the usefulness of having build notifications in the IDE in Section 5.3.1. Second,
we explain the results of the questions on the health warnings and put them into perspective
in Section 5.1.5. Finally, we discuss the overall usefulness of TESTAXIS as a CI build test
result inspection tool in Section 5.3.3. In these sections, we also formulate an answer to
RQ4-RQ6.

5.3.1 Build Notifications in the IDE

The following discussion of the usefulness of build notification in the IDE is based on the results
of the one-group pretest-posttest experiment presented in Section 5.13.

TESTAXIS shows a notification in the IDE when a build has finished. During the experiment,
we triggered such a notification for all assignments with TESTAXIS. In Section 5.13 we
presented how the participants perceived such notifications.

Most participants prefer the TESTAXIS IDE notifications over their current approach
of becoming aware of build failures. In their current approaches, most participants are
not actively notified since they primarily manually check the build status (see Section 5.7).
However, in the pretest questionnaire, the participants indicated their current approach does
make them aware of the build failure quickly. Nevertheless, after having experienced the
TESTAXIS notifications, the participants think that the build notifications in the IDE would
make them aware of build failures earlier. One participant expressed the concern that they
would not want to be distracted by these notifications while working on a different code
change.

82

5.3. Usefulness Discussion

RQ4

To what extent do developers prefer to be actively notified of CI build failures in
the IDE over their current approach?

Key Points

• Most participants prefer IDE notifications over their current approach.

• The most common current approach of becoming aware of build failures under
the participants is checking the build status manually.

5.3.2 Health Warnings

The following discussion of the usefulness of test health warnings is based on the results of the
one-group pretest-posttest experiment presented in Section 5.1.5.

By providing interpretation to the data collected by TESTAXIS, we can show test health
warnings about potential flaky tests, slow tests, and often-failing tests. During the experiment,
we presented several of these warnings to the participants. We described the full results in
Section 5.1.5.

In the pretest questionnaire, we asked participants to give their opinions on the different
health factors. The participants agreed most with the statement that flaky tests are difficult
to recognize and after having experienced the test health warnings also indicate that they
find the potential flaky test warnings the most useful. While the participants also care about
improving the speed of their test suite, they did not find the slow test warnings very useful.
During the experiment, participants indicated that they usually already know which tests
are slow and that without any mechanism to suppress the warnings (explicitly considered
a missing feature by three participants, see Section 5.1.3) they would consider the feature
less useful because some tests are inherently slower than others. From CI build logs, it is
difficult to inspect the past behavior of a specific test without going through a number of logs
manually. Likely, participants therefore find the warnings on often-failing tests more useful
and rated them higher than the slow test warnings.

In general, the majority of participants indicate that they would act on the test health
warnings. However, 18.8% indicated they would ignore the warnings. Another 31.2% neither
agreed nor disagreed with the statement. So, while there is a majority, not all participants are
convinced the warnings would be useful enough to act on them. Obviously, the participants
were only exposed to a small number of warnings in the limited time span of the experiment.
It may be that such warnings in a developer’s own software project are considered less or
more useful.

83

5. RESULTS AND ANALYSIS

RQ5

To what extent do developers find it useful to be warned about the health and
history of a failing test?

Key Points

• Most participants would act on test health warnings, however, not all of them were
convinced that the warnings are useful.

• The participants consider the test health warnings on potential flaky tests useful.

• The participants rate the test health warnings on slow tests neutral.

• The participants consider the test health warnings on often-failing tests useful.

5.3.3 Usefulness of TESTAXIS

The following discussion of the usefulness of TESTAXIS is based on the results of the one-group
pretest-posttest experiment presented in Section 5.1.3.

We analyze the usefulness of TESTAXIS and its core features by looking at the posttest results
on the usefulness of the different features and by comparing the participants’ expectations of
a CI build test result inspection tool with their perceptions (see Section 5.1.3).

For all test case execution results, TESTAXIS displays the information of its three main
features in three tabs: the details tab, the test code tab, and the code under test tab. In general,
the participants find that TESTAXIS is a useful tool to understand test failures better and fix
them more quickly. The participants agree that all three main features are useful but do find
some features more useful than others.

The participants find the test code tab that displays the source of the test case least useful.
This feature provides quick access to the test code but does not offer additional insights that
are not visible in the regular IDE window, therefore participants may perceive this feature
least useful of the three main features.

The details tab shows which test failed and provides access to an interactive stack trace,
similar to how stack traces are displayed in other parts of the IDE. The participants rate
this feature as the second most useful one. Participant 13 mentioned the following about
the failing test details feature: “I think there is a significant difference in having TESTAXIS

versus not having it. It shows me all the information I need. The stack trace shown in
TESTAXIS is much less intrusive than in the build logs where it dumps the whole trace.
Just having quick access is very useful.” Even though this feature mainly displays existing
information developers already have access to, the participants still found it useful. This
suggests that just providing easy access and obviating the need to inspect build logs can
already help developers.

The code under test tab that shows the changed and covered code is considered most
useful. The fact that it combines change information with code coverage data is appreciated

84

5.4. Threats to Validity

by the participants and they strongly agree that the feature would be less useful without it.
This feature is the most innovative part of TESTAXIS and is not commonly available in IDEs
such as IntelliJ. The participants likely consider this feature the most useful one because
there is no similar alternative solution available.

TESTAXIS slightly exceeds the expectations of what the participants expected of the tool.
After having used TESTAXIS, more participants were convinced that TESTAXIS solves a real
problem. The participants think that TESTAXIS is useful enough to save them time. This
perception aligns with our earlier analysis of the quantitative performance results. After the
assignments, one participant thinks that TESTAXIS will be less useful in terms of providing
enough information to fix a failing build. However, for all other participants, the expectations
were met.

All participants either agreed or strongly agreed that TESTAXIS provides useful benefits
over manually inspecting build logs. Most participants would consider making TESTAXIS a
part of their workflow, both before and after having used it. All of them rated this statement
neutral or higher except for participant 1 who strongly disagreed with the statement. They
explained that “TESTAXIS would not become part of my workflow because I don’t do a lot
of software testing and work in other languages than java”.

RQ6

To what extent do developers consider a CI build test result inspection IDE plugin
useful?

Key Points

• The participants find TESTAXIS useful in helping them understand a test failure
better and fix it more quickly.

• The participants consider all three main features of TESTAXIS (failure details, test
code, and code under test) to be useful. The (changed) code under test feature is
considered to be most useful.

• The participants believe that TESTAXIS solves a real problem.

• The usage of TESTAXIS would save the participants time and they would make it
part of their workflow.

• The participants strongly agree that TESTAXIS provides benefits over inspecting
CI build logs manually.

5.4 Threats to Validity

The value of the results of the experiment is limited by the constraints of the experiment. We
designed the experiment in such a way that as many external influences on the results could
be avoided while not narrowing the experiment too much to avoid making it too specific. To

85

5. RESULTS AND ANALYSIS

support the credibility of our results, we outline the threats to the validity of the study below.
While some threats could be mitigated by the careful design of the experiment, others should
be taken into account while considering the validity of the results. The three most important
types of validity are internal, construct, and external validity [43].

5.4.1 Internal Validity

Internal validity indicates the reliability of the cause-and-effect relationship between the
introduction of TESTAXIS and the observed effects in the results. The validity of the
experiment results is threatened by any factors that influence the cause or effect. These factors
are called confounding variables and the extent to which their impact can be minimized
determines the internal validity [56].

As shown in Section 5.2.6, there is a learning effect visible in the results. Because the
participants learn more about the tool and the codebase of the software project, they are able
to solve assignments more quickly at the end of the experiment. We expected such an effect
while designing the experiment and mitigated the impact of this learning effect on the results
as follows. By randomizing the order of the assignments (see Section 4.3.4), we ensured that
the results for each assignment are based on both early as late executions of the assignment
in the experiment. The ordering of the assignment variants of categories is also randomized.
Half the participants got the without variant of one of the two assignments belonging to a
certain category first, and the other half got the with variant of one of the assignments of the
same category first.

Creating two assignments that are similar enough to directly compare the difference in
results when using/not using TESTAXIS is very complex (see Section 4.3.3). Obviously,
participants can also not conduct the same assignment twice while using/not using TESTAXIS

the second time because they would already know the solution. To mitigate this complexity,
we do not compare the results of the two assignments per category that a single participant
does. Instead, we compare the results of the without variant of a specific assignment against
the with variant, executed by another group. This means that the composition of the two
groups per assignment category could influence the results. While we randomized the group
distribution process, one of the groups could, for example, be skewed in the number of
experienced developers. For this reason, we only consider there to be an effect on the results
after using TESTAXIS when the results of the without and with variant show the same trend
for both assignments of a category. Thus, when one of the groups performs significantly
better than the other group, we cannot conclude that the observed effect is not caused by the
group distribution. This was the case for the results of category four.

The experiment environment was kept as consistent as possible between different par-
ticipants and assignments. The participants all had access to the same computer with the
same software installed. All participants used a remote connection to perform the assign-
ments. For some participants, however, their keyboard layout did not match the layout of the
experiment machine causing them to use different key combinations than they were used
to. We tried to prevent any complications during the experiment caused by this issue by
explaining the issue and by asking the participants to conduct a small task to get acquainted
with working in a remote environment. Using our experiment control tooling described in

86

5.4. Threats to Validity

Section 4.6.2, we ensured that all software on the experiment machine was reset to the same
state for each assignment. This mitigates any effects of easier access to certain tooling in
later assignments. In the experiment, the participants had access to the same assignment
descriptions and received the same amount of information about TESTAXIS and JPacman
through the instruction videos.

Another factor in the experiment environment is whether the participants felt comfortable
giving their honest opinions. The experiment was conducted in individual sessions with direct
communication with the observer. The participants knew that their activity was observed
while conducting the assignments and filling out the questionnaires. This could potentially
have caused a Hawthorne effect resulting in participants answering certain questions more
positively [1]. While it is not possible to show that this was not the case, we do observe
negative answers to some of the questions of the questionnaire. This may suggest that the
participants felt at ease and comfortable sharing their opinions. In the posttest questionnaire,
some of the participants indicated that they would have solved the assignments easier or
more quickly outside the experiment environment, while most of them did not.

The impact of maturation, the influence of other factors than the introduction of TESTAXIS

between the observations, in this experiment is low. The full experiment is conducted within
90 minutes, for each participant, with an optional break of a couple of minutes. While we
cannot rule out that anything other than TESTAXIS influenced the effect in the results, the
exposure to external factors is very low. This makes it unlikely that such factors play a role
in the results.

In the experiment, TESTAXIS is only used for a short period of time. A longer study
of software development teams working with the tool in real projects is needed to measure
its true impact. The short period of time is not long enough to build enough intuition to
incorporate a new feature such as the (changed) code under test feature into one’s workflow.
Participant 14 confirmed this by saying “For the best experience, requires a user to learn the
intuitions of the tool”.

5.4.2 Construct Validity

Construct validity is concerned with the degree to which a test actually measures the con-
struct(s) it claims to be testing. In our case, we measure the performance and the usefulness
in the experiment.

The performance results are based on quantitative data, the duration of assignment execu-
tions. The timing results may be influenced by different behavior induced by the experiment
environment, previous questions, or previous assignments. However, the participants agree
with the statement that they used the same tactics during the assignments without TESTAXIS

as they would have done outside the experiment. We compared the performance results to
the results from the post-assignment questionnaires in Section 5.2. These questionnaires
contain ratings of how participants spent their time. During the experiment, we observed that
the participants could not always judge their own time distribution correctly. Therefore, this
questionnaire may not have captured the right results in all cases. The experiment notes that
are part of the replication package contain our observations on the amount of time spent on
certain tasks [12]. In a follow-up study, a more objective approach that monitors IDE usage,

87

5. RESULTS AND ANALYSIS

such as WATCHDOG [9], could be considered to get a better indication of which tasks are
most influenced by the usage of TESTAXIS.

We collect the participants’ opinions on the usefulness of TESTAXIS through the pretest
and posttest questionnaires. As described in the previous section, it is possible that the
participants answered the questions more positively due to the one-to-one experiment setting.
While we carefully formulated all questions, we can also not exclude any potentially leading
questions that may cause us to not collect the true result.

5.4.3 External Validity

The external validity is concerned with the generalizability of the results. In our study, the
following two factors influence this generalizability: the representativeness of the group of
participants and of the programming assignments.

As shown in Section 5.1.1, the participants are a diverse group with mixed backgrounds.
The participants have up to 12 years of programming experience and there is a mix between
industry and academic software engineers. However, the group size is relatively small (16
participants) which may cause individual differences in background to have a larger effect
on the results than in a larger group of participants.

The similarity of test failures in the programming assignments and real test failures
developers encounter in real life are an important factor in the generalizability of the results.
The assignments are conducted in JPacman (see Section 4.3.2). While this project is smaller
than most applications, it does feature an extensive test suite, has a modern build pipeline,
and employs design practices such as dependency injection. Although a larger project would
have made the results more representative, the short duration of the experiment requires a
project that can be understood quickly. The participants agree that JPacman allowed for
interesting cases that were suitable to answer the questions (see Section 5.1.6). The cases
we picked and designed are constructed to mimic test failures that could happen in any type
of software project. We also designed them to be solvable using the functionality available
in TESTAXIS, since we wanted to measure the impact of the individual features. However,
that means we cannot conclude that the usage of TESTAXIS helps fixing failing builds faster
in general, only in the specific cases. The participants neither agree nor disagree that the
assignments are similar to the ones they encounter in their own projects, indicating that the
generalizability of the assignments is a threat to the validity of the results.

5.5 Summary

In this chapter, we presented, analyzed, and discussed the results of the experiment. To
discuss the performance improvement, we analyzed the quantitative timing results of the
programming assignments. We observed an improvement in failure-fixing time when using
TESTAXIS for the first three categories (test failure metadata, test code, and code under
test). For the last category (advanced code under test), we cannot conclude that there is an
improvement since it does not meet the requirement set by our experiment design that both
assignments should show the same trend. When using TESTAXIS, the participants spent less
time figuring out which test failed and had less need to rerun a failing test locally.

88

5.5. Summary

We discussed the usefulness based on the qualitative questionnaire feedback. We found
that most participants prefer the TESTAXIS IDE build notifications over their current ap-
proach of becoming aware of build failures. Also, most participants agreed with the statement
that they would act on test health warnings when they encounter them. They consider the
warnings on potential flaky tests to be the most useful. In general, the participants find
TESTAXIS useful in helping them understand a test failure and fix it more quickly. They
consider the code under test feature to be the most useful. The participants think that there is
a significant improvement in using TESTAXIS over inspecting CI build logs manually. Also,
most participants would incorporate TESTAXIS in their workflow and think using it will save
them time.

89

Chapter 6

Related Work

CI builds and test failures are well-explored topics in Computer Science. This chapter
discusses a selection of the research done in these areas that is related or foundational to
our work. In this chapter, we outline how developers currently consume information about
failing CI builds due to test failures. We also investigate what types of additional information
can be shown to developers to fix such failing tests more quickly. For these different types,
we show how the process of collecting such a type of information, for example finding the
code under test, relates to existing work.

6.1 Test Failures in CI Builds

CI is the practice of frequently integrating a developer’s code change in the main code branch.
Part of this practice is that every code change is built, verified, and tested by an automated
service. CI is a best practice in both industry and open-source software development [15, 44].
Adopting CI in existing software systems, however, is not a trivial matter. One of the
reasons that holds developers back is failing builds that rely on a developer’s experience to
be fixed while preventing the proposed change from being integrated [28]. With failure rates
ranging from 13% to 35% [32, 65, 39], build failures are common. The fixing process is
time-consuming, on average it takes around 42 [39] to 57 minutes [32] to find and fix an
issue, which also makes it a costly process.

From discussions with developers, Amar et al. found that build logs are considered
overwhelming due to the amount of details [2]. The authors conclude that developers want to

“find the most faults while investigating the fewest log lines possible” [2]. A survey conducted
by Hilton et al. [28] also concludes that there is a need for more assistance for fixing CI
builds to prevent developers from having to work through “hundreds of thousands of lines
of output”. Such assistance would improve the testing infrastructure of a project. In fact, a
good testing infrastructure that makes it easier to add and maintain tests lowers the perceived
complexity of the testing practices employed by a certain project [44].

