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Executive Summary

The decarbonisation of industrial clusters is a key priority for achieving Europe’s cli-
mate targets for 2040 and 2050 [49]. Hydrogen is expected to play a central role in this
transition, however, large-scale infrastructure planning remains highly uncertain [29]. As
European nations navigate competing demands between defence expenditure and envi-
ronmental commitments, industrial clusters must pursue efficient investment strategies
to avoid stranded assets or costly delays. Project developers face the challenge of aligning
firm-level investments with long-term infrastructure objectives. Existing models do not
adequately capture how adoption spreads among firms through interdependencies, nor
how these dynamics shape the development of hydrogen infrastructure over time [39] .

This study aims to simulate the development of hydrogen infrastructure in industrial
clusters by integrating firm-specific characteristics, interdependencies, and investment
decisions with network development over time. It addresses the central question of how
individual firm attributes and interdependencies influence the rollout of hydrogen infras-
tructure, using the Port of Rotterdam as a representative case study.

To address this question, a dynamic modeling framework was developed that com-
bines a threshold logic adoption model with the Optimal Network Layout Tool (ONLT) to
simulate how infrastructure evolves over time. Firm level data, including hydrogen trade
volume, grid capacity, and plot size, were normalized and incorporated into the model to
represent how adoption spreads among firms with different characteristics. This method
allows for scenario analysis under varying levels of hydrogen demand and ammonia im-
port, making it possible to identify network segments that are robust across uncertain
futures. The approach improves significantly on static planning models, which often
overlook behavioral dynamics among firms in industrial clusters.

Results show that adoption dynamics are shaped by a combination of firm-specific
characteristics, interdependencies, and the configuration of early adopters. Strategic
hubs such as Air Liquide and Eneco emerged across multiple scenarios, highlighting their
importance in accelerating network development. In contrast, late adoption by firms
like Air Products often resulted in inefficient, long, and costly connections. Moreover,
the low hydrogen demand scenarios frequently led to fragmented sub-networks within
the industrial cluster, whereas high demand scenarios supported more cohesive, highly
interconnected, and cost-effective layouts. Across all scenarios, a set of robust network
segments was identified that consistently appeared under different conditions. These
segments are critical for guiding infrastructure planning, as their repeated occurrence
suggests a lower risk of becoming stranded assets, and can potentially function as a
backbone in the industrial cluster..

The developed framework provides project developers, such as Power2X, with a scal-
able decision-support tool to inform coordinated infrastructure planning. It highlights
where early investments can accelerate broader adoption and offers a means to evaluate



hydrogen infrastructure opportunities across various industrial clusters. By identify-
ing strategic early adopters and robust network segments, the model enables investment
strategies that minimise cost and support more efficient decarbonisation pathways aligned
with pressing climate objectives.

In conclusion, this modelling approach offers valuable insights into network develop-
ment and is applicable across multiple industrial clusters. Power2X can apply the same
criteria and methodology to other clusters by incorporating the appropriate firm-level
data, industrial layout, and spatial context. This enables the simulation of alternative
adoption pathways and the identification of robust network segments in clusters with
different characteristics.
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Introduction

1.1 Background

In recent years, climate change has become one of the most urgent challenges facing
societies worldwide. Global awareness and the need for decarbonization are driving a
fundamental transformation across all sectors, especially the energy and industrial sec-
tors [34]. Climate targets such as the European Union’s 90 percent emissions reduction
goal for 2040 are rapidly approaching [49]. However, European nations face increasing
challenges in maintaining decarbonisation priorities amid shifting global agendas that
threaten progress. Although the 2040 targets underscore the urgency of action, gov-
ernments are increasingly redirecting resources toward defence and security in response
to ongoing conflicts, often at the expense of climate efforts. This has contributed to a
weakening of climate policies and highlights the growing need for efficiency in resource
planning. To meet decarbonisation goals, a targeted and cost effective strategy is essen-
tial within the constraints of limited time and budget, to prevent misaligned investments
and ensure that all measures contribute meaningfully to long term climate objectives [49].

In 2019, annual global carbon dioxide (CO3) emissions reached 34.2 gigatonnes (Gt),
largely due to the extensive and unrestricted use of fossil fuels to meet approximately 80%
of the world’s energy demand, which stood at around 585 exajoules (EJ) per year [34].
These concerns are particularly pressing given the current rate of population growth and
associated increases in energy consumption. It is projected that global energy demand
will increase by at least 50% by 2050 [34]. In practical terms, this means that in 25 years,
the world will require at least 875 EJ annually, equivalent to adding the current energy
use of the entire United States and China combined [34]. As the global energy system
transitions to renewable electricity, one of the key challenges is the efficient transmission
and storage of this energy. This has led to a growing need for energy carriers, which
are substances capable of storing and releasing renewable energy, particularly for use in
hard-to-abate sectors.

In response, international agreements such as the Paris Agreement have set targets
like achieving net-zero greenhouse gas emissions [53]. To meet these goals while minimiz-
ing environmental impacts, the large-scale deployment of low-carbon renewable energy
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sources is essential. Within this evolving energy landscape, hydrogen (Hs) is gaining
significant momentum ﬂﬁﬂ In recent years, hydrogen has become a focus point in many
economic and political strategies HEI] As a carbon-free energy carrier, hydrogen offers
a promising pathway for decarbonizing the energy and industrial sectors [@], especially
since it does not produce CO, emissions when used for heat or electricity.

Hydrogen has the potential to replace conventional fossil fuels such as natural gas
and oil, thereby reducing carbon emissions. This is particularly relevant in hard-to-
abate sectors like the chemical industry, petroleum refining, steel production, and heavy

transport [62].

Hydrogen is typically classified into three types based on its production method:
1. Grey hydrogen: produced from hydrocarbons without carbon capture,
2. Blue hydrogen: grey hydrogen with integrated carbon capture,

3. Green hydrogen: produced via water electrolysis powered by renewable electric-
ity.

Currently, the majority of hydrogen production (62%) comes from natural gas through
steam methane reforming . To better illustrate the distinction between the different
hydrogen production methods and their relative environmental impact, Figure [1.1] pro-
vides an overview of the technological shift from the conventional production method to-
wards the sustainable hydrogen production routes. The figure highlights the feedstocks,
processes, and CO, implications associated with each method.

Established technologies
Conventional Present
Natural gas é‘f Steam meth_ane. time
reforming Q-O
b
>
H 3
L)
Neturalgas [t  Renevwable . Methane Carbon CO,free 8
heat pyrolysis by-product “ ﬁ
D
Carbon-fi =
- Renewable Water afbon-res Near
Water == electricity electrolysis @ “ future

Sustainable technologies

Figure 1.1: Common differentiation of hydrogen production pathways. Source: .

More than 100 countries have now set net-zero carbon emissions targets, requiring
technological innovation in heavy industries such as oil and gas. Hydrogen is increasingly
seen as a critical component in this transition. Investments in hydrogen infrastructure
and low-emission hydrogen projects are rising globally , primarily because hydrogen
offers long-term solutions for decarbonizing oil and gas operations.

Specifically, green hydrogen can be used in:
o Refinery hydrotreating units,

 Space heating (as a natural gas replacement),
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e Steam generation for thermal processes,

o Fuel for transportation (e.g., trucks, rail, and marine vessels in the oil and gas
sector).

However, while hydrogen offers many opportunities, it also presents significant chal-
lenges, particularly in storage and transport. One major issue is its low volumetric
energy density under ambient conditions [35], making it difficult to store and transport
large quantities efficiently [51]. To increase density, hydrogen can be compressed or lig-
uefied [35], but both methods are energy-intensive and expensive. For example, hydrogen
liquefaction requires more than 45% of the energy stored in the hydrogen itself, resulting
in considerable energy losses [35].

Scaling up hydrogen production also raises infrastructure challenges. Although exist-
ing natural gas pipelines offer some potential, converting them to transport pure hydrogen
requires significant modifications [62].

To overcome these challenges, hydrogen carriers are being developed as alternative
solutions for storage and transport [51]. A hydrogen carrier is a substance or method
used to store and transport hydrogen more efficiently. These carriers are specifically
designed to mitigate the difficulties of handling pure hydrogen, such as energy losses and
low density. The core idea is to store hydrogen within another substance that is easier
and more energy-efficient to handle [35].

Within the energy sector, two primary types of hydrogen carriers have emerged:

1. Liquid Organic Hydrogen Carriers (LOHCs): where hydrogen is chemically bound
to a liquid molecule through hydrogenation.

2. Ammonia (NH3): which has a high hydrogen content and energy density. When de-
composed, ammonia yields hydrogen and nitrogen, with no CO, emissions, making
it advantageous for hydrogen purification [51].

Table compares ammonia with LOHCs, highlighting its advantages in terms of
volumetric density, storage conditions, and energy efficiency.

Table 1.1: Comparison of Hydrogen Carriers by Key Properties

Property Ammonia (NH;) LOHC
Hydrogen content (wt%) 17.6% 6%

Volumetric density (gL?!) 120 “50-60
Storage temperature -33°C Ambient
Liquefaction energy loss Low Medium

One of the most promising hydrogen carriers is ammonia, which can be synthesized
using renewable electricity and nitrogen. This synthesis occurs through the Haber-Bosch
process. Ammonia can be transported using existing infrastructure and later be converted
back into hydrogen. Figure illustrates the ammonia to hydrogen supply chain.

Hydrogen is first produced from renewable electricity through water electrolysis. It is
then combined with nitrogen to produce ammonia. After transportation, hydrogen will
be released from ammonia through a thermal cracking process, after which it can be used
for end-use applications.

12



H;0 ysis + ASU - Haber-Bosch Cracking + H; loss Separation / purification H; compression to 880 bar

4264, 0.5GJ; “2.0-43GJ,"
. -

‘E#i'\ e T
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Figure 1.2: Schematic overview of ammonia as a hydrogen carrier|7].

Essentially, hydrogen carriers act as a bridge technology, enabling the transport of
hydrogen from remote production sites (with abundant renewable energy) to demand
centers. This makes the decarbonization of hard-to-abate sectors more feasible and eco-
nomically viable [35].

Industrial clusters often serve as strategic locations for deploying ammonia-based hy-
drogen infrastructure. These clusters typically contain a high concentration of energy-
intensive industries, which are major sources of greenhouse gas emissions and are difficult
to decarbonise. In addition, their dense spatial configuration enables the development
of shared infrastructure, such as pipelines and storage facilities. This density creates
opportunities for economies of scale, making the adoption of hydrogen carriers such as
ammonia more feasible and cost-effective.

The Rotterdam Industrial Cluster (RIC) provides a concrete example of such a set-
ting. With its concentration of hard-to-abate industries, large port access, and existing
energy infrastructure, the RIC illustrates both the challenges and opportunities involved
in developing an ammonia-based hydrogen network. Chapter 4 will elaborate further on
the specific case of the Rotterdam Industrial Cluster. In this study, an ammonia-based
hydrogen network refers to a hydrogen pipeline system supported by nearby ammonia
infrastructure, such as import terminals, storage tanks, and cracking units. This infras-
tructure enables the conversion of imported ammonia into hydrogen. Although ammonia
is used as a carrier for international transport and storage, only hydrogen flows through
the pipeline network. While the analysis focuses on the Rotterdam Industrial Cluster
(RIC), the modelling approach and key insights are broadly applicable to other industrial
clusters. Throughout this thesis, the term hydrogen infrastructure or hydrogen network
is used to refer to both hydrogen systems and ammonia based hydrogen infrastructure,
unless stated otherwise.

1.2 Ammonia as Hydrogen Carrier and its Role in
Industrial Cluster Decarbonization

While the technical feasibility of using ammonia as a hydrogen carrier is well estab-
lished, the deployment of hydrogen infrastructure depends critically on firm-level decision-
making within industrial clusters. Firms are interdependent: many hesitate to invest in
hydrogen or ammonia-related assets in the absence of supporting infrastructure, while
infrastructure development is often delayed until there is sufficient certainty regarding
hydrogen demand and ammonia import volumes [46, |10]. This strategic uncertainty and
mutual dependence can lead to hesitation, thereby slowing the adoption and development
of hydrogen infrastructure.

Consider a storage company evaluating the construction of an ammonia cracker at its
site within an industrial cluster. This investment involves substantial capital expenditure
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and is only viable if sufficient volumes of imported ammonia are available [13]. At the
same time, import terminals are unlikely to commit to constructing large-scale ammonia
facilities without a guaranteed level of demand. Although both parties have an interest
in proceeding, each waits for the other to act first. This results in stalled progress, even
when the collective benefits are clear.

This coordination problem is common in the development of shared infrastructure
systems, such as hydrogen pipeline networks, import terminals, and storage facilities.
These assets require high upfront investment and depend on the participation of multiple
actors to ensure economic viability. As no more firms become involved, the risk increases
that early investments may become stranded or that infrastructure will be underutilised
[22, 8]. This further discourages firms from taking the first step. Yet, such shared
infrastructure is essential for enabling the energy transition in industrial clusters.

Without sufficient coordination or intervention, the dynamics between firms in an
industrial cluster can lock the system into a low-investment equilibrium. When firms
postpone investment due to strategic uncertainty, the cluster may fail to build momentum
toward large-scale adoption |14]. This can ultimately delay the energy transition and the
decarbonisation of industrial clusters, even when the technical readiness of ammonia as a
hydrogen carrier is well established [39]. In such cases, clusters risk becoming locked into
existing fossil fuel-based infrastructure pathways. Understanding these dynamics requires
models that account for firm-level interdependencies and how infrastructure emerges from
decentralised investment decisions.

To better understand this coordination problem, it is essential to analyse the actors
involved, along with their incentives, roles, and constraints. The next section outlines
how different stakeholders and their objectives influence the development of infrastructure
within industrial clusters.

1.3 Stakeholders and Design Objectives in Industrial
Clusters

Addressing this coordination challenge requires a clear understanding of the key stake-
holders, the factors that drive their decisions, and the extent to which their objectives
align or conflict in shaping hydrogen infrastructure development. As noted earlier, the
development of hydrogen infrastructure in industrial clusters involves a complex interplay
of decisions made by multiple stakeholders, each with distinct objectives and constraints.
This stakeholder analysis clarifies the assumptions underlying infrastructure design ob-
jectives, including cost efficiency and robustness under uncertainty.

Each actor brings distinct priorities, and their interactions shape both the constraints
and opportunities for system development. The key stakeholders are listed in Table
[31]. Industrial firms, including hydrogen suppliers and consumers, primarily seek afford-
able, reliable, and low-carbon energy while minimising investment risk [10]. Infrastructure
operators, by contrast, focus on the long-term viability of their assets and require suf-
ficient and stable demand to justify capital-intensive investments. The port authority
oversees infrastructure within the cluster and facilitates development to sustain economic
competitiveness and meet decarbonisation targets. In addition, various levels of govern-
ment are involved in setting policy, regulating markets, and offering incentives. Finally,
local communities influence the development process through concerns related to safety,
environmental impacts, and spatial planning. Each of these stakeholders operates un-
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der a different set of priorities, which shapes the governance and design of hydrogen
infrastructure.

Table 1.2: Overview of Key Stakeholders and Their Objectives

Stakeholder

Primary Objectives

Industrial firms
(e.g., refineries, chem-
ical producers)

Secure affordable, reliable, and low-carbon energy; min-
imize investment risks.

Infrastructure op-
erators (e.g., pipeline
or terminal owners)

Ensure long-term asset viability and cost recovery; re-
quire sufficient and predictable demand to justify invest-
ments.

Cluster and port
authorities (e.g.,
Port of Rotterdam)

Maintain cluster competitiveness; facilitate decar-
bonization through coordinated planning and infrastruc-
ture provisioning.

Government bodies
(national /regional)

Meet climate goals, reduce emissions, and ensure en-
ergy resilience; provide regulation, incentives, and pub-
lic funding.

Local communities
and civil society

Influence political acceptance; raise concerns about
safety, environmental impact, and spatial planning.

Based on the interests of these stakeholders, several key design objectives can be
identified. These objectives represent the criteria that any hydrogen infrastructure must
meet to be considered viable [31]. Table|1.3|summarises these objectives and explains how
they inform the design and evaluation of hydrogen networks. Together, they help explain
what a successful outcome looks like for an industrial cluster. Given the high upfront
capital investments, cost efficiency is a central design objective. A viable network must
minimise both capital expenditure and operational costs to reduce investment hesitation
among firms. As hydrogen demand is expected to increase over time, the infrastructure
must also support incremental expansion to accommodate future needs. In addition,
the network must demonstrate robustness under uncertainty by performing consistently
across a range of plausible future scenarios, particularly in the context of fluctuating
import volumes and variable demand. To address the coordination challenges discussed
earlier, the network should enable sufficient utilisation and distribute investment risks
across multiple stakeholders. Finally, to align with the concerns of local communities
and civil society, the infrastructure must achieve environmental and spatial acceptability
by limiting negative impacts on surrounding areas.
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Table 1.3: Design Criteria for Hydrogen Infrastructure

Criterion Description

Cost-efficiency The network should minimize capital expenditure and op-
erating costs to reduce investment hesitation and enable
competitive energy pricing.

Scalability Infrastructure must be able to expand over time to accom-
modate growing demand and changing technology without
requiring complete redesign.

Robustness wunder | The network must perform well across a range of future

uncertainty scenarios, especially in the face of fluctuating import vol-
umes and adoption rates.

Utilization and | The system should be used sufficiently by multiple actors

risk-sharing to avoid stranded assets and enable shared ownership or
funding.

Network  connec- | The infrastructure should result in a cohesive network with

tivity minimal fragmentation. High connectivity improves effi-

ciency, supports risk-sharing, and reduces the likelihood of
isolated or underutilized segments.

This study focuses exclusively on the behaviour of firms within an industrial cluster,
as their investment decisions are likely to influence both other firms and the development
of hydrogen infrastructure. While the roles of governments and local communities are
recognised as important, they are treated as contextual factors rather than dynamic
actors within the modelling framework.

1.4 Problem Statement

1.4.1 Limitations of Centralized Models in Capturing Firm-
Level Dynamics

This coordination problem reveals a deeper scientific gap in existing infrastructure models,
which are not well equipped to capture the complex interdependencies and behavioral
dynamics within industrial clusters. The current energy infrastructure models take a
centralized and static approach, focusing instead on cost minimization or achieving a
supply-demand equilibrium under different scenarios.

While this is suitable for macro-level studies, it fails to represent how the strategic
decision-making of individual companies influences other firms under interdependency
and uncertainty [5]. Most of these studies rely on fixed firm behavior or top-down planning
logic, which overlooks the complexities of decision-making, meaning future conditions are
predefined rather than emerging from interactions in the model. They typically depend
on a fixed set of scenarios, reinforcing their centralized, static structure [39].

Such an approach is particularly inadequate under uncertainty, which characterize
the energy transition. Fixed scenarios provide little actionable insight for robust infras-
tructure investment, especially in industrial clusters, where infrastructure is shared and
inter-firm coordination is essential. In the absence of a model that captures interde-
pendencies and peer influence among firms, infrastructure plans that appear optimal on
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paper may lead to misaligned investments and delayed development. To address this,
modelling approaches must be extended to incorporate the strategic behaviour of firms
as they respond to one another over time.

1.4.2 Real World Systems Dynamics

Bridging this gap requires recognizing how infrastructure investments occur in practice
and how such infrastructure develops over time. Investment decisions, particularly in
energy systems, unfold gradually and are shaped by expectations, interdependencies, and
mutual influence. These decisions often consider horizons of up to 40 years, which makes
early-stage uncertainty highly consequential [13]. In the Rotterdam Industrial Cluster
(RIC), firms do not act independently. Their investment strategies influence, and are
influenced by, those of other firms, resulting in a dense network of mutual dependen-
cies and uncertainties. Individual firms often cannot anticipate how their decisions are
conditioned by others in the cluster |10].

As previously illustrated, a company may postpone investment in a large-scale am-
monia cracker if future ammonia import volumes remain uncertain |13]. Similarly, re-
newable infrastructure projects are typically developed on a project-to-project basis [22].
This practice, where each project is treated as a separate investment decision rather
than part of a coordinated long-term strategy, introduces significant risk. When too few
projects are initiated, the result can be underutilized infrastructure and a increased risk
of stranded assets due to the high upfront capital requirements [22]. Traditional models
often overlook these interdependent dynamics within industrial clusters [8]. Since the
developments in renewable energy are rapidly increasing, it is essential to incorporate
these nonlinear relationships in current energy models [§].

1.4.3 Case Context: Power2X

Power2X is a consultancy and project developer specialising in green molecules, with a
strong focus on enabling the energy transition in industrial contexts. As the host organ-
isation for this research, Power2X plays a dual role. First, it provides insights into firm
behaviour and interdependencies within industrial clusters involved in decarbonisation,
based on its advisory experience. Second, the company actively invests in large-scale de-
carbonisation projects across multiple industrial clusters worldwide, including initiatives
related to hydrogen, ammonia, and pipeline networks.

Operating at the intersection of strategy and execution, Power2X combines a deep
understanding of technical feasibility with practical knowledge of coordination challenges,
regulatory environments, and infrastructure planning. This perspective is particularly
relevant to the topic of this thesis, which examines the development of hydrogen pipeline
networks shaped by decentralised investment decisions within industrial clusters.

1.5 Research Objective

To address the limitations of existing infrastructure and energy models, this study’s
objective is to simulates how firm-level investment decisions unfold under conditions of
uncertainty and interdependence, and how these decisions influence the development of
a cost-effective and robust hydrogen network within an industrial cluster.
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To operationalise this objective, the study is guided by the following research question
and sub-questions, which explore the mechanisms, outcomes, and design implications of
an hydrogen network in industrial clusters.

1.6 Research Questions

To examine how the strategic investment decisions of firms shape the development of a
hydrogen network in an industrial cluster, this research addresses the central question:

How do corporate interdependencies and investment decisions in ammonia infrastructure
determine the optimal topology of a hydrogen pipeline network in industrial clusters?

To address this complex research question, the study is structured around four in-
terrelated themes. Fach theme captures a necessary component for understanding how
decentralised firm behaviour influences infrastructure development. The sub-questions
align with these themes, progressing from the identification of interdependencies and
firm-specific attributes to their integration in network design, and finally to the assess-
ment of external incentives. Together, these themes provide a comprehensive foundation
for modelling firm interdependencies and the formation of hydrogen infrastructure under
uncertainty.

1.6.1 Research Themes and Sub-Questions

Theme 1: Interdependency Mapping

Industrial firms do not make investment decisions in isolation. Their actions are highly
interdependent and contribute to the complex coordination challenges inherent in shared
infrastructure development. To simulate these dynamics, it is first necessary to map
the interdependencies between firms and identify the firm specific attributes that shape
these relationships. These attributes define how firms are connected within the social
network, which reflects the structure of interdependencies, and they also inform each
firm’s individual threshold for investment.

Sub-question 1: Which company-specific attributes determine interdependencies and
threshold values within Industrial Clusters?

Theme 2: Behavioral Dynamics

Building on the mapping of interdependencies and threshold values from Subquestion 1,
Subquestion 2 focuses on capturing the behavioural dynamics of firms and examining
how these interdependencies influence actual investment behaviour. Understanding these
dynamics is essential for realistically simulating when and why firms choose to invest in
hydrogen infrastructure [41].

Sub-question 2: How do threshold values and interdependencies impact firms’ invest-
ment decisions?

18



Theme 3: Network Implications

The infrastructure network does not emerge independently, but is shaped by the invest-
ment decisions of firms within industrial clusters. This theme investigates how these
decisions influence the development of the physical hydrogen infrastructure. Building on
the outcomes of the threshold model, which simulates firm adoption over time, this theme
connects firm level dynamics to spatial outcomes and examines how different adoption
patterns translate into different hydrogen network topologies.

Sub-question 3: How do threshold model outcomes under different scenarios shape the
optimal hydrogen pipeline layout?

Theme 4: Policy Sensitivity

The final theme focuses on policy sensitivity and examines how external policy instru-
ments, such as subsidies or incentives, influence the development of hydrogen infras-
tructure in industrial clusters. Since firms operate under uncertainty, governments may
introduce such measures to accelerate investment. These interventions can shape the
pace and pattern of infrastructure development. In conclusion, this subquestion assesses
which early adopter strategy leads to the most cost-efficient and robust network topology.
In this thesis, the early adopter strategy refers to the selection of initial firms that are
assumed to invest first. The choice of these early adopters influences the adoption dy-
namics and plays a critical role in determining the overall cost efficiency of the resulting
hydrogen network.

Sub-question 4: How do external incentives (e.g., subsidies) influence firm behavior
and network development?

1.7 Key Concepts and Definitions

To understand the dynamics analysed in this study and how they influence the network
topology of hydrogen infrastructure in industrial clusters, it is essential to define a set of
key concepts that are used throughout the analysis.

