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Abstract

Next-generation propulsion systems will likely take advantage of boundary layer ingestion (BLI), which
requires simulation and design tools to perform optimization at an affordable cost while taking airframe
interaction into account. A solution for this problem is the reduced-order body force model (BFM). It allows
for computationally inexpensive flow analysis, and when combined with the adjoint method accelerates
conceptual design optimization. In this thesis, Hall’s inviscid body force model is implemented into the direct
and adjoint solvers of the open-source software SU2. Direct solver runs of the BFM show results consistent
with what is expected from theory for a range of flow characteristics. Furthermore, fourteen-fold reductions
in grid size as well as one to two orders of magnitude reduction in computational time are observed while
retaining flow behavior. In the adjoint solver, registration of source terms is successful, which is confirmed
by changes in the adjoint flow over the body force domain. Physical interpretations of the adjoint vector
agree with theory. Total gradient computation is attempted but unsuccessful. It is therefore recommended
for future work, as showing this capability is a large step towards faster turbomachinery conceptual design
optimization.



This page is intentionally left blank.



Contents

Page

Preface ii
Abstract v
List of Figures iX
List of Tables xi
Nomenclature xiv
Listofacronyms . . . . . . . . . . . e e e Xiv
Listofsymbols . . . . . . . . . e Xiv
Introduction 1
1.1 ResearchQuestion . . . . . . . . . . . . . . i e e e e e e e e e e 1
1.2 Originalityof Work . . . . . . . . . . . L e 2
1.3 LimitationsoftheWork . . . . . . . . . . . .. L L 2
1.4 Structure . . . . . . . L e e e e e e e e e e e e e 2
Background 3
2.1 Introducing Body Force Models for Fan Analysis . . . . . . .. . ... ... ... .. ..... 3
2.2 BodyForceModeling . . . . . . . . . . L e 3
23 SU2. . e e 5
24 RelevantCaseStudies. . . . . . . . . . . L. L e e e 6
2.5 Adjoint Method for Optimization . . . . . . . . . . . . . ... e 7
2.6 KeyTakeaways . . . . . . . o v v v v i i i e e e e e e e e e e e e 9
Methodology 11
3.1 Mesh Generation For Body Force Simulations . . . . . . . ... ... .. ... ........ 11
3.1.1 UMG2 . . . L e e e e e e e e e e e s 11
3.1.2 MeshTemplate. . . . . . . . . . . . e e e e e e e e e e e 11
3.1.3 Singlevs. Multi-ZoneMesh . . . . . . . . . . .. L 12

3.2 Hall'sBodyForceModel. . . . . . . . . . . . . e 13
3.2.1 Governing Equations. . . . . . . . . . .. Lo e e 14
3.2.2 Compressibility Correction . . . . . . . . . . . ... e 15
3.2.3 Camber Normal Representation of an Airfoil. . . . . . . . .. ... ... ... ... .. 16

3.3 Implementing the Body Force ModelinSU2 . . . . . .. ... ... ... ........... 18
3.4 Extension of SU2’s Adjoint Solver to Body Force Modeling . . . . . .. ... .. ... ..... 19
3.4.1 AdjointSolverinSU2 . . . . . . . . .. L e e 19
3.4.2 Adjusting Source Code for Sensitivity Calculation . . . . . . . . .. ... ... ..... 21
3.4.3 Adjusting Source Code for Total Gradient Calculation . . . . . . . .. ... .. .. ... 22

35 KeyTakeaways . . . . . . o o v v v vt i e e e e e e e e e e e e e e 23
Case Studies 25
4.1 TestCasesand SimulationSetup . . . . . . . . . . . .. L L e 25
4.2 CodeVerification . . . . . . . . . . L. e e e 25
42.1 Non-CamberedStator . . . . . . . . . . . . . .. L e 26
4.2.2 Non-Cambered Stator: Comparing Body Force with PhysicalBlade . . . . . . . . .. .. 29
423 CamberedStator. . . . . . . . . . L. e e 30
424 Non-CamberedRotor . . . . . . . . . . . . . L e 31
4.2.5 Cambered Rotor: WhittleFan . . . . . . . . ... ... ... ... L 0., 34
4.2.6 Accuracy Comparison of BFM withopenFOAM . . . . . . . . . ... ... ... .... 36
4.2.7 Numerical Errors. . . . . . . . . . . L e e e e e e e e 37

vii



viii Contents

428 CONVEIZENCE. . . . v v v v v v e e e e e e e e e e e e e e e e e e e e e e e e 38

4.3 Assessment of Computational Performance . . . . . ... ... ... ..o L0000 39

4.3.1 Stator . . . ..o e e e e e e e e e e e e e 39

432 WhittleFan . . . . . . . .. e 40

4.4 KeyTakeaways . . . . . . o v v v v vttt e e e e e e e e e e e e e 41

5 Adjoint-based Optimization using a BFM 43

51 TestCaseSetup . . . . . . . . . . o o i e e e e e 43

5.2 Mesh Sensitivity. . . . . . . . . L L 43

5.2.1 Adjoint Flow Field withBodyForces . . . . . . . . . . . . .. ... ... ... ..... 44

5.2.2 Effectof Angle of Attackon AdjointFlow. . . . . . . . ... ... ... .. .. ... 45

5.2.3 Computational Performance of BF AdjointSolver . . . . . . . . ... ... ... .... 46

5.3 Computationof Total Gradient . . . . . . . . . . .. ... .. .. . o o 46

54 KeyTakeaways . . . . . . . . . . . o i e e e e e e e 47

6 Conclusions 49

6.1 ConcludingRemarks . . . . . . . . . .. L e 49

6.2 Recommendations for Future Work. . . . . . . ... ... 0oL oo oo 50

6.2.1 Technical Improvements. . . . . . . . . . . . . . Lo 50

6.2.2 Research Suggestions . . . . . . . . . . ... e 50
Bibliography

A Direct Implementation A-1

Al ReSOUICEeS. . . . . . . . . e e e e e e e e e e A-1

A.2 Difference Between Structured and Unstructured Grids . . . . . . . . . ... ... ... ... A-1

A.3 Source Code Adaptation for the DirectSolver. . . . . . . . . . .. ... ... ... ...... A-1

A4 RotorTestCase . . . . . . . . . o i i i it e e e e A-3

A.5 Developmentinto3D-capableCode . . . . . . . . . . . ... ... A-3

A6 Computational Time . . . . . . . . . . . . o e e e e e e e A-4

B Adjoint Implementation B-5

B.1 Custom Objective Function. . . . . . . . . . . . . . . 0 e B-5

B.2 Mesh Sensitivity. . . . . . . . . L L e e e e B-5

B.3 Source Code Adaptation for the AdjointSolver . . . . . . . . . .. .. ... ... ....... B-6

B.3.1 MeshSensitivity . . . . . . . . .. L e B-6

B.3.2 Total Gradient . . . . . . . . . . .. e e e e e B-7

B.4 Total Gradient Validation . . . . . . . . . . . . . . . e e e B-7



List of Figures

2.1 Comparison of flow through a physical blade passage and body force representation . . . . . . . 4
2.2 Source code structure of the open-source software SU2 . . . .. ... ..... ... ........ 6
3.1 Structure of the methodology . . . . . . . . . .. .. . 11
3.2 Layout of mesh used for body force model testcases . . .. ... ... ... .. .. ........ 12
3.3 Meshes used for test case simulations . . . . .. ... ... .. L L oL 12
3.4 Layout of Hall’s approach to generate the normal body force component f . . . . ... ... ... 13
3.5 Calculation of flowdeviationdusingW-m. . . . . . . .. ... e 14
3.6 Camber normal 7 and tangent  vector decomposition for an arbitrary point on the camber line 16
3.7 Two-dimensional representation of Whittle fan blade at mid-span . . . . .. ... ... ... ... 17
3.8 Code adaptation strategy for directsolver . . . . . . ... ... ... .. ... .. L 18
3.9 Structure of CDiscAdjFluidDriver::Run . . . . .. .. ... .. . . . e 20
4.1 Flow visualization of body force representation of a flat plate stator test case at @ = 5, B = 20,
and R=1 . . . . o 27
4.2 Comparison between analytical calculations and simulation values of static pressure loss for
flat plate Stator tEStCASE . . . . . v o v o e e e e e e e e e e e e 27
4.3 Variations in flow angle when varying the angle of attack or blade number for a flat plate stator
bodyforce representation . . . . . . .. ... L L e 28
4.4 Flow angle, x-momentum, total pressure, and pressure ratio for a flat plate stator at @ =5, B =
20, and R =1 . . . o e e 28
4.5 Comparison of flow result between physical blade (top) and body force representation (bottom)
forflat platestatorat @ =5, B=20, R=1 . . . . . . 0 i v ittt e 29
4.6 Comparison between physical blade and body force simulation of flow characteristics for the
non-cambered statorata =5, B=20,and R=1 . . . . . . .. ... .. ... 29
4.7 Camber line of the cambered statortestcase . . . . . .. ... .. ... ... .. .. .. ... 30
4.8 Flow deflection, total pressure, and pressure ratio comparison between a cambered and
non-cambered Stator . . . . . ... L. e e e e 30
4.9 Absolute flow angle over domain for variation in @ and Q for rotor testcase . ........... 31
4.10 Pressure ratio over domain for variation in ¢ and Q for rotor testcase . . . . .. ... ... .. .. 32
4.11 Rotor exit velocity triangles, where an increase in « or Q lead to different configurations . . . . . 32
4.12 Total pressure over domain for variation in @ and Q) for rotor testcase . . . . . .. ......... 32
4.13 Total relative pressure over domain for variation in « and Q for rotor testcase . . ... ... ... 33
4.14 Comparison of analytical and simulation total enthalpy rise for rotor testcase . . . . . . ... .. 33
4.15 Whittle fan body force and physical blade flow visualization for Q=2362 . . . . . ... ... ... 34
4.16 Absolute flow angle and total relative pressure comparison between body force and physical
blade representation of WhittlefanatQ=2898 . ... .. ... ... ... .. ... .. ... .. .. 35
4.17 Total pressure and x-momentum comparison between body force and blade simulation of
Whittle fan at Q =2898 . . . . . . . . .. e 35
4.18 Comparison of absolute flow angle variation between body force and blade simulation for the
Whittlefan . . . . . . e 36
4.19 Comparison of flow angle, x-momentum, total pressure, and pressure ratio for stator test case
between body force implementations in SU2and openFOAM . . . . . .. ... ........... 36
4.20 Comparison of absolute flow angle, x-momentum, total pressure, pressure ratio, and total
relative pressure for rotor test case in SU2 and openFOAM . . . . . .. .. ... ... ... ..... 37
4.21 Numerical error in total relative pressure for body force rotor testcase . ... .. ... ... ... 38

4.22 Mass flow residual behavior for all three zones of the stator testcase ata =5, B=20,and R=1. 39



List of Figures

4.23 Simulation time, total pressure, and flow angle comparison of stator test case for physical blade
simulation and body force simulation with decreasing gridsize . . . . ... ... ... ... ....
4.24 Simulation time, total and total relative pressure comparison of Whittle fan at Q = 2362 for
physical blade simulation and body force simulation with decreasing gridsize. . . . . . ... ..

5.1 Full domain comparison of adjoint density ¥ for registered and non-registered source terms
of non-cambered statorat @« =5, B=20,and R=1. . . . . . . . v v v i i i i
5.2 Adjoint density ¥; and y-momentum W3 for stator at a = 5, B = 20, and R = 1, optimized for
cumulative V), atoutflow of body forcezone. . . . . ... ... . oL oL
5.3 Adjoint density ¥, and y-momentum W3 compared for three different values of a: 5, 10, and 20.
Simulation is optimized for cumulative V), at outflow of body force zone. B=20and R=1. . . .
5.4 Convergence of direct and adjoint runs for mesh sensitivity calculation . . . . .. ... ... ...

A.1 Flow angle and x-momentum for the rotor test case at « =30, B=20,and Q=500 .. ... ...
A.2 Momentum in x-direction and pressure ratio of stator test case for physical blade simulation
and body force simulation with decreasing gridsize . . ... .. ... .. ... ... .. ... ...
A.3 Flow angle and x-momentum comparison of Whittle fan at Q = 2362 for physical blade
simulation and body force simulation with decreasing gridsize . . . . . ... ... .. ... ....

B.1 Adjoint density ¥, in the body force zones for three different objective functions . . . . ... ..
B.2 Adjoint x-momentum ¥, and energy ¥, for non-cambered statorat @ =5, B=20,and R=1 . .
B.3 Adjoint x-momentum ¥, and energy ¥, for non-cambered stator at a: 5, 10,and 20 . . . . . ..
B.4 Computation of total gradient using flow outputateachnode ... .. ... ... ...... ...



4.1
4.2
4.3
4.4

5.1

List of Tables

Test case overview and specifications for body force implementation in direct solver . . . . . . . 25
Common simulation configurations for direct solver testcases . . . ... ... ........... 26
Variation in numerical error for rotor test case at @ = 10, B =20, and R = 1 when Q isvaried. .. 38

Numerical error percentages of total relative pressure for rotor test case at « =40, Q =500, R=1 38

RAM requirements and time per iteration for direct and adjoint runs



This page is intentionally left blank.