Vassallo et al. developed a tool called BART that tries to solve this issue of overwhelming
build logs by summarizing build failures and suggesting fixes based on information from
external sources such as StackOverflow [66]. It reduces the time of fixing a failing build by

91

6. RELATED WORK

41%. However, its strength mostly lies in providing suggestions for failures related to code
analysis, compilation, and dependencies. The authors conducted a user study and a survey to
measure the effectiveness of BART. The results show that the tool is lacking in providing
relevant and applicable suggestions for fixing build failures caused by failing tests. The tool
shows the location, failure message, and optionally the stack trace of a failing test. Since this
information is often project-specific, no fixes from external sources can be suggested. This
indicates that more context is needed to fix failing tests.

Assisting a developer in finding and fixing the issue of a failing test in a CI build more
quickly is important because the majority of build failures is caused by failing tests [7, 65, 48].
This could be explained by the fact that developers rarely run tests in their IDE [6], and thus
only notice a failing test after a CI build has completed. Beller et al. have investigated the
build logs of a sample of high-ranked open-source projects written in Java and Ruby. The
authors conclude that failing tests were responsible for 59.0% and 52.3%, respectively, of the
build failures [7]. Rausch et al. state that this was the case for up to >80% of the investigated
builds [48]. However, Rausch et al. considered only 14 projects whereas Beller et al. used a
subset of 1,359 projects from the TravisTorrent data set [8].

6.2 Assistance in Fixing Failing Tests

To assist developers in fixing failing tests, TESTAXIS provides context around the test failure
that offers useful information and speeds up the fixing process. To know what context could
be useful to the developer, it is important to know what information developers normally
use while trying to fix a failing test. Beller et al. have monitored the behavior of developers
after observing a test failure [6]. The results show that in more than 60% of the cases the
developer immediately starts reading the production code (the code under test). Another
17% starts reading the test code first. However, after 5 seconds a significant number of users
switched focus from the IDE to another window. A possible explanation is that developers
reached out to external resources to help solve the issue.

The need for such external resources could be avoided by providing more context around
the test failure. Zhang et al. proposed an approach that explains the reasons for test failures
through comments in the test code [70]. It adds, for example, a comment before a line of
code indicating which exception is thrown by that specific line. It also tries to suggest fixes
by mutating the failing tests to see if it can find a variant that would pass. Using a statistical
algorithm the lines most suspicious of causing the failure are determined and commented.

ReAssert also mutates test code to try to make the test pass [19]. The tool suggests
mutations that result in a passing test as repair options. It can, for example, replace literals
and change assertions. Because it only mutates test code, this method only works if the test
code is no longer in line with the production code. If the failure is caused by a regression
(the other way around), mutating the test code will not lead to the expected result because it
will capture the wrong behavior of the production code.

92

6.3. Context of Failing Tests

6.3 Context of Failing Tests

To provide additional context to failing tests, TESTAXIS collects test results of CI builds to
bring test failures into the developer’s local development environment. TESTAXIS features
multiple informational components that give context to a test failure. The most basic
component shows the test name and failure message, which come directly from the uploaded
test reports. We discuss related solutions that show test results in Section 6.3.1. There are
also two more advanced components that try to find the test code and the relevant code
under test. There exist multiple techniques to find the production code targeted by a test case
which we discuss in Section 6.3.2. To identify only the relevant parts of the production code
under test, we try to find the code changes leading up to a build failure. In Section 6.3.3, we
discuss several methods to find such changes and argue why TESTAXIS can identify both
tests that fail due to code changes as to external reasons, such as configuration issues. Finally,
TESTAXIS notifies the developer of a failing build in the IDE to provide easy access to the
information provided by the components described above. This information is provided by a
rich interface in the IDE as a part of the TESTAXIS IDE plugin. In Section 6.3.4, we compare
TESTAXIS to existing IDE plugins that provide build notifications or show build results.

6.3.1 Collecting and Showing Test Results

Before any context can be given, TESTAXIS first needs to know which tests have failed during
a build. There are two main approaches to collect test results from CI builds: interpreting
build logs or inspecting test execution reports generated by the test runner.

The first approach entails finding the relevant parts that show the cause of the build
failure in a build log [14, 7]. This can be automated using various techniques. For example,
by using a technique based on regular expressions [7, 48], by writing custom parsers [66] or
by applying clustering techniques on the diff between failing and passing build logs [2]. All
these techniques have or form knowledge about the structure of the build logs, making them
error-prone when the format changes or specific to certain build tooling. If the techniques
detect that the cause of the failure is failing tests, they can be used to parse the part of the
build log that shows which tests are failing.

However, build logs often do not show which tests are passing and do not include
information about test execution times. Moreover, the relevant parts of the build logs are
outputted by various test runners such as JUnit, Jest, pytest, or PHPUnit, which do not output
results in a uniform format. The second approach does not use the build logs but instructs test
runners to output a test report file. In fact, most runners (including the aforementioned ones)
can output the report in the same JUnit XML format [30]. This format includes for each test
the name, location, execution duration, failure message, and stack trace. Section 3.1.2 shows
an example of such a report.

Using these test reports, it is possible to show to the developer which tests have failed.
There are CI platforms that already use these reports to display the test results of a CI build
to the user. GitLab allows developers to upload JUnit XML reports as artifacts from within
the build [45]. It then shows the test results to the developer from within the merge request
interface, see Figure 6.1. Jenkins offers similar functionality through a plugin [23]. However,

93

6. RELATED WORK

Figure 6.1: A summary of the failing tests in GitLab’s Merge Request interface [45].

both platforms only show the name and failure messages of the tests, which does not always
provide enough context to fix failing tests [66].

Brandtner et al. developed a stand-alone application that aggregates data from different
CI tools (such as GitHub, Jenkins, and SonarQube) for a single build [15]. It combines all
the aspects that the collected data covers into a single overview. The overview includes
information about test results and coverage, see Figure 6.2. The information about test results
is, however, limited because the tool only shows the number of tests that failed but not which
tests those were.

6.3.2 Finding Code under Test

One of the ways to assist developers in finding the cause for a failing test earlier is by showing
the production code that the test is targeting. However, this is not a trivial matter because
there is rarely an explicit connection between tests and production code [52]. This results in
the need for methods to trace production code to test code, in both directions. There exist
static and dynamic approaches that accomplish this. The static approaches do not require
code execution, which often makes them faster to use (because no tests have to be run).
Dynamic approaches do require the execution of tests but can be more accurate. Since we
collect the code under test during a CI build in which tests are already run, the overhead in
terms of speed for dynamic approaches is negligible, making them a realistic option.

Static approaches There exist several static solutions. For example, approaches based on
naming conventions [69, 52], call graphs [13, 52], or information retrieval [52].

Naming conventions are the simplest way to conclude a relationship. In this approach,
the solution assumes that developers follow the convention of giving test classes the name
of the class under test with a Test suffix [69, 52]. For example, when the convention is
followed, the class User has a corresponding UserTest class. Obviously, this technique
does not apply when developers do not follow this naming convention or when the tests are
not at the unit level.

Another static approach is using static call graphs to find the interactions between test
and production code [52, 13]. In this approach, all the methods that are called from a
test are considered as being under test. This is the approach proposed by Van Rompaey

94

6.3. Context of Failing Tests

Figure 6.2: The interface of SQA-Mashup shows an aggregation of data of various CI tools
[15].

and Demeyer [52]. It has the drawback that unrelated method calls, for example to helper
methods, are also collected. To mitigate this issue, EzUnit, by Bouillion et al., lets developers
select which of these methods are relevant, and registers this in a Java-annotation above the
test [13]. Moreover, Van Rompaey and Demeyer also propose a variation to the static call
graph approach: Last Call Before Assert (LCBA) [52]. This technique only considers the
last method being called before the first assertion. While it is possible to implement this
approach statically, the authors actually chose to use a dynamic approach for LCBA to avoid
complexities with polymorphism and conditional logic.

Approaches using information retrieval techniques perform a form of textual analysis
to determine which tests and production code methods are similar [52]. In the approach of
Van Rompaey and Demeyer named Lexical Analysis, the assumption is made that the same
vocabulary is used in the tests as in the code under test. The authors use Latent Semantic
Indexing (LSI) to calculate the similarity which turned out to not be an effective approach.

Dynamic approaches In contrast to static approaches, dynamic solutions do require the
execution of code. An example of a dynamic approach is TestNForce [29]. TestNForce
tracks the relationship between test and production code. It, therefore, needs to know which
tests are covering a certain part of the production code. It builds a (many-to-many) index
containing which tests cover which methods (and which methods are covered by which tests).

95

6. RELATED WORK

The index is built by executing tests one-by-one and inspecting the covered methods using
a process similar to typical code coverage collection. We also build such an index using
coverage to find the code under test belonging to a certain test execution. However, our
approach uses JUnit callbacks (see Section 3.1.3) to collect per-test coverage without having
to resort to one-by-one test executions. Given that the coverage data must be collected during
test runs and that all tests are already being executed during CI builds, the performance
overhead is negligible, whereas this is a serious concern for TestNForce.

While the aforementioned approaches indeed find all code under test, the results may
also include helper methods that are not always relevant to find the cause of the failing tests.
Therefore, Qusef et al. propose a tool named SCOTCH+ that uses heuristics to discriminate
between helper methods and relevant methods [47]. Like TestNForce, Scotch+ also executes
the tests to identify the relationship between test and production code. SCOTCH+’s process
of linking test code to production consists of two steps. The first step is dynamic slicing (a
program decomposition technique to capture executed statements) and identifying the used
classes that influence the outcome of the assert statements. Since these classes may include
unrelated helper classes, the second step rules out classes with a low semantic similarity
(using LSI) to the test class based on textual analysis. While using an LSI-based approach is
not effective on its own [52], Qusef et al. show that it is effective for this second filtering
step.

6.3.3 Finding Changes Causing a Build Failure

In Section 3.3.6, we describe how we collect relevant changes to a codebase that may have
caused a build to fail. In summary, this involves two steps: finding the predecessor build
and collecting all changed lines between the commit belong to the predecessor build and the
commit belonging to the current build. For the first step, we ask git to provide the linear
history of the commit belonging to the current build and find the most recent commit for
which a build was executed. For the second step, we collect the changed lines by creating a
code diff between the commit belonging to the predecessor build and the commit belonging
to the current build.

Build Linearization and Commit Mapping The process of mapping builds to commits is
what Beller et al. refer to as “build linearization and commit mapping” [8]. The authors state
that while such a mapping may seem trivial, there are many cases in which it is not possible
to establish a simple “1:1 relationship” between a commit and a build. Git’s non-linearity
and the CI build trigger conditions make establishing a predecessor relationship complex.
The authors describe six scenarios that may occur while performing the build linearization
and commit mapping process. Our approach is able to deal with four of these scenarios. The
other two apply to so-called pull request builds (instead of push builds) that build a virtual
integration commit of the pull request with the main branch which TESTAXIS does not offer
support for since these commits are not present locally. TESTAXIS can deal with scenarios
where multiple commits are included in a single push or where the predecessor build is not
equal to the previously executed build. The diverging history of a merge commit is linearized
by git and therefore also supported by TESTAXIS.

96

6.3. Context of Failing Tests

SZZ Algorithm A different approach to finding the commits is to use the SZZ algorithm
[71]. This algorithm has a different starting point: it starts from the bug-fixing commit
(BFC), which in our case does not exist yet. It identifies the BFC by linking commits to bug
reports from an issue-tracking system using textual analysis on the commit messages to link
the issue report and the commit. Using the BFC it finds the commit that introduced the bug
by the following procedure. The SZZ algorithm first forms the set LC(BFC) containing all
lines modified by the BFC. One of these lines must contain the fix for an issue introduced
earlier, but irrelevant lines may be included. Therefore, the algorithm performs a Version
Control System (VCS) blame operation for commit the parent commit of the BFC. For each
line in LC(BFC), the result of the blame operation shows which commit changed that line
most recently before BFC did. Based on a few criteria described in [71], it then decides
which commit caused the issue.

In our approach, the starting point is comparable to the parent commit of BFC since
we expect the next commit to fix the issue causing the build to fail. From there, we also
collect all previous changes. However, we have the advantage that we know when the system
was still in good shape, namely when the predecessor build passed. Therefore, we have a
fixed stop point to collect potential bug-introducing changes. While the SZZ-algorithm uses
several criteria to then establish which faulty changes were fixed by the BFC, we leave this
part up to the developer since the fix (and thus the BFC) does not exist yet.

Intrinsic vs. extrinsic bugs For our approach, we assume that “a bug was introduced
by the lines of code that were modified to fix it” [51]. Rodrı́guez-Pérez et al. refer to this
type of bug as intrinsic bugs [51]. However, there also exist extrinsic bugs: bugs that do
not originate from an issue in the source code but from external issues. An example is an
update in the behavior of an external dependency that is not reflected in the source code
of the software. Rodrı́guez-Pérez et al. found that 9%-21% of the bugs they investigated
were extrinsic bugs. These bugs were general issues that occurred during the execution of
certain software, the types of issues that cause test failures may be different. Therefore, the
9%-21% extrinsic bugs rate is not necessarily transferable to our work. While our approach
still captures extrinsic bugs (as explained below), we cannot always classify them correctly.
Therefore, we cannot say whether our approach that only captures relevant code changes for
intrinsic issues is effective enough at covering most test failures a developer encounters.

Rodrı́guez-Pérez Model Because current SZZ algorithms only capture intrinsic bugs,
Rodrı́guez-Pérez et al. developed a model that generalizes SZZ algorithms to also capture
extrinsic bugs [51]. The model is designed to evaluate the effectiveness of the current
solutions that are all based on the earlier described assumption that “a bug was introduced
by the lines of code that were modified to fix it”. The authors conclude that the extrinsic
bugs that they found by applying their model to real-world projects were not detected by
the SZZ-based algorithms they evaluated. Ideally, a tool like TESTAXIS can capture both
intrinsic and extrinsic bugs as well. Therefore, we compare our solution to the model by
Rodrı́guez-Pérez et al. and show that TESTAXIS identifies both intrinsic and extrinsic issues
but cannot differentiate them.

97

6. RELATED WORK

The model describes the process of identifying BFCs and the corresponding first-failing
commits (FFCs). The process consists of five steps which we describe below. We omit the
first step that entails verifying whether the project uses a VCS since this always holds in our
case.

1. Identifying the BFC Analyzing issue reports labeled as bug reports to find the commits
that resolve the issue.

2. Ensure the perfect fixing The model does not consider BFCs that are not a so-called
perfect fix. When there exists a perfect fixing, the fix is not spread over several
commits, is not incomplete, and the issue that led to the BFC is never re-opened.

3. Describe whether a bug is present The model assumes a perfect test that can decide
for each commit whether the bug that is fixed by the BFC is present. The authors
state that “there are no practical means to implement and run the perfect test”, hence
making a literal implementation of the model impossible. For the results in their own
research, Rodrı́guez-Pérez et al. used a mental implementation of the perfect test to
overcome this issue.

4. Identify the FFC The model assumes a linear history of changes to identify the FFC.
Starting at the BFC, the perfect test from step 3 is executed for all previous commits
until the first commit that makes the test fail is found. There are several possible
outcomes of executing the test. If there were no changes in the source code that could
have made the test fail, the bug is considered an extrinsic bug.

This model would perfectly capture all intrinsic and extrinsic bugs, however, it cannot
be implemented in practice since “perfect tests” cannot be constructed [51]. TESTAXIS,
however, does not consider issues as a result of general bugs that may occur in a software
system but only considers issues as a result of failing tests. Thus, given this restriction, we
have a test (the failing test) that can be run on commits to decide whether the bug is present
or not (step 3). This test is what Rodrı́guez-Pérez et al. refer to as the perfect test.

In fact, we do not even have to execute this test (step 4), since the history of the test
executions for each revision is already known to our system. Since tests fail regardless of
whether the issue causing the failure is intrinsic or extrinsic, we capture both types. Using
our approach to find the relevant changes we can assume that the issue is extrinsic when
there are no relevant changes. However, the approach may give false positives, and therefore
we may not always be able to conclude that a bug is extrinsic.

