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Abstract

Identification of dynamic objects in sequential terrestrial Light Detection And Ranging (LiDAR) point
cloud data is important for analyzing activity and usage of coastal environments. This research focuses
on identifying non-geomorphological dynamic objects, such as people and bulldozers, in sequential
terrestrial LiDAR point cloud data acquired by a permanent laser scanner installed in Noordwijk, the
Netherlands. A workflow is proposed and demonstrated, consisting of three main components: ground
and non-ground separation using a Cloth Simulation Filter, dynamic point detection through Cloud-to-
Cloud comparison, and clustering of individual dynamic objects using Density-Based Spatial Clustering
of Applications with Noise (DBSCAN). Parameter tuning is performed by evaluating all possible con-
figurations within a defined range and validated against manually identified dynamic objects. For a
week-long dataset, the error in the number of detected large dynamic objects is relatively low at 6.9%,
whereas the error for small dynamic objects is higher at 23.0%, attributed to their proximity to the ground
and to each other. On a point-to-point basis, the optimized configuration results in an average error
of 13.5% for large dynamic objects and 33.7% for small dynamic objects with respect to a reference
set. A sensitivity analysis using a Monte Carlo simulation with normally distributed parameter variations
around the tuned values demonstrates robustness to moderate parameter fluctuations, particularly for
larger dynamic objects, which show a standard deviation of 0.07 detected objects, while smaller objects
show greater variability with a standard deviation of 0.34 detected objects. The application of the Cloth
Simulation Filter adds value by excluding geomorphological processes, contributing to a reduction in
error rate of approximately 95% for large objects and 62% for small objects. Overall, the presented
workflow offers a robust automated approach for detecting dynamic objects on sandy beaches in LiDAR
point cloud data, with demonstrated potential for scalable, long-term monitoring.
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Preface

The following thesis is the result of seven weeks of dedicated work, completed as the final step toward
obtaining my Bachelor’s degree in Applied Earth Sciences at TU Delft. In this research, I explore the
possibilities of automatically detecting and clustering dynamic objects in sequential LiDAR point cloud
data of the beach of Noordwijk.

This topic was first introduced to me by Roderik Lindenbergh and Daan Hulskemper, and it quickly
caught my interest, not only because it involved data from a familiar place, but also because the dataset
included bulldozers, which stand out in point cloud data. At first, my aim was simply to detect these
vehicles, as they seemed like interesting dynamic objects to identify. However, asmy thesis progressed,
I began to see the potential to detect a much wider range of objects. While I never managed to find
any seals, rumored to be present in the dataset, I did encounter many other dynamic objects: ladders,
crates, bicycles, people, and even dogs being walked along the beach. This allowed me to combine
technical analysis with creative problem-solving, as different types of objects pose unique challenges
for the detection process. Engaging with this LiDAR dataset turned out to be a rewarding experience,
and over the course of seven weeks, I learned more than I had anticipated.

I would like to thank the people who made this thesis possible. In particular, I am grateful to Roderik
Lindenbergh and Daan Hulskemper for their guidance throughout the project. Whether we were dis-
cussing if a detected object might be a cyclist or a horse rider, or addressing technical aspects of
the methodology, the conversations were helpful and enjoyable, and their feedback and suggestions
helped me get the most out of my thesis. I especially appreciated their approachable attitude, which
made me feel welcome within the Geoscience and Remote Sensing department during the duration of
my thesis. I would also like to thank Sander Vos for kindly agreeing to act as the external member of
my thesis committee, and for being supportive and approachable throughout the process.

Mark Geeraerts
Delft, July 2025
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1
Introduction

Coastal environments, such as sandy beaches along the Dutch coast, are dynamic environments, that
have varying purposes such as recreation, wildlife habitat, coastal protection, and commercial activities.
Understanding how these beaches are used, by whom, and to what extent, is essential for managing
potential conflicts between users. To achieve this understanding, it is necessary to identify dynamic
objects on the beach, such as people, and vehicles, that make use of the beach. This research fo-
cuses specifically on the beach of Noordwijk, where monitoring campaigns have been conducted us-
ing a permanent laser scanning installed at the top of a hotel overlooking the beach (see cover page)
(CoastScan, n.d.). Previous research has investigated topics such as geomorphological and topograph-
ical change (Kuschnerus et al., 2024), and the development of dunes influenced by beach buildings
(Vos et al., 2024). Less attention has been given however to the detection of dynamic objects within
the Light Detection And Ranging (LiDAR) point cloud data, despite its importance for understanding
beach usage. To address this gap, this research focuses on identifying dynamic objects, which are de-
fined as a non-ground objects that shows change in position between sequential scans. The available
data provides an opportunity to explore how dynamic objects can be detected through near-continuous
terrestrial laser scanning, which methods are available to do so, and how the parameters driving these
methods can be optimized.

1.1. Research Questions
This report raises and aims to answer the research question:

How can dynamic objects in sequential LiDAR point cloud data be automatically identified on sandy
beaches?

To answer the research question, several supporting matters will be addressed:

1. How can near-continuous terrestrial LiDAR point cloud data be acquired?
2. What kind of dynamic objects are expected to be identified in LiDAR point cloud data of sandy

beaches?
3. What are possible approaches for distinguishing dynamic objects in sequential LiDAR scans?
4. How can suitable parameters be determined for identifying dynamic objects in LiDAR point cloud

data?
5. How can the performance of the detection of dynamic objects be evaluated?
6. How sensitive is the performance of dynamic object detection to variations in parameter settings?

1
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1.2. Research Methods
This research will answer the research questions through a literature review and analysis of LiDAR point
cloud data of the beach of Noordwijk. Sources are examined concerning near-continuous terrestrial
LiDAR data acquisition, point cloud processing algorithms, detectionmethodologies, and clustering and
filtering techniques. The available dataset is analyzed to gain insight into the types of dynamic objects
present. The characteristics of the dataset will be described, discussing the variability and quality of
the data. Methods are selected to perform dynamic object detection within the point cloud data, which
are then applied to the dataset. The selected methods require certain parameters which need to be
tuned, and therefore a tuning process is applied. The performance of the tuned parameters will be
quantitatively evaluated on a reference set of dynamic objects, and the robustness of the results will
be assessed through a sensitivity analysis. Method implementation, parameter tuning, and evaluation
are performed in Python, while visualization is carried out in both Python and CloudCompare.

1.3. Report Structure
This report is structured as follows. Chapter 2 examines the scientific background, covering terres-
trial LiDAR data acquisition, ground and non-ground separation techniques, dynamic object detection
methods, clustering techniques for point cloud data, and nearest neighbor calculations. Chapter 3
describes the data and study area, providing an overview of the research area, outlining the data char-
acteristics, and identifying dynamic objects present in the dataset. Chapter 4 outlines the methodology
applied to the dataset. It begins with a workflow overview and justification of the methodological ap-
proach, followed by an explanation of the steps taken. These include data preprocessing, the concept
and implementation of the Cloth Simulation Filter, Cloud-to-Cloud comparison, and the use of Density-
Based Spatial Clustering of Applications with Noise (DBSCAN). Result optimization and evaluation are
also discussed. Chapter 5 presents the results, highlighting the outcomes of parameter tuning, per-
formance evaluation, and the findings of the sensitivity analysis. Chapter 6 contains the discussion,
which reflects on the research by evaluating the parameter tuning process and performance analysis.
It also discusses the selected parameters for various methods and evaluates the impact of non-ground
point filtering on the results. Furthermore, it discusses the analysis of one month’s worth of data and
assesses the scalability and applicability of the proposed workflow. Finally, Chapter 7 will present the
conclusion, answering the main and supporting research questions, and providing recommendations
for future research.



2
Scientific Background

This chapter provides an overview of the principles and techniques relevant to this research. It begins
with a discussion on near-continuous terrestrial LiDAR data acquisition in Section 2.1, covering its
fundamental principles, advantages, and limitations. Section 2.2 then explores various methods for
dynamic point detection. Ground and non-ground point separation techniques are examined in Section
2.3, followed by an overview of clustering techniques in Section 2.4. Finally, Section 2.5 addresses
nearest neighbor calculations.

2.1. Near-Continuous Terrestrial LiDAR Data Acquisition
Light Detection And Ranging (LiDAR) is a laser scanning technique which uses laser pulses to de-
termine distances between a laser scanner and its environment. There are various types of laser
scanners, ranging from airborne laser scanning (ALS) to terrestrial laser scanning (TLS) systems. TLS
is a ground-based method that is stationary (Vosselman & Maas, 2010). LiDAR scanners use Time-of-
Flight (ToF) measurements, which allows the determination of the distance to a scanned object based
on the time it takes for a light wave to travel from the scanner, reflect off the object, and return back to
the scanner. This one-way-distance d to the object can be expressed as:

d =
c · t
2n

(2.1)

where c (≈ 3.0×108 m/s) is the speed of light in vacuum, t is the travel time from the scanner to a target
and back, and n (≈ 1.003) is the correction factor which is equal to refractive index, which depends on
various factors, such as temperature, pressure, and humidity (Vosselman & Maas, 2010). Based on
the distance obtained through ToF measurements, and the direction in which the laser pulse is sent,
the location of the reflecting point can be determined. Sending out laser pulses in various directions
will thus result in a 3D point cloud. TLS devices may be subjected to small tilt variations. To account
for these variations, a time-dependent alignment matrix can be used to align sequential LiDAR scan
data (Vos et al., 2023).

TLS systems produce a point cloud with an uneven point density, as density of the point cloud is a func-
tion of distance from the scanner; objects which are located closer to a scanner will be more densely
covered than farther away, which may form challenges when processing the LiDAR data (Li et al.,
2019). It should be noted that TLS generally provides a high point cloud density in comparison to
other techniques such as ALS (Keskin et al., 2024). A limitation of TLS are line-of-sight restrictions. In
environments with buildings for instance, line-of-sight restrictions can present a significant challenge,
particularly when the research focus extends beyond obstructing structures. Since TLS can only cap-
ture what is directly visible, an unobstructed path between the scanner and the target is needed for
complete data acquisition. Other factors which may impact the performance of TLS devices are instru-
mental errors, the laser-surface interaction and surface properties, environmental conditions, and the
scan strategy (Muralikrishnan, 2021).

