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Abstract

In offshore industry, gas and oil production takes place at more and more remote locations
with Floating Production Storage Offloading units (FPSOs) being often selected for field
development. These units may remain on station during their entire lifetime while operating
under adverse weather conditions. Thus, inspections, which have to be performed on site, are
becoming a challenging and risky operation. Within this context, various Structural Health
Monitoring (SHM) schemes are being explored in an attempt to ensure integrity of floating
offshore units.

The goal of this project is to study the feasibility of structural health assessment on FPSOs
using vibration-based monitoring techniques with the ultimate aim to minimize inspections
of confined spaces. To this end, a typical panel structure on an FPSO hull is considered and
modelled using the Finite Element (FE) method. As part of a ballast tank, the considered
stiffened panel is inevitably subject to structural degradation, with corrosion and fatigue cracks
constituting the main mechanisms among others. The constructed FE model is therefore
appropriately parametrized in order to accommodate the simulation of the aforementioned
damage conditions.

The first part of this study, referred to as the forward problem, consists in modelling the
dominant degradation mechanisms experienced by hull structures of FPSOs, namely uniform
corrosion, pitting corrosion and fatigue cracks. These are introduced with varying degree of
deterioration into the reference FE model of the said stiffened panel and the sensitivity of
vibrational characteristics, i.e. natural frequencies, mode shapes and damping ratios, to these
changes is investigated. The aim of this part is to extract the identifiable damage scenarios
that will serve as the basis for the structural health assessment through the implementation of
Operational Modal Analysis (OMA).

In the second part of the study, the so-called inverse process, the stiffened panel is as-
sumed to be monitored during normal operation using a conventional monitoring system (i.e.
accelerometers). The latter is configured in such a way that observability of all modes is ac-
complished and robustness of the identified properties is ensured. Excitation of the structure
is assumed to be sloshing-induced impulsive loads and the measured noisy signals are pro-
cessed with a set of Stochastic Subspace Identification (SSI) algorithms, upon enhancement
with a cluster analysis in order to enable automatic system identification. For each one of the
damage scenarios, the dynamic properties are identified and cross-compared with those of
the reference model. The feasibility of damage detection through vibration monitoring, along
with the existing restrictions, is finally determined and a possible extension of the proposed
formulation is discussed.
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z(t ), ż(t ), z̈(t ) Continuous-time modal displacement, velocity and acceleration vectors
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ỹk Noisy output vector at time instant k

d j k Proximity criterion between modes j and k

fk , f̂k , ξk Frequency, frequency estimate and damping ratio of mode k

h Fill height of ballast tank

i , j Number of block rows and columns of the block Hankel matrix Y0|2i−1

ndof Number of degrees of freedom

nd, nv, na Number of displacement, velocity and acceleration outputs

nm Number of modes

np, ny Number of input forces and output measurements

nr, nc Number of master and slave degrees of freedom

ns Number of states of state-space model

p, q, r Element natural coordinates

pw Water pressure

s Number of available measurements

u, v , w Nodal displacements in x, y and z axes

wi Integration weight of the Gauss quadrature rule

xv





1 Introduction

Structural integrity is a major factor in assets management of offshore and ship structures, as
well as land-based structural systems such as pipelines. Present-day approaches for integrity
assessment require implementation of quantitative techniques which are subject to major
uncertainties, stemming from their input elements - the loads acting on the structure and the
resistance parameters.

In marine structures, the loads principally include wave-induced forces, as a function of
the sea-state, wind-induced forces and forces due to ship motion. These may be imposed
globally, resulting in hull girder bending, or locally, such as those acting at the side and bottom
panels, introducing an inevitable degree of uncertainty in the structure due to their stochastic
nature. However, the key element in order to ensure structural integrity is the set of variables
describing the resistance of the structure to the imposed loading. Being typically random
variables, they change with time due to deterioration, rendering therefore the strength of the
structure a time-dependent variable.

When dealing with ships in general, and Floating Production Storage Offloading unit
(FPSO) units in particular, which constitute a common practice in oil and gas production at sea
due to their storage capacity and simplicity of installation process, a set of typical degradation
mechanisms pertains to ship collision, storm-induced slamming, ice impact, fire and blast,
corrosion and fatigue fracture. These last two components are prominently associated with the
strength of the structure and consequently with asset integrity. Additionally, considering that
FPSOs operate at more and more remote locations and remain on station during their entire
lifetime, inspections have to be performed on site and may often become challenging and
potentially risky. In limiting this risk of maintenance intervention and ensuring safe operation,
Structural Health Monitoring (SHM) is receiving growing attention, towards the identification
of structural vibration characteristics and subsequently of degradation mechanisms. The
main goals of a SHM strategy, as stated by Wang et al. (2014a), comprise:

• Evaluation of structural degradation and degrading conditions

• Verification of design assumptions referring to loads and responses

• Assessment of potential failures due to gross errors in the design, fabrication, and
operation

• Assessment of operational response.

Within this context, it is of crucial importance that a SHM system is able to furnish reduced
inspection costs, minimization of preventive maintenance and extension of structural life.

1



1 Introduction

Figure 1.1: Bonga FPSO, Gulf of Guinea, Nigeria

Regarding FPSOs, and setting aside the accidental limit states such as ship collision and fire,
a SHM system should aim at providing a robust monitoring strategy for the detection and
diagnosis of the hull-related damage states which according to statistics are ranked the top
causes leading to total vessel loss, as underlined by a ISSC (2009) report.

From this perspective, the present work constitutes an attempt to establish an identifi-
cation scheme for the degradation mechanisms experienced by hull structures of FPSOs as
well as the investigation of applicability of vibration-based analysis methods for SHM in the
offshore industry. In order to set a solid basis for such an approach, the following lines are
introducing an overall description of the problem at hand and provide an overview of the
guidelines to be followed within the adopted working frame.

1.1 Classes of damage on FPSOs

The progressive deterioration of ship structures as a consequence of normal operation and
environmental influences, may be assigned as the definition of structural aging. This deterio-
ration may appear in various forms including coating damage, changes in material properties,
corrosion and cracking with the last two being the most pervasive classes of damage.

1.1.1 Corrosion

Corrosion is defined as the deterioration process of a material due to chemical reactions with
its environment. Depending on the surroundings, corrosion processes may refer to either
chemical or electrochemical reactions, with the latter occurring in a large variety of natural
electrolytes and industrial applications. A distinctive example of this is the rusting of steel due
to exposure to water or humid air, leading to the formation of iron oxides and eventually the
material damage.

As shown by empirical evidence and highlighted by a report of ISSC (2009), corrosion is one
of the five causes of damage which may lead to the loss of ships, considering that right after
commissioning ships are inevitably exposed to highly corrosive conditions. The corrosion
process starts with thinning of the material, variations in its mechanical properties and finally
a reduction in strength capacity. According to DNV (2013), in maritime engineering corrosion
may be divided into four types:

2



1.1 Classes of damage on FPSOs

General corrosion
The most common and harmless form of corrosion, wherein degradation is uniformly
distributed on the exposed surface. Although it is called uniform, the corroded area
exhibits a sort of waviness and roughness. It may cause by far the largest amount
of material losses and is a common occurrence in many industrial applications. In
maritime engineering, as underlined by Howarth (2011), such a type of corrosion is
found under deck areas in cargo oil holds due to the presence of volatile gases from
the crude oil, as well as in uncoated parts of bulk carriers, according to Gardiner and
Melchers (2003).

Pitting corrosion
A form of localized corrosion characterized by the development of small cavities usually
on openly exposed surfaces of a metal. The diameter of these cavities is of the same order
of magnitude of the depth. Various shapes may however be observed depending on the
environmental conditions and the metal or alloy. In marine structures and specifically
in ships, pitting usually occurs as a result of the breakdown of protective coating (Nakai
et al., 2004) or due to ineffective cathodic protection systems, with the bottom plating
of cargo oil tanks and some horizontal surfaces in ballast tanks being the most likely
places.

Grooving and edge corrosion
Grooving corrosion may be found in the base material where the coating has been
scratched or the metal itself has been mechanically damaged. Damage due to grooving
corrosion may also be accelerated due to lack of maintenance on the protective coating
or the sacrificial anodes. In a ship structure, it is most likely that grooving corrosion
appears at stiffener connections close to a weld (Wang et al., 2014c). On the other hand,
in terms of the edges of structural members, geometrical complexities may lead to a
thinner coating layer, making these areas more susceptible to corrosion. In this sense,
edge corrosion is more likely to be found at the free end of stiffeners or around cut outs.

1.1.2 Fatigue

Apart from corrosion, fatigue cracking constitutes another substantial factor associated with
structural degradation appearing in aging structures. Being a primary source of costly repair
work, its development may render a structure marginal or even lead it to a failure state, since
it can result in a significant reduction of ultimate strength under certain circumstances.

In the presence of repeated or cyclic loading, cracks due to fatigue are most likely to
initiate in the regions of the structure subjected to stress concentrations. However, it is also
conceivable that initial cracks or defects may be inserted in structures during the fabrication
process, and remain undetectable throughout their lifetime. Crack propagation may also be
caused not only under cyclic loading but in the presence of monotonically increasing loads as
well. This event is of course usually mitigated by stress redistribution over the structure or due
to material ductility and therefore it seldom appears.

Regarding marine structures, fatigue cracking may often be observed in a stiffened panel
along the weld intersection between the plates and the stiffeners. These cracks may have a
varying orientation, depending on the loading history, and can be classified into three types -
vertical, horizontal and angular. Moreover, while in thick plated structures the crack depth
may be small compared to the plate thickness, in relatively thin plates, as commonly used in
ship structures, cracking usually appears as through-thickness cracks.
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1.2 Monitoring techniques

The significance of monitoring and mitigating degradation has been recognized by several
partners of the offshore industry among which ship owners, classification societies and Inter-
national Maritime Organizations (IMOs). Regarding the aforementioned types of degradation
problems experienced by ship structures, various monitoring approaches have been imple-
mented within the framework of SHM strategies, both locally and globally. A common practice
is the Hull Response Monitoring System (HRMS), which constitutes the state-of-the-art moni-
toring technique for ships, measuring and displaying ship motions and hull responses in key
locations.

A HRMS is a global monitoring approach based on a series of sensors including strain
gauges, namely Long-Based Strain Gauges (LBSG), temperature sensors and accelerometers,
placed in certain locations on ships, as well as some additional devices such as Global Position-
ing System (GPS) and sensors for hydrostatic pressure and motion prediction. HRMSs provide
real-time information on all relevant responses of the ship to the operator and operational
guidance in case of severe weather conditions. A distinctive instance of such a monitoring
framework, referred to as the Advisory Hull Monitoring System (AHMS), is the Monitoring
Advisory System (MonitAS) developed as a part of the MonitAS Joint Industry Project (JIP),
which will be introduced in the following sections.

Regarding local monitoring techniques, a wide range of them is available for monitoring
of corrosion damage (Yang, 2008), including electrochemical polarization, galvanic sensors,
multielectrode systems, radioactivity methods, electrical resistance techniques as well as
Acoustic Emissions (AE). The latter is a widely applied identification method in many industrial
fields and may be an appropriate solution for monitoring corrosion in onshore tanks. Its
applicability on FPSOs is however subject to high noise disturbance due to the low level
emissions (Boller et al., 2009).

Nevertheless, as highlighted by Boller et al. (2009), AE is a promising technique for crack
detection, providing real-time information for crack initiation and propagation, and can be
combined with strain gauges in order to yield the stress level correlation. Alternatively, Fatigue
Damage Sensors (FDSs), referred to as fatigue gauges, are also commonly employed for fatigue
crack-growth identification. These small sensors consist of thin metal pieces and are usually
placed on structural areas with high stress-concentration factors. Their function is based on
a crack propagating through the surface of the sensor whose length is proportional to the
fatigue consumption of the structure, providing in this sense a quantitative assessment of
lifetime consumption.

A more universal approach for damage assessment, which is mainly employed in civil
and aerospace structures, is vibration-based monitoring. The basis of this approach is the

(a) AE sensor (b) FDS (c) LBSG

Figure 1.2: Typical monitoring sensors

4



1.3 Current state of research

investigation of changes in the dynamic characteristics of a system, such as natural frequencies,
mode shapes and mode shape curvatures, reflected by the presence of damage. The method,
which will be the subject of study in the present project, typically makes use of acceleration
measurements or strain gauges and is supposed to be sufficiently accurate for the detection of
a 0.5% change in natural frequencies (Wang et al., 2014b).

1.3 Current state of research

Various studies have been proposed for structural integrity assessment on FPSOs and off-
shore structures in general, examining different approaches and degradation mechanisms
or damage states. A first family of these studies is concentrated on the simulation of damage
states and the investigation of their influence on the structural response and the strength of
the structure, while the second category comprises those studies dealing with monitoring
strategies and processing of inspection data towards the identification of degradation mecha-
nisms. In their turn, these categories may be classified into global approaches where integrity
is assessed on the structure as an entity and local ones where special structural components
are investigated under certain structural threats.

A review of the corrosion effect on structural strength capacity of stiffened panels may
be found in Wang et al. (2014c), including predictions for corrosion development in marine
conditions. Regarding the latter, a wide range of studies exists in the literature using statistical
methods in combination with measurement data (Qin et al., 2015, Qin and Cui, 2003) and
models based on physical principles. In terms of reliability analysis accounting for general and
pitting corrosion, Melchers (2005) studied the effect of corrosion on the structural reliability
of steel offshore structures whereas Yamamoto and Ikegami (1998) proposed a probabilistic
approach for corrosion modelling on ship’s hull. In a more general framework, Akpan et al.
(2002) developed an approach for risk assessment of aged ship hull structures in the presence
of both corrosion and fatigue.

A number of Finite Element (FE) analyses has also been performed in order to examine the
sensitivity of strength capacity to corrosion (Dunbar et al., 2004, Huang et al., 2010, Silva et al.,
2014). To this end, Wang et al. (2015b) carried out a sensitivity analysis on the ultimate strength
of aged structures subjected to grooving corrosion while Sultana et al. (2015) investigated
the influence of corrosion on the ultimate compressive strength of steel plates and stiffened
panels.

Without considering fatigue crack growth and propagation processes, which pertain to
fracture mechanics field and have been investigated in ship-structure applications by Okawa
et al. (2006), crack effects on structural integrity have also been studied recently. Within this
context, Wang et al. (2015a) focused on the influence of cracks on the structural behaviour
through an investigation of the ultimate shear strength of intact and cracked stiffened panels.
In a similar investigation, Paik et al. (2005) worked on an experimental and numerical study of
the ultimate strength of cracked steel plates subjected to compression or tension. Accounting
for varying size and location of cracks and implementing a series of non-linear FE analyses,
they investigated the ultimate strength reduction characteristics of plate elements. In a more
universal approach, Vafai and Estekanchi (1999) carried out a parametric FE study on the
impact of cracks in the overall behaviour of plates and shells.

From a dynamic point of view, the problem of crack influence on structural behaviour is
receiving growing attention as well, given the extensive literature existing thereupon. In an
early study, Stahl and Keer (1972) developed and demonstrated a method for determining the
dynamic properties, that is natural frequencies, of cracked rectangular plates. More recently,
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Qian et al. (1991) focused on the vibrational behaviour of cracked plates using a FE model
through the investigation of changes in eigenfrequencies for different crack lengths and Alinia
et al. (2007) dealt with numerical modelling for buckling analysis of shear panels. In a more
sophisticated approach, Tran et al. (2015) worked on the free vibration analysis of cracked
Functionally Graded Material (FGM) using eXtended IsoGeometric Approach (XIGA) and
high-order shear deformation theory.

In modal testing approaches by means of vibration monitoring, two main categories
may be distinguished, namely Experimental Modal Analysis (EMA) and Operational Modal
Analysis (OMA). In EMA, a structural model is excited in laboratory conditions by one or more
measured forces and its modal parameters are then extracted from the measured structural
response. A typical method within this framework is the Peak Picking (PP) method. Although,
well-established and often-used method in mechanical engineering, it is not the appropriate
one for large civil structures and structures that need be tested in operational rather than
laboratory conditions. On the other hand, OMA, also known as output-only modal analysis, is
an identification process that derives the modal information from structural response during
operation.

There has been a large increase of research activity around OMA during the last years, with
applications in a wide range of projects. Among others, the results served by OMA may be
utilized for model updating of new structures, for tuning of vibration control devices, as well
as for system identification as such. An overview of the OMA methods with discussions on
the major developments and references to both time and frequency domain approaches is
presented by Zhang et al. (2005). Although there exist a lot of recently-developed alternative
algorithms for OMA, they are all based on a few basic principles. Among others, the ones
with high accuracy in civil engineering applications are: the Frequency Domain Decompo-
sition (FDD) (Brincker et al., 2001), the Stochastic Subspace Identification (SSI) algorithms
(Van Overschee and De Moore, 1996) and the poly-Least Squares Complex Frequency (p-LSCF)
(Magalhaes and Cunha, 2011). An explanation of these three methods is provided by Ma-
galhaes and Cunha (2011) while a thorough study of OMA methods with reference to civil
engineering structures is summarized by Peeters (2000).

