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A B S T R A C T

During the early design process, simulations allow numeric assessment and 3D models allow visual inspection for
qualitative criteria. However, exploring different design alternatives based on both is challenging. To support the
design exploration of quantitative performance and geometry typology of various design alternatives during the
early design stages of indoor arenas, this paper proposed a novel design method of SOM-MLPNN by combing self-
organizing map (SOM) and multi-layer perceptron neural network (MLPNN), based on the inspiration of local
linear mapping based on self-organizing map (SOM-LLM). In SOM-LLM or SOM-MLPNN, the SOM can support
designers to explore the whole design space according to geometry typologies and provides reference/labelled
inputs for LLM/MLPNN to approximate multiple quantitative performance data for various design alternatives.
Both SOM-LLM and SOM-MLPNN are applied and compared in a design of indoor arena. Besides the develop-
ment of the method, original contributions include 1) proposing two operations (using a large size of SOM
network and using a small amount of input data to train the SOM network) to save the computational time and
increase the accuracy in data approximation and 2) proposing a series of data visualizations to interpret the
results and support design explorations in different ways.

1. Introduction

Conceptual design, which is the early stage of the whole archi-
tectural design process, aims to generate promising concepts which
satisfy a series of design requirements and can be developed in the
following design processes [1]. These design requirements include both
1) quantitative design requirements which can be measured and as-
sessed based on numeric data and are usually related to architectural
functionality and engineering and 2) qualitative design requirements
which are difficult to be measured and assessed based on data and are
usually related to humanity and social science (e.g. aesthetics, culture,
politics, etc.). So far, for qualitative design requirements, designers still
tend to evaluate the overall form/geometry of the designs according to
their knowledge and experience, based on visual inspection. To gen-
erate promising designs, conceptual design is usually performed in two
steps: divergent step in which various concepts are generated (B in
Fig. 1) and convergent step in which one or several concepts are se-
lected (D in Fig. 1) [2]. To progress across the two steps, the

information (related to both quantitative and qualitative design re-
quirements) of the numerous design alternatives should be rapidly
obtained and organized in an effective way, based on which designers
can perform a design exploration to investigate and assess design al-
ternatives (C in Fig. 1).

This process is especially important for the conceptual design of
indoor sports arenas. For such building, during the conceptual design
process, it is crucial to integrate the multi-functional space and long-
span roof structure and to formulate proper building geometry, since
these two elements are highly interrelated and determine the overall
form of the building [3]. This process involves complex and challenging
decision-making, which demands adequate and effectively-organized
information of various design alternatives for designers to perform
design exploration. The information includes multiple kinds of perfor-
mance data related to quantitative design requirements (e.g. the re-
quirements on spectators' views, acoustics, structural performance, etc.)
as well as the overall form/geometries for visual inspection based on
which designers can assess the designs alternatives according to
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qualitative design requirements (e.g. aesthetics). Moreover, the nu-
meric and the visual information should be organized and visualized
effectively, since it is difficult for human designers to deal with mass of
information. Fig. 1 illustrates a process of architectural conceptual
design for indoor arenas with an emphasis on the integration of the
multi-functionality and long-span roof structure.

In this light, an efficient design method is needed to satisfy the
aforementioned demands, therefore, to support the design exploration
of indoor arenas, which is also the motivation of this paper. Nowadays,
several computational design methods have been used to support de-
sign exploration of architectural conceptual design, including multi-
objective optimization (MOO) [3–12], surrogate model based on su-
pervised learning [13–16], and unsupervised clustering based on self-
organizing map (SOM) [17–19]. Fig. 2 demonstrates the overall work-
flows of these methods. However, there are still limitations for these
methods in satisfying the aforementioned demands and supporting the
conceptual design of indoor arena with emphasis on the integration of
multi-functional space and long-span roof structure.

In these methods, a parametric model should be firstly formulated
based on the basic spatial composition of an indoor arena, in which
various elements of the building are associated and controlled by

parameters. By changing the values of the parameters (design inputs),
various designs can be generated to compose a design space. Specific
performance data (related to quantitative design requirements) of the
designs can be obtained by specific building performance simulations.
However, since the simulations are usually time-consuming, it is un-
practical to use them to obtain the performance data of numerous de-
signs. Based on parametric model and simulations, these methods
support design explorations in different ways:

• MOOs iteratively search for ‘well-performing’ designs within the
design space according to specific criteria by using a certain heur-
istic algorithm (e.g. genetic algorithm). However, a standard MOO
only provides the ‘well-performing’ designs to designers. Besides, in
general, MOOs can efficiently deal with the problems in which the
design objectives are not more than three, but when the objectives
are more than three, it is difficult to find optimal solutions [20].

• Surrogate models based on supervised learning can learn the re-
lationships between the design inputs and performance data. They
are used to rapidly approximate the performance data for numerous
designs. Therefore, based on surrogate model and parametric model,
it is possible to obtain both the geometries and performance data of

Fig. 1. A process of the conceptual design of indoor arenas with an emphasis on the integration of the multi-functional space and long-span roof structure.

Fig. 2. The general workflows of three computational methods and their limitations in supporting the design exploration of indoor arenas with emphasis on the
integration of the multi-functional space and long-span roof structure.
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all the design alternatives within a discrete design space. However,
it is unpractical for designers to investigate so many designs. It is
necessary to efficiently organize the information about the geome-
tries and performance data (related to quantitative aspects) of the
numerous designs and to demonstrate the relationships between
them.

• SOMs are used in design exploration to group numerous design al-
ternatives into clusters according to their geometry features (in-
dicated by the parameters/design inputs) and generated a node
design for each cluster to represent all the designs within the cluster.
Moreover, all the node designs are organized by a two-dimensional
network and similar ones are close while different ones are far away,
which can reflect the design space (but the effect of the reflection
can become weak, as the dimensions of the design space increase,
since the curse of dimensionality). Therefore, by using SOMs, de-
signers can investigate various types of designs alternatives ac-
cording to geometry features. However, this process does not deal
with performance data (related to quantitative aspects) of designs.