Nomenclature

List of acronyms

Acronym Definition Chapter
AD Algorithmic Differentiation 2,3
BFM Body Force Model 1-4
BLI Boundary Layer Ingestion 1,2
BWB Blended Wing Body 1
CFD Computational Fluid Dynamics 2,3
CoDiPack Code Differentiation Package 3
FD Finite Difference 3,5
GBD GNU Debugger 4
GMRES Generalized Minimal Residual Method 3
HB Harmonic Balance 2
IDE Integrated Development Environment 4
LE Leading Edge 4
LES Large Eddy Simulation 3
NURBS Non-Uniform Rational B-Spline 6
PDE Partial Differential Equations 2
RANS Reynolds-Averaged Navier Stokes 2
Su2 Stanford University Unstructured 1-6
TE Trailing edge 4
UMG2 Unstructured Mesh Generator 2D 3
URANS Unsteady Reynolds-Averaged Navier Stokes 1,2
List of symbols

Symbol Description

a Angle of local camber line tangent ¢ with respect to the meridional axis
«a Vector of design variables

B Number of blades

) Angle of flow deflection between camber tangent 7 and relative velocity vector W
e Specific total energy

F° Convective flux vector

Fvk Viscous flux vector

f Body force magnitude

[t Tangential component of the body force

[t X-component of the tangential component of the body force

It Y-component of the tangential component of the body force

fn Normal component of the body force

fn, X-component of the normal component of the body force

I, Y-component of the normal component of the body force

G Fixed-point operator

hy Total enthalpy

hy,, Total relative enthalpy

0 Angle between camber normal vector 7 and relative velocity W

] Objective function

K Compressibility factor

M Mach number

uvk Viscosity

xiii



xiv List of Tables

i Camber normal unit vector
g Tangential component of camber normal unit vector
iy X-component of camber normal unit vector
ity Y-component of camber normal unit vector
iz Z-component of camber normal unit vector
p Pressure
22 Total pressure
Pt Total relative pressure

Generic source term vector

Radius

Residual vector

Density

Local blade pitch

Camber tangent unit vector

X-component of camber tangent unit vector
Y-component of camber tangent unit vector
Z-component of camber tangent unit vector
Tangential velocity

Conservative variables

Adjoint vector

Absolute velocity

Velocity vector

Relative velocity

Grid points of the volumetric mesh

Mesh node sensitivity

Grid points of the surface mesh

Adjoint vector

Rotational speed

Angular velocity

EDEMMMNIIIQUIOHIIT DD IO
<
s



Introduction

As aviation continues to grow, engines must become more efficient to reduce fuel burn to acceptable
levels. Incremental upgrades and novel designs to reach these goals are not completed overnight; design
of engines can take years or even decades. Accelerating the launch of these engines to the market requires
faster turbomachinery analysis as well as design optimization. Turbomachinery’s inherent unsteadiness
demands time-consuming, full-annulus, unsteady Reynolds Averaged Navier Stokes (URANS) simulations
to resolve all relevant flow behavior. Analysis of novel concepts such as boundary layer ingesting (BLI) fans
can take upwards of two weeks [Gunn and Hall, 2014]. Even incremental design upgrades require high
computational power. The design process requires a large number of these runs to first reduce the design
space and subsequently find an optimal design. Instead of solely resorting to high-fidelity simulations, a
computationally inexpensive method is necessary to narrow down the design space. This relieves conceptual
design from more tedious simulations while retaining them for detailed analysis, producing results in a
much shorter time span. A body force model (BFM) meets these requirements. Design optimization can be
shortened further by combining it with the adjoint method, a method for computing gradients that is less
computationally expensive than conventional methods. This thesis focuses on using a body force model in
an adjoint solver to reduce the time required for design optimization.

A BFM represents the forces exerted by a blade row on the flow using volumetric source terms added to the
governing equations. It does not require the physical blade to be in the computational domain, which allows
considerable reduction in mesh refinement. In 2015, [Hall, 2015] developed an inviscid, incompressible BFM
that has been confirmed to accurately represent a fan in studies by [Hall et al., 2017], [Defoe et al., 2018a],
and [Hill and Defoe, 2018]. Much of the work related to body force models is in the field of BLI fans, however
it can be applied to all types of axial turbomachinery. Hall's BFM has been implemented into a number of
direct solver but has never been extended for use with the adjoint solver. The open-source computational
fluid dynamics (CFD) solver SU2 makes this possible. SU2 is a multi-physics partial differential equation
(PDE) solver with a modular code structure. Its built-in adjoint solver performs computationally inexpensive
optimization using the adjoint method [Jameson, 1988]. Partial derivatives of the flow with respect to the
design variables are substituted out of the gradient computation, leading to a method whose computational
time is independent of the number of design variables [Wang and He, 2010].

The goal of this thesis is to implement Hall's BFM in SU2’s direct solver and subsequently extend it for
use with the adjoint solver. Body force simulations reduce computational requirements for blade row
analysis, while an extension to the adjoint solver will shorten conceptual design by optimizing a camber
line representation. Quick investigation of preliminary design concepts are then possible, while detailed
design is left to higher-fidelity methods. This capability has never been proven before, and when successful
will be a step towards faster design of incremental upgrades and novel design concepts for aircraft engines.

1.1. Research Question
After a study on the literature of body force models a research question is defined. This shapes the work in
this thesis and is the driving force behind the results presented throughout this report.



2 1. Introduction

Research Question: What is the computational performance and accuracy of a body force model compared
to full-bladed computations when used for analysis and design optimization of 2D axial
fans in SU2?

(@) Isthe software’s source code able to support the addition of body forces?

(b) What are the key parts of SU2’s source code that need to be adapted to ensure successful
implementation of a body force model in the direct and adjoint solvers?

() Does the resulting direct flow obtained using a body force model resemble that of conventional
simulations run in SU2?

(d) Do the resulting adjoint flow and sensitivities obtained using a body force model resemble what is
expected from theory?

(e) Can the model be implemented such that it supports all geometries and configurations (for
turbomachinery applications)?

(f) What are the benefits and drawbacks of using a body force model in SU2?

1.2. Originality of Work

The output of a research project should be original and relevant to the scientific community. The points
below highlight how the work presented in this thesis meets those criteria.

* Hall’s body force model is implemented in the direct solver of SU2, which has up until this point never
been done.

¢ The model is verified according to theory, implementation of Hall's model in another CFD solver, and
by comparing it with physical blade simulations of a NACA0012 stator and the Whittle fan.

¢ Computational time reduction when using body forces as compared to physical blade simulations is
confirmed. Although this has been done before in other solvers it has never been performed in SU2. An
analysis into the flow accuracy as mesh refinement is reduced is included as well.

* The body force model is extended to SU2’s adjoint solver. Mesh sensitivity is calculated with body force
source terms registered, which has never been done before in any CFD solver.

1.3. Limitations of the Work

Two factors have hindered obtaining all the results necessary to answer both research questions fully.
The time constraint associated with a thesis made calculation of the total gradient in SU2’s adjoint solver
unobtainable; a segmentation fault lasting six weeks being a key driver for this. Furthermore, limited
experience in C++ slows down the coding process and lengthens the time required for implementation
and troubleshooting. A substantial amount of time, however, was spent understanding the code’s structure;
therefore knowledge on how to adapt the code to compute total gradient is available. To speed up the learning
process for the person following up on this research, the methodology for total gradient computation is
included in this report while the results are not.

1.4. Structure

Background information on body force models, SU2’s code structure, and the adjoint method are presented in
Chapter 2. Next, Chapter 3 presents the methodology, which covers the body force model’s implementation
and its linking with the adjoint solver. It will elaborate on the calculations behind the model and camber
normal representation, meshing of the test cases, and how SU2’s source code is adapted for both the direct
and adjoint solver. Following this, Chapter 4 elaborates on the results of the direct implementation. Anumber
of test cases are presented, which are compared to theory, their physical blade simulation counterpart, or
the implementation of Hall’s model in openFOAM. Also included are an evaluation of computational time
reduction when using body forces. Chapter 5 dives into the sensitivities and total gradients obtained from
running the adjoint solver with body forces. Finally, Chapter 6 presents conclusions of the thesis, proposes
recommendations for technical improvement of the implementation, and suggests a number of future
research directions.



Background

This chapter starts by going over the literature on body force models, which is presented in Section 2.1. A new
computational fluid dynamics (CFD) solver called SU2 is covered in Section 2.3. Some relevant case studies
are presented in Section 2.4 that look into previous implementations of body force models in CFD solvers.
Finally, in Section 2.5 the adjoint method is explained and a background on the relevant literature presented.

2.1. Introducing Body Force Models for Fan Analysis

Current developments in aviation are aligned with the mindset of reducing (fuel) costs. One way this goal
will be achieved is through novel engine design. This includes incremental improvements in blade design
as well as completely new concepts such as boundary layer ingestion (BLI). Conceptual design is usually the
starting point, which uses lower fidelity analyses to narrow down the design space. Following this is detailed
design. Full-annulus unsteady Reynold’s Averaged Navier-Stokes (URANS) simulations are usually run for
both, which resolves many flow characteristics of turbomachinery but generally makes it a tedious process.
While accuracy with this type of simulation has been shown to qualitatively reflect experimental behavior,
[Gunn and Hall, 2014] notes that runs on a unit cluster take on the order of two weeks to complete. While
its necessity for detailed design cannot be denied, having to run calculations such as these for initial fan
design is time consuming and expensive. Reducing computational time while maintaining a sufficient level of
accuracy for (conceptual) design is possible when substituting physical blades with a body force model. Many
studies on the topic of body force modeling is related to BLI fans. Besides the reduction in mesh refinement, a
steady simulation can "effectively capture the principal features of fan response to BLI distortion" [Hall et al.,
2017]. This does not mean that a BFM cannot be run in an unsteady simulation, only that it allows a steady
simulation to be run even with the unsteady effects of distorted inlet flow. Despite this focus on BLI fans,
body forces can be used to model conventional fans as well, which will be the focus of this thesis.

2.2. Body Force Modeling

The concept of body force modeling started with [Marble, 1942], who represented blades by splitting them
into an infinite number of sections and approximating flow characteristics using forces. Since its inception
the approach has not varied much, with the main idea being that flow turning, enthalpy rise, and viscous
losses are approximated using a volumetric source term field. Over the years adaptations and developments
were made to the concept, with the most notable ones being done by [Gong, 1999], [Peters, 2014] and
[Hall, 2015]. Gong’s model was innovative in that the body forces responded to local flow characteristics,
allowing it to react to physical changes in the flow [Thollet, 2017]. Changes to the flow were made using a
pair of forces: while a component normal to the streamline approximated flow turning and enthalpy rise, a
parallel component simulated viscous losses [Gong, 1999]. Fifteen years later [Peters, 2014] adapted Gong’s
model by (1) reformulating the parallel force to accurately capture off-design losses and (2) including a
radial component of the force to account for blade lean. Most recently, [Hall, 2015] formulated an inviscid,
incompressible body force model that does not require calibration using single-passage RANS computations.
The general concept behind body force modeling is shared among all authors and is depicted in Figure 2.1,
which visualizes the difference in flow over a blade row for a physical blade and its body force representation.
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4 2. Background
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Figure 2.1: Flow through a physical blade passage (left) and a body force model approximation of the flow (right). A normal (f;) and
parallel (fp) force approximate flow turning and drag/losses. The camber normal () is used for computation of the body force and is split
in tangential (fg) and meridional (fix) components. Without physical blades deflecting flow around the surface it is uniform over the
length of the domain, exiting without tangential variations in velocity [Peters, 2014].

Hall’s model has been used in studies on BLI by [Hill and Defoe, 2018], [Defoe et al., 2018a], [Defoe et al.,
2018b], [Hill, 2017], and [Thollet, 2017], with its popularity attributed to an accurate representation of flow
distribution and lacking the need for calibration. It is for these reasons as well as its simplicity that it is chosen
as the model used in this thesis. This does not mean the model can replace full-annulus URANS simulations,
as it will not resolve secondary flow to that level. It does, however, "allow the estimation of flow fields using
steady CFD methods, and has been compared to experimental data and high-fidelity computations and
shown to effectively capture the principal features of fan response to BLI distortion" [Hall et al., 2017]. Using
a BFM is therefore useful in conceptual design to narrow down the design space, but higher-fidelity methods
do not lose their importance for detailed design. Section 3.2 explores Hall’s model and its definitions as well
as how it is implemented into the governing equations. Confirmed by [Defoe et al., 2018a] and supported by
other research, the use of body force models reduces computational cost by 2 to 3 orders of magnitude. This
significantly reduces the required computational power and simulation run time for blade design.

In Hall’s body force model, compressibility and viscous effects are neglected. Previous models used a pair of
forces: a normal one for flow turning and a parallel one for entropy generation (drag). Hall does not include
the parallel term because at the design point "the contribution of the parallel force to flow turning, pressure
rise, and enthalpy rise is much smaller than the normal force" [Hall et al., 2017]. Furthermore, because it is
only used to approximate flow and not perfectly resolve it, a viscous term is not necessarily required.

Running viscous simulations would have to be performed using either Gong’s or Peters’s models, or an
adaptation of Hall’'s. Ideally the development of an entropy term based on first principles could simplify
viscous simulations. This is incredibly complicated however, as the mechanisms for loss generation are
extremely complex and probably impossible to determine using first principles [Thollet, 2017].! To focus the
scope of the thesis Hall’s inviscid model will be implemented, allowing efforts to be directed at one method.
This work will concentrate on a two-dimensional blade row, as this will limit complexity and allow all effort
to be directed to implementation of the model.

Instead of looking at the blade passage as in Gong’s case, Hall looks directly at the blade camber distribution
and generates a force using the deviation of the flow with respect to the blade’s camber. The magnitude of
the force is calculated as shown in Equation 2.1. When present the force acts normal to the direction of the
streamline and acts to reduce the deviation angle § between the flow velocity W and the camber tangent
[Hall, 2015]. A visualization of the model is presented in Figure 3.4. The model can be applied to both stators
and rotors.

1
|79

_omsiw2l
|f|—2n52W S 2.1)

1A calculation from first principles is one starting from established laws of nature without using assumptions or models. In this case
Thollet defines first principles as primitive flow characteristics that do not require calibration.
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Where W is the magnitude of the relative (rotor) or absolute (stator) velocity; § is the angle between the
camber tangent ¢ and velocity W; s is the local blade pitch, which is equivalent to % (with B being the
number of blades and R the radius); and fig is the tangential component of the camber normal unit vector.

2.3.SU2

Some CFD solvers that have already been used with body force models are ANSYS CFX [Hill, 2017], Numeca
FINE/Turbo [Peters, 2014], elsA [Benichou et al., 2019], and openFOAM.? Of the four software packages
openFOAM is the only one that is open-source and therefore cheaper for academia, however its usability
can be tedious, especially for developers. Further development and understanding of the body force model
requires an open-source solver with code that is modular and easily adaptable. A software package that meets
these requirements is SU2. SU2 solves a set of partial differential equations (PDEs), which are used to model
multidimensional problems such as aerodynamics, heat transfer, and sound propagation. It encourages
development from the community, an example being a team from the TU Delft who recently implemented
a discrete adjoint solver for turbomachinery. To ensure code development does not become fractured if
not coordinated properly [Economon et al., 2016], safety nets such as code review (Git pull requests), bug
reporting, and a structured approach to development are in place.

Even with numerous universities working on developing SU2’s capability, a body force model has never been
implemented into the code. Other (proprietary) software such as ANSYS CFX, elsA, and Turbostream do have
Hall's BFM implemented. Adding this capability to SU2 would allow (conceptual) turbomachinery design to
be carried out using open-source software by capitalizing on the adjoint method. Modeling of fluid dynamics
for viscous and compressible flow in SU2 is governed according to the Navier-Stokes equations. The PDE

form is:
ou

5 TV F -Vt =, 2.2)
where U, F¢, F'¥*, and Q are the conservative variables, convective fluxes, viscous fluxes, and generic source
terms respectively [Palacios et al., 2014]. Implementation of the body force model into a program such as
SU2 requires the addition of source terms (Q in Equation 2.2) to the momentum and energy equations. This
is covered in Section 3.3.