1.4 The MonitAS project

Of particular interest among the studies towards a unified strategy for monitoring of structural
degradation is the MonitAS JIP, which started in 2008 following a long term monitoring period
on board FPSO Glas Dowr. The aim of this project was to develop an AHMS for FPSOs using
Glas Dowr as a test bed, while it was operating offshore South Africa (Aalberts et al., 2010). In its
turn, the AHMS was aiming to estimate the fatigue lifetime consumption by means of a blend
of monitored quantities, including stress and wave measurements as well as information on
loading conditions. Within this context, the system calculates the fatigue lifetime consumption
rate and provides a comparison with the design calculations, indicating at the same time
preventive actions for the achievement of reduced rates.

Aiming to provide insight on the uncertainties dominating the fatigue accumulation pro-
cess (Hageman et al., 2013), the said AHMS is mainly based on three different methods. Making
use of the fatigue design procedure, which generates the ”predicted fatigue”, in combination
with measured environmental and operational conditions, the first method calculates the
lifetime consumption of the structure, referred to as the “calculated fatigue”. Implementation
of a second method, referred to as the “measured fatigue”, allows for the estimation of the
lifetime consumption through processing of available strain measurements. The assessment
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of lifetime consumption with the third method is performed using an analogue FDS.
A comparison of these three variables provided by the AHMS, indicates the reason why

measured lifetime consumption may deviate from design predictions. This is achieved by
following the design process upon substitution of the input parameters with the measured
values in order to determine whether deviations from design values are due to environmental
conditions, operational conditions or discrepancies between hydrodynamic or structural
design processes and real phenomena. Following the first successful stage on FPSO Glas Dowr,
the continuation of the project in 2010 aimed at installing a second monitoring system on a
new-built FPSO, to be placed in the Gulf of Guinea. An overview of the latest phase of this
project is supplied by Hostis et al. (2013).

1.5 Aims and scope

In an attempt to ensure safe operation and minimize inspections of confined spaces in FPSOs,
the present project deals with the feasibility of structural health assessment on FPSOs using
vibration-based monitoring techniques. Such a need stems from the fact that FPSOs are
often selected for the development of marginal fields while operating under adverse weather
conditions. Besides, the absence of dry-docking during their entire lifetime, renders inspec-
tions a challenging and potentially risky task. Within this context, a typical panel structure
on an FPSO hull is addressed, and the viability of vibration-based techniques for damage
identification through OMA is examined.

The main objectives of this project may be summarized in the following points:

• Modelling of the dominant degradation mechanisms experienced by hull structures of
FPSOs.

• Development of a parametric numerical model for a typical stiffened panel on an FPSO
hull, capable of accommodating a wide series of possible damage conditions.

• Investigation of the sensitivity of the vibrational characteristics of stiffened panels to
varying degrees and types of damage.

• Study on the feasibility of damage detection through vibration monitoring using con-
ventional monitoring systems (e.g., strain gauges, accelerometers).

• Proposal of a monitoring paradigm so that online function in a semi-continuous way is
possible.

1.6 Outline

The present Chapter constitutes a brief introduction to the core concepts that will be discussed
within the following pages. As a matter of structural integrity, a short description of the
prevailing degradation mechanisms was first described along with an overview of the current
monitoring approaches used in FPSOs. The review of the current state of research in this
discipline was then followed by the presentation of the MonitAS project and finally the aims of
the project were addressed. A short outline of the present thesis is schematically represented
in Fig. 1.3.

Chapter 2 constitutes the basis for the numerical modelling of stiffened panels using
the FE method. The numerical simulations carried out herein are all coded in Python envi-
ronment and the mathematical formulations of the developed tools are presented. These
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Figure 1.3: Outline of the project

may be divided into three classes where the first is concentrated on the displacement-based
formulation of the employed 20-node isoparametric solid element and the construction of its
mass and stiffness matrices. The second part, which aims at mitigating the computational
cost of eigenvalue analysis, deals with model order reduction techniques in order to achieve
time-affordable solutions for the extraction of modal properties, given the large number of
degrees of freedom contained in the implemented models. Finally, the third section of this
chapter is focused on the dynamic analysis of multi-degree-of-freedom modal-based systems.
Within this context the Newmark method is implemented and its general scheme is presented
for the two versions of constant-average and linear acceleration.

Chapter 3 presents the theoretical background of OMA. Using the dynamic equations of
motion of a linear system in the continuous-time domain as a starting point, the reduced-
order state-space model in discrete-time domain is derived in order to set the basis for the
formulation of the SSI scheme. The latter, derived upon description of the properties of
stochastic state-space models, includes the Covariance-driven Stochastic Subspace Identifica-
tion (SSI-Cov) and Data-driven Stochastic Subspace Identification (SSI-Data) algorithms and
is followed by the retrieval of the modal characteristics of the continuous-time model when
the corresponding discrete-time is identified. Additionally, a discussion on the key-points of
the two algorithms is given and the basic concepts of their implementation in terms of the
so-called stabilization diagrams are presented. Thereafter, a brief discussion on agglomerative
cluster analysis is presented, in order to allow for automatic identification by means of the SSI
algorithms.

In Chapter 4, the sensitivity analysis of the structural model is carried out. The numerical
model of the undamaged structure is first constructed and its modal properties are extracted.
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The sensitivity of the stiffened panel to the dominant degradation mechanisms of corrosion
and fatigue cracks is studied by means of changes in the natural frequencies and the corre-
sponding mode shapes. In so doing, three main damage states are considered. The first one
pertains to uniform corrosion on both the plate and the stiffeners of the panel with five dis-
tinct percentages of wastage. The second deals with pitting corrosion on the plate for various
degrees of pitting while the last one refers to fatigue cracks on several possible locations over
the structure. Finally, the observability of each damage condition on the modes is assessed
and the requirements for vibration-based monitoring are listed.

Chapter 5 deals with the OMA of the examined structure. Considering the stiffened
panel as part of a ballast tank, its operational response is generated by applying a sloshing-
induced impulsive pressure as input signal. Subsequently, the sensor network configuration
is determined and a first implementation and cross-comparison of the SSI algorithms is
presented for the reference model, in accordance with the existing performance restrictions.
Likewise, the OMA is employed for all damaged models in order to investigate identifiability of
structural degradation. The generated results are then presented in terms of tables, clusters
and stabilization diagrams, followed by a discussion on the feasibility of damage identification.

Finally, Chapter 6 provides an overview of the work in terms of conclusions with respect to
the obtained results and a short discussion on possible future research for the enhancement
of the current formulation.
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2 Finite Element Model

The present chapter deals with the theoretical description of the methods used within the
framework of the FE analyses. All these methods, which are divided into three sections, are
coded in Python and validated using the ANSYS Workbench Verification Manual. The first
one refers to the formulation of the 20-node isoparametric solid element which is used for the
modelling of stiffened panels. The validation of the code referring to this part is performed
using the test case VMMECH001: Statically Indeterminate Reaction Force Analysis of ANSYS
(2013). In the second section, the method for model order reduction is presented while the
last section is focused on the dynamic analysis of modally reduced multi-degree-of-freedom
systems using the Newmark method. These two parts are jointly validated through the test
cases VMMECH024: Harmonic Response of a Single Degree od Freedom System for Beams and
VMMECH080: Transient Response of a Spring-mass System of the aforementioned manual.

2.1 Hexahedral element

For the implementation of the FE method, towards the numerical modelling of stiffened
panels, the 20-node isoparametric hexahedral element is employed (Bathe, 1996). Although
costly in terms of computational time and mesh generation, the option of brick elements, and
especially of high order, enables the modelling of solid bodies without the need of geometric
simplifications, while it can appropriately accommodate the detailed and localized modelling
of the desired degradation mechanisms.
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Figure 2.1: The 20-node hexahedron element

11



2 Finite Element Model

In formulating the stiffness and mass matrix of a 20-node isoparametric hexahedron
element, which is schematically represented in Fig. 2.1, the natural coordinate system is
introduced with coordinates p, q and r ranging from -1 to 1.

Within the isoparametric and displacement-based formulation of the FE method, the
displacement field of an element is interpolated in the same way as the geometry. Namely, the
cartesian coordinates x, y and z at any point of the element are expressed as function of the
corresponding nodal coordinates:

x =
n∑

i=1
Ne

i (p, q,r ) xi , y =
n∑

i=1
Ne

i (p, q,r ) yi , z =
n∑

i=1
Ne

i (p, q,r ) zi (2.1)

while in the same fashion, the displacements u, v and w at any point of the element are
obtained by interpolating the displacements at its nodes:

u =
n∑

i=1
Ne

i (p, q,r )ui , v =
n∑

i=1
Ne

i (p, q,r ) vi , w =
n∑

i=1
Ne

i (p, q,r ) wi (2.2)

In the above formulas, Ne
i (p, q,r ) denotes the interpolation functions, defined in the natural

coordinate system of the element with variables p, q and r ranging from -1 to 1, while xi , yi ,
zi and ui , vi , wi express the nodal coordinates and nodal displacements respectively. The
number of summation terms n represents the order of the element in terms of nodes which in
this particular case is equal to 20.

The shape functions of the 20-node solid element, which belongs in the family of serendip-
ity elements without internal nodes, may be divided into four groups according to their
reference nodes. Hence, for the corner nodes i = 1,2, ...,8:

Ne
i (p, q,r ) = 1

8

(
1+p pi

)(
1+q qi

)(
1+ r ri

)(
p pi +q qi + r ri −2

)
(2.3)

for the mid-side nodes with qi = 0, for i = 9,11,17,19:

Ne
i (p, q,r ) = 1

4

(
1−q 2)(1+ r ri

)(
1+p pi

)
(2.4)

for the mid-side nodes with pi = 0, for i = 10,12,18,20:

Ne
i (p, q,r ) = 1

4

(
1−p 2)(1+q qi

)(
1+ r ri

)
(2.5)

and for the mid-side nodes with ri = 0, for i = 13,14,15,16:

Ne
i (p, q,r ) = 1

4

(
1− r 2)(1+p pi

)(
1+q qi

)
(2.6)

with pi , qi and ri denoting the coordinates of node i in the natural coordinate system. It
should be noticed that the following formulation is based on the node-numbering pattern
illustrated in Fig. 2.1, which guarantees a positive volume, and therefore any change in this
rule should be accordingly accounted for in the following derivations.
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2.1 Hexahedral element

2.1.1 Deformation matrix

In order for an element stiffness matrix to be constructed, the strain-displacement deforma-
tion matrix Be ∈ R6×n should be first evaluated. In doing so, the derivatives ∂/∂x, ∂/∂y and
∂/∂z of the displacement field represented by Eqs. (2.2) are required. Considering that the
displacement field is defined in natural coordinates, the corresponding partial derivatives
may be then expressed through the following chain rule:

∂

∂x
= ∂

∂p

∂p

∂x
+ ∂

∂q

∂q

∂x
+ ∂

∂r

∂r

∂x
(2.7)

However, use of the said chain rule is not straightforward since calculation of ∂p/∂x, ∂q/∂x
and ∂r /∂x implies that the explicit inverse formulas of Eqs. (2.2) are known. Therefore, using
the chain rule for the derivatives with respect to the natural coordinates, it can be written:



∂

∂p

∂

∂q

∂

∂r


=



∂x

∂p

∂y

∂p

∂z

∂p

∂x

∂q

∂y

∂q

∂z

∂q

∂x

∂r

∂y

∂r

∂z

∂r





∂

∂x

∂

∂y

∂

∂z


(2.8)

or in matrix notation

∂

∂p
= JN

∂

∂x
(2.9)

where JN ∈R3×3 is the Jacobian operator connecting the natural coordinate derivatives to the
cartesian coordinate derivatives. This can be readily obtained from Eqs. (2.1) and the sought
for derivatives may be obtained through the inverse of the Jacobian matrix according to:

∂

∂x
= JN

-1 ∂

∂p
(2.10)

This operation requires of course that the inverse of JN exists which is always ensured when
the correspondence between the natural and the cartesian coordinates is a one-to-one corre-
spondence.

Since the derivatives ∂u/∂x, ∂u/∂y , ∂u/∂z, ∂v/∂x,..., ∂w/∂z can be evaluated through Eq.
(2.10), the strain-displacement transformation matrix Be may also be constructed, with the
strain vector related to it by the formula:

ε= Be(p, q,r )ue where Be(p, q,r ) = D Ne(p, q,r ) (2.11)

where ue ∈R3n is a vector collecting the nodal displacements of Eqs. (2.2). Additionally, matrix
D ∈R6×3 denotes the partial derivative operator which is derived from the inverse Jacobian
matrix and expressed by the following relation:
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2 Finite Element Model

DT =



∂

∂x
0 0

∂

∂y
0

∂

∂z

0
∂

∂y
0

∂

∂x

∂

∂z
0

0 0
∂

∂z
0

∂

∂y

∂

∂x


(2.12)

while Ne ∈R3×3n is the shape function matrix which for the 20-node element is given by:

Ne =

Ne
1 0 0 Ne

2 0 0 · · · Ne
20 0 0

0 Ne
1 0 0 Ne

2 0 · · · 0 Ne
20 0

0 0 Ne
1 0 0 Ne

2 · · · 0 0 Ne
20

 (2.13)

It is visible that matrix D operates on the shape function matrix and therefore the partial
derivatives of Ne

i for i = 1,2, ...,20 are evaluated upon utilization of Eq. (2.10).

2.1.2 Stiffness matrix

The element stiffness matrix referring to the local degrees of freedom may be obtained through
the principle of virtual work as a function of the deformation matrix and the constitutive matrix
E ∈R6×6 according to :

Ke =
∫

V e

(
Be)T E Be dV e (2.14)

The volume integral in the above relation is expressed in natural coordinates and therefore the
volume differential dV e should be also written in terms of p, q and r . Hence, this is carried
out by:

dV e = det(JN)d p d q dr (2.15)

with det(JN) being the determinant of the Jacobian operator.

2.1.3 Mass matrix

Within the context of a variational formulation, the construction of mass matrix is based on
the kinetic energy T e contained by an element of mass density ρ which occupies a domain V e

and moves with velocity ve:

T e = 1

2

∫
V e
ρ

(
ve)T ve dV e (2.16)

Additionally, in the framework of the FE method, the velocity field is interpolated by the shape
functions, so that ve = Ne u̇e with u̇e denoting the nodal velocities. Hence, substitution of the
interpolation relation into Eq. (2.16) yields:

T e = 1

2

(
u̇e)T

(∫
V e
ρ

(
Ne)T Ne dV e

)
u̇e = 1

2

(
u̇e)T Me u̇e (2.17)
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2.2 Model order reduction

where the mass matrix Me is the Hessian of kinetic energy T e. Analytically, the mass matrix
can be then obtained from the following expression:

Me =
∫

V e
ρ

(
Ne)T Ne dV e (2.18)

where the integration volume dV e should be also substituted by Eq. (2.15) so that the integral
is expressed in natural coordinates.

2.1.4 Numerical integration

It can be seen that explicit evaluation of the volume integrals described by Eqs. (2.14) and
(2.18) is not in general computationally effective and especially when high interpolation order
is employed. Therefore, the required integrals are numerically evaluated using the well-known
Gauss quadrature rules, with the stiffness matrix expression reading:

Ke =
s1∑

i=1

s2∑
j=1

s3∑
k=1

wi w j wk

(
Be

i j k

)T
E Be

i j k det
(
JNi j k

)
(2.19)

and the corresponding relation for the mass matrix:

Me =
s1∑

i=1

s2∑
j=1

s3∑
k=1

wi w j wk ρ
(
Ne

i j k

)T
Ne

i j k det
(
JNi j k

)
(2.20)

where s1, s2 and s3 are the number of Gauss integration points along the natural coordinate
axes p, q and r respectively. Similarly, w1, w2 and w3 denote the integration weights along
the natural axes while Be

i j k , det
(
JNi j k

)
and Ne

i j k are abbreviations for the following formulas:

Be
i j k = Be (

pi , q j ,rk
)

, det
(
JNi j k

)= det
(
JN(pi , q j ,rk )

)
, Ne

i j k = Ne (
pi , q j ,rk

)
(2.21)

It should be noticed that, generally, the number of integration points is chosen the same in
all directions: s1 = s2 = s3 = s with the total number of Gauss points being equal to s3. In the
case of the 20-node hexahedral element, the minimum rank-sufficient rule comprises three
integration points in each direction, with s = 3.