Although there are limitations for these methods, combining the
surrogate model based on supervised learning and SOM can be a way to
overcome the limitations. Accordingly, this paper proposes a novel
design method based on their combination. Among various supervised
learning methods supporting surrogate model, this paper focuses on
local linear mapping based on self-organizing map (SOM-LLM) and
multi-layer perceptron neural network (MLPNN). For SOM-LLM, SOM
has been combined with the supervised learning method of LLM
[21,22], which can be directly used to support the aforementioned
design exploration (Fig. 3) [23]. Besides, since MLPNN has been widely
used in various fields for its capability of universal approximation [24],
in this paper, MLPNN is combined with SOM to formulate SOM-MLPNN
to support the aforementioned design exploration (Fig. 3). Specifically,
during the development of the method, a series of challenges need to be
overcome, including: 1) coupling the SOM and MLPNN to fulfill

clustering and data approximation and verifying the effects, 2) saving
the computational time of SOM and ensuring the accuracy of data ap-
proximation, and 3) visualizing the results and facilitate designers to
explore the design space according to both quantitative and qualitative
design requirements, 4) compare SOM-LLM and SOM-MLPNNN to de-
termine the final method.

The workflows of both SOM-LLM and SOM-MLPNN are in-
dependent. The related aspects are reviewed in Section 2, and the
workflows are elaborated in Section 3 and are applied in case studies in
Section 4. The results of the case studies related to SOM-LLM and SOM-
MLPNN are discussed and compared to define a final method in Section
5.

In this paper, the proposed method based on SOM-LLM or SOM-
MLPNN is specifically developed with focus on the design exploration
of the integrated design of indoor arena, in which the design inputs are
directly related to the overall geometry of the building. In its current
state, this method is limited for the designs of other types of buildings
and is also limited for the studies of various parameters/design inputs
which are not directly related to the overall form but are important for
the building performance. Nevertheless, potentially the method can be
generalized, despites that there are a series of challenges. The limita-
tions and the challenges in the generalization of this method are dis-
cussed in Section 5.

2. Background information

2.1. Obtaining performance data for numerous designs by surrogate model

A surrogate model can approximate a high-fidelity but time-con-
suming function in reasonable accuracy, based on sampled/labelled
data obtained by design of experiments (DoE) of the high-fidelity
function [15,25]. This method has been applied in building designs
[13–16].

The formulation of a surrogate model can be considered as a process

Fig. 3. The scheme of using SOM-LLM or SOM-MLPNN to support design exploration of indoor arena with emphasis on the integration of multi-functional space and
long-span roof structure.

W. Pan, et al. Automation in Construction 114 (2020) 103163

3



of supervised learning. Supervised or predictive learning is a process
that learns a mapping between the inputs and outputs of a system,
based on a labelled set of input-output pairs [26]. In general, the pro-
cess is fulfilled in five steps: 1) formulating an initial model; 2) sam-
pling the input space to obtain a number of labelled inputs; 3) obtaining
the labelled outputs (corresponding to the labelled inputs) by design of
experiments (DoE); 4) training, validating, and testing the model by the
labelled data; 5) using the tested model to approximate new data.

There are various supervised learning methods to achieve a surro-
gate model. Some of the methods have been used in engineering or
architectural designs, including poly-nominal regression and response
surface method (RSM) [16,27–29], multi-layer perceptron neural net-
work (MLPNN) [15,29] [30,31], random forest (RF) [15,32,33], radial
basis function network (RBFN) [14,15], kriging [15,34,35]. In [15],
these methods are used to support surrogate models for a long-span
building design focusing on structural self-weight and energy. The re-
sults in [15] indicated that the MLPNN has the fastest speed and
smallest errors in the data approximation of structural weight and en-
ergy consumption for the design example.

2.1.1. Multi-layer perceptron neural network (MLPNN)
A MLPNN is composed of neural networks of an input layer and an

output layer as well as one or multiple hidden layers between them
[36]. The input layer is related to the input data and the number of the
neurons equals the dimensions of the input data, while the output layer
is related to the output data. Between them, one or multiple hidden
layers connecting the input and output layers are used to learn a
mapping between the inputs and outputs according to labelled data.
The connection between the neurons of two adjacent layers is based on
the calculation related to activation function, bias, and the weighted
sum of the values of the anterior neural layer [26,36].

A MLPNN model learns the mapping between the inputs and outputs
by adjusting the weights and bias for each neuron to minimize the error
function, which is obviously an optimization process. The error func-
tion is usually the mean squared error (MSE). Back propagation is used
to feed back the error to the neural networks, therefore, can accelerate
and improve the optimization process [37,38]. The details of MLPNN
can be found in [26,36].

For MLPNNs, the capability of universal approximation is verified in
[24] and they also used as universal function approximators in recent
years [36]. Specially, for the building designs, MLPNNs are widely used
for the predictions of energy consumptions [39–43], structural analysis
and design [13,44,45], and integrated design [11]. It worth noting that
for the applications of MLPNN, the structures of neural networks (the
number of the hidden layers, the amount of the neurons on each hidden
layer) can be different. In fact, to define a proper network to obtain
promising performance of data approximation is one of the main
challenges of the applications of MLPNNs, and using growing neural
networks as well as pruning technique are two of the ways to find
proper networks for specific problems [36,46]. Besides, the uncertainty
of MLPNNs in data approximation is another main challenge of the
applications of MLPNNs, which includes input uncertainty, parameter
uncertainty, and structure uncertainty [47]. A series of methods are
proposed to quantify the uncertainties, therefore, to help users to
evaluate the networks [47].

2.1.2. Local linear map based on self-organizing map (SOM-LLM)
Besides the methods mentioned above, interpolation is also used for

data approximation to achieve surrogate model, for its simplicity [23],
ability in limiting interference [23,48], and transparency. Among var-
ious interpolation methods, local linear mapping based on self-orga-
nizing map (SOM-LLM) is considered to have good accuracy and take
less computation resource [23,49]. Comparing with MLPNNs, a two-
dimensional problem had been used as an example to verify that the
SOM-LLM has equivalent performance in functional approximation
[21]. More importantly, in SOM-LLM, self-organizing map (SOM)

proposed by Kohonen [50,51] can group data objects according to their
similarity in specific features. Based on this capability, SOM has been
used to support design explorations of geometry typology [17–19] (the
details are elaborated in Section 2.2).