Written in C++, SU2’s source code is based on object-oriented programming, which uses classes throughout
the code for modularity (see Figure 2.2). It should be noted that a disadvantage of this object-oriented
structure is "the encapsulation of data in multiple classes, which can lead to performance losses" [Economon
etal., 2016]. After compilation a number of executables are created, the two most relevant for this thesis being
SU2_CFD and SU2_CFD_AD.3 These run the direct or adjoint solver respectively, each with numerous options
for the type of flow, numerical method, and boundaries used. A configuration file is necessary to set up a
simulation, which contains all settings related to the run.

Starting from the top, SU2 has a CDriver class that handles the process of running a (multi-) physics
simulation. It instantiates a number of classes that set the process in motion. For SU2_CFD these are,
amongst others, CConfig, CSolver, Cintegration, and Clteration. The CSolver class contains a number of child
classes that can be instantiated when a certain type of solver is needed, for example Euler, Navier-Stokes, or
adjoint [Palacios et al., 2013]. Each solver contains subroutines that compute, amongst others, convective
fluxes, viscous fluxes, and source terms over the mesh. These are part of the CNumerics class. Figure 2.2
shows the class structure employed by the software, with clear links between classes that interact with each
other by either instantiating or being instantiated.

This work focuses on implementation feasibility, meaning solver complexity will only make the process
more time consuming. That is why a compressible Euler solver is used in this thesis. Turbulence models and
viscosity makes for unnecessary complexity, and are irrelevant when an inviscid body force model is used. An
implicit formulation of the Euler equation is used with the generalized minimum residual method (GMRES)
as the linear solver [Saad and Schultz, 1986]. To compute numerical spatial gradients the Green-Gauss
method is used. The finite volume method is used to discretize the PDE’s. Besides Roe [Roe, 1981] and JST
[Jameson, 2017], a wide range of numerical methods are available for discretization of the convective fluxes.

2Jeff Defoe’s Turbomachinery and Unsteady Flows group at the University of Windsor has successfully implemented a 3D version of
Hall’s body force model in openFOAM but has not yet published their results.
3All of the executables created by SU2 are described in detail in [Palacios et al., 2013]



6 2. Background

| SU2_CFD |
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Notation: s ﬂ Class B is a child class of class A
—— Class B is instantiated by class A

Figure 2.2: Source code structure of the open-source software SU2. A complex class structure allows for easy adjustment of the source code
to meet the needs of future changes to the software [Economon et al., 2016].

While upwind schemes are generally less dissipative, the central scheme JST is used for this work due to its
robustness. This is because early testing showed convergence issues when an upwind scheme was used.
Second and fourth order dissipation coefficients are taken as 0.5 and 0.02 respectively.

Boundary conditions are used to specify the physical setup of the problem. Each boundary is identified using
a marker, the relevant ones for this work being inflow, outflow, periodic, Giles, mixing plane, and Euler wall.
Both the inflow and outflow are defined using a number of flow variables. At the inlet stagnation pressure
and temperature are defined along with the velocity unit vector. Static back pressure is defined at the outlet.
Periodic boundary conditions are defined using the donor and receiving markers, which ensure flow correctly
transfers from one boundary to the next. Giles conditions are used in turbomachinery simulations where flow
characteristics are defined according to an averaged value at that location so that reflections at the boundary
are neglected [Giles, 1991]. Both this boundary condition and the mixing plane, which is used to average
out flow characteristics at a boundary, were used solely in the Whittle fan simulation. Finally, an Euler wall
boundary is used for the surfaces of a physical blade (when simulated).

2.4. Relevant Case Studies

The literature on implementation of body force models in CFD solvers is not as extensive as one might think,
however there are a number that are worth mentioning. While [Gong et al., 1999] and [Horlock and Marsh,
2007] investigate flow models for turbomachinery, there is no specification as to their implementation in
any form of software. In 2014 [Peters, 2014] implemented a body force model in Numeca FINE/Turbo. He
adapted the models and used them for an inlet design framework that captures inlet-fan and fan-exhaust
interaction as well as flow distortion at the interface. In 2015, [Hall, 2015] came up with his inviscid version
of a body force model. It is a widely-used model and in 2017 Hill and Thollet successfully implemented
it in CFX and elsA respectively. In the presence of various flow distortion, [Hill, 2017] extracted scaling
laws for transonic compressor performance. While this was directly implemented into CFX, [Thollet,
2017] used an independent Python module coupled to the solver. Adaptations were made to the models
and comparisons were made between them to analyze how certain additions could increase accuracy of
fan-airframe interaction simulations.

Implementation of Hall’s model into CFX is used extensively at the University of Windsor by [Defoe et al.,
2018al, [Defoe et al., 2018b], [Hill and Defoe, 2018], and [Minaker and Defoe, 2019] for a range of applications.
Validation of Hall's model for the Whittle fan using an experimental setup was performed by [Hall et al.,
2017]. Furthermore [Benichou et al., 2019] also implemented an adapted version of Hall's model (in
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elsA) and compared results to an experimental rig, confirming its capability of accurately representing
flow through a fan stage with distorted inlet flow. Numerous solvers have therefore seen Hall’s body force
model implemented successfully, however it has never been done with SU2. This is relevant because SU2
is open-source and it has a built-in adjoint solver. Never has a body force model been combined with the
adjoint method. Blade shape optimization using body force models is a completely innovative solution and
has the potential to considerably shorten conceptual blade design.

2.5. Adjoint Method for Optimization

When performing optimization the goal is to minimize an objective function, denoted by J, which usually
represents efficiency or some other performance-related metric. The shape to be optimized is defined using
a number of design variables, denoted by @. These design variables are varied until the optimal value of the
objective function is found. This is done using stochastic or gradient-based method, the former performing
global searches for an optimum while the latter calculates gradients in multiple directions, chooses the best
option, and subsequently moves towards the optimum [Li and Zheng, 2017]. The adjoint method falls under
the class of gradient-based methods.

If the set of design variables e is large, derivatives of the objective function with respect to each of these
need to be computed. If using finite differences, this requires solving the flow field every time a design
variable is perturbed, and because the computational cost is proportional to the number of design variables,
is extremely costly. The adjoint method solves this problem as its computational cost is independent of the
number of design variables, which is the reason for its popularity in turbomachinery design.* A downside of
the method is its complexity, which according to [Wang and He, 2010] has curbed its popularity. There is also
the high memory requirement associated with the discrete adjoint method.

Adjoint Equations

An objective function J (Equation 2.3) is defined as a function of the flow U and shape variables a. It is
supplemented by the flow equation R, which is equal to zero in steady-state problems and always has to be
satisfied (Equation 2.4). As noted by [Pini, 2013], another interpretation (not used in this thesis) of the flow
equation is as an equality constraint for the minimization problem.

J=]U(a), a] (2.3)
RU(a),a] =0 (2.4)

Differentiating Equations 2.3 and 2.4 using the chain rule, both can be rewritten as

dj 8] 98] dU

da oa U da 25
OR ORdU _ 26
da 0Uda )

The term g—g in Equation 2.5 requires solving the flow for each design variable adjustment. This is particularly

time consuming when the design variables e are numerous. However, the calculation of this term can be
avoided by using substitution, which is the basic idea of the adjoint method. First, Equation 2.6 is re-arranged
with ‘é—g on the left-hand side, which gives Equation 2.7.

au aR(aR)-l @
da da\0U ‘
This can then be substituted into Equation 2.5, eliminating the need to compute the derivative of the flow for
each design variable. This gives Equation 2.8:

dj _ 9] 9] (aR)—l OR 2.8
da da 0U\3U| da ‘
N e
N 4

4Understanding of the adjoint method can be complicated, which is why the reader is referred to [Martins and Hwang, 2013], [Giles and
Pierce, 2000], and [Li and Zheng, 2017] for supplementary explanation on its workings.
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Where Y is the adjoint vector and Equation 2.9 the linear system of adjoint equations

oR\T aj\T
(@) ¥= (ﬁ) @9

The objective sensitivity can then be re-written as:

dj _ 9] rOR

—_—= 2.10
da Oa oa (210
Computational cost of the gradient is now independent of the number of design variables and requires
solving for the adjoint vector (Equation 2.9) and the partial derivatives. Algorithmic Differentiation (AD)
of relevant routines in SU2 is performed by Code Differentiation Package (CoDiPack), which computes the
partial derivatives required for the adjoint method.

Sensitivities Computation Using an Adjoint Solver

Calculating the objective sensitivity (also called the total gradient) using SU2’s adjoint solver is done using a
product of three sensitivities. Due to the objective function’s dependence on the mesh, this needs to be taken
into account in the gradient’s computation. By using the differentiation chain rule, the total sensitivity can
be written as shown in Equation 2.11. X and X, r are the vectors of grid points of the volumetric mesh and
surface mesh respectively.

dj _ aj dX dXsurf

= === 2.11
da dX dXg,r da ( )

dj .. ax dXsurf .
Where ¥ is the objective sensitivity, 5-— Xeur the mesh sensitivity, and —;_~ the geometric sensitivity. The

objective and mesh sensitivity can be calculated directly in SU2 [Palacios et al., 2014]. Computation of
the geometric sensitivity can be performed using the finite difference (FD) method; while tedious it is still
considerably cheaper than calculating the flow and adjoint solutions. AD can also be used for the mesh and
geometric sensitivities provided that there is access to the mesh generation and deformation code.

Discrete vs. Continuous

Two main approaches exist for the adjoint method, namely discrete and continuous. In the former the
flow equations are first discretized and subsequently linearized, whereas the latter performs these actions
in reverse. For both approaches, the final result is a set of discrete adjoint equations. The continuous adjoint
method has a lower computational requirement and has a simpler code structure. On the contrary, a discrete
adjoint method is straightforward and provides an exact value of the discrete objective function gradient
[Li and Zheng, 2017]. In theory, both approaches should lead to the same value of the computed gradient,
assuming the flow solutions are smooth [Giles and Pierce, 2000]. For this thesis the discrete adjoint method
was chosen. Linearizing the governing equations is a complex process and requires significant analytical
work if the equations have not been discretized in advance. Once discretized though, linearization is a
simple process that can be automated using Algorithmic Differentiation (AD). "AD was developed based on
the observation that any simulation code, regardless of its complexity is merely a sequence of elementary
operations whose differentiation rules are well known" [Zhou et al., 2015]. Its benefits include a lack of
truncation error, which gives it a much better accuracy than FD methods.> CoDiPack is included in SU2
and computes gradients of all relevant routines in SU2 using AD when the source code is compiled.

Applications of the Adjoint Method

While the adjoint method has been around for some time in the field of mathematics, its use for optimization
was established by [Jameson, 1988]. He demonstrated the method’s capability to perform optimization
without depending on large calculations of the flow with respect to design variables. Since then the adjoint
method has been popular in the turbomachinery design community, specifically due to the large number of
design variables required when defining blades and their profiles. Since the turn of the century numerous

Sprinciples of AD are beyond the scope of this thesis. For a more extensive description of AD and its working principles in SU2 the reader
is referred to [Ferndndez, 2017].
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studies have looked into using adjoint in turbomachinery design. Using Bézier curves, [Arens et al., 2005]
applied the adjoint method using 2D Euler equations for a stationary case, concluding with the adjoint
method’s superiority over other optimization methods. In their work, [Florea and Hall, 2001] applied the
discrete adjoint method to unsteady, inviscid flow in 2D turbomachinery, likewise noting the effectiveness
of the method. A similar analysis was performed by [Yang et al., 2003], but using a continuous method
instead. Three-dimensional optimization of a turbine blade was performed by [Luo et al., 2011], they
included the application of constraints in the form of a penalty term as well as boundary conditions to
ensure thermodynamic accuracy.

More recently [Anand et al., 2018] used the adjoint method to analyze different parameterization approaches
and their effect on finding an optimum solution. It has also been combined together with the reduced-order
harmonic balance method by [Rubino, 2019] to perform more accurate optimization as compared to using
steady state methods. Areas of opportunity are also present, specifically in the area of combining the
reduced-order body force model with adjoint optimization. This has the potential for improving in the
speed of performing preliminary blade design and optimization.

2.6. Key Takeaways

The following points highlight the principal outcomes of this chapter.

* Body force models have the potential to reduce computational cost by 2 to 3 order of magnitude with
respect to conventional simulations.

o SU2’s modular code structure allows adding classes and functions for computing body forces.

e The cost of the adjoint method is independent of the number of design variables, leading to savings in
computational time for the large number of design variables used in turbomachinery.

e Up until now, a body force model and its adjoint counterpart has never been implemented in SU2.
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Methodology

This chapter covers the methodology applied during this research, which is visualized in Figure 3.1. First
mesh generation is covered in Section 3.1, which elaborates on generation of mesh and types used throughout
the work. Next, Hall’s body force model is covered in Section 3.2 and explained in detail. Its implementation
in the direct solver of SU2 is presented in Section 3.3. Finally, extension of the BFM to SU2’s adjoint solver is
explained in Section 3.4.

Hall’s Body Direct Solver Adjoint Solver

Mesh Generation Force Model Implementation Implementation

Figure 3.1: Structure of the methodology.

3.1. Mesh Generation For Body Force Simulations

Mesh refinement near blade surfaces is unnecessary as boundary layer flow does not need to be resolved. In
their work, [Defoe et al., 2018a] showed that a 30-fold decrease in grid count was possible when the reduced
order model was used. This retains the level of accuracy of the BFM, however a body force representation will
never perfectly represent flow. That is an inherent characteristic of a reduced-order model. Two programs
were used for in this thesis for meshing: UMG2 and Pointwise. Unstructured meshes were generated by
UMG2 while Pointwise allowed for structured ones to be created. The majority of this work uses unstructured
mesh while only a couple of runs are performed on a structured grid for comparative reasons. A short analysis
on the differences between the two is presented in Appendix A.2.

3.1.1. UMG2

UMG2 was developed as an unstructured mesh generator at the University of Brescia by [Ghidoni et al., 2006].
It is used for two-dimensional applications and is accessible to the Turbomachinery group at the Aerospace
Engineering faculty of the TU Delft.! It is run in a shell in the terminal and consists of four files that are edited
to meet the user’s needs: options, geometry, topology, and spacingcontrol. The options file allows for some
common parameters of the meshing to be varied. In the geometry file the mesh is defined using lines (either
NURBS or S-curves); this includes shapes in the mesh as well as the size of the domain. The type of boundary
is then defined in the fopology file, with options including inflow, outflow, wall, and periodic. Minimum and
maximum cell widths are then defined in spacingcontrol, which drives mesh refinement.

