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Abstract

The article proposes a method developed for model order reduction in a Finite Element (FE) framework that is capable
of computing higher order stiffness tensors. In the method, a truncated third order asymptotic expansion is used for
transformation of an FE model to a reduced system. The basis matrix in the formulation of the reduced-order model
(ROM) is derived from linear mode shapes of the structure. The governing equations are derived using Hamilton’s
principle and the method is applied to geometrically nonlinear vibration problems to test its effectiveness. An initial
validation of the numerical formulation is obtained by comparison of results from time domain nonlinear vibration
analyses of a rectangular plate using Abaqus. Subsequently, a stiffened plate is modelled to test a more complex
structure and a continuation algorithm is used in combination with the ROM to compute nonlinear frequency response
curves. The validation of the stiffened plate has been performed through comparisons with the results of nonlinear
vibration experiments. The experiments are conducted with Polytec Laser Doppler Vibrometer and PAK MK-II
measurement systems for large amplitude vibrations to validate the nonlinear vibration analyses.
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1. Introduction

Thin-walled and flexible mechanical structures are often susceptible to large amplitude vibrations in operating conditions
which activates geometric nonlinearity in the structural response. Nonlinear dynamic analyses of such structures using
full-scale Finite Element (FE) models can require a high computational effort which further magnifies with the increase
in complexity of the model and accuracy requirements. These analyses are becoming increasingly important in the
early design stages of structures in industry. To overcome the drawback, model condensation and model reduction
methods are highly advantageous.

A typically known model reduction method is the Modal Superposition method [1], in which a modal matrix is
constructed by selecting eigenvectors corresponding to the lowest frequency natural model. The Ritz-Wilson Method
[2] and Proper Orthogonal Decomposition [3, 4] are other well known reduction techniques. In the former, Ritz
vectors are obtained with the advantage that they are less expensive to compute than natural modes, while in the latter
snapshots of the time response are used to build a reduced basis. The Ritz-Wilson method was extended to nonlinear
structural dynamics in [5]. Noor & Peters [6] presented a method to predict the nonlinear static response of structures
by employing a Rayleigh-Ritz technique to approximate the governing FE equations by a reduced system. The basis
vectors used herein are a nonlinear solution of the nodal displacement and path derivatives.
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A significant consequence of the nonlinearity is frequency -amplitude dependency, i.e. a corresponding shift in the
modal frequency with variation of vibration amplitude. The change in resonance frequency arises due to hardening or
softening type nonlinearity which becomes more prominent with the increase in vibration amplitude [7]. Considerations
for geometric nonlinearity in the dynamic analysis of thin walled structures have been recognized since the pioneering
work of Chu & Herrmann [8] who obtained the backbone curve of a simply supported plate using perturbation methods.
Eisley [9] derived the amplitude –frequency correlation of a plate using first order approximation in the Ritz method.
Yamaki & Chiba [10] proposed a method using Harmonic balance approach with a third order Galerkin approximation.
The validation of this study was performed by Yamaki et al. [11] by conducting experiments on a square plate with
clamped boundary conditions. A Galerkin discretization with symplectic integration was used to obtain backbone
curves of simply supported rectangular plates with different aspect ratios by Leung & Mao [12]. The study demonstrated
symplectic integration as a numerical algorithm with negligibly small artificial damping in comparison to Runge-Kutta
method. Nonlinear vibrations of isotropic and laminated plates using Hierarchial Finite element method was studied
by Han & Petyt [13, 14]. Considerations of in-plane displacements in this formulation showed a significant variance
in nonlinear dynamic response in comparison to the formulation neglecting in-plane displacements. The same was
also shown by Alijani & Amabili [15] in studying large amplitude vibrations of laminated and sandwich plates using
shear deformation theories for the numerical formulation. An initial assumption of solution was chosen to be a product
of spatial and temporal component where the spatial part was expanded as Chebyshev polynomials. Furthermore, a
reduced-order model was implemented by utilization of appropriately selected linear eigenmodes as shape functions.
The governing equations were then solved using a continuation scheme. A ROM for angle-ply laminated cylindrical
shells using vibration modes as the basis is presented by Amabili [16]. A method for retention of appropriate modes in
the reduction procedure has also been presented which is valid for circular shells with uniform boundary conditions
and any generic lamination sequence. A more extensive review of the literature on the nonlinear vibrations of plates
and shells can be found in [17] and further in [18].

A family of ROMs with formulations based on enrichment of basis matrix by using higher order terms or modal
derivatives (MD) along with vibration modes has seen prominent development in recent years. Idelsohn & Cardona
[19] presented the use of modal derivatives along with tangent modes in the basis matrix used for the formulation of
the reduced order model (ROM). The proposition is based on the premise that the tangent modes, being a function
of displacements, can be expanded by using the Taylor series. While a linearization approximation is valid in the
case of small displacements, the nonlinear effect is not captured for higher amplitudes. In [20], three approaches for
formulating the basis matrix are presented and compared which include the use of only tangent modes, tangent modes
in combination with modal derivatives and tangent modes in combination with the newly introduced and so termed
static modes. Static modes are calculated as a steady state solution of the structure using Newton-Raphson approach. It
is shown that adding modal derivatives in the ROM basis along with tangent modes significantly improves the accuracy
of the nonlinear response. Addition of static modes is shown to have a similar improvement in the accuracy of the
obtained results. However, no cumulative improvement could be seen through addition of both- modal derivatives and
static modes. A perturbation method, based on the theory of initial post-buckling behaviour developed by Koiter [21]
and extended to free vibrations in an analytical framework by Rehfield [22], was generalized to a finite element context
by Tiso [23]. This method demonstrated how the enrichment of the basis with second order modes yields more accurate
results compared to a full finite element analysis. A criterion is introduced in [24] which allows selection of the most
important second order modes for the basis, prior to computing them. It is based on the convergence of the underlying
linear dynamics problem. The proposed criterion looks at the spatial and spectral properties of the eigenspectrum and
the applied load. The computation of nonlinear normal modes of geometrically nonlinear planar structures using a
reduced-order model is presented in [25]. The FE model is reduced using a Galerkin projection and a basis is used
consisting of linear vibration modes and modal derivatives.