In general, a linear interpolation inserts new data points between
some known reference data points (sampled/labelled data), to calculate
the outputs of the new interpolated points according to the distance
between the inputs of the interpolated and the reference data points.
However, the related errors can be quite large if the problem is com-
plex. To decrease the errors, there are other methods applied in dif-
ferent fields to meet specific requirements, including polynomial in-
terpolation, splines and B-splines techniques, Kriging, and natural
neighbor method using Voronoi tessellation. Nevertheless, most of
these methods are computationally expensive and are limited in dealing
with high-dimensional problems [17].

To increase the accuracy of data approximation and avoid expensive
computation, local linear mapping based on self-organizing map (SOM-
LLM) was proposed in [21,23,49] based on the original local linear
mapping (LLM). LLM is formulated based on linear interpolation and
additional weights [48]. In LLM, an interpolated data point is con-
sidered to be mainly related to the nearby reference data points. Hence,
in order to save the computation time, the output of an interpolated
data point is calculated only based on its nearby reference data points.
To find these nearby reference data points, self-organizing map is used
[23].

In a SOM, a network (usually two-dimensional) with nodes/neurons
is predefined in the input space of the interpolated data points. Each of
the interpolated data points is captured iteratively by one of the nodes/
neurons on the network and is grouped into a cluster represented by the
node/neuron, according to the SOM algorithm (details can be found in
[50,51]). For each cluster, the related node can be considered as the
reference data point for LLM. Therefore, for a certain interpolated data
point, the node of its cluster and the nodes of the neighbouring clusters
can be considered as the nearby reference data points. The inputs and
outputs (obtained by design of experiments) of these reference data
points then are used to calculate the output of this interpolated data
point, according to the algorithm of LLM (details can be found in [23]).

2.2. Exploring designs according to geometry typologies by self-organizing
map (SOM)

As mentioned above, a SOM can group data points into different
clusters according to their similarity measured by a distance function
(e.g. Euclidean distance). Each of the clusters is represented by a node/
neuron organized by a two-dimensional network. On the network, si-
milar nodes are close while the different ones are far away, which can
be used to reflect the intrinsic topology of the data set [52,53].

SOMs have been applied in architectural design to support designers
to explore the design alternatives within design space according to
geometry types [17–19]. In these applications, the design parameters
(related to the building geometry of each design alternative within the
design space) are used as the inputs to train a predefined SOM network.
Therefore, the design alternatives with similar geometries are grouped
in the same clusters.

For each cluster, the vector of the node is provided by the SOM,
based on which the geometry of the node design can be generated by
the parametric model. Each node design represents all the design al-
ternatives within the related cluster. Moreover, all the node designs are
presented on the SOM network. On this network, similar node designs
are close and different ones are far away, which can reflect the design
space. Therefore, designers can have a quick glimpse of the whole de-
sign space and explore all the design alternatives according to geometry
typology [17].

It worth noting that the process of SOM clustering can be also
considered as a dimensionality reduction in which a high-dimensional
design space is projected on a two-dimensional network [52,53]. As the
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dimensions of the design space increase, it becomes difficult for a SOM
network to reflect the original design space, since the curse of di-
mensionality. Hence, when using SOM to support design exploration,
the dimensions of the design space (equalling the dimensions of the
design inputs) should be limited. In [17], an experiment shows that a
nine-dimensional design space can be effectively reflected by a two-
dimensional network.

3. Methodology

This section elaborates the workflows of LLM-SOM (Fig. 4) and
MLPNN-SOM (Fig. 5). These workflows are similar, except the step IV in
which LLM and MLPNN are respectively used for data approximations.
The IAG used in this method is proposed in [3] and based on the
software of Rhinoceros 3D [54] and its plugin grasshopper [55], the
simulation of structure is based on Karamba3D [56], a plugin of Rhi-
noceros 3D. The SOM is based on the toolbox of self-organizing maps in
MATLAB [57], the LLM is achieved by the codes written by the authors
in MATLAB [58], and the MLPNN is based on the toolbox of feedfor-
ward neural network in MATLAB [59]. The details of the method are
elaborated in the following subsections.

3.1. Defining design space based on indoor arena generator (IAG)

In step I of the two workflows, indoor arena generator (IAG, a
versatile and flexible parametric model of indoor arena) is used. The
IAG, which is proposed by the authors in [3], can integrate the multi-
functional space and long-span roof structure of indoor arena and
generate various design alternatives. In [3], thirty main design para-
meters of IAG are listed, designers can select some of them as design
variables. The values of the variables can be changed to generate var-
ious designs while other design parameters are fixed in specific values.
Based on the definition of design variables (defining the interval and
range for each variable), a specific design space is formulated, which
includes a limited number of design alternatives. In the following steps
of both LLM-SOM and MLPNN-SOM, these design variables are used as
the design inputs for the generation of the geometries of design alter-
natives, the data approximations of multiple performance data, and the
clustering of designs according to geometry typology.

The amount of the design alternatives within the design space is
determined by the amount, intervals, and ranges of the design vari-
ables. The amount of the variables equals the dimensions of the design
space. In practice, the values of design variables are usually discrete,

Fig. 4. The workflow of SOM-LLM.

Fig. 5. The workflow of SOM-MLPNN.
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and designers can define the interval for each variable within a specific
range. The ranges of variables are usually defined according to the
regulations of urban planning, design codes, scale of the building, etc.

This paper focuses on the overall building forms/geometries of in-
door arenas (which are generated by integrating the multi-functional
spaces and long-span roof structures) and the relationships between the
overall forms and the building performance (related to quantitative
requirements). Therefore, only the design parameters directly related to
the overall form of the building are selected as design variables in the
proposed method (the parameters in step 2 and 3 in the table 2 in [3]).
Since the design variables are used as the design inputs for the SOM to
cluster design alternatives according to their geometry features, it can
influence the effect of the clustering if the design variables which are
not directly related to the overall form of the building (e.g. the cross
sections of the structural elements). However, the parameters which are
not directly related to geometry can be important for building perfor-
mance. Hence, it is one of the limitations of the proposed method to
exclude these design parameters during design exploration. Besides, as
mentioned in sub‐section 2.2, since the effect of SOM clustering in re-
flecting the design space can reduce as the dimensions of the design
space increase (since the curse of dimensionality), in this method, the
amount of the design variables (which equals the dimensions of the
design space) should be limited within nine (an experiment in [17]
shows a nine-dimensional design space can be effectively reflected by a
SOM network). A definition of design variables based on IAG is de-
monstrated in the case studies in Section 4.