Moreover, in our case, we do not have to identify the BFC or consider perfect fixes since
the fix does not exist yet. Thus, our approach satisfies all requirements of the model and is,
therefore, able to detect both intrinsic and extrinsic bugs. It is, however, not always able to
discriminate intrinsic and extrinsic changes.

6.3.4 CI Build Notifications and Results in the IDE

Typical ways to find out that a build has failed are e-mail notifications or built-in notifications
of platforms such as GitHub or GitLab. However, Kerzazi et al. state that only 28% of the

98

6.3. Context of Failing Tests

Table 6.1: IDE plugins that show CI build statuses and/or results.

Name IDE Users CI Service Build
Status

Build
Logs

Notifi-
cations

Test
Results

Test
Insights

TeamCity [59] IntelliJ 778,6K TeamCity X X X X X

Jenkins Control Plugin
[10]

IntelliJ 204,7K Jenkins X X X X

IntelliJ GitLab Pipeline
Viewer [61]

IntelliJ 7,2K GitLab X X

Github Tools [36] IntelliJ 6,3K Travis CI /
CircleCI

X

GitHub Actions [4] IntelliJ 3,1K GitHub
Actions

X X

Hudson/Jenkins Mylyn
Builds Connector [68]

Eclipse Not re-
ported

Jenkins X X X X

TESTAXIS IntelliJ - All X X X X X

developers in their study pay attention to build notifications [32]. The authors also found
that, on average, it takes 171 minutes for developers to become aware of a failing build.
The developers have different reasons for this, such as relying on team members to notice
failing builds or avoiding distractions and checking build statuses only periodically. There
are, however, also developers that do actively monitor build notifications. In fact, two of
the 28 interviewed developers by Kerzazi et al. indicate they use an IDE plugin for these
notifications [32].

Downs et al. have studied the effect of notifying developers in their physical work
environment [20]. They found that developers became more aware of failing builds by
introducing a light-indicator that reflects the build status. In fact, the ambient awareness of
failing builds shortened the duration of broken builds. In this work, we propose to bring such
notifications to the IDE, the virtual work environment of a developer. The solution of Downs
et al. does, however, have the advantage of not having to compete with other information
that is presented to the developer.

We created an IDE plugin that notifies the developer of build failures but also presents
information on the test results. There exist several IDE extensions that show the status of CI
builds, sometimes with additional information. Table 6.1 shows all IDE plugins displaying CI
builds that we identified in the JetBrains and Eclipse Marketplace. When referred to IntelliJ,
we consider all IDEs built on top of the IntelliJ platform, such as PyCharm, WebStorm, and
Android Studio.

The plugins have different characteristics. Three of the plugins notify the developers of
build status updates [59, 10, 61]. Half of the plugins only show raw information (the status
or the logs) of the builds [61, 36, 4], while the others also interpret the builds and show the
test results [59, 10, 68].

Moreover, the TeamCity [59] and Hudson/Jenkins Mylyn Builds Connector [68] plugins
also provide additional insights. Table 6.2 shows a comparison between the test insights
features of these two plugins and TESTAXIS. TeamCity displays which tests failed and
highlights stack traces, an example is shown in Figure 6.3. It also offers the ability to easily

99

6. RELATED WORK

Figure 6.3: The test inspection interface of the TeamCity plugin [60].

Figure 6.4: The interface of the Hudson/Jenkins Mylyn Builds Connector plugin [31].

100

6.3. Context of Failing Tests

Table 6.2: Comparison of IDE plugins with test insights.

Feature TeamCity [59] Hudson/Jenkins Mylyn
Builds Connector [68]

TESTAXIS

Interactive Stacktraces X Indirectly through the
JUnit view

X

Display of Test Code Link only Link only X

Code Under Test X

Code Changes X X X

Changed Code Under test X

Test Health Warnings X

Raw Build Log Inspection X X

Rerun Test X Indirectly through the
JUnit view

Indirectly by opening the
test code in the main

window
Supported CI Providers TeamCity Jenkins All

rerun a test locally. As shown in Figure 6.4, the Hudson/Jenkins Mylyn Builds Connector
plugin shows the test results but also provides insights on execution times and code changes
made for this build.

TESTAXIS also gives these insights. It shows an interactive stack trace together with
execution details such as the run time. Also, while Hudson/Jenkins Mylyn Builds Connector
only shows a list of changes, TESTAXIS incorporates these changes in the (changed) code
under test feature that both shows which code fragments were changed and which ones were
touched by the test. Furthermore, TESTAXIS also shows and provides easy access to the
test code to understand the intent of the test or to spot mistakes in the test itself. Moreover,
TESTAXIS is not limited to a specific CI service and can be included in the build process of
any CI tool. Finally, TESTAXIS gives interpretation to the data it collects by showing the
users test health warnings.

One might expect that showing CI test results in the IDE is not needed because developers
can just execute the tests in their IDE that shows a good interface to review and inspect
failing tests. However, it turns out that developers actually do not often execute tests in their
IDE [6]. Therefore, showing a rich interface with information about the test failures during
CI builds right in the IDE could be very helpful. Beller et al. also mention that “Despite
the tool overhead and a possibly slower reaction time, our low results on test executions
in the IDE suggest that developers increasingly prefer such more complex setups [in which
tests are run on CI servers] to manually executing their tests in the IDE.” and continue by
recommending that IDE developers should improve CI integration [6].

101

Chapter 7

Conclusions and Future Work

Inspecting the results of a failing test in a CI build is a tedious process. It often requires
developers to manually inspect and scroll through hundreds to thousands of lines of log
output, while running tests inside an IDE offers specific, detailed, and interactive feedback
on the test results. TESTAXIS attempts to bring CI test results to the IDE and offer a similar
experience to running a test locally. Moreover, it exploits the additional information that
is not available or is expensive to collect during local development (such as change or
coverage information) to offer additional support while inspecting failures. In this work,
we have explored whether that attempt is a successful one and justifies further research into
the features offered by TESTAXIS. This chapter summarizes the conclusions based on the
questions posed in our research to reflect on whether bringing CI build test results to the
IDE with additional context is useful and performance increasing. We also list the main
contributions of our work and reflect on opportunities for future research following from this
thesis.

7.1 Conclusions

In Chapter 1, we presented six research questions that we posed at the start of this research
project. We studied the current state-of-the-art, implemented TESTAXIS, and conducted
a user study. Using the knowledge gathered during these research tasks, we now propose
answers to the research questions below.

We conducted the user study with 16 participants with varying levels of software engineer-
ing experience. Overall, we found that the features of TESTAXIS in all but one assignment
reduced the time a developer needed to fix a failing test. The code under test feature had the
biggest influence on the failure-fixing time. The participants consider TESTAXIS to be a
useful tool and would include it in their workflow.

Due to the design of our study, we can only conclude that certain effects happened after
introducing TESTAXIS but not necessarily because of TESTAXIS. Based on the positive
outcomes of the pre-experimental user study, we consider a more in-depth study justified
and useful to capture the true effect of using TESTAXIS. In Section 7.3 we reflect on the
possibilities for such future studies.

103

7. CONCLUSIONS AND FUTURE WORK

7.1.1 Failure-Fixing Time Performance

In the user study, the 16 participants conducted two assignments for each of the four
categories: test failure metadata, test code, code under test, and advanced code under test.
For each category, the participants attempted to solve one assignment without and one with
the use of TESTAXIS. We measured the time it took to find and fix the issue causing the
presented test case(s) to fail. Comparing this failure-fixing time between the without and
with variant gives us the performance improvement of using TESTAXIS.

In all assignments with TESTAXIS, the participants rarely had to run a failing test locally
in the IDE to get more information. Also, the time needed to find out which tests failed
dropped significantly in the assignments with TESTAXIS compared to the ones without.
These two general findings contributed in almost all assignments to an improvement of the
failure-fixing time when using TESTAXIS.

Influence of Easy Identification of Failing Tests in CI Builds

RQ1

What is the influence of presenting a test failure in the IDE over a CI build log on
the time a developer needs to fix a failing test?

We designed the assignments of the first category to be solvable with only the meta-
information (the name and stack trace of the failing test) presented in TESTAXIS. The
first category contains simple cases of test failures where the issue can be spotted in the stack
trace alone. We found that the average time participants needed to solve the two assignments
decreased by 13.4% when using TESTAXIS. Also, the participants indicated they spent
considerably less time figuring out which tests failed with the help of TESTAXIS. Moreover,
TESTAXIS reduced the need to run the failing tests locally to get more feedback. We thus
conclude that presenting a test failure in the IDE over a CI build log has a positive influence
on the time a developer needs to fix a failing test.

Influence of Showing Test Code

RQ2

What is the influence of showing the test code on the time a developer needs to fix
a failing test?

The second assignment category featured test failures due to issues in the test code. A lot
of participants hit the time limit for the assignments in this category, 10 participants for the
assignments without TESTAXIS and 5 for the assignments with. This is likely caused by the
participants focusing more on the code under test than on the test code. The results show an
average improvement of the failure-fixing time of 13.8%. It is hard to say whether the test
code display feature of TESTAXIS helps realize the location of the issue quicker in general.
However, we can conclude that the usage of TESTAXIS in general helps to solve assignments
where the issue is in the test code more quickly.

104

7.1. Conclusions

Influence of Showing Changed Code Under Test

RQ3

What is the influence of showing the code under test, where the changed code is
highlighted, on the time a developer needs to fix a failing test?

We evaluate the effect of showing (changed) code under test (RQ3) in both the third and
fourth category. In the third category, we observe an average improvement in the failure-
fixing time of 49.6%. The test cases in this category are straightforward and the issues are
in one of the few highlighted code fragments of the changed and covered code shown by
TESTAXIS. The suggestions of potential locations of the issue cut down the number of lines
of code to inspect drastically compared to inspecting the full code change diff, which is likely
the explanation for the significant increase in failure-fixing performance. The participants
also indicated that they spent the most time on the code under test while figuring out the
cause of the failure.

The fourth category consists of two assignments where the same high-level end-to-end
test fails and the participants must find out why. These assignments are more complex than
the ones of the third category and require a deeper investigation by the developer. Because
the performance results per assignment in this category show different trends, the results are
inconclusive due to the experiment design. We found that the more experienced developers
that perform the assignment with TESTAXIS need more time to solve the assignment than
the less experienced developers, contrary to the other assignments. A possible explanation is
that the less experienced participants find it easier to adopt new features, such as the changed
code under test feature, into their workflows, whereas for more experienced developers it
may be difficult to fit a new type of feature in their existing tool belt.

We conclude that the influence of showing the (changed) code under test has a positive
influence on the failure-fixing time for simple cases and that our results are not conclusive
about more complex cases.

7.1.2 Usefulness

We investigated the usefulness of two specific features (build notifications, RQ4, and test
health warnings, RQ5) but also of the tool as a whole (RQ6). The participants of the user
study reported their perceived usefulness of these different aspects during the experiment.

Usefulness of Build Notifications

RQ4

To what extent do developers prefer to be actively notified of CI build failures in
the IDE over their current approach?

For each assignment the participants conducted with the use of TESTAXIS, they were shown
a CI build notification in the IDE. Most participants preferred this notification style over
their current approach of becoming aware of build failures, however, a minority disagreed

105

7. CONCLUSIONS AND FUTURE WORK

and thought that the IDE notifications may distract them. The most common approach
the participants currently use is checking the build status manually. Others use e-mail
notifications or integrations with chat services. The majority of the participants thought
that CI build notifications in the IDE would make them aware of build failures quicker. We
conclude that the majority of the developers in our study prefer CI build notifications in the
IDE.

Usefulness of Test Health Warnings

RQ5

To what extent do developers find it useful to be warned about the health and
history of a failing test?

TESTAXIS shows so-called test health warnings when a test is slower than average, fails
often, or is potentially flaky. In the assignments, we showed several of these warnings to the
participants. Most of the participants would act on these warnings, however, not everyone
was convinced of its usefulness. The warnings on potential flaky and often-failing tests were
considered most useful. The warnings on slow tests were considered less beneficial since the
participants indicated they usually already know which tests are slow and that some tests are
inherently slower than others. Some participants indicated they missed a feature to suppress
or acknowledge the warnings which impacted their perceived usefulness. We conclude that
the developers in our experiment found the warnings on often-failing and potential flaky tests
useful and would act on them, while they consider the slow test warnings less useful.

Usefulness of TESTAXIS as a CI Build Test Result Inspection Tool

RQ6

To what extent do developers consider a CI build test result inspection IDE plugin
useful?

During the assignments, the participants got to work with the TESTAXIS IDE plugin.
TESTAXIS exceeded or matched their expectations. The participants completed assign-
ments in four categories that align with the three main features of TESTAXIS: failure details,
test code, and code under test. The participants consider all three features useful. The
(changed) code under test feature is considered the most useful. The participants think that
TESTAXIS solves a real problem and that it would save them time. Most participants would
make TESTAXIS part of their workflow, one of the participants indicated that they would
consider implementing it in their workflow “as is” and that they would “not add much
info further as I think its strength lays in the clean and concise overview”. Overall, the
participants find TESTAXIS useful in helping them understand test failures better and fix
them more quickly. One of the participants described their experience as “I thought it was
super useful during the experiments. I much rather preferred using TESTAXIS over the
traditional CI logs on GitHub. What TESTAXIS does, in my opinion, is recreate the steps I

106

7.2. Contributions

manually take on a GitHub pull request to identify a failing test, and it does so in the IDE so
I don’t have to switch tabs and interrupt my workflow.”

7.2 Contributions

The contributions of this thesis are fourfold:

1. TESTAXIS: A modular software system that collects and analyzes CI build test results,
and that visualizes these results with additional context (such as the test code or the
code under test) in the IDE. We make the following open-source software artifacts
available:

a) The TESTAXIS backend that collects and analyzes test reports, and exposes them
through an API1.

b) The TESTAXIS IDE plugin for IntelliJ Platform IDEs that presents build and
tests results to the developer2.

c) A Gradle plugin that collects and generates coverage reports per executed test3.

2. An evaluation of the effect of providing CI build test results with additional context
(such as the test code or the code under test) in the IDE on the failure-fixing time
performance.

3. An evaluation of the perceived usefulness of a CI build test result inspection tool for
the IDE.

4. A publicly available dataset containing the data collected during the experiments [12].
Among others, this includes the timing results, anonymized questionnaire results, notes
including observed time spent on actions, and analysis scripts.

7.3 Future Work

While our study has shown that TESTAXIS can have a positive effect on the type of cases we
presented, more work is needed to confirm its usefulness and potential performance improve-
ment in real-life projects. Based on our research, we make the following recommendations
for future work:

Longitudinal Study over Long Periods of Time Due to the design of our study, we could
only conclude that there is an effect after introducing TESTAXIS but not that this effect is
caused by TESTAXIS. Our experiment could be repeated as a controlled experiment with a
larger sample size to achieve stronger conclusions. However, these conclusions would still
only hold for the type of cases presented in the assignments as part of the four categories.

1Available at https://github.com/testaxis/testaxis-backend
2Available at https://github.com/testaxis/testaxis-intellij-plugin
3Available at https://github.com/testaxis/coverage-per-test-gradle-plugin

107

https://github.com/testaxis/testaxis-backend
https://github.com/testaxis/testaxis-intellij-plugin
https://github.com/testaxis/coverage-per-test-gradle-plugin

7. CONCLUSIONS AND FUTURE WORK

Therefore, the effect of TESTAXIS may better be captured in a longitudinal study on a
real software project over long periods of time. The CI build fixing behavior of one or
more software development teams could be monitored in a period without TESTAXIS and a
period afterward with TESTAXIS. This would provide more rich information on the actual
usefulness and performance improvements in real-life software projects.

TESTAXIS Development A different direction of future work is to extend TESTAXIS. The
participants of the experiment indicated which missing features they would like to see in
TESTAXIS. Most requested features relate to different styles of navigation that could be
implemented. The most requested feature is re-running a failed test locally to confirm that a
fix in the code resolved the issue causing the test to fail. These features are relatively easy to
implement within the current IDE plugin.