However, as pointed out by Jain et al. [26], the basis rapidly increases in size with the complexity of the structure
when modal derivatives are included and more vibration modes are required to capture the response accurately. This
can be alleviated to some extent by incorporation of a modal derivative selection process, however, this is not robust
for different load cases. The authors, therefore, propose a quadratic mapping for the displacement transformation
to capture the effect of geometric non-linearity in their so called quadratic manifold approach. Vibration modes are
utilized as coefficients for the linear term while modal derivatives are used as coefficients for the quadratic term in the
nonlinear mapping. A generalization of the quadratic manifold approach has been presented by Rutzmoser et al. [27]
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Figure 1: Mapping from the displacement space to the force space [28]

which enables utilization of arbitrary ROM bases. The basis is a derivative of the quadratic mapping used, therefore,
resulting in displacement dependent mass, damping and stiffness tensors. The quadratic manifold approach shows that
the use of quadratic mapping eliminates the shortcomings of using modal derivatives in the ROM basis when a linear
mapping is used for displacement, with minimal loss in accuracy. The basis used in this method is a first derivative of
the nonlinear displacement mapping and therefore, results in a configuration dependent mass and damping in the ROM.

In this paper a momentum subspace method is proposed to predict the dynamic response of geometrically nonlinear
structures which is an extension of the Koiter-Newton approach [28, 29]. A nonlinear mapping of the displacement
space is assumed with expansion in a Taylor series up to second order. The momentum, however, is assumed to be a
linear combination of basis vectors, essentially used to define inertial force as a static component based on D’Alembert’s
principle. The use of displacements and momenta makes it convenient to employ the Hamiltonian formulation to
describe the dynamics of the system. The method works in tandem with a FE formulation procedure which computes
the higher order stiffness tensors for a high fidelity FE model. In the present case, up to cubic nonlinearity has been
considered in the nonlinear restoring force function, therefore the method is compatible with FEM tools capable of
computing quadratic and cubic stiffness tensors. The FEM formulation used in this study has been further elaborated in
the subsequent sections. The ROM basis is presently derived only using linear vibration modes, however, the method
offers the possibility to use any generic ROM basis.

2. Theory

2.1. Review of the Koiter-Newton Approach
The momentum sub-space method, as developed in this work, is an extension of the static reduction method, known as
the Koiter-Newton approach given in [28]. The aim of this method was to find a new analytical approach to nonlinear
structural problems in the presence of buckling. The method uses the asymptotic technique to replace the governing
equations of a structure by a reduced system of equations.
Liang [28] states that the discretized equilibrium equations of a structure can be reduced to a set of nonlinear equations
of the form:

f(q) = λfex, (1)

where f is the internal force vector, fex is the external load vector, λ is the load parameter and q is the vector containing
the degrees of freedom. As shown in Figure 1, Equation 1 defines a curve in the displacement space, referred to
as the equilibrium path. This equation can be interpreted as a mapping from the displacement space to the force
space, and the equilibrium path can be thought of as the pre-image of the line f = λ−fex in the displacement space.
In the Koiter-Newton approach a reduced-order model is constructed to approximate the equilibrium equations in
the neighbourhood of a known equilibrium state which is referred to as (q0,λ0). The vector q0 is the response of the
structure at this equilibrium state, which is referred to as the nominal configuration and λ0 is the load parameter. q is
the unknown displacement vector near this nominal configuration resulting in:

q = q0 ◦ u, (2)

in which u describes the current configuration with respect to the nominal configuration and ◦ is the composition
operator. The composition of displacements in u and q0 is an addition, however for beams and shells where finite
rotations are taken into account, the composition operations depends on the parametrisation of rotations [30, 28].
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The Koiter-Newton method is applicable to buckling sensitive structures. When buckling occurs, multiple secondary
equilibrium branches that intersect with the primary path at buckling exist. Specific perturbation loads are selected that
excite these secondary branches. This is achieved by a linear subspace of the force, containing the loading line. The
subspace is defined as the span of predefined force vectors. This implies that it can be parametrised by the coordinates
φ along the predefined force directions. The force subspace f is given as:

f = Fφ, (3)

in which F is the load matrix containing the sub-load vectors and the coordinates φ represent the amplitudes of these
sub-loads. The pre-image of the force subspace in the displacement space is in general a nonlinear surface, as shown in
Figure 1. It is a complex task to construct the pre-image of the force subspace. For this reason, an approximation of the
nonlinear surface is found using a Taylor series expansion of the third order with respect to u as:

L(u) + Q(u,u) + C(u,u,u) = Fφ, (4)

in which the symbols L, Q and C are used to represent the linear, quadratic and cubic forms in the expansion. L, Q
and C are their corresponding tensors, representing stiffness terms. For example, the quadratic operator Q(u,u) can be
read as Qαβγuβuγ, where uβ and uγ are components of the vector u. Qαβγ is the entry in the three-dimensional tensor Q.
Note that the Einstein summation convention is applied. An approximate solution for Equation 4 is found in terms of a
Taylor series expansion. This expansion defines the displacement subspace. This equilibrium surface is parametrised in
terms of the generalised displacements vector ξ. The expansion is performed up to third order and is given as:

u = uαξα + uαβξαξβ + uαβγξαξβξγ, (5)

in which uα, uαβ, uαβγ are the first, second and third order displacement fields, respectively.
The equilibrium surface may be parametrised with an infinite number of choices for ξ. This parametrisation is fixed by
choosing the vector ξ to be work conjugate to the load amplitudes φ, as given by:

(Fφ)t δu ≡ φtδξ. (6)

To make this equation hold for any value of ξ, the coefficients of the derivatives must satisfy the constraint equations,
or orthogonality constraints given as: 

ft
αuβ = δαβ

ft
αuβγ = 0

ft
αuβγδ = 0,

(7a)
(7b)
(7c)

with δαβ being the Kronecker delta. In a similar fashion as the displacement expansion from Equation 5, the load
amplitudes φ are expanded as a function of ξ. This represents the reduced-order model:

φ = L̄(ξ) + Q̄(ξ, ξ) + C̄(ξ, ξ, ξ), (8)

in which L̄, Q̄ and C̄ are linear, quadratic and cubic forms. L̄, Q̄ and C̄ are multiple dimensional tensors. To obtain the
first and second order displacement fields, two sets of linear finite element systems need to be solved:[

Kt −F
−Ft 0

] {
uα
L̄α

}
=

{
0
−Eα

}
(9)

[
Kt −F
−Ft 0

] {
uαβ
Q̄αβ

}
=

{
−Q(uα,uβ)

0

}
, (10)

where Kt is the tangential stiffness matrix of the full FE model and Eα is a column vector from the identity matrix of
the same size as the number of basis vectors chosen. The side product of solving these systems yields the tensors L̄ and
Q̄. The components of C̄ are obtained from:

C̄αβγδ = C(uα,uβ,uγ,uδ) −
2
3

[ut
αβL(uδγ) + ut

βγL(uδα) + ut
γαL(uδβ)]. (11)