3.1.2. Mesh Template
To keep from varying meshes too often a standard mesh is created, which is visualized in Figure 3.2. Zone 2
represents the body force domain and is where the force is applied. When comparing with a physical blade

1UMG2 is not publicly accessible. For access the reader is referred to Dr. ir. Matteo Pini, who can grant access to the software and a
BitBucket repository containing manuals on mesh creation.

11
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Zone 3

Zone 2

Zone 1

Layout of mesh used for body force model test cases.

and downstream flow respectively. Due to the periodicity and lack of tangential variation in flow, the height of
the domain is insignificant. It must not be too narrow, however, as this may cause difficulties due to proximity

of the periodic boundary conditions. Dimensions for the domain are not given as they are irrelevant if a
comparison with a physical blade is not being made. A domain twice the height would produce the same

flow result but with higher computational cost. It is chosen to keep the dimensions the same and vary the

grid refinement as this is easy to change in UMG2.
question is presented in Figure 3.3a. Results from Section 4.3 show that further reduction in number of cells

is possible while obtaining similar results, but for consistency this mesh is not varied over the entire range of
on numerical errors near the interface between the upstream and body force zones. The difference between

the two mesh types is negligible and is presented in Appendix A.2. The unstructured mesh is shown in Figure

each zone. A total of 8560 cells were used: 3120 in zones 1 and 3 and 2320 in zone 2. The structured mesh in
stator and rotor test cases. An unstructured mesh with a similar number of cells was created to test its effect
3.3b.

Excluding the meshes used for computational time comparison, all counted the same number of cells in

mesh, the width of this cell must match that of the chord of the blade.? Zones 1 and 3 contain the upstream

12
Figure 3.2
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Non-conformal mesh at the interface can

(b) Unstructured mesh created using UMG2
introduce errors, which has been shown to happen when using unstructured mesh. A single zone mesh can

Meshes used for test case simulations. The structured mesh was constructed using 8560 cells while the unstructured one

contained 8378 cells.

be used, either with the body force defined in the zone or by specifying a range of x-coordinates over which
2017]. In this case both the axial and radial direction must match with the physical blade simulation.

to apply the body force. Initial tests indicate that specifying coordinates over which to apply the body force
model lead to errors and will requires a more complex code structure. Furthermore, specifying both the mesh

geometry and domain geometry introduces another source of error; a discrepancy between the two could
lead to segmentation faults. The other option is using a single zone mesh with the body force defined in

with a test case already present for openFOAM. The size of the domain varies slightly, with a shorter blade
2For three-dimensional setup of the body force model domain the reader is referred to Chapter 3.3 and 3.4 of Hill's dissertation [Hill,

For the comparison between openFOAM and SU2, different domain dimensions are used as these aligned
zone (0.5 vs. 1) and wider upstream and downstream zones (2.5 vs. 2).

comparison with 4740 cells in the upstream and downstream zones and 1020 in the body force zone.

Multiple zones increases complexity of the meshing process.

3.1.3. Single vs. Multi-Zone Mesh

(a) Structured mesh created using Pointwise

Figure 3.3
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that zone. This introduces convergence errors due to specifying both inlet conditions and body forces at the
inflow boundary. Due to these complications a multi-zone mesh is used where a single zone is selected over
which to apply the body force. This takes into account future applications where a blade row is meshed as a
zone, making it easy to specify where to apply the body force model.

3.2. Hall’s Body Force Model

Hall's model does not require calibration, a process which would otherwise be time consuming. It also
neglects viscosity, which simplifies the simulations that have to be run. This simplicity makes it an ideal
model for a first-time implementation, complexity can only lead to more errors. The force is a straightforward
computation similar to computing lift over an airfoil; it depends only on a number of local flow properties
that are generally available in CFD solvers. Equation 2.1 shows that there are only four variables that the force
depends on, which are the following:

¢ Flow deviation:
¢ Flow absolute (stator) or relative (rotor) velocity: W
¢ Blade pitch: s = %, where R is the radius and B the number of blades

* Tangential component of the blade camber normal: 7ig (2, for 2D)

When defining a blade row geometry, variables such as the blade pitch and blade camber distribution are
specified as an input for the simulation. Once a run has started, the flow’s velocity and direction can be
determined, which are necessary to calculate the magnitude of the body force. Every grid point in the source
term field requires computation of the force magnitude, which is then used as input for the equations of
motion to determine the flow characteristics at subsequent data points. An iterative process continues until
convergence is reached. Figure 3.4 visualizes Hall’s body force in the axial-tangential (x-y) plane as well as a
decomposition of the force into components to be used in the governing equations.
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Figure 3.4: Layout of Hall's approach to generate the body force component of his model. The diagram on the left shows the relative velocity
(W) and resultant body force (f) with respect to the blade camber rangent and normal (i and 7). On the right a decomposition of the
resultant body force is shown, first into camber tangent and normal components (f; and f) and then into their x and y components (ft,,
fry and fiy, fny).

From the diagram it is possible to determine the two components (f and f},) that make up the body force
in the governing equations (as shown in Equation 3.13). Simple geometrical relations are used to determine
the camber line normal (f,) and tangential (f;) components, and subsequently the flow tangential (f;,, fu,)
and meridional (f;,, f,) components of each. Equations 3.1 and 3.2 show the initial decomposition, with
Equations 3.3 and 3.4 representing the result of the second and third step for the tangential and normal
components of the force respectively.

ft = fsin(6) 3.1)
fn=—Fcos(6) 3.2)
ftxzft‘ix Jne=Jn-Nx fx=fr.+ [, (3.3)

fty:ft'iy Jny = fn- 1y fy=1u,+In, (3.4)
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Where iy, , fix, and i, are the camber tangent and normal x and y-components respectively. The forces f
and f, can then be placed into the steady 2D Euler equations and solved to compute flow values at each grid
or time point. In this two-dimensional representation no radial component is present. If a third dimension
is included this is also not the case, however it is naturally captured due to the force being projected on the
plane shared by the velocity and the camber normal [Thollet, 2017].

Computing flow deviation 6§ using W - n

Calculating the flow deviation 6 requires computing the angle between the velocity vector and x-axis, and
then subtracting the local angle of the camber tangent with respect to the x-axis. This step led to issues in the
initial implementation, which is why a simplified computation is used. Hall originally recognized the ease
of using this method and it has since been used in both CFX and openFOAM by [Hill and Defoe, 2018] at
the University of Windsor. The foundations of the concept lie in simple trigonometry and the relationship
between two angles at a right-angle to each other. It takes into account the changes in component directions
when the angle varies between positive and negative values.

Figure 3.5: For any arbitrary point on the camber line the angle between the normal and velocity vector 6 and the deviation angle § add
up to 90 degrees. This relationship is used to compute the flow deviation § using only the velocity vector W and camber normal n.

Figure 3.5 visualizes the camber line of an arbitrary airfoil with the camber normal vector and velocity vector
at some point on the chord. The angles 6 and § are shown as well. Coming up with the definition for 0 starts
with defining W - n:

W-n=|W||n|cos() (3.5)

Using the trigonometric relationship between the two angles 6 and &, which together add up to 90° (7 L ), it
is possible to come up with a replacement value for cos(0). This can be seen in Equation 3.8.

0=90-0 (3.6)
cos(6) = cos(90 — 0) 3.7
cos(8) = sin(d) (3.8)

Doing so and plugging it into the original equation for the dot product W-n gives the final form for calculating
the flow deviation § using only the velocity and camber normal vector (Equation 3.10). This last step uses the
knowledge that the magnitude of the normal vector n is equal to 1.

W-n=|W||n|sin(®) 3.9)
5 =sin"! (W") (3.10)
[W|

3.2.1. Governing Equations
The three-dimensional Euler equations for mass, momentum, and energy in Cartesian coordinates with body
forces are written as
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P pVy pVy oV, 0
p) PVx 9 pVi+p 4 PV2xVy 5 pViV; Fy
3 pVy +a pVyVy +@ pVy+p +& szyVZ = Fy (3.11)
oV, pV.Vy pVZVy oV +p _FZ_
pe; Vi(per+p) Vy(per+p) Vz(per+p) F-v

Initial implementation of the model will be performed for two-dimensional problems only to ease the work
load and test its capabilities. Getting rid of the third dimension leaves the x and y planes:

P PVx PVy 0
0| pVy 0 pVZi+p 0 pVyiVy Fy
o + 2 2 5 = (3.12)
ot | pVy 0x pVyVx o0y pvy +p _Fy_

pe; Vx(per+p) Vy(pe:+ p) F-V

Where V is the velocity vector with components Vy and V, and F is the body force source term as given by
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Where fiy, iy, iy, and #, are the x and y components of the unit vectors for the camber normal and tangent
respectively. The magnitude of the body force f for a 2D case (simplified from Equation 2.1) is computed as:

_n6W2
s|ny|

f (3.14)

Where s = % is the local blade pitch. Equation 3.14 can be decomposed into its x and y components using
Equations 3.1 through 3.4. Extending the problem to a three-dimensional case is a matter of reverting to the
original set of Euler equations in Equation 3.11 and adding the force component in the z-direction F;. If the
turbomachinery geometry is defined using cylindrical coordinates, a transformation to the Cartesian frame
of reference is necessary as SU2 is written in Cartesian coordinates. Also necessary is a new decomposition
of the body force that includes all three (x, y, z) force components present in the governing equations.
Three-dimensional implementation is beyond the scope of this thesis and is presented in Chapter 6 as a
recommendation for future work.

3.2.2. Compressibility Correction

Hall’s model was originally intended to be used for incompressible flow and as such discrepancies may
occur when higher pressure ratios or more modern transonic fans are modeled. In his work, [Thollet, 2017]
suggested a number of modifications to improve Hall's model. He included a blockage factor to account for
metal blockage effects; a parallel force to model viscous losses (drag); and a compressibility correction based
on local relative Mach number to include its effect on the lift generated. This compressibility correction
requires multiplying the force with a compressibility factor K, as shown in Equation 3.15.

fncomp = K'fninc (315)

Where the value K is determined using the Prandt-Glauert rule and Ackeret formula for subsonic and
supersonic flows respectively (Equation 3.16). To avoid the singularity around M =1 a limit of 3 is assigned
to the value of K (Equation 3.17), which was shown to be the maximum value that changes the solution
significantly [Thollet, 2017].

ﬁ, ifM<1
K = ﬁ ifM>1 (3.16)
v

3, itM=1
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K, ifK'=3
- (3.17)

3, ifK'>3

The blade blockage factor and parallel force additions created by [Thollet, 2017] and used by [Benichou et al.,
2019] are not used in this work as they add complexity to an implementation that is looking at feasibility.
While their adoption would improve accuracy of physical blade modeling, this is not the objective of this
thesis and it is therefore not taken into account. Once it has been proven that Hall’s body force model works
in SU2, the addition of viscous effects and blockage has the potential for future work to improve the model’s
accuracy with respect to physical blade modeling.

3.2.3. Camber Normal Representation of an Airfoil

In a body force simulation, the blade is not physically modeled but is instead approximated using camber
normal values. Over the domain in which the physical blade would be present, the camber normal value
varies depending on either the x (2D) or x and r (3D) directions. As can be seen in Figure 3.4 and Equation
2.1 the force depends on the camber normal value, which is the unit vector normal to the camber line tangent.
A camber normal distribution can be defined using a unit vector distribution over the chord and/or spanwise
direction; this is done when creating arbitrary airfoils to simulate. It is also possible to create a camber normal
distribution from an existing airfoil by generating the camber line and then calculating the camber normal at
every location along the x or r directions.

Arbitrary Camber Line Generation

Generating arbitrary cambers for use in test cases is most easily performed by first defining a leading edge
and trailing edge angle. Subsequently the local camber tangent angle is varied between these two values
over the distance of the airfoil using an arbitrary distribution. For simplicity the variation in camber tangent
angles over the airfoil is limited to linear distributions. Given the local camber tangent angle « (positive in the
y-direction), the unit vector camber tangent is determined using the sine and cosine of the angle. In the case
of the tangent: 7, = cos(a) and fy = sin(a). Camber normal values are then 7, = —sin(a) and 71, = cos(a).
Figure 3.6 visualizes the decomposition of the camber normal and tangent values. With the leading and
trailing edge angles defined, it is solely a matter of determining the number of points over the chord at which
to compute the camber normal. The higher this value is, the more accurate the distribution. Values of x, 7y,
and 7y are stored in arrays and used when calculating the force.

Ny

(x;, i)

Figure 3.6: Camber normal and tangent vector decomposition for an arbitrary point on the camber line, with « the angle between the
camber tangent and the meridional (positive in the y-direction).

Every x-coordinate with a node in the body force domain needs to have a camber normal and tangent value
assigned to it, which in this case can be done using simple interpolation. For every point it is possible to find
two neighboring points (in the x-direction) that possess values of 71, and 71y,. A simple linear interpolation
(Equation 3.18) depending on the distance between the points and magnitudes of each of the variables will
output the camber normal unit vector.

Yi+1 =i
y=yit——(x—-x) (3.18)
Y X - X ’
Where y is the value to be computed for any arbitrary point x; y; and y;; are the lower and upper boundaries
of the value; and x; and x;;; the lower and upper boundaries of the x coordinate. To determine camber



3.2. Hall’s Body Force Model 17

normal values, y is substituted by 7, and 2, which can then be used at each node to compute the body force
magnitude.

Camber Normal Representation of an Existing Airfoil

Instead of creating arbitrary airfoils, a camber normal distribution can be created that represents a physical
airfoil. This allows for a comparison to be made between a physical blade simulation and its body force
representation counterpart. From the physical blade, which is usually represented using lower and upper
surface coordinates, the goal is to obtain a camber line that can be used to determine the local camber tangent
angle. Given a set of coordinates defining an upper and lower surface on the x-y plane, the camber line can be
determined by passing over the x-coordinates and at each one computing the middle point between the two
y-coordinates (Equation 3.19). It should be noted that this does not take into account a thickness distribution
for the airfoil. If this information is present it can be included to ensure a more realistic approximation of
the camber line. With a complete camber line the local camber tangent angles can be computed in a similar
method as those for the arbitrary cambers explained above. The end result is a set of arrays with x, 7, and
ity which are then used to determine the camber normal vector at each point using the interpolation method
explained above.

_ yxupper + yxlower

2 (3.19)

Yx

Camber line representations of airfoils will never be as accurate as physical blades due to their lack of
thickness distribution. This is an inherent disadvantage of the body force model and is elaborated upon in
Section 4.2.5. Nevertheless, the methods presented for camber normal representations are used throughout
the thesis because body force simulations are a still a reduced-order method.