3



2.2. Dynamic Point Detection Techniques 4

Permanent Laser Scanning (PLS) is a technique that employs a terrestrial laser scanner mounted at
a fixed location for an extended period to repeatedly capture 3D scans. Each scan, or epoch, pro-
duces a point cloud representing the geometry and reflectivity of the scene at that moment. Over time,
these sequential point clouds form a 4D dataset (3D + time) that captures not only changes in the ter-
rain but also the movement of individual dynamic objects within the scene at high temporal frequency
(hourly to weekly). This makes PLS suitable for monitoring dynamic processes and dynamic objects in
environments such as beaches. However, the large and unstructured nature of the data requires pro-
cessing methods to extract relevant information from the obtained near-continuous point cloud series
(Kuschnerus, 2024).

2.2. Dynamic Point Detection Techniques
In this research, change refers to the significant spatial displacement or appearance of points in sequen-
tial LiDAR scans. Change is therefore closely related to dynamic points, which are defined as points
that show notable positional differences or appear in one scan but not in the previous one. Kharroubi
et al. (2022) has provided a comprehensive review of different methods which are suitable for detecting
three dimensional change in point cloud data. These methods can be subdivided into three categories,
namely, so-called standard methods, handcrafted machine learning methods and deep learning meth-
ods. These methods can be divided into various sub-methods (see Figure 2.1) (Kharroubi et al., 2022).

Figure 2.1: Overview on the main methods for 3D change detection, and their sub-methods. Retrieved from Kharroubi et al.
(2022).

LiDAR scans made under identical conditions of any object, will not result in identical point clouds, as
factors such as measurement noise ensure that the location of points will always vary slightly, even
when no change has occurred. (Baltsavias, 1999). Dynamic point identification techniques should
therefore be able to differentiate measurement errors, and actual change of point clouds. Standard
methods try to determine whether displacement of a point is significant enough to deem it dynamic
by calculating distances between points from sequential point cloud measurements, and applying a
distance threshold value (Kharroubi et al., 2022). Handcrafted machine learning dynamic detection
methods rely on extracting spatially variant features from sequential point clouds, which are used as
inputs for a classifier. The classifier is then trained using training data to identify dynamic points, which is
applied to the sequential point cloud data for classification (Tran et al., 2018). Deep learning dynamic
detection methods use neural networks to learn features from point cloud data, which results in the
model being able to recognize patterns without needing to manually extract and input features for
training (Guo et al., 2020; Kharroubi et al., 2022). Table 2.1 provides an overview of the strengths and
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weaknesses of the discussed overarching dynamic object detection techniques.

Table 2.1: Strengths and weaknesses of dynamic object detection techniques. Based on information retrieved from Kharroubi
et al. (2022).

Detection methods Strengths Weaknesses

Standard Simple to use and
computationally efficient

Sensitive to noise, complex
terrain, and uneven point cloud

density

Handcrafted machine learning Can classify changes with
limited data

Quality of classification
depends on training data quality

Deep Learning High accuracy and able to learn
complex patterns

Needs large labeled datasets,
high computational cost, and

difficult to understand

2.3. Ground and non-Ground Separation Techniques
While dynamic point detection techniques are capable of identifying dynamic points, distinguishing
these from points associated with dynamic objects is a challenge when solely using these techniques.
This is because such techniques are tuned to detect change between sequential scans, but not specif-
ically to differentiate between dynamic points belonging to moving objects and those resulting from
geomorphological changes. To distinguish between geomorphological changes and dynamic objects,
ground and non-ground points can be separated. Since geomorphological changes typically occur on
ground points, while points associated with dynamic objects are usually non-ground, this separation
helps isolate points associated with dynamic objects from natural surface changes. Chen et al. (2021)
provides an extensive overview of different techniques which may be used for separating ground and
non-ground points. A wide variety of techniques exist that can perform this separation of points, which
can be classified into five different categories, namely morphology-based, interpolation-based, slope-
based, segmentation-based and machine learning-based filtering algorithms (see Figure 2.2) (Chen
et al., 2021).



2.3. Ground and non-Ground Separation Techniques 6

(a) Principle of a morphology-based filtering algorithm. (b) Principle of a slope-based filtering algorithm.

(c) Principle of an interpolation-based filtering algorithm. (d) Principle of a segmentation-based filtering algorithm.

(e) Principle of a machine learning-based filtering algorithm.

Figure 2.2: Overview of different ground and non-ground filtering algorithms. Retrieved from Chen et al. (2021).
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Morphology-based filters use the structural shape of the point cloud to distinguish ground and non-
ground points. An example is the use of dilation and erosion operations to process point clouds by
expanding and contracting terrain features. Dilation enlarges features in point clouds, while erosion
reduces the size. When combined, these opening and closing operations can be used to classify points
as ground or non-ground based on the difference relative to the filtered surfaces (see Figure 2.2a) (N. K.
Zhang et al., 2003). Slope-based filters make use of variations in the slope to determine whether a point
is a ground or non-ground point. If the slope associated with a point exceeds a threshold, then it is
classified as a non-ground point (see Figure 2.2b) (Vosselman, 2000). Interpolation-based filters base
classification on seed points (ground points) within a moving window, and interpolating these point to
construct a reference surface. Points which exceed a certain vertical distance threshold to the surface,
are classified as non-ground points (see Figure 2.2c) (J. Zhang & Lin, 2013). Segmentation-based
filters divide scans into segments, with each segment being classified as ground or non-ground based
on terrain characteristics (see Figure 2.2d) (Yan et al., 2012). Machine learning-based filters make use
of neural networks, for instance convolutional neural networks (see Figure 2.2e), to classify point clouds
as ground or non-ground points. Machine learning techniques learn to recognize patterns, and based
on these patterns are able to make decisions whether a point is classified as a ground or non-ground
point (Rizaldy et al., 2018). Table 2.2 provides an overview of the strengths and weaknesses of the
discussed techniques.

Table 2.2: Strengths and weaknesses of ground and non-ground point filtering methods. Based on information retrieved from
Chen et al. (2021).

Filtering Methods Strengths Weaknesses

Morphology-Based Computationally efficient Information may be lost due to
rasterization (depends on

window size)

Slope-Based Simple and computationally
efficient

Slope threshold can cause
issues in abrupt terrain (e.g.,

overhangs)

Interpolation-Based High filtering accuracy High computational cost

Segmentation-Based Maintains the integrity of terrain
boundaries

Effectiveness is influenced by
segmentation accuracy

Machine Learning-Based Able to learn complex patterns Requires large labeled datasets

2.4. Clustering Techniques for Point Cloud Data
Once points associated with a dynamic object have been identified, clustering them can provide added
value. This is because grouping related points into a single entity can support the processing and in-
terpretation of the identified dynamic points. Wani (2024) provides an extensive overview of clustering
algorithms which are suitable for point clouds. The available clustering techniques can be subdivided
in six categories, namely centroid, density-based, graph-based, distribution-based, connectivity, and
deep embedded clustering (Wani, 2024). Figure 2.3 shows five of the six overarching clustering meth-
ods, applied using a specific technique, and their performance.
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Figure 2.3: From left to right: clustering techniques, and their performance: Centroid clustering (MiniBatch KMeans),
Density-based clustering (DBSCAN), Graph-based clustering (Spectral Clustering), Distribution based clustering (Gaussian

Mixture), connectivity clustering (Ward). Modified from Scikit-learn (n.d.-a).

Centroid clustering techniques, such as MiniBatch KMeans, group point cloud data by assigning each
point to a nearest centroid. The centroid can be defined as the mean or median of a cluster, and is
placed such that the variance within a cluster is minimized (Wani, 2024). Density-based clustering tech-
niques, such as DBSCAN, group points by identifying regions of high density separated by areas of
low density (see Section 4.5) (Ester et al., 1996). Graph-based clustering, often referred to as spectral
clustering, turns point cloud data into a graph where each point is a node, and the connection between
nodes represent the similarity of points, for instance the euclidean distance. Points are then clustered
based on their similarity compared to the rest of the data (Wani, 2024). Distribution-based clustering
techniques, such as Gaussian mixture models, assume that point cloud data is generated from a mix-
ture of distributions. These distributions are each defined by their own mean and covariance matrix,
and based on probability, this can be used to assign points to clusters. (Wani, 2024). Connectivity clus-
tering techniques, such as Ward, construct clusters by evaluating the proximity between data points.
Each point is initially considered as a separate cluster, and based on distance threshold values, points
within a point cloud are grouped to form larger clusters (Jain & Dubes, 1988). Deep embedded cluster-
ing makes use of neural networks to shrink point cloud data into simpler forms, and then converts the
data into clusters. Deep embedded clustering keeps improving both the way it simplifies the data and
the groups it creates, based on the data which is previously provided (Wani, 2024). Table 2.3 provides
an overview of the strengths and weaknesses of the discussed clustering techniques.
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Table 2.3: Strengths and weaknesses of clustering categories. Based on information retrieved from Wani (2024).

Clustering Methods Strengths Weaknesses

Centroid Efficient, and scales well Sensitive to noise and outliers,
and assumes spherical clusters

Density-based Handles noise well, and able to
handle complex shapes

Struggles with varying densities

Graph-based Able to cluster complex shapes High computational cost, and
sensitive to noise

Distribution-based Able to cluster complex shapes Assumes certain distribution,
which may not always be

correct

Connectivity Easy to implement Struggles with noise, and
scalability

Deep Embedded Able to make complex
clustering decisions based on

patterns

High computational costs, and
needs large datasets to work

well

2.5. Nearest Neighbor Calculations
Nearest neighbor calculations are an important component of point cloud processing. Efficient execu-
tion of these calculations is therefore of importance. One approach to achieve this, is the implementa-
tion of the octree subdivision principle (see Figure 2.4). An octree structures 3D point cloud data in such
a way that the point cloud is enclosed by a bounding cube, which is divided into eight equal sub-cubes.
Each of these sub-cubes can be divided in the same way, until a maximum ‘depth’ is reached, or until
a cube does not contain any points. This allows nearest neighbor calculations between datasets to
be performed efficiently, as instead of comparing every point with all others, the spatial region where
the nearest neighbor is likely to reside is quickly identified, which reduces the number of computations,
assuming that the clouds are defined in the same reference frame (González-Jorge et al., 2005). Al-
ternatively, a binary division approach can be used, similar to the octree approach, as described by
Maneewongvatana and Mount (1999). Various splitting methods can be used, such as the standard
split, the midpoint split, the sliding-midpoint split, and the minimum ambiguity split (Maneewongvatana
& Mount, 1999). These approaches can be applied in various ways such that the nearest neighbor
is determined, with each having their own advantages, based on computational speed and accuracy
(González-Jorge et al., 2005).