Another requested feature is integration with VCS platforms such as GitHub or GitLab.
This integration could make it possible to display the PR name, message, and comments
corresponding to a CI build. It would also enable the possibility to comment on lines
of code from within TESTAXIS. On top of this integration, a connection to the CI build
platform could offer the opportunity to rerun a CI build directly from within TESTAXIS. Both
integration types would make TESTAXIS VCS and CI build platform-dependent whereas it
is currently not tied to any specific platforms.

Furthermore, TESTAXIS could also exploit the implicit relationships between a test and
the code under test more. Since this information is already available, a developer could
possibly be helped in their daily work by providing links in the main IDE window between
tests and production code.

Another way to extend TESTAXIS is by adding support for more languages and test
frameworks. Currently, TESTAXIS supports Java and Kotlin and is only tested with JUnit
as a test framework. Most parts of TESTAXIS are language agnostic. Only the logic to find
test methods is language-specific and would require to be modified when adding support for
other languages. The test framework is not important to the internals of TESTAXIS. However,
the format of the incoming test reports is currently the JUnit XML report format. Since this
output format is supported by most major test frameworks, it is likely that little to no changes
are needed to support other test frameworks than JUnit.

Results of Non-Test Build Phases Currently, TESTAXIS only provides help in cases
where a CI build breaks due to failing tests. While this is the case in the majority of the
build failures [7, 65, 48], a build could also fail due to compilation errors or static analysis
warnings. In such cases, TESTAXIS still shows that the build has failed but is not able to
provide any further context. TESTAXIS could be extended to bring more build context from
build logs to the IDE. This could help reduce the build-fixing time in more cases than only
test failures.

It is likely already beneficial when the information of these other build steps is acces-
sible directly from the IDE. However, the integration in the IDE could also provide other
advantages such as direct links to the code base or auto-fixing suggestions.

108

7.3. Future Work

Test Selection and Prioritization Using the collected test execution histories, recommen-
dations can be made on which tests are most important to run after a certain code change
based on which tests are likely to fail. Depending on the test suite size, an execution of the
entire suite can take a long time. By suggesting which tests are relevant, a developer can
decide to only run a part of the test suite locally. In practice, developers often already use a
form of manual test selection by running only the tests directly related to the change during
development. Beller et al. found that in 50% of the cases developers only run 1% of the tests
in their IDE [6]. However, this might mean that developers miss tests that are not obviously
related to the code change.

Test selection and test prioritization (inducing a particular order of tests that reveal
issues early in the test suite run) are both well-researched topics. While the classical
approaches focus on structural solutions [53, 54, 26], more modern approaches use historical
test execution information [37, 17, 41]. The test case execution history is already available
in TESTAXIS and can be exploited to implement test selection and prioritization using
information collected during CI builds. In future work, it would be interesting to investigate
whether this already available information can be used to provide good test selection and
prioritization suggestions.

Fix and Failure History of a Test Case The availability of test case execution histories
also enables the possibility to show an additional context element for a failing test that shows
previous failures and fixes. Because the issue that is causing the test to fail may have already
occurred in the past, this may be useful information to show to the developer. TESTAXIS

could show a history of test failures with their error messages together with the commit
where the failure was introduced and the commit that introduced the fix. The developer could
quickly look at this list and check if a similar failure has happened earlier and re-use the
earlier fix.

Before this feature would be added to TESTAXIS, the assumption that test failures reoccur
in a software project should be verified. TESTAXIS can be used to collect test execution
histories in software projects that allow analyzing the presence of such behavior.

109

Bibliography

[1] J. G. Adair. The Hawthorne Effect: A Reconsideration of the Methodological Artifact.
Journal of Applied Psychology, page 69(2):334, 1984. URL https://doi.org/10.
1037/0021-9010.69.2.334.

[2] Anunay Amar and Peter C. Rigby. Mining historical test logs to predict bugs and
localize faults in the test logs. In Proceedings of the 41st International Conference
on Software Engineering, ICSE ’19, pages 140–151, Montreal, Quebec, Canada, May
2019. IEEE Press. URL https://doi.org/10.1109/ICSE.2019.00031.

[3] V. Ambriola and V. Gervasi. Representing structural requirements in software archi-
tecture. In R. N. Horspool, editor, Systems Implementation 2000: IFIP TC2 WG2.4
Working Conference on Systems Implementation 2000: Languages, methods and tools
23–26 February 1998, Berlin, Germany, IFIP Advances in Information and Com-
munication Technology, pages 114–127. Springer US, Boston, MA, 1998. ISBN
978-0-387-35350-0. URL https://doi.org/10.1007/978-0-387-35350-0_9.

[4] Andrey Artyukhov. GitHub Actions, February 2020. URL https://plugins.jetb
rains.com/plugin/13793-github-actions. [Accessed on: 2020-09-22].

[5] K. Beck. Embracing change with extreme programming. Computer, 32(10):70–77,
October 1999. ISSN 1558-0814. URL http://doi.org/10.1109/2.796139.

[6] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. When, how,
and why developers (do not) test in their IDEs. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 179–190,
New York, NY, USA, August 2015. Association for Computing Machinery. ISBN
978-1-4503-3675-8. URL http://doi.org/10.1145/2786805.2786843.

[7] Moritz Beller, Georgios Gousios, and Andy Zaidman. Oops, My Tests Broke the
Build: An Explorative Analysis of Travis CI with GitHub. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), pages 356–367,
May 2017. URL https://doi.org/10.1109/MSR.2017.62.

111

https://doi.org/10.1037/0021-9010.69.2.334
https://doi.org/10.1037/0021-9010.69.2.334
https://doi.org/10.1109/ICSE.2019.00031
https://doi.org/10.1007/978-0-387-35350-0_9
https://plugins.jetbrains.com/plugin/13793-github-actions
https://plugins.jetbrains.com/plugin/13793-github-actions
http://doi.org/10.1109/2.796139
http://doi.org/10.1145/2786805.2786843
https://doi.org/10.1109/MSR.2017.62

BIBLIOGRAPHY

[8] Moritz Beller, Georgios Gousios, and Andy Zaidman. TravisTorrent: Synthesizing
Travis CI and GitHub for Full-Stack Research on Continuous Integration. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR),
pages 447–450, Buenos Aires, Argentina, May 2017. IEEE. ISBN 978-1-5386-1544-7.
URL https://doi.org/10.1109/MSR.2017.24.

[9] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven Amann,
and Andy Zaidman. Developer Testing in the IDE: Patterns, Beliefs, and Behavior.
IEEE Transactions on Software Engineering, 45(3):261–284, March 2019. ISSN
1939-3520. URL http://doi.org/10.1109/TSE.2017.2776152.

[10] David Boissier, Yuri Novitsky, and Michael Suhr. Jenkins Control Plugin, May
2011. URL https://plugins.jetbrains.com/plugin/6110-jenkins-control
-plugin. [Accessed on: 2020-09-22].

[11] Grady Booch. Object-Oriented Analysis and Design With Applications, 2nd edition.
Addison-Wesley Professional, 2 edition, 1994. ISBN 978-0-8053-5340-2.

[12] Casper Boone. TestAxis Replication Package. 4TU.ResearchData, June 2021. URL
https://doi.org/10.4121/14748894.

[13] Philipp Bouillon, Jens Krinke, Nils Meyer, and Friedrich Steimann. EzUnit: A Frame-
work for Associating Failed Unit Tests with Potential Programming Errors. In Giulio
Concas, Ernesto Damiani, Marco Scotto, and Giancarlo Succi, editors, Agile Processes
in Software Engineering and Extreme Programming, Lecture Notes in Computer Sci-
ence, pages 101–104, Berlin, Heidelberg, 2007. Springer. ISBN 978-3-540-73101-6.
URL https://doi.org/10.1007/978-3-540-73101-6_14.

[14] Carolin E. Brandt, Annibale Panichella, Andy Zaidman, and Moritz Beller. LogChunks:
A Data Set for Build Log Analysis. In 17th International Conference on Mining
Software Repositories (MSR ’20), page 5, Seoul, Republic of Korea, October 2020.
ACM, New York, NY, USA. URL https://doi.org/10.1145/3379597.3387485.

[15] Martin Brandtner, Emanuel Giger, and Harald Gall. SQA-Mashup: A mashup frame-
work for continuous integration. Information and Software Technology, 65:97–113,
September 2015. ISSN 0950-5849. URL https://doi.org/10.1016/j.infsof
.2014.10.004.

[16] Donald Thomas Campbell and Julian Cecil Stanley. Experimental and quasi-
experimental designs for research. Houghton Mifflin Company, Boston, 2nd edition
edition, 1963. ISBN 978-0-395-30787-8. OCLC: 247359300.

[17] Younghwan Cho, Jeongho Kim, and Eunseok Lee. History-Based Test Case Prior-
itization for Failure Information. In 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC), pages 385–388, December 2016. URL https://doi.org/10.
1109/APSEC.2016.066. ISSN: 1530-1362.

112

https://doi.org/10.1109/MSR.2017.24
http://doi.org/10.1109/TSE.2017.2776152
https://plugins.jetbrains.com/plugin/6110-jenkins-control-plugin
https://plugins.jetbrains.com/plugin/6110-jenkins-control-plugin
https://doi.org/10.4121/14748894
https://doi.org/10.1007/978-3-540-73101-6_14
https://doi.org/10.1145/3379597.3387485
https://doi.org/10.1016/j.infsof.2014.10.004
https://doi.org/10.1016/j.infsof.2014.10.004
https://doi.org/10.1109/APSEC.2016.066
https://doi.org/10.1109/APSEC.2016.066

Bibliography

[18] Michael A. Cusumano and Richard W. Selby. Microsoft Secrets: How the World’s
Most Powerful Software Company Creates Technology, Shapes Markets, and Manages
People. The Free Press, USA, 1995. ISBN 978-0-02-874048-5.

[19] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. ReAssert: Suggesting
Repairs for Broken Unit Tests. In 2009 IEEE/ACM International Conference on
Automated Software Engineering, pages 433–444, November 2009. URL https:
//doi.org/10.1109/ASE.2009.17. ISSN: 1938-4300.

[20] John Downs, Beryl Plimmer, and John G. Hosking. Ambient awareness of build status
in collocated software teams. In 2012 34th International Conference on Software
Engineering (ICSE), pages 507–517, June 2012. URL https://doi.org/10.1109/
ICSE.2012.6227165. ISSN: 1558-1225.

[21] Florian Dreier. Obtaining Coverage per Test Case. Master’s Thesis, November
2017. URL https://www.cqse.eu/fileadmin/content/news/publications/
2017-obtaining-coverage-per-test-case.pdf.

[22] Lamyaa Eloussi. Determining flaky tests from test failures. PhD thesis, University of
Illinois at Urbana-Champaign, 2015. URL http://hdl.handle.net/2142/78543.

[23] Jesse Glick. JUnit Plugin for Jenkins, September 2010. URL https://plugins.je
nkins.io/junit. [Accessed on: 2020-09-15].

[24] D. Goodman and M. Elbaz. ”It’s Not the Pants, it’s the People in the Pants” Learnings
from the Gap Agile Transformation What Worked, How We Did it, and What Still
Puzzles Us. In Agile 2008 Conference, pages 112–115, August 2008. URL https:
//doi.org/10.1109/Agile.2008.87.

[25] Michael Gumowski. Sonar/Jacoco: Per Test coverage - need help, January
2021. URL https://community.sonarsource.com/t/sonar-jacoco-per-tes
t-coverage-need-help/37515/3. [Accessed on: 2021-05-21].

[26] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi. Regres-
sion test selection for Java software. ACM SIGPLAN Notices, 36(11):312–326, October
2001. ISSN 0362-1340. URL http://doi.org/10.1145/504311.504305.

[27] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
Usage, costs, and benefits of continuous integration in open-source projects. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2016, pages 426–437, New York, NY, USA, August 2016.
Association for Computing Machinery. ISBN 978-1-4503-3845-5. URL http:
//doi.org/10.1145/2970276.2970358.

[28] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny Dig.
Trade-offs in continuous integration: assurance, security, and flexibility. In Proceedings

113

https://doi.org/10.1109/ASE.2009.17
https://doi.org/10.1109/ASE.2009.17
https://doi.org/10.1109/ICSE.2012.6227165
https://doi.org/10.1109/ICSE.2012.6227165
https://www.cqse.eu/fileadmin/content/news/publications/2017-obtaining-coverage-per-test-case.pdf
https://www.cqse.eu/fileadmin/content/news/publications/2017-obtaining-coverage-per-test-case.pdf
http://hdl.handle.net/2142/78543
https://plugins.jenkins.io/junit
https://plugins.jenkins.io/junit
https://doi.org/10.1109/Agile.2008.87
https://doi.org/10.1109/Agile.2008.87
https://community.sonarsource.com/t/sonar-jacoco-per-test-coverage-need-help/37515/3
https://community.sonarsource.com/t/sonar-jacoco-per-test-coverage-need-help/37515/3
http://doi.org/10.1145/504311.504305
http://doi.org/10.1145/2970276.2970358
http://doi.org/10.1145/2970276.2970358

BIBLIOGRAPHY

of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, pages 197–207, New York, NY, USA, August 2017. Association for Computing
Machinery. ISBN 978-1-4503-5105-8. URL http://doi.org/10.1145/3106237.
3106270.

[29] Victor Hurdugaci and Andy Zaidman. Aiding Software Developers to Maintain De-
veloper Tests. In 2012 16th European Conference on Software Maintenance and
Reengineering, pages 11–20, March 2012. URL https://doi.org/10.1109/CSMR
.2012.12. ISSN: 1534-5351.

[30] IBM. IBM Knowledge Center: JUnit XML format, October 2014. URL
www.ibm.com/support/knowledgecenter/ssq2r2_9.1.1/com.ibm.rsar.analy
sis.codereview.cobol.doc/topics/cac_useresults_junit.html. [Accessed
on: 2020-09-15].

[31] Mik Kersten. Mylyn 3.5: New & Noteworthy, March 2011. URL https://www.ecli
pse.org/mylyn/new/showVersion.php?version=new-3.5.html. [Accessed on:
2020-09-22].

[32] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. Why Do Automated Builds
Break? An Empirical Study. In 2014 IEEE International Conference on Software
Maintenance and Evolution, pages 41–50, September 2014. URL https://doi.org/
10.1109/ICSME.2014.26. ISSN: 1063-6773.

[33] R. Likert. A technique for the measurement of attitudes. Archives of Psychology, 22
140:55–55, 1932.

[34] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empirical
analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pages 643–653, New
York, NY, USA, November 2014. Association for Computing Machinery. ISBN 978-1-
4503-3056-5. URL http://doi.org/10.1145/2635868.2635920.

[35] Henry B. Mann and Donald R. Whitney. On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical statistics,
pages 50–60, 1947. ISBN: 0003-4851 Publisher: JSTOR.

[36] Diego Marcher. Github Tools, October 2019. URL https://plugins.jetbrains.
com/plugin/13366-github-tools. [Accessed on: 2020-09-22].

[37] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. Test Case Prioritization for Continuous
Regression Testing: An Industrial Case Study. In 2013 IEEE International Conference
on Software Maintenance, pages 540–543, September 2013. URL https://doi.org/
10.1109/ICSM.2013.91. ISSN: 1063-6773.

[38] Rebecca L. Mauldin. Foundations of Social Work Research. Mavs Open Press, 2020.
ISBN 978-0-9898878-8-5. URL https://rc.library.uta.edu/uta-ir/handle
/10106/29081.