Whittle Fan

One of test cases used in the thesis is that of the low-speed Whittle fan, a real-life blade of which a 2D version
is created specifically as part of the verification process in this work. The Whittle fan's geometry data consists
of a number of constant span fraction blade profiles from the hub to the shroud, which in the 3D case was
extrapolated to create a physical blade mesh. To create a 2D blade profile a constant span fraction near
the middle of the blade was taken and the set of coordinates projected onto the blade-to-blade (x-y) plane.
From this the method described above was used to generate camber tangent and normal values at each
x-coordinate. A visualization of the airfoil and its camber line is presented in Figure 3.7.

0.04

Airfoil
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Figure 3.7: Two-dimensional representation of Whittle fan blade at mid-span. Taken from a constant-span fraction of the 3D version, with
coordinates projected onto the x-y plane.
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3.3. Implementing the Body Force Model in SU2

Two options are available for implementation in the direct solver, namely (1) the addition of the source term
directly in the CNumerics class (while the residual is being calculated), or (2) in the CSolver class as the flow is
solved for each zone. Besides the computation itself, the former requires the least amount of changes to the
current code structure. Its drawback is the lack of "clean" code as compared to the current structure of SU2,
which is an essential part of SU2’s value proposition. Implementing the computation in the CSolver class
aligns with this framework but requires adding a number of classes and functions to ensure the value of the
force is correctly (re)allocated. Both have been implemented and experimented with, and due to the latter’s
cleanliness and alignment with SU2’s standards it is chosen as the way forward for this thesis.

In this approach the body force computation is "outsourced" to a function in the CSolver class (see Algorithm
1), where the value of the force’s components are then stored to each node. This function is called in the
Clteration class after every solve of the flow equations. After being stored at each node, the forces are called
in the CNumerics class and added to the residuals; thus bypassing the need to compute the force in the
discretization step.

Modifying the code to include the body force model follows a structured approach that adapts all the
necessary classes and follows it with checks to make sure that the code is structurally sound. Figure 3.8
shows how the CSolver, Clteration, CVariable, CNumerics, and CConfig are altered. For a more detailed
explanation regarding how the classes are altered the reader is referred to Appendix A.3. It is important to
mention that hard-coding is present in this implementation. This is because the focus is on showing the
software’s capability, not on perfecting usage. These hard-coded parts will need to be removed to ensure SU2
works for arbitrary configurations and does not require recompiling before running the executables.

-

Add Computation of
body force to CSolver

v

Call body force computation
function in Clteration

¥

Include capability to store body
force vector to node in CVariable
¥
Adapt CNumerics to accept
newly calculated body
force vector from node
¥
Add configuration
options to CConfig

Figure 3.8: Code adaptation strategy for direct solver.

After completing the steps in Figure 3.8 all the adapted code is reviewed using the following procedure:
1. Confirm functions and variables are defined and initialized in _structure.cpp, .hpp, and .inl files
2. Check code is conform SU2 standards
3. Add comments clearly stating operations
4. Compile and check for errors
Function Calculating the Body Force
There is one function in particular, in the CSolver class, that is most important to get right, namely the
computation of the body force itself. Algorithm 1 presents a high-level impression of the function that

performs the calculation in SU2. Once the force is computed and stored to the node on which it acts, it is
loaded in the CNumerics class to calculate the source term residual.
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Algorithm 1 Computation of body force in CEulerSolver::ComputeBodyForce_Turbo

1: procedure COMPUTEBODYFORCE_TURBO

2: Initialize flow conservative (U;) and primitive (V;) variables and node coordinates (x;)
3 Load configuration options y, Rgas, B, Q, R

4 Initialize Fgr, wR, s

5: Define camber normal arrays x, 7ix, and #,,

6 for all Points do

7 Load and set flow conservative (U;) and primitive variables (V;) and node coordinates (x;)
8 Interpolate to find value of 7iy, 71y, fx, and

9 Compute f = Kﬂé% V2 le

10: Decompose into ¢, i, x, and y components

11: Add x and y components to Fgg

12: Set Fgr to node at Point

13: end for

14: end procedure

3.4. Extension of SU2’s Adjoint Solver to Body Force Modeling

The practical and theoretical workings of the adjoint solver are covered in this section, with emphasis on
computation of the mesh sensitivity and total gradient. Firstly, the focus lies on registering body force source
terms so that the mesh sensitivity can be calculated. Next, total gradient computation is covered, which
entails replacing grid points with the vector of camber normals. How the source code must be adapted is
presented, which elaborates on the necessary changes required for the mesh sensitivity and total gradient to
be computed when body force source terms are added to the conservative variable vector U.

3.4.1. Adjoint Solver in SU2

When performing an AD build of SU2, the external library CoDiPack performs automatic differentiation of
the routines in SU2 needed to build the adjoint solver. Besides the standard executables a number of AD
ones will be available, such as SU2_CFD_AD and SU2_DOT_AD. These are then run to perform an adjoint
calculation on the problem at hand. Running an adjoint simulation works as follows. First the direct solver is
called using SU2_CFD, which runs until a converged solution is obtained. Next, SU2_CFD_AD runs the adjoint

solver to compute the mesh sensitivities 5—)](.3 Finally, SU2_DOT_AD projects the mesh sensitivities to the

surface, with the output being dX‘,” x
sur,

scriptdiscrete_adjoint.py automates this process and performs all three sequentially.

All three executables can be run individually, however the python

Where direct solver body force implementation focuses on running SU2_CFD successfully, the adjoint solver
must run SU2_CFD_AD correctly now that body forces are included in the simulation. Figure 3.9 shows the
steps taken by the discrete adjoint driver class to run a simulation.

Two equations need to be computed, namely the flow adjoint (Equation 3.20) and mesh sensitivity (Equation
3.21) equations, where ¥ is the adjoint flow vector. Starting with U as input, the adjoint solver performs
a single iteration starting from the last iteration (maxiter) performed by the direct solver. Flow and
convergence data is acquired and stored. SU2 then initializes adjoint values in auxiliary solution vectors
to be used for the next step. Computation of the adjoint is done using CoDiPack, which performs gradient
computations using Algorithmic Differentiation (AD). After the flow adjoint is calculated the mesh sensitivity
is computed, which follows the same process. The sensitivities are stored at each node and can be evaluated.

Gowe (aJ)T+(aR)T‘P (3.20)
— |\ou ou ’
o (dJ\" _{(o]\" (oR\"

X’(dx) N (ax) +(6X) ¥ @21

3Detailed information regarding the code structure of the adjoint solver in SU2 can be found in [Ferndndez, 2017].
4Both U and ¥ are used interchangeably for the adjoint flow vector. Similarly, X and g—)]( both represent the mesh sensitivity.
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Run SU2_CFD_AD

v

SetRecording | Direct Solver | Register Input,
(U, then X) [maxiter+1] Register Output
+ J

Initialize Adjoint

¥

Compute Adjoint
[CoDiPack]

No (

Has X been
computed?

Yes

Extract
Sensitivities

Figure 3.9: Structure of CDiscAdjFluidDriver::Run, showing the steps that are taken to compute the flow and mesh adjoint. This process
follows a converged direct solver run of maxiter iterations.

Calculating Mesh Sensitivity
For an optimization problem in the field of turbomachinery it is the aim to minimize the objective function
J, which is a function of the flow U and mesh X. Both of these depend on the set of design variables a.

JU(a), X(a)) (3.22)

The problem is subject to:
U=R(U,X) (3.23)
X=M(a)=V(S(a) (3.24)

Where V and S are the volume and surface deformation respectively. Given the output of SU2’s adjoint solver,
namely the mesh sensitivity X, the total gradient of the objective function with respect to the design variables
can be rewritten as shown in Equation 3.25. The term dé" is the product of the surface mesh and geometric
sensitivities.

U _ 4y (3.25)
da  da
A body force simulation does not require mesh deformation because there is no physical blade to model. It
is therefore important to focus on computing the mesh sensitivity X when the source terms are added to the
vector of conservative variables U. The adjoint equations must be calculated such that Equations 3.20 and
3.21 output a new mesh sensitivity. Source terms are added to the computation using the AD::RegisterInput
function (see Figure 3.9). Further code adaptation is necessary and is presented in Section 3.4.2.

Calculating Total Gradient

SU2’s adjoint solver is structured in such a way that when SefRecording is called, its input defines the

calculation that is made. First the conservative variables U are used to implicitly obtain the flow adjoint
U (Equation 3.20), which is then used to explicitly compute the mesh sensitivity X (Equation 3.21) when
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the grid points X are taken as input. What the solver essentially does is take this input and use CoDiPack to
register each conservative variable or grid point as input for the solver. When SU2_CFD_AD is run, the flow

adjoint equation is computed first (see Figure 3.9). This is the term g—{, in Equation 3.26. With this the mesh

sensitivity is computed as the product of the terms g—l], : g—g, namely %. The surface mesh sensitivity (”?X ;

. e s, dX, . . .
and geometric sensitivity dsf;'f are computed using AD. The final gradient is a product of these four terms.

Body force simulations have a non-varying mesh, which means the objective function loses its dependence
on the volumetric grid points (J[U(a)]). Any terms in Equation 3.26 relating to the mesh are not taken into
account. The flow’s sensitivity to the mesh is replaced by the flow’s sensitivity to the design variables, which in
this case are the camber normal values. Equation 3.27 shows this concept. Similar to before, the flow adjoint
is computed, however now it is used to compute the total gradient when « (instead of X) is used as input for
SetRecording.

dj 0] oU 00X dXsury

£ 2 72 2
da 0U 90X 0Xy,y da (3.26)
daj dj du
- L . 3.27
da dU da ( )

A prerequisite for this to be performed is successful registration of body force source terms and computation
of the mesh sensitivities. The code can subsequently be adjusted so that SetRecording accepts a vector of
camber normal values as input. This requires changing a number of files in the source code, a detailed
explanation of which is given in Section 3.4.3.

Choosing an Objective Function

SU2 contains numerous objective functions that can be used for optimization, some examples being entropy
generation, total pressure loss, or Eulerian work. Running a simulation with one of these requires a physical
blade to be present in the domain. If not, the results of the mesh sensitivity and total gradient computation
will be incorrect. In Appendix B.1 a comparison between three objective functions is presented. A custom
objective function must be created that evaluates average flow values at a marker (for example at the outflow
of the body force domain). To circumvent making structural changes to the source code, one of the current
objective functions is altered. In the function CEulerSolver::Pressure_Forces, the computation for drag is
modified. For the marker specified in the configuration file, the velocity in y-direction is summed over all
the points and this value taken as J. This computation is shown in Equation 3.28, where N is the number of
points on the marker. Detailed information regarding code adaptation is given in Section 3.4.3.

N
J=> v, (3.28)
i=0

3.4.2. Adjusting Source Code for Sensitivity Calculation

Without any previous work on the implementation of a body force model in an adjoint solver, adaptation of
the source code is a challenge. However, [Rubino, 2019] implemented a similar concept in his dissertation,
adding a harmonic balance capability to SU2’s solver. While the two models differ, their implementation
with respect to adding a source term to the mesh sensitivity calculation is comparable. It is therefore used as
a basis for the current work. Hard-coding is used for this part as the focus of this thesis is on showcasing a
capability rather than code generalization. Essential changes that need to be made are as follows:

Register Input/Output Before computing the adjoint it is necessary to register new source terms
as inputs and outputs, which is performed in the SetRecording class by the
functions Registerinput and RegisterOutput (see Figure 3.9). A conditional
statement is added to the functions CDiscAdjSolver::RegisterSolution and
CDiscAdjSolver::RegisterOutput for the body force source terms. The function
CVariable::RegisterBFSource is added, which physically registers the source
term from the direct solution to each node. This is possible because the body
force is stored to the node in the direct solver, which is shown in the last step
of Algorithm 1.
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Initialize Adjoint Once the source terms have been registered, they have to be initialized

Iteration

before they can be differentiated using CoDiPack. In the function
CDiscAdjSolver::SetAdjoint_Output a conditional statement is included for
if a body force is used in the simulation. If this is the case it loops over
all points and for each node of the mesh initializes the source term and
its derivative value.> Two functions are created to perform this process.
CDiscAdjVariable::GetAdjoint_BFSource is called on an auxiliary solution
vector, storing the direct value. CEulerVariable::SetAdjoint_BFSource then
initializes the derivative. Computation of the adjoint is performed on the
auxiliary vector while the original object remains untouched.

After AD, the resulting derivative is extracted from the auxiliary solution
vector and copied to a node-defined vector, allowing the auxiliary solution
vector to be used for the next iteration. Similar and opposite to the
process during initialization, = CDiscAdjSolver::ExtractAdjoint_Solution
sets the derivative obtained from AD to the auxiliary vector
using CEulerVariable::GetAdjoint_BFSource. After this the result
is copied to the node’s body force source adjoint vector using
CDiscAdjVariable::SetAdjoint_BFSource.

Custom Objective Function In the function CEulerSolver::Pressure_Forces, a variable is added to store

the velocity in the y-direction. In the conditional loop when the values
are calculated at the specified boundary, the velocity’s y-component is
obtained from the node and stored to this variable. All values of the velocity
at the boundary are added together so they are weighted equally. The
value of CD_Inv[iMarker] is set equal to this cumulative velocity, replacing
computation of drag. It is a hard-coded implementation and as such should
be reviewed before being used in future work.

3.4.3. Adjusting Source Code for Total Gradient Calculation
Due to the author’s limited experience with C++ and knowledge of SU2’s code structure, total gradient
computation was not successfully implemented during this thesis. However, it is clear what steps need to
be taken to make it possible. Conceptually, adapting the source code is a matter of replacing the grid point
vector X with an array consisting of camber normal definitions at each x-location (essentially the design
variables a). Key parts of the code that need to be changed are as follows:

Driver

Option

Iteration

In CDiscAdjFluidDriver::Run when the geometrical sensitivities are being computed, the
input for the function SetRecording should be changed to the design variables vector (ex.
CAMB_NORM). This will tell the driver that the sensitivity being computed is taking the camber
normals as input.

In the file option_structure.hpp under the ENUM_RECORDING function, the option
CAMB_NORM has to be defined. This is to make sure that it can be used in the driver class.

A new condition must be added to CDiscAdjFluidlteration::RegisterInput that calls a function
registering the camber normal array as input for CoDiPack. Given that the camber normals will
be read as an input file (similar to an inlet velocity profile), this function should be placed in the
CConfig class.

5SU2’s in-house object type su2double includes both a direct and derivative value. This allows derivatives of each value to be stored in
the same object, easing adjoint computation.
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Config A function must be created that loops over the camber normals array (as read from the file) and

registers them as input using AD::RegisterInput. Once they are registered the adjoint computation
will be performed on this array and a derivative value will be loaded into the derivative part of the
su2double object. This can then be used to extract the total gradient with respect to each camber
normal component.