1.7.1 Investment Dynamics

Early Adopter

An early adopter refers to a firm that makes an initial investment decision in hydrogen
infrastructure. This involves committing to become a future user or supplier of hydrogen
by preparing the necessary infrastructure, such as securing a pipeline connection or con-
structing an on-site conversion unit like an ammonia cracker. Such a decision represents
a formal commitment that enables network connectivity. Early adopters play a critical
role in initiating network development and can influence the behaviour of other firms
through their actions.
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Threshold

In this study, a threshold represents the minimum level of external influence from neigh-
bouring firms that must be present before a firm decides to invest [41]. Each firm is
assigned an individual threshold based on specific attributes, including hydrogen trade
volume, grid connection, plot size, and other relevant factors. These attributes are further
detailed in Section [6.I] Thresholds are central to the diffusion model, as they determine
how investment decisions spread through the network over time.

Tipping Point

A tipping point occurs when a sufficient number of firms have invested, causing adoption
to accelerate rapidly across the network. More specifically, it refers to a critical moment
when a small change, such as a single firm reaching its threshold, triggers widespread
adoption throughout the network [33].

Cascasding Effect

In this study, a cascading effect refers to a chain reaction that describes the rapid and
widespread changes unfolding in the network once a tipping point is reached. In the
context of infrastructure, this means that initial investments by early adopters can reduce
the thresholds of other firms, thereby initiating further rounds of investment [47].

Interdependency

Interdependency in industrial clusters means that a firm’s investment decision depends on
the decisions of others [47]. These relationships imply that firms do not act in isolation,
but that their choices directly or indirectly influence those of other firms. This reflects
a real-world coordination challenge, where firms are often unwilling to act first without
sufficient assurance of future network use or demand.

1.7.2 Evaluation Criteria

Robustness

Finally, robustness is a key concept throughout this study. Robustness refers to the ability
of a hydrogen pipeline network to perform well and retain its value across a wide range
of uncertain future scenarios. A robust network performs consistently under uncertainty
and reduces the risk of stranded assets [40].

Cost-Efficiency

In this study, cost efficiency refers to the objective of minimizing the total cost associated
with the development of a hydrogen network. This objective serves to reduce investor
hesitation, lower economic risks, and support competitive energy pricing.

Scalability

In this thesis, scalability refers to the ability of the hydrogen infrastructure to accommo-
date future expansion through the addition of late adopters, without requiring a complete
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redesign. This is assessed using a dynamic modelling approach that examines how new
firms connect to the network over time and how the layout evolves. The analysis identifies
whether the resulting network configurations are adaptable to continued growth.

Utilization and risk-sharing

Another design criterion concerns utilization and risk sharing, assessed by observing how
many firms make use of specific pipeline segments. High-utilization segments typically
form well-connected hubs within the network, where infrastructure is shared among mul-
tiple firms. These hubs enhance economic viability by lowering the risk of stranded assets.
In contrast, more isolated segments tend to serve fewer users and may lead to less efficient
outcomes.

1.8 Scope and Limitations

This section outlines the scope of the study and clarifies the key assumptions and lim-
itations. These boundaries are necessary to ensure analytical focus and maintain the
tractability of the model.

The study focuses specifically on hydrogen pipeline infrastructure supported by ammonia-
based hydrogen carriers. Ammonia is selected due to its favourable properties, including
high volumetric hydrogen density and ease of liquefaction [51]. While ammonia plays a
critical role in the transport and storage of hydrogen, the study assumes that imported
green ammonia is converted into hydrogen through a cracking process at local facilities.
As such, the primary focus is on the optimal topology of the hydrogen pipeline network
rather than the logistics of ammonia transport. Other hydrogen carriers and maritime
shipping considerations are excluded from the scope.

The Rotterdam Industrial Cluster (RIC) is used as an illustrative case study due to
its strategic location and industrial profile. While the focus is on the RIC, the study’s
dynamic modelling framework and resulting insights are generalisable to other industrial
clusters facing similar coordination and infrastructure challenges.

Firms in the model are grouped by type and are assumed to behave homogeneously
within each group. This means that all firms of the same type follow identical decision
rules. An investment is defined as a firm’s commitment to become a future hydrogen
user by adopting the necessary infrastructure, such as securing a pipeline connection or
installing an ammonia cracker. This commitment is critical, as it dynamically shapes the
evolving hydrogen network over time.

Finally, the model operates under several important simplifications and limitations.
It does not explicitly account for environmental permits, safety regulations, or complex
spatial planning constraints that affect the construction of real-world pipelines. Govern-
ment interventions, such as subsidies, are treated as external incentives that influence
firm behaviour, rather than being modelled as detailed policy mechanisms. In addition,
the model does not simulate real-time economic variables such as energy prices or global
trade effects. Instead, it assumes that firms make investment decisions based solely on
their static attributes.
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1.9 Alignment with Complex Systems Engineering
and Management

This study aligns with the MSc program in Complex Systems Engineering & Management
(CoSEM), Energy track. Within this program, courses such as Engineering Optimization
and Integrating Renewables in Electricity Markets (SEN1522), Sociotechnology of Future
Energy Systems (SEN1541), and Design in Networked Systems (SEN124A) have equipped
me with the skills to analyze and optimize ammonia pipeline networks while considering
both physical and non-physical connections between stakeholders. These insights will
guide this research in creating solutions to improve and better understand ammonia
networks and accelerate the energy transition.

1.10 Research Outline

This study investigates how adoption dynamics and interdependencies among firms in-
fluence hydrogen network development within industrial clusters under uncertainty. It
addresses the strategic challenge of coordinating firm level investment decisions, firm
specific attributes, and infrastructure planning in an environment characterised by fluc-
tuating demand and import scenarios. The adoption outputs from the threshold model
were combined with a network optimisation tool (ONLT) to generate multiple cost op-
timal infrastructure layouts under different conditions. By simulating both firm level
adoption and infrastructure development, the analysis identifies key adoption patterns
and network outcomes, providing insights into robust network formations. Ultimately,
this study contributes to a clearer understanding of strategic adoption behaviour, invest-
ment timing, the role of early adopters, and offers practical guidance for infrastructure
planning under uncertainty.
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Literature Review

2.1 Introduction

To address and understand the challenges in hydrogen infrastructure development in in-
dustrial clusters, particularly considering the connection with ammonia as a hydrogen
carrier, a thorough review of the existing literature is essential. The global transition
towards low carbon energy systems involves not only technological and economic fac-
tors but also the dynamic interactions of firm-level behavior [5]. In industrial clusters,
shared infrastructure and interdependencies between firms further complicate infrastruc-
ture planning and investment dynamics. This literature review positions the research
within a multidisciplinary field, identifies relevant knowledge gaps, and provides the the-
oretical foundation for the modelling approach applied in this study. Specifically, the
study addresses a gap in the literature by integrating a threshold-based adoption model
with spatial network optimisation tools. This integration enables a dynamic representa-
tion of how hydrogen infrastructure evolves in response to interdependent firm behaviour
and uncertainty within industrial clusters.

This chapter is organized thematically, focusing on several core concepts that are
central to this study, focusing first on the current state of research into the ammonia in-
frastructure, and specifically into its integration into broader hydrogen networks. It then
assesses energy system modeling approaches and highlights their limitations in represent-
ing firm-level investment behavior and infrastructure interdependencies. The review then
discusses the theoretical and methodological contribution of a threshold model in analyz-
ing cascading adoption behavior. This approach supports a more realistic illustration of
how investment decisions unfold over time and influence the development of a hydrogen
pipeline network in industrial clusters. Finally, this section reviews literature on network
optimization tools, like graph theory, minimum spanning trees, and mixed integer linear
programming models, which connect the threshold model with infrastructure layout.

In addition to reviewing the existing knowledge and identifying the current gaps in
the literature, this chapter also functions as a theoretical framework for this study. It
bridges the gap between real-world observations and existing modeling approaches and
supports the development of a new framework that combines the behavioral dynamics of
companies in industrial clusters with network planning of hydrogen pipelines.
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2.2 Search Strategy

This section outlines the systematic approach used to identify and select relevant lit-
erature for this review. This ensures transparency and reproducibility in building the
theoretical foundation of this study.

The search strategy used in this literature review primarily focused on published lit-
erature from academic databases. The literature search was conducted primarily through
Google Scholar due to its broad accessibility. Where relevant, other academic databases
were used, such as Scopus or Web of Science. Additionally, expert knowledge from
Power2x and industry documents were reviewed to include practice-based insights.

This search strategy mainly focuses on articles published between 2014 and 2025 to
ensure relevance to hydrogen and ammonia infrastructure development, with one article
from 1996 included for its theoretical framework based on graph theory, despite not
focusing on hydrogen or ammonia developments. An overview of the articles and their
publication years is shown in the figure below.
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Figure 2.1: Article Year of Publication

The search terms were grouped into conceptual categories relevant to this study,
including: ammonia, hydrogen, ammonia as a hydrogen carrier, pipeline infrastructure,
hydrogen networks, infrastructure development, threshold, interdependencies, investment
dynamics, cascades, and tipping points. Boolean operators such as AND and OR were
used within these categories to generate relevant search results.

Eventually, this review included studies on ammonia and hydrogen supply chains, as
well as specific research focused on firm interdependencies, shared infrastructure, and
threshold-based adoption models, particularly those applied within industrial clusters.
Studies were excluded if they focused solely on small-scale infrastructure pilots, on specific
technologies, or lacked relevance to network development.
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2.3 Thematic Analysis of Literature

2.3.1 Criteria

This section outlines the search criteria used to narrow down the literature and provide
relevant context for the study. Six core criteria were defined based on the conceptual
scope of the thesis. These criteria were selected to reflect the key concepts introduced
earlier and to ensure alignment with the study’s objectives. This structured approach
supports both the relevance and comprehensiveness of the literature review.

Ammonia Infrastructure

This criterion supports the study’s aim to understand how physical infrastructure compo-
nents influence network development and investment patterns. In this research, ammonia
infrastructure is defined as the various logistical components of the ammonia supply chain,
from import to ammonia cracking. This includes, for example, large ammonia import
terminals, storage solutions, and ammonia crackers. The objective of this study is to an-
alyze how the interdependencies between companies influence their investment decisions
in this ammonia infrastructure and how this affects the layout of a hydrogen network..
Relevant literature is needed to study the existing ammonia infrastructure within indus-
trial and energy systems. A thorough understanding of these infrastructures will provide
key insights that can contribute to the development of a possible ammonia infrastructure
[10].

Ammonia as Renewable Hydrogen Carrier

The second criterion ensures inclusion of studies that recognize ammonia’s role in long-
distance hydrogen transport and its implications for supply-side network infrastructure
[34]. However, other energy vectors offer distinct advantages over hydrogen as an energy
carrier. Ammonia, in particular, demonstrates significant potential to play a key role in
the energy transition, especially as a hydrogen carrier. Green ammonia is assumed to be
imported into European ports in large volumes to supply the demand for green hydrogen
[42]. Therefore, in this study ammonia is recognized as a renewable hydrogen carrier,
which means that ammonia can be used as an efficient storage medium for hydrogen.
This is mainly because ammonia (NHj) has a high volumetric hydrogen density [25].
Furthermore, ammonia does not emit COy when used as a hydrogen source, unlike hy-
drocarbons or alcohols [25]. Hydrogen will likely be produced in regions where renewable
energy is inexpensive. It can then be efficiently stored and transported as ammonia to
and in industrial clusters.

Pipeline Infrastructure

To capture the physical layout of the hydrogen network, this criterion emphasises the role
of pipeline infrastructure in transporting hydrogen within industrial clusters. The focus
of this study will be exclusively on pipelines as a form of infrastructure. The pipeline will
primarily be used for the transport of hydrogen. At this moment, initial investments are
being made, focusing on small-scale hydrogen. However, in the coming years, large-scale
hydrogen pipelines will be required to support the growing demand [55].
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Interdependencies

This criterion includes studies that examine how investment decisions are influenced
by neighbouring firms, particularly within shared infrastructure contexts. These inter-
dependencies may include economic, supply chain, and technical relationships between
companies operating within industrial clusters.

Economic interdependencies arise from shared investments, competitive pressures,
and market dynamics that affect the entire ammonia and hydrogen supply chain. Sup-
ply chain interdependencies involve the physical flow of ammonia and hydrogen between
firms. Technical interdependencies refer to shared use of infrastructure, including ammo-
nia cracking units and storage facilities.

A key challenge in this study is to define and categorise interdependencies based on
firm-specific attributes and to assess how these relationships influence network dynamics.

Firm Behavior Modeling

This search criterion focuses on studies that apply threshold logic to model firm behaviour
under uncertainty. Agent-based simulation models are also included, as they capture
cascading investment dynamics in which the actions of one firm can trigger others to
invest, thereby reducing their effective thresholds. By incorporating this criterion, the
study moves beyond static and centralised modelling assumptions, offering a more realistic
representation of infrastructure development in industrial clusters [54].

Network Optimization Approaches

The final criterion focuses on studies that apply network optimisation approaches, in-
cluding graph theory, Mixed Integer Linear Programming (MILP), or related methods
for designing efficient infrastructure. These approaches translate firm-level adoption be-
haviour into feasible and cost-effective pipeline network layouts.

2.4 Ammonia Infrastructure in Industrial Clusters

Ammonia infrastructure, including import terminals, cracking units, and storage facilities,
plays a critical role in the decarbonisation of industrial clusters. This is particularly
relevant in port-based clusters such as Rotterdam, where large volumes of ammonia are
expected to be imported. A large body of literature focuses on the feasibility of ammonia
as a hydrogen carrier. As stated by Negro et al. [34] and Chatterjee et al. 7], ammonia
presents significant advantages for hydrogen storage and transport. Key benefits include
its high hydrogen density, as it contains 17.8% hydrogen by weight. Furthermore, the
volumetric hydrogen density of ammonia is almost 2.5 times higher than that of liquid
hydrogen, allowing for more hydrogen storage per unit volume [26].

A second important advantage is that ammonia can be stored and transported under
mild conditions, such as —33°C and moderate pressure (~ 10 bar) [34]. However, most
studies focus on techno-economic evaluations and do not model how ammonia infras-
tructure develops as part of a co-evolving hydrogen system within an industrial cluster
[34]. This type of modelling remains underdeveloped. Existing studies rarely examine
how firms coordinate their investments or how this coordination influences investment
decisions in ammonia specific infrastructure.

26



The majority of these studies focus on small-scale projects, with limited investigations
into large-scale industrial ammonia systems. A project is considered large scale if it
involves multiple interconnected users, such as hydrogen consumers, storage providers,
and import terminals, and supports flows of 100 to 1000 tonnes of ammonia per day.
In addition, it requires substantial transport infrastructure, such as pipelines or import
terminals, and involves the use of shared infrastructure. An overview of these articles
and their scope is presented in Table While ammonia is already widely used in the
fertilizer and chemical industries, its growing potential as a hydrogen carrier is expected
to increase its utilization [56]. Consequently, its adoption in large-scale energy systems
presents several unresolved challenges that warrant further study [56].

The integration of ammonia into large hydrogen infrastructure networks is crucial
for two main reasons: the growing demand for hydrogen, which will require large-scale
infrastructure, and the economies of scale that can make large-scale systems more cost-
effective. The import volumes of green ammonia are expected to increase rapidly, as
its cost primarily depends on the availability and price of renewable energy [42]. Coun-
tries such as Spain, Portugal, Chile, and Australia have high renewable energy potential,
making ammonia imports more cost-effective compared to domestic production. To ac-
commodate large-scale green ammonia imports, dedicated terminals, storage facilities,
and other infrastructure components will be necessary.

Additionally, while shipping logistics for ammonia transportation have been exten-
sively studied, research on large scale pipeline networks that integrate ammonia into
hydrogen systems remains limited [10]. According to Cui and Aziz [10], pipelines could
potentially offer cost advantages over maritime transport, but their feasibility, economic
benefits, and integration into existing energy systems remain underexplored. This study
focuses exclusively on infrastructure within an industrial cluster. As a result, shipping
logistics are not considered, since the distances within the cluster are too short to warrant
maritime transport.

Economies of scale also play a crucial role in the transition toward hydrogen sys-
tems [10]. Large-scale hydrogen infrastructure benefits from economies of scale, meaning
that the cost per unit of transported ammonia decreases as the number of participants in
the system increases [10]. For example, high initial investment costs can act as a critical
threshold for companies considering whether to invest, particularly given the uncertainty
surrounding infrastructure planning. While building pipelines with enough capacity to
meet the supply and demand of all participants can help distribute costs, there is a risk
that the pipeline will be underutilized. Cui and Aziz [10] present a techno-economic
analysis showing that scaling up ammonia infrastructure can lead to reduced transport
costs over time. However, additional research is needed to examine how economies of
scale emerge in hydrogen network development when driven by investment decisions in
ammonia-related assets.

Study Year Scope

125] 2008 Focuses only on large-scale automotive distribution of ammonia

142 2021 Focuses only on large-scale shipping distribution

121 2024 Focuses on small-scale storage and transport methods

115 2023 Conceptual comparison of pipeline and shipping logistics for large-scale ammonia transport; lacks detailed modeling
126 2022 Focuses on large-scale ammonia systems for transportation and storage, particularly in marine tankers

|10 2023 Feasibility study of ammonia for short-distance hydrogen transport

146 2023 Focuses solely on the technological feasibility of repurposing natural gas pipelines for ammonia

130 2024 Focuses solely on risk analysis of large-scale ammonia networks

134 2023 Economic and technical evaluation of small- and large-scale ammonia networks; large-scale analysis focuses on shipping

Table 2.1: Studies Investigating Small- and Large-Scale Ammonia Systems
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2.5 Limited research on integrating ammonia into
hydrogen infrastructure networks

Building on the infrastructure challenges discussed in the previous section, another key
gap concerns the limited research on how ammonia infrastructure integrates with broader
hydrogen energy systems. Ammonia has long been used in the fertilizer and chemical
industries, according to Galimova et al. [15]. These sectors account for about 70% of
global ammonia consumption |15]. In many industrial clusters, ammonia is emerging as
a key component of hydrogen supply systems. It functions both as a transport vector
and a supply buffer, supporting stable hydrogen availability for industrial applications.
This indicates potential synergies between ammonia and hydrogen systems in practice.
However, realising this synergy requires coordinated infrastructure planning that aligns
with projected hydrogen demand and ammonia import volumes [36].

Despite its promise, there remains a major gap in the literature on how infrastructure
elements such as crackers, import terminals, storage facilities, and hydrogen pipelines are
connected in a co-evolving system. To effectively integrate ammonia into large hydrogen-
based energy systems, it must first be decomposed into hydrogen and nitrogen [56].
According to Trangwachirachai et al. [52], there is a lack of research on the integration
of ammonia crackers within large-scale energy networks, particularly when considering
crackers as a shared investment within the network.

Finally, Kojima and Yamaguchi [26] state that little research exists on the interaction
between large-scale ammonia networks and hydrogen infrastructure networks. A large
body of studies focuses solely on hydrogen supply chains, neglecting ammonia’s potential
integration into industrial and energy networks [46]. This highlights the absence of a joint
modeling framework that simulates how ammonia and hydrogen infrastructure could co-
develop over time in response to investment behavior in industrial clusters. Given that
ammonia imports are expected to increase significantly, future research should explore
how ammonia could complement other energy systems, identifying synergies and potential
challenges in large-scale adoption.

Makhloufi and Kezibri [32] respond to the growing interest in ammonia by assessing
the feasibility of large-scale cracking systems for producing high-purity hydrogen suitable
for fuel cell applications. This underscores ammonia’s importance as a hydrogen carrier.
However, Makhloufi and Kezibri [32] do not explore how large-scale ammonia cracking
systems influence the hydrogen pipeline network. Their article only presents a detailed
design for a large-scale ammonia-to-hydrogen plant. Nonetheless, they do mention that
the integration of ammonia cracking into a hydrogen supply chain requires further re-
search.

The current status of hydrogen infrastructure has been widely reviewed, with stud-
ies focusing on production methods, storage technologies, transportation, and refuelling
infrastructure [24]. However, these reviews, including that by Kim et al. [24], generally
treat hydrogen and ammonia infrastructure as separate systems and often overlook their
potential integration and interaction.

Despite valuable contributions to both ammonia and hydrogen infrastructure, most
studies examine these systems in isolation. Reviews such as Kim et al. [24] focus pri-
marily on technical aspects, including production and storage, but rarely address how
investments in ammonia infrastructure, such as cracking units or import terminals, affect
the spatial layout and development of hydrogen networks in industrial clusters. The need
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for coordinated infrastructure planning that incorporates for interdependencies across
different assets remains insufficiently addressed.

2.6 Current analysis of energy systems

To understand and address these integration challenges, it is not only necessary to de-
velop physical infrastructure, but also to adopt efficient modeling approaches capable
of capturing the complexity within industrial clusters. This complexity arises from in-
terdependencies between firms and the strategic investment behavior that characterizes
modern energy systems. The energy transition is driving fundamental changes in both
system design and modeling. This requires new approaches that go beyond traditional op-
timization frameworks. Existing models must be re-evaluated to assess how new energy
vectors like ammonia integrate with infrastructure, and how decentralized investment
behavior impacts infrastructure development.

A wide variety of models have been developed to analyze energy systems, many based
on top-down, system-level optimization techniques. These techniques assume a central
planner makes all decisions to optimize outcomes such as cost. However, new energy vec-
tors and decentralized systems are increasing complexity, driven by renewable integration,
distributed generation, and diverse energy carriers [39]. Yet energy models remain lim-
ited by computational constraints due to their level of detail. It is essential to capture
interdependencies and non linear dynamics between actors in energy models, yet these
interactions are often excluded to reduce complexity. Understanding these limitations is
essential for effectively analyzing future energy systems [39].

To manage complexity in industrial hubs, it is important to align model purpose
with detail. Ridha et al. [39] propose a framework for categorizing traditional models.
While these models are useful for high-level planning, they overlook firm-level decision
dynamics, especially in emerging areas like ammonia and hydrogen infrastructure. They
often ignore uncertainties in company decisions and how these shape cascading investment
effects. Key elements such as interdependencies, thresholds, and peer influence are vital
for advancing model realism.

Ridha et al. [39] reviewed 145 energy system models and identified trade-offs between
model detail and computational feasibility. Their study categorizes models into four
types, summarized in Table 2.2 However, these models assume firms act independently
or follow system-wide optimization. They do not account for interdependencies, even
though one firm’s decision can strongly influence another’s [39].
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Model Type Description

Unit Commitment Used for power plant deployment planning, optimizing

Models power generation scheduling and dispatch.
Electrical Grid Analyze and optimize electrical grids, including load
Models flows and grid stability.

Policy Assessment Assess the effects of energy policies on economic and
Models environmental outcomes.

Future Energy Sys- Conduct scenario analysis for energy system transfor-
tem Models mations and long-term energy planning.

Table 2.2: Energy System Model Classification [39]

To evaluate shared infrastructure systems effectively, models must account for in-
terdependencies. In industrial clusters, many firms coordinate investments in pipelines,
terminals, and storage facilities, all of which require high capital and long-term plan-
ning. Investment cascades are also common, when a key player commits to ammonia,
others might follow. Capturing these dynamics is essential for assessing the viability of
infrastructure investments. Since traditional models do not incorporate strategic firm
behaviour, alternative approaches are needed, particularly those that reflect non-linear
adoption patterns and peer influence.

One such approach is the threshold model. It evaluates how firms adjust decisions
based on the actions of connected neighbors [54]. At each timestep, a firm decides whether
its threshold is met based on network influence. Chen et al. [8] used threshold models
to study how renewable energy consumption affects economic growth. They showed that
linear models miss non-linear effects, while threshold models capture them. Their results
found that the impact of renewables varies based on whether a country has crossed a
threshold in renewable energy use [8].

The table below, based on Ridha et al. (2020), summarizes key differences between
traditional and threshold-based energy system models.

Table 2.3: Comparison Between Traditional Energy Models and Threshold-Based Models

39]

Aspect Traditional Models (Unit | Threshold-Based Model
Commitment, Grid, Policy,
Future Systems)

Decision-Making Centralized (system-level opti- | Decentralized (firm-specific adop-

Process mization) tion choices)

Interdependencies | Ignored; Companies are modeled | Captured; Companies react to
independently each other’s decisions

Continued on next page
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Continued from previous page

Aspect

Traditional Models

Threshold-Based Model

Adoption Dynam-
ics

Assumes smooth, policy-driven
adoption

Captures tipping points, invest-
ment hesitations, and cascading
effects

Policy Influence

Simulates high-level policy im-
pacts (e.g., carbon pricing, sub-
sidies)

Models how companies react to
policy incentives & infrastructure
investment trends

Infrastructure De-

Exogenous (assumed to develop if

Endogenous (companies invest

velopment needed) only if conditions are favorable)
Mathematical Linear /mixed-integer ~ optimiza- | Threshold-based agent modeling
Framework tion, system dynamics (firms adopt only when certain

conditions are met)

This comparison table illustrates that traditional energy system models rely on unreal-
istic assumptions that significantly limit their predictive power [39]. While these models
excel at system-level optimisation by identifying the most cost-efficient network, they
typically treat firms as isolated entities and overlook interdependent decision-making.
As a result, they may predict hydrogen network development based solely on cost-benefit
analysis, but fail to capture the ”"chicken and egg” dynamics and the influence of ammonia-
related investments on hydrogen infrastructure evolution. In contrast, threshold-based
models are better suited to represent real-world dynamics, including tipping points, in-
vestment cascades, and the effects of policy interventions. The comparison by Ridha et al.
[39] suggests that a successful energy transition requires moving beyond traditional op-
timisation models towards approaches that explicitly account for the strategic behaviour
of firms in industrial clusters.