114

http://doi.org/10.1145/3106237.3106270
http://doi.org/10.1145/3106237.3106270
https://doi.org/10.1109/CSMR.2012.12
https://doi.org/10.1109/CSMR.2012.12
www.ibm.com/support/knowledgecenter/ssq2r2_9.1.1/com.ibm.rsar.analysis.codereview.cobol.doc/topics/cac_useresults_junit.html
www.ibm.com/support/knowledgecenter/ssq2r2_9.1.1/com.ibm.rsar.analysis.codereview.cobol.doc/topics/cac_useresults_junit.html
https://www.eclipse.org/mylyn/new/showVersion.php?version=new-3.5.html
https://www.eclipse.org/mylyn/new/showVersion.php?version=new-3.5.html
https://doi.org/10.1109/ICSME.2014.26
https://doi.org/10.1109/ICSME.2014.26
http://doi.org/10.1145/2635868.2635920
https://plugins.jetbrains.com/plugin/13366-github-tools
https://plugins.jetbrains.com/plugin/13366-github-tools
https://doi.org/10.1109/ICSM.2013.91
https://doi.org/10.1109/ICSM.2013.91
https://rc.library.uta.edu/uta-ir/handle/10106/29081
https://rc.library.uta.edu/uta-ir/handle/10106/29081

Bibliography

[39] Ade Miller. A Hundred Days of Continuous Integration. In Agile 2008 Conference,
pages 289–293, August 2008. URL https://doi.org/10.1109/Agile.2008.8.

[40] Charity J. Morgan. Use of proper statistical techniques for research studies with small
samples. American Journal of Physiology. Lung Cellular and Molecular Physiology,
313(5):L873–L877, November 2017. ISSN 1522-1504. URL https://doi.org/10.
1152/ajplung.00238.2017.

[41] Tadahiro Noguchi, Hironori Washizaki, Yoshiaki Fukazawa, Atsutoshi Sato, and
Kenichiro Ota. History-Based Test Case Prioritization for Black Box Testing Us-
ing Ant Colony Optimization. In 2015 IEEE 8th International Conference on Soft-
ware Testing, Verification and Validation (ICST), pages 1–2, April 2015. URL
https://doi.org/10.1109/ICST.2015.7102622. ISSN: 2159-4848.

[42] OpenClover. Unit Test Results and Per-Test Coverage. URL https://openclover
.org/doc/manual/4.4.0/ant--test-results-and-per-test-coverage.html.
[Accessed on: 2021-05-21].

[43] Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. Empirical studies of
software engineering: a roadmap. In Proceedings of the Conference on The Future
of Software Engineering, ICSE ’00, pages 345–355, New York, NY, USA, May 2000.
Association for Computing Machinery. ISBN 978-1-58113-253-3. URL http://doi.
org/10.1145/336512.336586.

[44] Raphael Pham, Leif Singer, Olga Liskin, Fernando Figueira Filho, and Kurt Schneider.
Creating a shared understanding of testing culture on a social coding site. In 2013 35th
International Conference on Software Engineering (ICSE), pages 112–121, May 2013.
URL https://doi.org/10.1109/ICSE.2013.6606557. ISSN: 1558-1225.

[45] Achilleas Pipinellis. GitLab: Unit test reports, August 2018. URL https://docs.g
itlab.com/ee/ci/unit_test_reports.html. [Accessed on: 2020-09-15].

[46] Paul C. Price, Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, Dana C. Leighton,
and Carrie Cuttler. Research Methods in Psychology. 3rd edition, 2017. URL https:
//opentext.wsu.edu/carriecuttler/.

[47] Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and Dave Binkley.
Recovering test-to-code traceability using slicing and textual analysis. Journal of
Systems and Software, 88:147–168, February 2014. ISSN 0164-1212. URL https:
//doi.org/10.1016/j.jss.2013.10.019.

[48] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. An Empirical
Analysis of Build Failures in the Continuous Integration Workflows of Java-Based
Open-Source Software. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 345–355, May 2017. URL https://doi.org/
10.1109/MSR.2017.54.

115

https://doi.org/10.1109/Agile.2008.8
https://doi.org/10.1152/ajplung.00238.2017
https://doi.org/10.1152/ajplung.00238.2017
https://doi.org/10.1109/ICST.2015.7102622
https://openclover.org/doc/manual/4.4.0/ant--test-results-and-per-test-coverage.html
https://openclover.org/doc/manual/4.4.0/ant--test-results-and-per-test-coverage.html
http://doi.org/10.1145/336512.336586
http://doi.org/10.1145/336512.336586
https://doi.org/10.1109/ICSE.2013.6606557
https://docs.gitlab.com/ee/ci/unit_test_reports.html
https://docs.gitlab.com/ee/ci/unit_test_reports.html
https://opentext.wsu.edu/carriecuttler/
https://opentext.wsu.edu/carriecuttler/
https://doi.org/10.1016/j.jss.2013.10.019
https://doi.org/10.1016/j.jss.2013.10.019
https://doi.org/10.1109/MSR.2017.54
https://doi.org/10.1109/MSR.2017.54

BIBLIOGRAPHY

[49] Naomi B. Robbins and Richard Heiberger. Plotting Likert and Other Rating Scales.
Proceedings of the 2011 Joint Statistical Meeting, 2011.

[50] Suzanne Robertson and James Robertson. Mastering the Requirements Process: Getting
Requirements Right. Addison-Wesley Professional, 3rd edition, 2012. ISBN 978-0-
321-81574-3.

[51] Gema Rodrı́guez-Pérez, Gregorio Robles, Alexander Serebrenik, Andy Zaidman,
Daniel M. Germán, and Jesus M. Gonzalez-Barahona. How bugs are born: a
model to identify how bugs are introduced in software components. Empirical
Software Engineering, 25(2):1294–1340, March 2020. ISSN 1573-7616. URL
https://doi.org/10.1007/s10664-019-09781-y.

[52] Bart Van Rompaey and Serge Demeyer. Establishing Traceability Links between Unit
Test Cases and Units under Test. In 2009 13th European Conference on Software
Maintenance and Reengineering, pages 209–218, March 2009. URL https://doi.
org/10.1109/CSMR.2009.39. ISSN: 1534-5351.

[53] Gregg Rothermel and Mary Jean Harrold. Selecting tests and identifying test coverage
requirements for modified software. In Proceedings of the 1994 ACM SIGSOFT
international symposium on Software testing and analysis, ISSTA ’94, pages 169–184,
New York, NY, USA, August 1994. Association for Computing Machinery. ISBN
978-0-89791-683-7. URL http://doi.org/10.1145/186258.187171.

[54] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. Regression test selection for
C++ software. Software Testing, Verification and Reliability, 10(2):77–109, 2000. ISSN
1099-1689. URL https://doi.org/10.1002/1099-1689(200006)10:2<77::AI
D-STVR197>3.0.CO;2-E.

[55] Fabio Sani and John Todman. Appendix 1: Statistical Tables. In Experimental Design
and Statistics for Psychology, pages 183–196. John Wiley & Sons, Ltd, 2006. ISBN
978-0-470-77612-4. URL https://doi.org/10.1002/9780470776124.

[56] M. K. Slack and J. R. Draugalis. Establishing the internal and external validity of
experimental studies. American journal of health-system pharmacy: AJHP: official
journal of the American Society of Health-System Pharmacists, 58(22):2173–2181;
quiz 2182–2183, November 2001. ISSN 1079-2082.

[57] JetBrains s.r.o. Run with coverage. URL https://www.jetbrains.com/help/ide
a/2021.1/running-test-with-coverage.html. [Accessed on: 2021-05-21].

[58] JetBrains s.r.o. TeamCity: the Hassle-Free CI and CD Server, October 2006. URL
https://www.jetbrains.com/teamcity/. [Accessed on: 2020-10-05].

[59] JetBrains s.r.o. TeamCity IntelliJ Plugin, December 2007. URL https://plugins.
jetbrains.com/plugin/1820-teamcity. [Accessed on: 2020-09-22].

116

https://doi.org/10.1007/s10664-019-09781-y
https://doi.org/10.1109/CSMR.2009.39
https://doi.org/10.1109/CSMR.2009.39
http://doi.org/10.1145/186258.187171
https://doi.org/10.1002/1099-1689(200006)10:2<77::AID-STVR197>3.0.CO;2-E
https://doi.org/10.1002/1099-1689(200006)10:2<77::AID-STVR197>3.0.CO;2-E
https://doi.org/10.1002/9780470776124
https://www.jetbrains.com/help/idea/2021.1/running-test-with-coverage.html
https://www.jetbrains.com/help/idea/2021.1/running-test-with-coverage.html
https://www.jetbrains.com/teamcity/
https://plugins.jetbrains.com/plugin/1820-teamcity
https://plugins.jetbrains.com/plugin/1820-teamcity

Bibliography

[60] JetBrains s.r.o. Re-Running Failed Tests, 2020. URL https://www.jetbrains.
com/help/teamcity/ij-addin/tc-rerunningfailedtests.html. [Accessed on:
2020-09-22].

[61] Simon Stratmann. IntelliJ GitLab Pipeline Viewer, February 2020. URL https://
plugins.jetbrains.com/plugin/13799-intellij-gitlab-pipeline-viewer.
[Accessed on: 2020-09-22].

[62] Daniel Ståhl and Jan Bosch. Modeling continuous integration practice differences in
industry software development. Journal of Systems and Software, 87:48–59, January
2014. ISSN 0164-1212. URL https://doi.org/10.1016/j.jss.2013.08.032.

[63] G. Tassey. The economic impacts of inadequate infrastructure for software testing.
National Institute of Standards and Technology, 2002.

[64] Fabian Trautsch, Steffen Herbold, and Jens Grabowski. Are unit and integration test
definitions still valid for modern Java projects? An empirical study on open-source
projects. Journal of Systems and Software, 159:110421, January 2020. ISSN 0164-1212.
URL https://doi.org/10.1016/j.jss.2019.110421.

[65] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp
Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. A Tale
of CI Build Failures: An Open Source and a Financial Organization Perspective. In
2017 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 183–193, September 2017. URL https://doi.org/10.1109/ICSME.2017.
67.

[66] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall. Un-break
My Build: Assisting Developers with Build Repair Hints. In 2018 IEEE/ACM 26th
International Conference on Program Comprehension (ICPC), pages 41–4110, May
2018. ISSN: 2643-7171.

[67] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall. Every
build you break: developer-oriented assistance for build failure resolution. Empirical
Software Engineering, 25(3):2218–2257, May 2020. ISSN 1573-7616. URL https:
//doi.org/10.1007/s10664-019-09765-y.

[68] Paul Verest. Hudson/Jenkins Mylyn Builds Connector, October 2013. URL
https://marketplace.eclipse.org/content/hudsonjenkins-mylyn-build
s-connector. [Accessed on: 2020-09-22].

[69] Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie van Deursen. Mining
Software Repositories to Study Co-Evolution of Production Test Code. In 2008 1st
International Conference on Software Testing, Verification, and Validation, pages 220–
229, April 2008. URL https://doi.org/10.1109/ICST.2008.47. ISSN: 2159-
4848.

117

https://www.jetbrains.com/help/teamcity/ij-addin/tc-rerunningfailedtests.html
https://www.jetbrains.com/help/teamcity/ij-addin/tc-rerunningfailedtests.html
https://plugins.jetbrains.com/plugin/13799-intellij-gitlab-pipeline-viewer
https://plugins.jetbrains.com/plugin/13799-intellij-gitlab-pipeline-viewer
https://doi.org/10.1016/j.jss.2013.08.032
https://doi.org/10.1016/j.jss.2019.110421
https://doi.org/10.1109/ICSME.2017.67
https://doi.org/10.1109/ICSME.2017.67
https://doi.org/10.1007/s10664-019-09765-y
https://doi.org/10.1007/s10664-019-09765-y
https://marketplace.eclipse.org/content/hudsonjenkins-mylyn-builds-connector
https://marketplace.eclipse.org/content/hudsonjenkins-mylyn-builds-connector
https://doi.org/10.1109/ICST.2008.47

BIBLIOGRAPHY

[70] Sai Zhang, Cheng Zhang, and Michael D. Ernst. Automated documentation inference
to explain failed tests. In 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pages 63–72, November 2011. URL https://doi.
org/10.1109/ASE.2011.6100145. ISSN: 1938-4300.

[71] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes induce
fixes? In Proceedings of the 2005 international workshop on Mining software reposito-
ries, MSR ’05, pages 1–5, New York, NY, USA, May 2005. Association for Computing
Machinery. ISBN 978-1-59593-123-8. URL http://doi.org/10.1145/1083142.
1083147.

118

https://doi.org/10.1109/ASE.2011.6100145
https://doi.org/10.1109/ASE.2011.6100145
http://doi.org/10.1145/1083142.1083147
http://doi.org/10.1145/1083142.1083147

Appendix A

Glossary

In this appendix, we give an overview of frequently used terms and abbreviations.

Build Log: A build log contains the console output generated during the build process of a
software project. Depending on the build configuration, this may, for example, include
the output of a compiler, static analysis tools, and a test runner.

CI Build: A typical CI build comprises building the application to ensure the code compiles,
executing the tests to check whether the application works as expected, and running
static analysis tools to safeguard the quality of the codebase and detect potential issues.

Code Under Test: The lines of production code that a test case targets.

Continuous Integration (CI): A software engineering practice where functional and qual-
ity attributes of a software application are verified after a change to the source code of
the application. The goal is to detect potential issues with the integration of the new
change in the main codebase as soon as possible by providing early feedback before a
change makes it to production.

Failure-Fixing Time: The time it takes a developer to fix a failing test case.

Integrated Development Environment (IDE): An IDE comprises a set of tools to assist
in software development. The main part of an IDE is the code editor. An IDE has
deep knowledge of the programming language and provides features such as syntax
highlighting, code completion, and application debugging.

IDE Plugin: An extension of the IDE that provides additional functionality over the built-in
tools to the developer.

Test Case: A set of actions that should bring a software application in a certain state
followed by a set of assertions to verify that the software application is indeed in the
correct state and thus working as expected.

119

Appendix B

Questionnaires

In this appendix, we list the questions of the three types of questionnaires used in the
experiment. Section B.1 shows the pretest questionnaire that participants fill out at the
start of the experiment. In Section B.2, we show the post-assignment questionnaire that we
conduct after each assignment. At the end of the experiment, the participants fill out the
posttest questionnaire which can be found in Section B.3.

B.1 Pretest Questionnaire

B.1.1 Informed Consent

You are being invited to participate in a research study titled “TestAxis: Better Insights in
Failing Tests During CI Builds”. This study is being done Casper Boone from the TU Delft.

The purpose of this research study is to discover ways a developer can fix failing builds
faster without having to dive into build logs, and will take you approximately 90 minutes to
complete. The data will be used to evaluate the effectiveness of the TestAxis IDE plugin that
visualizes CI builds.

Your participation in this study is entirely voluntary and you can withdraw at any time. You
are free to omit any question.

We believe there are no known risks associated with this research study; however, as with
any online related activity the risk of a breach is always possible. To the best of our ability
your answers in this study will remain confidential. We will minimize any risks by storing
all data on secure storage within the EU. The access to the data is limited to the researcher
and their supervisors. Your personal information will be removed from the data after the
research has been completed (mid 2021). The results of the experiments will be published in
a thesis report and possible publications and will be anonymized.

Contact Details

121

B. QUESTIONNAIRES

The contact details below may be use to file a complaint or to contact any of the involved
parties.

Researcher: Casper Boone c.c.boone@student.tudelft.nl
Research Supervisor: Prof.dr. A.E. Zaidman a.e.zaidman@tudelft.nl
Data Protection Officer: privacy-tud@tudelft.nl
Institution: Delft University of Technology info@tudelft.nl

Please tick the appropriate boxes below.