2.2 Model order reduction

In this section, the techniques used for the reduction of large-sized models are presented with
ultimate aim to create accurate low-order and computationally effective dynamic models.
Such a need stems from the requirement of detailed modelling of stiffened panels with high-
order solid elements, leading to large-sized eigenvalue problems which become significantly
demanding in terms of computational resources. In achieving this order reduction, the Guyan
condensation method is implemented along with a scheme for the selection of the reduced
degrees of freedom.
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2.2.1 Dynamic condensation

In reducing the size of a dynamic system described by the following governing equations of
motion:

M ü(t )+C u̇(t )+K u(t ) = f(t ) = Sp p(t ) (2.22)

a partition scheme is adopted so that the considered degrees of freedom in Eq. (2.22) are
divided into masters and slaves. As denoted by the notation, upon condensation, the reduced-
order equations will constitute an expression with respect to the master degrees of freedom
while the slave degrees of freedom will be the ones to be condensed. Assuming that a division
between masters and slaves is available, Eq. (2.22) can be thus partitioned as follows:

[
Mmm Mms

Msm Mss

][
üm(t )

üs(t )

]
+

[
Cmm Cms

Csm Css

][
u̇m(t )

u̇s(t )

]
+

[
Kmm Kms

Ksm Kss

][
um(t )

us(t )

]
=

[
fm(t )

fs(t )

]

with the indices ”m” and ”s” denoting the master and slave degrees of freedom respectively.
Assuming that the force vector fs(t ) referring to the slave degrees of freedom is equal to zero,
the second equation of Eq. (2.2.1) may be written as:

Msmüm(t )+Mssüs(t )+Csmu̇m(t )+Cssu̇s(t )+Ksmum(t )+Kssus(t ) = 0 (2.23)

It can be seen that the extraction of a relation between masters and slaves is not possible
through Eq. (2.23) since all derivatives of the displacement field are present. The main
assumption of the Guyan reduction scheme within the framework of a dynamic problem
consists in ignoring the dynamic effects so that both velocity and acceleration at masters
and slaves is assumed to be zero. Hence, substitution into Eq. (2.23) leads to the relation
between masters and slaves which can be subsequently used for the transformation of the full
displacement vector:

u(t ) = Tc um(t ) =
[

I
Rc

]
um(t ), where Rc =−K-1

ss Ksm (2.24)

in which Rc ∈Rnc×nr is called the condensation matrix relating masters and slaves, while nr

and nc denote the number of master and slave degrees of freedom respectively. Substituting
then Eq. (2.24) into the equation of motion an premultiplying with the transpose of the trans-
formation matrix Tc, results in the expressions of the reduced mass, damping and stiffness
matrices as well as the equivalent force vector:

Mc = TT
cM Tc, Cc = TT

cC Tc, Kc = TT
cK Tc, fc(t ) = TT

c f(t ) (2.25)

Within the context of an eigenvalue problem, the dynamic properties are obtained in
terms of the undamped system where only the stiffness and mass matrices are of interest.
Therefore, the analytical reduced-order expressions for the stiffness and mass matrix derived
from Eqs. (2.25) read:
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2.2 Model order reduction

Kc = Kmm −Kms K-1
ss Ksm (2.26)

Mc = Mmm +Kms K-1
ss Mss K-1

ss Ksm −Kms K-1
ss Msm −Mms K-1

ss Ksm (2.27)

Following the same partition scheme as for the dynamic problem of Eq. (2.22), the undamped
eigenvalue problem may be written in partitioned matrix notation as:([

Kmm Kms

Ksm Kss

]
−λ

[
Mmm Mms

Msm Mss

])[
φm

φs

]
=

[
0

0

]
(2.28)

which can be equivalently rewritten into the following set of equations:

(
Kmm −λMmm

)
φm + (

Kms −λMms
)
φs = 0 (2.29)(

Ksm −λMsm
)
φm + (

Kss −λMss
)
φs = 0 (2.30)

Solution of the second equation with respect to the slave degrees of freedom yields the corre-
sponding relation between the mode shape vector referring to the slaves and the one referring
to the masters:

φs = R(λ)φm (2.31)

in which the condensation matrix R(λ) is now a nonlinear function of the unknown eigenvalue
λ given by the following equation:

Rc(λ) =− (Kss −λMss)-1 (Ksm −λMsm) (2.32)

Considering the condensation matrix for a zero eigenvalue λ, leads to the Guyan condensation
matrix provided by Eq. (2.24) and accordingly to the same transformation matrix Tc, so that
the full mode shape vector is related to the master vector by:

φ= Tcφm (2.33)

Finally, introducing Eq. (2.33) into the eigenproblem equation and premultiplying by the
transpose of the coordinate transformation matrix results in the reduced eigenproblem:

(
Kc −λMc

)
φm = 0 (2.34)

where Kc and Mc denote the reduced stiffness and mass matrices, defined by Eqs. (2.27). It
should be noticed that for the derivation of the Guyan condensation scheme for eigenprob-
lems, the eigenvalue is considered to be zero. Such an assumption implies that the dynamic
effects are not accounted for in the condensation matrix and constitutes therefore a static
reduction method. In this sense, the ignored effects become more and more significant as the
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2 Finite Element Model

neglected eigenvalues increase and subsequently the method is becoming less accurate.

2.2.2 Selection of reduced degrees of freedom

The selection of the degrees of freedom to be condensed is based on the scheme proposed by
Shah and Raymund (1982), where for further details the reader is referred to Qu (2004). Within
this scheme, a cut-off frequency ωc for the eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn dof of a full-order
model is defined. This frequency should be significantly higher than the frequency range of
interest and as suggested by Shah and Raymund it should be approximately three times larger
than the highest significant frequency.

The idea behind this scheme consists in sequentially finding and eliminating the degree
of freedom with the highest ratio r 2

1 = ki i /mi i , provided that r1 >ωc. Then for the reduced
eigenproblem of size (n dof −1)× (n dof −1) with eigenvalues λ11 ≤ λ12 ≤ ... ≤ λ1(n dof−1), it can
be stated that the eigenvalue λ1i is an upper bound of the full-order eigenvalue λ i, so that:

λ1 ≤ λ11 ≤ λ2 ≤ λ12 ≤ λ3 ≤ ... ≤ λ(n dof −1) ≤ λ1(n dof −1) ≤ λ(n dof −1) (2.35)

Subsequently, the elimination process is applied to the reduced order model and the next
slave degree of freedom is condensed. The procedure is repeated for the elimination of n c

degrees of freedom until the highest ratio r 2
n c

is smaller than the cut-off frequency ωc. Hence,
the remaining (n dof −n c) degrees of freedom of the reduced order representation constitute
the master degrees of freedom while the eliminated ones are the slaves. Hence, the entire
process may be summarized in the following four steps:

a. Discover the degree of freedom with the largest ratio ki i /mi i . In case more than one
degrees of freedom share the same ratio, the one with the smallest index is chosen.

b. If the ratio ki i /mi i is greater than ω2
c , condensate the selected degree of freedom using

the Guyan method.

c. Repeat steps a. and b. to the matrices obtained at step b.

d. Repeat steps a. b. and c. until the largest ratio ki i /mi i of step a. is equal to ω2
c

2.3 Dynamic analysis

The objective of this section is to describe the employed numerical scheme for the solution
of the system of differential equations governing the dynamic response of multi-degree-of-
freedom systems which is described by Eqs. (2.22) and subject to the initial conditions:

u(0) = u0 and u̇(0) = u̇0 (2.36)

at t = 0. For systems with a few degrees of freedom, Eqs. (2.22) and (2.36) can be solved in
their present form however, for large systems it is computationally effective to transform
them in modal coordinates and express the nodal quantities in terms of the first few vibration
modes. Therefore, the nodal displacements and accordingly velocities and accelerations may
be approximated by a linear combination of the first nm modes:
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2.3 Dynamic analysis

u(t ) ≈
nm∑
i=1

φi z i (t ) =Φz(t ) (2.37)

Using the above transformation, the full-order equation of motion may be also rewritten in
modal form:

z̈(t )+Γ ż(t )+Ω2 z(t ) =ΦTSpp(t ) (2.38)

where Γ = ΦTCΦ and Ω2 = ΦTKΦ are the modal damping and modal stiffness matrices
respectively.

2.3.1 The Newmark method

Generally, within the context of a numerical integration scheme, the time scale is divided
into a set of time steps, with duration ∆t . In this sense, the excitation vector is evaluated at
discrete time instants t k = k∆t , denoted by pk = p(tk ). Accordingly, the response in terms of
displacements, velocities and accelerations is determined at the same time instants, denoted
by zk = z(tk ), żk = ż(tk ) and z̈k = z̈(tk ) respectively.

In particular, the Newmark method which is to be employed within this project (Chopra,
2012), is based on an assumption with regard to the evolution of the acceleration during a
time step. In imposing such assumption, the displacement and velocity vectors at time instant
tk are first approximated by a truncated Taylor series according to the following expressions:

zk = zk−1 +∆t żk−1 +
∆t 2

2
z̈k−1 +

∆t 3

6
z(3)

k−1 (2.39)

żk = żk−1 +∆t z̈k−1 +
∆t 2

2
z(3)

k−1 (2.40)

Thereafter, assuming that acceleration varies linearly within a time step, the third deriva-
tive may be written as:

z(3)
k−1 =

z̈k − z̈k−1

∆t
(2.41)

which upon substitution in Eqs. (2.39) and (2.40) yields the parametrized expressions for the
displacement and velocity vectors at time tk , in terms of the parameters β and γ:

żk = żk−1 + (1−γ)∆t z̈k−1 +γ∆t z̈k (2.42)

zk = zk−1 +∆t żk−1 + (0.5−β)∆t 2 z̈k−1 +β∆t 2 z̈k (2.43)

For β= 1

4
and γ= 1

2
the above formulas coincide with Eqs. (2.39) and (2.40) and express the

average acceleration method while for β= 1

6
and γ= 1

2
the constant acceleration method is

obtained. It is observed that Eq. (2.43) may be solved for z̈k which upon substitution in Eq.
(2.42) yields the expression of żk , described by the following equations respectively:
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2 Finite Element Model

z̈k = 1

β∆t 2 (zk −zk−1)− 1

β∆t
żk−1 −

(
1

2β
−1

)
z̈k−1 (2.44)

żk = γ

∆t
(zk −zk−1)+

(
1− γ

β

)
żk−1 +∆t

(
1− γ

2β

)
z̈k−1 (2.45)

Hereafter, substitution of Eqs. (2.44) and (2.45) into the modal-based equation of motion
yields the sought for expression for zk :

Ω̂zk = p̂k (2.46)

where Ω̂ is the equivalent modal stiffness matrix given by:

Selection of parameters

Constant average acceleration method

(
γ= 1

2
, β= 1

4

)
Linear acceleration method

(
γ= 1

2
, β= 1

6

)
Initialization at time t 0:

zi 0 =
φT

i M u0

φT
i Mφi

, żi 0 =
φT

i M u̇0

φT
i Mφi

z̈0 =ΦTSp p0 −Γ ż0 −Ω2 z0

c1 =
1

β∆t 2 I+ γ

β∆t
Γ

c2 =
1

β∆t
I+

(
γ

β
−1

)
Γ

c3 =
(

1

2β
−1

)
I+∆t

(
γ

2β
−1

)
Γ

Ω̂=Ω2 +c1

At time t k , for k = 1, ...,Nt :

p̂k =ΦTSp pk +c1 zk−1 +c2 żk−1 +c3 z̈k−1

zk = Ω̂-1
p̂k

żk = γ

β∆t
(zk −zk−1)+

(
1− γ

β

)
żk−1 +∆t

(
1− γ

2β

)
z̈k−1

z̈k = 1

β∆t 2 (zk −zk−1)− 1

β∆t
żk−1 −

(
1

2β
−1

)
z̈k−1

uk =Φzk , u̇k =Φ żk , ük =Φ z̈k

Table 2.1: The general scheme for Newmark’s method
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2.3 Dynamic analysis

Ω̂=Ω2 +c1 (2.47)

and p̂ denotes the equivalent modal force vector which reads:

p̂k =ΦTSp pk +c1 zk−1 +c2 żk−1 +c3 z̈k−1 (2.48)

with the coefficient matrices c1, c2 and c3 being given by the following expressions:

c1 =
1

β∆t 2 I+ γ

β∆t
Γ (2.49)

c2 =
1

β∆t
I+

(
γ

β
−1

)
Γ (2.50)

c3 =
(

1

2β
−1

)
I+∆t

(
γ

2β
−1

)
Γ (2.51)

It should be noticed at this point that Newmark’s method is unconditionally stable for
the constant average acceleration assumption while it becomes conditionally stable when
the linear acceleration assumption is adopted. In this case, the time step ∆t should be small
enough in order to achieve an accurate solution for each one of the modes for i = 1,2, ...,n m.
Such requirement is ensured when ∆t ≤ 0.551Tn m with Tn m denoting the natural period of
the n mth mode. In Table 2.1 the general scheme for the time-stepping solution of Newmark’s
method is presented for both versions of constant average and linear acceleration.
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3 System Identification

3.1 Equations of motion

As already described in Chapter 2, the equations of motion in the continuous-time domain for
a space-discretized linear system may be written in compact form as follows

M ü(t )+C u̇(t )+K u(t ) = f(t ) = Sp p(t ) (3.1)

where M, C and K ∈ Rndof×ndof are the mass, damping and stiffness matrices while ü(t), u̇(t)
and u(t ) ∈Rndof denote the acceleration, velocity and displacement vectors respectively. The
excitation vector f(t ) ∈Rndof on the right-hand side of the equation of motion may be factorized
into the force selection matrix Sp ∈ Rndof×np and the input force vector p(t) ∈ Rnp with np

denoting the number of input forces.

The coupled equations of motion described by Eq. (3.1) are separated upon introduction
of the coordinate transformation

u(t ) =Φz(t ) (3.2)

where z(t) ∈ Rnm is the modal displacement vector and Φ ∈ Rndof×nm is the matrix of eigen-
modes obtained by the undamped eigenvalue problem

KΦ= MΦΩ2 (3.3)

which contains the eigenvectorsΦ j for j = 1,2, ...,nm. Substituting Eq. (3.2) into the equation
of motion and pre multiplying withΦT yields the transformed equation of motion in modal
coordinates

z̈(t )+Γ ż(t )+Ω2 z(t ) =ΦTSp p(t ) (3.4)

whereby it is implied that the mode shapes are mass-normalizedΦTMΦ= I and the damping
is assumed to be proportional ΦTCΦ = Γ. The diagonal matrix Ω ∈ Rnm×nm contains the
eigenfrequencies ω j and the modal damping matrix Γ ∈ Rnm×nm , which is also diagonal,
collects the terms 2ξ jω j with ξ denoting the modal damping ratio.
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3 System Identification

3.2 State-space models

3.2.1 Continuous-time domain

The formation of the continuous-time state-space model is based on the introduction of the
state vector x(t ) ∈Rns×ns in Eq. (3.1), which reads:

x(t ) =
[

u(t )

u̇(t )

]
(3.5)

with ns = 2ndof. The equation of motion can be thus rewritten in the following form:

ẋ(t ) = Ac x(t )+Bcp(t ) (3.6)

in which the system matrices Ac ∈Rns×ns and Bs ∈Rns×np are given by:

Ac =
[

0 I
−M−1 K −M−1 C

]
, Bc =

[
0

M−1 Sp

]
With respect to the measurement equation, it is assumed in the general case that a set

of combined displacements, velocities and accelerations may be measured, obtained by the
following equation:

y(t ) = Sy

u(t )
u̇(t )
ü(t )

=

Sd 0 0
0 Sv 0
0 0 Sa


u(t )

u̇(t )
ü(t )

 (3.7)

in which Sd ∈Rnd×ndof , Sv ∈Rnv×ndof and Sa ∈Rna×ndof are the selection matrices for displace-
ments, velocities and accelerations respectively, concentrated in the output selection matrix
Sy ∈Rny×3ndof . Making use of the equation of motion in nodal coordinates and the definition
of the state vector x(t ), the measurement vector can be rewritten into state-space form:

y(t ) = Gcx(t )+ Jcp(t ) (3.8)

where the output influence matrix Gc ∈Rny×ns and the direct transmission matrix Jc ∈Rny×np

are defined as:

Gc =

 Sd 0
0 Sv

−SaM−1 K −SaM−1 C

 , Jc =

 0
0

SaM−1 Sp


Eqs. (3.6) and (3.8) together constitute the full-order state-space equations in the continuous-
time domain. In the case of a reduced order model, the dynamics of the system may be
represented by a reduced number nm of modal coordinates z(t ), so that the state vector can
be written as:

x(t ) =
[
Φ 0
0 Φ

]
ζ(t ) (3.9)

in which ζ(t ) ∈R2nm is the modal state vector:
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3.3 Stochastic Subspace Identification

ζ(t ) =
[

z(t )
ż(t )

]
(3.10)

Accordingly, the full order state-space model is transformed to the modal state-space model
of reduced order:

ζ̇(t ) = Acζ(t )+Bcp(t ) (3.11)

y(t ) = Gcζ(t )+ Jcp(t ) (3.12)

where the corresponding system matrices Ac ∈ R2nm×2nm , Bc ∈ R2nm×np , Gc ∈ Rny×2nm and
Jc ∈Rny×np are now defined as:

Ac =
[

0 I
−Ω2 −Γ

]
, Bc =

[
0

ΦTSp

]
, Gc =

 SdΦ 0
0 SvΦ

−SaΦΩ
2 −SaΦΓ

 , Jc =

 0
0

SaΦΦ
TSp



3.2.2 Discrete-time domain

For a sampling rate of 1/∆t , the modal state-space model of Eqs. (3.11) and (3.12) can be
transformed to its equivalent discrete-time model:

ζk+1 = Aζk +Bpk (3.13)

yk = Gζk + Jpk (3.14)

where ζk = ζ (k∆t ), pk = p (k∆t ), yk = y (k∆t ) for k = 1,2, ...,Nt and

A = e Ac∆t , B = [A− I]A−1
c Bc, G = Gc, J = Jc

3.3 Stochastic Subspace Identification

3.3.1 Problem description

The discretized in time state-space model of Eqs. (3.13) and (3.14) constitutes the starting
point for OMA by means of the subspace identification algorithms. Within this context,
the only available information is the set of outputs yk which is though contaminated with a
measurement error. In this sense, the state-space model under consideration may be extended
to the following form:

ζk+1 = Aζk +Bpk (3.15)

yk = Gζk + Jpk +ek (3.16)

in which ek ∈Rny denotes the measurement error. Considering that little information with
respect to the latter and the loading pk is available, they can be both modelled as white noise
random processes. It should be mentioned though that such an assumption may be violated
when the excitation spectrum is dominated by certain frequency components.
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With these considerations, the state-space model given by Eqs. (3.15) and (3.16) can be
now reformulated as:

ζk+1 = Aζk +wk (3.17)

yk = Gζk +vk (3.18)

where wk = Bpk and vk = Jpk +ek denote the process noise and the output noise, respectively.
The corresponding covariance matrices are defined:

E

[[
w p

v p

][
wT

q vT
q

]]
=

[
Q S
ST R

]
δpq (3.19)

where Q ∈ R2nm×2nm , S ∈ R2nm×ny and R ∈ Rny×ny are time-invariant and δpq denotes the
Kronecker delta. A graphical representation of the stochastic system described by Eqs. (3.17)
and (3.18) is shown in Figure 3.1.