2.7 Threshold Models and Cascading Behavior in
Networks

While traditional models fail to capture the strategic, interdependent behavior of firms,
this gap is well suited to be addressed with a threshold model [41]. Threshold models are
already widely used to simulate system changes characterized by peer influence and non-
linear change that occurs when reaching a critical point, or so-called tipping point [50].
Such tipping points indicate that a small change in a part of the network, such as a com-
pany reaching its threshold, can trigger large cascading dynamics within the system [41].
These cascading dynamics refer to the rapid, widespread changes that unfold throughout
the system once a critical threshold is crossed. This is illustrated in the figures below.

31



Timestep 1: 10 adopters
Timestep 0: 2 adopters

(a) Timestep O (b) Timestep 1

Timestep 5: 30 adopters
Timestep 2: 21 adopters

(c) Timestep 2 (d) Timestep 4

Figure 2.2: Tipping Point and Cascade Dynamics in a Threshold-Based Adoption Model

The figures represent the development of a threshold model over time. Note that
this figure represents a random graph with randomly assigned edges between the nodes.
At timestep 0, the model includes two early adopters, highlighted in blue. These early
adopters influence the nodes they are directly connected to, referred to as their neigh-
bors . A node’s decision to adopt is based on the proportion of neighbors that have
already adopted. As more nodes reach their individual thresholds, the network can ap-
proach a tipping point . The tipping point represents the moment when a critical
mass of adopters is reached, triggering a full transition across the network. In the fig-
ure, the tipping point occurs at timestep 2, when a large amount of nodes adopt in a
single timestep. Once this point is crossed, adoption accelerates rapidly, producing large
cascading dynamics. This pattern of initial slow adoption by early adopters, followed by
rapid adoption after the tipping point, is typically recognized as the S-shaped curve of
diffusion, shown in the figure below.
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Figure 2.3: S-Curve of Adoption: Illustrating Tipping Point Dynamics in Threshold
Models

A key concept in threshold models is the individual threshold, which represents the
minimum level of external influence required for an individual to adopt a behavior or
transition to a new state [54]. These individuals can have varying thresholds, leading to
different times of transition, and resulting in gradual diffusion processes [54].

In the context of innovation diffusion in networks, threshold models are particularly
useful for understanding how behaviors or technologies spread based on the interdepen-
dencies of individuals [54]. Valente et al. [54] introduced a social network perspective to
explain how the diffusion of innovations evolves over time. They argue that individuals
engage in new behaviors based on the proportion of others in their network already doing
so. This framework allows for predicting diffusion patterns and identifying roles such as
opinion leaders and followers.

Such models are particularly relevant in shared infrastructure settings, such as indus-
trial clusters where the development of pipelines or terminals depends on coordinated
investment [54]. When early adopters commit to infrastructure, they increase the influ-
ence on neighbouring firms by signalling reduced risk or improved viability. As adoption
spreads, the cumulative influence on remaining firms grows, increasing the likelihood that
others will exceed their predefined thresholds and decide to invest. This process can lead
to a cascade of further adoption [54].

Dreyer and Roberts [14] and Valente [54] applied the threshold model to analyze the
adoption and development of technologies across firms in a network. Their studies illus-
trate how peer influence determines both the speed and scope of adoption. However, these
models are not yet integrated with network optimization tools that simulate how adop-
tion dynamics affect the evolving spatial configuration and costs of shared infrastructure
systems.

This research applies a threshold model to simulate how firms in industrial clusters
make investment decisions that shape the development of a hydrogen pipeline network.
Rather than modelling the adoption of ammonia infrastructure directly, the model focuses
on strategic decisions, such as committing to hydrogen use through infrastructure invest-
ments, which collectively determine the network’s spatial configuration. By incorporating
firm-specific thresholds and interdependencies, the model captures critical tipping points
and cascading dynamics. This approach addresses a key gap by integrating threshold-
based diffusion modelling with spatial network optimisation, offering a novel framework
for analysing how infrastructure co-evolves with firm behaviour in shared energy systems.
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2.8 Integration of Graph Theory in Network Plan-
ning

Analyzing different networks and their characteristics poses various socio-technical and
scientific challenges |18]. These challenges arise in both physical and non-physical net-
works. Network optimization models provide a structured approach to analyze these
challenges. This structured approach should enable the model to address so-called multi-
source, multi-sink network problems. These problems refer to networks with multiple
‘consumers’ and multiple 'producers’ [19)].

In physical networks, these models typically aim to minimize network design costs.
They account for factors such as pipeline length, capacity, and topology [1]. Within
these models, uncertainties in supply, demand, and node connections are addressed, while
multiple stakeholders (such as companies within industrial clusters) are involved in the
decision-making process.

Heijnen et al. (2019) reviewed several of these network optimization approaches and
identified three distinct methodologies:

1. Geometric Graph Theory
2. Mixed Integer (Non-)Linear Programming

3. Agent Based Modelling

2.8.1 ABM

Agent-based models (ABMs) are identified as one of the three main approaches for tack-
ling network systems design problems [17]. Compared to MILP and graph theory, ABM
is also used to assess the interaction of individuals and groups within networks [17].

According to Heijnen et al. [17], agent-based modeling is a bottom-up approach
in which intelligent agents interact within an environment of other agents. Rather than
using a centralized design, system behavior and structure emerge from interactions among
individual agents. These individual components are referred to as agents.

The foundation of agent-based models lies in Ant Colony Optimization (ACO) algo-
rithms. ACO is an optimization approach where digital “ants” move across a network
in search of food, relying only on local information from their immediate surroundings.
These ants have no direct knowledge of the best or worst paths. The algorithm concep-
tualizes the problem as a graph, with the overall objective being to find optimal solutions
from a set of candidate solutions, where a candidate solution is a selection of edges that
meet the identified constraints.

ABMs are well-suited to modeling both technical subsystems (e.g., energy networks,
infrastructure) and social subsystems (e.g., investment strategies, policy choices, technol-
ogy uptake) in broader energy systems.

2.8.2 MILP

A second category of approach mentioned by Heijnen et al. |17] is Mixed Integer (non-)
Linear Programming (MILP). MILP is mainly used to model network design problems
mathematically by defining the system as a set of linear constraints and integer decision
variables [1§].
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The primary goal of MILP is cost minimization while ensuring that all sources in a
network are connected to nodes [18]. Furthermore, the network must satisfy its demand
and supply constraints to arrive at a (near-)optimal solution. A key advantage of MILP
is its structured formulation using an objective function and constraint set, such as de-
mand and supply. This makes MILP particularly suitable for handling highly complex
optimization problems. Furthermore, MILP includes decision variables which represent
choices such as pipeline routing, connection options, and capacity assignment.

2.8.3 Graph Theory

Geometric Graph Theory is one of the most common modeling techniques for designing
networks in graph theory. Heijnen et al. (2019) highlight it as a foundational tool for
optimizing network design, particularly for minimizing costs in systems with multiple
sources and sinks. This approach is also applicable to hydrogen and hydrogen carrier
infrastructure research, where most studies rely on graph-theoretical approaches.

Within geometric graph theory, a wide range of heuristics and algorithms have been
developed to analyze networks and their characteristics. It is a combination of geometric
and graph theory, where the graph G(n, e) is represented as a set of nodes (n) [1]. These
nodes typically represent producers or consumers. Edges (e) represent the connections
between nodes |1]. These edges can represent physical connections (e = (n;,n;)), such as
pipelines, or non-physical connections, such as interdependencies between nodes.

Graph theory is extensively utilized in the modeling and optimization of various energy
network, enabling research to represent interconnections, optimize flow and facilitate
efficient energy management [58]. This appraoch is particularly valuable for optimizing
dispatching and planning infrastructure in evolving energy systems [58]. Energy networks,
regardles of their specific type or layout, can be effectively described as graphs [48} 9].

For example, graph theory has been applied to Regional Integrated Energy Systems
(RIES) to support overall planning, with a focus on integrating different energy types
to meet economic and environmental objectives [9]. An RIES can be represented as an
undirected weighted graph, where nodes correspond to energy stations and sources, and
edges represent city roads along which pipelines may be routed [9]. One example is the
planning of an integrated energy system for a mixed-use industrial and residential district
with diverse energy demands [9]. In such cases, nodes may represent energy sources such
as natural gas stations, solar farms, or wind turbines, while edges correspond to major
roadways suitable for pipeline construction. Graph-theoretic approaches can then be used
to connect these nodes based on specific optimisation objectives, such as minimising total
pipeline length.

Modelling the evolution of infrastructure networks while incorporating strategic firm
behaviour requires the selection of appropriate analytical tools. This study demands a
methodology that balances the structural rigidity of Mixed Integer Linear Programming
(MILP) with the flexibility of agent-based models (ABM) to capture complex dynamics
relevant to network analysis. Given the objective of simulating infrastructure development
based on firm interdependencies, graph theory is identified as the most suitable approach.

Graph theory offers several advantages for modelling infrastructure networks, partic-
ularly in the context of network analysis. It provides a well-established set of algorithms,
including Dijkstra’s algorithm for shortest paths, Prim’s and Kruskal’s algorithms for
spanning trees, and the Ford-Fulkerson method for maximum flow 17} 12, 28]. Its struc-
tural simplicity allows for the flexible incorporation of edge weights, constraints, and
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supply-demand relationships. This makes it particularly well suited for analysing evolv-
ing systems such as hydrogen pipeline networks.

The use of graph theory is consistent with academic findings, including those by
Heijnen et al.(2019), who identified it as the most appropriate methodology for analysing
infrastructure networks.

In this study, the focus is not solely on perfect optimization, but on modeling how
infrastructure evolves in practice, step by step under uncertainty. Graph theory is specif-
ically chosen as it supports this focus on infrastructure emergence.
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Methodology and Simulation Design

3.1 Research Approach

This methodology introduces a novel approach to deriving a social influence network
from firm-level attributes and using it as input for a threshold-based adoption model.
The output of this model is then translated into a spatial infrastructure design using the
Optimal Network Layout Tool (ONLT'). Together, these components constitute a dynamic
modelling framework that captures how strategic firm behaviour shapes the development
of hydrogen infrastructure in industrial clusters. By simulating infrastructure evolution
across a structured set of scenarios, this approach provides a foundation for infrastructure
planning in a multi-actor context and illustrates how network topology emerges over time.

3.2 Modeling Framework Overview

To structure the modeling approach, a conceptual framework was developed to guide
the research. The framework captures the sequential logic of the study and reflects
the dynamic nature of investment behavior in industrial clusters, where decisions are
influenced not only by costs but also by the behavior of peer firms.

Figure presents the four-stage modelling flow that structures this research. The
framework links firm-level investment behaviour to spatial infrastructure design through
an integrated simulation approach.

The first stage focuses on identifying relevant firm attributes and assigning normalised
scores to each firm’s attribute values and their interdependencies. Firms within the
industrial cluster are assigned attribute values, which are then used to calculate individual
investment thresholds. This step addresses Subquestion 1 by establishing which firm
characteristics influence investment behaviour. Section 3.3 provides further detail on the
attribute selection process.

The second stage focuses on the adoption process simulated through the threshold
model. This model captures how firms adopt over time by incorporating interdependen-
cies and simulating how investment decisions unfold through cascading dynamics.

The third stage focuses on the integration of the threshold model with the Optimal
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Figure 3.1: Research flow diagram

Network Layout Tool (ONLT'). The ONLT constructs a cost-efficient hydrogen pipeline
network based on the firms that have adopted in each timestep, using graph theoretical
techniques to determine the optimal spatial layout.

The final stage conducts a scenario analysis to evaluate how the hydrogen network
evolves under varying demand and import conditions. This analysis identifies which
pipelines appear consistently across multiple scenarios and can therefore be considered
robust.

To operationalise the threshold adoption model, the first step involves identifying
which firm-level characteristics influence both adoption decisions and inter-firm influence
within industrial clusters. The following section outlines the selection and justification
of these attributes.

3.3 Graph Theory

Designing energy infrastructure such as hydrogen pipeline networks involves navigating
trade-offs between cost efficiency, spatial constraints, and long-term scalability. These
systems involve high capital investments and extended operational lifespans, making ini-
tial design decisions critical, particularly in hydrogen networks, where investment timing
and adoption dynamics are uncertain.

Graph theory offers a formalized method to represent such infrastructure. In this
framework, the network is modeled as a graph G = (N, E), where the node set {n;}
corresponds to firms and the edge set {e; ;} represents potential pipeline connections or
firm interdependencies [57].

Edges may be weighted to reflect relevant metrics. For example, the weights can
represent the physical length of a pipeline, the cost of construction and installation, or
the capacity of a specific pipeline [17]. This abstraction facilitates a structured and
scalable approach to infrastructure modeling and enables the application of optimization
techniques.

Figure [3.2]illustrates a basic graph comprising four nodes and four edges. This simple
representation serves as a foundation for more complex network analyses.
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Figure 3.2: Simple graph with four nodes and four edges representing an infrastructure
network

Graph theory includes several substructures useful for network design, one of which is
the spanning tree. A spanning tree is a subgraph that connects all nodes in the network
without forming any cycles |[16]. This structure is particularly relevant in infrastructure
planning, as it guarantees full network connectivity using the minimal number of links.

Of the many possible spanning trees, the minimum weight spanning tree (MWST) is
the one with the lowest total edge weight. In infrastructure applications, edge weights typ-
ically represent construction costs, physical distances, or capacity-adjusted costs. Iden-
tifying the MWST is a fundamental problem in graph theory and frequently underpins
the design of cost-efficient infrastructure systems [16].

Several algorithms can be used to determine the MWST. Two widely applied methods
are Kruskal’s algorithm and Prim’s algorithm [3]. Kruskal’s algorithm sorts all edges in
ascending order of weight and adds them sequentially, skipping any edge that would
create a cycle. Such a cycle is shown in Figure [3.2. This process continues until all
nodes are connected. In contrast, Prim’s algorithm begins at a selected node and grows
the spanning tree by repeatedly adding the lowest-weight edge that connects a new node
to the tree. Both algorithms yield the same optimal solution, though they differ in
procedural logic and computational efficiency depending on graph structure.

Simple Tree with 8 Nodes

5/7

_——— 8

Figure 3.3: Simple tree graph with no cycles, illustrating a minimal path network

39



Infrastructure development is modeled as a dynamic process. Firm adoption occurs in-
crementally, determined by each firm’s threshold and adoption timing. At each timestep,
newly active firms are added to the network, and the optimal pipeline configuration is
recomputed to incorporate these additions.

A key assumption in this formulation is that infrastructure constructed in earlier
periods remains in place and is reused. This cumulative approach is embedded within
the Optimal Network Layout Tool (ONLT), which iteratively adapts the network layout
in response to expanding firm participation and evolving flow demands. To determine the
most cost effective infrastructure layout over time, this study uses the Optimal Network
Layout Tool, which will be introduced in Section [3.7]

In conclusion, this study applies graph theory as a central framework to model both
interdependencies among firms and the development of hydrogen infrastructure. Graph-
theoretical concepts are operationalized in two core components of the analysis: the
threshold model and the Optimal Network Layout Tool (ONLT). In the threshold model,
graph theory is used to represent the network of inter-firm interdependencies, where edges
capture the social influence between firms. In the ONLT, graph structures are applied
to optimize the physical layout of the hydrogen pipeline network, with the objective of
minimizing total infrastructure costs.

3.4 Selection of Firm Attributes

The selection of firm-specific attributes is a foundational step in the threshold model, as
these attributes determines how firms make infrastructure investment decisions and how
these decisions affect both their adoption thresholds and inter-firm influence [61]. This
section outlines the attribute selection process and supports Subquestion 1: What firm-
level attributes influence adoption decisions and interdependencies in shared hydrogen
infrastructure?

The attributes were identified through a review of relevant literature and data pro-
vided by Power2X. A targeted set of criteria was applied to select attributes for model
inclusion, prioritizing clarity, data availability, and decision relevance for infrastructure
investment, as shown in Table |3.1}
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Table 3.1: Criteria for Selecting Firm-Level Attributes

Criterion

Guiding Question

Relevance to Adop-
tion Decisions

Strategic Importance
in Infrastructure Plan-
ning

Availability and Qual-
ity of Data

Heterogeneity Across
Firms

Interpretability

Measurability

Representation of
Firm Role or Function

Does the attribute directly influence a firm’s likelihood
to invest in shared hydrogen infrastructure?

Is the attribute often used in real-world infrastructure
development or investment decisions?

Is reliable, company-level data for this attribute avail-
able (e.g., via Power2X or public sources)?

Does the attribute vary meaningfully between firms, al-
lowing for behavioral differentiation?

Is the attribute easy to explain and interpret by both
stakeholders and model users?

Can the attribute be quantified in a consistent and scal-
able way across firms?

Does the attribute represent the firm’s structural role in
the cluster (e.g., producer vs. consumer)?

In the model, these attributes serve tree key functions. First, they determine the
individual adoption threshold for each firm. Second, they contribute to the edge scores
in the influence network, reflecting the strength of inter-firm influence. Third, these
attributes were also used to identify the set of firms included in the RIC case, as described
in Section [3.4] This approach ensures consistency in firm selection and guarantees that
each firm has relevant data available for the specified attributes.

3.5 Attribute Categories

The threshold model applied in this study includes firm specific attributes to capture
each firm’s individual investment threshold. FEach attribute is interpreted as a factor
potentially affecting a company’s willingness to invest. To determine firm specific thresh-
olds, the attribute data must be transformed to allow consistent comparison across firms.
Because the raw attribute values differ in scale, a classification step is applied within
each attribute to standardize the data for integration into the threshold calculation. For
numerical attributes, values are classified into three categories: low, medium, and high,
based on the range and distribution of observed values. This approach aligns with the
work of Valente et al. (1996) and Dreyer and Roberts (2009), who use categorical dif-
ferentiation to reflect varying levels of readiness to adopt. While these studies focus on
social models and network degree, this study extends their logic by linking firm specific
attributes directly to individual adoption thresholds. This acknowledges that firms with
more favourable characteristics are likely to adopt earlier. To ensure comparability across
attributes, the assigned category scores are normalized to a scale between 0 and 1.

For each numerical attribute, the collected data is visualised using a histogram. A vi-
sual inspection of this histogram enables the identification of natural clusters and bound-
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ary values. These values are used to define the limits of the low, medium, and high
categories for each attribute. An example of one such a histogram is shown below. The
boundary values for the low, medium, and high categories were selected based on the
following criteria:

» Visible gaps in the histogram,
o Cluster centres or local density peaks,

« Round values near points of distribution change.

To ensure consistency, each category must include at least 20% of the firms, and no cat-
egory may contain more than 60%. These constraints are introduced to prevent extreme
imbalances that would limit the model’s ability to meaningfully differentiate between
firms. In addition, these boundaries ensure that all attribute categories contribute to the
variation in firm specific thresholds. This is essential for generating realistic adoption
patterns within the threshold model. This approach is in line with the equal frequency
binning method , , which is commonly used to categorize attributes with continuous
domains. In this method, the range of attribute values is divided into a specified number
of bins, denoted as N. For each attribute, the data are sorted and partitioned into N bins
such that each bin contains approximately the same number of observations.

The main difference between the standard equal frequency method and the approach
applied here is the treatment of the data distribution. In this study, attribute values are
classified according to a normal distribution. As a result, the middle category contains
the majority of observations, which better reflects the expected distribution in practice,
where most firms exhibit average characteristics.

20.0 === Low/Medium threshold

=== Medium/High threshold

17.5

15.0

12.5

10.0

7.5

Number of Firms

5.0

2.5

0.0 0 20 40 60 80 100

Attribute Value (abstract units)

Figure 3.4: Example Histogram Used for Attribute Categorization

This approach typically reveals the following pattern:

o A clear concentration of low values, which provides a logical lower bound for the
low category;
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o A middle segment where most observations are concentrated, which is defined as
the medium category;

o A limited number of high values, which justifies the definition of a high category.

The boundary values for the categories within each attribute were derived with the
aim of creating a meaningful differentiation between firms. An example of such a catego-
rization is: x < xq1, r1 < x < 9, and x > x5, where z; and x5 represent the boundaries
determined based on the data distribution.

Example of an abstract category classification:
o Low: Values less than or equal to x;

e Medium: Values between z; and equal to z9

o High: Values greater than x,

This method is applied to each numerical attribute in the threshold model to ensure
consistency in the categorization of attribute values. A structured method for scoring the
different attribute categories is essential for the model to produce meaningful variation
in adoption behaviour. The adoption process in the threshold model depends on clear
differences in the readiness of firms to adopt. Without a well structured procedure, raw
attribute values that are extremely high or low could dominate the threshold calculation.
These extreme values often result from future oriented project data or highly ambitious
project announcements. A detailed explanation of the category scoring process is provided

in Section B.5.11

3.5.1 Category Scoring Method

In this study, the term score refers to a normalised score that translates the values of
firm attributes into relevant indicators of adoption likelihood. The primary reason for
applying the scoring method is that the attributes are measured on different scales. The
scoring process ensures that these values can be meaningfully compared and combined
into a single threshold score. To achieve this, attribute values are first classified into
categories and then translated into normalized category scores. The category bound-
aries reflect relative differences in scale between firms and their likelihood to adopt. For
example, a high value for an attribute such as hydrogen demand may indicate a lower
investment threshold, reflecting favourable conditions for adoption. Firms in this cate-
gory are typically major players and are assigned a score of 0.8. Conversely, firms with
a low attribute value are assumed to face a higher threshold and are assigned a score
of 0.2. The medium category represents intermediate cases and is assigned a score of
0.5. By assigning an intermediate scores to the medium category the model allows for
sufficient variation in threshold values between firms. The selected categories were chosen
because they reflect meaningful and distinguishable levels of adoption readiness. These
values strike a balance by being sufficiently distributed to produce differentiated adoption
patterns in the model, while remaining within a range that avoids unrealistic outcomes.
The scores that are assigned to the low, medium, and high categories are not di-
rectly derived from scientific literature. They were determined through an interpretative
approach, aiming to translate numerical firm level data into behavioral components.
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Several alternative score sets were tested in the threshold model to evaluate the valid-
ity of the low, medium, and high values (0.2, 0.5, and 0.8). For instance, the scores 0.1,
0.4, and 0.9 were tested. These increased the differences between firms, which substan-
tially raised the model’s run time, while producing nearly identical results. Conversely,
the scores 0.4, 0.5, and 0.6 were used to analyse a scenario where differences between firms
were minimal. Nevertheless, this configuration produced no adoption dynamics, as the
thresholds were too high and too closely clustered. In this study, all firm level attributes
are assumed to contribute equally to a firm’s threshold score. However, differences within
each attribute are reflected in the varying importance of their categories, as determined
by the normalised scores assigned to each.

3.5.2 Scoring of Categorical Attributes

In contrast to numerical attributes, categorical attributes are assigned normalized scores
using a different approach. To determine these scores, expert interviews were conducted
with a panel of ten professionals experienced in the energy transition. These experts are
all currently involved or have previously participated in hydrogen and decarbonisation
projects across various industrial clusters. They were selected based on their experience
with infrastructure development, firm engagement, strategic planning, and advisory roles
in multiple industrial settings. Their involvement across a wide range of projects, compa-
nies, and cluster contexts provided a robust basis for evaluating the relevance of specific
firm attributes. Each expert was asked to evaluate ten pairs of hypothetical firms, with
each pair differing across multiple attributes. This type of approach is referred to as a
pairwise comparison method [4]. It can be clearly illustrated through the example of
optimal passenger car selection. In this case, the pairwise comparison method is used
to evaluate different vehicles based on both quantitative and qualitative attributes [27].
Expert judgments are collected by comparing cars across a defined set of criteria, such as
price, engine power, and subjective characteristics like safety and design. Even for quali-
tative attributes, expert reasoning is translated into normative scores, which enables the
integration of diverse judgments into a single normalized priority ranking.

The process begins by identifying the alternatives (e.g., Skoda, Ford, VW Golf) and
the criteria on which they are evaluated [27]. These include quantitative criteria such
as price, engine power, and fuel consumption, and qualitative criteria such as driving
safety and design. Experts use the pairwise comparison method to evaluate each car
with respect to each criterion. The results are then organized into a matrix, where
each entry represents the preference ratio of one alternative over another. These scores
are aggregated and normalized, converting the inputs into comparable numerical values
suitable for further analysis.