Taking part in the study

1. I have read and understood the study information above, or it has been read to me. I
have been able to ask questions about the study and my questions have been answered
to my satisfaction.
[multiple choice]: yes/no

2. I consent voluntarily to be a participant in this study and understand that I can refuse
to answer questions and I can withdraw from the study at any time, without having to
give a reason.
[multiple choice]: yes/no

3. I understand that taking part in the study involves a survey questionnaire and written
notes during the experiment.
[multiple choice]: yes/no

Use of the information in the study

1. I understand that information I provide will be used for a thesis report and possible
publications
[multiple choice]: yes/no

2. I understand that personal information collected about me that can identify me, such
as my name, will not be shared beyond the study team.
[multiple choice]: yes/no

3. I agree that my information provided during the experiment can be quoted anony-
mously in research outputs
[multiple choice]: yes/no

Future use and reuse of the information by others

1. I give permission for the anonymized survey results that I provide and the anonymous
notes taken during the experiment to be archived in the research output and the 4TU
Research Data repository so it can be used for future research and learning.
[multiple choice]: yes/no

122

B.1. Pretest Questionnaire

Signing by the participant

1. I acknowledge that I have completely read and fully understand this consent form. I
hereby sign this consent agreement.
[multiple choice]: yes/no

2. I sign this consent agreement with the following name:
[open]

3. I sign this consent agreement on the following day:
[open]

Signing by the researcher

1. I have accurately read out the information sheet to the potential participant and, to
the best of my ability, ensured that the participant understands to what they are freely
consenting.
[multiple choice]: yes/no

2. The researcher signs this consent agreement with the following name:
[open]

3. The researcher signs this consent agreement on the following day:
[open]

B.1.2 Personal Background

1. What is your current or highest level of education?
[multiple choice]: Primary School, Secondary School, Associate (MBO), Bachelor (HBO/college),

Bachelor (WO/university), Master (HBO/college), Master (WO/university), PhD

2. What is your (main) professional occupation?
Please use the ”other” option if the given options do not accurately describe your professional
occupation.
[multiple choice]: Student, PhD Student, Software Engineer, Consultant, Researcher, Other

3. How many years of experience in programming do you have?
[open]

B.1.3 Experience

Below, a number of statements is shown. Please rate each statement on a scale from 1 (totally
disagree) to 5 (totally agree).

123

B. QUESTIONNAIRES

Development Experience

1. I consider myself to be experienced in developing software applications
[Likert 1-5]

2. I develop software applications professionally
[Likert 1-5]

3. I consider myself to be experienced in developing Java applications
[Likert 1-5]

4. I consider myself to be experienced using IntelliJ (or another JetBrains IDE)
[Likert 1-5]

5. I have used JPacman before and am still aware of the project structure
[Likert 1-5]

6. I consider myself to be experienced in using Gradle
[Likert 1-5]

Testing Experience

1. I consider myself to be experienced in software testing
[Likert 1-5]

2. I consider myself to be experienced using mocks in my tests
[Likert 1-5]

3. I consider myself to be experienced in using Mockito
[Likert 1-5]

4. I consider myself to be experienced in running tests with coverage collection enabled
and inspecting the results
[Likert 1-5]

CI Experience

1. I consider myself to be experienced in using GitHub Pull Requests
[Likert 1-5]

2. I consider myself to be experienced in using continuous integration build tools (like
Travis CI, GitHub Actions or Jenkins) and inspecting the output logs when a build
fails
[Likert 1-5]

3. I consider myself to be experienced in using GitHub Actions
[Likert 1-5]

124

B.1. Pretest Questionnaire

B.1.4 Attitude towards software testing and continuous integration

Below we use the terms unit and integration/system tests. We consider unit tests to be testing
a single component in isolation, and integration/system tests to be testing the integration of
several components or a system feature in its entirety.

1. What are the steps you take when a build fails because of a failing tests between
encountering the build failure and committing the fix?
[open]

Below, a number of statements is shown. Please rate each statement on a scale from 1 (totally
disagree) to 5 (totally agree).

1. While developing, I run my tests inside the IDE
[Likert 1-5]

2. I primarily use e-mail notifications to become aware of a build failure
[Likert 1-5]

3. I primarily check the PR status checks or CI tool to become aware of a build failure
[Likert 1-5]

4. My current notification approach makes me aware of build failures quickly
[Likert 1-5]

5. Are there other ways you are notified of failing builds? (optional)
[open]

6. When a build fails, I often (re)run the entire test suite locally to find out which test is
failing
[Likert 1-5]

7. When a build fails due to a failing test, I inspect the build log the find the failing test
and run this specific test locally
[Likert 1-5]

8. When employing software testing, I think writing more integration or system/end-to-
end tests is more effective than writing unit tests
[Likert 1-5]

9. CI build logs by themselves give me enough information to point to the issue causing
a failing test
[Likert 1-5]

10. I like the way the cause of failing builds is presented in CI build logs
[Likert 1-5]

11. Test failures in a CI build are as easy to solve as ”local” failures.
[Likert 1-5]

125

B. QUESTIONNAIRES

12. I care about improving the speed of my test suite.
[Likert 1-5]

13. Flaky tests are difficult to recognize.
[Likert 1-5]

14. Tests that fail often are as meaningful as tests that fail almost never.
[Likert 1-5]

B.1.5 Expectations of a CI build test execution visualization tool

Please read the following high-level introduction of a tool for software developers:

”A visualization tool for the results of tests executed during a CI build should improve
the build fixing experience of the developer. The tool should show test failures in a more
approachable manner than build logs.

Furthermore, the tool should show information relevant to the test failure such as an interac-
tive stack trace, the test code and the modified code under test, in addition to information
usually available in a build log.

This should help fix failing tests quicker and make the fixing experience closer to a locally
failing test. Moreover, the tool should actively notify developers of failing builds.”

Below, a number of statements is shown. Please rate each statement on a scale from 1 (totally
disagree) to 5 (totally agree).

1. Such a tool would save me time
[Likert 1-5]

2. Such a tool by itself would be able to provide me with enough information to fix a
failing build
[Likert 1-5]

3. Such a tool would become a part of my workflow
[Likert 1-5]

4. Such a tool would provide benefits over inspecting CI build logs
[Likert 1-5]

5. Such a tool would make sense to be integrated in an IDE
[Likert 1-5]

6. Such a tool would solve a real problem
[Likert 1-5]

126

B.2. Post-Assignment Questionnaire

B.2 Post-Assignment Questionnaire

Below, a number of statements is shown. Please rate each statement on a scale from 1 (totally
disagree) to 5 (totally agree).

1. This assignment was too difficult to solve in the given amount of time
[Likert 1-5]

2. I spent most time understanding the code/codebase
[Likert 1-5]

3. I spent most time finding out which test(s) failed
[Likert 1-5]

4. I spent most time figuring out the cause of the test failure
[Likert 1-5]

5. While figuring out the cause of the test failure, I spent most time on looking at the
metadata of the failure (test name, stack trace, etc)
[Likert 1-5]

6. While figuring out the cause of the test failure, I spent most time on looking at the test
code
[Likert 1-5]

7. While figuring out the cause of the test failure, I spent most time on looking at the
code under test
[Likert 1-5]

8. To get more information on the cause of the test, I had to run the failing test(s) locally
[Likert 1-5]

9. Do you have any remarks? (optional)
[open]

B.3 Posttest Questionnaire

Verification

Below, a number of statements is shown. Please rate each statement on a scale from 1 (totally
disagree) to 5 (totally agree).

1. The assignments were challenging and/or interesting to complete
[Likert 1-5]

2. The time limit made me feel pressured
[Likert 1-5]

127

B. QUESTIONNAIRES

3. I would have solved the assignments easier/quicker outside this (experiment) environ-
ment
[Likert 1-5]

4. During the assignments without TestAxis, I used the same tactics to solve the assign-
ments as I would have used outside of this experiment
[Likert 1-5]

5. My abilities to solve failures were influenced by my lack of pre-existent knowledge
about the codebase
[Likert 1-5]

6. The assignments represented test failures similar to the ones I encounter when working
on software projects
[Likert 1-5]

7. Enough guidance was provided to solve the assignments
[Likert 1-5]

Usefulness of Informational Elements

Below, a number of statements is shown. Please rate each statement on a scale from 1 (totally
disagree) to 5 (totally agree).

1. I feel like the information given by TestAxis helps me understand a test failure better
and fix it quicker
[Likert 1-5]

2. I consider the details tab of a test case execution in TestAxis to be useful and to give
relevant information to find the issue of failing test
[Likert 1-5]

3. I consider the test code tab of a test case execution in TestAxis to be useful and to give
relevant information to find the issue of failing test
[Likert 1-5]

4. I consider the code under test tab of a test case execution in TestAxis to be useful and
to give relevant information to find the issue of failing test
[Likert 1-5]

5. The code under test feature would be less useful if changed files were not indicated
and changes were not highlighted
[Likert 1-5]

128

B.3. Posttest Questionnaire

Build Notifications

During the experiment, new builds were presented to you through notifications in the IDE.
We call these notifications ”build notifications”.

Below, a number of statements is shown. Please rate each statement on a scale from 1 (totally
disagree) to 5 (totally agree).

1. The build notifications were too intrusive
[Likert 1-5]

2. I think build notifications in the IDE would make me aware of a build failure earlier
[Likert 1-5]

3. The build notifications provided enough information to recognize the triggering code
change
[Likert 1-5]

4. I prefer my current approach of becoming aware of build failures over build notifica-
tions in the IDE
[Likert 1-5]

Test Health Warnings

During the experiment, test health warnings were presented to you for some of the test cases.

There are three possible warnings that can be shown by TestAxis:

1) This test did not fail due to any code changes. The test failure may be caused by flakiness
or an extrinsic issue such as a configuration change.

2) The performance of your test suite may be improved by speeding up this test. It performs
slower than twice the average. The average test execution time is X.

3) This test is failing often (X times in the last 50 builds). This may be an indication that
your test is too tightly coupled to your production code or that the test may be flaky.

Below, a number of statements is shown. Please rate each statement on a scale from 1 (totally
disagree) to 5 (totally agree).

129

B. QUESTIONNAIRES

1. I noticed the test health warnings (indicating potential flakiness, long run times or
often failing tests) while performing the tasks
[Likert 1-5]

2. If I was working on my own software project, I would act on the health warnings
[Likert 1-5]

3. I consider the test health warning on a potential flaky test (1) to be useful
[Likert 1-5]

4. I consider the test health warning on a slow test (2) to be useful
[Likert 1-5]

5. I consider the test health warning on a often failing test (3) to be useful
[Likert 1-5]

TestAxis IDE Plugin User Experience

Below, a number of statements is shown. Please rate each statement on a scale from 1 (totally
disagree) to 5 (totally agree).

1. I thought TestAxis was easy to use
[Likert 1-5]

2. I would imagine that most people would learn to use TestAxis very quickly
[Likert 1-5]

3. The functionality of TestAxis would be better as a standalone (web) tool which is not
integrated in the IDE
[Likert 1-5]

4. TestAxis provides a similar experience to inspecting IntelliJ test run results
[Likert 1-5]

5. TestAxis integrates well with IntelliJ
[Likert 1-5]

6. Bugs in TestAxis influenced my user experience
[Likert 1-5]

7. I would have preferred to see only the code of the relevant test method and not the
surrounding test class in the ”Test Code” tab
[Likert 1-5]

8. The ordering of covered files, where modified files are highlighted and shown first,
was useful to me
[Likert 1-5]

130

B.3. Posttest Questionnaire

9. It was clear to me what the different code highlighting colors in the ”Code under Test”
tab meant
[Likert 1-5]

Expectations of a CI build test execution visualization tool

In the introductory questions, we asked you a few questions about CI build test execution
visualization tools. We now ask you the same questions for TestAxis specifically.

Below, a number of statements is shown. Please rate each statement on a scale from 1 (totally
disagree) to 5 (totally agree).

1. TestAxis provides benefits over inspecting CI build logs
[Likert 1-5]

2. TestAxis makes sense to be integrated in an IDE
[Likert 1-5]

3. Using TestAxis will save me time
[Likert 1-5]

4. TestAxis would become a part of my workflow
[Likert 1-5]

5. TestAxis solves a real problem
[Likert 1-5]

6. TestAxis by itself would be able to provide me with enough information to fix a failing
build
[Likert 1-5]

Comments

1. Is there any information or feature missing in TestAxis that would have improved your
ability to fix a failing test?
[open]

2. Do you have any comments or remarks on TestAxis in general?
[open]

3. Do you have any comments or remarks on the experiment?
[open]

4. Do you have any other comments or remarks?
[open]

131

B. QUESTIONNAIRES

The Experiment

Below, a number of statements is shown. Please rate each statement on a scale from 1 (totally
disagree) to 5 (totally agree).

1. The quality of the assignments was high
[Likert 1-5]

2. The quality of the questionnaire was high
[Likert 1-5]

3. The explanations of TestAxis and JPacman were clear
[Likert 1-5]

4. The project choice of JPacman allowed for interesting cases that were suitable to
answer the questions
[Likert 1-5]

5. There was enough opportunity to give feedback
[Likert 1-5]

6. I enjoyed performing the experiment
[Likert 1-5]

132

Appendix C

Assignments

In this appendix, we list the order in which the participants conducted the assignments
(Section C.1) and show the assignment descriptions of all eight assignments.

C.1 Assignment Ordering

The table below shows the order in which the participants conducted the assignments for
each participant.

Participant
Position 1 2 3 4 5 6
1 4b-without 2a-with 2a-without 1b-without 3b-without 2a-with
2 2a-with 1a-without 3a-with 4a-with 1b-with 2b-without
3 2b-without 1b-with 3b-without 3a-with 2b-with 4a-without
4 4a-with 2b-without 2b-with 2b-without 4a-without 1a-with
5 3b-with 3b-with 4a-with 4b-without 4b-with 3a-without
6 1a-without 3a-without 1a-without 1a-with 2a-without 4b-with
7 1b-with 4b-without 1b-with 2a-with 1a-without 1b-without
8 3a-without 4a-with 4b-without 3b-without 3a-with 3b-with
Position 7 8 9 10 11 12
1 4a-without 2a-without 3a-without 2a-without 2b-without 2a-with
2 1b-with 1a-with 3b-with 3a-with 2a-with 3b-without
3 3a-without 3b-with 4b-with 4b-with 1a-with 3a-with
4 4b-with 3a-without 1b-without 4a-without 4a-without 2b-without
5 2b-with 1b-without 1a-with 1b-without 4b-with 4a-without
6 2a-without 4b-with 2a-without 2b-with 3a-without 1b-with
7 1a-without 4a-without 2b-with 3b-without 3b-with 1a-without
8 3b-with 2b-with 4a-without 1a-with 1b-without 4b-with
Position 13 14 15 16
1 2a-without 2b-without 3b-without 1a-with
2 4a-with 2a-with 3a-with 4b-without
3 3a-with 1b-with 1a-with 3a-without
4 3b-without 4b-without 2a-without 2a-with
5 4b-without 3a-with 2b-with 4a-with
6 1b-with 1a-without 4b-without 1b-without
7 1a-without 4a-with 4a-with 2b-without
8 2b-with 3b-without 1b-without 3b-with

133

C. ASSIGNMENTS

C.2 Assignment Descriptions

The following pages show the assignment descriptions that the participants of the user study
read before they performed the assignments.

134

Task 1a
The (intended) change: A resource file is given a new name.

The developer description: Rename sprite test resource for consistency

Previously, the resource was called `64x64white.png`. This is inconsistent with other

project resources. Therefore, I propose to rename the resource to `white_64x64.png`.

When you perform this task without TestAxis, you can find the Pull Request with the
failing build here: https://github.com/testaxis/jpacman/pull/3

Task 1b
The (intended) change: A new map element is added and put on the map

The developer description: Add brick wall map element

This PR adds a new brick wall element to the map. I have updated the map to

include a few brick walls (with ! as the character).

When you perform this task without TestAxis, you can find the Pull Request with the
failing build here: https://github.com/testaxis/jpacman/pull/4

Task 2a
The (intended) change: Adding a new method with tests

The developer description: Add feature to retrieve a square by a relative position

Add getSquareAtByDelta method to retrieve a square (that is present on the board)

relative to another square by providing a delta x and y steps. This is a more general

version of the getSquareAt method that is already present and allows finding

indirectly connected squares.

When you perform this task without TestAxis, you can find the Pull Request with the
failing build here: https://github.com/testaxis/jpacman/pull/5/

Task 2b
The (intended) change: Adding a new method with tests

The developer description: Add feature to determine the winner of the game

When the new method getWinningPlayer is called, at the end of the game, the

player with the highest score that is still alive will be returned.

When you perform this task without TestAxis, you can find the Pull Request with the
failing build here: https://github.com/testaxis/jpacman/pull/6/

Task 3a
The (intended) change: Adding a new method with tests

The developer description: Add new pellet type with random score

This PR allows for adding pellets with a random score between 20 and 30 (instead of

the default fixed score of 10). The map character is $.