A

Δ G+ +

w
k

ζ
k+1

v
k

y
kζ

k

Figure 3.1: Linear time-invariant stochastic system with the output yk being the only measured
quantity and with symbol ∆ denoting the time delay

Now that all aspects of the models under consideration are described, the SSI problem
can be formulated as follows: Given s measurements of the output vector yk produced by
the sought for stochastic system of order 2nm described by Eqs. (3.17), (3.18) and (3.19),
determine:

• The order 2nm of the unknown system

• The system matrices A ∈R2nm×2nm , G ∈Rny×2nm up to within a similarity transformation
and Q ∈ R2nm×2nm , S ∈ R2nm×ny , R ∈ Rny×ny so that the second order statistics of the
output of the model to be identified are equal to the observed output measurements.

3.3.2 Properties of stochastic state-space models

Apart from the statistical properties referring to the process and the output noise, the state-
space model described by Eqs. (3.17) and (3.18) is assumed to be stationary, so that:

E
[
ζk

]= 0 (3.20)

E
[
ζkζ

T
k

]=Σ (3.21)

26



3.3 Stochastic Subspace Identification

where it should be noticed that the state covariance matrix Σ ∈R2nm×2nm is not indexed due to
its independence of time. It is implied therefore that matrix A is stable and as a consequence
all of its poles are within the unit circle.

Considering that according to their definition, wk and vk are zero mean white noise
processes, independent of the state vector ζk , two additional relations may be written:

E
[
ζk vk

T ]= 0 (3.22)

E
[
ζk wk

T ]= 0 (3.23)

The Lyapunov equation for the state covariance Σ of Eq. (3.21) is then written as:

Σ= E[
ζk+1ζ

T
k+1

]
= E

[(
Aζk +wk

)(
Aζk +wk

)T
]

= AE
[
ζkζ

T
k

]
AT +E[

wk wT
k

]
= AΣAT +Q (3.24)

while the state-output covariance matrix F ∈R2nm×ny is given by definition from:

F = E[
ζk+1yk

T]
= E

[(
Aζk +wk

)(
Gζk +vk

)T
]

= AE
[
ζk ζ

T
k

]
GT +E[

wk vT
k

]
= AΣGT +S (3.25)

Finally, the output covarianceΛl ∈Rny×ny for l = 1,2, ... is defined as:

Λl = E
[
yk+l yT

k

]
(3.26)

which for l = 0 yields:

Λ0 = E
[
yk yT

k

]
= E

[(
Gζk +vk

)(
Gζk +vk

)T
]

= GE
[
ζk ζ

T
k

]
GT +E[

vk vT
k

]
= GΣGT +R (3.27)

It can then be proven by induction thatΛl for l = 1,2, ... is given by:

Λl = G Al−1F (3.28)

The starting point for the implementation of the subspace identification algorithms for
stochastic state-space models is the concentration of the output measurements in a block
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Hankel matrix ( a matrix in which each ascending skew-diagonal from left to right is constant):

Y0|2i−1 =
1√

j



y0 y1 · · · y j−1

y1 y2 · · · y j

...
...

. . .
...

yi−1 yi · · · yi+ j−2

yi yi+1 · · · yi+ j−1

yi+1 yi+2 · · · yi+ j

...
...

. . .
...

y2i−1 y2i · · · y2i+ j−2


=

[
Y0|i−1

Yi |2i−1

]
=

[
Yp

Yf

]
”past”

”future”
∈R2nyi× j (3.29)

The index i which determines the number of block rows is a user-defined variable and should
be equal to or greater than the maximum expected order of the system to be identified.
Statistically, the number of columns j and the number of samples s should tend to infinity.
However, considering the computational restrictions and in order to make use of all available
measurement data, j is chosen to be equal to s−2i +1. Furthermore, it should be noticed that
the subscripts of the block Hankel matrices Y0|2i−1, Y0|i−1 and Yi |2i−1 represent the first and
the last block-element of the first column of the matrix they pertain to.

Accordingly, the shifted block Hankel matrix of the output measurements is obtained by
shifting the border between past and future downwards by one block row. Therefore, Eq. (3.29)
may be rewritten as:

Y0|2i−1 =
1√

j



y0 y1 · · · y j−1

y1 y2 · · · y j

...
...

. . .
...

yi−1 yi · · · yi+ j−2

yi yi+1 · · · yi+ j−1

yi+1 yi+2 · · · yi+ j

...
...

. . .
...

y2i−1 y2i · · · y2i+ j−2


=

[
Y0|i

Yi+1|2i−1

]
=

[
Y+

p

Y−
f

]
”past”

”future”
∈R2nyi× j (3.30)

where Y+
p ∈Rny(i+1)× j and Y−

f ∈Rny(i−1)× j are the corresponding shifted block Hankel matrices
for the ”past” and ”future” outputs, with the subscript ”+” denoting ”add one block row” and
the subscript ”-” standing for ”eliminate one block row”.

3.3.3 Covariance-driven algorithm

As denoted by its name, the SSI-Cov algorithm utilizes the output covariance matrix in order to
identify the sought for stochastic state-space model. Namely, the output covariance matrices
Λl for time lags between ∆t and (2i −1)∆t , or equally for l = 1,2, ...,2i −1, are evaluated and
organized in a n yi ×n yi block Toeplitz matrix:
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3.3 Stochastic Subspace Identification

L1|i =


Λi Λi−1 · · · Λ1

Λi+1 Λi · · · Λ2

...
...

. . .
...

Λ2i−1 Λ2i−2 · · · Λi

 ∈Rnyi×nyi (3.31)

which, under the assumption of ergodicity, can be readily obtained, by making use of Eq. (3.29)
from the following relation:

L1|i = Yf YT
p (3.32)

Alternatively, the output covariance matrices can be evaluated separately from the following
formula:

Λl =
1

s − l

s−l−1∑
k=0

yk+l yT
k (3.33)

in which s denotes the number of points of the time series and they can be then assigned to
the corresponding positions of the Toeplitz matrix. An illustration of this process is presented
in Fig. 3.2 where the ny ×ny covariance matrices (Fig. 3.2(a)) are stored in the nyi ×nyi block
Toeplitz matrix (Fig. 3.2(b)). It should be noticed at this point that a Toeplitz matrix is matrix
in which each descending diagonal from left to right is constant.

Λ 
1

Λ
 2i-2

Λ 
2i-1

.  .
  .

Λ 
2

Λ
 3

(a) Covariance matrix

. . .

Λ 
1

Λ 
2

Λ 
i-1

Λ 
i

Λ 
i

Λ 
i

Λ 
i+1

Λ 
2i-1

Λ 
2i-2

. . .

. . .

. 
. 

.

. 
. 

.

. 
. 

.

. .
 .

(b) Block Toeplitz matrix

Figure 3.2: Construction of the block Toeplitz matrix

The block Toeplitz matrix L1|i can be decomposed, upon utilization of Eq. (3.28) for the
output covariance matrix, in the product of the following matrices:

L1|i =


G

GA
...

GAi−1


[
Ai−1F · · · AF F

]= O Cr (3.34)

with O ∈ Rnyi×2nm and Cr ∈ R2nm×nyi denoting the extended observability matrix and the
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reversed extended controllability matrix respectively. These can be retrieved by applying the
Singular Value Decomposition (SVD) to the block Toeplitz matrix:

L1|i = USVT = [
U1 U2

][
S1 0

0 0

][
VT

1

VT
2

]
= U1S1VT

1 (3.35)

where U ∈Rnyi×nyi and U ∈Rnyi×nyi are orthonormal matrices, with UTU = UUT = I ∈Rnyi×nyi

and VTV = V VT = I ∈ Rnyi×nyi , and S ∈ Rnyi×nyi is a diagonal matrix containing the singular
values. It should be noticed at this point that the rank of matrix is indicated by the number of
its non-zero singular values. Omitting thus the zero singular values of matrix S, and collecting
the non-zero ones in matrix S1 as illustrated in Eq. (3.35), the block Toeplitz matrix can be
expressed as a function of U1, S1 and V1 and it can be stated that:

O = U1S1/2
1 (3.36)

Cr = S1/2
1 VT

1 (3.37)

Once the observability and controllability matrices are obtained, the identification of the
system matrices A and G is straightforward. Concretely, matrix G equals the first ny rows of
the observability matrix and matrix A is obtained by the solution of the Least Squares (LS)
problem described by the following equation:


G

GA
...

GAi−2

A =


GA

GA2

...

GAi−1

 ⇔ A =


G

GA
...

GAi−2


† 

GA

GA2

...

GAi−1

= O† O (3.38)

where the symbol (•)† denotes the Moore-Penrose pseudo-inverse, which for a matrix M may

be obtained by the expression M† = (
MTM

)−1
MT, while O contains the first ny(i −1) rows of O

and O contains the last ny(i −1) rows of O.

3.3.4 Data-driven algorithm

The main idea behind the SSI-Data algorithm is to retrieve the system matrices A, G, and
subsequently the modal properties of the stochastic state-space model, using the raw time
histories of the output block Hankel matrix (3.29). In doing so, it is essential that the notion of
Kalman filter estimates is first introduced.

The problem addressed by the Kalman filter is to estimate the state ζ̂k of the system
described by Eq. (3.17) using the measurement vector yk given by Eq. (3.18). Within this
context, the a priori state estimate at step k given knowledge of the process prior to step k is
defined as ζ̂

−
k and the a posteriori state estimate at step k given measurement yk is denoted by

ζ̂k . Accordingly, the a priori and a posteriori estimate errors are respectively defined as:

e−
k = ζk − ζ̂

−
k (3.39)

ek = ζk − ζ̂k (3.40)

Likewise, the a priori and a posteriori estimate error covariances denoted by P−
k and Pk are
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given by the following equations:

P−
k = E[

e−
k eT

k

]= E[(
ζk − ζ̂

−
k

)(
ζk − ζ̂

−
k

)T
]

(3.41)

Pk = E[
ek eT

k

]= E[(
ζk − ζ̂k

)(
ζk − ζ̂k

)T
]

(3.42)

Now, the derivation of the Kalman filter equations is based on finding an equation that
computes an a posteriori state estimate ζ̂k as a linear combination of an a priori estimate
ζ̂
−
k and a weighted difference between the actual measurement yk and the measurement

prediction ŷk . This is formulated by the equation:

ζ̂k = ζ̂−k +Kk
(
yk −Gζ̂

−
k

)
(3.43)

where the term in parenthesis is called the measurement innovation, or the residual. The
matrix Kk ∈R2nm×ny is the Kalman gain that minimizes the a posteriori error covariance, which
reads:

Kk = P−
k GT (

GP−
k GT +R

)−1
(3.44)

As illustrated by Eqs. (3.43) and (3.44), the Kalman filter estimates a process by using a
form of feedback control in terms of the estimation of the state at some time and the feedback
in the form of noisy measurements. In this sense, the Kalman filter equations can be split
into two groups, the time update equations and the measurement update equations. The
first group is responsible for the forward projection of the current state and error covariance
estimates in order to obtain the a priori estimates of the next time step. The latter group
provides the feedback in terms of the incorporation of the new measurement into the a priori
estimate in order to yield the improved a posteriori estimate.

Time update equations

ζ̂
−
k = A ζ̂k−1 (3.45)

P−
k = APk−1AT +Q (3.46)

Measurement update equations

Kk = P−
k GT (

GP−
k GT +R

)−1
(3.47)

ζ̂k = ζ̂−k +Kk
(
yk −Gζ̂

−
k

)
(3.48)

Pk = (I−Kk G)P−
k (3.49)

In detail, the initialization of the process requires the initial state ζ̂0 and its variance P0.
Hereafter, use of the time update equations, namely Eqs. (3.45) - (3.46), yields the a priori
estimation ζ̂

−
1 of the state and its variance P−

1 for k = 1, corresponding to the first time step.
Once the first measurement data y1 is available, the second set of equations, (3.47), (3.48)
and (3.49), is then used to produce an improved a posteriori estimation of both the state ζ̂

−
1

and its variance P1. Hence, after each time and measurement update pair, the a posteriori
estimates are used to project the new a priori estimates of the next step and so forth. Within
the framework of the SSI-Data, the Kalman filter estimates, which are aimed to be recovered,
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are collected in the Kalman filter sequence Ẑi which reads:

Ẑi =
[
ζ̂i ζ̂i+1 ... ζ̂i+ j−1

] ∈Rny× j (3.50)

For the computationally-efficient performance of the algorithm, the block Hankel matrix
of Eq. (3.29) is decomposed through the QR-factorisation:

Y0|2i−1 =
[

Yp

Yf

]
= R̃ Q̃T (3.51)

where Q̃ ∈R j× j is an orthonormal matrix Q̃TQ̃ = Q̃ Q̃T = I and R̃ ∈R2nyi is a lower-triangular
matrix. It should be noticed that the advantage of this factorisation consists in the orthonor-
mality of the Q̃ vectors which will lead to a significant data reduction. Moreover, in order to fit
in the notation used for the ”past” and ”future” outputs, the factorised block Hankel matrix of
Eq. (3.51) can be rewritten as:

Y0|2i−1 =

nyi ny ny(i −1)
nyi R̃11 0 0

ny R̃21 R̃22 0

ny(i −1) R̃31 R̃32 R̃33

j


Q̃T
1 nyi

Q̃T
2 ny

Q̃T
3 ny(i −1)

(3.52)

Apart from the Kalman filter estimates, projections are the second key element of the SSI
and the SSI-Data algorithm specifically. Hence, the projection of the row space of the future
outputs into the row space of the past outputs reads:

P i = Yf
/

Yp = Yf YT
p

(
Yp YT

p

)†
Yp (3.53)

Upon introduction of the QR-factorisation of the output Hankel matrix into the above equation,
the projection may be simplified to the following expression:

P i =
[

R̃21

R̃31

]
Q̃T

1 ∈Rnyi× j (3.54)

Then according to the main theorem of the SSI stated by Van Overschee and De Moore
(1996), the projection P i of the future outputs into the row space of the past outputs can be
decomposed into the product of the observability matrix O ∈R2nyi×nm and the Kalman filter
sequence:

P i = O Ẑi =


G

GA
...