The subsequent section shows the theoretical formulation of the ROM through adaptation of the Koiter-Newton method.
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2.2. The Momentum Subspace Method
In this section a reduced-order model for geometrically nonlinear vibrations is introduced. The inspiration for extending
the reduction method from statics to dynamics stems from D’Alembert’s principle, as expressed by:

F + (−ṗ) = kq. (12)

Equation 12 states that the addition of the external force F and the inertia term − ṗ, where ṗ is the time derivative of the
momentum, are equal to a static term, in which k is the stiffness and q is the displacement. This can be interpreted as
that when the motions of the system are known, the static forces are known. Thus if the dynamics are known, they can
be reduced to statics. To this extent an assumption is made for the momentum of the system:

p = M [Φ1 Φ2 Φ3 . . .Φn]π, (13)

where, in the present work, Φn are the selected eigenmodes for the formulation of the ROM. However, it is notable that
a basis matrix derived from any other method can also be used. M is the mass matrix, and π represents the amplitude,
to be determined later. In this work the number of modes (or other basis vectors) used in the basis is referred to as
how many degrees of freedom the reduced-order model has, e.g. if one mode is used in the basis it is referred to as a
single degree of freedom model. The size of the ROM is determined by the linear transformation in momentum as
described by Equation 14. The assumption implies that the momentum of the system is assumed to be defined by a
linear subspace. Since, p is defined by a linear subspace, ṗ is in the same subspace. The assumption for the momentum
essentially states that the forces are in this same subspace. The more general case for the momentum subspace is
written as:

p = Pπ, (14)

where P is the basis matrix, which is formed from the sub-momentum vectors Pδ. The coordinates π, represent the
amplitudes of the sub-momentum vectors.
The overall shape of the motion of the system is thus described by a momentum subspace. The displacement is
expanded in a Taylor series of second order as given by Equation 15, which follows the procedure in [23] and [28].

q = q0 + uαξα + uαβξαξβ. (15)

For plane structures in dynamics the first order displacement field uα is associated with the out-of-plane motion,
whereas the second order displacement field uαβ is associated with the in-plane motion. q0 is the displacement of the
system in the nominal configuration about which one can expand the generic displacement field at any load amplitude.
In this work the nominal configuration is assumed to be the undeformed configuration, implying q0 is zero.
To construct a reduced system, i.e. a system with less degrees of freedom, the number of entries of the amplitude
vectors π and ξ should be less than the number of degrees of freedom in the original system.
The transformation of coordinates is written as:

u = u(ξ) = uαξα + uαβξαξβ + uαβγξαξβξγ (16a)
p = p(π) = Pπ = Pδπδ. (16b)

The amplitude vectors ξ and π represent the position and momentum of the reduced-order model and are the equivalent
of u and p in the original model. Note that the displacement in Equation 16a is expanded in a Taylor series of third
order, contrary to Equation 15, which was of second order. The third order expansion merely has a function to later
derive the constraint equations and the four-dimensional tensor C̄ for the reduced-order model. The description of the
dynamics of the system by the position and momentum makes it convenient to employ the Hamiltonian formulation.
However, the transformed system, described by Equation 16, is only a Hamiltonian system if the transformation is
canonical. To prove this, Hamilton’s principle in the Hamiltonian setting is derived first. Hamilton’s equations can be
written in a similar form as D’Alembert’s principle, although instead of one equation there are now two:

pi − miu̇i = 0 (17a)
Fi − ṗi = 0. (17b)
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These equations are equivalent to Hamilton’s equations of motion. The virtual work is computed by multiplying the
first canonical equation of Hamilton by δpi and the second one by δui:

u̇i · δpi =
∂H
∂pi
· δpi (18a)

ṗi · δui = −
∂H
∂qi
· δui, (18b)

where H represents the Hamiltonian. The second of these equations is subtracted from the first one:

u̇i · δpi − ṗi · δui =
∂H
∂pi
· δpi +

∂H
∂ui
· δui. (19)

The right hand side of Equation 19 represents the variation of the Hamiltonian δH. Integrating between two time states
t1 and t2, one obtains Hamilton’s principle in the Hamiltonian setting:∫ t2

t1
(δH + ṗi · δui − u̇i · δpi) dt = 0. (20)

A canonical transformation ensures that the form of the term ṗ · δu − u̇ · δp is conserved. A general transformation is
performed given by:

u = u(ξ,π) (21a)
p = p(ξ,π). (21b)

Substituting this transformation in the term whose form is to be conserved, the conditions for a canonical transformation
are derived:

ṗtδu − u̇tδp =[(
∂p
∂ξ

)t

·

(
∂u
∂ξ

)
−

(
∂u
∂ξ

)t

·

(
∂p
∂ξ

)]
· ξ̇

t
δξ+[(

∂p
∂π

)t

·

(
∂u
∂π

)
−

(
∂u
∂π

)t

·

(
∂p
∂π

)]
· π̇tδπ+[(

∂u
∂ξ

)t

·

(
∂p
∂π

)
−

(
∂p
∂ξ

)t

·

(
∂u
∂π

)]
·
(
π̇tδξ − ξ̇

t
δπ

)
.

(22)

For the transformation to be canonical, the terms between square brackets should be:[(
∂p
∂ξ

)t

·

(
∂u
∂ξ

)
−

(
∂u
∂ξ

)t

·

(
∂p
∂ξ

)]
= 0 (23a)[(

∂p
∂π

)t

·

(
∂u
∂π

)
−

(
∂u
∂π

)t

·

(
∂p
∂π

)]
= 0 (23b)[(

∂u
∂ξ

)t

·

(
∂p
∂π

)
−

(
∂p
∂ξ

)t

·

(
∂u
∂π

)]
= I. (23c)

The derivation of the above conditions is found in Appendix A. These conditions can be compared to any literature on
classical mechanics such as [31] and [32], in which the same conditions are presented. If these conditions hold, then
one obtains:

ṗtδu − u̇tδp = π̇tδξ − ξ̇
t
δπ, (24)

from which it is seen that the form of the term in the original system is conserved. The resulting transformed system
is thus a Hamiltonian system, implying that Hamilton’s equations of motion are applicable. Taking into account the

6



particular transformation performed in this work, as given by Equation 16, the first two conditions of Equation 23 are
satisfied, whereas the third condition reduces to:(

∂u
∂ξa

)t

·

(
∂p
∂πb

)
= δab. (25)

The condition of Equation 25 is expanded by substituting the expression for the displacement and momentum, from
Equation 16, and performing the differentiation, which yields:(

ua + 2uaβξβ + 3uaβγξβξγ
)t
· Pb = δab. (26)

This equation is satisfied if the following three constraint equations hold:
Pt
δuα = δαδ

Pt
δuαβ = 0

Pt
δuαβγ = 0.