When you perform this task without TestAxis, you can find the Pull Request with the
failing build here: https://github.com/testaxis/jpacman/pull/7/

Task 3b
The (intended) change: Adding a new method as a refactor

The developer description: Add opposite method to Direction

When Clyde runs away from the player, it looks up the opposite of the direction it

would otherwise have gone in. To find the opposite, Clyde uses a hash map that

maps each direction to its opposite. This PR replaces that hash map with a
dedicated function in the Direction class.

When you perform this task without TestAxis, you can find the Pull Request with the
failing build here: https://github.com/testaxis/jpacman/pull/8/

Task 4a
The (intended) change: Add new power-ups that are triggered after the number of

times a certain event happened crosses a lower threshold. Sometimes there is also
an upper threshold.

Your task: The task is to find out which power-up is causing the test to fail (in other

words: which power-up is activated during the test execution) and change the
threshold for the power-up to make sure it does not influence the failing test. The
new threshold does not have to be realistic, as long as it effectively disables the
power-up for the failing test, it is fine.

The developer description: Add power-ups to the game

This PR adds several power-ups to the game:

• A safety "shield" when the game has started so ghosts cannot kill the player

• A bonus for taking more steps

• A power-up in which earned points get doubled

When you perform this task without TestAxis, you can find the Pull Request with the
failing build here: https://github.com/testaxis/jpacman/pull/9/

Task 4b
The (intended) change: Add new power-ups that are triggered after the number of

times a certain event happened crosses a lower threshold. Sometimes there is also
an upper threshold.

Your task: The task is to find out which power-up is causing the test to fail (in other

words: which power-up is activated during the test execution) and change the
threshold for the power-up to make sure it does not influence the failing test. The
new threshold does not have to be realistic, as long as it effectively disables the
power-up for the failing test, it is fine.

The developer description: Add power-ups to the game

This PR adds several power-ups to the game:

• A power-up in which ghosts freeze

• A power-up in which walls become accessible

• A power-up that doubles the moving speed

When you perform this task without TestAxis, you can find the Pull Request with the
failing build here: https://github.com/testaxis/jpacman/pull/10/

Appendix D

Experiment Participants Information
Website

The follow pages shows the website with information for potential epxeriment participants.

143

Appendix E

Results

In this appendix, we list the full results of the experiment. Section E.1 and Section E.4 show
the results of the one-group pretest-posttest study. In Section E.2, we list the results of the
post-assignment questionnaire of the within-subjects study for each assignment. Finally, in
Section E.3, we present the assignment failure-fixing time results per participant.

E.1 Pretest Questionnaire Results

E.1.1 Personal Background

See Figure 5.1.

E.1.2 Experience

Development Experience

See Figure 5.2.

Testing Experience

See Figure 5.3.

CI Experience

See Figure 5.4.

E.1.3 Attitude towards software testing and continuous integration

See Figure 5.5, 5.6, 5.7, and 5.14 for the Likert-scale questions.

What are the steps you take when a build fails because of a failing tests between en-
countering the build failure and committing the fix?
1. Looking at error logs and identifying the failing line(s)
2. Trying to replicate the failing line in a (simple) test

147

E. RESULTS

3. Solving the issue in the code
4. Verifying if the issue is resolved by some (manual) testing
5. Committing the fix

Going to Travis, identifying the failing build, inspecting (the bottom of) its logs, seeing which test failed,
rerunning that test locally to see if I can reproduce, fixing the test, and adding/committing/pushing it

1. Inspect the log
2. Look up the source code
3. Think about how it could have gone wrong
4. Apply patch and test if it worked locally
5. Commit and Push fix to Git

I look at the build log to see the exit code or failure message and hope that it tells me what I need to know. If that
does not give me enough info I try to run the build locally to see if I get the same result. Once I think I have
fixed it, I run the build locally again to verify it, and then push it and hope for the best.

I go to the git repository in my browser, I click the link to the failed build, I scroll down until I see red text or
something that looks like a failure or stack trace, I look up what part of the code caused it, and then I try to fix it,
if possible add a test that also fails on my local machine until the code is fixed.

Read the failure message and try to identify the location of the fault. If needed, I will write or update a test to
check for the expected behaviour. Otherwise, I will use debugging tools to diagnose the issue. However, when
the issue is not with the code but of improper handling of build tools, I will first search around the internet for a
solution.

I first observe the stacktrace, then identify any components I own. Thereafter if the issue is obvious I fix it
immediately, else use logging or breakpoints(not that often) to understand the logic flow.

Search for which test fails in the log.
Inspect the failure details (which assertion fails) and find the corresponding location in the code.
Figure out which part of the test or code to change (depending on how complicated the issue is, also debug the
application)
Write the fix and commit it.

Static analysis of the test report, then verifying that the test code is written in a correct order followed with static
analysis of the tested code if static analysis is inconclusive I usually continue towards debugging using break
points and validating that the logic is in order. Another thing I would consider doing is to check the change log
within git to see if this code was working before hand and what changes have been made (this only applies to
regression testing of course).

Check the logs
Retry running the tests locally
Identify failing tests
Identify failure reason
Fix

Scan/read logs on CI/CD pipeline
Run build and tests locally, see if they also fail
Further investigate and solve problem
Run build and tests locally, see if they now pass
Push to repository and see if the pipeline passes

I look at the aggregated TeamCity logs to see what tests fail (if tests failed) and amend a fix to the commit and
push it directly. TeamCity also offers the ability to see if the test is ”flaky” - in this case I simply re-start the
build.

If Gitlab is used I would manually inspect which specific pipeline failed (for testing purposes we have separated
our CICD tests into different ”domains” to quickly identify which ”domain” is incorrect) and scroll (read: look)

148

E.1. Pretest Questionnaire Results

at the bottom of the logs to find out which tests failed - try to reproduce locally (if possible) and git commit /
amend a fix.

I would take a quick look at the test that is failing on CI and then reproduce it on my development machine, and
go from there.

* Investigate the build failure
* Consider how to fix the issue
* Implement the chosen solution & add a test or multiple tests for the given problem
* Consider whether the test(s) verify the problem correctly

1) Look at the stacktrace
2) Check if it passes locally
3) If it passes, then check the log of the CI
4) Use the log(exceptions) to find the lines/lines of code that may cause the test to fail
5) Find the bug, if it exists, and commit
6) If there is no bug, revisit the test and check if it is what is expected

1. Read which unit tests fails

2. Read what the expected value and actual values are

3. Read the stacktrace if present

4. Deduce the problem

5. If I cannot deduce why it fails, then use the debugger to step through the unit tests and the logic and perform

intermedian tests to inspect the state.

6. Try to solve the problem

Are there other ways you are notified of failing builds? (optional question)
Just checking the GitHub action/build myself after I committed to a PR.

A Slack notification

I have used Slack bots in the past but they cause a lot of spam

Students or other developers that I am working with this notify me that my build failed.

push notifications for mobile apps for GitHub, Netlify, etc.

Usually I would run tests before opening my PR to validate their state. Co-workers that reviewed code would
also indicate to others that tests were failing

Slack

We use Gerrit for some of our codebase which will automatically give a ”-1” score for the change - blocking any
merge - this is quite intrusive and therefore it becomes quite obvious to us that the build failed.

For larger builds (read: nightly) we use mattermost.

If Gitlab is used, typically we use mattermost.

Microsoft Teams bot

Discord web hook

By colleagues through the chat.

E.1.4 Expectations of a CI build test execution visualization tool

See Figure 5.11.

149

E. RESULTS

E.2 Post-Assignment Questionnaires Results

In the results below, the orange squares indicate the without variant and the purple squares
the with variant of an assignment.

E.2.1 Assignment 1a

87.5% 12.5%

25.0% 12.5% 25.0% 37.5%

37.5% 12.5% 37.5% 12.5%

50.0% 25.0% 25.0%

25.0% 25.0% 37.5% 12.5%

62.5% 25.0% 12.5%

75.0% 25.0%

87.5% 12.5%

87.5% 12.5%

37.5% 12.5% 25.0% 25.0%

37.5% 12.5% 25.0% 25.0%

37.5% 12.5% 25.0% 12.5% 12.5%

12.5% 62.5% 12.5% 12.5%

37.5% 12.5% 25.0% 25.0%

75.0% 12.5% 12.5%

100.0%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 1.1 ■

I spent most time on looking at the code under
test 3.4 ■

I spent most time on looking at the test code
2.4 ■

I spent most time on looking at the metadata of
the failure 2.0 ■

I spent most time figuring out the cause of the
test failure 2.9 ■

I spent most time finding out which test(s)
failed 1.5 ■

I spent most time understanding the
code/codebase 1.2 ■

This assignment was too difficult to solve in
the given amount of time 1.2 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

1.5 ■

I spent most time on looking at the code under
test

2.6 ■

I spent most time on looking at the test code
2.9 ■

I spent most time on looking at the metadata of
the failure

2.5 ■

I spent most time figuring out the cause of the
test failure

2.2 ■

I spent most time finding out which test(s)
failed

3.0 ■

I spent most time understanding the
code/codebase

1.4 ■

This assignment was too difficult to solve in
the given amount of time

1.0 ■
Avg

[without] Do you have any remarks? (optional)
Only one file being changed made it quite obvious what the cause was.

Since I knew the only change was a rename of a resource file, I was pretty sure the problem had to do with

resource paths being out of date, and I didn’t really have to understand the test cases/cut for this problem.

[with] Do you have any remarks? (optional)
Mostly figured out the issue by experience.

150

E.2. Post-Assignment Questionnaires Results

E.2.2 Assignment 1b

87.5% 12.5%

25.0% 25.0% 50.0%

25.0% 62.5% 12.5%

75.0% 12.5% 12.5%

25.0% 12.5% 50.0% 12.5%

75.0% 25.0%

25.0% 25.0% 50.0%

75.0% 25.0%

12.5% 12.5% 25.0% 50.0%

25.0% 12.5% 62.5%

62.5% 12.5% 12.5% 12.5%

37.5% 25.0% 25.0% 12.5%

12.5% 25.0% 25.0% 25.0% 12.5%

37.5% 25.0% 12.5% 25.0%

37.5% 25.0% 12.5% 25.0%

75.0% 25.0%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 1.5 ■

I spent most time on looking at the code under
test 4.0 ■

I spent most time on looking at the test code
2.0 ■

I spent most time on looking at the metadata of
the failure 1.6 ■

I spent most time figuring out the cause of the
test failure 3.5 ■

I spent most time finding out which test(s)
failed 1.2 ■

I spent most time understanding the
code/codebase 3.2 ■

This assignment was too difficult to solve in
the given amount of time 1.2 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

3.9 ■

I spent most time on looking at the code under
test

3.6 ■

I spent most time on looking at the test code
1.8 ■

I spent most time on looking at the metadata of
the failure

2.2 ■

I spent most time figuring out the cause of the
test failure

3.0 ■

I spent most time finding out which test(s)
failed

2.2 ■

I spent most time understanding the
code/codebase

2.2 ■

This assignment was too difficult to solve in
the given amount of time

1.2 ■
Avg

[without] Do you have any remarks? (optional)
ez pz

[with] Do you have any remarks? (optional)
Very cool!

The Smoke test failing (along with others) made it obvious to me that the code changes was the first thing to look

at

151

E. RESULTS

E.2.3 Assignment 2a

87.5% 12.5%

25.0% 25.0% 50.0%

62.5% 25.0% 12.5%

25.0% 50.0% 25.0%

12.5% 25.0% 25.0% 37.5%

87.5% 12.5%

12.5% 12.5% 62.5% 12.5%

50.0% 37.5% 12.5%

25.0% 25.0% 50.0%

12.5% 12.5% 50.0% 25.0%

62.5% 25.0% 12.5%

12.5% 37.5% 12.5% 25.0% 12.5%

25.0% 12.5% 37.5% 25.0%

62.5% 25.0% 12.5%

12.5% 12.5% 37.5% 37.5%

25.0% 37.5% 37.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 1.2 ■

I spent most time on looking at the code under
test 4.2 ■

I spent most time on looking at the test code
2.5 ■

I spent most time on looking at the metadata of
the failure 2.0 ■

I spent most time figuring out the cause of the
test failure 3.2 ■

I spent most time finding out which test(s)
failed 1.1 ■

I spent most time understanding the
code/codebase 3.6 ■

This assignment was too difficult to solve in
the given amount of time 1.8 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

3.8 ■

I spent most time on looking at the code under
test

3.6 ■

I spent most time on looking at the test code
2.5 ■

I spent most time on looking at the metadata of
the failure

2.9 ■

I spent most time figuring out the cause of the
test failure

3.6 ■

I spent most time finding out which test(s)
failed

1.8 ■

I spent most time understanding the
code/codebase

3.9 ■

This assignment was too difficult to solve in
the given amount of time

2.9 ■
Avg

[without] Do you have any remarks? (optional)
-

[with] Do you have any remarks? (optional)
UI remark: The code highlighting in the test code field and the code under test field is a bit confusing at first
glance. In the CUT field, there are 3 different highlighting colors with different labels, but in the test code field,
there’s only one color without label. After a bit of thinking it’s clear that this is simply the ”changed” color, but
this still caused some initial confusion for me.

I had to orient myself around the codebase a bit before I could really get into solving the failing test.

It would be convenient if TestAxis would load the same code fragment when you click a link in the stacktrace.

152

E.2. Post-Assignment Questionnaires Results

E.2.4 Assignment 2b

62.5% 25.0% 12.5%

25.0% 12.5% 25.0% 37.5%

12.5% 12.5% 37.5% 12.5% 25.0%

25.0% 62.5% 12.5%

12.5% 12.5% 50.0% 25.0%

100.0%

25.0% 25.0% 25.0% 25.0%

50.0% 25.0% 12.5% 12.5%

25.0% 12.5% 12.5% 50.0%

12.5% 62.5% 12.5% 12.5%

12.5% 12.5% 25.0% 50.0%

25.0% 37.5% 12.5% 12.5% 12.5%

12.5% 12.5% 12.5% 62.5%

50.0% 12.5% 12.5% 12.5% 12.5%

37.5% 25.0% 25.0% 12.5%

62.5% 12.5% 12.5% 12.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 1.8 ■

I spent most time on looking at the code under
test 3.5 ■

I spent most time on looking at the test code
3.2 ■

I spent most time on looking at the metadata of
the failure 1.9 ■

I spent most time figuring out the cause of the
test failure 3.9 ■

I spent most time finding out which test(s)
failed 1.0 ■

I spent most time understanding the
code/codebase 2.5 ■

This assignment was too difficult to solve in
the given amount of time 1.9 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

3.5 ■

I spent most time on looking at the code under
test

2.2 ■

I spent most time on looking at the test code
4.1 ■

I spent most time on looking at the metadata of
the failure

2.5 ■

I spent most time figuring out the cause of the
test failure

3.9 ■

I spent most time finding out which test(s)
failed

2.2 ■

I spent most time understanding the
code/codebase

2.2 ■

This assignment was too difficult to solve in
the given amount of time

1.9 ■
Avg

[without] Do you have any remarks? (optional)
-

[with] Do you have any remarks? (optional)
I ran the test code locally but that didn’t really yield any useful information.

153

E. RESULTS

E.2.5 Assignment 3a

75.0% 12.5% 12.5%

37.5% 62.5%

25.0% 37.5% 37.5%

50.0% 37.5% 12.5%

37.5% 25.0% 37.5%

100.0%

12.5% 12.5% 12.5% 50.0% 12.5%

75.0% 12.5% 12.5%

25.0% 12.5% 62.5%

50.0% 50.0%

12.5% 87.5%

25.0% 37.5% 25.0% 12.5%

25.0% 37.5% 12.5% 25.0%

37.5% 25.0% 12.5% 25.0%

12.5% 37.5% 25.0% 25.0%

37.5% 25.0% 12.5% 25.0%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 1.6 ■

I spent most time on looking at the code under
test 4.6 ■

I spent most time on looking at the test code
2.1 ■

I spent most time on looking at the metadata of
the failure 1.6 ■

I spent most time figuring out the cause of the
test failure 3.6 ■

I spent most time finding out which test(s)
failed 1.0 ■

I spent most time understanding the
code/codebase 3.4 ■

This assignment was too difficult to solve in
the given amount of time 1.8 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

3.9 ■

I spent most time on looking at the code under
test

4.5 ■

I spent most time on looking at the test code
2.8 ■

I spent most time on looking at the metadata of
the failure

2.2 ■

I spent most time figuring out the cause of the
test failure

3.4 ■

I spent most time finding out which test(s)
failed

2.2 ■

I spent most time understanding the
code/codebase

3.6 ■

This assignment was too difficult to solve in
the given amount of time

2.5 ■
Avg

[without] Do you have any remarks? (optional)
Use Sonar too :P

[with] Do you have any remarks? (optional)
Felt a lot easier than the first task.