Solver Once calculated, the sensitivities (in this case the total gradient with respect to each design

variable) must be extracted. A function must be added that loops over the design variable vector
and extracts the derivative value, which can then be used for evaluation after the solver has
finished running.

With this information, further research can be initiated that will eventually lead to performing optimization
using the output of this total gradient. Without the need for mesh sensitivity calculation, the speed at which
optimization can be performed will be shorter as well. The steps presented above are not exhaustive, and
further work on the code may present new challenges that have to be overcome in order to be successful in
computing the gradient.

3.5.

Key Takeaways

The following points highlight the principal outcomes of this chapter.

L]

Multi-zone meshes are used to easily classify in which zone the body forces should be active.

Body forces are determined using local flow characteristics and camber normal values interpolated at
every node. They are then decomposed into x and y-components and added as source terms to the
governing equations.

Computation of the forces is included in a function in the CSolver class, which then stores them at each
node for later use in the CNumerics class of the direct solver. They can then be called in the adjoint solver
as well.

Computing mesh sensitivity when using body forces requires registering the forces as input and output,
initializing them in an auxiliary solution vector, and then storing the derivative to each node.

Computing the total gradient directly from the solver is possible when body forces are used because
the objective function’s dependency on the grid is removed. A vector of camber normals replaces the
volumetric grid points. Registering the vector as input should output the value of total gradient.
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Case Studies

This chapter covers all of test cases in chronological order, which follows their complexity. First, Section 4.1
gives an overview of this as well as describing the simulation setup. Section 4.2 presents all the test cases that
have been run. This ranges from a non-cambered stator to a Whittle fan simulation. The chapter is concluded
with a computational time comparison between body forces and blade simulations in Section 4.3.

4.1. Test Cases and Simulation Setup

Six test cases, each more complex than the previous one, allows for step-wise complexity increments to
test the model’s ability to reproduce flow. All of the runs performed are presented in Table 4.1.! Once
completed the results are obtained by extracting data using Tecplot. For body force simulations a precise
line is extracted over the entire domain in the meridional direction, lying at the center of the y-axis. For
physical blade simulations a number of points on the meridional axis is taken and at each all the flow values
are averaged over the y-direction. Code verification results are presented in the order shown in Table 4.1.
For the computational time analysis is presented, the non-cambered stator test case is the same, however an
unstructured mesh is used. The Whittle test case is the same as in Table 4.1.

Table 4.1: Test case overview and specifications for body force implementation in direct solver.

Test Case Mesh Type Specifications

Stator Non-Cambered Structured R=1,a=11,2,5,10,20], B=1,5,10,20], V;,, = (34.05,0,0)

Stator Cambered Structured R=1,B=1[1,5,10,20], V;;, = (34.05,0,0)

Rotor Structured R =1, a = [10,20,30,40,50], Q = [100,200,500,1000,1500],
Vin = (34.05,0,0)

Stator Comparison Unstructured Cell count reduced for BE R =1, V;;, = (34.05,0,0)

Whittle Unstructured R =0.1625, Q =[1803,2362,2898], V;, = (44.24,0,0), cell count
reduced for BF

openFOAM Structured Rotor: B =23, Q =150, R=1.5, V;;, = (17.03,0,0) Stator: B =

23, R=1.5,V;;; =(17.03,0,0)

For all simulations the configuration options were similar if not the same. Presented in Table 4.2 are a number
of options that were identical for all simulations, which can be used to replicate the work presented in this
chapter. Detailed configuration options for each test case can be found on the author’s GitHub repository
(see Section A.1).

4.2. Code Verification

Before being able to run simulations the code must be checked for errors. As SU2 is written in C++, the
code cannot be run in sections and the source code has to compile completely before the executable can

1Complete configuration files for every simulation run can be found in the author’s GitHub repository (see Section A.1), which will be
made publicly available.

25
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Table 4.2: Common simulation configurations for direct solver test cases.

Setting Value

Solver Euler

Type Compressible
Gradient numerical method Green Gauss
CFL Number 5

Linear solver FGMRES
Linear solver error le-6

Linear solver iterations 5

Convective numerical method JST

Time discretization Implicit Euler

be run again. Compilation and the IDE CLion both help identify errors in syntax before running the code
with a configuration file. It is checked if variables are defined, initialized, and are of the correct type. When
compilation is successful the code runs with a configuration file. If there is a segmentation fault, which
occurred a number of times during the thesis, then a debugger such as GDB and thorough analysis of the
code must be performed to find errors. Only once the code runs successfully can verification of the model
take place.

Verification of this implementation requires confirming that the model used in SU2 behaves according to the
mathematical definition of Hall’s body force model. Validation of Hall’s model is also required: confirmation
is necessary that the model is an accurate representation of reality. Hall's body force model has been used
in the past and is assumed validated [Hall, 2015] [Hall et al., 2017] [Benichou et al., 2019] [Hill and Defoe,
2018]. For this reason it is beyond the scope of this thesis to dive deeper into validation of Hall's BFM as a
representation of a blade row.> What remains is the need to assess the implementation of Hall’s body force
model in SU2.

While the theoretical concept does not vary between solvers there will always be a discrepancy in results due
to varying numerical methods and unique code structure. Criteria used for assessment are:

¢ Flow angle e Total enthalpy
e Static pressure * Total relative enthalpy
* Total pressure * Conservation of mass

* Total relative pressure

Changing a blade row’s variables should coincide with the expected change in flow characteristics: for
example a decrease in number of blades will decrease the force and therefore turning of the flow. It
is important that these trends are visible in the results when comparing body force and physical blade
simulations.

4.2.1. Non-Cambered Stator

Considering the base case as a domain without applying any body forces, this test case is the next step up and
is simply a flat plate at an angle to the flow; essentially a stator blade row. It gives an initial indication of the
model’s ability to deflect the flow and alter its characteristics over the body force domain. First it is essential
to visualize the results using post-processing software, which for this thesis was Tecplot. Figure 4.1 shows
the visualization of a stator blade row with a =5, B = 20, and R = 1. An initial inspection of the flow shows
that it is being physically adapted similarly to what is expected in practice (a physical blade comparison is
presented in Section 4.2.2); the flow deflects in the direction of the flat plate and only varies over the body
force domain. This confirms the model’s capability of deflecting flow in a manner consistent with theory.

Before evaluating the accuracy of this model’s implementation, basic turbomachinery thermodynamics is
quickly revisited. Total pressure over a stator stays constant as there is no work being done by the blade row
on the flow. As the blade row is non-rotating the total relative pressure is the same as the total pressure
and is therefore not analyzed. With a constant total pressure and an increasing velocity magnitude due

2For an extensive explanation regarding conception and evaluation of Hall’s body force model the reader is referred to [Hall, 2015].



4.2. Code Verification 27

pv [

Figure 4.1: Flow visualization of body force representation of a flat plate stator test case at &« = 5, B = 20, and R = 1. Contours represent
y-momentum over the entire domain, with largest change occurring in the body force zone. Streamlines indicate the flow direction and
coincide with what is expected from theory.

to flow deflection (and subsequently an increase in the tangential velocity component), the static pressure
decreases over the stator domain. Non-dimensionalization is crucial to be able to compare numerous cases:
p/p; is used to compare pressures. Again, as the blades are not rotating no work is being done on the flow,
meaning that the total enthalpy and total relative enthalpy is zero. With these behaviors in mind it is possible
to investigate the implementation of Hall’s body force model for a stator blade row.
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Figure 4.2: Comparison between analytical calculations (Equation 4.1) and simulation values for static pressure loss for flat plate stator
test case (B = 20, R = 1). As the angle of attack of the plate increases the pressure loss rises, which is consistent with theory. Error percentages
are on the order of 1%-6%.

A sanity check is performed by comparing analytical calculations and simulation values of static pressure
change over the body force domain. Equation 4.1 computes the pressure difference over the stator, which
assumes incompressible flow. Differences in density are less than 0.01%, which is why this is done. The
magnitude of the absolute velocity at the exit V, and its tangential component V;, are given in Equations 4.2
and 4.3 respectively. Figure 4.2 presents the results for the five stator angles, showing that the discrepancy
between the two results is on the order of 1%-6%. There is no relationship between error percentage and
angle of attack. If larger angles of attack are used this analysis should be performed again to confirm their
accuracy.
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1 2 2
Ap=5p(Vy = Vi) 4.1)
Vo=\/VE+VE (4.2)
Vi, = tan(az)- V1 (4.3)

AoA: 1
AoA: 2
AoA: 5
AoA: 10
AoA: 20

Blades:

0.0 0
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(a) Varying the angle of attack a (b) Varying the number of blades B, a« =5
Figure 4.3: Two figures showing the characteristics of the flow when varying either the angle of attack of the flat plate or the number of

blades of the blade row. As the angle of attack or number of blades is increased, the flow deflection becomes larger, corresponding to a larger
applied force (Equation 3.14). Vertical dashed lines indicate the body force domain.
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Figure 4.4: A number of flow characteristics for the body force representation of a flat plate stator at « =5, B = 20, and R = 1. Vertical
dashed lines indicate the body force domain.

When changing variables that the force magnitude depends on, such as B and 6 (Equation 2.1), there should
be a change in flow behavior. This is confirmed in Figure 4.3, which shows larger flow deflection as the
number of blades or the angle of attack of the stator is increased. It is therefore established that the model’s
implementation is capable of changing the way it varies the flow. Mass conservation is checked in Figure
4.4a, which shows that this is the case for the stator test case. Over the domain there should be no variation
in total pressure due to there being no work done on the flow. Flow is deflected tangentially, which increase
the magnitude of the velocity with respect to fully-axial inflow, and this leads to an increase in the dynamic
pressure portion of the total pressure. Pressure ratio should therefore decrease over the body force domain.
Both the total pressure and pressure ratio behaviors are confirmed in Figure 4.4b.
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4.2.2. Non-Cambered Stator: Comparing Body Force with Physical Blade

Although validation of the model has already been performed by [Hall, 2015] and [Gunn and Hall, 2014], a
trivial test is performed to confirm this for the model’s implementation in SU2. A symmetrical (flat camber
line) NACA0012 airfoil at a = 5 is simulated in SU2 at the same operating conditions as the body force
representation. This is visualized in Figure 4.5, showing similar flow behavior between the two cases.

v [

34
3.0

Figure 4.5: Comparison of flow result between physical blade (top) and body force representation (bottom) for flat plate stator at a = 5,
B =20, R=1. The body force representation lacks effects such as upstream influence, pressure variation over the blade domain, and trailing
edge instability. Flow at the domain exit is highly comparable in terms of flow deflection, pressure, and total pressure, with mass flow being
conserved.
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Figure 4.6: Comparison between physical blade and body force simulation of a number of flow characteristics for the non-cambered stator
ata =5, B=20, and R = 1. The physical blade simulation uses a NACA0012 airfoil while the body force representation uses a flat camber
line.
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Results are compared between physical blade and body force representation, which are presented in Figure
4.6. Despite a difference of 10.1%, the trend of the flow angle over the body force domain is accurately
represented by the body force, which can be seen in Figure 4.6a. Furthermore the pressure ratio over the
domain follows a similar pattern, with a small decrease present over the body force zone. Noticeable is the
"spike" present for the physical blade, which is due to the large variations in pressure between the upper and
lower surfaces of the airfoil. A difference in 0.02% is observed between the two runs. As Figure 4.6b shows,
the most important aspects are the differences between physical blade and body force values in the upstream
and downstream zones.

Except for the numerical error present in the physical blade simulation, leading to a difference of 0.02%, the
total pressure stays constant (note the scale of the y-axis). Noteworthy is the flatness of the total pressure
recorded in the body force simulation when compared to the physical blade (Figure 4.6¢). Section 4.2.7
will present the presence of numerical error, however its magnitude is so low that it is difficult to make out
when compared to the physical blade results. A final characteristic is the conservation of mass flow, which is
conserved and visualized in Figure 4.6d. There is a spike in the graph that is attributable to the variation in
velocity and density over the airfoil. The value analyzed in this graph is the difference between the body force
and physical blade values in the upstream and downstream zone, which is only 1.1%. Mass flow is indeed
conserved for both simulations and the difference between the two is negligible given the scale of the y-axis.

4.2.3. Cambered Stator

The geometry used in the last two cases was elementary and does not represent the complex shapes seen in
turbomachinery rotors or stators, which is why the next step is to show the model’s ability to vary flow over
a cambered airfoil. The camber line of the cambered stator used for this analysis is presented in Figure 4.7.
Figures 4.8a and 4.8b present a comparison between the cambered and non-cambered stator simulations run
in SU2.
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Figure 4.7: Camber line representation of the blade row used for the cambered stator test case.
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Figure 4.8: Flow deflection, total pressure, and pressure ratio comparison between a cambered (dashed) and non-cambered (solid) stator.
Cambered stator a varies from 5° at LE to 10° at TE. Non-cambered stator is at & = 10. Behavior aligns with what is expected from Hall’s
model.
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Flat plates at a constant angle with respect to the meridional will initially make the flow turn fast (as the body
force model works to decrease the flow deviation § to zero) and subsequently slower as ¢ is decreased. Solid
lines in Figure 4.8a show this. With varying camber, § starts closer to zero but has an almost constant (but
lower) force over the body force domain. This leads to a constant change in flow angle, which is visualized by
the dashed lines in Figure 4.8a. A direct effect of this is a slower increase in the y-component of the velocity,
which changes the rate at which the dynamic pressure increases. Figure 4.8b sees the pressure ratio p/p; vary
more slowly over the first quarter of the domain as compared to a flat stator. The absolute difference in value
is due to both the difference in camber as well as a higher TE angle for the cambered airfoil. This behavior
confirms the code and model’s capability to work with cambered blades.

4.2.4. Non-Cambered Rotor

Rotation introduces a tangential velocity component, which needs to be subtracted from the meridional
component to produce the relative velocity vector. Equation 4.4 computes the tangential velocity component
U, where Q is the rotational speed in RPM and R is the radius in meters. At every node, the tangential
velocity is added to the y-component of the absolute velocity (see Equation 4.5), which is loaded using the
conservative variables y-momentum (pv) and density (p). The x-component of the relative and absolute
velocity are the same (Wy = V). This relative velocity W (Equation 4.6) is then used to compute the body
force, which takes into account rotation and will reproduce flow through a rotor.

Q

U=—-27R (4.4)
60

w, =22 4.5)
0

W=\/WE+W; (4.6)

At a constant rotational speed, with the tangential velocity U remaining constant, increasing the angle of
attack directly influences the relative velocity vector W. Higher angles of attack lead to lower flow deflection,
which is confirmed in Figure 4.9a and visualized using velocity triangles in Figure 4.11. Similarly, if W remains
constant and U increases due to higher Q, then the deflection increases; this is confirmed in Figure 4.9b.
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Figure 4.9: Variation in absolute flow angle over the simulation domain for a body force representing a non-cambered rotor with B = 20
and R = 1. Angle of attack of the blade and rotational speed are varied.