(27a)
(27b)
(27c)

At this point the analogy to the reduction method for statics, as discussed in [28], is made. The constraints given by
Equation 27 are of the same form as the constraint equations for the reduction method for statics, given by Equation 7.
The only difference between the two is that the sub-load vectors fα are replaced with the sub-momentum vectors Pδ.
This convenient analogy reduces the dynamic case to the static case, which implies that the reduced-order model as
developed by Liang [28] is directly applicable to dynamics.
To formulate the equations of motion of the system, use is made of the Hamiltonian. For natural Hamiltonian systems
the Hamiltonian is computed by the addition of the kinetic energy T and the potential energy V:

H(u,p) = T (u,p) + V(u). (28)

In this work a constant mass matrix is assumed and the kinetic energy merely depends on the momentum. The
Hamiltonian is calculated by:

H(u,p) =
1
2

ptM−1p + V(u). (29)

For the reduced-order model, the Hamiltonian (or reduced Hamiltonian) is a function of ξ and π. For the computation
of the kinetic energy, use is made of the momentum subspace given by Equation 13. The potential energy is computed
by integrating Equation 8 for the load amplitudes. The kinetic and potential energy are given by:

T̄ =
1
2
πt

(
PtM−1P

)
π (30a)

V̄ =
1
2

L̄αβξαξβ +
1
3

Q̄αβγξαξβξγ +
1
4

C̄αβγδξαξβξγξδ. (30b)

If the basis matrix is taken to be M ·Φ, with Φ being the modal matrix, one can simplify the reduced Hamiltonian and
compute a reduced mass matrix. Substituting this expression for P, the kinetic energy simplifies to:

T̄ =
1
2
πt

(
ΦtMΦ

)
π. (31)

The reduced mass matrix is identified to be M̄ =
(
ΦtMΦ

)−1.
Finally, the Hamiltonian of the reduced-order model becomes:

H̄ = T̄ + V̄ . (32)

This reduced Hamiltonian still represents a mechanical system, since the transformation of the original position and
momentum coordinates u and p to the new set of coordinates ξ and π, is canonical.
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Hamilton’s canonical equations of motion are applied to obtain 2n̄ coupled differential equations, of first order for the
position and momentum coordinates. It is assumed that a modal basis is used and the basis matrix is P = MΦ. The 2n̄
first order ordinary differential equations can be written as:

ξ̇ =
∂H̄
∂π

= M̄−1π (33a)

π̇ = −
∂H̄
∂ξ

= −
{
L̄(ξ) + Q̄(ξ, ξ) + C̄(ξ, ξ, ξ)

}
, (33b)

which holds for free vibrations. To account for time-varying loads a forcing term is added. The reduced force is
computed through:

φ̄(t) = ut
αfex. (34)

To simulate damping, we make use of Rayleigh damping. For the reduced-order model a reduced damping matrix C̄ is
defined as:

C̄ = M̄
(
PtM−1CM−1P

)
M̄. (35)

The canonical equations of motion are slightly modified to incorporate Rayleigh damping. Damping is non-conservative
and thus the Hamiltonian is not conserved. A Hamiltonian with damping is therefore called a perturbed Hamiltonian as
pointed out in [33]. The canonical equations of motion for forced vibrations of a damped system are given by:

ξ̇ =
∂H̄
∂π

= M̄−1π (36a)

π̇ = −
∂H̄
∂ξ

= −
{
L̄(ξ) + Q̄(ξ, ξ) + C̄(ξ, ξ, ξ)

}
− C̄M̄−1π + φ̄(t). (36b)

After integrating the equations of motion, the response of the original model, in terms of u and p, is obtained by
applying Equation 14 and Equation 15. These equations link the response of the reduced-order model to the response
of the full finite element model. A similar form of the equation of motion with cubic nonlinearity in stiffness has also
been used in [34], albeit in the Euler-Lagrange form.

The ROM formulation requires computations of tangent stiffness matrix for initial configuration of the structure,
and higher order stiffness tensors for the high fidelity FE model. These properties are inherent to the structural FE
model when coupled with an FE tool capable of computing the higher order stiffness tensors. Furthermore, additional
computations for the basis are required. In the case of a modal basis, this can be obtained by a simple eigenvalue
analysis since only a linear transformation is used in the momentum space. The primary cost is incurred in computing
the ROM stiffness tensors L̄, Q̄ and C̄ . This is, to some extent, affected by the fidelity of the full-scale FE model and
the complexity of the model since this determines the size of the coefficient matrices in Equation 9 and Equation 10.For
example, by increasing the fidelity of the initial full-scale FE model from 2040 elements to 5040 elements, the ROM
formulation time increases by a factor of 2.4. Although, the formulation times are still in fractions of a minute, it
can be expected to increase further with the complexity of the model. The ROM formulation is based on the initial
configuration of the structure and is therefore, computed only once in the formulation procedure.

2.3. Finite Element Implementation

For the finite element implementation we use the triangular three-node flat shell element. It is a combination of a
membrane element and a bending element, as shown in Figure 2. The membrane part contains the in-plane degrees of
freedom, and the bending part the out-of-plane degrees of freedom. In total it has six degrees of freedom per node as
given by:

qi =
[
ui vi wi θxi θyi θzi

]
. (37)

where i = 1, 2, 3, denotes the node numbers. The total degrees of freedom are assembled in a vector:

q =
[
q1 q2 q3

]t
. (38)
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Figure 2: Three-node flat shell element, membrane (left) and bending (right) degrees of freedom [23]
,

2.3.1. Strain definitions
The curvatures are linear with respect to the displacement. For this reason the in-plane strain ε will only be considered.
The in-plane strain is split into two parts, which is a linear and a nonlinear part. More specifically, it is expressed as:

ε = εl + εnl =

(
Bl +

1
2

Bnl(q)
)

q = Blq +
1
2

qtSq. (39)

In this paper the following expression for the total B matrix is adopted:

B(q) = Bl + Bnl(q). (40)

The expression for Bl is found in Appendix B.

2.3.2. Linear stiffness matrix
The linear strain-displacement matrix Bl allows one to directly compute the membrane part of the stiffness matrix
through:

Kin−plane = Kbin−plane + Khin−plane

= ABt
lAmBl + Khin−plane .

(41)

The stiffness matrix is composed of a so-called basic stiffness matrix, and a higher order stiffness matrix. The basic
stiffness matrix ensures convergence, whereas the higher order stiffness matrix is for stability. Explicit expressions for
the computation of the latter one is found in [35]. The same holds for the bending part of the stiffness matrix of which
the derivation is found in [36].