Figure 2.4: Visualization of the octree subdivision principle with bounding box and corresponding decision tree. Retrieved from
González-Jorge et al. (2005).



3
Data and Study Area

This chapter introduces the dataset and the context of the study area. It begins with Section 3.1, which
provides an overview of the data. Section 3.2 then examines the characteristics of the dataset. Finally,
Section 3.3 outlines the small and large dynamic objects within the dataset.

3.1. Data Acquisition and Overview
the sequential LiDAR point cloud data was collected from July 2019 to June 2022 using a Riegl VZ-
2000 terrestrial laser scanner, which was located on the rooftop of a hotel at the coast of Noordwijk,
spanning an area approximately 1000 meters long, and 350 meters wide. Scans were made hourly,
with an angular resolution of 0.03◦ × 0.03◦, covering a horizontal range from 30◦ to 130◦, and a vertical
range from 78◦ to 281◦. The time required to complete a scan approximately was 7.5 minutes. The
correction factor n (see Section 2.1), was adapted based on weather information from KNMI weather
stations (Vos et al., 2023). Figure 3.1 shows the exact location of the laser scanner. The research
period was set to March 2020, during which a total of 744 scans were acquired. Among these, 11
scans were deemed unsuitable for analysis, and have therefore not been considered in this research.

Figure 3.1: (A) An aerial image showing the location of the laser scanner (red triangle), and the research area covered by the
laser scanner in Noordwijk. (B) The laser scanner, positioned on the rooftop of a hotel overlooking the beach. (C) The

geographic position of Noordwijk (52.24° N, 4.42° E). Retrieved from Vos et al. (2023).

10
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A scan of the area of interest results in a 3D point cloud of approximately 4 million points depending
on scan conditions, and collects the following attributes: X, Y, Z, offset time, echo type, deviation,
amplitude and reflectance (see Appendix A for a description of these attributes). The dataset provides
for each scan a time-dependent alignment matrix, which is applied to correct for small tilt variations in
the laser scanner, and to ensure that sequential scans are aligned with each other. Additionally, pitch
(forwards and backward tilt), and roll (side-to-side tilt) during a scan is provided, which may be used
to assess the amount of variation in tilt of the laser scanner, and its impact on the measurements (Vos
et al., 2023).

3.2. Data Characteristics
In this research, the focus is on identifying dynamic objects located on the beach. The resolution of
the data varies due to the angular resolution (see Section 3.1), resulting in a non-uniform point cloud
density. Figure 3.2 showcases this uneven distribution, showing that point cloud density decreases
with increasing distance from the laser scanner. Effectively, objects located further from the scanner
are represented by fewer data points compared to those closer to it. Since this may affect the results
when determining whether an object is dynamic, the area of the beach which is considered is limited
to a region where the point cloud density is relatively uniform (see Figure 3.2).

Figure 3.2: Point cloud density of the dataset. Red rectangle indicates the region which is considered in this research. Data
from CoastScan scan on March 18th 2020, 00:00.

Since the scanner is positioned on a relatively tall building in the area, it provides a good overview
of the region. However, large objects, such as a beach pavilion, obstruct the laser scanner’s line of
sight, preventing it from capturing points in certain areas. This results in regions where no points are
registered, known as occlusions.

Because scans are taken at hourly intervals, it is unlikely that the same dynamic object will appear in
sequential scans if it has moved on. As a result, dynamic objects cannot be tracked over time, but
their presence can be detected on a per-epoch basis. If a dynamic object moves while the scan is
being performed, this motion can distort the point cloud representation, which may lead to warping of
its appearance or causing it to appear fragmented.
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3.3. Dynamic Objects within the Dataset
In this research, an object is deemed dynamic if it is a non-ground object which shows dynamic behavior
relative to a previous epoch. This means that a dynamic object which appears in one epoch, remains
static for one or more subsequent epochs, and then disappears, is only classified as dynamic once,
namely, at the moment it first appears. Thus, whether an object is deemed dynamic is determined on
an epoch-to-epoch basis, rather than by its presence within any single epoch.

A distinction is made in this research when identifying dynamic objects based on their size in the point
cloud. Namely, objects consisting of 100 points or more are classified as large objects, while, those with
fewer than 100 points are considered small dynamic objects. This distinction allows the performance of
the algorithm to be evaluated based on the point cloud size of a dynamic object. Although the selected
research area has a relatively uniform point cloud density, the angular resolution of the laser scanner
results in fewer points being recorded for identical objects as their distance from the scanner increases.
Because of this, an object’s classification as large or small is influenced by its position relative to the
scanner. Therefore, the number of points representing an object in the point cloud is not characteristic
of the object, but rather a basis which can be used to evaluate the results.

Various types of dynamic objects are observed within the research area, ranging from dogs and people,
to vehicles and equipment such as cars, excavators, and bulldozers, as well as miscellaneous items
like doors, ladders, crates, and barrels. In contrast to large dynamic objects, people and dogs usually
have fewer than 100 points, and are thus small dynamic objects. People can typically be recognized
by their stick figure appearance, and have an abstract nature due to the limited data points. Figure 3.3
highlights some of the small dynamic objects that are found within the dataset.

Figure 3.3: Small dynamic objects on the beach of Noordwijk, shown from left to right and top to bottom: two people walking
closely together, four people walking spread out, two people with a dog, two potential cyclists. Colors represent point reflectivity.

Retrieved from CoastScan scans during March 2020.
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Figure 3.4 highlights some of the large dynamic objects which can be observed within the research area.
Typically, vehicles and equipment consists of more than 100 points. Some miscellaneous objects (such
as ladders, and large crates) may also exceed this number. Appendix B details the size ranges of both
small and large dynamic objects, along with the originating scan IDs from which they were extracted.

Figure 3.4: Large dynamic objects on the beach of Noordwijk, shown from left to right and top to bottom: bulldozer, excavator,
tractor with trailer with cargo, ladder, large barrel and a large crate. Colors represent point reflectivity. Retrieved from

CoastScan scans during March 2020.



4
Methodology

This chapter introduces the methodology used to automate the identification of dynamic objects in
terrestrial LiDAR point cloud data from the beach of Noordwijk. First, the workflow and the reasoning
behind the chosen approach are discussed in Section 4.1. This is followed by a description of the
preprocessing steps applied to the dataset in Section 4.2. Then, an overview of the techniques is
provided, including the Cloth Simulation Filter, which is used to separate ground from non-ground points,
discussed in Section 4.3. Next, the Cloud-to-Cloud comparison method is explained in Section 4.4,
which enables the detection of dynamic points by evaluating positional differences between sequential
scans. Following this, the DBSCAN algorithm is presented in Section 4.5, which clusters dynamic
points into individual objects. Finally, in Section 4.6, a description of the parameter tuning process, the
performance evaluation and sensitivity analysis is provided.

4.1. Justification of Methods and Workflow Overview
This section gives an overview on the steps taken to go from a LiDAR point cloud dataset to a dataset
which has clustered dynamic objects, and provides a justification of the methods which have been
selected to perform this process.

As highlighted in Chapter 2, several methods exist to go from a LiDAR point cloud dataset into one
where dynamic objects have been identified. Although multiple approaches are available, a key dis-
tinction can be made in terms of dynamic point detection techniques, which form the foundation for
detecting dynamic objects. Handcrafted learning methods and deep learning methods, both require
training data that must be manually identified and labeled. However, such labeled datasets are not
available for this research, and creating one would require extensive manual effort. For this reason,
a standard method has been selected to perform the dynamic point detection step, namely Cloud-
to-Cloud comparison. This technique is chosen for its simplicity and computational efficiency, which
makes it suitable for effective implementation on the dataset.

In contrast to machine learning methods, Cloud-to-Cloud comparison does not directly identify dynamic
objects, as it cannot distinguish between geomorphological changes and points associated with dy-
namic objects. For this reason, ground and non-ground point separation is carried out before the Cloud-
to-Cloud comparison step. The method selected for this task is a morphology-based filter, namely the
Cloth Simulation Filter. This filter is chosen due to its relatively high computational efficiency, ease
of implementation via the Python package CloudCompy, and its relative novelty, which also allows its
performance to be evaluated in comparison to the available literature on the method.

Following the detection of dynamic points, a clustering step is applied. This is done to enable the
analysis of dynamic objects as separate entities. The clustering technique selected is a density-based
clustering algorithm, namely DBSCAN. This method is chosen because of its robustness to noise and
its ability to identify clusters of arbitrary shape. Additionally, DBSCAN is relatively efficient with regards
to computational performance, and does not require a predefined number of clusters.

14
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Based on the selected methods, the workflow for dynamic object identification will be as follows. First,
a preprocessing step is conducted, after which the Cloth Simulation Filter is applied to separate ground
and non-ground points. Subsequently, the non-ground points from one scan are compared to the non-
ground points from the previous scan using a Cloud-to-Cloud comparison. Finally, the dynamic points
identified through this process are clustered using the DBSCAN algorithm. This workflow is visualized
in the form of a flowchart, which is shown in Figure 4.1.

Figure 4.1: Workflow LiDAR dataset to Clustered Dynamic Objects.

4.2. Preprocessing
Preprocessing is performed to prepare three sets of data: a single day (18th March 2020), one week
(18–24th March 2020), and one month (March 2020), and is necessary to facilitate the performance of
the algorithm set-out in Section 4.1. This evolves applying the time-dependent alignment matrix and
cropping the dataset to the selected research area (see Figure 3.2). This is done such that the research
area is limited to a region with a relatively uniform point cloud density (see Section 3.2). Additionally, this
results in computation time being reduced, while also leaving out data which may negatively effect the
parameter tuning process. Figure 4.2 provides a top view of the region of the beach which is selected
to perform the workflow on. The beach is a dynamic environment due to natural (tides, waves, etc.,)
and anthropogenic activity (bulldozers, beach beds, etc.,), and therefore each scan will be unique.
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To evaluate which parameter configuration performs best in identifying dynamic objects (See Section
4.6), two scenarios are explored. Scenario A (see Figure 4.2), includes the beach pavilion, while Sce-
nario B excludes a large portion of it (see Figure 4.3). This is done because data points are occasionally
registered inside the beach pavilion, possibly due to doors of windows opening, which results in the
LiDAR scanner detecting points inside it. Since it is challenging to determine whether these points rep-
resent dynamic objects, both scenarios are considered to assess their impact on the parameter tuning
process.