3.2. SOM (self-organizing map) clustering

In step II of the two workflows, the defined design variables of the
design alternatives are used as design inputs for SOM clustering which
aims to 1) sample reference/labelled data for DoE and LLM/MLPNN by
using the nodes of SOM network and 2) cluster all design alternatives
into groups, according to their geometry features indicated by the de-
sign variables. To use SOM clustering, it is necessary to define the size
of the SOM network (how many rows and columns of nodes on the
network) and the amount of the design inputs which are used to train
the SOM network.

For the definition of the size of the SOM network, there is a trade-
off. A large size of network contains more nodes, which increases the
computation time of SOM as well as the processing time of the design of
experiments (DoE) in step III and the data approximation of LLM/
MLPNN in step IV. Moreover, it also influences the exploration of de-
signs about their geometries in step V, since it is difficult for designers
to investigate too many node designs on the SOM network.
Nevertheless, a large network generating more node designs, which
provides more reference/labelled data for LLM/MLPNN, therefore, can
potentially increase the accuracy of data approximation. This paper
applies both a large and a small SOM network for SOM-LLM and SOM-
MLPNN in the case studies in Section 4 to make a comparison, then
users can select a proper one according to the results. An operation is
used to solve the problem that too many node designs on a large size of
SOM network impeding designers to explore different types of designs.
In this operation, a large network can be shrunk by simply combing
several adjacent clusters into a new bigger cluster represented by a new
node design, which makes the network flexible and decreases the
number of the node designs (details can be found in Section 4.2).

For the amount of the design inputs which are used to train the SOM
network, there is also a trade-off. Using a large number of inputs in-
crease the computation time of SOM, while using a small number of
inputs can save the time, but it may influence the effect of SOM in
sampling the design space, therefore influences the accuracy of data
approximation. This paper uses a large and a small sets of design inputs
(which are generated by setting different intervals for each variables) to
train the SOM network in the case studies in Section 4 to make a
comparison (see Table 1 in Section 4).

These two operations (using SOM-networks in different sizes and
using different amount of design inputs to train the SOM-networks) are
applied in cases studies to make comparison. For clustering, normal-
ization of the design inputs is necessary. This paper uses a min-max
normalization (or 0–1 normalization), to project all the design inputs
into the range between 0 and 1.

3.3. Design of experiments (DoE)

In step III of the two workflows, design of experiments (DoE) are
used to obtain the outputs for the reference/labelled inputs, therefore,
to compose the reference/labelled data which are used for data ap-
proximation in step IV. In DoE, first, the reference/labelled inputs
(which are the vectors of the node designs generated by SOM clustering
in step II) are used to generate related geometries of the node designs
based on IAG (the parametric model). Then multiple kinds of perfor-
mance data of these geometries (which are the labelled/reference
outputs) can be obtained by specific building performance simulations.
In [3], a framework of performance assessments criteria with related
simulation tools for indoor arenas are proposed. The framework, which
focuses on the capacity of multiple activities, spectators' viewing,
acoustics, and structural performance of indoor arena, contains various
indicators and the related simulation tools. Based on the framework,
designers can select multiple indicators to assess the design alter-
natives. Correspondingly, the related simulations tools are used in DoE
to obtain the reference/labelled outputs.

3.4. Data approximation based on LLM and MLPNN

In step IV, based on the labelled data obtained by design of ex-
periments (DoE), data approximation model is trained to predict the
performance data of all the design alternatives. LLM and MLPNN are
used to perform data approximation in step IV of SOM-LLM and SOM-
MLPNN, respectively. The results are compared in the case studies
(Section 4.1).

For MLPNN, the composition of the networks and the activation
function applied for each neuron are usually predefined empirically,
which can impact the performance of the approximation results. This
paper sets three hidden layers of networks (6-6-10) between the input
and output layers and applies sigmoid and Levenberg-Marquardt (a
backpropagation optimization algorithm) as the activation function and
training function, respectively. Mean squared errors (MSE) is used as
the cost/error function which should be minimized during the training
process. This MLPNN model is also used in [15] for a long-span building
to predict structural self-weight and energy consumption. To overcome
the problems related to overfitting and generalization, a validation and
test process is used. The labelled data are divided into three sets:
training set, validation set, and test set. Within an iteration of the
training process, the training set is used to train the MLPNN model and
the validation set are used to validate the trained model by measuring
the difference of the two errors obtained by these two data sets. The
iterations will stop until both the errors (related to the training and
validation sets, respectively) of the trained model and the difference
between these two errors are small enough. After iterations, the final
trained model will be tested by the test set. If the error is also accepted,
then the trained model will be used for data approximation. It is worth
noting that one MLPNN model can be only trained for one kind of
performance data. To predict multiple kinds of performance, the same
number of MLPNN models are needed.

Differing from MLPNN, LLM approximates data according to the
reference data and the distribution of the input data space (reflected by
the trained SOM network). Therefore, there is no training and valida-
tion process for LLM, the calculation is mainly related to the input data.
The details of the calculations are elaborated in [23]. It is worth noting
that, most of the calculations of SOM-LLM (the calculations of equations
4 to 5 in [23]) deal with the relationship between the reference inputs
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and the interpolated inputs (the design inputs in this method), which
means for the predictions of different kinds of performance values for a
certain design, the calculations are the same, except the last step of the
process (the calculations of equation 1 in [23]).