2.3.3. Material matrix
Am and Db are the material matrices of an isotropic material for membrane and bending, respectively.

Am =
Eh

1 − ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (42a)

Db =
Eh3

12(1 − ν2)

1 ν 0
ν 1 0
0 0 1−ν

2

 (42b)

2.3.4. Nonlinear in-plane strain and stress resultants
Expressions for εnl, Bnl(q) and S are given by Equation 43 to Equation 45 and are computed by using the matrices Kxx,
Kyy and Kxy. These constant matrices are obtained from [23] and expressions for them can be found in Appendix B.

εnl(q,q) =
1
2

q
tKxxq

qtKyyq
qtKxyq

 (43)

9



Bnl(q) =
∂εnl

∂q
=

q
tKxx

qtKyy

qtKxy

 (44)

S =
∂2εnl

∂q2 =

S(1, :, :) = Kxx

S(2, :, :) = Kyy

S(3, :, :) = Kxy

 (45)

S is a 3×3×3 tensor, with S(a, :, :) indicating the a-th two-dimensional matrix in S. The in-plane stress resultant is
obtained by multiplying the strain by the material matrix. This is split into a linear and nonlinear part:

N = Am

(
Bl +

1
2

Bnl(q)
)

q

= AmBlq +
1
2

AmBnl(q)q

= Nl + Nnl.

(46)

2.3.5. In-plane strain energy and the reduced-order model
Using the index notation, the in-plane strain energy is computed as:

Uin−plane =
1
2
AAmαβ

(εlα + εnlα )(εlβ + εnlβ ). (47)

The subscripts α, β = 1, 2, 3 refer to the components in the tensor andA is the area of the shell element. The nonlinear
part of the strain energy is defined by:

U =
1
2
AAmαβ

(2εlαεnlβ + εnlαεnlβ ) (48)

The internal force vector fi and the tangential stiffness matrix Li j are found by differentiating the in-plane strain energy
up to first and second order, respectively:

fi =
∂U
∂qi

=
AAmαβ

2

(
2
∂εlα

∂qi
εnlβ +

∂εnlβ

∂qi
εnlα +

∂εnlα

∂qi
εnlβ

+ 2
∂εnlβ

∂qi
εlα

) (49)

Li j =
∂2U
∂qi∂q j

= AAmαβ

(∂εlα

∂qi

∂εnlβ

∂q j
+
∂εlα

∂q j

∂εnlβ

∂qi
+

∂2εnlα

∂qi∂q j
εnlβ +

∂2εnlβ

∂qi∂q j
εlα +

∂εnlα

∂qi

∂εnlβ

∂q j

)
,

(50)

where the indices are i, j = 1, . . . , 18 and the Einstein summation convention is applied over the indices α and β. With
the aid of the expression from the previous sections, a more compact form is obtained:

f = A
(
Bt

lNnl + Bt
nlN

)
(51)

L = A
(
Bt

lAmBnl + Bt
nlAmBl + Bt

nlAmBnl + NxKxx + NyKyy + NxyKxy
)
, (52)

where L is equal to the tangential stiffness matrix Kt. Nx, Ny and Nxy refer to the three components of the stress resultant
vector N. Q and C are obtained by differentiating the in-plane strain energy up to third and fourth order, respectively.
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However, a simpler way is to directly obtain Q(uα,uβ), used in Equation 10, by multiplying Equation 51 with ut
α and

uβ and then to differentiate with respect to the degrees of freedom. To this extent two compact notations are introduced.
The stress resultant related to the displacement uα, and the stress resultant depending on the first order displacement
fields uα and uβ are defined by:

(53)

N(uα) = AmB(uα)uα
N(uα,uβ) = AmBnl(uα)uβ.

The expression of Q(uα,uβ) for the shell element would then be:

Q(uα,uβ) =
A

2
(
Bt

nl(uβ)N(uα) + Bt
nl(uα)N(uβ) + BtN(uα,uβ)

)
. (54)

The term C(uα,uβ,uγ,uδ) in Equation 11 is computed by multiplying Equation 54 by the first order displacement
field ut

γ, then differentiating it with respect to the degrees of freedom, and then multiplying it by uδ. Furthermore, the
following compact notation is used:

m(uα,uβ) = Bnl(uα)uβ (55)

C(uα,uβ,uγ,uδ) =
A

6
[
N(uα,uδ)m(uβ,uγ) + N(uβ,uδ)m(uα,uγ) + N(uγ,uδ)m(uα,uβ)

]
. (56)

Expressions for L (Equation 52) and Q(uα,uβ) (Equation 54) have been obtained. They are used in the linear systems
of equations, Equation 9 and Equation 10, to obtain the first and second order displacement fields as well as L̄ and Q̄ in
the reduced-order model. C(uα,uβ,uγ,uδ) is used to obtain the C̄.

3. Solution Methodology

The reduced-order model derived in the subsection 2.2 has been solved using the pseudo-arclength continuation
algorithm in AUTO [37]. The originally derived system of equations was modified to make it more suitable for the
continuation scheme. The system was transformed to modal coordinates using mass - orthonormalized eigenvectors
obtained from linear eigenvalue analysis. This converts the mass matrix to an identity matrix and eliminates one
parameter from the computations. Scale factors were introduced to make the system variables displacement, time and
force, non-dimensional.

ξ∗ = ξ/α, t∗ = t/β, φ̄
∗

= φ̄/γ, (57)

where α, β and γ are the scale factors for displacement, time and force variables, respectively. The non-dimensional
variables are substituted back into the governing equations and the scale factors are computed by equating coefficients
of terms in the Lagrangian form of the equation of motion.

ξ̈
∗

+ βC̄ξ̇∗ + β2L̄(ξ∗) + αβ2Q̄(ξ∗, ξ∗) + α2β2C̄(ξ∗, ξ∗, ξ∗) = (β2γ/α)φ̄∗ sin(ωt∗β). (58)

The scale factors for computing the ith nonlinear mode are derived from the corresponding diagonal elements of stiffness
tensors.

αi = Max(
√

Lii/Ciiii, Lii/Qiii),

βi =
√

1/Lii = 1/ωni,

γi = Liiαi.