GAi−1


[
ζ̂i ζ̂i+1 ... ζ̂i+ j−1

]
(3.55)

In this sense, both matrices can be retrieved by working in the same way as previously done
for the covariance Toeplitz matrix L1|i , with application of the SVD to the already known
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projection matrix:

P i = USVT = [
U1 U2

][
S1 0

0 0

][
VT

1

VT
2

]
= U1S1VT

1 (3.56)

Again, considering that the rank of the projection matrix is indicated by its non-zero singular
values, the order of the sought-for stochastic state-space model is represented by the number
of the diagonal entries that are contained in matrix S1. The observability matrix and the
Kalman filter sequence can be therefore obtained by the following expression:

O = U1S1/2
1 (3.57)

Ẑi = O†P i (3.58)

Knowledge of the observability matrix and the Kalman filter sequence is sufficient for the
determination of the system matrices A and G as well as the covariance matrices Q, R and S.
This task is based on the projection of the row space of the shifted ”future” outputs into the
row space of the shifted ”past” outputs:

P i−1 = Y−
f

/
Y+

p = [
R̃31 R̃32

][
Q̃T

1

Q̃T
2

]
∈Rny(i−1)× j (3.59)

which can be accordingly factorised as the product of the shifted observability matrix O ∈
Rny(i−1)×2nm that contains the first ny(i −1) rows of O and the shifted Kalman filter sequence
Ẑi+1 according to:

P i−1 = O Ẑi+1 (3.60)

Subsequently, Ẑi+1 can be obtained by solving the above equation in a LS sense, leading to the
expression:

Ẑi+1 = O†P i−1 (3.61)

This enables the construction of the overdetermined set of linear equations that constitute an
extension of Eqs. (3.17) and (3.18):

[
Ẑi+1

Yi |i

]
=

[
A

G

]
Ẑi +

[
ew

ev

]
(3.62)

where Yi |i is a one-block row Hankel matrix which can be readily calculated by making use of
the already performed QR-factorisation from the following expression:

Yi |i =
[

R̃21 R̃22
][

Q̃T
1

Q̃T
2

]
∈Rny× j (3.63)

Finally, knowledge of Yi |i and the Kalman filter states sequence Ẑi enables the evaluation of
the system matrices A and G through the solution of the LS problem described by Eq. (3.62):
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[
A

G

]
=

[
Ẑi+1

Yi |i

]
Ẑ†

i (3.64)

3.3.5 Modal characteristics

Identification of the stochastic state-space model under consideration by means of matri-
ces A and G is sufficient for the extraction of the modal properties. Namely, an eigenvalue
decomposition of the matrix

A =
2n m∑
k=1

ψkλkψk (3.65)

yields the discrete-time eigenvectors ψk and eigevalues λk . Considering that matrix A was
obtained through the discretization of the continuous-time matrix Ac with a sampling rate
1/∆t :

A = e Ac∆t (3.66)

the equivalent continuous-time eigenproperties can be retrieved by:

ψck =ψk , λck = ln(λk )

∆t
(3.67)

Moreover, the eigenvalues of Ac appear in complex conjugated pairs and can be written as:

λck ,λ∗ck =−ξk ωk ± jωk

√
1−ξ2

k (3.68)

with ξk and ωk denoting the modal damping ratio and the eigenfrequency of mode k, respec-
tively. The sought for natural frequencies fk [Hz] and the damping ratios ξk (in % of critical)
are then evaluated from :

fk = |λck |
2π

(3.69)

ξk =−100
Re(λck )

|λck |
(3.70)

where Re(•) represents the real part of a complex number. Finally, the mode shapes φk in
terms of the measured quantities can be obtained through the combination of the eigenvectors
of A with matrix G:

φk = Gψk (3.71)

It should be noticed at this point that due to the existence of these complex conjugate pairs,
only the eigenvalues with positive imaginary part are selected for post-processing and there-
fore for a state-space model of order 2nm only nm modal characteristics are identifiable.

3.3.6 Implementation and stabilization

In operational modal analysis, weight is not lent to the estimation of the state-space model as
such, but rather to its modal properties. It is therefore of crucial importance that the order nm
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of the model is adequately determined, and the estimated modes represent the physical ones
and not a set of numerical modes that only contributes to the modelling of noise.

It was shown that for both algorithms the order of the system is indicated by the number
of non-zero singular values of matrices L1|i and P i , for the SSI-Cov and SSI-Data algorithms
respectively. Nonetheless, even the higher singular values that should be zero, in practice
present some residual values due to the presence of noise in the system which is also reflected
on the output measurements (Reynders et al., 2008). The existence of such noise is mainly
due to:

• Modelling errors. Most systems present a non-linear behaviour which implies that the
linear model described by Eqs. (3.17) - (3.18) cannot model the real structural response.

• Measurement noise introduced through the electronic devices of the sensor network.

• Computational noise caused by the finite computational precision.

• Finite number of data samples s, which implies that only an estimate of the system
matrices can be obtained and not the real ones.

In such a case, one could determine the order nm by detecting the maximum gap between
two successive singular values. Even so, as underlined by Van Overschee and De Moore (1996),
this gap may not be detectable in large and real structures, making hence difficult the decision
of the system order.

The common practice to overcome this difficulty, is the use of the so-called stabilization
diagram. The idea behind this diagram is to estimate models of varying orders within a
predetermined interval and then separate the physical modes from the spurious ones. To
this end, the SVD of either L1|i or P i is first determined and the maximum expected model
order nx is defined. Then, models starting from 2 up to nx with successively increasing
orders of 2 are estimated and the system matrices A and G are constructed by selecting the
accordingly increased number of singular values and vectors of either L1|i or P i , depending
on the implemented algorithm.

The main idea behind this procedure is that the physical modes are expected to appear
in most of these models with consistent frequency, mode shape and damping ratio while the
numerical ones will only appear in some of them. The separation of physical and spurious
modes is thus achieved by calculating the modal properties of a certain-order model and
comparing them with the ones of a one-order-lower model. If then the frequency, mode shape
and damping ratio differences are within preset limits, the mode is labelled as stable. These
stability requirements may be expressed by the following equations:

∣∣∣∣ fk − fk+1

fk

∣∣∣∣≤ 1% (3.72)

∣∣∣∣ξk −ξk+1

ξk

∣∣∣∣≤ 5% (3.73)

(
1−MACk,k+1

)≤ 2% (3.74)

where k indicates the identified model order and MAC is the Modal Assurance Criterion (MAC),
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which is a scalar constant that provides a measure of consistency between estimates of modal
vectorsφk andφk+1, defined by:

MACk,k+1 =
∣∣φH

k φk+1

∣∣2(
φH

k φk

)(
φH

k+1 φk+1

) (3.75)

with (•)H denoting the conjugate transpose or Hermitian transpose operator. By definition,
the MAC takes on values from 0 - corresponding to a zero degree of consistency between the
two vectors, to 1 - representing a consistent correspondence.

A graphical representation of this scheme is depicted in Fig. 3.3. It is shown that upon
decomposition of the block Toeplitz matrix of output covariances, a varying even number of
singular values (2m1 < 2m2) is successively chosen for the reconstruction of system matrices
A2m1 , G2m1 and A2m2 , G2m2 . Subsequently, each discrete-time system, of order 2m1 and 2m2,
respectively, is used to extract the discrete time properties based on Eq. (3.65). These in
turn yield the, m1 and m2 in number respectively, continuous-time eigenproperties on the
basis of Eq. (3.68) and the corresponding natural frequencies, damping ratios and mode
shapes through Eqs. (3.69)-(3.71). Thereafter, those properties satisfying the stability criteria
described by Eqs. (3.72)-(3.74) are plotted in the stabilization diagram and the arising vertical
alignments of stable poles are representing the physical modes of the model.
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Figure 3.3: Construction of stabilization diagram

It should be mentioned that the stability limits described in Eqs. (3.72) - (3.74) are just
denoting the adopted values and can be accordingly adjusted, depending on the quality of the
measurement data and the noise level. The reasoning behind the chosen limits is that damping
ratios are expected to have a high scatter, requiring larger tolerance, while frequencies and
mode shapes are less sensitive and stabilization may be ensured with lower limits.
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3.4 Cluster analysis

It was shown in this chapter that system identification using the SSI-Cov and SSI-Data al-
gorithms may be performed through the use of stabilization diagrams. However, such a
technique does not provide any automatic solution of the model identification problem at
hand and it is merely furnishing a graphical output that demands some visual inspection
for the extraction of the identified parameters. For instance, although it is evident from Fig.
3.3 that among the obtained natural frequencies for different model orders there are two
frequencies appearing with a certain consistency in vertical alignments, namely f1 and f2,
these frequencies are not given as a direct output but need to be graphically determined.

An innovative methodology to overcome this requirement for human intervention and to
enable an automatic identification of the modal characteristics is the cluster analysis. This
term denotes a set of techniques with the primary purpose of grouping objects into so-called
clusters, based on their characteristics. The resulting clusters from such an analysis should
present high external (between-cluster) heterogeneity as well as high internal (within-cluster)
homogeneity (Hair et al., 1998). Within the present project, the aim of this methodology is
to group the poles of the stabilization diagram that represent identical modes so that the
identification process is automatically performed.

Among the numerous cluster formulations, hierarchical clustering is one of the most
widely used methods, based on the hierarchy of a tree-like structure (Fig. 3.4). The imple-
mentation of hierarchical cluster-algorithms comprises three main steps: the measurement
of similarity between the objects of the dataset, the linkage of the objects in a hierarchical
structure and the definition of a cut-off rule for the interruption of the tree construction.
Among others, the divisive and agglomerative approaches are the basic ones for generating
hierarchical clustering, with the latter being the one that will be employed in this thesis.

A

B

C

D

E

F

Agglomerative

Divisive

Figure 3.4: Representation of hierarchical clustering in dendrogram

Divisive hierarchical clustering, which is a ”top-down” approach, starts with a single all-
inclusive cluster and at successive steps a cluster is split until each object constitutes an
individual cluster. On the other hand, agglomerative hierarchical clustering, which is by far the
most common technique, begins with each object considered as an individual cluster. Then,
at each subsequent step, the two closest clusters are merged into a new one, and the number
of clusters is hence reduced by one in each step, until all objects are grouped into a large
cluster. Within this context, various algorithms may be used, depending on the method for
the calculation of proximity between clusters. These include single linkage, complete linkage,
average linkage (Fig. 3.5), centroid method and Ward’s method.
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(a) Single linkage (b) Complete linkage (c) Average linkage

Figure 3.5: Criteria of cluster proximity

Conventionally, the similarity between objects or clusters is calculated by means of the
Euclidean distance between the quantities to be grouped, with the values of the objects
playing the role of coordinates. In the case of OMA, this proximity may be measured in terms
of frequencies, mode shapes and damping ratios. Yet, given the high scatter of the latter
and the possibility that two different modes may share the same damping ratio, it is more
appropriate to exclude the damping ratio from the similarity rules.

Hence, in the present framework, the proximity criteria is based on the estimated values
of the natural frequencies and mode shapes, so that the distance between two poles ( j and k)
is obtained from the following formula:

d j k =
∣∣∣∣ f j − fk

fk

∣∣∣∣+ (
1−MAC j ,k

)
(3.76)

in which f j is the natural frequency estimate of mode j and MAC j ,k the modal assurance cri-
terion between mode shapes j and k, calculated on the basis of Eq. (3.75). In this sense, when
the proximity between two estimates is within a certain limit, both estimates are considered
to represent the same physical mode and they are grouped in the same cluster.

Once the rule for measurement of similarity between different objects is determined, the
next step is to define the distance between already formed clusters. As already underlined,
and depicted in Fig. 3.5, there are various formulations of the hierarchical agglomerative
clustering, depending on the calculation of this distance. The one used herein, which is based
on the single-linkage criterion (Fig. 3.5(a)), assumes that the distance between two clusters is
defined as the shortest distance from any object in the first cluster to any object in the second
cluster.

Hereafter, the cut level of the hierarchical tree should be selected. Normally, this is de-
termined by the number of expected clusters. This number however is unknown since it
represents the number of modes to be identified. In this sense, for the interruption of cluster-
ing a rule is established whereby the distance from any object to its closest object of the same
cluster is restricted to a certain maximum value. Following the limits for the construction of
stabilization diagrams, indicated by Eqs. (3.72) - (3.74), the said maximum distance for the
tree cut level is set to 0.03, as the sum of the limits for natural frequencies and mode shapes. Of
course this value has a strong effect on the final number of clusters and its calibration depends
on the quality of the measured data and specifically on the noise level.
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Before venturing into the damage identification process by means of vibration monitoring, a
set of possible damaged states is necessary to be determined. Theoretically, this may comprise
an infinite number of damage combinations. Within the framework of the present project,
however, only a set of damaged states for which identifiability is ensured will be examined. In
this sense, this chapter constitutes an attempt to distinguish a series of identifiable damage
scenarios induced by corrosion and fatigue cracks. Such a task is accomplished by investigating
the change of dynamic properties (natural frequencies, mode shapes and damping ratios)
of the model under consideration in the presence of varying degrees of damage for each
mechanism.

4.1 Reference model

As highlighted in Chapter 1, the notions of damage and degradation always involve a compari-
son between two distinct situations, one of which corresponds to the initial or undamaged
condition. It is essential therefore to establish a starting point that will serve as the reference
basis for the structural health assessment. To this end, a typical stiffened panel on an FPSO
hull is considered, as illustrated in Fig. 4.1. The modal properties of this panel will be the
reference point of the sensitivity analysis.

Figure 4.1: Schematic representation of the considered stiffened panel

The steel structure whose geometrical properties are described in Table 4.1, consists of
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eight stiffeners divided into two groups of four, indicated with green and red colour respec-
tively (Fig. 4.1). It is assumed to constitute a member of the side shell of a typical section
of an FPSO, restricted to an area between two transverse webframes and two horizontal
stringers, as depicted in Fig. 4.2. It is modelled with a parametric numerical model using the
FE method. In this way the simulation of damage states is enabled by means of thickness re-
duction for the case of corrosion and through the inclusion of discontinuities for fatigue cracks.

Member Color Dimensions [mm] Young’s Modulus [GPa] Poisson ratio [-]

Plate Gray 8100×20
210 0.3Stiffeners Green 600×12+150×20

Stiffeners Red 550×11.5+150×18

Table 4.1: Geometry and material properties of the stiffened panel

In order to allow for the detailed modelling of localized damage, the panel is modelled with
solid elements. According to the regulations concerning the FE modelling of ship structures
(DNV, 2014), iso-parametric 20-node elements with mid-side nodes at the edges are used.
This option offers a displacement function that allows steep stress gradients as well as plate
bending with linear stress distributions in the thickness direction, using one element in the
said direction. The analytical formulation of the employed 20-node iso-parametric element is
described in Chapter 2.

Conventionally, for the modelling of stiffened panels in maritime engineering, the bound-
ary conditions on the plate edges are, in favour of safety, assumed to be simple supports (Paik
and Kim, 2002). Such an approach provides however, some pessimistic results, given that
all edges are surrounded by structural elements whose rigidities cannot be neglected. Con-
sidering thus the presence of the adjacent longitudinal stiffeners and transverse frames, one
would deduce that there exists a degree of translational and rotational restraint on the edges
of the plates which should be accounted for. Furthermore, these restraints are determined

Figure 4.2: Typical section of FPSO
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by the bending and torsional rigidities of the supporting members respectively, which are
significantly larger than those of the plates themselves. Through this reasoning, the boundary
conditions on the edges of the stiffened panel are considered to be fixed.

The dynamic behaviour of the reference stiffened panel and subsequently of the damaged
ones is assumed to be represented by the first ten natural modes, shown in Fig. 4.3 along with
their corresponding natural frequencies for the undamaged state. The choice of this modal
basis relies on the requirement for observability of all structural locations on the dynamic
response, so that damage is theoretically identifiable over the entire structure. Concretely, the
modal basis is chosen such that all components, i.e. plate and stiffeners, are participating in
the reduced-order dynamic representation of the panel.

It can be seen in Fig. 4.3 that the chosen modal basis for the representation of the dynamic
behaviour of the panel may be divided into three classes. Considering first the fact that the
panel consists of two groups of stiffeners, as illustrated in Fig. 4.1, the first two groups of mode
shapes can each be related to one of these groups of stiffeners. The first four mode shapes,
with frequencies ranging from 30.37 to 31.23 Hz, involve the vibration of the first group of
stiffeners indicated in green in Fig. 4.1. Accordingly, mode shapes from 5 to 8, corresponding
to frequencies between 31.67 and 32.60 Hz, refer to the vibration modes of the second group
of stiffeners which is represented in red in Fig. 4.1.

It should be remarked that the relatively small difference between the frequency ranges
of the two groups is justified by the different web heights of the two groups of stiffeners. The
green group of stiffeners is namely of web height equal to 600 mm while for the red group the
web height is 550 mm. It is thus reasonable that the more slender green group of stiffeners
vibrate at lower frequencies than the more stiff group of red stiffeners.

Finally, the third group of mode shapes pertains to the vibration of the plate with par-
ticipation of the stiffeners in a whole wave-length mode. The frequencies corresponding
to these mode shapes range from 65.25 to 67.01 Hz as indicated in Fig. 4.3. The reasoning
behind the higher frequency values of this last group compared to the previous ones lies in the
participation of the plate with a double-waviness bending mode and the whole wave-length
vibration of the stiffeners. This results in the contribution of all members with a high stiffness
index which subsequently leads to larger stiffness to mass ratios and therefore larger natural
frequencies.