Behavior of the pressure ratio follows directly from the variation in flow deflection and total pressure rise for
both varying @ and Q. As «a is reduced or Q increased (while the other stays constant), the total pressure
rise increases due to larger flow deflection and work done on the flow. The dynamic pressure component
increases due to a larger relative velocity magnitude. While the static pressure of the flow does increase,
this is smaller than its dynamic counterpart. What this leads to is a proportionally smaller static pressure
component, decreasing the pressure ratio over the domain. This behavior is confirmed in the two graphs
shown in Figure 4.10.
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Figure 4.10: Two figures showing the variation in pressure ratio over the simulation domain for a body force representing a non-cambered
rotor with B = 20 and R = 1. Angle of attack of the blade and rotational speed are varied and results show behavior similar to that expected
from theory.
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Figure 4.11: Rotor exit velocity triangles, where an increase in « or Q lead to different configurations. Higher a leads to lower vy, as U
remains constant. Larger values of Q increase the magnitude of U and therefore increase vy, .

Total pressure is proportional to the work done on the flow, which increases as the tangential component of
the absolute velocity vector is increased (Equation 4.7). Figure 4.12 shows that the model does this. Higher
a leads to smaller v;, and lower total pressure rise. Higher Q leads to higher U and therefore a larger total
pressure rise. These two concepts are visualized using velocity triangles in Figure 4.11.
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Figure 4.12: Two figures showing the variation in total pressure over the simulation domain for a body force representing a non-cambered
rotor with B = 20 and R = 1. Angle of attack of the blade and rotational speed are varied.
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w=U(vgy —vy) 4.7)

Now that rotation is introduced the flow characteristic total relative pressure becomes relevant. Over a rotor
blade row p, , remains constant, this is because in the relative frame of reference the blade is static. Figure
4.13 shows that for both varying @ and Q this is confirmed. Tangential velocity is the key driver to magnitude
of total relative pressure, which is why it varies in Figure 4.13b but not in Figure 4.13a. As is required, mass
flow is conserved; these results are presented in Appendix A.4.
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Figure 4.13: Two figures showing the variation in total relative pressure over the simulation domain for a body force representing a
non-cambered rotor with B = 20 and R = 1. Angle of attack of the blade and rotational speed are varied.

10000

—+— Theoretical

120

Simulation

8000

6000

he [J]

1000

2000

(a) Theoretical vs. simulation total enthalpy rise (b) Error percentage

Figure 4.14: Comparison of analytical and simulations values of total enthalpy for non-cambered rotor test case at B = 20. At low rotational
speeds the absolute difference in error is smaller but relative difference higher. For all other test cases error percentages are at reasonable
levels.

Contrary to the stator test cases, rotors induce an enthalpy rise due to work being done on the flow. For these
test cases a non-cambered rotor was used, meaning that a comparison between analytical and simulation
results can be performed. Figure 4.14 shows a comparison of absolute values for each (Figure 4.14a) and
the percentage difference between the two (Figure 4.14b) for all the test cases successfully run. At lower
rotational speeds, specifically for the test cases [@ = 10,Q = 100], [@ = 30,Q = 200], and [a@ = 50,Q = 500],
there is a higher error percentage between the two; this is seen by the three outliers in Figure 4.14b. At
these conditions, the contribution of numerical error becomes larger as compared to the absolute value
of enthalpy rise. Furthermore, low rotational speeds are on the limit of converged simulations. For all test
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cases except a = 10, a number of low-rotation runs could not achieve convergence. This can be troublesome,
however turbomachinery at these rotational speeds are rarely interesting for compressor fan blades, meaning
the results should be acknowledged but are of low significance. Neglecting these results, the error of total
enthalpy rise is on average about 8%, with the median lying at 4.3%. This is an acceptable result and shows
that the model does indeed represent the trend seen in total enthalpy rise.

4.2.5. Cambered Rotor: Whittle Fan

The previous test cases lack complexity that would be similar to a real-world problem. To show that the
model’s implementation is capable of being applied to complex geometries as well as accurately representing
areal-world physical blade, it should be tested with one. The literature contains a number of articles by [Gunn
etal., 2013], [Gunn and Hall, 2014], and [Gunn and Hall, 2017] from the Whittle Lab in Cambridge, UK, where
they have experimentally tested a BLI fan. Having been tested before and due to the ease with which the blade
data can be obtained, the Whittle fan is chosen to perform a validation of Hall's BFM implementation in SU2
(insofar as that is possible without empirical data). Geometrical data for the Whittle fan was obtained and
adapted (see Section 3.2.3) for use with the 2D source code by creating a span-wise constant blade profile and
subsequently generating a set of camber normals for its use with the body force model.® This was then used
to run 2D Euler simulations, the results being used to show correlation between the two sets of flow output.
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Figure 4.15: Body force (left) and physical blade (right) representation of pressure coefficient for Whittle fan at operating conditions
specified in [Defoe et al., 2018a] (except for Q, which was set to 2362). Absolute velocity streamlines indicate similar flow turning for
both cases, with pressure distribution in body force case corresponding to that in the physical blade simulation.

Figure 4.15 compares the physical blade simulation with its corresponding body force representation.
Streamlines and pressure coefficient contours show similar results and indicate the model’s ability to portray
the flow over a blade row with complex geometry. A number of flow characteristics are analyzed in Figures
4.16 and 4.17, which provide further proof of its accuracy. While a 10.3% difference in flow angle is present in
Figure 4.164, its trend over the domain is similar to that of the physical blade. Analysis for multiple rotational
speeds show a systematic error between the two that is attributable to blockage factor, which is covered
below. Total relative pressure (Figure 4.16b) shows almost perfect correlation (0.008% difference), with only
low numerical error present in the result. Trends of the total pressure are similar but inverse to that seen in
the flow angle (Figure 4.17a). Its deviation from the physical blade representation (0.1%) is also due to the
blockage factor. Finally, to confirm mass flow conservation, Figure 4.17b shows that this is the case for both
simulations. There is a difference between the two, however it should be noted that the y-axis is zoomed,
meaning that the error is only 2.4%. From these observations it is concluded that the body force model can
accurately represent the complex geometry of a fan blade.

Blockage Factor
The camber line representation presented in Section 3.2.3 essentially neglects the effect of blockage due to
an absence of thickness distribution. Where the physical blade representation sees flow diffusion due to

3Dr. Jeff Defoe from the University of Windsor supplied the data.
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Figure 4.16: Absolute flow angle and total relative pressure comparison between physical blade and body force simulations for Whittle
fan at Q = 2898. Both flow characteristics show low discrepancy between the two results. The difference in flow angle over the body force
domain is due to a lack of blockage factor in the BEM.
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Figure 4.17: Total pressure and x-momentum comparison between physical blade and body force simulations for Whittle fan at Q = 2898.
The discrepancy in total pressure is due to a lack of blockage factor in the BEM. Differences in flow over the upper and lower side of the
airfoil lead to the peak seen in x-momentum.

a variation in thickness over the chord of the blade, a camber line does not. Diffusion through the blade
passage occurs in the physical blade case, leading to slower flow at the trailing edge. This shortens the relative
velocity vector, and with a constant tangential velocity U, increases the tangential component of the absolute
velocity vector vy,. This in turn increases total pressure rise (Figure 4.17a) as it is proportional to these values
(Equation 4.8). In Figure 4.18 the flow angle over the domain is plotted for three rotational speeds and a
comparison visualized between the body force and physical blade simulations. Noteworthy and consistent
with a systematic error is the constant difference in flow angle between both simulations; for each Q the flow
angle differs almost exactly 1.7°. Over the blade domain there is also a consistent difference in the variation of
the flow angle; the body force simulation takes longer to react near the LE and peaks at a higher value. These
observations are consistent with a systematic error, namely the absence of a thickness distribution. Contrary
to [Thollet, 2017] and [Benichou et al., 2019] a blockage factor is not taken into account in this thesis due to
increased complexity.

5p[ X Vg, - U (4.8)
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Figure 4.18: Three simulations run at different rotational speeds (Q = 1803, Q = 2362, and Q = 2898) show a systematic discrepancy
between the body force and physical blade absolute flow angle results. A lack of a thickness distribution in the camber line representation
eliminates the effect of the blockage factor occurring over a blade row.

4.2.6. Accuracy Comparison of BFM with openFOAM

There should be a resemblance between implementations of the same model in different solvers as this would
indicate that the solver is structurally sound in its implementation. While two solvers will never have the exact
same results, similar flow behavior will imply that the model’s implementation is accurate. The University of
Windsor has a 3D, validated, and fully-working implementation of Hall's BFM in the open-source software
openFOAM. Two test cases are used to evaluate similarities between the solver, namely a stator and a rotor.

Stator

Both implementations show strong correlations with each other, with Figure 4.19 comparing a number of
flow characteristics. Mass flow is conserved in both programs (1.3% difference) and the flow angle varies in
the correct direction (Figure 4.19a). In openFOAM some upstream influence is seen as the flow angle starts
increasing before reaching the body force domain. This can be attributed to SU2’s use of zones to define the
body force domain while openFOAM uses coordinates. This difference is only 3.2%. Figure 4.19b shows a
similar effect on the pressure ratio (0.0002% difference), however the same trend is captured in both solvers.
Total pressure (0.002% difference) is conserved in SU2 and openFOAM.
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Figure 4.19: Comparison of flow angle, x-momentum, total pressure, and pressure ratio for stator test case between body force
implementations in SU2 (solid line) and openFOAM (dashed line). Results are comparable between the two and show that SU2’s
implementation is performing similarly to openFOAM's validated model. M = 0.05, « = 10, B =23, and R=1.5.
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Rotor

Rotor test case results also show similarities between SU2 and openFOAM in the trends for flow angle,
x-momentum, pressure ratio, and total pressure. There is slightly higher flow turning (12%) in openFOAM
(Figure 4.20a), which directly influences the total pressure rise (0.03% difference) and pressure ratios (0.02%
difference, see Figure 4.20b). Mass flow (0.3% difference) is once again conserved in both solvers and barring
some numerical error, so is the total relative pressure (0.01% difference, see Figure 4.20c). Differences in the
results between openFOAM and SU2 are minimal but similar trends are captured, which was the aim of the
comparison. This does confirm that different solvers never produce the same results. Generally this is due
to the approach that a solver takes. Where one solver may be solely built for external flows, another may be
specifically developed to optimally resolve internal flow. Differences such as this lead to distinct results for
the same simulation setup.
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Figure 4.20: Comparison of flow angle, x-momentum, total pressure, pressure ratio, and total relative pressure for rotor test case between
body force implementations in SU2 (solid line) and openFOAM (dashed line). Results are comparable between the two and show that SU2’s
implementation is performing similarly to openFOAM’s validated model. M = 0.05, Q = 150, B = 23, R = 1.5, and a varies from 35° to 25°.

4.2.7. Numerical Errors

Figure 4.13b reveals increased numerical error at the interface, where a substantial difference in forces occurs
between the upstream zone and body force domain. The difference in total relative pressure between the
upstream and downstream zones also increases with higher rotational speed (and therefore the forces in the
body force domain). This is because higher gradients lead to larger numerical error. From Table 4.3, starting
from Q = 200 the inter-zonal discrepancy percentage in total relative pressure starts increasing by about an
order of magnitude for every doubling of the rotational speed. From this it can be concluded that at Q = 2000
the difference in total relative pressure between the two zones should be in the order of 2%. This should be
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taken into account in future work if high rotational speeds are to be simulated; higher local mesh refinement
could be a potential solution.

Table 4.3: Magnitudes of numerical error present in total relative pressure values for the rotor test case at « = 10, B=20, and R =1. As
rotational speed increases, both max fluctuation and inter-zonal discrepancy error increases.

Rotational Speed [RPM] Max Fluctuation Inter-zonal Discrepancy

100 0.002% 0%
200 0.005% 0.006%
500 0.2% 0.02%
1000 0.9% 0.2%

Impact of Mesh Refinement

Figure 4.21 shows the total relative pressure when the mesh of the body force domain is refined. Decreasing
the width of the cells leads to smaller distances over which to resolve high gradients. This leads to less
fluctuation near the interface, but does not have a direct impact on the inter-zonal discrepancy in total
relative pressure. Looking at Table 4.4, the error between zones stays constant at 0.01% of the original value,
which is negligible. Noting the scale of the y-axis in Figure 4.21, it becomes clear that the impact of mesh
refinement may be negligible. As the results in Section 4.3 show, significant decreases in mesh refinement
still lead to accurate results with negligible numerical error. This is inherent when performing discretization
and is accepted as a consequence of its use. Errors should still be evaluated for every simulation as local
mesh refinement could be a logical solution for lower error percentages for certain simulations (such as high
gradients near the upstream-body force interface).

Table 4.4: Error percentages for numerical error of total relative pressure observed at the interface between the upstream zone and body
force domain for rotor test case at & = 40, Q = 500, R = 1, and B = 20. All values are extremely low at under a twentieth of a percent,
indicating that numerical error, although present, is negligible for the body force implementation.

Mesh Number of Cells Max Fluctuation Inter-zonal Discrepancy
Coarse 9560 0.05% 0.01%
Refined 11220 0.02% 0.01%
More Refined 16200 0.009% 0.01%
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Figure 4.21: Decrease in numerical error as mesh refinement is increased at the zone interface between the upstream and body force
domain. Total relative pressure for rotor (a = 40) at Q = 500. Mesh sizes in x-direction are 9560, 11220, and 16200 cells.

4.2.8. Convergence
Convergence behavior observed in all simulations show oscillations in residual values along their downward
trend. Figure 4.22 shows the mass flow residuals for one of the stator test cases, showing oscillatory behavior
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for each of the zones over the entire duration of the simulation. Where three to four orders of magnitude
reduction in residual is considered a converged solution, most of the runs were producing in the range of five
to six orders. No negative effects of this behavior on convergence are observed, and this is applicable to all
test cases that are presented in this thesis. Convergence results for all of these runs are not presented due
to the large number that have been performed. It is noteworthy that this behavior is systematic, which most
likely means that it can be traced to a source.

Stiffness of the system of equations may be a cause of this behavior, which is due to the adding of source terms
in the body force domain. As the equations increase in complexity, the residuals behave more erratically as
the solver is having more difficulty finding a solution. Another potential source could be the lack of registering
a Jacobian of the source term when using an implicit Euler scheme. The impact of these residuals on the
results in not significant, which combined with time constraints of the thesis, mean they have not been
investigated. Future work, should it be impacted by this behavior, will have to analyze potential sources.
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Figure 4.22: Mass flow residual behavior for all three zones of the stator test caseata =5, B=20, and R =1.