In this study, the pairwise comparison approach involved asking the following question
for each pair:

Which entity is more likely to adopt the innovation first, and why?

Adoption was explicitly defined as committing to investment decisions in new infras-
tructure, such as storage systems, ammonia crackers, or pipeline connections. In addition,
it was clarified that hydrogen volumes were expressed in hydrogen equivalents, including
both green hydrogen and green ammonia.

The responses were analysed using a simple scoring method [54][4]. This method
was used to reduce subjectivity and improve comparability. By focusing solely on the
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frequency with which a category was mentioned, the method ensures consistent inter-
pretation across experts. For each comparison, any attribute mentioned in the expert’s
reasoning was assigned a score of 1, while all other attributes received a score of 0. In
the case of categorical attributes, specific categories mentioned by the experts were also
counted. This allowed for the quantification of the relative importance of each attribute
and its categories across all comparisons.

To derive the normalized scores for the categorical attributes, the frequency with which
each category was mentioned was normalised to obtain a relative ranking. These scores
were summed across all interviews and then divided by the total number of mentions
per attribute, as shown in Table [3.2] This table presents results only for the categorical
attribute "company type.” Other attributes, which are numerical, are excluded here be-
cause their scores were defined directly from available data. Nonetheless, the normalized
values shown are based on the total mention counts across all attributes.

The first column in the table presents the attribute name, in this case "Company
Type,” followed by the specific attribute categories in the second column. The third
column, "Mention Count,” indicates how often each category was selected during the
pairwise comparison exercise. The fourth column displays the normalized score, and the
final column, ”"Defined Score,” shows the values ultimately used in the model. These
defined scores were selected to maintain sufficient differentiation between attribute cat-
egories. This was necessary to ensure the threshold model produced distinguishable
adoption patterns, which may not occur if the scores are too close to each other.

Table 3.2: Expert Scores for Company Type Attributes

Attribute name Attribute category = Mention count Normalized Score Defined Score

Company Type Importer 39 0.099 0.90
Company Type Storage provider 36 0.092 0.80
Company Type Hydrogen supplier 18 0.046 0.60
Company Type Hydrogen consumer 15 0.038 0.50

3.5.3 Edge Score Calculation

In addition to the scores assigned to firm level attributes, the connections between firms
are also assigned scores to represent the degree of influence one firm may exert on another.
To calculate the final influence between two firms, the model first computes a separate
edge score for each attribute. This is done by taking the average of the attribute scores
assigned to the two connected firms. For example, if Firm X has a low hydrogen demand
(score = 0.2) and Firm Y has a medium hydrogen demand (score = 0.5), the resulting edge
score for that attribute would be 0.35, as shown in the formula below. This procedure is
repeated for each attribute. The final edge score between two firms is then calculated as
the simple average of the individual attribute scores. This reflects the assumption that
all attributes contribute equally to the overall influence strength between firms.

02405
Wy, = g — 0.35

The model assumes that adoption influence is strictly positive. In practice, however,
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negative connections may also occur, or stronger positive connections may arise between
firms that differ significantly, for example when they benefit from each other within the
supply chain. The effect of these edge scores on the influence between firms will be
explained in the threshold model section.

3.5.4 Calculating Firm-Specific Thresholds

The final part of the threshold model focuses on determining each firm’s specific
threshold. This section explains the rule by which a firm decides to adopt.

Each firm’s threshold is derived from its attribute profile. The underlying assumption
is that firms with more favourable characteristics, reflected in higher attribute scores,
have lower thresholds to adopt. This is captured by the following formula:

where:
T} is the threshold value of firm j
o n is the number of attributes considered
o wy is the score assigned to firm 4’s value on attribute a

The pseudocode outlining the threshold calculation logic is provided in Algorithm
in appendix C.

3.6 Threshold Model Design

In this study, the threshold model represents the behavioural logic underlying firm-level
infrastructure adoption. It forms the core of the modelling approach by simulating how
strategic adoption behaviour evolves over time and influences the spatial layout of infras-
tructure. The model captures how firms respond to peer influence and interdependencies,
allowing for the identification of cascading effects within industrial clusters [59].

3.6.1 Threshold Model

Before introducing the dynamic and mathematical formulation of the threshold model,
this section highlights several important aspects that require explicit explanation.

Timestep

A timestep represents one unit of simulated time in the model. It does not correspond to
real-world time (days or years), but they represent discrete moment in which firms update
their decisions. In each timestep, firms evaluate whether to invest based on the current
state of the network and the level of influence from neighbouring firms. This iterative
procedure represents infrastructure development as a sequence of decision rounds, each
corresponding to a discrete timestep. At each step, adoption decisions are updated based
on the current system state. The process continues until no additional adoption occurs,
capturing how adoption unfolds over time within the industrial cluster.
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Complete Graph Structure Threshold Model

In graph theory, various types of graphs can be employed depending on the modelling
objective. Within the threshold model used in this study, a complete graph (G) is con-
structed in which every node is potentially connected to every other node in the network.
This structure implies that each firm can, in principle, be influenced by all others. How-
ever, the strength of these connections varies based on firm-specific attributes, meaning
some links carry greater influence than others. This approach enables the construction
of a fully connected graph in which edge scores represent the degree of influence. As a
result, the model captures the interdependent nature of firms within an industrial cluster
in a nuanced and flexible manner.

Threshold Model Dynamics

Within the threshold model, firms are represented as nodes in a social network, which
means their connections represent the interdependencies and not physical conneciton
[54]. Each firm is assigned a threshold 7;. Firms with more favorable attributes tend to
have lower thresholds making them more likely to adopt early, while those with a higher
threshold likely postpone their investments [61].

After computing a specific threshold for each firm within the industrial cluster, influ-
ence propagates through the network via the scored connections. The model assumes that
firms that have already adopted exert a positive influence on their neighbours, thereby
increasing the likelihood of adoption.

At each time step, the model calculates the influence a firm receives from its adopted
neighbours, expressed as a proportion of the total influence from all of its connections
[14]. This proportion is referred to as the influence ratio (IR;) , which is then compared
to the firm’s specific threshold.

Consider a simple graph containing three nodes (1, 2, and 3). For each node, the total
received influence is calculated as the sum of all connection scores with neighbouring firms.
The adopted influence is then calculated as the sum of scores from neighbours that have
already adopted. A firm will adopt if its influence ratio exceeds its own specific threshold.
This process is formalised in the following formula:

For all 7 € F, the influence ratio IR; is defined as:
.Z Wi
JEA;

> Wy 5

JeF\{i}

Adoption Rule:
If IR; > T;, then firm i adopts.

o F is the set of all firms (nodes) in the network

A; € F\{i} is the set of firms that have already adopted and are connected to
firm ¢

 w;; is the score of the connection from firm j to firm ¢, defined for all (7, j) € E(G)

T is the threshold value of firm 4
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This formulation is consistent with the study by Valente et al. (1996), which defines
an individual’s threshold as the proportion of adopters within their social system required
for them to adopt an innovation [54]. More specifically, it reflects the share of others in
their network who must have already adopted before the individual decides to do so. In
addition, this threshold adoption formula also correspond with Dreyer et al. (2008) irre-
versible k-threshold proces, where a node changes from "uninfected”(state 0) to infected
(state 1), if at least k of its neighbors are in state 1 [14]. Here, k is the fixed threshold
for a state change. Furthermore, Yuxin Ye et al. (2022) analyse the Linear Threshold
Model (LTM), a widely used diffusion framework in which each node is assigned an in-
fluence threshold (7},). In their study, T, is drawn from a uniform distribution between
0 and 1 and remains constant once determined. This value is generated using a random
number generator algorithm. However, the authors acknowledge that threshold values
can vary substantially and are often related to observable characteristics such as node
attributes, economic willingness, or firm-specific preferences. For example, Yuxin Ye et
al. (2022) note that in a majority threshold model, a node’s specific influence threshold
can be directly derived from its structural position in the network, measured by its degree
centrality D(v). Degree centrality quantifies the number of direct connections a node v
has to other nodes. In their formulation, the threshold is calculated using the expression
T, = 5 Dl(v) [61]. This implies that higher degree centrality, indicating a more connected
node, corresponds to a lower adoption threshold and reflects greater susceptibility to peer
influence. In this study, a similar principle is applied, but extended to include a combi-
nation of multiple firm-specific characteristics. These attributes are used to compute a
normalized threshold for each firm within the cluster.

In contrast, this study derives threshold values from firm-specific attribute data, using
a structured scoring method to generate a normalized threshold for each firm. In addition,
the influence of edge scores is explicitly incorporated into the adoption logic, consistent
with the threshold-based approach. As in Ye et al. (2022), this model assumes that
firms that have already adopted exert a positive influence on their neighbours, thereby
increasing the likelihood of adoption through accumulated peer influence [61].
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Influence Summary with Mixed Adoption Outcomes

Threshold=0.60

w=0.60 1

Threshold=0.40 Threshold=0.50

Figure 3.5: Edge scores graph

Looking at the example of the graph in Figure [3.5, which contains three nodes, we
see that node 1 has two neighbors: node 0 and node 2. Node 0 has already adopted and
shares an edge with node 1 with a normalized score of 0.60. Node 2 has not adopted and
is connected to node 1 with a score of 0.20.

To calculate the total influence on node 1, we sum the scores of all its incoming edges,
resulting in a total influence of

0.60 + 0.20 = 0.80.

The infected influence (the cumulative influence from already adopted neighbors) is 0.60.

This gives an influence ratio of
0.60

080 0.75.
Since node 1 has a threshold of 0.50, it will adopt because the influence ratio exceeds its
threshold. Node 2 does not adopt at this stage, due to its higher threshold relative to
node 1 and its lower edge score with node 0.
In the second time step, the focus shifts to node 2’s perspective. Node 2 is connected
to both node 0 and node 1, with edge scores of 0.30 and 0.20, respectively. Both of these

neighbors have adopted, so the infected influence for node 2 is
0.30 + 0.20 = 0.50.

However, because node 2 has a higher threshold of 0.60, the influence ratio of

0.50
— =1.00
0.50
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is sufficient. In contrast, in an alternative where one of the neighbouring firms had not
adopted, or where the influence scores were lower, the node would not adopt.

This example illustrates how both threshold values and the strength of interdepen-
dencies (edge scores) together determine adoption decisions.

By incorporating this mechanism into the model, stronger interdependencies, reflected
by higher edge scores, are shown to accelerate adoption in the network. This approach
captures strategic relationships among firms more realistically.

Summarized

To present a final overview of the threshold model methodology, the model consists of
three key elements. First, each node is defined by a distinct set of attributes, which
identify the characteristics of each node. All these attributes are assigned scores, where
a higher attribute score reflects greater importance in shaping a node’s threshold. These
attribute scores contribute directly to the individual node’s threshold. Nodes with many
highly scored attributes tend to have lower thresholds.

Second, there are edge scores, which represent the strength of interdependencies be-
tween nodes. These are based on attribute pairs, where each attribute has multiple
categories. Each pair of categories (for example, high with high or medium with low)
is assigned a specific score that reflects the level of influence between firms for that at-
tribute. This calculation is performed for every attribute across all firm pairs and is then
combined to construct the complete social network.

Third, each possible category combination between the same attribute of two com-
panies is assigned a score. For every attribute, a graph is constructed showing only
connections based on that attribute. These individual attribute graphs are later merged
into a single graph that includes all edge scores.

In conclusion, these three elements, the node attributes and their scores, the edge
scores, and the individual thresholds, collectively determine the dynamics within the
threshold model. The output, which is the adoption pattern among firms in an industrial
cluster, is then used as input for the Optimal Network Layout Tool.

3.7 Optimal Network Layout Tool

The Optimal Network Layout Tool (ONLT) is a graph-theoretical tool used to design cost-
efficient infrastructure networks based on evolving demand patterns [19]. It is primarily
applied to derive cost-optimal layouts for energy transition systems [18]. The ONLT
computes the most efficient pipeline configuration that connects all relevant nodes. In
this study, these nodes represent firms that adopt hydrogen infrastructure at different
timesteps. The tool is particularly well-suited for solving multi-source, multi-sink network
problems [18].

At each timestep, the ONLT analyses the set of firms that have adopted and constructs
a pipeline network to connect them. The tool uses minimum-cost spanning trees as a
core element of its optimisation process [18]. Within the model, it is assumed that the
total supply from all supply nodes must equal the total demand from all demand nodes
in the base case. The details of the base case are further elaborated in Chapter 5} This
assumption is introduced to enable the assignment of a supply or demand value to storage
providers, as no reliable data on their inflow or offtake volumes is available. The ONLT
model begins by generating a minimum spanning tree (MST), which identifies the shortest
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possible network that connects all adopted nodes. After constructing the MST, the ONLT
further refines the layout to derive a minimum-cost spanning tree that accounts for cost
factors beyond distance alone. Within the ONLT, several key assumptions are made.
First, it is assumed that total hydrogen supply exactly matches total demand during the
optimisation process. Second, the cost function incorporates a capacity cost exponent (/3)
to reflect economies of scale, meaning that larger-capacity pipelines are relatively more
cost-efficient per unit transported.
The cost function C(G) for a network G is defined by the following formula:

cG@) = > leq? + spe - 5(G) + > (uPC i (ge, 7ge)” + Cpe - max(0, e — rqe)ﬁ)
e€En(Q) e€Eo(Q)
(3.1)

e E,(G): The set of all new edges (pipeline connections) in the network G.

e E,(G): The set of all existing edges that can be reused or extended in the network
G.

e [.: The length of edge e, typically the Euclidean distance between the edge’s end-
points.

e ¢.: The required capacity for edge e in the final network.
e 14.: The reusable capacity already present on edge e.

e [3: The capacity-cost exponent, with a value between 0 and 1. It reflects economies
of scale in pipeline construction.

— If B =0, capacity has no influence on the cost.
— If B =1, doubling the capacity doubles the cost (linear cost function).

— If 0 < B < 1, larger pipelines are more cost-effective per unit transported.
e 5p.: The unit cost for creating a splitting point in the network.
e 5(G): The total number of splitting points added to the network G.
e up.: The unit cost factor for using existing pipeline capacity.

e ¢pe: The unit cost factor for extending existing pipeline capacity.

Table[3.3| provides an overview of the parameter values used in the cost function, along
with their explanations and roles within the Optimal Network Layout Tool (ONLT).
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Table 3.3: Parameter Settings in the Cost Function [19]

Parameter Value Assumption Interpretation

Splitting  Point | 0 No splitting points are used in | This parameter is inac-

Cost (spc) the model tive in the simulation

Use of Existing | 0 Existing edges can be reused | Encourages reusing exist-

Capacity  Cost without additional cost if con- | ing infrastructure

(upc) structed in earlier timesteps

Capacity Exten- | 1 Extending the capacity of ex- | Reflects realistic capital

sion Cost (cpc) isting edges is as costly as | investment assumptions
building new capacity

The resulting cost function used in this study is presented in Equation [3.2] where
max (0, g, — rqe)ﬁ represents a key component that calculates the additional capacity
required beyond the reusable capacity already present on a given connection. The cost
is computed for the final network layout at the end of the simulation. Consequently, if
an edge is initially constructed with a capacity of ¢; and later expanded to accommodate
¢1 + g2, the model does not accumulate costs over time steps. Instead, the total cost for
that edge is calculated as I, - (¢1 + ¢2)”, rather than the sum I, - ¢+, qg.

C(G) = Z leqf + Z le - max(0, g — rqe)ﬁ (3.2)
e€EL(G) e€E,(G)

However, these values are not actual costs, as the ONLT produces dimensionless
outputs in the unit:
km - (ktpa)®®.

To convert these values into estimated costs in euros, a conversion factor is applied. This
factor is based on a common industry assumption that constructing one kilometre of
hydrogen pipeline costs approximately one million euros [44].

« Pipeline cost: €1,000,000 per kilometer

« Pipeline capacity: 100 kilotonnes per annum (ktpa)

The ONLT cost function is defined as:

ONLT cost =1 - ¢°

Where:

e [=1km

e q¢=100ktpa
« =06
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Substituting these values:

ONLT cost = 1 - (100)%° ~ 15.85
To convert this to euros, the real pipeline cost are devided by the ONLT costs:

41,000, 000

e £63,100 per unit of km - (ktpa)®®

Conversion factor =

3.7.1 Justification for Stopping at the Minimum Cost Spanning
Tree

While the ONLT model could be extended beyond the minimum-cost spanning tree to
include Steiner nodes, this study deliberately limits the analysis to the minimum-cost
spanning tree stage. A Steiner node refers to an additional point introduced in the
network to further reduce total infrastructure cost, even though it is not itself a supply
or demand node. It serves as a splitting point that enables more efficient connections
between firms. The figure below illustrates the effect of incorporating a Steiner node (S)
in a network with three nodes (A, B, and C).

Without Steiner Node With Steiner Node

C

AN

Figure 3.6: Example of a Steiner Node

The decision to stop at the minimum-cost spanning tree (MCST) stage is motivated by
the need to effectively assess network robustness. Robustness in this context is evaluated
by counting the occurrence of specific edges across multiple scenarios, as detailed in
the following section. Although Steiner trees may provide additional cost savings, they
complicate the interpretation of results by introducing intermediate nodes that do not
correspond to actual firms. As a result, it becomes more difficult to identify which firm-
to-firm connections are consistently maintained. By limiting the analysis to MCSTs, each
edge represents a direct and interpretable link between active supply and demand nodes,
thereby supporting a more meaningful robustness evaluation.
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3.8 Scenario and Sensitivity Analysis

To evaluate robustness, the model was tested under multiple plausible future scenarios.
Twenty distinct network development paths were generated, based on a combination
of four early adopter types and five future configurations: a base case, high and low
hydrogen demand, and high and low ammonia import volumes. For each scenario, the
ONLT computed a cost optimal network layout based on the simulated firm adoption
process, resulting in a diverse set of infrastructure topologies.

As explained in Section robustness is considered as a key evaluation criterion
for networks. In this study, the robustness of a network edge is defined as the proportion
of scenarios in which that edge appears in the optimal network layout. This is referred to
as edge occurrence. Edges that appear more frequently across scenarios are considered
more robust under uncertainty, as they represent low regret infrastructure. These are
connections that are likely to remain valuable regardless of future demand or import
patterns. To identify robust network topologies, a maximum occurrence heuristic is
applied. This approach builds on Heijnen et al. (2014), though their focus lies on the
occurrence of specific configurations rather than individual edges [17].

This heuristic assigns a robustness score to each edge based on how often it appears
across the different scenarios. An empty graph is then constructed, containing all nodes
but no edges. Edges are added iteratively, ranked by their robustness scores, while
ensuring that no cycles are formed. This process mimics Kruskal’s algorithm, but instead
of minimizing edge cost, it maximizes edge occurrence to construct a spanning tree. In
Chapter 4, Scenario Design, this method will be applied to all scenario-generated networks
and discussed in detail. The pseudocode below presents the procedure for the maximum
occurrence heuristic:

1. Define a network with all network nodes and no edges.

2. Define the occurrence of all possible edges across experiments and delete the edges
with zero occurrence.

3. WHILE number of edges left in list > 0

Pick edge with highest occurrence score.

IF addition of selected edge creates a cycle THEN

— Remove edge from list.
ELSE

— Add edge to network.
END IF

4. END WHILE

3.9 Scenario-Based Robustness Analysis
Although this study refers to the analysis across scenarios as a robustness analysis, it

is important to acknowledge its limitations. The set of 20 scenarios considered does
not constitute an exhaustive or extreme stress test. Rather, the analysis examines the
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consistency of adoption dynamics and resulting network configurations within a bounded
set of plausible future conditions. This scope enables the identification of infrastructure
components that appear consistently across scenarios and can therefore be interpreted as
robust within this subset. However, it does not amount to a full robustness assessment,
which would require a broader scenario space including more extreme parameter values.

3.10 Assumptions and Limitations

In order to ensure transparency within this study, this section outlines the key modeling
assumptions and discusses their potetnail implimications for the interpretation and future
research.

o Positive Influence Based on Similarity: The model assumes that firms only
have a positive influence on each other, and that this influence becomes stronger
when firms are more similar. Negative effects, such as competition or differences
between firms, are not included. This makes it easier to focus on how adoption
can spread through the network, but it may miss some real-world behaviours where
firms hold back or compete instead of reinforcing each other. Additionally, the
model does not account for the possibility that firms may actively avoid adoption
if nearby investments are observed to be unprofitable or excessively costly. Such
exclusion simplifies the dynamics under study but risks overlooking critical barriers
to diffusion.

o Static Firm Attributes: Firm-specific characteristics, including size, demand,
and spatial parameters, are held constant throughout the simulation period.

o Cumulative Infrastructure: Once a pipeline connection is established, it remains
in place for the remainder of the simulation. Decommissioning or repurposing of
infrastructure is not included.

e No External Disruptions: Broader system-level disruptions, such as policy
shifts, regulatory changes, or technological breakthroughs, are not explicitly mod-
elled. Scenario variation is limited to differences in firm behaviour and hydrogen
demand.

« Homogeneous Adoption within Firm Types: The model assumes that only
firms of the same type adopt in each simulation. In reality, adoption can occur across
mixed types simultaneously. This assumption allows for a clearer comparison of
early adopter strategies by isolating the impact of each firm type on the development
of the hydrogen network.

e Unconstrained Edge Construction: The network layout assumes that pipelines
can be built as straight-line connections between firms, without accounting for real-
world spatial, regulatory, or permitting constraints.

« Simplified Decision Criteria: Firms base investment decisions on a limited set
of non-economic attributes. Detailed financial assessments or market-based criteria
are not incorporated.

95



o Terminal Availability Assumed: The model assumes that ammonia import
terminals will be operational. In reality, these terminals are still in early planning
or construction phases, which introduces uncertainty into infrastructure feasibility.

e Ammonia as Sole Carrier: Ammonia is assumed to serve only as a hydrogen
carrier. Other potential applications or uses of ammonia are not modelled.

e No Investment Timing Lags: The time required to complete infrastructure
investments is not included. All adoption and construction occur instantaneously
within each timestep.

o Positive influence based on similarity: The model assumed only a positive
influence based on their similarity, whilst this might not be realistic

o Simplified Investment Logic: One of the main limitations of the model con-
cerns the simplified representation of investment decision-making among firms. In
reality, infrastructure investments are shaped by a complex interplay of financial,
regulatory, strategic, and institutional factors, many of which are dynamic and
context-specific. The model abstracts from this complexity by reducing investment
behaviour to a threshold-based adoption mechanism driven by interdependencies,
peer influence, and static firm attributes. As a result, it does not capture the full
range of economic, technical, and strategic considerations that influence whether
and when firms commit to infrastructure investments. This simplification may lead
to an overestimation of both the adoption rate and the speed of network develop-
ment.

3.11 Data Sources and Parameterization

The input data used in the model is derived from real-world sources, primarily provided
by Power2X. This dataset focuses on the Rotterdam Industrial Cluster (RIC) and in-
cludes internal estimates of hydrogen and ammonia demand developed by Power2X. It is
important to note that these figures represent one possible method of estimating hydro-
gen demand and do not necessarily reflect the official perspective of Power2X. Demand
is expressed in hydrogen-equivalent units and estimated using firm-level CO5 emissions
as a proxy. Hydrogen-equivalent demand refers to the combined demand for green hy-
drogen and ammonia. This demand data serves as the basis for assigning firm-specific
attributes related to hydrogen trade volume. Hydrogen trade volume represents the de-
mand and supply patterns of firms. All demand and supply values refer to projected
hydrogen-equivalent demand in 2030.

The model also incorporates firm-specific characteristics, including plot size and spa-
tial location. These values were derived from Power2X’s data in collaboration with the
Port of Rotterdam on industrial land use and firm siting.

3.12 Model Verification

To ensure consistency and correctness across both the threshold-based adoption model
and the ONTL optimization module, several verification steps were conducted. For the
adoption model, each firm was assigned a set of attributes with corresponding normalised
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scores, reflecting differences in importance within each attribute. These attributes were
used to derive a firm specific adoption threshold. Firms were modeled as nodes in a graph,
with edge scores representing inter-firm influence. Adoption was triggered only when the
cumulative influence from neighboring nodes exceeded a firm’s threshold, thereby preserv-
ing the core logic of the threshold model. Additionally, early adopters were predefined
and activated at the initial timestep to initiate the diffusion process. When a specific firm
decided to adopt, its threshold was visually checked and compared to the level of influence
from its active neighbours to ensure that the adoption resulted from the threshold being
exceeded.

Verification of the ONTL component confirmed its capacity to compute cost minimal
pipeline networks under dynamic supply and demand conditions. Each simulation run
validated that the network generated was a minimum cost spanning tree, subject to the
presence of supply and demand nodes. The model also incorporated existing connections
across timesteps, ensuring continuity in infrastructure development. This means that
once a connection was established in an earlier timestep, it remained in place and was
used in subsequent timesteps in the ONLT.