It should be noted that the calculated modal basis does not account for the presence of
water in the ballast tank but it merely represents the wet stiffened panel as an independent
structure. This of course implies that the coupled motion between the panel and the water is
not taken into account, neglecting thus the contribution of the additional vibrating mass of
the liquid. Nonetheless, such an interaction between the fluid and the structure may have a
significant contribution in both the mode shapes and the natural frequencies. With respect to
the latter, it can be said that they will decrease due to the additional mass, hence getting closer
to the usual frequency range of excitation under operational conditions.

The dynamic properties of Fig. 4.3 are obtained on the basis of the reduced-order un-
damped eigenvalue problem of Eq. (2.34) in order to achieve time-efficient computation.
The full-order mass and stiffness matrices are first fully constructed and then reduced using
Eqs. (2.26) and (2.27), upon utilization of the scheme of Section 2.2.2 for the selection of the
degrees of freedom to be condensed. The final results of the reduced model are verified with
those of the full model in terms of the first ten natural frequencies.
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(a) Mode 1 - 30.37 Hz (b) Mode 2 - 30.76 Hz

(c) Mode 3 - 31.07 Hz (d) Mode 4 - 31.23 Hz

(e) Mode 5 - 31.67 Hz (f) Mode 6 - 32.12 Hz

(g) Mode 7 - 32.44 Hz (h) Mode 8 - 32.60 Hz

(i) Mode 9 - 65.25 Hz (j) Mode 10 - 67.01 Hz

Figure 4.3: Mode shapes and natural frequencies of the reference model



4.2 Corrosion

4.2 Corrosion

In studying the effect of corrosion on the structural properties of stiffened panels, the dominant
types of uniform and pitting corrosion will be examined, following the recommendations
provided by DNV (2013).

4.2.1 Uniform corrosion

The first damage condition to be considered, is general corrosion. It should be reminded that
such a state assumes a uniform distribution of the degradation on the exposed surface, even
though the corroded area exhibits a sort of waviness and roughness. In order to determine
the sensitivity of each structural component to this particular degradation mechanism, the
study is carried out by applying the uniform corrosion pattern to the plate and the stiffeners
separately. The damage is applied by means of an equivalent thickness reduction on the
corresponding structural member.

Plate

Fig. 4.4 illustrates the values of the first ten natural frequencies of the reference model in com-
parison with those of the corroded models. Five different degrees of damage are considered,
ranging from 5 % to 25 % material wastage on the plate. The calculated values of each natural
frequency for all ten modes of the corroded models are presented in Table 4.2. It should be
mentioned at this point that the analysed degrees of damage are chosen on the basis of the
maximum allowable thickness reduction on hull structures, which according to DNV (2013)
may be up to 30 %.
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Figure 4.4: Natural frequencies of the stiffened panel with uniform corrosion on the plate

As expected, this corrosion pattern has an insignificant influence on the natural frequen-
cies of the first eight modes, given that these are mainly referring to vibrational combinations
of the stiffeners. For the most severely damaged case of 25% wastage, the average frequency
change for modes 1 to 8 is only 1.5 Hz, corresponding to a 5 % reduction. On the other hand,
modes 9 and 10 are the ones to be highly affected by corrosion on the plate with a frequency
reduction of up to 15 Hz, which is translated to a more than 10 % difference. Such a reduction
is of course due to the fact that material wastage on the plate implies a subsequent stiffness de-
crease which becomes more manifest in plate-modes and therefore leads to the corresponding
reduction in natural frequencies.

43



4 Sensitivity Analysis

Mode no.

fk [Hz]

Reference
model

5%
wastage

10%
wastage

15%
wastage

20%
wastage

25%
wastage

1 30.37 30.15 29.90 29.60 29.25 28.84
2 30.76 30.59 30.40 30.16 29.87 29.52
3 31.07 30.95 30.80 30.62 30.37 30.01
4 31.23 31.14 31.03 30.86 30.56 30.26
5 31.67 31.44 31.19 30.93 30.74 30.54
6 32.12 31.96 31.77 31.54 31.27 30.95
7 32.44 32.32 32.17 32.00 31.79 31.54
8 32.61 32.51 32.39 32.24 32.06 31.85
9 65.25 63.94 62.34 60.48 58.44 56.28

10 67.01 65.97 64.07 61.78 59.58 57.50

Table 4.2: Natural frequencies of the stiffened panel with uniform corrosion on the plate

With regard to the corresponding mode shapes of the corroded models, it should be
remarked that they remain unaffected for all five degrees of damage. This can be verified
either visually or more accurately in terms of the MAC. Through the latter, the comparison
between mode shapes of a corroded model and those of the initial model may be carried
out by examining their MAC value, as introduced in Eq. (3.75). When two mode shapes are
showing a consistent correspondence, their MAC value will be 1, while for independent mode
shapes with null consistency their MAC value will be 0. In Fig. 4.5, a graphical representation
of the MAC matrix between the mode shapes of the reference model and the corroded one
with 25% wastage is presented. It is shown that, since all diagonal entries are equal to 1 and
the off-diagonal terms do not present any consistency, the mode shapes of the two models are
completely consistent and therefore it can be deduced that they are insensitive to the applied
degradation pattern.
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Figure 4.5: MAC matrix between mode shapes of reference model and 25%-corroded model
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4.2 Corrosion

Stiffeners

In Fig. 4.6, the natural frequencies of the corroded models with uniform thickness reduction
on the stiffeners are graphically depicted. Again, the degree of damage varies from 5 to 25 % of
material wastage and the exact values of the natural frequencies are summarized in Table 4.3.
Similarly, as in the previous scenario, the mode shapes were found to remain unaffected by all
five degrees of damage.
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Figure 4.6: Natural frequencies of the stiffened panel with uniform corrosion on the stiffeners

Unlike the uniform corrosion pattern on the plate, the structure appears to be less sensitive
to corrosion on the stiffeners. This can be readily observed by a close view of the mode shapes
in Fig. 4.3. Since mode shapes 1 to 8 involve the lateral vibration of stiffeners, their natural
frequencies are mainly dominated by the stiffness contribution of the width of the flanges. It is
therefore reasonable that a thickness reduction on the flange and the web of the stiffeners has
only a minor influence on the relevant stiffness and subsequently on the natural frequencies.
The same reasoning applies for modes 9 and 10, to a lesser extend though since, apart from
lateral vibration of stiffeners, their mode shapes involve bending of the plate which is much
more influenced by thickness reduction of the web of stiffeners.

Mode no.

fk [Hz]

Reference
model

5%
wastage

10%
wastage

15%
wastage

20%
wastage

25%
wastage

1 30.37 30.02 29.67 29.30 28.92 28.53
2 30.76 30.35 29.95 29.53 29.10 28.68
3 31.07 30.62 30.16 29.70 29.24 28.78
4 31.23 30.75 30.27 29.79 29.31 28.84
5 31.67 31.26 30.83 30.38 29.93 29.47
6 32.12 31.64 31.14 30.65 30.13 29.63
7 32.44 31.90 31.36 30.81 30.27 29.74
8 32.61 32.04 31.47 30.90 30.35 29.80
9 65.25 65.00 65.00 64.33 63.88 63.30

10 67.01 66.72 66.36 65.92 65.25 64.63

Table 4.3: Natural frequencies of the stiffened panel with uniform corrosion on the stiffeners
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4.2.2 Pitting corrosion

The pitting corrosion pattern applied on the plate of the stiffened panel is based on available
data from actual hull structures. Although the distribution of pits on the plate surface shows
high scatter, it can be accurately assumed, according to Paik et al. (2003), that they are following
a uniform distribution. Hence, a uniform distribution of pits over the surface of the plate is
assumed in the present project as well, with a representative pattern of 20% Degree of Pitting
(DOP) depicted in Fig. 4.7(a).

(a) Distribution of pits for 20% DOP (b) Detail of FE model with corrosion pits

Figure 4.7: Properties of model with pitting corrosion

Based on actual observations (Nakai et al., 2004), the shape of corrosion pits on the surface
of hulls is a part of a sphere, while their diameter to depth ratio is almost constant between
10:1 and 8:1. The maximum pit diameter varies between 25 and 80 mm (Daidola et al., 1997)
and the maximum average of allowable thickness loss is equal to 50% of the initial thickness.
Finally, the maximum allowable DOP, upon which replacement is required, is equal to 30%
according to Paik and Thayamballi (2002). Based on the aforementioned properties, the pits
are assumed to be spherically shaped with diameter normally distributed between 25 and
80mm and the diameter to depth ratio is chosen to be constant and equal to 10:1, leading to a
normally distributed pit depth between 2.5 and 8 mm. A detail of the FE model with pitting
corrosion on the plate is depicted in Fig. 4.7(a).

1 2 3 4 5 6 7 8 9 10

30

40

50

60

70

Mode

Fr
eq

u
en

cy
[H

z]

Reference model
5% DOP
10% DOP
15% DOP
20% DOP

Figure 4.8: Natural frequencies of the stiffened panel with pitting corrosion on the plate

The results, in terms of natural frequencies, for four different DOP are graphically pre-
sented and cross-compared with the corresponding values of the reference model in Fig. 4.8,
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4.3 Fatigue cracks

while the exact values are summarized in Table 4.4. Due to the localized character of this
damage state, it is seen that the global modal properties are hardly affected. Not only do the
natural frequencies appear to be insensitive, with the most noticeable change in the order of
only 1.5%, but also the corresponding mode shapes remain constant.

Mode no.
fk [Hz]

Reference
model

5% DOP 10% DOP 15% DOP 20% DOP

1 30.37 30.32 30.26 30.20 30.15
2 30.76 30.71 30.66 30.65 30.61
3 31.07 30.04 31.00 30.98 30.97
4 31.23 31.21 31.18 31.18 31.15
5 31.67 31.61 31.56 31.51 31.44
6 32.12 32.08 32.05 32.01 31.97
7 32.44 32.41 32.38 32.36 32.34
8 32.61 32.58 32.55 32.55 32.52
9 65.25 64.93 64.77 64.31 63.98

10 67.01 66.81 66.63 66.25 66.07

Table 4.4: Natural frequencies of the stiffened panel with pitting corrosion on the plate

It is worth mentioning at this point that localized changes in the structural properties of a
model, i.e. stiffness and mass distribution, are mostly visible in higher order modes associated
with local vibrations. However, the response of dynamic systems is usually dominated by the
first few global modes and therefore changes in the modal properties of higher modes are
very difficult to observe. In this sense, it is reasonable that the first ten modes of the stiffened
panel are insensitive to pitting corrosion. Although this hurdle can be overcome by extending
the modal basis with higher modes, it is unlikely that these will be excited under normal
operational conditions, given their significantly high natural frequencies.

4.3 Fatigue cracks

Fatigue cracks constitute the second group of damage states to be examined. Within this
context, cracks are introduced in the numerical model of the reference structure by means
of discontinuities in the FE model. In Fig. 4.9, a close-up view of the FE model with a
through thickness crack on the plate is presented. It should be noticed at this point that crack
growth and propagation models are not taken into account within this study and cracks are
merely considered as existing discontinuities with varying length, width and location over the
structural model.

Apart from the identifiable damage states due to fatigue cracks, that constitute the ultimate
aim of this section, it is of particular interest to underline a set of insensitive crack scenarios
for which the modal properties remain constant. These pertain to through-thickness cracks
on the plate of the stiffened panel with varying opening width and length. A representative
case of these scenarios is depicted in Fig. 4.9 for which a crack between two stiffeners with an
opening of 2.0 mm is assumed. Similar unresponsive scenarios comprise cracks perpendicular
to the stiffeners either within the plate or at the edges of the plate, representing the connection
with the adjacent members.
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4 Sensitivity Analysis

Figure 4.9: Detail of the FE model with fatigue through-thickness cracks on the plate

4.3.1 1st Scenario

The first group of identifiable crack scenarios to be examined pertains to damage on the
stiffeners and specifically at their connection to the transverse frame. In order to approach a
lower bound of these damage states, a severe scenario is first assumed. This comprises a fully
cracked connection between a stiffener and the transverse frame. The natural frequencies
obtained in this case are graphically presented in Fig. 4.10 along with those of the reference
model.
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Figure 4.10: Natural frequencies of the cracked stiffened panel - 1st scenario

Apart from the first mode shape of the cracked model, which is illustrated in Fig. 4.11
along with the first mode shape of the reference model, the rest of the modes present very
little difference with the reference model. The new mode of the cracked model involves lateral
vibration of the stiffener whose connection is assumed to be destroyed. It is therefore evident
that such a model may be readily identified either in terms of frequencies, given the high
reduction of almost 50%, or in terms of mode shapes. It should additionally be underlined
that the presence of mode 1 in the cracked model causes mode shapes 2 to 10 to appear in
shifted order, corresponding thus to mode shapes 1 to 9 of the reference model.
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4.3 Fatigue cracks

(a) Reference model - 30.37 Hz (b) Cracked model - 17.58 Hz

Figure 4.11: First mode shape of reference and cracked stiffened panel - 1st scenario

4.3.2 2nd Scenario

In the second scenario, the same weld between the stiffener and the transverse frame is
assumed to be partially destroyed. Concretely, only the connection between the flange of the
stiffener with the transverse frame is assumed to be cracked while the web is considered to
be fully welded. In Fig. 4.12 the natural frequencies of the cracked model are compared with
those of the reference model, while their values are presented in Table 4.5. For the sake of
generality, it should be mentioned that equivalent results, in terms of sensitivity and therefore
identifiability, are obtained by assuming any other stiffener-connection to be cracked.
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Figure 4.12: Natural frequencies of the cracked stiffened panel - 2nd scenario

Through Fig. 4.12, it can be readily deduced that modes 1 and 9 are highly affected in
terms of frequencies by this crack scenario, creating thus an appropriate sensitive point for
identification. However, it should be remarked that, unlike the previous scenario, in this case
not only mode shape 1 shows inconsistency with the reference model but mode shape 9 as well.
In Fig. 4.13 a comparison between the first mode shape of the reference and the cracked model
is illustrated whereby it is shown that the latter is represented by a half wave-length vibration
of the stiffener with cracked connection. Similarly, Fig. 4.14 provides the corresponding
comparison between the ninth mode shapes of the two models. Although in the previous
crack scenario the ninth mode was similar to that of the reference model, in this figure it is
seen that it represents, as in the case of the first mode, a whole wave-length vibration pattern
of the cracked stiffener.
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(a) Reference model - 30.37 Hz (b) Cracked model - 25.61 Hz

Figure 4.13: First mode shape of reference and cracked stiffened panel - 2nd scenario

(a) Reference model - 65.25 Hz (b) Cracked model - 58.48 Hz

Figure 4.14: Ninth mode shape of reference and cracked stiffened panel - 2nd scenario

4.3.3 3rd Scenario

Finally, the third crack scenario refers to the same connection between the stiffener and the
transverse frame, but with a smaller degree of damage. Specifically, the web of the stiffener
is again assumed to be completely welded with the frame while the flange is assumed to be
partially cracked, only through half of the thickness. The obtained natural frequencies for the
cracked model are illustrated in Fig. 4.15 along with those of the reference model while the
corresponding values are summarized in Table 4.5.
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Figure 4.15: Natural frequencies of the cracked stiffened panel - 3rd scenario
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4.3 Fatigue cracks

Unlike the previous scenario, in which the fully cracked flange had a strong impact on
both frequencies and mode shapes, in this case the natural frequencies are seen to be less
sensitive. This can be verified through Fig. 4.15, in which frequencies 1 and 9 were expected
to show a distinguishable discrepancy with those of the reference model while in reality this
is only in the order of 1%. On the other hand, it can be seen that the assumed crack yields
an identifiable first mode shape. In Fig. 4.16 a comparison of the first mode shape between
the cracked and the reference model is shown. It can be seen that even though both modes
are represented by closely spaced frequencies, their shapes do not show any correspondence,
enabling thus the distinction between the two models.

(a) Reference model - 30.37 Hz (b) Cracked model - 30.07 Hz

Figure 4.16: First mode shape of reference and cracked stiffened panel - 3rd scenario

As in the case of pitting corrosion, this fatigue crack scenario involves a localized change of
the structural system. Although this change is visible in terms of mode shapes, the influence
on the natural frequencies would be observable only in higher order modes which are unlikely
to contribute to the global response. Consequently, even though it is possible to ensure identi-
fiability by means of the forward problem, observability and subsequently damage detection
will be always determined by the inverse process.