3.5. Organizing different types of designs by SOM network

Based on the SOM clustering in step II, all the design alternatives
within the design space can be grouped into clusters according to their
similarity in geometry features (indicated by the design variables) and
are represented by the related node designs. In step V, the geometries of
the node designs are generated by using the parametric model (IAG)
and are organized by the SOM network on which similar ones are close
while different ones are far away. Therefore, designers can explore
different types of designs and have an overview of the whole design
space. Moreover, for each cluster, besides the node design, the geo-
metries of the design alternatives within the cluster can be also gen-
erated by parametric model (IAG), which can be used as an index
system to search for various designs.

3.6. Design exploration based on data approximation

Based on the performance data of all the design alternatives ob-
tained in step IV and the node designs on the SOM network obtained in
step V, a series of data visualizations are proposed (based on Rhino [54]
and Grasshopper [55]) to support the design exploration in four ways
(the details are demonstrated in the case studies in Section 4.2):

• Exploring different types of designs with the related performance
data:

In practice, studying the performance data of different types of
geometries is crucial for designers to investigate the relationships be-
tween performance and form/geometry. The data visualization sup-
porting this exploration aims to present the performance data of the
node design for each cluster (of design alternatives) and to demonstrate
how the performance data change for different node designs (which
represent different types of geometries).

• Exploring different types of designs according to design objectives
related to extreme performance data:

In practice, some design objectives usually require the designs ob-
taining the minimum or maximum values of specific performance in-
dicators. Optimization can search for these designs within the whole
design space, but it cannot support designers to study other design al-
ternatives. The data visualization here aims to display the geometry of
the design which obtains the extreme performance values in each
cluster and demonstrate how the extreme performance values change
for different types of geometries.

• Exploring different types of designs according to design constraints
related to multiple performance indicators:

Besides design objectives, design constraints are also important,

Table 1
Design parameters and performance indicators of an indoor arena (with 14,000 to 15,000 fixed seats).

Design parameters
(variable)

L-X Length in X-axis: 80 m to 132 m; Interval:

2 m (for the large set of inputs),
4 m (for the small set of inputs);

L-Y Length in Y-axis: 94 m to 166 m; Interval:

2 m (for the large set of inputs),
4 m (for the small set of inputs);

Cp Corner position: 0 to 10; Interval:

1 (for the large set of inputs),
2 (for the small set of inputs);

CenH-roof Height of the headroom of the centre of the pitch: 18 m
to 40 m;

Interval:

1 m (for the large set of inputs),
2 m (for the small set of inputs);

Design parameters (fixed) Cuv-BO Curve type of the building outline: 3 (curve);
Cuv-X-roof Curve type of the roof in X axis: 3 (curve);
Cuv-Y-roof Curve type of the roof in Y axis: 3 (curve);
H-CPi-bdr The height of the ith control point of the structural

boundary: 0
StruType Structural type: SF (space frame);
GridSize-roof Size of the grid: 4 m;
StruDpth-ctr Structural depth in the centre: 2 m;
StruDpth-bdr Structural depth on the boundary: 2 m;
Cross-section Cross-section of structural elements:

- The shape of cross-section: circle hollow;
- Upper and bottom chords: diameter of 200 mm and

thickness of 12 mm;
- Web: diameter of 80 mm and thickness of 8 mm;
- - Material: S355 (steel).

Performance indicators VDavr-p Average viewing distance (m) Obtained by the measurement in Rhino
[54] and Grasshopper [55]

VDmax-p Maximum viewing distance (m) Obtained by the measurement in Rhino
[54] and Grasshopper [55]

SW Structural self-weight (kg/m2) Obtained by Karamba3D [56]
SE Strain energy (kN·m) Obtained by Karamba3D [56]
RT60 The reverberation time of all octave band frequencies

(s)
Obtained by Sabine equation [60]

RT60-1K The reverberation time of octave band frequency in
1 k Hz (s)

Obtained by Sabine equation [60]
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which determine whether a design is feasible. The data visualization
here aims to 1) display all the feasible designs within each cluster ac-
cording to specific design constraints provided by designers, 2) de-
monstrate how each cluster of designs satisfy the design constraints,
and 3) present the performance/output space corresponding with the
design/input space.

• Exploring the geometries and the related performance values of the
preferred designs:

In practice, among diverse types of designs, designers may focus on
several preferred ones selected based on their experience and knowl-
edge about qualitative aspects (e.g. aesthetics). Hence, it is necessary to
explore the multiple performance values of the preferred types of de-
signs. Moreover, it is also crucial to compare these preferred designs to
other designs in the design space, according to multiple performance
indicators. Therefore, the data visualization here aims to 1) aid de-
signers to select the preferred designs according to geometry typology,
2) highlight the preferred types of designs among all the design

alternatives in the design space, and 3) demonstrate and compare the
performance values of the preferred designs and other designs.

4. Case studies

The case studies are divided into two parts. The first part (Section
4.1) aims to compare the performance of SOM-LLM and SOM-MLPNN in
data approximations. In this part, for the workflows of both SOM-LLM
and SOM-MLPNN, an experiment is applied, in which the operations
proposed in Section 3.2 (using SOM networks in different sizes for LLM
and MLPNN as well as using different amount of design inputs to train
the SOM network) are used. The experiment studies whether these
operations can save computation time and ensure acceptable accuracy
of data approximation. Moreover, in the experiment, the proposed
SOM-MLPNN is compared to SOM-LLM according to the accuracy of the
data approximations, to select a proper workflow and model for the
design explorations in practice. The second parts (Section 4.2), based on
the selected workflow and the related model, aims to use the proposed
data visualizations to support the design exploration based on numeric

L-X
L-Y

CP

CenH-roof

The projec!on of the 
sea!ng-bowl outline The upper chords of space frame

The bo"om chords of space frame

Fig. 6. The diagram of the proposed parametric model (IAG) and some design alternatives in the design space. (For interpretation of the references to colour in this
figure, the reader is referred to the web version of this article.)

Table 2
Settings of SOM, LLM, and MLPNN.

SOM LLM MLPNN

Neural network(s) Triangle grid:

10 × 10
20 × 20
30 × 30

The width of the fully
activated region around the
neighbouring clusters

μ=0.3 Neural networks (the hidden
layers)

6-6-10

Iteration times Ordering: 10,000
Tuning: 100,000

the width of the area of the
neighbouring influence kernel

γ =0.8 Ratios of training, validation,
and test sets

70%, 15%, and 15%

Learning rate Ordering: 0.8
Tuning: 0.8

Activation function Sigmoid

Initial neighborhood 5 Training algorithm Levenberg-
Marquardt
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data (related to multiple quantitative requirements) and visual in-
spections on different types of geometries (related to qualitative re-
quirements) of indoor arenas.