Figure 4.2: Scenario A: Top view of the research area at the beach of Noordwijk. Data from CoastScan scan on March 18th
2020, 00:00.

Figure 4.3: Scenario B: Top view of the research area at the beach of Noordwijk excluding a large part of the beach pavilion.
Data from CoastScan scan on March 18th 2020, 00:00.



4.3. Separating Ground and non-Ground Points: CSF 17

4.3. Separating Ground and non-Ground Points: CSF
This section discusses the theoretical principles underlying the Cloth Simulation Filter (CSF), followed
by a discussion as to how the Cloth Simulation Filter is implemented at the beach in Noordwijk. This
includes discussing which parameters were selected, and providing justification.

4.3.1. Concept of Cloth Simulation Filter
CSF is based on the principle that when a cloth is laid over a surface, it follows the shape of the surface.
A surface typically has non-ground objects, such as vegetation or buildings. Because of this, the cloth
rests on these objects, preventing it from reflecting the bare-earth topography, which is the goal of a
Digital Terrain Model (DTM). To produce a more accurate DTM, the cloth simulation is applied to an
inverted version of the terrain. This allows non-ground objects to be ignored for a large part, which
limits the impact on the DTM. The DTM which is created can serve as a boundary to separate ground
and non-ground points in LiDAR point cloud data (W. Zhang et al., 2016). Figure 4.4 shows the concept
of a Cloth Simulation Filter.

Figure 4.4: Visual representation of the concept of a Cloth Simulation Filter. Retrieved from W. Zhang et al. (2016).

The behavior of the cloth is modeled using a Mass-Spring Model, in which nodes of the grid of the
simulated cloth are interconnected by springs, allowing elastic behavior of a cloth to bemodeled (Provot,
1995; W. Zhang et al., 2016). Once the cloth is laid over the inverted LiDAR point cloud, its shape can
be simulated over time. The position of the nodes of the grid behave in accordance with Newton’s
second law, which states that the sum of the external (gravitational and collision) forces, and internal
(spring) forces that work on a grid node, is equal to the total amount of force of the grid node (W. Zhang
et al., 2016).

Several constraints are made when cloth simulation is implemented as a filter for LiDAR point clouds.
Movement is constrained to be in the vertical direction, such that this allows the detection of a grid
node falling below the terrain by comparing elevation values (W. Zhang et al., 2016). Furthermore, a
particle is set to be unmovable once it reaches the ground. Finally, the external and internal forces are
processed separately, which is done to simplify the process and achieve high performance (W. Zhang
et al., 2016). The main steps in CSF can be observed in Figure 4.5.

Figure 4.5: Overview of the CSF algorithm: (a) a cloth is positioned above the inverted LiDAR surface; (b) gravity is applied to
simulate particle movement; (c) particles that intersect the ground are relocated to the surface and fixed in place; (d) internal

cloth forces shift the remaining movable particles. Adapted from W. Zhang et al. (2016).
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Table 4.1 summarizes the main parameters involved in CSF and highlights their roles and impacts on
the filtering process. This includes whether post-processing occurs, and which threshold value hcp

is taken. Other parameters are grid resolution, time step, maximum number of iterations, Maximum
height variability, the rigidness of the cloth, and the distance threshold hcc.

Table 4.1: Main parameters of a Cloth Simulation Filter, with a brief description and their impact on the CSF algorithm. Based
on information retrieved from W. Zhang et al. (2016)

Parameter Description Impact on CSF Algorithm

Grid resolution Distance between grid nodes in
the simulated cloth

Affects the cloth’s sensitivity to terrain
details. Finer grids capture small variations

better but increase computation time.

Time step (dT) Time interval between simulation
steps

Controls the smoothness and stability of
the cloth movement. Fixed, as it has been
optimized for performance and accuracy.

Maximum number of
iterations

Maximum number of times dT is
applied

Higher values allow the cloth to settle more
accurately on complex terrain if more

iterations are needed.

Maximum height
variability

Minimum allowed vertical change
in the cloth during simulation

Provides a criterion to stop the simulation.
Fixed value.

Rigidness (RI) Controls cloth stiffness by altering
displacement (D) of fixed nodes

Impacts how the cloth conforms to terrain.
RI=3 (flat): D = ⅞ × VD; RI=2 (sloped): D =

¾ × VD; RI=1 (steep): D = VD.

Post-processing factor Indicates whether post-processing
is applied

Refines the results. Should be applied
when RI equals 1 or 2.

Slope fit threshold
(hcp)

Threshold used in
post-processing to determine

ground contact

Controls cloth adjustment during
refinement. Fixed at 0.3 meters for all

datasets.

Distance threshold
(hcc)

Max distance from a LiDAR point
to cloth to be classified as ground

Influences point classification. A smaller
threshold results in stricter ground point

detection.

Steep slopes might need post-processing to avoid large errors, as a simulated cloth will not fit the points
along a steep slope well (see Figure 4.6). Post processing may help smooth the margins of the steep
slopes by finding unmovable grid nodes surrounding movable nodes, and comparing the height values
with the corresponding point. If the height difference is within a certain threshold hcp, the movable node
point is moved to the ground and set as unmovable (W. Zhang et al., 2016).

Figure 4.6: The error of a simulated cloth in comparison to LiDAR measurements along steep slopes. Retrieved from
W. Zhang et al. (2016).
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4.3.2. Implementation of Cloth Simulation Filter
Certain parameters of CSF, as discussed in Section 4.3.1, are prefixed because they are optimized for
the algorithm (time step, slope fit threshold, and maximum height variability), and cannot be altered
within software (e.g., CloudCompare or the Python package CloudComPy). The other parameters are
configurable. W. Zhang et al. (2016) highlights that the algorithm’s performance is case-dependent and
can vary with different parameter settings. For the grid resolution, a resolution of 2.0 is appropriate for
the dataset. Typically, 500 iterations are selected as the maximum number of iterations, but generally
the maximum height variation threshold which is built into the program stops the algorithm before it
comes into effect. W. Zhang et al. (2016) suggests using a rigidness of 1 for steep terrain, rigidness of
2 for sloped terrain, and rigidness of 3 for flat terrain. The beach can best be described as a sloped
terrain, and therefore a rigidness of 2 is taken. As a result, the post-processing factor is enabled.
Additionally, the distance threshold is selected to be 0.5, as this largely preserves the integrity of non-
ground objects, while successfully separating ground and non-ground points. To perform CSF, the
python function CSF of the python package CloudComPy is used, with the configurable parameters
and their selected values as described in Table 4.2.

Table 4.2: Selected values for configurable CSF parameters.

Parameter Selected Value

Grid resolution 2.0
Maximum number of iterations 500
Rigidness (RI) 2
Post-processing factor Enabled
Distance threshold (hcc) 0.5

4.4. Detecting Dynamic Points: C2C
Cloud-to-Cloud comparison (C2C) uses the principle of comparing 3D Euclidean distances of individual
points in a point cloud dataset with its nearest neighbor in a sequential dataset (see Section 2.5). A
threshold value is applied to nearest neighbors in sequential point cloud data and their associated
distances to determine if a point should be classified as dynamic, making the threshold the decisive
factor in the classification (Maneewongvatana & Mount, 1999).

C2C is implemented after the separation of ground and non-ground points. This is done primarily to
detect dynamic objects while excluding geomorphological changes and occlusions occurring at the
surface. Additionally, this separation enhances the performance of C2C and improves the accuracy
of dynamic object identification. A binary approach is implemented to determine the nearest neighbor,
using the standard split method, meaning that the split takes place at the median (Maneewongvatana
& Mount, 1999). This method is selected because it is straightforward to implement using the kDTree
Python function from scipy.spatial (Virtanen et al., 2020).

C2C can be performed by comparing either non-ground points to other non-ground points of two con-
secutive epochs, or by comparing non-ground points to a cropped scan before CSF is performed. Both
approaches have their advantages, but comparing non-ground points to a cropped scan from another
epoch is chosen as the preferred method, as this reduces noise. The effectiveness of this method,
however, depends on the chosen threshold value: if set too high, dynamic objects located close to the
ground may be misclassified as non-dynamic because of their proximity to the surface of the consec-
utive epoch. The exact threshold value applied to the dataset is not predetermined, but is obtained
through parameter tuning (see Section 4.6).
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4.5. Clustering Dynamic Points: DBSCAN
This section discusses the theoretical principles underlying Density-Based Spatial Clustering of Ap-
plications with Noise (DBSCAN), followed by a description as to how DBSCAN is implemented after
C2C.

4.5.1. Concept of DBSCAN
DBSCAN makes use of the principle that dynamic objects correspond to dense regions within the point
cloud, which are separated from other dynamic objects by areas of lower point density. Whether a point
belongs to a dense region depends on whether it is a core point or lies within the neighborhood of one.
A core point is defined as a a point which has at least a specified number of neighboring points within
a given radius. All points within this radius are considered part of the same cluster. If a point does
not meet the core point criteria or is not within the neighborhood of any core point, it is classified as
noise (Ester et al., 1996). A flowchart describing the main steps performed in the DBSCAN algorithm
is shown in Figure 4.7.

There are two key parameters in the DBSCAN algorithm, one of which being the neighborhood radius
threshold value ϵ. This parameter defines the spatial extent within which points are considered neigh-
bors, and determines whether a point is density-reachable. In other words, whether the point lies within
the ϵ-neighborhood of a core point. ϵ also influences whether a point is classified as noise or assigned
to a cluster. The other key parameter is the minimum number of points, MinPts, which defines the
minimum number of neighboring points required for a point to be classified as a core point, which sets
the density threshold of the algorithm. This determines which points are considered part of a dense
region and which are initially classified as noise (Ester et al., 1996).