To validate the accuracy of the cost and flow computations, constructed edges and
their lengths were manually reviewed for each final network configuration. Edge capacities
were cross-checked to confirm they were correctly used in cost calculations. For each edge,
total cost was computed as the product of its Euclidean length and its capacity raised to
a cost exponent, reflecting scale economies.

Finally, visual inspection supported the overall validation process. Time series plots
were generated to track adoption patterns and network growth, confirming model behav-
ior aligned with expectations across all tested scenarios.
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Case Context and Firm Selection:
The Port of Rotterdam Industrial
Cluster

This chapter explains the rationale behind the selected case study. The Rotterdam In-
dustrial Cluster (RIC) was chosen as the central case due to its strategic importance and
unique characteristics in the context of the Dutch and broader European energy tran-
sitions [43]. As the largest seaport in Europe, it serves as a major industrial hub with
significant activity in the energy, chemical, and manufacturing sectors. It hosts a high
concentration of energy intensive industries, making it a substantial source of greenhouse
gas emissions and a key focus area for decarbonisation efforts [45].

The dense spatial configuration of the RIC supports the development of shared in-
frastructure, such as pipelines and storage facilities, thereby offering opportunities for
economies of scale. Moreover, the RIC functions as a primary entry point for hydrogen
and potential green ammonia imports, and it is home to several strategic infrastructure
projects aimed at accelerating hydrogen value chain development [43]. Finally, the Port
of Rotterdam has previously been used in Power2X modelling studies, which allows for
continuity in data, stakeholder engagement, and model validation.

4.1 Company Selection Criteria

In this study, companies were selected for inclusion in the model based on a set of pre-
defined criteria to ensure their relevance to the hydrogen transition within the Port of
Rotterdam. The primary criterion was that a firm must operate, or plan to operate, on
an industrial plot within the Port of Rotterdam. This could include an industrial site,
facility, or import terminal.

Second, the firm must demonstrate a significant hydrogen related trade volume, either
through hydrogen itself or via green ammonia as a hydrogen carrier. Third, firms were
included only if they fulfil a key function in the hydrogen supply chain, such as produc-
tion, import, storage, or large-scale consumption. Finally, firms were included if they
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had previously featured in Power2X models focused on hydrogen or ammonia develop-
ments in the Port of Rotterdam. The table below provides an overview of the companies
selected for this study, based on the defined criteria. Some firms may function as both
hydrogen consumers and suppliers. In this model, their classification is determined by
the availability of data on either their hydrogen demand or supply. Future research could
further investigate the dual roles that some firms may occupy, and how these differing
roles influence the adoption process within the Rotterdam Industrial Cluster.

ID Company Short Description

0 LyondellBasell Major chemical company and hydrogen consumer.

1 Uniper Hydrogen consumers which uses hydrogen to de-
carbonise their energy intensive production facilities
and industrial processes.

2 HES Storage provider with port infrastructure.

3 BP International energy company and hydrogen con-
sumer.

4 Eneco Renewable energy firm developing green hydrogen
projects for hydrogen supply.

5 OCI Importer focused on ammonia and hydrogen deriva-
tives.

6 Gunvor Energy trading firm, active in hydrogen supply.

7 ExxonMobil Global oil and gas company with hydrogen use (con-
sumer) potential.

8 Vopak Storage company with terminal infrastructure.

9 Huntsman Chemical manufacturer and hydrogen user.

10 Air Products Hydrogen supplier and technology provider.

11 Advario Storage operator active in energy logistics.

12 Chane Terminal operator focused on bulk storage (storage
provider).

13 Air Liquide Industrial gas producer and hydrogen supplier.

14 ACE Terminal Planned ammonia import terminal in the port.

15 Air Product and Gunvor Termi- Joint import terminal project for hydrogen and am-

nal monia imports.

16 VTTI Storage Terminal Infrastructure for storage of energy carriers.

17 Chane Import Terminal Planned import terminal for green ammonia.

18 Nobian Chemical firm producing hydrogen.

19 Shell Integrated energy company investing in hydrogen

and hydrogen supply.

Table 4.1: Overview of firms included in the simulation model

To connect the threshold model to the real-world context of the Rotterdam Industrial
Cluster (RIC), Figure presents a concrete example of firm locations within the Port
of Rotterdam,with each firm represented by its node ID as listed in Table [L.1 In this
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example, company types are distinguished by node colour, allowing visual differentiation
of the various firm types represented in the model.

Figure 4.1: Example of firm locations in the Port of Rotterdam

The specific colour assigned to each company type is detailed in Figure Table
also lists the identification number assigned to each firm, as shown in the corresponding
figure.

@ Importer

Hydrogen Consumer
@ Cracker

Storage provider

Figure 4.2: Legend of company types and their corresponding node colours.

In conclusion, the Rotterdam Industrial Cluster is an ideal case study for applying
threshold and network modelling due to its complexity and diverse industrial landscape.
Its high concentration of energy intensive industries positions it as a pivotal hub for hy-
drogen and ammonia trade, as well as for the development of shared infrastructure. The
presence of a wide range of actors allows the model to capture varying adoption thresh-
olds and strategic behaviours. This combination of industrial heterogeneity, strategic
relevance, and data availability makes the RIC particularly well suited for analysing hy-
drogen infrastructure development.
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Scenario Design

5.1 Scenario Matrix and Adoption Strategy Analysis

To examine how varying future conditions and early adoption behaviors influence the de-
velopment of hydrogen infrastructure in industrial clusters, this study applies a structured
scenario design approach. Given the high level of uncertainty in the energy transition,
this analysis does not rely on just one possible future outcome. Two scenario dimensions
are distinguished: hydrogen demand and ammonia import volumes. Changes in hydrogen
demand affect hydrogen consumers, while shifts in ammonia import volumes primarily in-
fluence import terminal operations. These dimensions are systematically combined with
four early adopter profiles, resulting in twenty unique simulation cases.

The hydrogen demand scenarios reflect uncertainty in the pace and scale of the en-
ergy transition, which are influenced by factors such as technological adoption, policy
incentives, and firm-level commitments [6]. These varying demand levels directly affect
hydrogen consumers. Their willingness to invest depends on their anticipated future
demand, which in turn determines whether their individual investment thresholds are
met.

Secondly, the hydrogen import scenarios capture uncertainty in future import volumes,
global energy flows, and the strategic role of the Port of Rotterdam. These scenarios
primarily affect the import terminals, for which the exact future volumes remain uncertain
and are still under development.

For both scenario dimensions, three levels are considered: low, medium (serving as the
base case), and high. Since the data from Power2X provides hydrogen-equivalent values,
the medium hydrogen demand and medium ammonia import scenarios are combined to
define the base case.

To systematically explore how different early adoption configurations affect the devel-
opment of hydrogen infrastructure in industrial clusters, the model defines four distinct
early adopter configurations based on company type. These configurations reflect varying
assumptions about which firms adopt hydrogen in the initial time step. The selection of
early adopters is critical, as their position in the value chain and their interdependen-
cies determine how influence propagates through the network and which infrastructure
segments are prioritized during the early stages of development.
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Company Type 1 Company Type 2 Company Type 3 Company Type 4

1. Base Case Network Network Network Network

Network Network Network Network

3. Low H2 Network Network Network Network

4. High NH3 Network Network Network Network

5. Low NH3 Network Network Network Network

Figure 5.1: Overview of scenario and early adopter combinations used in the simulation.

The full experimental design consists of 20 distinct network configurations, created
by combining five future scenarios with four early adopter configurations, as shown in
Figure|5.1l For each scenario—adopter combination, the simulation proceeds in two steps.
First, the threshold model simulates how adoption spreads through the network, based
on the specified early adopter configuration. Second, the ONLT model generates a cost-
efficient infrastructure layout at each time step, translating behavioral dynamics into
spatial outcomes. This approach enables dynamic modeling of both behavioral diffusion
and physical infrastructure development under varying future conditions.

The scenarios serve two distinct analytical purposes in this study. First, the robust-
ness analysis identifies infrastructure segments that consistently emerge across multiple
scenario—adopter combinations. Based on this analysis, one robust infrastructure lay-
out is derived from the full set of simulations. Second, the early adopter configurations
were analysed to evaluate the performance of different adoption strategies, presented in
Figure [5.2l By comparing total infrastructure costs across these strategies, this analy-
sis informs strategic decision-making regarding where to prioritize incentives and which
adopters to target for early investment.

Company Type Company Type Company Type Company Type

Network 4
Network 3

\
\

Figure 5.2: Highlighted robust segments across three sample networks



5.2 Conclusion and Use Case

Having outlined the two analytical approaches, it is important to clarify their respective
contributions to infrastructure planning under uncertainty. This model applies two dis-
tinct approaches to analyse the adoption process. Option 1 assumes no influence over
future scenarios or adopter behavior. It supports low-regret, robust planning by identi-
fying infrastructure segments that consistently contribute to network value across a wide
range of plausible futures. This means that the robust network is evaluated across all
sixteen scenario runs.

Option 2 assumes that early adoption patterns can be partially influenced. This ap-
proach supports strategic coordination and the design of targeted incentives by evaluating
which early adoption configurations yield the most effective infrastructure outcomes. The
comparison is based on the final networks developed under each early adopter configura-
tion, assessed in terms of total cost and pipeline capacity (ktpa).

This framework provides a practical decision-support tool for infrastructure develop-
ers, the Port of Rotterdam authorities, government agencies, and project developers such
as Power2x. As an active stakeholder in green molecule development, Power2x can apply
these insights to prioritise investment and spatial planning decisions, thereby reducing
exposure to uncertainty-related risks. Option 2, in particular, offers a basis for evaluating
early adopter strategies, enabling informed adjustments to the choice of configurations
that may lower infrastructure costs or associated risks. These insights can support the
targeting of specific early adopters to facilitate an efficient and coordinated infrastructure
rollout.
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Simulation Results and Network
Development

This section presents the findings from applying the dynamic modelling framework to
analyze hydrogen network development within the Rotterdam Industrial Cluster. The
analysis covers 20 simulations runs, each representing a unique combination of future
scenarios and early adopter configurations. The results are structured in three parts.
First, the findings from the literature review are discussed to identify which firm attributes
may influence investment dynamics within an industrial cluster. Second, all simulations
are examined to identify robust pipeline segments that appear consistently across multiple
futures, addressing subquestions two and three. Third, the analysis focuses on company
type configurations to evaluate the most cost-efficient network associated with each early
adopter strategy. This part addresses subquestion four.

6.1 Attribute Identification and Categorisation

This section presents the initial inputs to the dynamic modeling framework, specifically
addressing the first sub-question:

What threshold values and interdependencies exist between companies within

the RIC?

The purpose of this section is to explain how firm-specific threshold values and inter-
dependencies were derived. To address this, four attributes were identified based on the
predefined selection criteria. These attributes form the foundation of the model and were
selected based on data from Power2X, supplemented by insights from the literature and
expert knowledge, As described in Section [3.11]

The first attribute incorporated in the model is hydrogen trade volume. This at-
tribute represents each firm’s hydrogen demand or supply, measured in kilotonnes per
annum (ktpa) of hydrogen equivalent, including both hydrogen and green ammonia. It
serves as a proxy for the firm’s operational scale and strategic involvement in the energy
transition. Firms with higher hydrogen trade volumes are assumed to have a stronger
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incentive to invest early, as they are more deeply involved in hydrogen value chains [10].
Furthermore, the capacity of the pipeline is directly influenced by the hydrogen trade
volumes of different companies [40].

A second attribute is plot size, measured in hectares (ha). This attribute indicates
the physical space a firm occupies within an industrial cluster and serves as a proxy
for the capacity to accommodate new infrastructure, such as on-site cracking facilities
or a large electrolyser. Larger plots are assumed to facilitate easier integration of such
infrastructure and reduce spatial constraints, thereby making adoption more feasible. In
the model, plot size is incorporated into the threshold calculation based on the assumption
that it contributes to a firm’s logistical readiness to invest.

Third, the attribute grid connection is incorporated into the threshold model. This
attribute quantifies the estimated electrical capacity (in megawatts, MW) available to
each firm. Due to the unavailability of direct grid connection data, estimates were derived
from each firm’s current industrial activity and publicly announced future projects. This
attribute is relevant because a higher estimated electrical capacity indicates that a firm
is better positioned to implement energy-intensive infrastructure on its site, such as an
ammonia cracker. These installations require a stable and robust grid connection [52]. In
the threshold model, stronger grid connections lower a firm’s threshold, thereby increasing
its likelihood to invest.

The fourth attribute included in the model is company type, which reflects the strate-
gic role a firm plays within the hydrogen and ammonia value chains. These roles include
hydrogen consumers, hydrogen suppliers, storage providers, and import terminals. The
relevance of this categorisation lies in the differentiated strategic significance of these roles
and the extent to which firms are willing to engage in the energy transition. For exam-
ple, import terminals may carry substantial strategic weight due to their infrastructural
positioning, while hydrogen consumers may also hold strategic relevance through their
influence on offtake certainty. Both categories, despite differing operational functions,
are instrumental for the efficient rollout of infrastructure and a coordinated transition.
Their relevance further suggests a higher probability of early adoption behaviour.

In conclusion, the selection of these specific attributes was guided by their direct
relevance to investment decision-making within industrial clusters, as well as by their
objectivity and measurability. Each attribute reflects a key dimension of operational
readiness in the context of the emerging hydrogen and ammonia value chains. As these
attributes are primarily based on objective data or structurally derived estimations, they
enhance the transparency and reproducibility of the modelling process.
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Table 6.1: Overview of firm-level attributes used in the threshold model

Attribute Description and Rationale

Hydrogen = Trade Represents each firm’s hydrogen demand or supply

Volume (in ktpa). Serves as a proxy for operational scale
and involvement in hydrogen value chains. Higher
volumes indicate greater likelihood of early invest-
ment.

Plot Size Measured in hectares (ha). Reflects the physical
footprint of a firm and its capacity to integrate new
infrastructure. Larger plots suggest fewer spatial
constraints and higher readiness.

Grid Connection Estimated electrical capacity (in MW). Derived
from current activities and planned projects. Indi-
cates whether a firm can support energy-intensive
infrastructure such as ammonia crackers.

Company Type Categorical role in the value chain (e.g., consumer,
supplier, storage, import). Reflects strategic im-
portance and engagement level in the energy tran-
sition.  Different roles imply different adoption
thresholds.

6.1.1 Hydrogen Trade Volume: Category Boundaries

Based on the hydrogen trade volume data and the boundary selection method described
in the methodology, the following categories were defined. The low category includes
firms with volumes below 30 ktpa, typically smaller actors with limited involvement in
hydrogen trade. The medium category ranges from 30 to 150 ktpa and represents the
majority of industrial firms. The high category consists of firms with volumes above 150
ktpa, which are strongly embedded in the hydrogen supply chain. The histogram below
is cropped to enhance the visibility of the low and medium categories and to clearly
illustrate the defined thresholds.
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Histogram of Firm-Level Hydrogen Trade Volumes (Zoomed)
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Figure 6.1: Categorisation of Firms by Hydrogen Trade Volume (ktpa)

6.1.2 Grid Connection: Category Boundaries

Based on the bar chart in Figure the following boundaries were established. The
low category includes firms with relatively limited electrical capacity, defined as 50 MW
or less. This group consists of five companies, three of which are storage firms. Their
operations require less grid capacity. The mid range includes the majority of firms and is
assumed to represent sufficient grid capacity to support moderate infrastructure invest-
ments. This category is defined by grid capacities between 50 MW and 250 MW. The
high category contains firms with significantly larger grid capacity, showing an increase
relative to the medium group. For example, Eneco falls within this category, with a
grid connection of 800 MW. This is linked to their planned large scale green hydrogen
project, which is expected to become operational in 2029 with a capacity of 800 MW [3§].
An overview of the estimated grid capacities is provided in Appendix A. Due to limited
data availability, the estimation relied on the known total annual electricity demand of
602.5 MW for a cluster that includes Nobian, Huntsman, Air Liquide, and Shin-Etsu.
This total was evenly divided among the four companies, resulting in an estimated grid
connection capacity of 150.63 MW per company. This estimate aligns with the scale of
other approximations based on the observed activities on their respective plots.
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Histogram of Firm-Level Grid Connection Capacities (Zoomed)
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Figure 6.2: Categorisation of Firms by Grid Connection Capacity (MW)

6.1.3 Plot Size: Category Boundaries

Based on the histogram in Figure the final numerical attribute was divided using
the following boundaries. The low category, defined as 30 hectares or less, includes firms
with limited spatial capacity, which may constrain on site infrastructure investments.
The medium category represents the majority of firms, with moderate space availability
ranging from 30 to 100 hectares. The high category comprises large scale firms with high
logistical readiness. This distribution satisfies the requirement that no category includes
more than 60 percent of firms, and each category contains at least 20 percent.

Histogram of Firm-Level Plot Sizes
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Figure 6.3: Categorisation of Firms by Plot Size (hectares)

6.1.4 Company Type: Category Boundaries

The final attribute, company type, is categorical. Scores for this attribute were assigned
based on expert interviews, as described in the methodology chapter. Experts were
asked to evaluate hypothetical firm comparisons and indicate which firm was more likely
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to adopt first. The frequency with which each company type was cited was normalised to
obtain a relative score. These outcomes are presented in Table[6.2] The complete results
are provided in the appendix (Table [A.4)).

Company Type Assigned Score
Import Terminal 0.9
Storage Provider 0.8
Hydrogen Supplier 0.6
Hydrogen Consumer 0.5

Table 6.2: Assigned scores for company types in the threshold model

6.2 Firm Thresholds and Edge Scores in the Influ-
ence Network

This section presents the firm specific threshold values and the inter firm connection
scores that define the degree of influence between nodes in the threshold model. Each
firm is assigned a threshold that reflects its readiness to invest, based on a weighted
combination of attribute scores. The model assumes a fully connected graph in which
each firm has the potential to influence all others. However, the strength of this influence
varies and is determined by attribute similarity, as described in Section [3.5.3]

Together, these two components form the core mechanism of the threshold model.
Threshold values govern the timing and likelihood of individual firm adoption, while
edge scores determine how adoption spreads through the network. An overview of the
firms in the RIC case and their corresponding threshold values is provided in Table [6.3]
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Node | Company Company Type Threshold
0 LyondellBasell Hydrogen consumer 0.5
1 Uniper Hydrogen consumer 0.325
2 HES Storage provider 0.2
3 BP Hydrogen consumer 0.375
4 Eneco Hydrogen supplier 0.4
5 OCI Importer 0.4
6 Gunvor Hydrogen supplier 0.475
7 ExxonMobil Hydrogen consumer 0.25
8 Vopak Storage provider 0.375
9 Huntsman Hydrogen consumer 0.45
10 Air Products Hydrogen supplier 0.625
11 Advario Storage provider 0.5
12 Chane Storage provider 0.375
13 Air Liquide Hydrogen supplier 0.4
14 ACE Terminal Importer 0.325
15 Air Product and Gunvor Terminal | Importer 0.375
16 VTTI Storage Terminal Storage provider 0.375
17 Chane Import Terminal Importer 0.3
18 Nobian Hydrogen supplier 0.475
19 Shell Hydrogen supplier 0.325

Table 6.3: Overview of companies with their node numbers, company types, and thresh-
olds

From Table [6.3] it can be observed that firms such as ExxonMobil (0.25), Uniper
(0.325), and BP (0.375) have relatively low threshold values. This suggests that these
hydrogen consumers are more likely to adopt early, once a small proportion of other firms
have already adopted. Their low thresholds may indicate that they are operationally
prepared to transition to hydrogen quickly, potentially due to pressing decarbonization
requirements.

Furthermore, storage providers exhibit more moderate threshold values, such as HES
(0.20), Chane (0.375), and Advario (0.50). These firms may adopt more reactively, re-
quiring a higher level of surrounding adoption before committing. This is likely due to
their reliance on both upstream hydrogen supply and downstream demand, which makes
their investment decisions more dependent on developments elsewhere in the network. In
addition, importers also cluster around mid range threshold values, typically between 0.3
and 0.4.
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Hydrogen supplier show both end of the spectrum. For example, Air Products has a
relatively high threshold (0.625), while Shell displays a more moderate value (0.325). This
variation reflects that some suppliers may only commit to investment once a substantial
network and stable demand are in place, whereas others may be more likely to adopt
earlier under less certain conditions.
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Figure 6.4: Threshold Heatmap

Figure [6.4] presents a heatmap visualisation of the distribution of threshold values,
where high thresholds are shown in dark red and lighter colours indicate lower thresholds.
Overall, the threshold values appear to be evenly distributed across the cluster. However,
a distinct grouping of firms with low thresholds can be observed, including Huntsman
(9), Advario (11), Air Liquide (13), and Nobian (18). This suggests that these firms are
likely to participate early in the adoption process.

In addition to firm specific thresholds, the edges and their associated scores deter-
mine how influence propagates through the network. Figure displays the five most
influential edges between firms, indicating the strongest channels of influence. As shown
in Table [6.4] both OCI (5), an import terminal, and HES (2), a storage provider, are in-
volved in three of the top five edges. This suggests that these firms hold central positions
in the network and can be considered highly influential in the adoption process.
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Top 5 Highest Edge Weights

16

Figure 6.5: Important Edges

Rank | Edge (Nodel, Node2) | Score
1 2, 5) 0.8
2 (2, 14) 0.8
3 (2, 17) 0.8
4 (5, 8) 0.8
5 (5, 11) 0.8

Table 6.4: Top 5 Highest Edge Scores in the Network

In contrast, Figure presents the five edges with the lowest influence values within
the threshold model. Notably, Lyondell (0) is involved in three of these edges, indicating
that the firm has limited influence on the adoption behaviour of others in the network.
This can be attributed to Lyondell’s low attribute similarity with other firms in the
network. As a result, its adoption decisions are unlikely to trigger cascading investments
among neighbouring firms.
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Top 5 Lowest Edge Weights
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Figure 6.6: Important Edges

Rank | Edge (Nodel, Node2) | Score
| (0, 6) 0.300
2 (0, 18) 0.300
3 (0, 10) 0.325
4 (3, 6) 0.350
5 (3, 18) 0.350

Table 6.5: Top 5 Lowest Edge Scores in the Network

6.3 Adoption and Network Development: Overview
and Approach

This section presents the simulation results related to adoption patterns and infrastruc-
ture network development. A total of 20 simulations were conducted, covering all com-
binations of five scenario settings and four early adopter configurations. Due to the
scope and the level of detail of the results, this section focuses on the most relevant and
analytically insightful outcomes.

To clarify the underlying logic of the dynamic modelling approach applied to adoption
and infrastructure development, one illustrative example is explained in detail. This
example reflects the base case scenario, defined by a medium hydrogen demand and
medium hydrogen supply configuration. The analysis focuses specifically on the hydrogen
supplier configuration. This case illustrates how firm-specific adoption thresholds are
translated into observed adoption patterns and how the ONLT algorithm generates a
cost-optimised pipeline layout at each time step.

Following this walkthrough, a synthesis of the key findings across all simulations is
presented, with particular attention to shifts in adoption timing, the emergence of strate-
gic nodes, and recurring patterns in infrastructure development. The section concludes
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with a visual summary of the final robust network layout and the associated infrastructure
costs.

6.3.1 Illustrative Case: Base Case Scenario from the Hydrogen
Supplier Configuration

This section initiates the analysis of the simulation results on adoption patterns and
infrastructure development. The selected case combines the base case scenario, which
reflects medium hydrogen demand and medium ammonia import, with the hydrogen
supplier configuration.

Threshold Adoption Process

The figure below shows the initial time step of the threshold model, with hydrogen suppli-
ers marked in red. Figure in the methodology section provides the legend, including
the colour scheme for all company types. The red nodes represent the firms identified as
early adopters in this configuration, specifically the hydrogen suppliers. The hydrogen
suppliers included in this configuration are:

« Eneco (4)

« Gunvor (6)
 Air Products (10)
 Air Liquide (13)
« Nobian (18)

o Shell (19)

Graph at Temestep O

Figure 6.7: Hydrogen Suppliers Location

As shown in the figure[6.7] hydrogen supplier represent a substantial proportion of the
firms included in the model, accounting for approximately 36 percent. Since the influence
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on adoption is determined by the share of already-adopting firms, this relatively high
initial uptake increases the likelihood of further adoption in subsequent time steps. The
hydrogen suppliers are geographically well distributed across the cluster, suggesting that
their influence is also spatially well distributed.