Mode no.
fk [Hz]

Reference
Model

1st Scenario 2nd Scenario 3rd Scenario

1 30.37 17.58 25.61 30.07
2 30.76 30.46 30.48 30.57
3 31.07 30.93 30.95 30.99
4 31.23 31.20 31.21 31.21
5 31.67 31.62 31.65 31.32
6 32.12 32.01 32.09 31.83
7 32.44 32.29 32.43 32.30
8 32.61 32.48 32.60 32.57
9 65.25 32.61 58.48 64.77

10 67.01 65.53 66.09 66.76

Table 4.5: Natural frequencies of the stiffened panel with fatigue cracks

The values of the natural frequencies for all three crack scenarios are summarized in Table
4.5 in comparison with those of the reference model. For the sake of a fair comparison, it
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should be remarked that frequencies marked with gray represent new modes that do not exist
in the reference model. Hence, modes 2 to 10 of the first and third scenarios are showing
correspondence with modes 1 to 9 of the reference model. Accordingly, for the second scenario
modes 2 to 8 correspond to modes 1 to 7 of the reference model while mode 10 is equivalent
to mode 8 of the reference model.
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5 Operational Modal Analysis

5.1 Operational response

For the implementation of the SSI algorithms, a set of synthetic measurements should be ob-
tained for each one of the damage scenarios. Such a task is accomplished through the dynamic
analysis of each model in the presence of environmental loads. Generally, the stiffened panel
in ships, and particularly in FPSOs, may be subjected to a combination of lateral pressure and
in-plane loads. Lateral pressure is due to water pressure which in turn is induced by waves or
sloshing loads. On the other hand, in-plane loads comprise axial load and in-plane bending,
which are principally induced by the overall hull bending. Setting aside the latter which is
expected to have a minor contribution to the lateral vibrations of the panel, the focus will be
on the wave and sloshing loads. Nonetheless, a stiffened panel may be located either below or
above the waterline and it is therefore most likely that it will be excited by sloshing loads as
part of the ballast tanks Fig. 5.1.

H

L

W

Figure 5.1: Ballast tank

It should be noted that despite the high scientific and industrial attention for the sloshing
phenomenon, there is not yet an accurate and robust prediction approach for the sloshing-
induced impact loads (Kim et al., 2013). It is for this reason that various classification societies,
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5 Operational Modal Analysis

among others the American Bureau of Shipping (2006), DNV (2006) and Lloyd’s Register
(2009), endorse the model test investigation for the sloshing assessment, in preference to
computational or analytical approaches.

As underlined by Lloyd’s Register (2004), for an oscillating tank, various sloshing waves
will be generated as a function of the fill depth and the frequency content of the oscillations.
These waves may comprise different modes of liquid motion whose dynamic pressure though
can be classified into two types; namely non-impulsive and impulsive pressure. The latter,
which is to be examined within the framework of this project, arises in tanks with low fill
levels, between 0.1H and 0.3H where H denotes the height of the tank (Fig. 5.1), and is due
to a rapid and continuous build-up of liquid and liquid pressure on the immersed surfaces.
Typically, the duration δt of such an impact is in the order of 1/10 - 1/1000 of the sloshing
wave period while its period Tfn coincides with that of the sloshing-induced wave. Fig. 5.1
gives a schematic representation of a sloshing-induced impulsive pressure normalised over
the hydrostatic pressure ρw g h.
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Figure 5.2: Typical sloshing-induced impulsive pressure

It is also possible that high impact pressures due to sloshing may not occur in the most
severe environmental conditions (Lloyd’s Register, 2009). Such a case is especially relevant
for low filling levels with water heights between 0.10H and 0.30H. The reasoning behind
this is that in harsh sea conditions the sloshing waves break due to their high steepness and
hence the wave energy is dissipated before they reach the walls of the tank. On the other
hand, in mild seastates, the sloshing waves are significantly less steep and may thus travel the
entire distance of the tank before impacting the wall. Consequently, it can be deduced that
sloshing-induced impacts in the ballast tanks (Fig. 5.3) are more likely to occur in less severe
sea conditions.
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Figure 5.3: Pressure signal for low filling level h = 0.15H (Kim et al., 2013)
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With the assumption of a low fill height equal to 0.15H = 1.20 m for the ballast tank whose
stiffened panel is examined, the influence of stiffeners on the water motion may be neglected
given that for this height the waterline is located between the level of the first and the second
stiffener (Ibrahim, 2005). The tank may thus be simplistically considered as rectangular for the
assessment of water motion and the fluid-free-surface natural frequency can be obtained by:

ω f n =
√

(2n +1)
πg

W
tanh

(
(2n +1)πh

W

)
(5.1)

where g denotes the gravitational acceleration, h represents the fill height and W = 5.5 m is
the width of the tank. Fig. 5.4 illustrates the first two natural frequencies of the free surface
with respect to the fill height as well as the values that correspond to the chosen fill level, equal
to 1.85 and 4.05 rad/s respectively. Consequently, the corresponding natural periods are equal
to Tf0 = 3.40 s and Tf1 = 1.55 s.
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Figure 5.4: Natural frequencies of the free surface as function of the fill height

According to the above considerations, the input pressure that will yield the operational
response of the stiffened panel is assumed to consist of a series of impacts with duration equal
to δt = 1/100Tf0 and period equal to the natural period of the fluid-free-surface Tf0 = 3.40 s,
based on the notation of Fig. 5.2. The pressure is considered to act on the plate of the stiffened
panel on a band of width 0.2h around the waterline. Fig. 5.5 illustrates a time frame of 50 s for
the signal of the adopted normalized pressure, whose magnitude is equal to three times the
hydrostatic pressure.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

Time [s]

P
re

ss
u

re
p

w
/ρ

w
g

h
[-

]

Figure 5.5: Time history of the input pressure with δt = 0.034 s and T f 0 = 3.4 s
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5.2 Sensor network

Before the sensor configuration is determined, it is essential to examine the identifiability
conditions of the examined system. In order for the entire modal basis to participate in the
structural response, the system must be controllable; all states thus should be controlled
by the input or in terms of the modal characteristics, matrix ST

pΦ should not contain any
zero columns. In practice, this requirement is fulfilled by ensuring that none of the modal
responses is zero and therefore all modes are contributing to the global dynamic response of
the panel.
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Figure 5.6: Graphical representation of the matrix SyΦ - Observability condition

Similarly, in order for the structural modes to be identifiable, observability of the system
should be ensured. This condition implies that all states are observable in the system output
and is satisfied if and only if SyΦ does not contain any zero columns. An examination of the
modal basis, depicted in Fig. 4.3, is sufficient to deduce that the stiffeners are contributing
to all vibration modes in the lateral direction (along the y-axis) while the plate is mainly
participating in modes 9 and 10 (along the z-axis). In this sense, the initial candidate sensor
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a1ya2ya3ya4ya5ya6ya7ya8y

Figure 5.7: Sensor locations

56



5.3 Reference model

configuration is assumed to consist of 8 accelerometers placed at the flanges of the stiffeners
and denoted by ai y, with i referring to the number of the stiffener and y representing the
measuring direction. Fig. 5.6 shows a graphical representation of the modal projections SyΦ

to the considered sensor locations indicating the contribution of the modes to each of the
outputs. In order to achieve observability of modes with both half and whole wave-length
vibration of the stiffeners, the sensors are placed at a third of the length of the stiffeners.

Although it can be seen from Fig. 5.6 that observability may be ensured even with two
accelerometers, one for each group of stiffeners (e.g. a1y and a5y), it will be shown in the
following section that due to the closely spaced natural frequencies of the first eight modes,
some of the frequencies are masked by the noise, leading thus to an underestimation of the
model order. The minimum number of sensors in order to overcome this problem and ensure
robustness of the identified properties for all model states is equal to 8, one on each stiffener
(Fig. 5.7). Based on this considerations, the final measurement set-up to be used for the
identification process consists of the 8 accelerometers of Fig. 5.7.
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Figure 5.8: Time history of acceleration at sensor location a1y with 3% noise level

Application of the force time signals to the FE model produces the artificial measurement
data at the these chosen sensor locations. Hereafter, the measurement data yk are polluted
with Gaussian white noise, generating thus the noisy output vector ỹk ∈Rny at each time step
k, as a function of the standard deviation:

ỹk = yk +δσy rk (5.2)

in which δ is the noise level, σy ∈ Rny×ny represents the standard deviation matrix which
contains the standard deviations of the measurement signals as diagonal entries and rk ∈Rny

is a vector containing random values drawn from the standard normal distribution. Fig. 5.8
illustrates a 10 sec time frame of the acceleration signal at sensor location a1y upon pollution
with 3% noise.

5.3 Reference model

In order to investigate the feasibility of damage detection on the examined stiffened panel,
a consistent comparison framework should be determined. The existence of inevitable dis-
crepancies between the real structure and the numerical model, implies that employment
of the latter as a reference model would introduce a certain bias in the results. To avoid this,
the reference model , which in reality may not refer to an undamaged condition, should be
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5 Operational Modal Analysis

calibrated so that the in-situ dynamic properties are more accurately represented. In this
sense, the reference basis which was previously numerically evaluated, is redetermined by
means of the inverse process, using the SSI algorithms.

The initial model is thus subjected to the sloshing-induced impulsive pressure of Fig. 5.5
and its response is obtained using the first ten modes, as presented in Chapter 4. The time
histories of the accelerations at the chosen sensor locations are then extracted and polluted
with 3% white Gaussian noise according to Eq. (5.2).
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Figure 5.9: Stabilization diagram using the SSI-Cov algorithm

For both algorithms, the number of block rows i for the construction of the block Hankel
matrix Y0|2i−1, is a parameter that has a strong effect on the quality of stabilization diagrams
and it should therefore be properly adjusted. In the following analyses, its value is equal to 30
and the subsequent stabilization diagrams are constructed for model orders ranging from 2
to 60. Furthermore, the employed limits for the classification of the estimates, based on Eqs.
(3.72)-(3.74), are: 1% for natural frequencies, 5% for damping ratios and 2% for mode shape
estimates.

30 35 40 45 50 55 60 65

10

20

30

40

50

60

Frequency [Hz]

M
o

d
el

o
rd

er Stable frequency
Stable damping
Stable mode shape

Figure 5.10: Stabilization diagram using the SSI-Data algorithm

The results obtained with the SSI-Cov and SSI-Data algorithms are presented in Figs. 5.9
and 5.10, respectively. The estimated natural frequencies and their errors resulting from
each algorithm are summarized in Table 5.1 along with the corresponding true values, as
calculated in Chapter 4. Although both algorithms furnish sufficiently accurate results, it
should be remarked that the SSI-Cov algorithm is performing significantly faster, compared
to the relatively slow QR-factorization required at the corresponding step of the SSI-Data
algorithm. Namely, an average execution time of the SSI-Data algorithm with the present
configuration is 12.7 seconds while the SSI-Cov algorithm needs only 5.6 seconds.
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Figure 5.11: Number of elements of the clusters - using the SSI-Cov algorithm
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Figure 5.12: Number of elements of the clusters using the SSI-Data algorithm

An indicative view of the capabilities of the algorithms in terms of accuracy may be formed
through Table 5.1. One can see that the obtained estimates of the natural frequencies using
both algorithms present a maximum error of 1.57%. This implies that small changes in natural
frequencies, (i.e. up to that percent) are impossible to be identified since they can reasonably
be attributed to the existence of noise. Consequently, identifiability, that was ensured for a
couple of scenarios in Chapter 4 through the forward problem, will finally be determined from
the accuracy of the inverse process.

In order to extract the identified natural frequencies in an automatic way, the poles of

Mode no.
True values SSI-Cov SSI-Data

fk [Hz] f̂k [Hz] error [%] fk [Hz] error [%]

1 30.37 30.31 0.20 30.36 0.03
2 30.76 30.42 1.10 30.41 1.14
3 31.07 30.86 0.67 30.84 0.74
4 31.23 31.22 0.03 31.19 0.13
5 31.67 31.62 0.16 31.59 0.25
6 32.12 32.04 0.25 32.02 0.31
7 32.44 32.41 0.09 32.39 0.15
8 32.60 32.49 0.34 32.51 0.28
9 65.25 64.28 1.49 64.34 1.39

10 67.01 65.96 1.57 65.97 1.55

Table 5.1: Frequency and damping ratio estimates of the reference model
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5 Operational Modal Analysis

the stabilization diagrams for both SSI-Cov and SSI-Data algorithms are processed by an
agglomerative cluster analysis with a single linkage proximity rule between clusters and
a maximum distance for the tree cut level, defined by Eq. 3.76, equal to 0.03. Once the
clusters are formed, they can be filtered with respect to the number of elements in order
to determine the physical poles which appear with certain consistency in the stabilization
diagrams and discard the spurious ones which are gathered in cluster with only a few elements.
The resulting clusters are graphically illustrated in Figs. 5.11 and 5.12 for each one of the
algorithms respectively, with their average value on the horizontal axis and the number of
elements in the vertical axis. The clusters with less than 5 elements are filtered out from
the aforementioned figures and therefore the illustrated clusters represent only the physical
modes.

5.3.1 Limitations

It should be noted at this point that due to the configuration of the considered structure,
the implementation of the SSI algorithms is subject to certain restrictions. Namely, the fact
that the first eight natural frequencies are closely spaced, may, under certain circumstances,
render the algorithms incapable of separating the frequencies and lead to an underestimated
model order and misleading natural frequencies. It is therefore essential to point out that such
limitations would be visible only through the inverse process and as a result the use of any
a priori knowledge with respect to the system is fundamental in order to tackle any masked
effects.

One of these susceptible points, which can be adequately explained by means of the
stabilization diagram, is the noise level in the output measurements. Considering an ideal,
noiseless, model which could be accurately captured by the inverse process, would yield a
stabilization diagram with exclusively stable points, aligned with the corresponding real values
of the natural frequencies. On the other hand, pollution of the output measurements of the said
system with noise, would introduce a certain drift of the estimated values around the real ones,
ruining therefore their alignment. When the identified poles are closely spaced, the misaligned
estimates are merged and the identification of the real parameters becomes impossible. This
phenomenon is observed in Fig. 5.13, which presents the stabilization diagram for a noise
level equal to 5%. It is seen that due to high noise, the closely spaced natural frequencies are
blended in the stabilization diagram, becoming hence indistinguishable, while stabilization is
achieved mainly in terms of frequencies.

The number of employed sensors is another factor that should be carefully considered.
Again, due to the existence of closely spaced natural frequencies, the separation of the esti-
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Figure 5.13: Stabilization diagram using the SSI-Cov algorithm with 5% noise
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Figure 5.14: Stabilization diagram using the SSI-Cov algorithm with 7 sensors (excluding a5y)

mated values may become impossible with the reduction of the number of sensors. In Fig.
5.14, which depicts the stabilization diagram resulting from the use of 7 sensors upon removal
of sensor a5y (Fig. 5.7), one can see that although the results are less sensitive to the reduction
of the output measurements, the identified modal characteristics are erroneous. Namely, the
modal estimates of the left-hand side appear to stabilize after a certain model order however,
only 7 vertical alignments are presented, providing thus the information for only 7 natural
frequencies.

5.3.2 Alternative configuration

Apart from the proposed sensor network configuration of Fig. 5.7, with 8 accelerometers at
a third of the length of the stiffeners, the identification process for the reference model may
be equally performed using strain gauges on the plate. Observing the mode shapes of the
reference model (Fig. 4.3), one can deduce the that lateral vibration of two adjacent stiffeners
is combined with bending of the intermediate plate. Therefore, the information contained in
two accelerometers placed on the flanges of adjacent stiffeners is equivalent to that provided
by one of the accelerometers and a strain gauge placed in the middle of the intermediate plate,
measuring in the x-axis (Fig. 5.7).
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Figure 5.15: Stabilization diagram using the SSI-Cov algorithm with 7 accelerometers and 1 strain
gauge

In Fig. 5.15, the stabilization diagram using the SSI-Cov algorithm with 7 accelerometers
and 1 strain gauge is presented. Accelerometer a5y is now excluded and a strain gauge on the
plate between a5y and a6y (Fig. 5.7) is employed instead. It is seen that a sufficiently accurate
identification of the natural frequencies may be achieved with this configuration as well.
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5 Operational Modal Analysis

However, it should be remarked that with this alternative configuration the stiffener without
accelerometer remains unobservable and if for instance a crack occurs on this stiffener, it
will not be identifiable. It is therefore for this reason that the rest of the study is based on the
initially proposed layout of Fig. 5.15.

5.4 Damage identification

As in the case of the reference model, all damaged models are subjected to the sloshing-
induced impulsive pressure of Fig. 5.5 and their response is obtained using the first ten modes,
as presented in Chapter 4. The time histories of the measurements at the chosen sensor
locations (Fig. 5.7) are polluted with 3% white Gaussian noise and then processed with the
SSI-Cov algorithm, whose number of block rows i is chosen equal to 30. Subsequently, the
stabilization diagrams are constructed for each model and their data are further processed
with a cluster analysis. The obtained clusters are filtered by removing the ones with less than
5 objects and the retained ones are those that represent the physical modes. The identified
modal properties for each mode are finally given by the average values of each cluster.

5.4.1 Uniform corrosion

The structural degradation due to uniform corrosion is studied, as in the forward problem,
separately due to corrosion on the plate and the stiffeners. The same damaged scenarios as
those of Chapter 4 are now investigated through the inverse process.