A hypothetical design of a typical multi-functional indoor arena is
used as an example for the case studies. The arena has 14,000 to 15,000
fixed seats and mainly caters for professional basketball games and
concerts. Therefore, for the quantitative design requirements, three
aspects are highlighted in the design (including the viewing of specta-
tors for basketball court, acoustics for both basketball game and con-
certs, and structural performance of the long-span roof). The design
parameters and performance indicators related to quantitative re-
quirements are listed in Table 1. The first four design parameters, which
are directly related to the overall geometry, are selected as design
variables which are also the design inputs data of SOM and data ap-
proximation.

Based on the different intervals for the design variables in Table 1,
two sets of design inputs can be obtained. There are 252,747 design
alternatives in the large set and 20,748 ones in the small set. By using
the IAG proposed in [3], the geometries of the design alternatives are
generated based on the four design variables (labelled in yellow in the
upper chart of Fig. 6). Some of the geometries are randomly selected
and demonstrated in the bottom chart in Fig. 6. However, according to
the requirements on the number of fixed seats (14,000 to 15,000) in the
arena, some design alternatives which have too many or too less fixed
seats are automatically weeded out by IAG. Finally, there are 10,511
design alternatives in the large set and 1381 ones in the small set. Both
the large and small sets of design inputs are used for the experiment
about SOM-LLM and SOM-MLPNN.

This example is used for the early design stage of indoor arenas, in
which designers mainly focus on the overall form of the building (which
is defined by several key design variables). Hence the dimensionality of
design variables is low (four dimensions), and correspondingly, the
amount of the related design alternatives is small (10,511).
Nevertheless, the example is still acceptable for testing and verifying
the proposed method. For some practical designs of other types of
buildings, in which the overall forms can be more complex and are
defined by high dimensional design variables (correspondingly, there
are more design alternatives), further tests are necessary to exam the
effect of this method in future work (which are included in Section 5.2).

4.1. Comparison and experiment of SOM-LLM and SOM-MLPNN in data
approximations

In the experiment, the SOM-LLM and SOM-MLPNN are used to
perform the data approximations of three building performance in-
dicators selected in Table 1 (the average viewing distance, structural
self-weight, and the reverberation time of all octave band frequencies).

For both SOM-LLM and SOM-MLPNN, according to the operation
proposed in Section 3.2, three different sizes of SOM networks
(10 × 10, 20 × 20, and 30 × 30) trained by two different sets of input
data (10,511 and 1381 design inputs mentioned above) are applied.
Hence, there are six models for SOM-LLM and SOM-MLPNN, respec-
tively. These twelve models are trained to approximate the aforemen-
tioned performance indicators for all the 10,511 design alternatives
within the design space. To assess the approximations, the actual values
of the 10,511 designs are obtained by simulations, these high-fidelity

Fig. 7. The data approximation of the average viewing distance of spectators.
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data will be used to assess the predicted data generated by LLM and
MLPNN. The settings of SOM, LLM, and MLPNN are lists in Table 2. The
results are illustrated in Figs. 7 to 9.

According to the results illustrated in Figs. 7, 8, 9, obviously, for the
performance of the data approximations of the three selected in-
dicators, SOM-LLM is not as well as SOM-MLPNN. The reason can be
that LLM is based on piecewise interpolation, in which the computation
is much simpler than that of MLPNN. This simpler computation process
makes SOM-LLM can prediction different kinds of performance data by
a fixed calculation process, which save computational time, but it also
influences the performance in data approximations. Nevertheless, the
errors of the three predictions supported by SOM-LLM are still accep-
table for practice (most of the errors are < 10%).

Moreover, for the data approximations supported by both SOM-
MLPNN and SOM-LLM, as the size of the SOM network increases from
10 × 10 to 20 × 20 and 30 × 30, the accuracy improves. The reason
can be that a larger size of SOM network has more nodes/neurons,
which generates more reference/labelled data for LLM/MLPNN.

For the 30 × 30 SOM network, the SOM-MLPNN based on the SOM
network trained by the small set of inputs (the 4th charts of the last
rows of Figs. 7, 8, 9) obtains higher accuracy, comparing to the coun-
terpart related to the large set of inputs (the 4th charts of the last rows
of Figs. 7, 8, 9). The reason can be that it may be easier for a SOM
network to capture a small sets of data points and reflect the intrinsic
topology of the data space.

Hence, in this paper, SOM-MLPNN is selected as the workflow of the
proposed method to support the aforementioned design exploration,
and the MLPNN based on the 30 × 30 SOM-network trained by the

small set of design inputs is selected as the model. This model is used to
approximate all the six performance indicators listed in Table 1 for all
the 10,511 design alternatives in the design space. Fig. 10 demonstrates
the training, validations, tests, and generalizations of the model. For the
data approximations of viewing distances and reverberation time (the
1st, 2nd, 5th, and 6th rows in Fig. 10), the fitting of the training, va-
lidation, and tests sets are ideal, since the related correlations of de-
termination (R2) are quite close to or equal 1, and the data points are
almost on the diagonal lines of the correlate charts which means the
values of the approximated data almost equal the actual values ob-
tained by simulations. The related generalizations are also ideal (the
1st, 2nd, 5th, and 6th rows of the right column in Fig. 10). The corre-
lations of determination (R2) are fixed or slightly decrease, comparing
to those of the training, validation, and test sets. The majority of the
data points also lay along the diagonal lines of the coordinate charts. In
comparison, the accuracies of the data approximations of structural
self-weight and strain energy (the 3rd and 4th rows in Fig. 10) are low.
For the training, validation, and test sets, although the correlations of
determination (R2) are still close to 1 (between 0.91 and 0.99), the data
points do not lay along the diagonal lines. The accuracies even decrease
in the generalizations (the 3rd and 4th chart in the right column in
Fig. 10). The correlations of determination (R2) decrease from 0.93 and
0.99 to 0.49 and 0.79, respectively, and the data points are scattered.