Graph at Timestep 1

Figure 6.8: Threshold-Based Adoption Status at Timestep 1

Figure presents the next time step in the adoption process. In this step, two
additional nodes are observed to adopt: HES (2), a storage provider, and ExxonMobil
(7), a hydrogen consumer. Their adoption follows the initial decisions made by the hy-
drogen suppliers. As shown in Table [6.3), HES has a threshold of 0.20 and ExxonMobil a
threshold of 0.25, both of which are relatively low compared to the remaining firms in the
model. This low threshold indicates a higher readiness to adopt when neighbouring firms
have already done so. These low thresholds explain their early adoption. For HES, the
low threshold results from favourable infrastructure characteristics, including strong grid
connectivity (251 MW) and a large plot size (125 hectares). ExxonMobil has a similar
profile in terms of these attributes, but its threshold is noticeably higher. This difference
results from the variation in company type scores between HES and ExxonMobil. Ac-
cording to expert interviews, storage providers are considered to have greater strategic
importance than hydrogen consumers, which is reflected in their lower threshold values.
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Graph &t Timastep 2

Figure 6.9: Threshold-Based Adoption Status at Timestep 2
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Figure 6.10: Hydrogen Suppliers Location

In the transition from timestep 1 to timestep 2, the model reaches a tipping point in
the adoption process, as illustrated in Figure[6.10] At this stage, a significant number of
firms adopt, leading to a cascading effect across the network. Whereas only eight firms
had adopted in the first time step, the number increases to sixteen in the second. The
red dashed line is placed between timestep 1 and timestep 2 to indicate that the tipping
point is initiated at timestep 1 but becomes visible in timestep 2. The newly adopting
firms are:
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Firm Threshold Value

Uniper 0.325
OCI Import Terminal 0.4

Vopak 0.375
Chane Storage Terminal 0.375
ACE Import Terminal 0.325
Gunvor Import Terminal 0.325
VTTI Storage Terminal 0.375
Chane Import Terminal 0.325

Table 6.6: Threshold values for newly adopting firms at time step two

Among the newly adopting firms, four are storage providers. With HES having
adopted in the previous time step, nearly all storage providers have now adopted, ex-
cept for Advario. Advario’s relatively limited grid connection capacity (50 MW) and
small plot size (26 hectares) contribute to a higher threshold value. All of these firms
exhibit higher thresholds compared to both HES and ExxonMobil, which aligns with
their later adoption timing.

At this point in the simulation, only three firms have not yet adopted: BP, Huntsman,
and Advario. Apart from Advario, a storage provider, the remaining firms are hydrogen
consumers. BP presents an interesting case. Although its threshold is equal to that
of Vopak, VTTI Storage Terminal, and Chane Storage Terminal (all 0.375), it has not
yet adopted. This difference results from the lower level of influence BP receives in
the previous time step. The strength of social ties and the selection of firm attributes
determine the level of influence. Despite BP having more favourable attribute values than
Vopak, as shown in the table below, it remains less influenced due to its classification as
a hydrogen consumer.

Storage providers are considered to have greater strategic importance than hydro-
gen consumers, which results in a higher influence they receive within the model. This
attribute makes them more likely to respond to nearby adopters, which increases their
chances of adopting early.

Table 6.7: Comparison of firm characteristics: BP and Vopak

Attribute BP Vopak
Company Type Hydrogen Consumer Storage provider
Hy Trade Volume 108 ktpa 75 ktpa

Grid Connection 250 50

Plot Size 250 100
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Graph at Temestep 3

Figure 6.11: Threshold-Based Adoption Status at Timestep 3

ONLT Network Development

The results from the threshold model form the basis for simulating the development of
the hydrogen network. The ONLT algorithm generates a cost-optimised network layout
by matching the demand and supply of the nodes that are active at a given time step. A
network connection is only established when both demand and supply nodes are present.
For example, if only supply nodes are active, no pipeline construction occurs. In this
illustrative case, the first time step includes only supply nodes, as shown in Figure |6.12

Mo network needed (E=0)

Figure 6.12: Network state at timestep 0 in the Hydrogen Supplier First configuration

In the next time step, new firms are added based on the adoption outcomes from the
threshold model. These include HES, a storage provider, and ExxonMobil, a hydrogen
consumer. Because the assumption is made that supply and demand must be balanced
before the network can be constructed within the ONLT framework, storage providers are
assigned sufficient demand to absorb any excess supply. This keeps the model in balance
and makes network construction possible using the 2030 data.

Figure displays the resulting network configuration. Three edges are constructed
in this time step. One connects HES(0) to Eneco(1). The other two form a longer
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route, connecting Gunvor(2) to ExxonMobil(3) and then ExxonMobil to Air Liquide(5),
as shown in Figure [6.13

Mirdmum-cost spanmng tree: 35344 (t=1)

Figure 6.13: Network development at timestep 1

There is one pipeline connection for HES, which is sufficient to meet its full demand. In
contrast, ExxonMobil, with a comparable demand level, requires two connections. This is
notable because Air Liquide alone could supply 200 units, enough to meet ExxonMobil’s
demand. Nevertheless, the ONLT selects the two-pipeline solution as cost optimal. This
outcome highlights how the algorithm prioritises overall cost efficiency over direct supply
capacity, even when a single source appears sufficient. Figure provides a simplified
overview of the connections established in timestep 1, including the corresponding flows
over these pipelines in kilotonnes per annum.

65

Figure 6.14: Simplified overview of pipeline connections

According to the threshold model, a tipping point occurs in the next time step, result-
ing in a total of sixteen adopting firms. In the ONLT, connections established in earlier
time steps are treated as existing infrastructure in subsequent steps. This is illustrated
in Figure [6.15] where existing connections are shown in blue and newly constructed con-
nections are indicated in black. The new connections result from the adoption of firms
that add both supply and demand capacity to the network.
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A notable observation in this configuration is the isolation of the connection between
HES and Eneco. While most other nodes become integrated into the larger network, this
link remains disconnected. A similar development is observed on the right side of the
port, between Chane Storage Terminal (8) and Shell (19). These isolated connections
suggest that nearby firms are more likely to construct separate pipelines to meet their
demand. This is primarily due to the limited residual capacity of the existing pipeline.
In the case of HES and Eneco, the pipeline has a capacity of 75 units, which is already
fully utilised.

By contrast, the other two existing connections are well integrated into the broader
network. This can be attributed to the higher residual supply capacity of Air Liquide
compared to Eneco. Eneco has a maximum supply of 80 kilotonnes per annum, of which
75 are already allocated to HES. Air Liquide, on the other hand, has a capacity of 200
kilotonnes per annum, with only 65 utilised by ExxonMobil. This makes Air Liquide a
more attractive connection point in subsequent optimisation steps due to its remaining
supply potential.

Minimum-cost spanning tree: 1276.95 (t=2)

Figure 6.15: Network development at timestep 2

As shown in Figure[6.16] in the later stages of the simulation, the adoption of Lyondell
(0), a hydrogen consumer, introduces new infrastructure requirements. To enable hydro-
gen delivery to this firm, two new pipeline connections are required: one linking HES
(2), a storage provider, to Uniper (1), and another connecting Uniper (1) to Lyondell
(0). Lyondell’s demand places additional pressure on the network, resulting in capacity
constraints that necessitate the upgrade of the existing pipeline between HES (2) and
Eneco (4), indicated in purple.

In addition, two more connections are established in response to Lyondell’s adoption.
One pipeline links Eneco (4) to BP (3), a hydrogen consumer, while another connects
Eneco (4) to the Chane Import Terminal (17), thereby increasing the available supply.
These additions reflect how late-stage adoption by a large consumer can trigger both
retrofitting of existing infrastructure and costly expansion of the network.

Ultimately, Lyondell’s entry into the network leads to the construction of two new
pipelines and the upgrading of one existing connection. This outcome underscores the
inefficiencies that can result from uncoordinated early-stage planning, particularly when
large-scale demand emerges after the initial network structure has been established.
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Minimum-cost spanning tree: 1294.09 (t=3)

Figure 6.16: Network development at timestep 3

Figure presents the final network configuration in the base case scenario, where
hydrogen suppliers act as early adopters. Due to inefficiencies and uncertainty in both
network development and firm adoption, the resulting network is not cost optimal. As
illustrated in figure[6.17] the final layout contains a cycle. The presence of a cycle indicates
redundant connections between firms, meaning that multiple pathways exist for hydrogen
flow between specific nodes.

While such redundancy may enhance network reliability, it also results in additional
infrastructure costs that are not strictly necessary. Given that the ONLT aims to con-
struct cost efficient pipeline systems, it may seem contradictory if the final network does
not reflect the most cost optimal layout. This outcome arises from the timestep based
construction of the hydrogen network, where the network evolves sequentially as new
firms adopt. Each stage builds on the previous one, introducing path dependencies.
Once an edge is constructed in an earlier timestep, it remains fixed in the network. If the
network were optimised in a single step with complete knowledge of all future adopters,
the resulting layout would be more cost efficient. However, by simulating network devel-
opment over time, the model captures more realistic decision making under conditions of
uncertainty.

Minimum-cost spanning tree: 37.67 (t=4)

Figure 6.17: Final network configuration at timestep 4
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6.4 Comparative Analysis of Adoption and Network
Development

This section analyses the key patterns that emerge across sixteen distinct scenario—adopter
simulation runs. One adopter configuration, in which hydrogen consumers were selected,
did not result in a viable network construction. In this case, the threshold model triggered
adoption only on the demand side, leaving no available supply to generate a network
within the ONLT. The focus lies on non-redundant and analytically relevant develop-
ments that improve understanding of the complex adoption process, rather than on a
comprehensive presentation of each individual network layout. The complete network
developments are provided in Appendix Chapter D.

The objective of this comparative analysis is to explore how different adoption dynam-
ics and infrastructure trajectories evolve under uncertainty. The analysis is structured
around three main analytical lenses. First, it examines how variation in scenario assump-
tions and early adopter configurations influences firm-level adoption patterns. Second, it
identifies which firms are most likely to function as strategic hubs within the developing
network. Third, it highlights recurring suboptimal network features, including the for-
mation of long pipeline segments or network cycles that arise due to specific adoption
sequences.

This synthesis aims to provide actionable insight for future infrastructure planning in
industrial clusters, with particular emphasis on cost efficiency and network robustness.

6.4.1 Adoption Timing and Its Drivers

The first analytical lens focuses on the timing of firm adoption and the factors that
influence this process. Firm-level adoption timing varies significantly across scenarios,
primarily as a result of changes in either hydrogen demand or ammonia import volumes.
These variables directly affect firms’ threshold values and thereby influence the likelihood
and timing of adoption. Table presents an overview of the average adoption timing
of the nodes, grouped by early adopter configuration. The hydrogen consumers column
remains largely empty, as adoption by these firms does not significantly influence the
adoption of others and therefore fails to trigger cascading effects. Furthermore, when
storage providers act as early adopters, the adoption process remains consistent across
all scenarios, indicating that their early participation does not meaningfully influence
the diffusion dynamics. This indicates that storage providers generate highly predictable
adoption cascades among firms. Furthermore, aside from a single node that adopts in
the hydrogen consumer first configuration, hydrogen suppliers exhibit the fastest aver-
age adoption time (2.29), compared to 2.34 for import terminals and 2.53 for storage
providers. This reflects the strong influence hydrogen suppliers exert on other firms.

At the individual node level, node 2 (HES) shows an average adoption time of 1, which
corresponds to the first timestep in the model. This rapid adoption is the result of a low
threshold. In contrast, node 10 (Air Products) displays both a high average adoption
time (3.5) and the highest standard deviation (0.71). This indicates that Air Products’
adoption timing varies significantly depending on which company type initiates adoption.
The standard deviation reflects the variability in adoption timing across scenarios, and
the high value suggests that Air Products does not follow a consistent adoption pattern.
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Node Company AVG Hydrogen Suppliers AVG Import Terminals AVG Storage Providers AVG Hydrogen Consumers

0 LyondellBasell 3.0 2.8 3.0 -
1 Uniper 2.0 1.8 2.0 -
2 HES 1.0 1.0 - 1.0
3 BP 2.6 1.8 3.0 -
4 Eneco - 2.8 3.0 -
5 OCI 2.6 - 3.0 -
6 Gunvor - 24 3.0 -
7 ExxonMobil 1.2 1.0 1.0

8 Vopak 2.2 2.8

9 Huntsman 3.0 2.8 3.0

10 Air Products 4.0 3.0

11 Advario 3.0 2.8

12 Chane 2.2 1.8

13 Air Liquide - 2.8 3.0 -
14 ACE Terminal 2.2 - 2.0 -
15 Air Product and Gunvor Terminal 2.0 - 2.0 -
16 VTTI Storage Terminal 2.6 2.0 - -
17 Chane Import Terminal 24 - 2.0 -
18 Nobian - 3.0 3.0 -
19 Shell - 1.8 2.0 -

Table 6.8: Gemiddelde adoptietijdstappen per node voor vier bedrijfstypen

A clear illustration is the case of ExxonMobil (Hydrogen Consumer), whose adoption
moment differs notably across scenarios. In low-demand scenarios, ExxonMobil adopts
later than in the base case or high-demand configurations. The reduced demand leads
to higher thresholds, making early investment less likely. Conversely, in scenarios char-
acterised by high ammonia imports, BP, a hydrogen consumer, adopts in earlier time
steps. This is notable, as a high ammonia import at the import terminals does not affect
BP’s threshold value directly. However, it influences the scores of the interdependen-
cies between BP and the import terminals, thereby contributing to BP’s early adoption.
This results from BP’s high hydrogen demand and the substantial hydrogen supply from
import terminals, leading to a stronger edge connection.

This pattern reflects a common feature in energy transition projects, often referred to
as the chicken and egg problem, in which supply and demand developments are mutually
dependent. Firms may postpone investments until sufficient supply is secured, while
suppliers hesitate in the absence of confirmed demand. The model demonstrates that
firms such as BP are particularly sensitive to this dynamic, delaying their investment
decisions until an adequate supply, for instance from the ammonia import terminals, is
guaranteed.

A critical risk highlighted by the simulation results is the impact of late-stage adop-
tion. Firms that adopt in later time steps, such as Air Products (hydrogen supplier)
in the high hydrogen demand scenario, often require the construction of long and costly
pipelines to establish a connection with the existing infrastructure. This outcome is partly
driven by the modelling assumption that new adopters connect directly to existing firms,
rather than to intermediate pipeline segments. While this simplifies network expansion,
it may not fully reflect real world infrastructure development practices. In many cases,
new connections would logically attach to shared infrastructure rather than specific firms.
However, in the model, nearby demand nodes are already satisfied, which often leads to
longer connections for new adopters. An example of such late adoption by Air Products
is shown in the figure below.
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Minimum-cost spanning tree: 200.37 (t=4)

Figure 6.18: High-Cost Connection Resulting from Late Adoption by Air Products

The delayed adoption is primarily a consequence of firm-specific attributes that are
relatively low, including limited hydrogen trade volume and a small plot size. These
characteristics reduce the firm’s investment potential and delay their engagement in the
network. The specific attribute values for Air Products are provided in Table [6.9]

Furthermore, the infrastructure close to Air Products, constructed prior to its adop-
tion, may lack the flexibility to accommodate the additional connection. In particular,
pipeline capacity in the surrounding area may already be constrained, further increasing
the cost and complexity of integration. Therefore, given the high demand and the avail-
able supply from Air Products, a connection is established with HES (2), which has the
highest unfulfilled demand at that stage.

Table 6.9: Attributes of Air Products

Attribute Value

Company Type Hydrogen supplier
H, Trade Volume 13 ktpa

Plot Size 15 ha

Threshold 0.625

The results further indicate that low-demand scenarios not only lead to slower adop-
tion but also result in more fragmented network development. Instead of forming a
single, integrated system, the network divides into several smaller and more localised
sub-networks, which prioritise short-distance connections to satisfy the limited demand.
A fragmented hydrogen network refers to the development of isolated or poorly connected
infrastructure segments rather than a single integrated system. From the perspective of
infrastructure developers, port authorities, and policymakers, such fragmentation is con-
sidered a suboptimal outcome due to its negative impact on the long term viability and
efficiency of the hydrogen economy.
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First, fragmentation limits economies of scale, as pipelines serve fewer firms and oper-
ate below optimal capacity. It also increases the risk of stranded assets resulting from low
utilization |11]. In addition, fragmented networks offer limited resilience and redundancy.
In the event of a pipeline failure, alternative routing options are often unavailable. This
reduces operational flexibility and increases vulnerability to disruptions [11].

Fragmentation also conflicts with key hydrogen infrastructure design criteria such
as cost efficiency and robustness, as outlined in Table Disconnected subnetworks
require duplicate infrastructure such as pipelines, endpoints, and control systems, thereby
increasing overall costs. Finally, a fragmented network lacks system wide connectivity,
making it more susceptible to fluctuations in demand and supply. If one subnetwork
fails, the absence of interconnections prevents the rerouting of flows, which undermines
reliability. An example of such a fragmented network layout is shown below for the
low hydrogen demand scenario. These two figures present 2 timesteps of the network
development in the low hydrogen demand scenario with the storage providers as early
adopters.

This outcome contrasts with high-demand scenarios, where broader connectivity be-
comes economically attractive, resulting in a more cohesive and interconnected network.
In low-demand cases, the ONLT tends to generate compact layouts that favour short,
local connections. These findings suggest that low demand does not necessarily have to
be interpreted as an unfavourable scenario. However, it does increase the risk of network
fragmentation and the loss of early integration opportunities.

Overall, the adoption dynamics are highly sensitive to both localised supply and
demand conditions, as well as to the initial early adopter configurations.

Mmimum-ost Lpanning heae: 608,16 [t=32)

o

Figure 6.19: Fragmented Network Configuration : Timestep 2, Low-Demand Scenario
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Minimum-Cost spanneng tres: 181 18 it}

Figure 6.20: Fragmented Network Configuration : Timestep 4, Low-Demand Scenario

6.4.2 Strategic Nodes

The development of hydrogen infrastructure within industrial clusters is not evenly dis-
tributed across firms. Instead, certain firms consistently emerge as strategic nodes or
hubs across multiple scenarios. A hub is defined as a highly connected node that plays a
central role in the hydrogen network. These hubs significantly shape the spatial config-
uration of the network and are crucial for several reasons. First, they enhance network
connectivity by linking multiple firms. Second, they reduce infrastructure redundancy
by serving as distribution points. Third, they are often strong candidates for public or
shared investment due to their strategic location. This section analyses which firms con-
sistently emerge as hubs across different scenarios and examines their influence on the
overall network configuration.

The emergence of strategic hubs is driven by a combination of factors, including geo-
graphic location within the cluster, firm-specific attribute values, and the timing of adop-
tion. Their presence can significantly affect network efficiency and resilience by enabling
coordinated infrastructure expansion and reducing the risk of fragmented development.
This can be measured, for example, by tracking a firm’s degree centrality, which refers
to the number of connections a firm has within the network. Table [6.10| presents the
degree centrality values of the nodes shown in Figure [6.21] It is evident that node 13,
representing Air Liquide, has the highest degree centrality.

Nodes 0-10 Nodes 11-19+
Node Company Degree Centrality Node Company Degree Centrality
0 LyondellBasell 0 11 Advario 1
1 Uniper 2 12 Chane 1
2 HES 1 13 Air Liquide 4
3 BP 3 14 ACE Terminal 2
4 Eneco 2 15 Air Product and Gunvor Term. 1
5 OCI 2 16 VTTI Storage Terminal 0
6 Gunvor 2 17 Chane Import Terminal 2
7 ExxonMobil 2 18 Nobian 2
8 Vopak 2 19 Shell 2
9 Huntsman
10 Air Products

Table 6.10: Degree centrality and company names for all nodes in the final edge list

Air Liquide consistently emerges as a significant hub across multiple simulation runs,
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characterised by high connectivity. Its central location within the industrial cluster, com-
bined with substantial hydrogen supply capacity and moderate threshold values, makes
it an attractive node for network integration. As a result, Air Liquide frequently connects
to both demand and storage nodes, reinforcing its strategic position within the network.
However, in scenarios with high ammonia imports, its central role diminishes. The ad-
ditional supply from import terminals reduces the reliance on domestic hydrogen suppli-
ers, thereby shifting Air Liquide to a less central position in the overall network structure.
This variation is illustrated in the figures below, where Air Liquide is indicated in green.
The first shows Air Liquide in a key strategic role in a high hydrogen demand scenario,
while the second depicts its reduced importance in a high ammonia import scenario.

Minimum-cost spanning tree: 0.0 (t=4)

-

% \.5./ -

Figure 6.21: Air Liquide as a Strategic Hub — High Hydrogen Demand Scenario

Minimum-cost spanning tree: B1.92 (t=4)

Figure 6.22: Reduced Role of Air Liquide — High Ammonia Import Scenario

Secondly, Eneco can also be identified as an important node, particularly during the
early stages of network development. Although Eneco does not consistently emerge as
the most connected firm, its early adoption and favourable location within the cluster
make it a foundational anchor around which local subnetworks tend to form.
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In addition, BP becomes a strategic hub in certain scenarios, especially those char-
acterised by high hydrogen demand or high ammonia imports. In these cases, BP’s
substantial hydrogen demand results in a lower adoption threshold. Once BP adopts,
it frequently establishes multiple connections within the network. This illustrates how
demand-side firms can also play a central role in shaping the structure and connectivity
of the hydrogen network.

The emergence and influence of strategic hubs reveal that specific firms within an
industrial cluster, due to their attributes and locations, can dominate network structures
under certain scenarios. Understanding the conditions under which these hubs emerge is
essential for infrastructure planners and investment stakeholders. Targeting these firms
for early engagement may improve network efficiency, reduce infrastructure costs, and
lower the risk of stranded assets.

Moreover, coordinated investment in these hubs can support the realisation of economies
of scale, given their high utilisation potential for shared infrastructure. Strategic align-
ment with these key nodes can therefore enhance both the technical and economic per-
formance of hydrogen networks.

6.4.3 Structural Patterns in Network Formation

The simulation runs reveal distinct structural patterns in the development and formation
of hydrogen networks across various scenarios. These patterns highlight both efficient
and suboptimal configurations. For instance, in low hydrogen demand scenarios, the re-
sulting networks often become fragmented into smaller, modular components. A notable
example is observed in the scenario where storage providers are the initial adopters under
low hydrogen demand, leading to a network split into four isolated parts, as shown in
Figure |6.19|

This fragmented structure results from a combination of lower adoption thresholds
and reduced demand. These conditions encourage firms to form short, local connections
rather than invest in longer, more expensive pipelines. While such configurations may
minimise costs in the short term, they can limit the long-term scalability of the net-
work. Relying on nearby supply and demand may constrain the development of a more
integrated and resilient infrastructure. As more firms adopt in later stages, previously
built local connections may require costly retrofitting to support larger-scale integration.
Retrofitting refers to upgrading existing infrastructure to support new connections or
expanded use [46].

In contrast, high hydrogen demand scenarios typically result in larger and more inte-
grated network structures. A greater number of firms adopt within a shorter time frame,
leading to the rapid formation of extensive, connected infrastructures. However, this
accelerated development often introduces inefficiencies. Such inefficiencies are illustrated
in Figure This figure illustrates the inefficiencies that emerge as a result of early
adoption driven by low threshold values. In the initial stages of network development,
smaller pipeline investments are made that may not have sufficient capacity to accom-
modate firms adopting at later stages. These early infrastructure choices can constrain
flexibility and force late adopters to construct longer and less efficient connections.
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Mimimism-coil fpanning tres: 200,37 (T=d)

Figure 6.23: Final network configuration at timestep 4

A further example of this inefficiency appears in the high hydrogen demand scenario
where storage providers are the initial adopters. From the Chane Import Terminal (17),
two parallel network branches develop. This occurs because both Air Liquide (node 13)
and Shell (node 19) have large supply capacities. However, the resulting pipelines follow
a partially parallel layout, suggesting that a shared pipeline could have been a more
efficient alternative. This example is shown in Figure [6.24

Minimum-cost spanning tree: 326.19 (t=3)

Figure 6.24: Final network configuration at timestep 4

This parallel development arises from timing differences in adoption. Air Liquide (13),
along with several nearby demand nodes, adopts later in the process, after a pipeline con-
nection has already been established involving Shell (19). Due to capacity constraints
in the existing infrastructure, the ONLT generates new parallel pipelines rather than
integrating the additional demand into the earlier connection. This illustrates how early,
uncoordinated investments can lock in suboptimal pathways and increase long term in-
frastructure costs.

However, this outcome is also influenced by two key modelling assumptions. First,
connections are made directly between firms rather than to shared pipeline infrastructure.
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Second, the cost parameter for capacity expansion (cpc) is set to 1, meaning that extend-
ing capacity is treated as equally costly as building a new pipeline. A lower value for cpc
would likely favour the extension of existing connections over the creation of redundant
routes.

In this study, a cpc value of 1 is used based on the assumption that expanding existing
pipeline capacity does not offer a cost advantage over building new infrastructure. This
assumption aligns with the study’s focus on modelling hydrogen network development as
a process driven by sequential firm adoption under conditions of uncertainty.