I spent most time verifying that the change would actually cause the test to fail - and some time on figuring out

my keyboard.

154

E.2. Post-Assignment Questionnaires Results

E.2.6 Assignment 3b

87.5% 12.5%

12.5% 37.5% 50.0%

25.0% 25.0% 37.5% 12.5%

62.5% 25.0% 12.5%

25.0% 12.5% 12.5% 37.5% 12.5%

75.0% 12.5% 12.5%

25.0% 50.0% 12.5% 12.5%

87.5% 12.5%

62.5% 12.5% 25.0%

12.5% 37.5% 50.0%

50.0% 25.0% 25.0%

75.0% 12.5% 12.5%

12.5% 12.5% 25.0% 50.0%

62.5% 37.5%

50.0% 37.5% 12.5%

62.5% 25.0% 12.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 1.4 ■

I spent most time on looking at the code under
test 4.4 ■

I spent most time on looking at the test code
2.4 ■

I spent most time on looking at the metadata of
the failure 1.5 ■

I spent most time figuring out the cause of the
test failure 3.0 ■

I spent most time finding out which test(s)
failed 1.4 ■

I spent most time understanding the
code/codebase 2.9 ■

This assignment was too difficult to solve in
the given amount of time 1.1 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

2.4 ■

I spent most time on looking at the code under
test

4.2 ■

I spent most time on looking at the test code
2.0 ■

I spent most time on looking at the metadata of
the failure

1.4 ■

I spent most time figuring out the cause of the
test failure

3.9 ■

I spent most time finding out which test(s)
failed

1.4 ■

I spent most time understanding the
code/codebase

2.1 ■

This assignment was too difficult to solve in
the given amount of time

1.6 ■
Avg

[without] Do you have any remarks? (optional)
It was a bit more difficult figure out what the failing test was testing - it was a bit surprising to me to not see
obvious unit test failing that would test the behaviour of ”Direction.opposite()”

I kind of knew that the problem would be in the newly introduced method (’opposite’) due to the constraints

of the experiment and once I looked at the method, the discrepancy was obvious, and I didn’t really need to

understand the test code.

[with] Do you have any remarks? (optional)
-

155

E. RESULTS

E.2.7 Assignment 4a

62.5% 12.5% 12.5% 12.5%

12.5% 37.5% 50.0%

62.5% 12.5% 12.5% 12.5%

62.5% 37.5%

12.5% 12.5% 75.0%

87.5% 12.5%

12.5% 12.5% 62.5% 12.5%

25.0% 25.0% 25.0% 25.0%

12.5% 12.5% 12.5% 62.5%

12.5% 50.0% 37.5%

12.5% 25.0% 37.5% 25.0%

37.5% 37.5% 12.5% 12.5%

12.5% 25.0% 62.5%

50.0% 25.0% 12.5% 12.5%

12.5% 50.0% 37.5%

25.0% 12.5% 25.0% 25.0% 12.5%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 2.0 ■

I spent most time on looking at the code under
test 4.1 ■

I spent most time on looking at the test code
2.8 ■

I spent most time on looking at the metadata of
the failure 1.4 ■

I spent most time figuring out the cause of the
test failure 4.4 ■

I spent most time finding out which test(s)
failed 1.2 ■

I spent most time understanding the
code/codebase 3.5 ■

This assignment was too difficult to solve in
the given amount of time 3.5 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

4.1 ■

I spent most time on looking at the code under
test

4.2 ■

I spent most time on looking at the test code
2.8 ■

I spent most time on looking at the metadata of
the failure

2.1 ■

I spent most time figuring out the cause of the
test failure

4.5 ■

I spent most time finding out which test(s)
failed

2.0 ■

I spent most time understanding the
code/codebase

3.2 ■

This assignment was too difficult to solve in
the given amount of time

2.9 ■
Avg

[without] Do you have any remarks? (optional)
I forgot git is a thing.

Running locally was quite important as in the build logs the values did not show up

[with] Do you have any remarks? (optional)
When I click away from a tab within TestAxis and come back to that tab later, I don’t end up where I left off

I would also like to see only the changed code because TestAxis shows too much information, would be nice if I

could toggle the different information.

I cannot dismiss the warnings.

156

E.2. Post-Assignment Questionnaires Results

E.2.8 Assignment 4b

50.0% 37.5% 12.5%

50.0% 50.0%

75.0% 25.0%

62.5% 25.0% 12.5%

37.5% 12.5% 50.0%

100.0%

12.5% 25.0% 62.5%

25.0% 12.5% 37.5% 12.5% 12.5%

28.6% 14.3% 57.1%

14.3% 28.6% 57.1%

14.3% 57.1% 14.3% 14.3%

28.6% 57.1% 14.3%

14.3% 14.3% 57.1% 14.3%

28.6% 28.6% 28.6% 14.3%

14.3% 28.6% 42.9% 14.3%

14.3% 42.9% 42.9%

−100 −80 −60 −40 −20 0 20 40 60 80 100

To get more information on the cause of the
test, I had to run the failing test(s) locally 2.2 ■

I spent most time on looking at the code under
test 4.5 ■

I spent most time on looking at the test code
2.2 ■

I spent most time on looking at the metadata of
the failure 1.5 ■

I spent most time figuring out the cause of the
test failure 2.6 ■

I spent most time finding out which test(s)
failed 1.0 ■

I spent most time understanding the
code/codebase 3.4 ■

This assignment was too difficult to solve in
the given amount of time 2.8 ■

To get more information on the cause of the
test, I had to run the failing test(s) locally

4.0 ■

I spent most time on looking at the code under
test

4.4 ■

I spent most time on looking at the test code
2.3 ■

I spent most time on looking at the metadata of
the failure

1.9 ■

I spent most time figuring out the cause of the
test failure

3.7 ■

I spent most time finding out which test(s)
failed

2.3 ■

I spent most time understanding the
code/codebase

3.4 ■

This assignment was too difficult to solve in
the given amount of time

2.7 ■
Avg

[without] Do you have any remarks? (optional)
-

[with] Do you have any remarks? (optional)
You should add a right mouse option ”Run locally” (please)

Used some gut intuition to figure out the issue

Purple highlighted code is useful to limit scope of what to look at.

Re-running the test was not needed as TestAxis gave the assert failure locally

157

E. RESULTS

E.3 Assignment Timing Results

Participant 1a-without 1a-with 1b-without 1b-with 2a-without 2a-with 2b-without 2b-with
1 01:20 01:30 05:00 03:20
2 01:35 00:55 02:35 01:48
3 00:58 01:44 02:17 04:42
4 00:19 02:42 03:48 02:22
5 00:57 02:41 05:00 02:08
6 00:52 04:27 04:18 05:00
7 01:48 01:02 05:00 *
8 01:38 01:52 03:51 01:49
9 00:41 02:24 05:00 03:38
10 00:34 01:59 05:00 01:10
11 00:39 01:50 01:26 05:00
12 00:37 00:41 05:00 02:19
13 02:51 02:01 05:00 05:00
14 01:24 04:43 05:00 05:00
15 03:22 02:12 05:00 05:00
16 02:37 01:38 02:40 05:00
Participant 3a-without 3a-with 3b-without 3b-with 4a-without 4a-with 4b-without 4b-with
1 04:10 00:46 06:49 10:00
2 02:24 00:57 04:10 01:45
3 02:28 05:00 10:00 10:00
4 02:31 01:22 08:41 08:24
5 03:46 05:00 08:40 03:02
6 05:00 00:39 10:00 05:06
7 05:00 00:16 10:00 10:00
8 04:42 02:03 05:53 05:52
9 05:00 02:12 04:12 10:00
10 03:09 01:51 07:01 06:39
11 04:43 00:29 07:08 01:42
12 03:02 03:17 06:54 02:38
13 02:12 03:26 10:00 10:00
14 03:17 03:31 10:00 10:00
15 05:00 05:00 04:56 06:53
16 04:11 01:18 09:14 08:12

* Omitted result as explained in Section 5.1.2.

E.4 Posttest Questionnaire Results

Verification

See Figure 5.16.

Usefulness of Informational Elements

See Figure 5.10.

Build Notifications

See Figure 5.13.

158

E.4. Posttest Questionnaire Results

Test Health Warnings

See Figure 5.15.

TestAxis IDE Plugin User Experience

See Figure 5.12.

Expectations of a CI build test execution visualization tool

See Figure 5.11.

Comments

Is there any information or feature missing in TestAxis that would have improved your
ability to fix a failing test?
Not at this moment.

Being able to rerun tests locally right from inside the test code tab (if that’s not already possible).

Would also be great to be able to go right back from a line in TestAxis to the corresponding line in the
GitHub PR, to be able to place a comment about it to communicate some thought/idea to colleagues. In that same
lane, I could also think of a bunch of other GitHub-related integrations that could make the local experience even
richer and more entwined with the online/collaborative experience.

Minimap

1. Add coverage highlighting in the diff of the CUT. In fact, show diff by default inside the tab.
2. If it’s from a PR, add PR info somewhere maybe?

An option to run the test locally (maybe even automatically to detect tests that only fail on CI). Also it would
have been nice to open the code under test in the editor.

Navigation shortcuts for the different labels in order to quickly jump to affected source code without having to
scroll.

No.

Right clicking the test so I can run it via test axis

Quickly running the test again by right clicking it.

I think just a couple simple things like opening a file in TestAxis in the main I DE editor would be great. Another
feature I’d like to see is to be able to run a failing test locally, so that a user can verify their changes intended to
fix the failing test.

See remarks

Do you have any comments or remarks on TestAxis in general?
I think it’s very nice not to crawl through large build logs myself.

One small quirk: When I return to the TestAxis tool tab from the main window, the current file is marked gray,
and I need to switch between files to reactivate it. It would be great if that could be done for me, automatically.

Other than that: Great tool, and really useful! Especially the differential highlighting feature, but also simply the
integration of such a core part of an everyday development workflow into the local IDE is really useful. Also
works quite stably in the scenarios I worked with in this experiment, no bugs or the like.

159

E. RESULTS

I would consider using it in my workflow as is. I would not add much info further as I think it strength lays in
the clean and concise overview

cool

I think it saves a lot of time and it is nicely integrated with Jetbrains IDEs.

The integration offers a great experience. However, the need of additional source code windows besides the main
editor one takes up too much space in my opinion. But maybe I were to use multiple screens, this would not be
much of an issue.

Well structured information with well thought oout UX design

Very useful.

Nope

I liked it.

The covered code/changed code features is awesome.

I thought it was super useful during the experiments. I much rather preferred using TestAxis over the traditional
CI logs on github. What TestAxis does in my opinion is recreate the steps I manually take on a github pull request
to identify a failing test, and it does so in the IDE so I don’t have to switch tabs and interrupt my workflow.

- For the best experience, requires a user to learn the intuitions of the tool

It is a great time saver, especially the hints on flakiness and the covered part of the code under test

None

Do you have any comments or remarks on the experiment?
None, clear exercises and good explanation upfront! One comment on the last experiment was noted already
(about the point thresholds), other than that very good but also quite representative while still doable test tasks.

Nice setup, enjoyed working along

The tasks were sometimes really easy and did not always highlight the benefits of TestAxis. Some tasks could
be fixed with a simple code review, and TestAxis doesn’t really seem to integrate with the code review process.
Right now TestAxis is only used by a reviewer if he cannot find the bug by reviewing. But maybe the issue is
that in this experiment I was the reviewer while in reality you’d use it as the author of the changed code.

I think it was consistent and I did not feel stressed.

Good explanations of the tasks at hand!

Well conducted and structured. Followed good practices.

Some of the questions in the questionnaire might not give the insight that you are after.

No it was fun

Very well set up and smooth experiment !

The experiment was very streamlined. The only thing I’d say is remote control over Zoom results in a noticeable
input lag that can make things a little slower (like navigating files etc). Maybe this can be compensated by
increasing the time duration for the experiment?

- JPacman is a relatively clean code base; in day to day life, code bases are often much more messy and less
accessible; by having a less approachable code base, finding bugs becomes harder

This was a fun experiment to partake in. Most of the bugs were simple yet subtle just like in the real world.

Maybe another 5-10 minutes to browse through the codebase and play the game.

160

E.4. Posttest Questionnaire Results

Do you have any other comments or remarks? None, other than: when is this readily and publicly
available and a default plugin in IntelliJ?

good luck

It would be cool to test this with other programming languages, but I imagine this takes a lot of time.

Will you made your tool available to the public?

No :)

Nope

I think TextAxis is a very nice tool

Super useful tool, excited to try it out in my projects!

Good luck!

The Experiment

See Figure 5.17.

161

	Preface
	Contents
	List of Figures
	Introduction
	Problem Statement
	Research Questions
	Approach
	Contributions
	Thesis Outline

	Conceptual Design and Features
	TestAxis Features
	Presentation of CI Build Test Results
	Test Failure Details and Test Code
	(Changed) Code Under Test
	Build Notifications
	Test Health Warnings

	Requirements Analysis
	Functional Requirements
	Non-Functional Requirements

	Summary

	Development and Implementation
	From a CI Service to the TestAxis Backend
	CI-Service-Independent Communication
	Collecting Test Reports
	Collecting Coverage Per Test Reports

	From the TestAxis Backend to the IDE Plugin
	Processing of Incoming Reports
	Communication
	Backend-Side Test Health Analysis

	From the TestAxis IDE Plugin to the Developer
	Getting Started
	Build Notifications
	Build and Tests Overview
	Test (Failure) Meta-Information
	Test Code
	(Changed) Code Under Test
	Client-Side Test Health Analysis

	Summary

	User Study Design
	Overview of the Experimental Design
	Measured Variables

	Pre-Experimental One-Group Pretest-Posttest Study
	Study Design
	Questionnaire Design

	Pre-Experimental Within-Subjects Study
	Study Design
	Software Project Selection
	Assignment Design
	Assignment Ordering

	Selection of Participants
	Pilot
	Experiment Execution
	Structure of a Session
	Technical Experiment Setup

	Summary

	Results and Analysis
	Results
	Participants
	Failure-Fixing Performance in the Assignments
	Usefulness of The Tool
	Build Notifications
	Test Health Warnings
	Reflection on the Experiment

	Performance Analysis and Discussion
	Influence of Background and Experience
	Statistical Significance of Performance Improvements
	Meta Information in the IDE
	Failed Test Code in the IDE
	(Changed) Code Under Test in the IDE
	Influence of Assignment Ordering

	Usefulness Discussion
	Build Notifications in the IDE
	Health Warnings
	Usefulness of TestAxis

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Summary

	Related Work
	Test Failures in CI Builds
	Assistance in Fixing Failing Tests
	Context of Failing Tests
	Collecting and Showing Test Results
	Finding Code under Test
	Finding Changes Causing a Build Failure
	CI Build Notifications and Results in the IDE

	Conclusions and Future Work
	Conclusions
	Failure-Fixing Time Performance
	Usefulness

	Contributions
	Future Work

	Bibliography
	Glossary
	Questionnaires
	Pretest Questionnaire
	Informed Consent
	Personal Background
	Experience
	Attitude towards software testing and continuous integration
	Expectations of a CI build test execution visualization tool

	Post-Assignment Questionnaire
	Posttest Questionnaire

	Assignments
	Assignment Ordering
	Assignment Descriptions

	Experiment Participants Information Website
	Results
	Pretest Questionnaire Results
	Personal Background
	Experience
	Attitude towards software testing and continuous integration
	Expectations of a CI build test execution visualization tool

	Post-Assignment Questionnaires Results
	Assignment 1a
	Assignment 1b
	Assignment 2a
	Assignment 2b
	Assignment 3a
	Assignment 3b
	Assignment 4a
	Assignment 4b

	Assignment Timing Results
	Posttest Questionnaire Results