These phenomena can be caused by the uncertainty of the trained
models and the complex relationships between the design inputs and
these two indicators related to structural performance. Although
dealing with the uncertainty is not the focus of this paper, a series of
methods can be used to quantify the uncertainty [47] and using deeper

Fig. 8. The data approximation of structural self-weight. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this
article.)
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MLPNN or using cross-validation to fully exploit the labelled data can
be possible ways to improve the performance. Nevertheless, for con-
ceptual design process, except those related to structural strain energy,
the errors of all the data approximations are acceptable, which are <
10% (see the data points and the yellow dash lines in the charts of
Fig. 10). The decrease of the accuracy from the training, validation, and
test to the generalization demonstrates the limitation of MLPNN in data
approximations. In this situation, designers may trust the trained model
according to the results in training, validation, and test, but they cannot
know the accuracy of its generalization in practice. It is still a problem
in the applications of MLPNNs.

4.2. Comprehensive design exploration supported by SOM-MLPNN

For the selected model of SOM-MLPNN, since the 30 × 30 SOM
network is trained by the 1380 design inputs but not all the design
alternatives, only these 1380 designs are grouped into the 900 clusters.
Other design alternatives of the 15,011 ones are grouped into the
nearest clusters according to the distances (between the design inputs of
these alternatives and the vectors of the neurons related to the 900
clusters).

Based on the results of the SOM, for each one of the 900 clusters, the
node/neural design, which represents all the designs within the cluster,
can be generated by parametric model. All the node designs are dis-
tributed on the network, and similar ones are close while different ones
are far away, which reflects the original design space (Fig. 11 left).
Therefore, designers can view the design space and explore different
types of designs based on geometry typologies.

However, a large size SOM network can make the exploration being
difficult (as mentioned in Section 2.1), since there are too many node
designs and the adjacent ones are quite similar which impedes de-
signers to efficiently explore different types of designs. To overcome
this, a smaller size network with fewer node designs can be generated
by simply combining a group of adjacent clusters into a new one.
Within each group of the adjacent clusters on the original network, the
node design of the central cluster can be considered as the node design
of the new combined cluster on the new network. In this paper, the
30 × 30 SOM network is transformed into a 10 × 10 network (Fig. 11
right) by combining every nine adjacent clusters into one, which can
make the design exploration more efficiently. Other sizes of networks
that are smaller than 30 × 30 can be also generated based on this
approach. It worth noting that this process is not a clustering process
but an operation on the results of the trained SOM network.

Based on the SOM network and the results of data approximations
for the six kinds of performance data, a series of data visualizations are
proposed to support design exploration in four ways mentioned in
Section 3.6. It worth noting that the visualizations can be only pre-
sented in static figures in this paper, but they are proposed as interfaces
in practice, based on which designers can obtain information by dy-
namically interacting with the objects in the interfaces.

4.2.1. Exploring different types of designs with the related performance
values

To support this design exploration, the related data visualization is
used to present the performance value of the node design and of all the
designs alternatives for each cluster, therefore, to demonstrate how the

Fig. 9. The data approximation of reverberation time.
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Fig. 10. The training, validation, test, and generalization of the selected model (a SOM-MLPNN model based on the 30 × 30 SOM network trained by the small set of
design inputs) for the approximation of multiple performance data.
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performance values change for different node designs (which represent
different types of geometries) and to show the output space corre-
sponding to the input space reflecting by the SOM network.

Fig. 12 demonstrates the visualization. For each node design on the
SOM network, a blue dot is assigned and located above it (Fig. 12). The
altitude of the dot indicates the performance value of the node design,
which can be read according to the vertical axes in the left (Fig. 12).
These dots illustrate how the performance value changes among dif-
ferent types of designs.

Besides, for each kind of performance indicators, two meshes
(highlighted in red and green in Fig. 8) are generated based on the
designs obtaining the maximum and minimum performance values in
each cluster (see the red and green dots in the middle columns in
Fig. 12). The space between the meshes is the output space corre-
sponding to the input space reflecting by the SOM network, which is
crucial for designers to study the relationships between design inputs
(geometries) and outputs (performance data).

Furthermore, designers can investigate any designs in each cluster.
A series of grey dots are assigned to all the designs in each cluster, and
the related performance values are also indicated by the vertical axes.
In the right part of Fig. 12, the output space of the 100th cluster are
magnified as an example, for each kind of performance indicators, a
series of grey dots are assigned to all the designs in this cluster (the
middle column in Fig. 12), the designs obtaining the maximum and
minimum values and the node designs are highlighted (in red, green,
and blue dots, respectively). The related geometries as well as the ID
numbers in design space can be also obtained (the right column in
Fig. 12). Moreover, designers can investigate any designs according to
performance values and geometries. As an example, for each kind of
performance indicators, two designs in the 100th cluster are randomly
selected (highlighted in black dots in the middle column in Fig. 12).

4.2.2. Exploring different types of designs according to design objectives
To support this design exploration, the data visualization aims to

display the geometries of the design which obtains the extreme per-
formance values in each cluster and to demonstrate how the extreme
performance values changes for different types of geometries. This

exploration can aid designers to find the optimal designs (which obtain
the extreme performance values) not only in the whole design space
(like what MOOs do) but also in different clusters. Moreover, it also aids
designers to quickly understand how each type of designs satisfy the
related performance requirements, therefore can further study the re-
lationships between geometry and performance.

Fig. 13 demonstrates the visualization. Three kinds of performance
indicators (the average viewing distance, structural self-weight, and
reverberation time) are selected as examples. For each kind of the
performance indicators, the SOM network shows the design obtaining
the minimum performance values in each cluster (see the upper part of
Fig. 13), above which a dot is assigned to each design and its altitude
indicate the performance value. Based on the dots, a mesh is generated
to show how the extreme performance value changes among different
types of designs. Two other dots are also assigned to each design, to
indicate the other two performance values. The designs obtaining the
minimum values of the three kinds of performance indicators in five
clusters (the 1st, 10th, 55th, 91st, 100th clusters) are magnified (the
bottom part of Fig. 13) as an example to show how designers can in-
vestigate the geometries and performance data of these designs.