Furthermore, in scenario where there is a late and slow adoption, for example the
low ammonia import scenario, this slow development proces frequently lead to more
ineffeciencies. Cycles appear due to oncoordinated and late adoption which leads to
redundant paths between already connected nodes.

Finally, a frequently recurring outcome is the exclusion of the VI'TT Storage Terminal
from the network, except in scenarios where sufficient supply is available nearby. It is
important to note that, in this study, storage companies are modelled solely with demand,
as no dynamic supply—demand time steps are incorporated. This simplification affects
how storage nodes are integrated into the network.

VTTI’s suboptimal location at the edge of the port, combined with moderate at-
tribute values, makes its integration highly sensitive to scenario-specific dynamics. In
cases where storage terminals are modelled with variable supply or demand profiles, their
likelihood of being incorporated into the network is expected to increase. This highlights
the importance of spatial positioning and attribute assumptions in determining node
relevance within infrastructure development processes.

6.4.4 Robustness Across All Scenarios

This part of the results focuses on the robustness of pipeline connections across all simu-
lated scenarios and early adopter configurations. This section identifies pipeline segments
that consistently emerge regardless of hydrogen demand, import volumes, or early adopter
types. This is crucial for strategic infrastructure planning during the energy transition,
as such investments are capital intensive and long term [40]. Robust pipeline connections
can offer valuable guidance for phased rollout strategies [63].

Robust connections can offer significant benefits across uncertain scenarios. Their high
performance under various future conditions makes them examples of low-regret infras-
tructure. This means that robust edges are likely to minimize the negative consequences
of choosing a path that turns out to be suboptimal.

Prioritizing robust segments promotes economies of scale and lowers the risk of stranded
assets. These connections are likely to form the backbone of the future hydrogen network.
Because these segments are identified as robust, they ensure high utilization over their
long lifespan and therefore could benefit from economies of scale. An overview of the
edges and their occurrence across all scenarios is shown in Figure [6.25| This figure pro-
vides additional information on the frequency of edge occurrences in the final network.
Figure shows a heatmap of edge frequencies in the final network. The heatmap
effectively visualizes how often each pipeline segment appears across scenarios.

With this heatmap, nodes with many frequently occurring edges can be identified
as key hubs in the network. It also reveals pipeline routes that consistently appear
across multiple scenario simulations. These routes are likely to be essential infrastructure
backbones. Focusing on these segments reduces the risk of stranded assets. Appendix
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Chapter [B| provides additional information on the frequency of edge occurrence across all
scenarios.

By highlighting robust segments under uncertainty, the heatmap supports more effec-
tive capital allocation.

Edge Frequency Heatmap (Red = High Count)

Figure 6.25: Heat Map

Edge Appearande Frequendy (Caunt]

Note that 20 simulations were run, and 4 of these considered hydrogen consumers as
early adopters, which resulted in no network generation. Therefore, a total of 16 networks
were generated.
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Figure 6.26: Distribution of edge capacities (ktpa hydrogen equivalent)

Figure [6.26f shows the box plot that visualizes the distribution of all capacity values
of the edges that occur across the scenarios. The median capacity of all the edges is
approximately 80 ktpa of hydrogen equivalent, with a range spanning from 30 to 120
ktpa .
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demand nodes are active in a given timestep and how they can be connected in a cost-
optimal manner to meet the required flows. Only a small number of outliers are observed,
with the most extreme value approaching over 260 ktpa. This indicates that a few edges
are significantly over-dimensioned relative to the rest of the network. This results from
a specific edge carrying a very large flow, likely due to the absence of nearby supply or
demand nodes.

The final robust network, shown in Figure [6.27] has a total cost of 1229.67 in relative
units. Applying the conversion factor discussed in Section [3.7, this corresponds to an
estimated total network cost of €77,592,177. The network is generated using a maximum
occurrence heuristic [18]. The process builds on the idea of generating multiple plausible
futures. The occurrence of all possible edges is then mapped across this optimal network.
In the final network, three connections appear in fourteen different scenarios. These are
the connections between Chane Storage Terminal (12) and Shell (19)(supplier), between
Huntsman (9)(consumer) and Air Liquide (13)(supplier), and between Uniper (1)(stor-
age) and the ACE import terminal (14). It is important to note that Air Liquide, Shell,
and the ACE terminal all have very high supply levels, which leads them to frequently
form connections to meet demand. In contrast, Uniper has the highest demand. Its re-
curring connection to the ACE terminal is explained by the combination of high supply at
the terminal and their geographic proximity, which makes this link almost always present
in the network.
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Figure 6.27: Final Graph subquestion 2 and 3

6.4.5 Early Adopter Strategy Trade-offs

In addition to the observed differences across scenarios, the selection of specific early
adopters also influences the development of the hydrogen network. This reveals important
trade offs between cost, connectivity, and strategic function. Accordingly, this section
addresses the final subquestion:

Sub-question 4: How do external incentives (e.g., subsidies) influence firm behavior
and network development?
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To address this question, a comparative analysis was conducted across four early
adopter strategies, each representing a specific company type. For each configuration
(hydrogen suppliers, import terminals, storage providers, and hydrogen consumers), the
dynamic model was run across five future scenarios: the base case, high and low hydro-
gen demand, and high and low ammonia import volumes. The resulting networks were
evaluated in terms of total costs and pipeline capacities. Network costs were calculated
using the ONLT cost function, while capacities were derived from the simulated supply
and demand relationships among active firms. Pipeline capacities reflect the minimum
required flow between connected nodes in each timestep.

The analysis was conducted in two stages. First, for each company type, network
development was traced across all scenarios to assess how different early adopter strategies
influence network evolution. Second, a robust network was identified for each company
type configuration by examining outcomes across the five scenarios. The results of the
networks are shown in Table [6.11]

Company Type Total Cost (approx.) | Total Capacity (ktpa)
Hydrogen Suppliers €73 million 3000
Import Terminals €72 million 2300
Storage Providers €70 million 2600
Hydrogen Consumers | — -

Table 6.11: Comparison of total costs and capacities by company type

When storage providers are selected as early adopters, the resulting network is the
most cost efficient overall compared to configurations where hydrogen suppliers or im-
port terminals are the initial adopters. The total network cost in the storage provider
configuration amounts to €70 million, as shown in Figure [6.28|. These firms are spatially
well distributed between suppliers and consumers, enabling the formation of an efficient
local hydrogen backbone. This supports the development of a locally integrated network.
The resulting network tends to exhibit moderate capacity per connection, relatively short
pipeline lengths, and balanced connectivity.

Ceraphi
10 Edges Addad

Figure 6.28: Storage Provider Configuration
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In contrast, the configuration in which hydrogen suppliers adopt first results in the
highest total network cost, reaching €73 million, and the highest total capacity, at 3000
ktpa. The high capacity indicates that a large volume of hydrogen is being transported
through the network. When hydrogen suppliers adopt early, they inject substantial vol-
umes into the system at an early stage. This encourages the development of a more
extensive pipeline infrastructure to accommodate and distribute the available supply.
This leads to the formation of a high capacity network, shown in Figure [6.29, These
results reflect the suppliers’ role as a centralised source of supply, requiring extensive dis-
tribution to reach demand nodes across the cluster. The geographic locations of hydrogen
suppliers are less dispersed compared to, for example, storage providers. Their spatial
clustering leads to longer pipelines and higher associated costs.

Gara pih
19 Edges Added

Figure 6.29: Hydrogen Supplier Configuration

The final early adopter configuration, which focuses on import terminals, results in
a network with moderate total cost (€72 million) and the lowest total capacity (2300
ktpa). However, this strategy frequently leads to isolated subgraphs and long, inefficient
pipeline routes, presented in Figure [6.30] This outcome reflects the typical location of
import terminals at the edges of the cluster, where they are poorly connected to the rest
of the system. Their primary role is to inject supply into the network, but in the absence
of nearby early demand, the resulting infrastructure remains underutilised.
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Figure 6.30: Import Terminal Configuration

6.4.6 Evaluation Against Design Criteria

Apart from robustness, which is one of the key design criteria for hydrogen infrastruc-
ture, Table identifies four additional criteria against which network configurations are
evaluated. The results from the scenario simulations are assessed according to all four
criteria.

Cost efficiency is evaluated using the ONLT model, which calculates the total network
cost for the final robust configuration shown in Figure [6.27] Based on this assessment,
the storage-provider-first configuration yielded the lowest overall network costs.

Scalability captures the extent to which late adopters can be integrated into the
existing network without requiring substantial redesign. A highly scalable configuration
allows for flexible expansion. The storage-provider-first configuration demonstrates high
scalability by enabling straightforward integration of additional firms.

Utilization and risk sharing refer to how frequently pipeline segments are shared
among multiple firms. Networks with well-connected hubs promote shared use of in-
frastructure and reduce the risk of stranded assets. Networks with well-connected hubs
enable multiple firms to share pipeline segments, thereby increasing overall infrastruc-
ture utilization. In contrast, the import-terminal-first configuration occasionally results
in underutilized and isolated segments. These segments typically serve a single firm or
carry low flow volumes, limiting infrastructure sharing and increasing unit costs.

6.4.7 Conclusion and Takeaways

This chapter presented a comparative analysis of sixteen network configurations, based
on early adopter types and varying demand and import conditions. The aim was to
identify robust network layouts and to examine how different adoption strategies in-
fluence both the adoption process and the development of the hydrogen infrastructure.
Specifically, the analysis highlighted how firm specific attributes, interfirm influence on
investment decisions, and spatial configuration shape infrastructure development. Three
main themes emerged across the scenarios: the emergence of strategic nodes, the impact
of late adoption, and the trade off between fragmentation and centralisation in network
layouts.
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Air Liquide, Eneco, and BP emerged as strategic nodes, depending on scenario condi-
tions. Air Liquide frequently functions as a central connectivity hub due to its favourable
location and high supply capacity. Eneco, by contrast, typically appears as an early stage
node and is therefore likely to form the foundation of the hydrogen backbone. BP, on
the other hand, emerges as a demand driven hub, particularly in high demand scenarios,
illustrating how demand nodes can also influence network topology.

Furthermore, late adoption, often due to high thresholds or geographic isolation, tends
to result in costly and inefficient pipelines, as observed in the case of Air Products. These
findings highlight the critical chicken and egg dynamic in infrastructure development and
the energy transition: early adopters may benefit from lower connection costs, but they
also face higher uncertainty.

The analysis also reveals a fundamental trade off between fragmentation and cen-
tralisation, which depends critically on the balance between supply and demand. Low
demand scenarios resulted in more fragmented but cost efficient networks. In contrast,
high demand scenarios produced more centralised, high capacity layouts with higher total
costs.

Finally, the robust network identified through edges appearing across all sixteen sim-
ulation runs provides a foundation for low regret investment strategies. The low regret
segment, particularly those involving high capacity nodes such as Shell-Chane, Hunts-
man—Air Products, and Uniper—-ACE terminal, demonstrates value across a range of
future scenarios. Among the early adopter strategies, storage providers tend to yield
the most cost effective networks. In contrast, hydrogen suppliers support higher volume
flows but at greater cost, while import terminals often lead to underutilisation due to
their typical location at the edges of the industrial cluster.
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Discussion

This study introduces a dynamic modelling framework to simulate how firm level in-
vestment decisions, shaped by interdependencies, firm specific attributes and adoption
thresholds, drive the development of hydrogen pipeline networks in industrial clusters.
Using a threshold based model combined with a cost optimisation tool, the results demon-
strate that hydrogen infrastructure development is highly sensitive to early adoption by
specific firms within the hydrogen value chain. The findings reveal complex and nonlinear
dynamics that are often overlooked in traditional static energy models.

These simulations reveal that late adoption by firms often results in more costly and
inefficient pipeline connections. They also show that strategic firms such as Air Liquide,
Eneco, and BP can emerge as critical hubs within the cluster, although the emergence of
such nodes varies by scenario.

Furthermore, the analysis indicates that initiating adoption with storage providers
tends to result in a robust and cost efficient network. In contrast, starting with hydro-
gen suppliers produces a high capacity network but at significantly higher costs. Early
adoption by import terminals frequently leads to underutilisation due to their peripheral
location and limited early demand. Starting with hydrogen consumers never leads to
sufficient adoption by supply firms.

These findings support the expectation that firm level attributes such as company
type, grid connection, hydrogen trade volume, and plot size play a central role in shaping
firm behaviour. The results underscore the importance of incorporating such attributes
into infrastructure planning under uncertainty, moving beyond simplified cost minimisa-
tion approaches.

7.1 Interpretation of Results

The results also reveal important variations in firm level thresholds based on operational
characteristics, highlighting real world barriers to infrastructure adoption. Firms with
more favourable attributes such as higher hydrogen trade volume, larger plot size, and
stronger grid connection tend to have lower thresholds, making them more likely to invest.
In contrast, firms with low hydrogen trade volume, limited grid capacity, or small plot
sizes exhibit higher thresholds and lower readiness to invest. Company type also plays a
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significant role; firms categorised as import terminals or storage providers often display
lower thresholds due to their strategic importance.

The model used in this study further highlights the importance of interfirm relation-
ships and demonstrates that interdependencies influence the diffusion of investments.
Firms, represented as nodes in a social network, influence one another, with those that
have already adopted exerting a positive influence on their neighbours. This peer influ-
ence is crucial for addressing the chicken and egg problem in infrastructure development,
where many firms hesitate to invest without certainty regarding supply or demand.

Some firms also emerge as strategically important because their high centrality and
favourable attributes lead to early stage adoption. These firms can influence adoption
dynamics even among firms with higher individual thresholds. This effect results from
their strong connectivity, early adoption, and high influence within their local network.
Early adopters not only initiate physical infrastructure, but also act as catalysts for
behavioural change within an industrial cluster. For example, when hydrogen suppliers
or storage providers were selected as early adopters, adoption cascaded more rapidly
through the network compared to configurations where adopters with lower scores were
chosen. Influence is not distributed evenly, and targeted engagement of specific actors
can significantly enhance rollout efficiency.

Furthermore, the scenario differences used in this study highlight the sensitivity of
network expansion, costs, and rollout speed to variations in hydrogen demand and am-
monia import volumes. Low demand and import scenarios typically resulted in slower
adoption among firms and more fragmented network development. This led to smaller,
localised sub networks focused on short distance connections, which may constrain long
term scalability. Late adoption, often driven by firms with less favourable attributes,
frequently required the construction of long and inefficient pipelines, increasing total
network costs.

In contrast, scenarios with high demand and import volumes resulted in faster and
more continuous network expansion, with lower overall costs. These findings suggest
that future infrastructure planning should consider not only firm level readiness but also
broader supply configurations. Centralised import capacity, especially when located near
strategically positioned firms, proved particularly effective in reducing network fragmen-
tation and enabling cost efficient infrastructure backbones.

Finally, the analysis identifies several firms that consistently emerge as critical in-
frastructure nodes and serve as keystone players in the transition. Firms such as ACE
Terminal, Eneco, and Shell frequently form early connections and play a central role in
linking multiple parts of the network. These companies share common characteristics, in-
cluding high hydrogen trade volumes and either strong grid connections or large plot sizes.
These attributes appear to be key indicators for identifying central actors in other indus-
trial clusters that are likely to function as connection hubs. Their consistent involvement
suggests that infrastructure planning would benefit from prioritising these firms as hubs
for early coordination. Air Liquide also consistently functioned as a central connectivity
hub due to its strategic location and high supply capacity. However, its role weakened in
scenarios with high ammonia imports and increased reliance on domestic energy supply.
BP, driven by its substantial hydrogen demand, emerged as a strategic hub in the high
demand and high import scenarios. This underscores that demand side firms can also
significantly influence the network topology. When analysing other industrial clusters,
a similar approach can be applied to identify important demand side firms with compa-
rable characteristics. These characteristics include a high expected hydrogen demand,
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sufficient physical space to support infrastructure integration, and a strong planned grid
connection. Additionally, a central location within the cluster further enhances a firm’s
strategic role in network development.

These findings suggest that targeted early engagement of specific firms can improve
network efficiency and reduce overall costs, thereby mitigating the risks of stranded assets
and supporting the realisation of economies of scale. Across all scenarios, the most
cost efficient networks tended to occur when storage providers were the initial adopters,
reflecting their effective spatial distribution within the Rotterdam Industrial Cluster. In
such cases, companies with high hydrogen demand and strong grid connections, such as
Eneco, emerge as strategic hubs and can be identified as priority partners for early stage
collaboration.

7.2 Scientific Contribution and Comparison with Ex-
isting Literature

This study stands in clear contrast to traditional energy infrastructure models, which
often adopt a centralised and static approach focused solely on cost minimisation or the
achievement of supply and demand equilibrium under predefined scenarios. As high-
lighted by Ridha et al. (2022), these models typically neglect interdependencies among
firms and assume independent firm behaviour, thereby overlooking the complex strategic
decision making that characterises real world infrastructure development. The applica-
tion of threshold logic builds on the work of Valente et al. (1996), Dreyer and Roberts
(2009), and Rossi et al. (2017), and directly captures the chicken and egg problem that
is common in shared infrastructure development. These conventional approaches fail to
address this dynamic, which can significantly delay progress in the energy transition. By
incorporating a dynamic modelling framework, this study makes a meaningful contribu-
tion to the existing literature.

The dynamic modelling framework used in this study directly addresses the limitations
outlined above by simulating firm level investment decisions that are shaped by inter-
dependencies and uncertainties. The threshold logic is consistent with an agent based
approach, modelling firms that interact with others within a social network. Their invest-
ment decisions are influenced by the actions of neighbouring firms, capturing nonlinear
adoption patterns, tipping points, and cascading effects.

Furthermore, the integration of the threshold model with the Optimal Network Layout
Tool (ONLT), based on graph theory, represents a key contribution of this study. It
addresses a gap in the literature, where previous threshold models were not combined
with spatial network optimisation to simulate evolving infrastructure layouts and their
associated costs.

7.3 Strengths and Limitations

This study demonstrates several key strengths by introducing a dynamic modelling frame-
work that integrates a threshold based adoption model with an optimal network layout
tool. By incorporating both behavioural dynamics and network cost optimisation, the
model captures adoption patterns that are often overlooked in purely techno economic
analyses.
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Second, the model draws on real world firm level data from Power2X for the Rotter-
dam Industrial Cluster, including hydrogen trade volume, plot size, and grid connection.
This enables the construction of scenarios grounded in realistic spatial and technical
configurations.

Third, the inclusion of interfirm influence through a weighted network reflecting ob-
served interdependencies adds a critical layer of behavioural realism. This allows the
model to simulate the cascading effects of early adoption across different strategic sce-
narios.

Despite these strengths, this study also acknowledges several limitations. One of the
most significant is the simplification of the investment decision making logic, as discussed
in Section [3.10] One of the most significant limitations of this study is the simplification
of investment decision-making logic. The model assumes that firm adoption is solely
driven by a threshold mechanism based on static firm attributes. In practice, however,
decisions related to hydrogen infrastructure investment involve a far more complex set
of considerations, including financial modelling, risk-return analysis, regulatory assess-
ments, long-term market projections, and extensive stakeholder negotiations. While such
processes are difficult to simulate, they are critical to shaping infrastructure development
outcomes. This simplification may lead to an overestimation of adoption rates and the
pace of network expansion. Moreover, the abstraction limits the model’s predictive accu-
racy and underscores the need for future validation with stakeholders. It also highlights
the potential value of integrating behavioural diffusion models with more economically
or policy-oriented investment frameworks. Another important aspect concerns the un-
certainty surrounding the expert derived scores for the categorical attribute company
type, which were determined through an interpretive approach rather than established
scientific literature. While the applied scoring method enhances reproducibility, it may
introduce a degree of subjectivity into the firm level adoption thresholds. Similarly, the
boundaries used to define the low, medium, and high categories for numerical attributes
were based on visual inspection of histograms rather than established literature. These
chosen boundaries likely introduce additional subjectivity into the model, which may
influence the threshold values and, consequently, the adoption process.

Additionally, the model assumes fixed attribute values over time and does not account
for evolving hydrogen demand, changing ammonia import volumes, or shifts in firm strat-
egy. These dynamic factors could significantly influence adoption behaviour in practice.
The model also assumes that all interfirm connections exert a positive influence, whereas
in reality, adoption by one firm might reduce the willingness of others to invest due to
competitive pressures or market displacement. This assumption simplifies the complex
competitive dynamics that may emerge in real industrial environments.

Another key assumption in the threshold model is that all firm-level attributes are
considered to contribute equally to a firm’s threshold. This equality among attributes
reduces the risk of overparameterization. While this simplifies the model, it may overlook
the possibility that some attributes have a greater influence on adoption decisions than
others. Furthermore, the normalized category scores within each attribute are based on
interpretative logic rather than empirical validation. Although these values may produce
plausible adoption dynamics, they could be further refined through the integration of
scientifically grounded data. Additionally, interdependencies between firms are modelled
as static. In reality, however, these relationships are likely to evolve over time, which could
substantially influence both the adoption process and resulting network development.

Finally, the assumption of unconstrained pipeline construction, where connections are
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represented as straight lines, does not reflect spatial, regulatory, or permitting constraints.
These real world limitations could significantly affect the actual cost and feasibility of
infrastructure development.

These limitations suggest that the results should be interpreted as exploratory and
illustrative, rather than as direct predictions of future developments. Nonetheless, the
model provides a useful framework to examine how firms and their interdependencies
may shape infrastructure development pathways in industrial clusters.

7.3.1 Model Assumption and Their Implications

In addition to the general limitations, this study relies on several assumptions that shape
the scope and interpretation of the results. These assumptions can be grouped into three
categories: behavioural, technical, and scenario related.

From a behavioural perspective, the model assumes that adoption is purely driven
by positive peer influence and similarity between firms. It does not account for negative
interdependencies such as competition, strategic exclusion, or the possibility that unprof-
itable investment decisions by neighbouring firms may discourage adoption. In addition,
the simplified investment logic reduces complex decision making processes to a threshold
based mechanism that relies on static firm attributes. This abstraction may lead to an
overestimation of adoption rates and overlooks the possibility that different attributes
may carry varying levels of importance in real world decision making.

Technically, the model assumes unconstrained pipeline construction as straigh line
connections, thereby ignoring spatial regulatory or permitting constriants that affect the
real world infrstructure development. Once constructed, the infratructure is assumed
to remain in place indefinitely, with no decomissioning or repurposing. Additionally,
pipelines are only built between active firms, and not directly to existing pipelines. This
can increase cost estimates and reduce the flexibility.

Finally, the model assumes homogeneous adoption within each firm type, meaning
that only firms of the same type act as early adopters in each simulation. Furthermore,
adoption occurs in discrete timesteps without delay. While these design choices support
clearer comparison between scenario configurations, they limit the diversity and realism
of transition pathways observed in real world infrastructure development.

7.4 Scalability, Generalizability, and Robustness

While this study demonstrates the application of the dynamic modelling framework
within the Rotterdam industrial cluster, it is not bound to this specific context. This
section discusses the potential of the framework for application in other industrial regions
and its computational scalability.

The approach is designed to be both generic and transferable. It relies on firm level
data such as geographic location, hydrogen trade volume, and grid connection, which are
often available in other clusters. The core elements of the model, including the threshold
based adoption logic and the network optimisation method, are not limited to hydrogen
infrastructure. They can also be applied to other green molecule infrastructure planning
challenges.

Successful replication requires only basic firm level data, which is commonly acces-
sible. The attribute scoring logic demonstrated in this study can be adapted to reflect
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local conditions and industry characteristics in different industrial contexts. However,
several key elements would require careful adjustment. For example, geographic condi-
tions and spatial constraints would influence infrastructure costs and technical feasibility.
In addition, the industrial composition of clusters varies considerably, with different firm
types and value chain relationships. These differences would necessitate tailored attribute
definitions and scoring schemes. Finally, local policy environments and regulatory frame-
works may influence the timing of adoption and should be reflected through context
specific calibration.

Scalability to Larger Systems

The current implementation in this study is tailored to a relatively small scale system.
Successful replication and upscaling of the model to simulate hundreds of firms or incor-
porate a large number of scenarios would introduce several challenges.

First, while the optimal network layout tool performs efficiently for small to medium
networks, its performance may degrade as the number of nodes and the size of the graph
increase significantly. Second, collecting firm specific attribute data at a large scale can be
time consuming and resource intensive. Third, the calculation of influence scores between
all firm pairs becomes increasingly intensive as the number of firms grows. Finally, gener-
ating and analysing large scenario sets would further increase the overall computational
burden.

However, the model also offers potential solutions to these scalability challenges. Hi-
erarchical modelling strategies could be used to partition large systems into smaller,
manageable subnetworks, with intercluster connections modelled at a higher level of ab-
straction. This approach allows for selective application of the most computationally
intensive components while preserving the framework’s core behavioural insights.