Figure 4.7: Flowchart DBSCAN Algorithm. Based on information retrieved from Ester et al. (1996).
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4.5.2. Implementation of DBSCAN
DBSCAN is applied after C2C and CSF. Because of this approach, DBSCAN processes fewer points,
making it more efficient. If the C2C comparison and CSF filtering are performed accurately, the amount
of noise in the detected dynamic points is expected to be limited. As a result, the points grouped
through clustering aremore likely to correspond to dynamic objects. To implement DBSCAN, the python
function DBSCAN is used from the package sklearn.cluster is used (Scikit-learn, n.d.-b). The function
requires limited inputs, with most important parameters being ϵ and MinPts. These points are not
predetermined, and are selected during parameter tuning (see Section 4.6). The function relies on
nearest neighbor calculations, which is done based on 3D euclidean distances.

4.6. Result Optimization and Evaluation
This section describes the parameter tuning process, what the boundary conditions are for the parame-
ter tuning process, and which scenarios are considered. Additionally, the performance evaluation and
the sensitivity analysis are discussed.

4.6.1. Parameter Tuning
Parameter tuning is performed to determine which configuration gives the best result. This is done by
selecting a reference dataset, and by visually identifying the number of dynamic objects that can be
found in the dataset. The data corresponding to the 18th of March 2020 is selected as the reference
dataset. This dataset of this day consists of 24 sequential LiDAR scans of the Beach of Noordwijk,
without any noteworthy anomalies. The number of dynamic objects is established through visual iden-
tification and further refined by evaluating the workflow results using an arbitrary configuration of C2C
and DBSCAN parameters, as the optimal configuration for these parameters has not yet been deter-
mined. Whether an object is set to be dynamic, is based on whether an object has moved with respect
to a consecutive epoch (see Section 3.3). The visually determined number of dynamic objects over the
course of the 18th of March is shown in Figure 4.8.

Figure 4.8: Visually determined number of dynamic objects over the course of the 18th of March 2020.

As mentioned in Section 4.2, two scenarios are considered; one scenario includes the beach pavilion
when performing the clustering process (Scenario A), the other excludes it (Scenario B). The parameter
tuning focuses on the C2C and DBSCAN clustering algorithm. CSF is excluded from the tuning process
for two reasons, namely, existing literature provides a clear directive for the configuration of parameters,
particularly regarding parameters such as the post-processing factor and rigidness. Additionally, CSF
is computationally intensive, and excluding it from the parameter tuning significantly reduces overall
processing time. The values used for CSF are highlighted in Table 4.2. The considered ranges and
step sizes for C2C and DBSCAN parameters are shown in Table 4.3. The ranges are selected to be
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relatively broad, such that a wide range of parameter configurations are considered. MinPts is kept
relatively small, since many of the dynamic objects consists of a small number of points. Step sizes are
selected to determine which configuration works best. Each parameter combination within the ranges
shown in Table 4.3 are considered during the parameter tuning process.

Table 4.3: Ranges and step sizes of parameters considered for C2C and DBSCAN.

Parameter Range Step size

Distance Threshold (C2C) [0.1, 1] 0.1
ε (DBSCAN) [0.1, 1] 0.1
MinPts (DBSCAN) [5, 15] 1

Outcomes for both scenarios are compared to the reference dataset shown in Figure 4.8. Optimized
parameters for C2C and DBSCAN are obtained by identifying the configuration that yields the lowest
cumulative deviation from the reference dataset, based on the number of detected clusters.

4.6.2. Performance Evaluation
The goal of the performance evaluation is to assess the effectiveness of the parameter tuning process,
and resulting parameter configuration. This is achieved by applying the best-fitting parameters of the
best performing scenario to a seven-day evaluation period from March 18 to March 24, 2020, compris-
ing a total of 168 scans. A scenario is considered to have the best performance if it achieves the lowest
cumulative deviation with respect to the seven-day reference period.

During the evaluation, a distinction is made between small and large dynamic objects (see Section
3.3), which allows examining whether the algorithm performs more effectively on small dynamic objects
(<100 points) or large ones (≥100 points). The number of dynamic objects is established through visual
identification, and supplemented by evaluating the results of the workflow using the tuned parameters
of the best performing scenario. The visually determined number of small and large dynamic objects
throughout the evaluation period are shown in Figure 4.9.

Figure 4.9: Visually determined number of small and large dynamic objects over the course of March 18–24, 2020.

The quality of the detected dynamic objects is evaluated by comparing the true number of points per
object to the number identified by the algorithm, using a reference set shown in Figures 3.3 and 3.4.
The error is quantified by determining the difference between the true and detected number of points
per object. Additionally, an assessment is made whether each dynamic object of the reference set has
correctly been clustered as a distinct entity.
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4.6.3. Sensitivity Analysis
The sensitivity of the results is assessed based on the parameter configuration of the best performing
scenario. This is done by performing the workflow on a seven-day period from March 18 to March
24, 2020, and varying the parameters of C2C, and DBSCAN. CSF is excluded based on the reasons
provided in Section 4.6. The variation is obtained by performing a Monte Carlo Simulation. A Monte
Carlo Simulation involves random sampling within parameter ranges to assess the sensitivity of the
results to parameter fluctuations (Saltelli et al., 2008).

Parameter sampling for the Monte Carlo Simulation is performed using a normal distribution, which
requires a mean and standard deviation. The mean values correspond to the optimized parameters
from the tuning process for C2C and DBSCAN. The standard deviation for each parameter is set to 10%
of the corresponding mean value, which keeps the overall variation of the parameters limited. This is so,
because following the parameter tuning process, there should be certainty regarding the parameters.
A total of 100 simulation runs is performed to assess the sensitivity of the detected number of small and
large dynamic objects to variations around the optimized C2C and DBSCAN parameters. The Monte
Carlo simulation complements the parameter tuning by quantifying the robustness of the workflow to
small variations in the tuned parameters.



5
Results

This chapter presents the results of the workflow described in Chapter 4. First, the results of the
parameter tuning process are presented in Section 5.1, including the results of the two considered
scenarios and the performance of the optimal configuration when applied to a seven-day evaluation
period. The detection performance is presented for small and large dynamic objects, considering both
the error in the number of detected dynamic objects and the detection quality. This is followed by
the results of the sensitivity analysis in Section 5.2. Finally, in Section 5.3, the results of applying the
workflow to a full month of LiDAR point cloud data is presented.

5.1. Parameter Tuning and Performance Evaluation
Following the parameter tuning process (see Section 4.6), two parameter configurations are obtained
based on the considered scenarios. The results of the parameter tuning process corresponding to the
scenarios are presented in Table 5.1.

Table 5.1: Results of the parameter tuning process for the considered scenarios.

Scenario Distance Threshold ϵ MinPts Error (%)

Scenario A 0.8 0.7 11 17.1
Scenario B 0.6 0.7 9 12.9

Following the criteria set for best performing configuration (see Section 4.6), Scenario B performs best,
which excludes the beach pavilion. This is so, because it has the lowest cumulative deviation with
respect to the reference dataset. Therefore, the corresponding parameters of Scenario B are used to
perform the performance evaluation (see Section 4.6.2). Table 5.2 presents the results of the perfor-
mance evaluation.

Table 5.2: True number of small and large dynamic objects, along with absolute and relative detection errors, during the
seven-day evaluation period (March 18–24, 2020)

Dynamic Object Type True Number Absolute Error Error (%)

Small Dynamic Objects 392 90 23.0
Large Dynamic Objects 101 7 6.9

Figure 5.1 presents a graphical overview of the detection performance for small and large dynamic
objects, including their respective errors relative to the reference dataset over the evaluation period.

24
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Figure 5.1: Detection performance and absolute error for small and large dynamic objects over the period March 18–24, 2020.

The correctly and incorrectly classified points for small dynamic objects, in comparison to the reference
set for small dynamic objects (see Figure 3.3), are shown in Figure 5.2. Correctly classified points are
highlighted in green, while misclassified points are shown in red.

Figure 5.2: Classification of points belonging to small dynamic objects in the reference set. Green indicates correctly classified
points, and red indicates missed points. From left to right and top to bottom: two people walking closely together, four people

walking spread out, two humans with a dog, and two potential cyclists.
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Table 5.3 presents, for each group of small dynamic objects in the reference set, the number of correctly
identified points, the number of missed points, the corresponding error percentage, and the number of
dynamic objects which are correctly classified (i.e., each visually distinct object was matched to one
detected instance). On average, the reference set for large dynamic objects has a 33.7% error in
the number of incorrectly detected points. One of the four small dynamic object groups was correctly
classified. In the case of the two people walking in close proximity, they were incorrectly grouped
into a single cluster, resulting in a misclassification. For the four individuals walking equidistantly, only
three dynamic objects were identified instead of four, as two people were mistakenly grouped together.
Regarding the humans walking with a dog, the dog was not detected as a dynamic object, as it falls
below the C2C distance threshold. The two potential cyclists were correctly classified.

Table 5.3: Detection results for small dynamic objects including total points, correctly detected points, missed points, error
percentages, and classification success rate.

Object Total Pts. Correct Pts. Missed Pts. Error (%) Classified Correctly

Two People Close 72 57 15 20.83 0/2
Four People Spread Out 101 73 28 27.72 2/4
Dog + Two people 49 23 26 53.06 2/3
Two Cyclists 234 156 78 33.33 2/2

The correctly and incorrectly classified points for large dynamic objects, in comparison to the reference
set for large dynamic objects (see Figure 3.4), are shown in Figure 5.3. Correctly classified points are
highlighted in green, while misclassified points are shown in red.

Figure 5.3: Classification of points belonging to large dynamic objects in the reference set. Green indicates correctly classified
points, and red indicates missed points. From left to right and top to bottom: bulldozer, excavator, tractor with trailer with cargo,

ladder, large barrel and a large crate.
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Table 5.4 presents, for each large dynamic object in the reference set, the number of correctly identified
points, the number of missed points, the corresponding error percentage, and whether the dynamic
object is correctly classified. On average, the reference set for large dynamic objects has a 13.5%
error in the number of incorrectly detected points. All large dynamic objects from the reference set
were correctly classified.

Table 5.4: Detection results for large dynamic objects including total points, correctly detected points, missed points, error
percentages, and classification success rate.