The scale factors are used to compute equivalent stiffness tensors and damping matrix using the terms β2L̄, αβ2Q̄,
α2β2C̄ and βC̄ from the Equation 58. The governing equations are then formulated in terms of the non- dimensionalized
variables and equivalent tensors. The equation set is then solved using the pseudo- arclength continuation which
produces displacement response in the normalized and scaled system of equations. To obtain the actual nonlinear
response of the structure, the scale factors are re-applied. The peak amplitudes are extracted for each frequency step of
the analysis which is used to predict the nonlinear modal frequency.
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4. Experiments

An aluminium stiffened plate was manufactured for the experimental study. The plate and the stiffener were manufac-
tured integrally from an aluminium block using CNC milling process to avoid the use of bonding or fastening methods.
The dimensions of the plate are: length l = 0.5 m, width w = 0.4 m, thickness t = 0.002 m. The dimensions of the
stiffener are: length ls = 0.4 m, height hs = 0.008 m, thickness ts = 0.005 m. The material properties are: Modulus
of elasticity E = 70e9 Pa, density = 2660 kg /m3, Poisson’s ratio ν = 0.33. The linear vibration measurements were
conducted using a Polytec Scanning Vibrometer (PSV) setup. The objective of these measurements was to get an
initial prediction of the modal damping ratios to be used in the numerical analysis. The measurement of linear modal
frequency was further used to validate the FE model developed for the numerical analysis. Free boundary conditions
were chosen for the analysis of the stiffened plate. To simulate the free boundary condition in the experiments, the
stiffened plate was suspended at two points using bungee cords from a supporting frame. The flexibility of the cords
ensure a close approximation of the free boundary condition. The test setup is depicted in the Figure 3a.

(a) Experimental setup for vibration measurements (b) Stinger assembly (c) Grid defining the measurement points

Figure 3: Components of the experimental setup

The plate was excited using the B&K4809 modal exciter which was connected to the structure using a flexible stinger
assembly shown in Figure 3b. To obtain a good prediction of the linear vibration mode shape, ninety-nine measurement
points were chosen across the plate using the PSV software, shown in Figure 3c. The measurements for frequencies up
to 200 Hz were obtained by applying a random vibration signal to the structure.

The nonlinear vibration measurements were conducted using a combination of the PSV and Mueller BBM PAK MK-II
setup. In this setup, the transient vibration data is measured using the PSV laser and the measured data is transferred to
the PAK MK-II system for obtaining the frequency vs peak amplitude responses. The measurement was conducted only
at the point of maximum deflection which is the corner point of the plate for the first mode. To obtain the frequency vs
peak amplitude response curves, a harmonic sweep is applied at a constant load amplitude. The maximum measured
amplitude for each frequency step in the sweep provides a single point along the frequency-amplitude response.

5. Results

5.1. Comparison with numerical results

This first example is focused on the performance of the ROM in the time domain in comparison to the commercial
finite element package Abaqus. For this a rectangular plate is used with geometrical dimensions: length = 0.3 m, width
= 0.2 m and thickness = 0.005 m. The material properties are: a modulus of elasticity of E = 71.7e9 Pa, density ρ =

2810 kg/m3 and Poisson’s ratio ν = 0.33. All edges of the plate are simply supported. A uniform pressure load of the
form p=λ sinωt is applied, where λ = 50 N/m2 and ω = 0.9ω1. A damping ratio of 0.036 for the first mode is used. The
frequencies of the modes to be used in the basis of the ROM are compared in Table 1. The response at the center of the
plate is of interest, therefore modes with an even number of half-waves are excluded and only the first five modes with
an odd number of half-waves are considered for building the ROM. The comparison between the ROM and Abaqus for
the displacement over time at the center of the plate is shown in Figure 4. It is observed that when two modes are used
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Mode
number

ROM
(Hz)

Abaqus
(Hz)

1 43.79 43.82
4 151.79 152.00
8 287.33 288.30
11 368.61 370.14
12 395.24 396.27

Table 1: Comparison of frequencies of the FE framework of the ROM and Abaqus

in the basis of the ROM excellent agreement is found between Abaqus and the ROM. Figure 6a and Figure 6b show the
moments over time at the center of the plate in comparison to that of Abaqus. Similar as for the stress resultants, five
modes are used in the basis of the ROM to obtain agreement.
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Figure 4: Nonlinear displacement response at the center of the rectangular plate

For further comparison, the complexity of the structural model was increased by using the stiffened plate model,
previously described. To test the FE model of the stiffened plate, a nonlinear vibration analysis with sinusoidal loading
of 5 N at the center of the plate has been conducted. A modal damping ratio of 0.0407 is used in the analysis while
the excitation frequency is 77.98 Hz. The comparison of results from the ROM and Abaqus are found to be in good
agreement as shown in Figure 7. Noteworthy is that the ROM has been found to be at least thirty times faster than
Abaqus. Initial validation of the nonlinear frequency response curves was obtained by comparison with the literature.
The analysis was performed on a rectangular plate with geometrical dimensions: length = 0.3 m , width = 0.3 m,
thickness = 0.001 m. The material properties are: Modulus of elasticity E = 70e9 Pa, density ρ = 2778 kg / m3 and
Poisson’s ratio ν = 0.3. A harmonic force of F = 1.74 N was applied with a modal damping ratio ζ = 0.065 for the first
mode. Using the results of the numerical analysis, a plot of normalized frequency vs peak amplitude was generated
for comparison. The results were found to be in excellent agreement with the reference results from [12] and [38].
The comparison is depicted in Figure 8. A convergence study showed that accurate results were obtainable using a
one degree of freedom ROM. The second validation was obtained by comparing the numerical nonlinear frequency
response of the stiffened plate with the experimental results obtained from the method described in Section 4. The FE
model developed using triangular shell elements, as described in Section 2, is depicted in the Figure 9.

5.2. Comparison with experimental results

The modal frequency predictions from linear vibration measurement were compared with the FE modal analysis using
the developed numerical model. The error margins were found to be within an acceptable range. The comparison
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(a) Nonlinear resultant, Nxx at the center of the rectangular plate
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(b) Nonlinear resultant, Nyy at the center of the rectangular plate

Figure 5: Nonlinear resultant forces at the center of the rectangular plate

0 0.02 0.04 0.06 0.08 0.1

Time [s]

-0.1

-0.05

0

0.05

0.1

0.15

M
x
x
 [

N
m

]

ROM  = [1 4 8 11 12]

Abaqus

(a) Nonlinear moment, Mxx at the center of the rectangular plate
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(b) Nonlinear moment, Myy at the center of the rectangular plate

Figure 6: Nonlinear resultant moments at the center of the rectangular plate

along with the computed modal damping ratios is shown in Table 2. The next set of comparisons were made with
the results of the nonlinear vibration measurements. Five load cases were chosen for the measurements: 0.2 N, 0.5
N, 0.8 N, 1.0 N, 1.2 N. The harmonic frequency was swept between 32 Hz and 40 Hz i.e. in the near vicinity of the
first natural frequency. A distinctive hardening nonlinearity is observable in the frequency vs amplitude response
curves obtained experimentally, normalized by the first natural frequency and thickness of the plate, respectively. The
nonlinear response for all load cases is depicted in Figure 10. The damping ratio obtained experimentally for the first
mode was used as an initial assumption in numerical computations of the nonlinear frequency response curves. The
comparisons of the numerical analysis with the experimental results are depicted in Figure 11 - Figure 15.