4.2.3. Exploring different types of geometries according to design
constraints

To support this design exploration, the data visualization aims to
display all the feasible designs within each cluster according to specific
design constrains provided by designers, therefore, to demonstrate how
each cluster of designs satisfy the design constraints.

Fig. 14 illustrates an example. Five performance indicators are se-
lected, and the related constraints are supposed to be set by designers
(VDavr-p ≤ 60 m, VDmax-p ≤ 83 m, SW ≤ 70 kg/m2, SE ≤ 9763kNm,
RT60 ≤ 2.8 s). Two meshes (like those in Fig. 12) are presented to
visualize the output/performance spaces. The related constraints are
visualized by the yellow planes cutting the meshes (the left part of
Fig. 14). Correspondingly, the clusters containing feasible designs
(which satisfy all the constraints) are highlighted on the SOM network
below. Then, the geometries of all the feasible designs are presented
with the related node designs (the right part of Fig. 14).

Geometries of node designs of 
a 30x30 SOM network

Geometries of node designs 
of a 10x10 network

Simply combine nine adjacent 
nodes into one

Use the central one among a group of 
adjacent node designs to represent the all

Fig. 11. Simply shrink a large size of SOM network into a small one.
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Fig. 12. Exploring different types of designs and the related performance values. (For interpretation of the references to colour in this figure, the reader is referred to
the web version of this article.)
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Fig. 13. Exploring different types of designs according to the extreme performance values.
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4.2.4. Exploring the geometries and performance values of preferred designs
To support this design exploration, the data visualization aims to 1)

highlight the preferred types of designs among all the design alter-
natives on the SOM network, 2) display the geometries of the preferred
designs, 3) demonstrate and compare the performance values of the
preferred designs and other designs.

Fig. 15 illustrates an example, in which six clusters of designs are
supposed to be preferred by designers and the related node designs are
highlighted on the SOM network. Three performance indicators (the
average viewing distance, structural self-weight, and reverberation
time of all the octave band frequencies) are selected to assess the de-
signs. A three-dimensional scatter chart is used to visualize the data.
The x, y, and z axes indicate the three performance indicators, re-
spectively, and the six clusters of designs are represented by the dots in
six colours while other designs within the design space are represented
by grey dots. Moreover, for each cluster, the geometries of the node
designs and the designs obtaining the minimal values for the three
performance indicators are presented. This exploration can aid de-
signers to select ‘well-performing’ designs within various preferred
design candidates, which combines quantitative performance and de-
sign preference during the early stage of architectural design.

5. Conclusion

5.1. Summary of contributions

The main contribution of this paper is developing a novel design
method based on SOM-LLM or SOM-MLPNN to support the design ex-
plorations of indoor arenas, which demands the integration of multi-

functional space and long-span roof structure and the investigation of
various design alternatives according to multiple performance data
(related to quantitative design requirements) and the overall geome-
tries of the buildings (related to qualitative design requirements). In the
proposed method, SOM-LLM and SOM-MLPNN are two independent
workflows to achieve the goal. SOM-LLM is an existing method for data
approximations, but this paper uses it in a different way to perform both
data approximation and clustering at the same time. SOM-MLPNN is a
new method, formulated based on the inspiration of SOM-LLM, which
takes the advantage of the capability of MLPNNs in universal fitting.
According to the results of the case studies, the performance of both the
workflows in data approximation is acceptable for conceptual design.

Bedsides the main contribution, this paper also studies how the size
of the SOM network and the amount of the design inputs (which are
used to train the network) influence the performance of SOM-LLM and
SOM-MLPNN in data approximations. The results indicate that for both
SOM-LLM and SOM-MLPNN, using a larger size of network trained by a
small set of design inputs can obtain better performance. This study
provides a useful approach for the application of the proposed method
to save the computation time and obtain acceptable accuracies of data
approximations.

Moreover, a series of data visualizations are proposed to demon-
strate the results of the proposed method, which facilitates designers to
perform design explorations based on the outcomes, therefore, makes
the method more practical.

5.2. Limitations and future work

There are still some limitations of the proposed method (for both

Fig. 14. Exploring different types of geometries according to design constraints related to multiple performance indicators.
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SOM-LLM and SOM-MLPNN). First, in this paper, it only focuses on the
multi-functionality and structural performance of indoor arena, which
impedes the application of the method in the designs of other buildings.
In fact, the method is potentially used for other types of buildings, but it
is necessary to provide flexible parametric models which can generate
diverse designs for these buildings based on several key design para-
meters. Second, there are constraints on design inputs/variables. The
inputs/variables should be the design parameters directly related to the
overall geometry, to ensure the direction of the mapping between the
inputs and the geometry. The dimensionality of the inputs/variables
should be also limited to ensure the effect of the SOM in reflecting the
design space (in the example of the case studies, the dimensionality of
inputs/variables is four). These constraints for design variables may not
influence the early design stage of the building during which designers
usually focuses on the overall form of the building and several crucial
performance indicators and a small number of key design parameters
are emphasized. However, it does not mean it is not necessary to study
other design parameters which are not directly related to the overall
form but are crucial for building performance.

As mentioned in Section 1, MOOs focus on the ‘well-performing’
designs. Even through there is interactive optimization which allow
designers to explore the geometries of designs during the iterations and
select preferred designs to change the direction of optimization [5,10],
it is still limited in supporting designers to investigate various designs in
the design space. However, in a standard MOO, there are no afore-
mentioned constraints about design variables, which makes it can be
used in various fields and design process. Moreover, since MOOs are
based on simulations, in which the performance data are high-fidelity.

In this light, the combination of the proposed method and a MOO is
a potential way to overcome the limitations for the proposed method,
which can be studied in the future work. First, the proposed method
supports designers perform design exploration to define several proper
designs. Then, based on the selected designs, more design variables can
be considered, and MOOs can be used to further search for ‘well-per-
forming’ designs based on the high-fidelity performance data obtained
by simulations. Moreover, to generalize the method, more building
types (e.g. residence building, office buildings) can be considered.
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