Object Total Pts. Correct Pts. Missed Pts. Error (%) Classified Correctly

Bulldozer 1133 925 208 18.36 1/1
Excavator 415 359 56 13.49 1/1
Tractor with Trailer 2254 1904 350 15.53 1/1
Ladder 187 155 32 17.11 1/1
Barrel 594 544 50 8.42 1/1
Crate 722 666 56 7.76 1/1

5.2. Sensitivity Analysis
By performing the Monte Carlo Simulation (see Section 4.6.3), the standard deviation of detected small
and large dynamic objects was determined over the period March 18 to 24, 2020. To perform the
simulation, the parameters of Scenario B were used (see Table 5.1). Table 5.5 shows the overall
standard deviations of the number of detected dynamic objects for both small and large dynamic objects,
along with the standard deviations computed for the hours during which at least one dynamic object
was detected.

Table 5.5: Standard deviation (number of detected dynamic objects) of small and large dynamic objects in Monte Carlo
simulation.

Metric Small Objects Large Objects

Overall Std. Dev. [-] 0.34 0.07
Std. Dev. when detected [-] 0.75 0.26

Figures 5.4 and 5.5 illustrate the variability in the number of detected dynamic objects over the period
March 18 to 24, 2020, by showing the median (P50) and P10–P90 range of detected small and large
dynamic objects, respectively.

Figure 5.4: Results Monte Carlo Simulation for small dynamic objects over the period March 18 to 24, 2020,
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Figure 5.5: Results Monte Carlo Simulation for large dynamic objects over the period March 18 to 24, 2020.

5.3. Analysis of March 2020
The workflow presented in Section 4.1 is applied on a full month of data, namely March 2020, with the
parameters corresponding to Scenario B presented in Table 5.1. The number of detected small and
large dynamic object per day have been recorded over this period, and are presented in Figure 5.6.

Figure 5.6: Total number of small and large dynamic objects detected over March 2020. Days that fall on a Saturday or
Sunday are highlighted in red.

Figures 5.7 and 5.8 present the average number of detected small and large dynamic objects per day of
the week ±1 standard deviation. During March 2020, the number of detected small dynamic objects on
weekdays (Monday to Friday) has an average standard deviation of 17.7 detected objects, compared
to 63.3 detected objects on weekends (Saturday and Sunday). For large dynamic objects, the average
standard deviation is 6.8 detected objects on weekdays and 8.4 detected objects on weekends. Table
5.6 presents the standard deviation per day of the week for detected small and large dynamic objects.
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Figure 5.7: Average number of detected small dynamic objects per day of the week, ±1 standard deviation (number of
detected dynamic objects).

Figure 5.8: Average number of detected large dynamic objects per day of the week, ±1 standard deviation (number of
detected dynamic objects).

Table 5.6: Standard deviation (number of detected dynamic objects) of detected small and large dynamic objects by weekday
over March 2020.

Day of Week Small Objects Std. Dev. [-] Large Objects Std. Dev. [-]

Monday 26.1 13.3
Tuesday 13.4 3.2
Wednesday 15.6 9.6
Thursday 12.1 1.8
Friday 21.2 5.8
Saturday 68.6 10.1
Sunday 57.9 6.8



6
Discussion

This chapter discusses the obtained results and the performance of the workflow. In Section 6.1, the
effects of parameters on the accuracy of dynamic object detection are assessed, and the robustness
of the selected configuration is discussed. Following this, in Section 6.2, a reflection is provided on
specific parameter choices. The limitations and potential improvements in these areas are discussed,
alongside their impact on object detection outcomes. Then, in Section 6.3, the impact of non-ground
point filtering on the results is discussed. This is followed up by Section 6.4, in which a discussion
is held concerning the results obtained of March 2020. Finally, in Section 6.5, the scalability of this
research and its applicability in different settings is addressed.

6.1. Evaluation of Parameter Tuning and Performance Analysis
The parameter tuning process showed that excluding points within the pavilion results in the lowest
overall classification error. Specifically, the best-performing configuration resulted in a misclassification
error of 12.9% for the number of dynamic objects, using a C2C distance threshold of 0.6 m, a DBSCAN
ϵ of 0.7 m, and aMinPts value of 9. This also highlights that excluding buildings or other regions prone
to noise is beneficial during parameter tuning. Not only does it reduce the overall error, but it also leads
to more sensitive parameter settings, which improves the accuracy of dynamic object detection.

The detection errors for large and small dynamic objects should not be interpreted as absolute inaccu-
racies, but rather as indicative measures of overall detection performance. For example, the computed
error for large dynamic objects is 6.9%. However, this does not imply that large dynamic objects were
entirely missed. Rather, misclassifications occurred instead of missing these objects. Two main types
of errors are observed in the detection of large dynamic objects. First, portions of large dynamic objects
partially lie below the C2C distance threshold, which may cause them to lose points during the iden-
tification process and drop below 100 points, which leads to their misclassification as small dynamic
objects. Second, small dynamic objects located in close proximity can be clustered together, resulting
in their incorrect classification as a single large dynamic object. Small dynamic objects however are
more likely to be missed. This occurs when they do not have enough points to form a cluster or when
they are located too close to the ground, such as the dog shown in Figure 5.2. Moreover, small dy-
namic objects are also prone to being clustered together if the distance between them falls within the
C2C distance threshold, which reduces the number of individually detected dynamic objects, and thus
increases the error rate.

In the parameter tuning process, the chosen evaluation criterion was the minimization of the total error
in the number of detected dynamic clusters, which is simple and practical to implement, but may not
be most effective. Minimizing the error of number of dynamic clusters does not mean directly that the
classification error of dynamic objects is minimized. This is due to the misclassification and grouping
effects discussed above, as well as the fact that some detected dynamic objects may not correspond
to actual moving objects but result from data inaccuracies and changes in the visibility of static objects.
These factors negatively impact the tuning process by introducing false positives. An example of a
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visibility-related misclassification is shown in Figure 6.1. In this specific case, the misclassification
could be the result of a change in the reflectivity of the glass panes installed on the terrace of a beach
pavilion. Typically, the glass panes allow a laser pulse to pass through, however for a few hours in
the early morning of March 21st 2020 this changed, making the points to appear in the scan data,
causing the detection algorithm to mistakenly register parts of these glass panes as newly appeared
small dynamic objects. It should be noted that such issues are relatively rare and are exceptions rather
than common occurrences. However, they are important to be aware of when analyzing the results of
the parameter tuning process.

Figure 6.1: Source of a visibility-related misclassification of dynamic objects on the terrace of the beach pavilion. The red box
shows the region of error. Respective scans made March 21st 2020 approximately at 00:00 (left) and 01:00 (right). Colors

represent point reflectivity, with blue indicating relatively low reflectivity.

Optimization based on the number of dynamic clusters is done due to it being convenient, as it is rela-
tively straightforward to count dynamic objects in the dataset and verify these numbers. An alternative,
more robust approach would be to manually segment the dynamic objects in the dataset, and validate
whether the points in the identified dynamic clusters overlap with these segmented clusters for a given
parameter configuration. This would improve the reliability of quality assessment but would also enable
optimization targeted at specific object types by minimizing their respective errors.

Additionally, optimizing parameters based on a single day of data resulted in a slight increase in average
overall error, namely from 12.9% to 17.4%, when evaluating its performance across a full week. This
suggests that if the selected day is representative of the broader dataset, the tuned parameters can
perform reasonably well over a longer period. However, it remains uncertain whether this configuration
would maintain its effectiveness during different times of the year. During summer months for example,
increased beach activity may lead to different circumstances, which may need a different parameter
configuration for optimal performance.

6.2. Reflection on the Parameter Configuration
The sensitivity analysis performed over a one-week period indicates that the selected parameter config-
uration is relatively robust. Small variations in parameter values with a normal distribution, namely with
a standard deviation of 10%, for both C2C and DBSCAN parameters resulted in limited changes in the
final results. Especially the robustness of results for large dynamic objects shows very stable results,
which has an overall standard deviation of 0.07. For small dynamic objects this is 0.34. It is important
to note that the standard deviation tends to increase when dynamic objects are detected. This shows
that the algorithm is more confident under static conditions. Once dynamic objects are identified how-
ever, the number of detected objects becomes more sensitive to the parameter configuration, which
indicates increased uncertainty in estimating the number of dynamic objects accurately.
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6.2.1. CSF Parameters and Building
For the grid resolution of the Cloth Simulation Filter, literature suggested to use 0.5 to get the most
accurate representation of the terrain (W. Zhang et al., 2016). However, as shown in Figure 6.2, the
performance of the gridsize of 0.5 is not suitable for this dataset, as non-ground points are wrongly
classified as ground points, while a grid resolution of 1 and 2 show similar non ground points being
selected. Since the grid resolution is closely related to the computational performance of the algorithm,
a grid resolution of 2 was eventually selected to increase performance.

(a) Ground and non-ground points: No Cloth Simulation Filter. (b) Non-ground points: CSF with grid resolution 0.5.

(c) Non-ground points: CSF with grid resolution 1.0. (d) Non-ground points: CSF with grid resolution 2.0.

Figure 6.2: Results of Cloth Simulation Filter with varying grid resolutions. Data from CoastScan scan on March 18th 2020,
13:00.

Overall, it would be valuable to assess the impact of varying the parameters of the CSF on the parameter
tuning and sensitivity analysis. This was not done due to the high computational cost and because the
literature provides recommendations for parameter configurations that typically yield accurate results.
However, as shown in Figure 6.2, the suggested grid size did not perform best, particularly in the area
surrounding the pavilion. This may be due to the roof covering a large surface and being largely flat,
causing the algorithm to interpret it as a new stable ground surface, resulting in misclassification. In
this case, the pavilion’s large, flat roof likely presented a stable surface over which the virtual cloth
settled. Because of the fine cloth resolution, the filter may have followed the roof surface too closely,
failing to detect it as non-ground. Literature has shown similar effects, where smooth transitions or
stable elevated surfaces can mislead the CSF algorithm into classifying non-ground points as ground
(W. Zhang et al., 2016; Cai et al., 2023). This shows that the ideal parameter configuration is more
ambiguous, and therefore including CSF parameters in the tuning process could add value, especially
if following variation in the CSF parameter configuration cause points to be included or excluded from
the dataset on an epoch-to-epoch basis.