The numerical results are found to be in good agreement with the experimental results with the use of only a single
degree of freedom in the ROM. The analyses were repeated by considering higher number of modes in the ROM,
however, the changes seen in the response were negligibly small, as depicted in Figure 16 and Figure 17. The frequency
ratios computed by increasing the ROM size in steps of one degree of freedom up to five are: 1.0695, 1.0694, 1.0694,
1.0687, 1.0686. Therefore, a change of only 0.08% is seen by increasing the ROM size to five degree of freedom
model. It is notable that the FE model was created with the assumption that the plate is perfectly flat and free of defects.
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Figure 7: Comparison of ROM with Abaqus for mid-node deflection of
stiffened plate in nonlinear vibration
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Mode
num-
ber

Exp.
modes
(Hz)

FEM
modes
(Hz)

Error
(%)

Damp. ratio

1 35.39 36.78 3.9 0.0012
2 42.97 42.72 -0.58 0.0011
3 77.8 77.59 -0.27 0.00062
4 97.57 94.84 -2.79 0.00068
5 - 97.97 - -
6 124.7 123.62 -0.86 0.00087
7 161.7 162.4 0.43 0.00067

Table 2: Comparison of modal frequencies:Experimental and numerical

Figure 9: FE model of the stiffened plate

However, presence of any manufacturing imperfection can cause an effect on the nonlinear response of a structure [39].
Therefore, minor variations in results can be possibly attributed to non-observable imperfections in the test structure.
Another observation from the numerical computations was the requirement of a variable damping ratio with respect
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nonlinear frequency response curves of the stiffened plate when
f =0.2N and is applied at x=0.2m, y=0.16m
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Figure 12: Comparison between experimental and numerical nonlinear
frequency response curves of the stiffened plate when f =0.5N and is
applied at x=0.2m, y=0.16m
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Figure 13: Comparison between experimental and numerical
nonlinear frequency response curves of the stiffened plate when
f =0.8N and is applied at x=0.2m, y=0.16m

to increasing vibration amplitude, which indicates a requirement of nonlinear damping model [40, 41]. The modal
damping ratio of the first mode predicted from linear vibration experiments was insufficient to correctly predict the
nonlinear numerical response at higher vibration amplitudes. This behaviour, however, is in agreement with the results
obtained in [42] and [43]. The variation of damping ratio with the applied load amplitude in measurements is depicted
in Figure 18.

6. Conclusions

A numerical formulation for model reduction in structural dynamics has been proposed in the Hamiltonian framework
with the possibility of utilizing any generic ROM basis. It has been shown that the transformation to a reduced system
in the Hamiltonian form is canonical, therefore, conserving the properties of the system. An FE formulation has been
used to develop a test model compatible with the model reduction algorithm. The ROM is an extension of the reduction
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Figure 15: Comparison between experimental and numerical
nonlinear frequency response curves of the stiffened plate when
f =1.2N and is applied at x=0.2m, y=0.16m
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Figure 16: Comparison of frequency response curve at f=1.2N when the
number of degrees of freedom in the ROM are varied from 1 to 5
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Figure 17: Comparison of frequency response curve at f=1.2N
when the number of degrees of freedom in the ROM are varied
from 1 to 5 - enlarged view at the tip of the curve

method applicable to nonlinear static stability problems and has been generated using a momentum subspace as the
basis of transformation to the reduced system. A nonlinear mapping is assumed for the displacement variable to capture
the effect of geometric nonlinearity. A single step computational procedure is required for the ROM formulation since
the basis is purely dependent on the initial configuration of the structure. The ROM was initially tested by comparing
the transient response of a rectangular plate subjected to dynamic loads with the results from Abaqus. Displacements
and stress resultants have been computed for the plate and they have been found to be in excellent agreement with the
results from Abaqus. Furthermore, the computations using the ROM was found to be at least thirty times faster than
the full-scale FE model. The model reduction method has been tested further for a stiffened plate for which nonlinear
modes were computed. A pseudo-arc length continuation algorithm has been used to solve the governing differential
equations of the ROM for the stiffened plate. Frequency vs amplitude plots have been obtained for several load cases
of forced vibration. Nonlinear vibration experiments were conducted using Polytec Laser Doppler Vibrometer and
PAK MK-II systems to validate the ROM. The comparison of numerically computed peak nonlinear frequency in each
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Figure 18: Variation in damping ratio with force amplitude

frequency response curve to the experimental peaks show a good agreement with a maximum deviation of only 0.38 %.
Furthermore, accurate numerical results in comparison to the experimental data were achievable using only a single-
degree of freedom ROM. Further considerations include incorporation of nonlinear damping models and application of
the approach to large scale structural problems. Nevertheless, the formulation seems to show a good potential from our
preliminary validation studies.
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Appendix A. Derivation of conditions for a canonical transformation

This section contains the derivations for the conditions that ensure a canonical transformation. The derivation is
initially performed using index notation, after which the matrix notation is introduced. The following transformation is
adopted:

ui = ui(ξ,π) (A.1a)

pi = pi(ξ,π). (A.1b)

The derivatives u̇i and ṗi are computed:

u̇i =
∂ui

∂ξ j
ξ̇ j +

∂ui

∂π j
π̇ j (A.2a)

ṗi =
∂pi

∂ξl
ξ̇l +

∂pi

∂πl
π̇l, (A.2b)

from which one can write:

ṗi · δui − u̇i · δpi =(
∂pi

∂ξl
ξ̇l +

∂pi

∂πl
π̇l

)
·

(
∂ui

∂ξ j
δξ j +

∂ui

∂π j
δπ j

)
−(

∂ui

∂ξ j
ξ̇ j +

∂ui

∂π j
π̇ j

)
·

(
∂pi

∂ξl
δξl +

∂pi

∂πl
δπl

)
.