Uncertainty

The current analysis, based on 20 simulation runs across five scenarios and four early
adopter configurations, offers a bounded exploration of uncertainty rather than an ex-
haustive coverage of all possible future states. As such, the findings should be interpreted
as a structured examination of plausible outcomes. This bounded approach functions as
a structured sensitivity analysis rather than a comprehensive uncertainty quantification.
The scenarios capture variation in critical variables that are expected to have a significant
influence on network development patterns. However, several sources of uncertainty re-
main unaddressed, such as regulatory changes and technological developments that could
significantly affect adoption dynamics.

Future studies could enhance the robustness of the analysis by increasing the num-
ber of simulation runs, applying Monte Carlo methods, or extending the robustness as-
sessment. In addition, scenario design could benefit from stakeholder guided storyline
development to ensure that the scenarios reflect industry specific concerns. These en-
hancements would transform the current analysis into a more comprehensive tool for
uncertainty assessment.

Lessons and Insights

In conclusion, this framework yields several insights that are transferable across different
contexts. The threshold based adoption logic captures interfirm dependencies that are
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often observed in infrastructure development. The attribute based scoring methodology
enables the inclusion of firm behaviour and structural differences between firms. Finally,
the ONLT provides a rigorous method for evaluating spatial infrastructure efficiency in
a cost effective manner.

Moreover, the insights generated by this framework reflect fundamental dynamics
that are likely to emerge in other industrial clusters facing the challenge of coordinated
infrastructure development under uncertainty. While specific conditions may vary, the
qualitative understanding of how firm attributes, network effects, and decision making
interact to shape infrastructure development offers valuable guidance for planners and
policymakers in other contexts.

7.5 Implications

The findings of this study offer important implications for policymakers, industrial advi-
sory firms, and infrastructure developers involved in the hydrogen transition. For indus-
trial project developers such as Power2X, the model provides a practical decision support
tool to navigate uncertainties in new infrastructure projects. For example, they can use
insights into threshold behaviour to identify firms with lower investment barriers, mak-
ing them suitable candidates for early engagement or strategic partnerships. The results
suggest that strategic firms with strong influence and favourable attributes should be
prioritised.

The model can directly inform decisions about which first movers to target. It demon-
strates that selecting storage providers as early adopters leads to the most cost efficient
network configurations, supporting the development of an effective hydrogen backbone in
the industrial cluster. Project developers can use these insights into firm characteristics
and readiness to design a phased infrastructure rollout aligned with adoption likelihood
and spatial demand patterns.

Furthermore, the identification of critical infrastructure nodes such as Air Liquide and
Eneco provides a clear basis for prioritising investments to reduce the risk of underutilised
infrastructure. Finally, the analysis of robust pipeline segments that appear consistently
across scenarios supports low regret investment strategies and helps minimise the risk of
stranded assets.

It is important to note that although this study used the RIC as an illustrative
case, its dynamic modeling framework and key insights are broadly applicable to other
industrial clusters that face similar coordination and infrastructure challenges in the
energy transition.

Although this study does not directly compare outcomes with a fully top down plan-
ning approach, the findings indicate that a hybrid strategy, combining behavioral dynam-
ics with spatial optimization, may offer more advantageous results. A purely top down
model risks overlooking interfirm adoption behavior, potentially resulting in misaligned
investments or stranded assets.

7.6 Future research

Future research should focus on enhancing the model’s dynamic capabilities and refining
its current assumptions to generate more robust insights. A critical extension would
involve moving beyond static firm attributes and incorporating dynamic changes over
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time to reflect evolving firm strategies, demand growth, or regulatory developments. This
could also include modelling real time economic variables and market incentives, such as
fluctuating energy prices or competitive dynamics, which are not currently simulated.
In addition, future work should aim to strengthen the methodological basis for at-
tribute scoring by grounding these decisions in established literature. In this study, each
attribute was treated as equally important, with normalized scores assigned across low,
medium, and high categories. Introducing differentiated attribute scores would allow for
a more nuanced analysis of how specific characteristics influence adoption outcomes.
Finally, incorporating expected firm level returns from specific infrastructure invest-
ments would introduce a critical economic dimension to the adoption logic. This would
align the model more closely with real world investment decision making processes.

7.6.1 Validation of Investment Logic

One of the most critical limitations identified in this study is the abstraction of real-
world investment decisions into a simplified threshold logic. While this approach enables
the simulation of adoption dynamics, it does not reflect how firms make investment
decisions in practice. To improve the realism and reliability of the model, future research
should incorporate a structured validation of the investment logic, preferably through
empirical engagement with stakeholders or comparison to observed investment behaviour.
Therefore, the following step-by-step validation approach is proposed:

Stakeholder Interview or Expert Panels

The first step in the validation process involves conducting structured interviews with a
range of relevant stakeholders and experts, including infrastructure developers, project
finance specialists, and decision-makers at firms active in the hydrogen value chain. The
objective is to identify the key factors that influence investment readiness and commit-
ment in practice. More specifically, these interviews aim to uncover the practical drivers
and barriers that influence firms’ investment decisions. Key questions may address topics
such as:

o What internal criteria (e.g., return on investment, risk tolerance, board approval)
must be met before your firm commits to infrastructure investments?

o (Can you describe a past hydrogen or energy infrastructure investment made by your
firm, and what factors triggered the final decision?

Comparison with Real Investment Cases

Secondly, the modelled adoption sequence should be compared against real-world cases of
hydrogen infrastructure development, where available. Relevant examples include exist-
ing pipeline projects and industrial decarbonization initiatives. This comparative analysis
can help identify systematic deviations between simulated and observed investment be-
haviour, particularly in terms of investment timing, risk assessment, and the influence of
early adopters. Such findings can reveal where model assumptions align with, or diverge
from, actual decision-making processes.
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Incorporating ROI-Based Decision Rules

Thirdly, the model should be extended to incorporate an economic viability threshold
within the adoption logic. This could involve integrating indicators such as a minimum
expected return on investment (ROI) or acceptable payback period. Including such cri-
teria would allow the model to reflect how firms weigh financial feasibility against social
influence. This addition would offer a more realistic representation of capital allocation
decisions within firm-specific investment frameworks.

Scenario Co-Creation with Experts

Furthermore, expert participation can be used to co-develop future scenarios and re-
fine model parameters. This ensures that both the adoption logic and the scoring of
firm attributes reflect industry-specific considerations, the regulatory environment, and
competitive dynamics that influence investment behaviour.

Sensitivity Analysis on Behavioral Parameters

Lastly, a targeted sensitivity analysis of the behavioural parameters should be conducted
to systematically test the model’s robustness under varying investment assumption sce-
narios. By examining how changes in attribute scores and threshold values influence
adoption patterns, this analysis can identify which factors most strongly shape network
formation and therefore warrant more precise empirical calibration. For each variation,
the model is rerun and the resulting adoption sequences and network configurations are
compared. By analysing which parameter changes lead to the greatest deviations in
network outcomes, the most influential behavioural assumptions can be identified.

By integrating stakeholder insights with systematic parameter testing, future versions
of the model could achieve closer alignment with the complexity of real-world investment
behaviour and provide more actionable insights for planners and infrastructure develop-
ers.
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Conclusion

This study aimed to understand the adoption of hydrogen infrastructure within industrial
clusters by simulating how firm specific characteristics, interdependencies, and investment
decisions shape network development. To achieve this, a threshold based adoption model
was developed and combined with a network optimisation tool (ONLT), enabling the sim-
ulation of adoption behaviour and infrastructure evolution over time. A key contribution
of this study is its ability to capture the complex and non linear dynamics between firms
and their specific attributes, such as hydrogen demand, grid connection, plot size, and
company type, within a modelling framework that supports the evaluation of network
robustness under uncertainty. This thesis addressed the following research question:

How do firm-level characteristics and interdependencies influence the devel-
opment of hydrogen infrastructure in industrial clusters?

To answer the main research question, several subquestions were investigated. These
contribute to the overall objective of this thesis. The first subquestion is:

Subquestion 1: What threshold values and interdependencies exist between
companies?

This study reveals that a combination of firm level attributes, such as hydrogen de-
mand or supply, grid connection, plot size, and company type, is critical in determining
both the individual adoption thresholds and the interdependencies between firms. Firms
with more favourable attributes are assigned lower thresholds, indicating a greater readi-
ness to adopt. Interdependencies are modelled through assigned edge scores that reflect
the similarity of attributes between firms. This allows influence to cascade through the
network. Firms with similarly high attribute values exert stronger influence, making
them central in driving collective adoption dynamics.

Subquestion 2: How do threshold values and interdependencies impact firms’
investment decisions?

Subquestion 3: How do threshold model outcomes under different scenarios
shape the optimal hydrogen pipeline layout?
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In relation to subquestions 2 and 3, which focus on the threshold model dynamics
and network generation, the findings consistently indicate that network development is
strongly influenced by investment decisions and firm specific thresholds. The resulting
network structure is shaped by the interaction of firm level attributes. These interacting
factors lead to complex and non-linear patterns of adoption across the network.

For example, robust infrastructure segments tend to form around early adopters that
combine favourable attributes with a strategic central location within the cluster. Storage
providers frequently act as key enablers, triggering broader adoption and leading to the
formation of integrated and cost efficient backbone networks. Their effectiveness is partly
due to their geographic distribution throughout the cluster, which increases their con-
nectivity and influence across different firm types. Firms such as Air Liquide and Eneco
consistently acted as central hubs within the network. Eneco, for instance, combines
highly favourable attributes, including a strong grid connection and a substantial hydro-
gen supply, giving it the profile of a foundational early stage node with high connectivity.
This makes it strategically attractive for other firms to connect to. A similar pattern is
observed for Air Liquide, which also functions as a hydrogen supplier with comparable
favourable attributes, although located in a different part of the cluster. Identifying such
firms is essential for anticipating where critical hubs are likely to emerge.

In contrast, late adopters such as Air Products often require expensive and inefficient
connections, primarily due to the absence of nearby active infrastructure. Although Air
Products is also a hydrogen supplier, its relatively low hydrogen volume, limited grid
connection, and small plot size result in one of the highest thresholds in the model.
As a consequence, Air Products requires a substantial number of neighbouring adopters
before it is willing to connect, classifying it as a "wait and see” actor. However, because its
location is close to Air Liquide, it is likely that Air Liquide serves the nearby consumers,
further reducing the strategic importance of Air Products in early network formation.

In addition to supply side actors, demand side nodes can also play a strategic role
in shaping network development. For example, BP emerged as a demand driven hub,
particularly in the high demand scenario. This highlights how macro level conditions can
significantly alter network topologies. It is therefore essential not to focus exclusively on
supply nodes, as demand nodes can actively influence both the structure of the network
and the dynamics of investment. Large and reliable demand nodes, especially those with
substantial plot sizes and strong grid connections, serve as strategic targets for ensuring
offtake certainty. In high demand scenarios, such firms tend to attract infrastructure
investment and can evolve into demand hubs.

Subquestion 4: How do external incentives (e.g., subsidies) influence firm
behavior and network development?

The final subquestion focuses on specific early adoption configurations and compares
the resulting networks to identify which configurations lead to the most optimal out-
comes in terms of cost and capacity flow. The adoption behaviour of different company
types influenced both the pace and structure of network development. Early adoption
by storage providers resulted in the most cost efficient networks, while early adoption
by hydrogen suppliers produced networks with higher overall capacity but also signif-
icantly higher costs. These findings suggest that targeted subsidies should be aligned
with broader strategic objectives, whether the priority is minimising cost or maximising
capacity, when supporting early adoption in industrial clusters.
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The developed framework offers valuable scalability potential for project developers
such as Power2X when evaluating hydrogen infrastructure opportunities across different
industrial clusters. In addition to the model’s scalability, the findings from this study
offer valuable insights into specific firm behaviour, the emergence of strategic hubs, and
the identification of robust infrastructure components. These insights can support the
analysis of other industrial clusters facing similar infrastructure challenges. Power2X can
apply the predefined firm level criteria to identify relevant actors in other clusters and
collect the necessary data based on firm specific attributes. Combined with a different
cluster layout and the spatial configuration of firms, the model is capable of simulating
adoption dynamics in various industrial contexts. This enables developers to determine
which clusters present the most favourable conditions for early infrastructure development
and to identify firms that are likely to emerge as strategic hubs, as well as infrastructure
segments that remain robust across multiple future scenarios.

These findings offer several practical insights for industrial project developers, advi-
sory firms, and policymakers involved in hydrogen infrastructure planning and the decar-
bonisation of industrial clusters. The model serves as a practical decision support tool,
highlighting the importance of identifying firms that can act as strategic early movers
to accelerate infrastructure rollout. In particular, encouraging early adoption by specific
firms or coordinating investments within a group of interdependent companies can prevent
costly delays and inefficient network layouts. By simulating different adoption pathways,
the model identifies which configurations are likely to result in integrated rather than
fragmented networks, and which specific network segments can be considered robust. By
incorporating firm behaviour and peer influence, this approach supports a more coordi-
nated and cost effective strategy for infrastructure planning, reducing the risk of stranded
assets and better reflecting the real dynamics within industrial clusters.
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Appendix Overview

This appendix provides an overview of the supplementary material that supports the
analysis presented in this thesis. It includes supplementary data, a detailed overview
of all attribute values, the results of expert interviews and the corresponding scoring
method, pseudocode for the threshold calculation, and the full simulation results for all
scenario and early adopter configurations. Table A.4 presents the scores for the categorical
attribute company type, which were derived from the expert interviews.
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Attribute Values

This appendix chapter presents the specific values of the firm level attributes used as
input in the model. These values were collected using data from Power2X and existing
literature, as described in the data sources section. The attribute values form the basis
for determining each firm’s adoption threshold and influence within the network.
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Firm Hydrogen Trade Volume (ktpa)
LyondellBasell 19
Uniper 450
HES 75
BP 108
Eneco 80
OCT Import Terminal 1200
Gunvor 13
ExxonMobil 153
Vopak 75
Huntsman 95
Air Products 13
Advario 5
Chane 75
Air Liquide 200
ACE Terminal 2000
Air Product and Gunvor Terminal 2000
VTTI Storage Terminal 73
Koole Import Terminal 1000
Nobian 25
Shell 232

Table A.1: Firm-level hydrogen trade volumes (ktpa)
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Firm Plot Size (ha)
LyondellBasell 75
Uniper 60
HES 125
BP 250
Eneco 21
OCI Import Terminal 20
Gunvor 140
ExxonMobil 101
Vopak 100
Huntsman 80
Air Products 15
Advario 26
Chane 60
Air Liquide 37
ACE Terminal 70
Air Product and Gunvor Terminal 60
VTTI Storage Terminal 90
Koole Import Terminal 40
Nobian 30
Shell 400

Table A.2: Firm-level plot sizes (hectares)
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Firm Grid Connection (MW)
LyondellBasell 81.6
Uniper 500
HES 251
BP 250
Eneco 800
OCI Import Terminal 150
Gunvor 30
ExxonMobil 251
Vopak 50
Huntsman 150.63
Air Products 42.4
Advario 50
Chane 50
Air Liquide 150.63
ACE Terminal 150
Air Product and Gunvor Terminal 150
VTTI Storage Terminal 150
Koole Import Terminal 100
Nobian 150.63
Shell 200

Table A.3: Firm-level grid connection capacities (MW)

Company Type

Assigned Scores

Import Terminal
Storage Provider
Hydrogen Supplier

Hydrogen Consumer

0.9
0.8
0.6
0.5

Table A.4: Assigned Scores for company types in the threshold model
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Edge Counts

The table below forms the basis for generating the robust network across all scenario and
early adopter configurations. It provides an overview of the top connections that appear
most frequently across the 14 simulation runs. The focus is limited to edges with a count
of five or more, although many other edges appear less frequently. The first two columns
represent the two nodes that constitute each edge.
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Table B.1: Top 20 Most Frequent Edges Across Scenarios

Node A Node B Count

1 14 14
12 19 14
9 13 14
3 ) 13
3 4 13
7 17 13
8 17 12
14 15 12
2 4 11
13 18 11
11 19 10
4 17 9
9 10 9
6 7 8
1 3 7
11 18 7
3 16 7
0 1 6
1 2 6
2 15 5
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Pseudocode Threshold Calculations

The pseudocode below outlines the procedure used to calculate each firm’s specific thresh-
old value, based on its individual attribute scores. This pseudocode offers a clear repre-
sentation of the underlying calculations and reflects the logic implemented in the Python
code used within the model.

Algorithm 1 Firm-Specific Threshold Calculation

Require: Firm f with attributes A = {ay,aq,...,a,}
Require: For each attribute a;: predefined category ranges (low, medium, high) and
corresponding scores (Wi, Whed, Whign)
Ensure: Threshold value T} for firm f
: Initialize empty list W < []
. for each attribute a; in A do
Determine value v; of attribute a; for firm f
Identify category ¢; into which v; falls (low, medium, or high)
Assign corresponding scores w; based on ¢;
Append w; to list W
end for
Compute average score: avg_score <— %Z?:l w;
Compute threshold: Ty < 1 — avg_score
return 7%

,_.
@
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Simulation Outputs

The final chapter of the appendix presents the intermediate results from all simulation
runs included in the analysis. Each run consists of multiple timesteps that indicate
which firms are active in a given timestep and which connections are established. In
the visualisations, new connections appear in black during the timestep they are created.
In subsequent timesteps, these previously established connections are shown in blue. If
an edge appears in purple, it represents an existing connection whose capacity has been
extended. The appearance of nodes over time reflects the dynamic outcomes generated
by the threshold model.

D.1 Base Case Scenario

D.1.1 Hydrogen Supplier First

Figure D.1: Simulation Results
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Mindmum-cost sparning tree: 35344 (t=1)

Figure D.2: Simulation Results

Minimum-cost spanning tree: 127693 (t=2)

Figure D.3: Simulation Results

Minimum-coit spanning tree: 1294.00 (t=1)

Figure D.4: Simulation Results
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Minimum-cost spanning tree: 3767 (t=4)

Figure D.5: Simulation Results

D.1.2 Hydrogen Consumer First

Mo network reeded (1=0)

Figure D.6: Simulation Results
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Mo netwark needed [t=1]

Figure D.7: Simulation Results

D.1.3 Import Terminals First

Mo network nesded (B=0)

Figure D.8: Simulation Results
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Minimum-cost spanning tree: 18682 (t=1)

Figure D.9: Simulation Results

Minimum-cost spanning tree: 1397.99 (t=2)

Figure D.10: Simulation Results

Menimum-tost spanning tres: 91107 (t=1)

Figure D.11: Simulation Results
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Minbmume-cost spanning tree: 21976 (t=4)

Figure D.12: Simulation Results

D.1.4 Storage Providers First

Figure D.13: Simulation Results
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No network nesded (t=1)

Figure D.14: Simulation Results

Mindmum-cost spanning tree: 105155 (t=2)

Figure D.15: Simulation Results

Minimum-cost spanning tres: 535,39 (t=3)

Figure D.16: Simulation Results
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Menimum-cost Spanning tree: 0.0 (t=d4)

Figure D.17: Simulation Results

D.2 Low Hydrogen Demand Scenario

D.2.1 Hydrogen Supplier First

Mo ratwedk Pidid (8=0)

Figure D.18: Simulation Results
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Minimum-Cost spanning tree: S51.8 (k=1)

Figure D.19: Simulation Results

Minimim-cost spanning tree: 37868 (t=2])

Figure D.20: Simulation Results

Minamum-cost spanning trae: 11310.16 (t=3)

Figure D.21: Simulation Results
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Mindmrm-cost spanning tras: 0.0 (t=4)

St
' A
'Y

Figure D.22: Simulation Results

D.2.2 Import Terminals First

No nitwiork neaded (E=0)

Figure D.23: Simulation Results
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Mimimum-comt spanming red: 218,78 (1=1)

Figure D.24: Simulation Results

Minimum-cost spanning tree; 28.49 (t=2}

Figure D.25: Simulation Results

Mirimum-cost spanning tres: 481,09 (t=13)

Figure D.26: Simulation Results
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Mirdmum-cost spannang tree: 1410.20 (t=4)

Figure D.27: Simulation Results

D.2.3 Storage Providers First

Ho netwark needed (E=0)

Figure D.28: Simulation Results
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Mo nastweork: neaded (t=1})

Figure D.29: Simulation Results

Minimum-cost spanning tree: 60816 (b=2)

yd

A
a

=

.

Figure D.30: Simulation Results

Minsmum-cost spanning tres: 1110.3 {t=13)

Figure D.31: Simulation Results
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Minsmum-cost spanning tree: 361.9 (R=4)

Figure D.32: Simulation Results

D.3 High Hydrogen Demand Scenario

D.3.1 Hydrogen Supplier First

No neitweork neaded (t=0)

Figure D.33: Simulation Results
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MEnimum-Cost Spanning thee: 474,89 (t=1)

Figure D.34: Simulation Results

Minimum-cost spanning tres: 1433.58 (1=12)

Figure D.35: Simulation Results

Mnimum-Cost spanning tree: 408,31 [t=3)

Figure D.36: Simulation Results
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Menimum-cost spanning tree: 0.0 (t=4)

Figure D.37: Simulation Results

D.3.2 Import Terminals First

Figure D.38: Simulation Results
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Manimum-cost sparming tres: 300,41 (t=1)

Figure D.39: Simulation Results

Minimurm-cost spanning tree: 125335 [t=2}

Figure D.40: Simulation Results

Manimum-cost spanning tree: 343.3 (E=3)

Figure D.41: Simulation Results
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Mimimum-cott spanming res: 200,37 (1=4)

Figure D.42: Simulation Results

D.3.3 Storage Providers First

Mo network reeded (t=0)

Figure D.43: Simulation Results
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o network nesded t=1]

Figure D.44: Simulation Results

Mirimism-codt spanning tres: BT2.04 (t=2)

Figure D.45: Simulation Results

Minsmum-cost spanning tree: 126.19 (t=3)

Figure D.46: Simulation Results
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Minimum-cost spanning tree: 0.0 (t=4}

Figure D.47: Simulation Results

D.4 Low Ammonia Import Scenario
D.4.1 Hydrogen Supplier First

No retweark needed (t=0)

Figure D.48: Simulation Results
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Minirmum-cost spanning treg: 353 44 (1=1)

Figure D.49: Simulation Results

Minimum-cost spanning tred: 353 44 (1=1)

Figure D.50: Simulation Results

Minimum-cost spannang tres: 1355.97 1=2)

Figure D.51: Simulation Results
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Minimum-cost spanning tree: 35851 (t=3)

Figure D.52: Simulation Results

D.4.2 Import Terminals First

N reistwori naaded (E=0)

Figure D.53: Simulation Results
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Minsmium-cost spanning tros: 252,49 (t=1)

Figure D.54: Simulation Results

Minimums-cost spanning tree: 1153 47 (t=2)

Figure D.55: Simulation Results

Miramum-cest spanning tres: BT0.72 (t=1)

Figure D.56: Simulation Results
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Manirmum-Cost spanning tres: 199,07 (t=4)

Figure D.57: Simulation Results

D.4.3 Storage Providers First

Mo nitweark needed (E=0)

Figure D.58: Simulation Results
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Ne rstwork naded (t=1)

Figure D.59: Simulation Results

Minimum-cost spannéng tree: 710.5 1=2)

%,

Figure D.60: Simulation Results

Mindfrurm-cost spanning tres: 3418 (t=3)

Figure D.61: Simulation Results
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Mlinimum-£ost Spanning thee: 144,45 (t=4)

Figure D.62: Simulation Results

D.5 High Ammonia Import Scenario

D.5.1 Hydrogen Supplier First

Ho network nesded [t=0]

Figure D.63: Simulation Results
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Manimum-€ost spanning trse: 15344 (t=1)

Figure D.64: Simulation Results

Mirimum-cost spanning tree: B71.22 (t=2)

Figure D.65: Simulation Results

Mirsimrim-cost spanning tres: 320.5 [t=13)

Figure D.66: Simulation Results
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Minimum-Cost Spanning tree: B1.92 (t=4)

Figure D.67: Simulation Results

D.5.2 Import Terminals First

Mo reatwork reeded (t=0)

Figure D.68: Simulation Results
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Minmum-cost spanning tres: 186,82 (t=1)

Figure D.69: Simulation Results

Minsmum-cost spanneng tree: S45.8 t=2)

Figure D.70: Simulation Results

Minbmum-cost spanning tree: 13097 (t=3)

Figure D.71: Simulation Results
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Miinirmum-ost spanning tree: 0.0 (t=4)

Figure D.72: Simulation Results

D.5.3 Storage Providers First

N retwioric naaded (E=0)

Figure D.73: Simulation Results
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Mo retwork reeded (t=1)

Figure D.74: Simulation Results

Minimum-cost spannang tres: 1317.95 1=2)

Figure D.75: Simulation Results

Minimum-£ost Spanning tree; 313,09 (t=3)

Figure D.76: Simulation Results
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Minsmum-Cost Spanning tree: 109,99 (t=4)

Figure D.77: Simulation Results
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