Plate

Considering that the mode shapes of the stiffened panel with uniform corrosion on the plate
remain constant, the identification is examined only in terms of frequencies. The identified
change of the first and ninth natural frequency with respect to the five degrees of damage are
presented in Fig. 5.16. It is seen that the degradation is well captured by both frequencies
while it is more evident through the ninth (Fig. 5.16(b)) which refers to the vibration mode of
the plate, on which the damage is applied. The identified natural frequencies of all ten modes
for the five degrees of wastage are summarized in Table 5.2 with the numbers into parenthesis
indicating the difference from the reference model.
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Figure 5.16: Estimated natural frequencies for the model with uniform corrosion on the plate
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Mode
no.

f̂k [Hz]

Reference
model

5%
wastage

10%
wastage

15%
wastage

20%
wastage

25%
wastage

1 30.31 30.00 (1.02) 29.84 (1.55) 29.54 (2.54) 29.13 (3.89) 28.73 (5.21)

2 30.42 30.49 (0.23) 29.99 (1.41) 30.03 (1.28) 29.77 (2.14) 29.45 (3.19)

3 30.86 30.84 (0.06) 30.48 (1.23) 30.16 (2.27) 30.27 (1.91) 29.93 (3.01)

4 31.22 31.11 (0.35) 30.87 (1.12) 30.62 (1.92) 30.30 (2.95) 29.97 (4.00)

5 31.62 31.17 (1.42) 31.29 (1.04) 30.93 (2.18) 30.62 (3.16) 30.36 (3.98)

6 32.04 31.77 (0.84) 31.81 (0.72) 31.45 (1.84) 31.13 (2.84) 30.81 (3.84)

7 32.41 32.20 (0.65) 32.14 (0.83) 31.94 (1.45) 31.66 (2.31) 31.39 (3.15)

8 32.49 32.42 (0.22) 32.22 (0.83) 32.26 (0.71) 31.97 (1.60) 31.72 (2.37)

9 64.28 62.95 (2.07) 61.41 (4.46) 59.57 (7.34) 57.55 (10.47) 55.41 (13.78)

10 65.96 64.95 (1.53) 63.07 (4.38) 60.81 (7.81) 58.65 (11.08) 56.61 (14.17)

Table 5.2: Natural frequency estimates of the stiffened panel with uniform corrosion on the plate

If one considers the accuracy of the identified frequencies of the reference model, which
was found to be 1.57%, as the error margin of the SSI-Cov algorithm, then the feasibility of
damage identification may be based on the relation between this accuracy and the estimated
frequency change. An observation of the values of Table 5.2 reveals that for a small degree of
damage (5%) the identified changes are quite close to the error margin and therefore nothing
can be safely deduced about damage. It is however evident that a 10% material wastage may
be readily identified through modes 9 and 10 for which the frequency change is larger than
4%. For more severe damage, the structural degradation can be detected by a larger part of the
modal basis while it becomes fully observable through the entire modal basis for the severe
state of 25% wastage.

Stiffeners

The same pattern, as in the previous case, occurs for the first and ninth natural frequency
of the model with uniform corrosion on the stiffeners (Fig. 5.17). Although the frequencies
are not that highly influenced by this type of corrosion, the degradation trend is quite well
captured and the existence of damage can be safely deduced.

Following the same reasoning with respect to the error margin of the estimates, one can
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Figure 5.17: Estimated natural frequencies for the model with uniform corrosion on the stiffeners
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5 Operational Modal Analysis

conclude again that a small degree of damage, equal to 5%, is not possible to be identified
with certainty. It is shown however, that for larger degrees (10% and above) the existence of
uniform corrosion on the stiffeners can be identified using all modes that refer to the vibration
of the stiffeners, i.e modes 1 to 8. Again, for the most severely damaged scenario, degradation
becomes identifiable through the entire modal basis with estimated frequency changes larger
than 3%.

Mode
no.

f̂k [Hz]

Reference
model

5%
wastage

10%
wastage

15%
wastage

20%
wastage

25%
wastage

1 30.31 29.85 (1.52) 29.17 (3.76) 28.99 (4.35) 28.30 (6.63) 28.08 (7.36)

2 30.42 30.25 (0.56) 29.64 (2.56) 29.41 (3.32) 28.79 (5.36) 28.51 (6.28)

3 30.86 30.48 (1.23) 29.98 (2.85) 29.74 (3.63) 29.13 (5.61) 28.76 (6.80)

4 31.22 30.60 (1.99) 30.32 (2.88) 29.82 (4.48) 29.47 (5.61) 28.81 (7.72)

5 31.62 31.02 (1.89) 30.73 (2.81) 30.15 (4.65) 29.65 (6.23) 29.11 (7.93)

6 32.04 31.43 (1.90) 31.16 (2.74) 30.56 (4.62) 29.99 (6.40) 29.72 (7.24)

7 32.41 31.79 (1.91) 31.39 (3.15) 30.95 (4.50) 30.35 (6.36) 30.22 (6.75)

8 32.49 32.17 (0.98) 31.52 (2.98) 31.07 (4.37) 30.93 (4.80) 30.74 (5.39)

9 64.28 64.01 (0.42) 63.74 (0.84) 63.37 (1.41) 62.94 (2.08) 62.35 (3.01)

10 65.96 65.66 (0.45) 65.33 (0.95) 64.81 (1.74) 64.33 (2.47) 63.61 (3.56)

Table 5.3: Natural frequency estimates of the stiffened panel with uniform corrosion on the stiffeners

5.4.2 Pitting corrosion

In contrast to uniform corrosion, it was shown through the forward problem that degradation
due to pitting corrosion has only a small influence on the natural frequencies of the panel. It
was also remarked that for this reason it would be difficult to use vibration-based monitoring
for the identification of pitting corrosion. This conclusion is herein proved through the
following results of the inverse process.
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Figure 5.18: Estimated natural frequencies with pitting corrosion on the plate

In Figs. 5.18(a) and 5.18(b) the change of the first and ninth natural frequency with
respect to four degrees of pitting are presented. While for the first mode it is evident that the
frequency reduction cannot be identified with certainty, the results regarding the ninth natural
frequency seem to be slightly better. However, a closer view of the values of the identified
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5.4 Damage identification

frequencies, which are summarized in Table 5.5, is sufficient to show that even the most
influenced frequency of the ninth mode can be fairly identified. Considering that the accuracy
of the implemented algorithm was estimated to be around 1.50% and the maximum identified
frequency change is 1.98%, it can be deduced on one hand that pitting corrosion is impossible
to be identified for DOP up to 15% while, on the other hand, it cannot be safely said that it is
identifiable for 20% DOP.

Mode
no.

f̂k [Hz]

Reference
model

5% DOP 10% DOP 15% DOP 20% DOP

1 30.31 30.17 (0.46) 30.11 (0.66) 30.03 (0.92) 30.07 (0.79)

2 30.42 30.43 (0.03) 30.38 (0.13) 30.41 (0.03) 30.41 (0.03)

3 30.86 30.86 (0.00) 30.83 (0.10) 30.85 (0.03) 30.84 (0.03)

4 31.22 31.22 (0.00) 31.19 (0.10) 31.22 (0.00) 31.18 (0.13)

5 31.62 31.61 (0.03) 31.50 (0.38) 31.54 (0.25) 31.51 (0.35)

6 32.04 32.03 (0.03) 31.99 (0.16) 31.94 (0.31) 31.71 (1.03)

7 32.41 32.38 (0.09) 32.34 (0.22) 32.19 (0.68) 32.21 (0.62)

8 32.49 32.41 (0.25) 32.40 (0.28) 32.43 (0.18) 32.47 (0.06)

9 64.28 63.98 (0.47) 63.80 (0.75) 63.35 (1.45) 63.01 (1.98)

10 65.96 65.73 (0.35) 65.58 (0.58) 65.21 (1.14) 65.04 (1.39)

Table 5.4: Natural frequency estimates of the stiffened panel with pitting corrosion on the plate

As underlined in Chapter 4, the degradation due to pitting corrosion consists of localized
changes in the structural properties of the panel which would be mostly visible in higher order
modes. It is for this reason that the largest changes in the natural frequencies occur in modes
9 and 10. Although it would be possible to extend the modal basis with higher modes, so
that identifiability is ensured, it is unlikely the these will be excited under real operational
conditions, given their significantly high natural frequencies.

5.4.3 Fatigue cracks

Unlike the previous scenarios, where the mode shapes of the damaged models remained con-
stant and the damage identification had to be performed only in terms of natural frequencies,
the damaged scenarios with fatigue crack have the advantage of ”new” mode shapes. This
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Figure 5.19: Estimated natural frequencies for the first mode of the cracked models
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enables the identification in terms of mode shapes even if the changes in natural frequencies
are smaller than the accuracy of the SSI algorithms. Considering that all three damaged models
have a new first mode, the existence of cracks can be merely identified through this mode. The
identified and calculated frequency of the first mode for each one of the models is plotted in
Fig. 5.19 along with the corresponding frequency of the reference model.

Mode
no.

f̂k [Hz]

Reference
model

1st Scenario 2nd Scenario 3rd Scenario

1 30.31 17.61 25.55 29.91

2 30.42 30.31 30.36 30.39

3 30.86 30.80 30.83 30.83

4 31.22 31.19 31.21 31.20

5 31.62 31.61 31.49 31.38

6 32.04 31.87 31.94 31.65

7 32.41 32.03 32.32 32.14

8 32.49 32.39 32.48 32.51

9 64.28 32.81 57.75 63.81

10 65.96 64.50 65.07 65.71

Table 5.5: Natural frequency estimates of the stiffened panel with fatigue cracks

The values of the identified frequencies are summarized in Table 5.5 for all three scenarios
as well as for the reference model. The new modes are marked with gray and the values below
them are shifted. Hence, the second frequency of the damaged models should be compared
with the first frequency of the reference model and so forth. Although for the first and second
scenario the frequency change of the first mode is evidently detected (Fig. 5.19), for the
third scenario the corresponding change is not equally visible. Without knowing that the
first frequency of the third crack scenario refers to a different mode than the first one of the
reference model, one could easily attribute the small change of 1.32% (from 30.31 Hz to 29.91
Hz) to the margin of error of the SSI algorithm.

The existence of new modes in the models with fatigue crack may be identified using
the MAC between the mode shapes of the reference model and those of the damaged ones,
obtained from Eq. (3.75). Once the MAC matrix between two modal bases is constructed,
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Figure 5.20: MAC matrices between mode shapes of the reference model and the models with crack
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one can easily examine the correspondence between different modes. When two modes are
identical, the MAC between their mode shapes will be one while it will be zero for independent
mode shapes. The MAC matrices between the mode shapes of the reference model and the
models with crack are graphically presented in Fig. 5.20.

In Fig. 5.20(a) is seen that the first mode shape of the first cracked scenario does not show
any correspondence with the identified mode shapes of the reference model and hence it
represents a new mode. Although the remaining modes seem to be slightly influenced by the
crack, all of them show a certain correspondence with those of the reference model. In Fig.
5.20(b), apart from the first mode, mode eight is also a new one since it does not seem to be
strongly correlated with any of the others. Finally, the crack of the 3rd scenario that was not
clearly identified through the frequency changes may be detected in terms of mode shapes. It
is observed in Fig. 5.20(c) that there is not full correspondence between the two models since
the first mode of the cracked model is a new one.
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6 Conclusions and Future Work

In this Chapter, an overview of the work carried out within the framework of the present thesis
is presented. This is accomplished through the evaluation of the addressed objectives, as cited
in Chapter 1, in accordance with the results obtained in Chapters 4 and 5. Moreover, a critical
assessment of the adopted formulation is presented with emphasis on recommendations for
future work and enrichment of this study.

6.1 Conclusions

The work presented in this thesis may be divided into two parts, the so-called forward and
inverse problems. In the former, the modelling of degradation mechanisms experienced by
hull structures of FPSOs, namely uniform corrosion, pitting corrosion and fatigue cracks,
was carried out. These mechanisms were introduced in the reference FE model of a typical
stiffened panel and the sensitivity of its dynamic properties, i.e. natural frequencies, mode
shapes and damping ratios, to these changes was investigated. In the second part, the stiffened
panel was studied during normal operation, while excited by sloshing-induced impulsive
loads. The response was measured by a fictitious monitoring system of accelerometers and
the noisy signals were used for OMA with two different SSI algorithms. To enable automatic
system identification, the entire scheme was enhanced with cluster analysis and the identified
dynamic properties for each one of the damaged models were compared with those of the
reference model. The conclusions drawn from these results may be summarized in the
following points:

i. Applicability of OMA

Even though the considered stiffened panel was studied locally as a small structural
component of an entire vessel, it was shown that OMA for the identification of dynamic
properties using SSI algorithms may yield sufficiently accurate results in terms of natural
frequencies and mode shapes as well. Moreover, combination of the SSI schemes with a
cluster analysis may serve as an efficient tool for automatic system identification.

ii. Weak points

The implementation of SSI algorithms is subject to certain limitations. Although it was
shown that the number of sensors and the noise level may be properly chosen in order
to achieve robust results, this will not be feasible in real applications. Considering that
any prior knowledge of both the noise level and the system as such is characterized by a
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large degree of uncertainty, such limitations are usually masked in output-only systems
and the OMA may become inefficient.

iii. Damage identification

It was shown that localized and low-degree degradation mechanisms are impossible to
be identified since their influence on modal properties may be equally attributed either
to the existence of noise or to the accuracy of the algorithms. These damage conditions
are mainly reflected in high-order modes which usually do not contribute in the global
response and therefore are not observable. On the other hand, it is seen that global
damage states and long-term degradation patterns, that involve high degree of damage,
can be identified through a small modal basis consisting of the first few modes. This of
course implies that deterioration is not detectable from the very first moment but only
after a sufficiently advanced stage.

6.2 Future research

The aforementioned conclusions with respect to the obtained results and the feasibility of
vibration-based structural health monitoring on FPSOs are drawn on the basis of a set of
assumptions. It should be therefore remarked that the present study does not only constitute
a first approach on the damage detection monitoring on FPSO hull-structures but it also
gives rise to further investigation topics, which may possibly mask the sought for damage
identification, towards a more integrated study. Hence, the proposed research directions
according to the adopted framework of assumptions can be summarized in the following
points:

Boundary conditions

Within the current formulation, the examined stiffened panel was considered to be fully
clamped at the edges with fixed boundary conditions applied in the FE model. A detailed
explanation of this choice is provided in Chapter 4 where it is also underlined that such
an assumption does not reflect the real boundary conditions since the panel is simulated
as a standalone part. Taking into account that the assumed conditions at the boundaries
have a significant impact on the dynamic properties of the model and subsequently
on the sensitivity analysis as well as on the operational modal analysis, it is of crucial
importance that further investigation is carried out in this direction. To this end, a more
accurate representation of the boundaries may be obtained by the integration of the
panel into the numerical model of the entire FPSO or even by the simulation of a broader
hull-structure area so that contribution of the adjacent structural members is properly
accounted for. Alternatively, the boundary conditions of the already modelled panel
may be calibrated through the use of appropriately chosen measurements on existing
stiffened panels, in order to yield a more accurate approximation.

Added mass effect

The entire study in terms of both the forward and the inverse problem was based on the
dynamic properties of the stiffened panel neglecting the presence of water in the ballast
tank. This of course implies that the coupled motion between the panel and the water is
not accounted for and therefore the participation of the additional vibrating mass of
the liquid is ignored. However, such an effect may have a significant contribution in
the modal properties of the structure by substantially reducing the natural frequencies
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and changing the vibration modes. Moreover, the said contribution will result in a
time-varying system since the dynamic characteristics will be dependent on the amount
of water mass and subsequently on the fill level of the ballast tank. In this sense, with
increasing amount of added mass, the natural frequencies of the coupled system will
decrease, thus getting closer to the operational frequency range of excitation.

Sloshing-induced loads

A special case of environmental sloshing-induced excitation was examined in the frame-
work of the OMA. It was namely assumed that impulsive pressure was applied on the
walls of the panel, which appears for low fill level of ballast tanks. Such a loading case
though constitutes an ideal scenario given that the calculated dry natural frequencies
are significantly higher than the usual frequency range of environmental loads. In
this sense, the assumed impact loads are used in favour of the identification process
providing excitation of all modes, which may not be the case in real operational condi-
tions. It is therefore of high prominence to enhance the proposed methodology with a
more sophisticated modelling of sloshing loads towards a higher reliability level of the
monitoring scheme. Moreover, it should be underlined that in operational conditions,
ballast tanks are usually filled at high levels and therefore, excitation by low-frequency
harmonics should be examined in combination with wet modal properties, as indicated
in the previous point.

Global hull loads

The last but not least parameter that will play a major role in a more profound study
on the vibration-based monitoring of FPSO is the influence of the global hull loads on
the dynamic properties of stiffened panels. In the present project, the possible in-plane
loads on the stiffened panel due to the global hull response of the structure were not
taken into account. However, depending on the position of the panel along the height
of the FPSO and the operational conditions, the structure will be subject to an in-plane
tensile or compressive stress state as well. This tension, or compression, will in turn
increase, or accordingly decrease, the natural frequencies of the panel and will thus
violate the assumption of a time-invariant system. It is hence of critical importance that
such an effect is appropriately considered within a real monitoring scheme, not only
due to the global static loads but also with regard to the global dynamic behaviour.
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