6.2.2. C2C Distance Parameter
As explained in the methodology, non-ground points are compared to ground points from the previous
epoch. As a result, all points within 0.6 meters of the ground are classified as ground points due to C2C
distance threshold. This effect is visible in Figures 5.2 and 5.3, where many points are misclassified as
ground. While this threshold reduces false positives by avoiding the misclassification of static objects
as dynamic, it also causes small dynamic objects (like the dog in Figure 5.2) to go undetected. An
alternative approach, discussed in Section 4.4, involves comparing non-ground points across epochs,
which would facilitate the detection of smaller dynamic objects located, but also increases the risk of
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misclassifying near-ground points, particularly those that are not consistently visible across all scans,
as dynamic objects. An example of an object sensitive to this issue is shown in Figure 6.3. Both the
poles and ropes of the rope fence are classified as non-ground points, which appear and disappear
(partially) in the scan data depending on scan quality, which may lead to incorrectly classifying them
as dynamic objects if non-ground points are compared to non-ground points of a consecutive epoch.
This could be mitigated by adding an a classification step that identifies and filters out static structures
that are occasionally visible. This would allow dynamic objects to be identified more reliably between
consecutive epochs.

Figure 6.3: Example of a rope fence with poles and ropes which is sensitive to be wrongly classified as a dynamic object when
comparing non-ground points of consecutive epochs. Colors represent point reflectivity.

On average, large dynamic objects are clustered more accurately than small dynamic objects when
evaluated on a per-point basis, The average error for large objects is 13.5%, compared to 33.7% for
small objects of the reference set. This is so, because small objects in the reference set tend to have
a greater proportion of their points within the 0.6 m ground threshold. Of the large objects, barrels and
crates performed well because they were positioned near occlusions, reducing the number of points
classified as static points. The clustering process can be improved upon, by growing identified clusters
back down toward the ground by adding points within the C2C threshold that were initially excluded. To
exemplify this, the classification error of the bulldozer of the reference set was reduced from 18.36%
to 2.12%, as shown in Figure 5.3. This approach can enhance the definition of dynamic objects, but
it also introduces additional computational steps and increases the risk of false positives, particularly
when dynamic objects are close to one another, and should therefore be implemented with caution.

(a) Bulldozer as performed in current methodology
(b) Bulldozer which has been grown based on C2C distance

threshold.

Figure 6.4: Comparison of results with and without growing of clusters to C2C distance.

6.2.3. DBSCAN Parameters
The performance of DBSCAN depends on point cloud density, and all though the research area has a
relatively uniform point cloud density (see Section 3.2), it still has density variations. Its fixed ϵ value
makes it less effective in low density regions, where small dynamic objects might not be clustered cor-
rectly, especially in areas farther from the scanner where point density is lower. A solution to this issue
would be to use an adaption on the DBSCAN algorithm, namely to use Hierarchical DBSCAN (HDB-
SCAN), which doesn’t rely on a fixed ϵ and can adapt to local density variations by using a hierarchy of
clusters (Campello et al., 2015). This could be especially helpful in making the algorithm more robust
when analyzing larger areas with a more varying point cloud density.

Separating nearby dynamic objects is also a challenge of this DBSCAN parameter configuration, partic-
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ularly small ones. When objects are less than 0.7 meters apart, they are clustered together. Although
lowering ϵ or making it spatially variant might help in some cases, it doesn’t solve the issue of ambigu-
ous object boundaries. For example, when two people walk closely side-by-side, it’s difficult to define
where one ends and the other begins. If such separation is considered essential, deep embedded
clustering could offer a solution, as it is capable of learning more complex object boundaries. However,
this was not feasible in this research due to the absence of labeled training data.

6.3. Impact of non-ground point filtering on the results
A filter to separate ground from non-ground points was performed to reduce overall noise from ground
points, as dynamic points located on the surface are not considered dynamic objects in this research.
To test the added value of the CSF, the same detection process is executed both with and without CSF,
using identical parameters. Comparing the resulting errors in the number of detected small and large
clusters revealed significant differences: when the Cloth Simulation Filter (CSF) is applied, the error is
23.0% for small clusters and 6.9% for large clusters. Without CSF, the errors are 60.5% and 137.3%,
respectively. Thus, applying CSF contributed to a reduction in error rate of approximately 62% for
small clusters and 95% for large clusters. This suggests that, the algorithm performs significantly better
with CSF than without it. This does not come as a surprise, but does provide insights. The clusters
exclusively identified by the algorithm without CSF consist of ground points, and can be divided into two
categories: ground points that are not dynamic, but are misclassified as dynamic due to occlusions, and
ground points that are truly dynamic. Truly dynamic ground points are those affected by factors such as
tides, wind, or bulldozers. When analyzing the difference in the observed detection error, these effects
can be observed. Within the data, a periodic pattern emerges that appears to correspond closely with
the high tide cycles, shown in Figure 6.5, which presents the hourly mean water level with respect to
Nederlands Amsterdams Pijl (NAP) at Scheveningen , located approximately 15 km south along the
coast (Distance.to, 2025).

Figure 6.5: Hourly mean water level at Scheveningen from March 18th to March 24th. Data retrieved from Rijkswaterstaat
(2025).

Figure 6.6 shows the difference in detected dynamic clusters over time from March 18th to March 24th,
with the error of the algorithm applying CSF subtracted from the error of the algorithm without CSF,
alongside the moments of highest tide. As mentioned, high tide is closely followed by a peak in the
largest error. This delay is expected because dynamic points are only registered by the algorithm when
they appear, not when they disappear. Additionally, only high tide is recognized since the selected
research area does not include the baseline of the coastline at low tide. What this demonstrates,
however, is that the difference between the two methods confirms that the algorithm implementing CSF
effectively filters out surface dynamics when separating ground and non-ground points. Additionally,
analyzing this difference provides an approach to monitor processes occurring on the beach.
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Figure 6.6: Difference in detected number of dynamic objects (No CSF - CSF based algorithm) from March 18th to 24th 2020.
Vertical red lines indicate peak of high tide.

6.4. March 2020 Beach Activity and Weather
The results of March 2020 provide insights into patterns of beach usage throughout the week. In partic-
ular, a weekly trend can be observed in the number of small dynamic objects (see Figure 5.7). These
small dynamic objects can be primarily associated with people visiting the beach for recreational pur-
poses. In contrast, the number of large dynamic objects shows a less distinct trend over the course
of the week (see Figure 5.8). This can be attributed to the broader range of activities they represent.
Large dynamic objects may includemaintenance equipment, such as bulldozers, as well as recreational
users, such as cyclists. As such, the activity patterns for large dynamic objects are more balanced. For
example, recreational biking may increase on weekends, while beach maintenance requiring heavy
machinery is more common during weekdays. As observed, large dynamic objects have a more uni-
form spread throughout the week compared to small dynamic objects. To be able to draw definitive
conclusions about beach usage, it would be useful to classify the large dynamic objects in greater de-
tail, distinguishing between, for example, maintenance vehicles such as bulldozers and recreational
cyclists.

Examining small and large dynamic objects more closely shows that the standard deviation for small
dynamic objects during weekdays (Monday to Friday) is relatively low at 17.7 detected objects, indi-
cating relatively consistent usage of the beach. Weekends show a higher standard deviation of 63.3
detected objects however, suggesting greater variability in the number of people present. For large dy-
namic objects, the variability is generally lower, with standard deviations of 6.8 detected objects during
weekdays and 8.4 detected objects on weekends, indicating more stable levels of large object activity
throughout the week. This could imply that weekday attendance of the beach is more consistent, while
weekends are more susceptible to other external factors. To better understand these fluctuations, the
number of detected small and large dynamic objects are plotted alongside temperature and precipi-
tation data of Voorschoten, which is the closest KNMI weather station to the beach of Noordwijk, to
explore potential correlations (see Figure 6.7) (KNMI, 2025). However, no clear relationship emerges.
While precipitation data from early March suggest a decline in beach attendance on rainy days, the
limited data range prevents any statistically significant conclusions. Additionally, decline in beach ac-
tivity is observed around mid-March, despite relatively stable temperature conditions and absence of
precipitation during this period. This decline may be attributed to the implementation of COVID-19 re-
strictions on 15th of March 2020, which may have caused a reduction in the number of people present
on the beach during the latter half of the month (Ministerie van Algemene Zaken, 2020). As a result,
March 2020 is not a reliable basis for drawing such conclusions, and overall, a longer evaluation period
is needed to identify meaningful relationships between weather conditions and beach activity.
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Figure 6.7: Daily (average and maximum) temperature, precipitation, and number of detected small and large dynamic objects
over the course of March 2020. Days that fall on a Saturday or Sunday are highlighted in red. Temperature and precipitation

data retrieved from KNMI (2025).

6.5. Workflow Scalability and Applicability
The workflow presented in this research was applied to a dataset spanning one month, comprising 733
scans, which excludes 11 scans that were deemed unfit for analysis due to significantly lower point
counts. These scans were manually excluded, but for future upscaling, an automated quality control
criterion could be introduced, namely, by setting a minimum point count threshold to automatically filter
out low-quality scans.

Each cropped scan contained approximately 300,000 points. The overall processing time was around
20 minutes for 733 scans, indicating potential for scaling to a larger number of scans and its applicability
to the entire beach area. Scaling the workflow to cover the entire beach would result in increased
variability in point cloud density, which may effect the parameter configuration. A potential solution is
the use of spatially variant parameterization. However, this would require further investigation into the
optimal parameter settings for regions with differing point densities. Additionally, it would be useful
to limit excessively high point cloud densities, as these can increase the computational time required
to perform the workflow. This algorithm has shown stable performance at densities of approximately
20–30 points per square meter. Thus, down sampling to this point cloud density could be considered to
increase performance. Then, post clustering, additional points can be reattached to dynamic objects.

To improve the robustness of dynamic object detection, it may be advantageous to use a nighttime
scan from the same day as the reference frame. A nighttime reference does typically not contain
dynamic objects, reducing the risk of false negatives caused by objects appearing in the same location,
especially on busy days, due to the C2C distance threshold.

This workflow is likely to perform well in settings similar to the beach environment discussed in this
research, namely open outdoor spaces with moderate to high point cloud densities and clearly distin-
guishable dynamic objects. Such environments may include parks, open fields, riverbanks, or tundras,
where dynamic objects appear intermittently. However, applying the workflow to more complex envi-
ronments, such as indoor spaces, environments with complex terrain, and areas with significant line-
of-sight restrictions, may result in challenges. It would be valuable to explore how the methodology
performs under a broader range of conditions, as this could help identify characteristics under which
the approach remains effective for detecting dynamic objects, and where alternative strategies may be
needed.