(A.3)

Upon expanding the brackets the following form is obtained:

ṗi · δui − u̇i · δpi =

∂pi

∂ξl
·
∂ui

∂ξ j
ξ̇l · δξ j +

∂pi

∂ξl
·
∂ui

∂π j
ξ̇l · δπ j+

∂pi

∂πl
·
∂ui

∂ξ j
π̇l · δξ j +

∂pi

∂πl
·
∂ui

∂π j
π̇l · δπ j−

∂ui

∂ξ j
·
∂pi

∂ξl
ξ̇ j · δξl −

∂ui

∂ξ j
·
∂pi

∂πl
ξ̇ j · δπl−

∂ui

∂π j
·
∂pi

∂ξl
π̇ j · δξl −

∂ui

∂π j
·
∂pi

∂πl
π̇ j · δπl

(A.4)

Terms are grouped:

ṗi · δui − u̇i · δpi =(
∂pi

∂ξl
·
∂ui

∂ξ j
−
∂ui

∂ξl
·
∂pi

∂ξ j

)
· ξ̇l · δξ j+(

∂pi

∂πl
·
∂ui

∂π j
−
∂ui

∂πl
·
∂pi

∂π j

)
· π̇l · δπ j+(

∂ui

∂ξl
·
∂pi

∂π j
−
∂pi

∂ξl
·
∂ui

∂π j

)
·
(
π̇ j · δξl − ξ̇l · δπ j

)
(A.5)

The following ordering for the matrix notation is introduced:

∂p
∂ξ

=



∂p1
∂ξ1

∂p1
∂ξ2

· · ·
∂p1
∂ξl

∂p2
∂ξ1

∂p2
∂ξ2

· · ·
∂p2
∂ξl

...
...

. . .
...

∂pi
∂ξ1

∂pi
∂ξ2

· · ·
∂pi
∂ξl


(A.6)
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One can write:

ṗi · δui − u̇i · δpi =(∂p
∂ξ

)
il
·

(
∂u
∂ξ

)
i j
−

(
∂u
∂ξ

)
il
·

(
∂p
∂ξ

)
i j

 · ξ̇l · δξ j+(∂p
∂π

)
il
·

(
∂u
∂π

)
i j
−

(
∂u
∂π

)
il
·

(
∂p
∂π

)
i j

 · π̇l · δπ j+(∂u
∂ξ

)
il
·

(
∂p
∂π

)
i j
−

(
∂p
∂ξ

)
il
·

(
∂u
∂π

)
i j


·
(
π̇ j · δξl − ξ̇l · δπ j

)
.

(A.7)

In matrix form this is written as:

ṗtδu − u̇tδp =[(
∂p
∂ξ

)t

·

(
∂u
∂ξ

)
−

(
∂u
∂ξ

)t

·

(
∂p
∂ξ

)]
· ξ̇

t
δξ+[(

∂p
∂π

)t

·

(
∂u
∂π

)
−

(
∂u
∂π

)t

·

(
∂p
∂π

)]
· π̇tδπ+[(

∂u
∂ξ

)t

·

(
∂p
∂π

)
−

(
∂p
∂ξ

)t

·

(
∂u
∂π

)]
·
(
π̇tδξ − ξ̇

t
δπ

)
.

(A.8)

This yields the final conditions that ensure a canonical transformation, in matrix form:[(
∂p
∂ξ

)t

·

(
∂u
∂ξ

)
−

(
∂u
∂ξ

)t

·

(
∂p
∂ξ

)]
= 0 (A.9a)[(

∂p
∂π

)t

·

(
∂u
∂π

)
−

(
∂u
∂π

)t

·

(
∂p
∂π

)]
= 0 (A.9b)[(

∂u
∂ξ

)t

·

(
∂p
∂π

)
−

(
∂p
∂ξ

)t

·

(
∂u
∂π

)]
= I. (A.9c)

Appendix B. Finite element expressions

Appendix B.1. Geometric coordinates and element area

For the three-node triangular flat shell element the nodal geometric coordinates (x1, y1), (x2, y2), and (x3, y3) are
defined as:

xi j = xi − x j (B.1)
yi j = yi − y j, (B.2)

with i, j = 1, 2, 3. Using these coordinates the element area is calculated from:

A =
y21x13 − x21y13

2
. (B.3)

Appendix B.2. Linear strain-displacement matrix

The linear strain-displacement matrix Bl, is obtained from [36], and is defined by:
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Bl =
1

2A

[
B1 B2 B3

]
, (B.4)

with

B1 =

y23 0 y23(y13−y21)
6

0 x23 [0]3×3
x32(x32−x12)

6
x32 y23

x31y13−x12y21
3

 (B.5)

B2 =

y31 0 y31(y21−y32)
6

0 x13 [0]3×3
x13(x12−x23)

6
x13 y31

x12y21−x23y32
3

 (B.6)

B3 =

y12 0 y12(y32−y13)
6

0 x21 [0]3×3
x21(x23−x31)

6
x21 y12

x23y32−x31y13
3

 . (B.7)

Appendix B.3. Isoparametric coordinates
The triangular coordinates system is introduced for which holds [23]:

ζ1 + ζ2 + ζ3 = 1. (B.8)

The relation between the Cartesian coordinate system and the isoparametric coordinates is given by:

1xy
 =

 1 1 1
x1 x2 x3
y1 y2 y3


ζ1
ζ2
ζ3

 . (B.9)

The relation between the partial derivatives in the Cartesian coordinate system and the isoparametric coordinate
system then becomes:

[ ∂
∂x
∂
∂y

]
=

[
Tx

Ty

] 
∂
∂ζ1
∂
∂ζ2
∂
∂ζ3

 , (B.10)

in which:

Tx =
1

2A

[
y23 y31 y12

]
(B.11)

Ty =
1

2A

[
x32 x13 x21

]
. (B.12)

Appendix B.4. Shape functions
The displacements components u, v and w are interpolated using linear shape functions given as [23]:

 u
v
w

 =

ζ1 0 0 ζ2 0 0
0 ζ1 0 [0]3×3 0 ζ2 0
0 0 ζ1 0 0 ζ2

ζ3 0 0
[0]3×3 0 ζ3 0 [0]3×3

0 0 ζ3

 q.

(B.13)
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Appendix B.5. Constant matrices

The constant matrices Kxx, ,Kyy and Kxy used to form the Bnl, are defined as [23]:

Kxx = Bt
wTt

xTxBw + Bt
vTt

xTxBv (B.14)

Kyy = Bt
wTt

yTyBw + Bt
uTt

yTyBu (B.15)

Kxy = Bt
w

(
Tt

xTy + Tt
yTx

)
Bw, (B.16)

with:

[
Bw

]
=

0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0


(B.17)

[
Bu

]
=

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0


(B.18)

[
Bv

]
=

0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

 .
(B.19)
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