7
Conclusions and Recommendations

This chapter presents the conclusions to the main research question and the supporting research ques-
tions. Additionally, it provides recommendations on how the workflow can be improved through future
research.

7.1. Conclusions
The purposes of this research is to answer the research question: How can dynamic objects in Li-
DAR point cloud data be automatically identified on sandy beaches? This is addressed by examining
how near-continuous terrestrial LiDAR point cloud data can be acquired, identifying the types of dy-
namic objects present in such data, exploring possible approaches for distinguishing dynamic objects
in sequential scans, investigating methods for determining suitable parameter settings, evaluating the
performance of dynamic object detection, and assessing the sensitivity of detection performance to
variations in those parameters. First, the supporting research questions (RQ1-RQ6) will be addressed,
following which, the main research question (MRQ) will be answered.

RQ1: How can near-continuous terrestrial LiDAR point cloud data be acquired?
Near-continuous terrestrial LiDAR point cloud data can be acquired using a permanent laser scan-
ner. Through time-of-flight measurements and the application of environmental corrections, detailed
3D point clouds of coastal environments can be generated. Certain challenges such as line-of-sight
limitations, varying point densities, and tilt variations are issues that have to be addressed during data
processing.

RQ2: What kind of dynamic objects are expected to be identified in LiDAR point cloud data of sandy
beaches?
A permanent laser scanner, the Riegl VZ-2000, conducted hourly scans at Noordwijk from July 2019 to
June 2022. The resulting scans contain a range of dynamic objects, from large (e.g., tractors, excava-
tors, crates) to small (e.g., people, dogs). Small and large dynamic objects are differentiated based on
the number of points comprising each object, with larger objects represented by a greater number of
points in the point cloud. These objects are present within the dataset for a certain time window. The
resolution of the scanner and proximity of the objects impact the number of points representing each
object, which affects their detectability.

RQ3: What are possible approaches for distinguishing dynamic objects in sequential LiDAR scans?
Distinguishing dynamic objects requires separating them from noise and natural terrain changes. Vari-
ous approaches exist, from standard change detectionmethods that compare point-to-point differences,
to machine and deep learning approaches that make use of pattern recognition. In this research, Cloud-
to-Cloud comparison is selected for its efficiency and simplicity. Ground points are first filtered out using
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the Cloth Simulation Filter, and a calibrated distance threshold is then applied to identify spatial devi-
ations that reflect dynamic behavior. Although learning-based methods have a high accuracy and are
able to learn complex patterns, the need for extensive labeled data make this less convenient. To im-
prove detection and allow assessment of detected dynamic objects, DBSCAN is applied to group these
dynamic points into clusters representing individual moving objects.

RQ4: How can suitable parameters be determined for identifying dynamic objects in LiDAR point cloud
data?
Parameter tuning is suitable for select parameters using a reference day which is deemed represen-
tative for the data, while visual identification of dynamic objects is used for the optimization process.
By analyzing a range of values and combinations for C2C and DBSCAN parameters across different
scenarios, namely including or excluding permanent beach structures, an optimal configuration can be
obtained by minimizing the cumulative error in the number of clusters that have been detected by the
algorithm with respect to the visually determined number of clusters of the reference day. For the Cloth
Simulation Filter, literature provides guidelines on which parameter configuration to select.

RQ5: How can the performance of the detection of dynamic objects be evaluated?
Performance can be evaluated by applying the optimized parameters to a week-long dataset from
Noordwijk and comparing the detected clusters with visually identified dynamic clusters. In terms of
precision for the week-long dataset, errors in the number of detected large dynamic objects are relatively
low, with 6.9% error, whereas the error for small dynamic objects is higher, with 23.0% error. This
difference in error is largely attributed to small dynamic objects being more frequently clustered together
and being located closer to the ground. In an evaluation targeted at a reference set for small and large
dynamic objects, large objects are detected with an error of 13.5%, compared to an error of 33.7% for
small dynamic objects on a point to point basis. This difference is mainly attributed to their proximity
to the ground and lower point counts. Additionally, implementing the Cloth Simulation Filter plays an
important role in reducing false positives by filtering out surface changes, resulting in a reduction in
error rate of approximately 95% for large dynamic objects and 62% for small dynamic objects.

RQ6: How sensitive is the performance of dynamic object detection to variations in parameter settings?
The sensitivity of the detection performance with respect to parameter settings is evaluated using a
Monte Carlo simulation. In this simulation, the tuned parameters are used as the mean values, and
fluctuations are introduced using a normal distribution defined by 10% of the mean standard deviation.
When applied to a week-long dataset from Noordwijk, this analysis demonstrates that the detection
process is relatively robust, with minimal variation in the number of dynamic objects detected. Large
dynamic objects show an overall standard deviation of 0.07 detected objects, whereas small dynamic
objects are slightly more variable, with a standard deviation of 0.34 detected objects.

MRQ:How can dynamic objects in LiDAR point cloud data be automatically identified on sandy beaches?
As an answer to the main research question, this research shows that by performing preprocessing, ap-
plying a Cloth Simulation Filter, performing Cloud-to-Cloud comparison, and clustering objects through
DBSCAN, dynamic objects can successfully be automatically identified and separated from the rest of
the dataset. Parameter tuning on a representative reference day, validated over a week-long dataset
and supported by Monte Carlo sensitivity analysis, shows that the configuration obtained through the
tuning process reliably detects large dynamic objects. Smaller dynamic objects are also identified, but
with a slightly larger error, due to their proximity to the ground and each other. Additionally, running the
workflow on a month-long dataset shows its potential for large-scale implementation. This approach
provides a methodology for automatically identifying dynamic objects on sandy beaches in point cloud
LiDAR datasets, and can be a useful tool for monitoring activity in coastal and open-space environ-
ments.
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7.2. Recommendations
The workflow presented in this research has proven suitable for detecting dynamic objects on a sandy
beach. However, several limitations and areas for improvement have been identified, leading to rec-
ommendations for refining the workflow and highlighting issues that should be addressed in future
research.

Adapt Workflow for Small Object Detection
To improve the detection of small dynamic objects, it is recommended to reassess the current implemen-
tation of DBSCAN and consider adopting HDBSCAN, which may offer increased sensitivity to smaller
clusters. Additionally, focusing on more uniform regions, such as the lower shore face, could lead to
more sensitive parameters, which can enhance the detection of small dynamic objects.

Exclude Regions Prone to Noise During Parameter Tuning
When performing the parameter tuning process, it is recommended to use regions prone to noise such
as building interiors. This is so, because they are not consistently visible and can lead to poor data
quality which may result in classification errors and negatively impact the tuning process.

Improve Dynamic Object Representation
The developed workflow excludes some points associated with dynamic objects. Therefore, it is rec-
ommended to grow dynamic objects by adding surrounding points that were excluded, but lie within the
Cloud-to-Cloud distance threshold of the object. This increases the completeness of detected dynamic
objects. To ensure that only relevant points are included, it is recommended that future research eval-
uates different growing methods that are able to add points associated with the dynamic object while
minimizing the addition of unrelated points, such that the most effective approach can be determined.

Adapt Reference Scan Selection
Dynamic objects in the presented workflow are detected by comparing sequential scans, but the choice
of the reference scan impacts detection accuracy. Using the current workflow, dynamic objects may be
partially missed during busy periods. To reduce false negatives, it is recommended to use nighttime
scans as reference frames for Cloud-to-Cloud comparisons, as nighttime scans typically contain less
dynamic activity, and thus improves detection accuracy.

Improve Scalability of Workflow
To ensure robust performance when scaling to analysis of the full three-year dataset, it is recommended
to implement filtering of scan data based on the total point count of a point cloud such that low-quality
data is excluded. Additionally, it is recommended to investigate the impact of point cloud density on the
performance of the workflow and to analyze whether density-based parameter tuning may be useful,
such that a larger region with a more variable point cloud density can be examined.

Test Workflow in New Environments
The performance of the presented workflow in settings other than sandy beaches is somewhat uncer-
tain. To verify the robustness of the workflow and assess its broader applicability, it is recommended
to test the workflow in other open-space environments as well as in more complex settings, since this
may help identify limitations and necessary modifications.
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A
Description of Point Cloud Data

Attributes

Table A.1 summarizes the attributes of the point cloud data collected by the terrestrial laser scanner
at the beach of Noordwijk. It includes spatial coordinates, offset time, echo type, deviation, amplitude
and reflectance.

Table A.1: Data attributes of the point cloud dataset. Adapted from Vos et al. (2023).

Attribute Description

X, Y, Z 3D coordinates of laser measurements in local coordinate system (me-
ters), with the origin at the location of the laser scanner. Elevations are
given above mean sea level.

Offset time [s] Relative time of each returned signal within the scan.
Echo type {0,1,2,3} Position of returned signal within emitted laser pulse: 0 = single, 1 =

first, 2 = interior, 3 = last. Multiple echoes occur when laser hits multiple
surfaces (e.g., vegetation).

Deviation Dimensionless estimate of the returned pulse shape after reflection, de-
pendent on surface roughness and structure.

Amplitude [dB] Amplitude of returned signal at detection threshold, indicating laser return
intensity.

Reflectance [dB] Range-corrected amplitude value provided by TLS manufacturer, repre-
senting surface reflectance.
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B
Data Specifics of Reference Set

Tables B.1 and B.2 present the dimensions and associated scan identifiers of the dynamic objects from
the reference set in the point cloud dataset. Each object’s extent in the X, Y, and Z directions (with Z
representing height) is listed, along with the specific ID of the CoastScan scan in which it appears.

Table B.1: Size and originating scan ID of small dynamic objects of the reference set.

Object X [m] Y [m] Z [m] Scan ID

Two People Close 0.76 0.66 1.87 200323_140118
Four People spread out 4.66 0.89 1.76 200318_130049
Two People + Dog 7.28 1.10 1.63 200318_150050
Cyclists 2.22 2.88 1.92 200321_140042

Table B.2: Size and originating scan ID of large dynamic objects of the reference set.

Object X [m] Y [m] Z [m] Scan ID

Bulldozer 3.08 7.50 3.31 200323_150118.
Excavator 2.08 4.53 2.15 200323_130118
tractor with trailer 4.28 13.86 3.74 200323_100113
Ladder 1.07 0.50 3.23 200323_110113
Barrel 2.28 2.79 2.18 200318_110047
Crate 3.50 3.41 2.69 200323_090113
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