4.3. Assessment of Computational Performance

Reducing computation time of CFD simulations is valuable, as it is possible to design machines and
bring them to the market on shorter time scales. Reaching this goal can be done by reducing required
computational power. Benefits of the body force model lie in being able to decrease the number of cells
(and shorten computational time) without losing flow accuracy, something a physical blade simulation
cannot do due to mesh refinement requirements near surfaces to resolve boundary layer flow. Confirming
computational time and mesh size reduction for Hall's BFM implementation in SU2 is essential to exemplify
its benefits and relevance for future work. Two test cases are used for this analysis, namely a stator and
the Whittle fan. Time per iteration and total computational time is compared for each, with equivalent
convergence criteria being used for both the physical blade and body force simulation.* This will identify the
difference in computational time between the body force model and the physical simulation. Mesh size is
reduced for the body force simulation and a comparison of the flow characteristics is made with the physical
blade simulation.

4.3.1. Stator

Four simulations were run for the physical blade and twelve for the body force. Mesh size was continually
reduced and the accuracy of flow characteristics investigated. Computational time for a converged result is
compared to the total number of cells on a log-log plot in Figure 4.23a.°

Running a body force simulation on a mesh with the same number of cells as in the physical blade simulation
takes much longer to run. The source term has to be added and included in calculations at each node,

4All simulations presented below were run using a single core of a 2.9GHz Intel Quad-Core i7. This is to ensure that an unbiased
comparison of total run time is made.
5Four orders of magnitude is taken as the minimum requirement for a converged solution.
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increasing the solver’s computational requirements. From Figure 4.23 it is clear that mesh refinement has an
impact on the value of flow angle in the body force domain, creating a less smooth curve as the mesh is made
coarser (Figure 4.23c). The end result does not vary, with all body force simulations achieving the same value
for flow angle before the end of the domain is reached. All simulations have constant total pressure, although
similarly to the flow angle, there is more pronounced numerical error when grid refinement is reduced. It is
clear from Figure 4.23b that the numerical error is still less than it is for the physical blade simulation, which
is impressive. Mass conservation and pressure ratio plots also confirm the body force’s ability to accurately
represent flow at low cell numbers and can be found in Appendix A.6.
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Figure 4.23: Simulation time, total pressure and flow angle are plotted over the domain for a number of body force simulations with
descending number of cells. Decreasing the number of cells does not have a large impact on the flow with a 189-cell mesh giving essentially
the same results as one with 13377 cells. These runs are for a stator at a =5 and B = 20; the number of cells used in the blade computation
is 12903.

4.3.2. Whittle Fan

Comparing the run times between physical blade and body force simulations for the Whittle fan leads to
the same conclusion as that for the stator. Figure 4.24a shows the downward trend in computational time
as the number of cells in the body force simulation is decreased. Only a single physical blade simulation
was run, however even if its trend would follow that of the body force: there would come a point where the
simulations would not be accurate and have trouble converging. Once again the number of cells for the body
force simulation is decreased and the results compared to each other and the physical blade result. Similarly
to the stator case, there is little difference between the flow properties, even when the number of cells is
reduced by a factor of 14. Both total pressure (Figure 4.24b) and total relative pressure (Figure 4.24c) show
low variation when compared to the maximum cell number used. Numerical error at 2714 cells for the body
force simulation is still lower than that for the physical blade (with 12903 cells). Pressure ratio, x-momentum,
and flow angle also show accurate representations independent of cell number and are presented in Appendix
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A.6. Further decreases in mesh size are possible, but will impact the resolution of the flow over the body force

domain.
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Figure 4.24: Simulation time, total pressure and total relative pressure are plotted over the domain for a physical blade simulation of the
Whittle fan (Q = 2362) as well as body force simulations with a range of mesh refinement. Decreasing the number of cells has no significant
impact on the body force model’s representation of the flow, the flow's trends are accurately predicted for the entire range of meshes.

4.4.

Key Takeaways

The following points highlight the principal outcomes of this chapter.

Varying a, Q, B, or Ny and Ny leads to changes in the flow angle, total pressure, total relative pressure,
and pressure ratio. Stator and rotor test cases confirm its behavior, verifying the model’s implementation.

Numerical errors are present at the interface between the upstream and body force zones, however its
magnitude, between 0.002% and 0.9%, is negligible for all test cases presented.

Convergence behavior is consistently oscillatory. Orders of convergence are above five for all test cases,
which is higher than three, which is conventionally taken as satisfactory.

Hall's BFM in SU2 shows similar trends in flow characteristics when compared to physical blade
simulations of a NACA0012 stator and a Whittle fan. Discrepancies are between 1% and 10%.

A 14-fold reduction in grid size is possible when using Hall’'s BEM while retaining an almost similar level
of flow characteristics accuracy over the body force domain as compared to a physical blade simulation.

Computational time reduction of Hall's BEM with respect to physical blade simulation is between one
and two orders of magnitude.
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Adjoint-based Optimization using a BFM

In this chapter the test case setup for the adjoint simulations is covered first in Section 5.1. Following this,
mesh sensitivity results are presented in Section 5.2. This includes the effect of registration of body force
source terms on the adjoint flow and the effect of angle of attack on those results. Finally, Section 5.3 shortly
elaborates on the process of computing total gradient using SU2.

5.1. Test Case Setup

The body force representation of an @ = 5 non-cambered stator (presented in Section 4.1) is used as a test
case. The simulation is run on the structured multi-zone mesh presented in Section 3.1. All configuration
options are kept the same for the direct solver (which is necessary), while a number of additions are present
for the adjoint. A custom objective function is used (see Appendix B.1), namely the sum of the y-velocity at
the outlet of the body force zone. In the configuration file a marker is specified at which the objective function
is to be evaluated, this is taken as the outflow of the body force zone. Numerical methods for the adjoint flow
are taken as similar to the direct solver. The first order central scheme JST is used as a convective numerical
method and the same second and fourth order dissipation coefficients are used (0.5 and 0.02 respectively).
Furthermore, an implicit Euler formulation is used.

5.2. Mesh Sensitivity

When the body forces are registered as input for CoDiPack, they are added to the symbolically-expressed
governing equations R. The same set of adjoint calculations is then performed to determine the adjoint flow
equation and subsequently the mesh sensitivity. Confirming that the source terms are in fact being registered
requires evaluating the adjoint flow as well as the mesh sensitivities. First, a comparison is made between
a test case with registered and non-registered body force source terms. In order to confirm that the source
terms are registered correctly, a comparison of the adjoint conservative variables (¥) between the two cases
is made. Next, the effect of changing the configuration is investigated by comparing the adjoint conservative
variables for three stators at different @. From these results it can be concluded if the implementation of the
adjoint BFM in SU2 is correct.

A physical interpretation of the adjoint solution is necessary to be able to analyze the results presented in this
section. The value of the adjoint variable indicates how much and in what direction its direct counterpart
must change in order to improve the value of the objective function [Marta et al., 2013]. An example being
a turbine stator vane with an adjoint density that is negative on the suction side near the trailing edge. This
indicates that the density in that region needs to be lowered for the objective function to be improved. Design
changes must be induced that ensure this happens; this could be thickness or shape related. Positive values
indicate that design changes must be made to vary the flow variable in the positive direction while negative
values indicate the opposite. In his article, [Marta et al., 2013] presents further examples of the physical
interpretation of the adjoint variables.
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5.2.1. Adjoint Flow Field with Body Forces

Body forces are only applied in the specified zone, which means that when they are registered as input for
the adjoint solver, there should only be visible changes in the adjoint flow vector in that zone. Figure 5.1
presents the adjoint density for two simulations, one where the source terms are registered and one where
they are not. Changes are present between the two cases. In both simulations the upstream and downstream
zones (1 and 3) are identical, with adjoint density values in the range of 107! to 10723, which is practically
machine accuracy and can be neglected. Over the body force domain there is a difference between the two,
which confirms that the implementation makes changes to the adjoint vector ¥ when these source terms are
registered.

Not Registered

;S:ECWAQ\:AhuN_o_

Registered

Figure 5.1: Full domain comparison of adjoint density W1 for registered and non-registered source terms of non-cambered stator at & = 5,
B=20,andR=1.

All four adjoint variables are analyzed. The most prominent differences are visible in the density and
y-momentum, which is visualized in Figure 5.2. From these results it is concluded that the registered source
terms in fact vary the adjoint flow in the domain over which they are applied. Until two-thirds of the length
of the body force zone the adjoint density is near zero. At the trailing edge the adjoint density is lowest,
which indicates that design changes that decrease the density would optimize the vertical velocity at the
outlet. Varying the angle of the camber line to deflect the flow further in the y-direction would lead to this
happening. This is corroborated in Figure 5.2b, which indicates that increasing the y-momentum at the
trailing edge has the most impact on vertical velocity at the outlet. Changing the camber in the middle of the
domain will have no effect on V), while the last point in the domain can significantly increase the vertical
velocity. These physical interpretations make sense, which supports the conclusion that the source terms are
registered correctly. Adjoint x-momentum and energy are presented in Figure B.2 in Appendix B.2.

In Figure 5.2a the mesh sensitivity at each node is visualized as a vector. This sensitivity indicates in which
direction that node would have to move for the specified objective function to increase (or decrease) in
magnitude. Compared to the sensitivities computed when the body forces are not registered, there is a
pronounced difference between the two, which confirms that registration is successful. However, when
body forces are registered the magnitude of this vector should be zero at each node because the mesh does
not change. There are two areas of increased sensitivity in the top and bottom left of the body force zone.
These discrepancies can be attributed to the interaction between boundaries in that area and the lack of
dependency of the objective function on the volumetric grid. Firstly, in these areas there is an interface
between two zones (with high gradients) that has numerical error in the direct implementation (see Section
4.2.7) as well as a periodic boundary condition. Secondly, as there is no dependency of the objective function
on the mesh there may be a structural complication in determining sensitivities that is deep within SU2’s
source code. Either way, this "incorrect" sensitivity calculation does not detract from the findings. Due to
time constraints this subject was not covered in this thesis and it is advised to study it further for a better
grasp of the consequences.
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Figure 5.2: Adjoint density ¥ and y-momentum W3 for stator at a =5, B = 20, and R = 1, optimized for cumulative Vy, at outflow of body
force zone.

5.2.2. Effect of Angle of Attack on Adjoint Flow

The adjoint solver is run for three different stator configurations. Except for the angle of attack of the blade,
which varies between 5°, 10°, and 20°, the simulations are identical. Figures 5.3 and B.3 compare all four
variables of the adjoint vector between the three configurations.

Wy ] Vs |
-40 36 32 28 24 20 -16 -12 8 4 0 03 06 09 12 15 18 2.1 24 27 3
a=5 a=10° o =20°
(a) Y1, including mesh sensitivity and camber lines (b) Y3, including camber lines

Figure 5.3: Adjoint density ¥ and y-momentum Y3 compared for three different values of a: 5, 10, and 20. Simulation is optimized for
cumulative Vy at outflow of body force zone. B=20 and R=1.

As the angle of attack is increased the magnitude of the adjoint density towards the trailing edge of the
domain becomes larger. It indicates that design changes that decrease the density will minimize the objective
function. Higher adjoint density magnitudes indicate larger decreases in density are needed to increase
y-velocity. Design changes that increase the y-momentum of the flow have equal impacts, independent of
the angle of attack of the stator. Vertical velocity (V}) is directly related to the y-momentum, meaning that
changes in one will directly impact the other. Varying the camber with a certain value will deflect the flow
the same amount, independent of the angle of the flow. For both the adjoint density and y-momentum
the biggest changes can be made at the trailing edge; camber line adaptation at the TE will have the largest
impact on V. Changes at mid-chord will not. Adjoint x-momentum and energy are presented in Figure B.3
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in Appendix B.2. This physical interpretation is consistent with reality, confirming that the implementation
is successful. The mesh sensitivity vector is present in Figure 5.3a. Changing the angle of attack leads to
small variations, however the discrepancies in the bottom and top left of the body force zone are still present.
Section 5.2.1 elaborates on this behavior.

5.2.3. Computational Performance of BF Adjoint Solver

Running the adjoint solver for a test case first requires a direct simulation of the configuration, the results
of which are then used as input for the adjoint computation. Convergence of the direct solver is presented
in Section 4.2.8 and matches with output from the three adjoint test cases. Figure 5.4 shows the body force
zone density residual for both the direct and adjoint solver of these runs. Oscillatory convergence is once
again seen for all three direct solutions. The adjoint residual, on the other hand, shows a steep and consistent
residual drop in the first thousand iterations, reaching almost 14 orders of magnitude convergence in that
time. Peaks occur at 1000 and 2000 iterations, which is when the solver writes solution files. Soon thereafter
the residual sharply drops and levels off at 107!, This is sufficient convergence for the adjoint simulation,
which confirms that the results are reliable.
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Figure 5.4: Convergence for both the direct and adjoint runs for all three test cases (@ = 5, a = 10, a = 20). All three show similar behavior,
with the direct residual oscillating over a downward trend and the adjoint residual reaching convergence before 1000 iterations.

Table 5.1 shows the time per iteration and RAM requirements for the direct and adjoint solvers. RAM
requirements vary between direct (40MB) and adjoint (127MB) but not per test case. Time per iteration
for the adjoint is 32% to 44% lower than the direct solver if all 3000 iterations are taken. It is 14% to 35%
higher if only iterations before max convergence of zones 1 and 3 is taken.

Table 5.1: RAM requirements and time per iteration for direct and adjoint runs with 3000 iterations. Adjoint time per iteration (short) is
taken for all iterations until convergence of zones 1 and 3 reaches 10~32. After this iterations are significantly shorter.

Direct Adjoint
Angle of Attack | RAM  Time/Iter ‘ RAM  Time/Iter [max] Time/Iter [short] Iterations
5 40MB 0.066s 127MB 0.043s 0.089s 464
10 40MB 0.077s 127MB 0.043s 0.088s 465
20 40MB 0.07s 128MB 0.043s 0.089s 470

5.3. Computation of Total Gradient %

Due to a number of limitations, calculation of the objective function’s sensitivity with respect to camber
normal value was not possible in the time frame of this thesis. A segmentation fault delayed the mesh
sensitivity computation by six weeks, and given the time limitations of a thesis project and the limited
experience in C++ development, the author was not successful in completing this step. Following the
methodology presented in Section 3.4.3, the total gradient was attempted to be calculated using body force
camber normal as input. While no compilation errors or segmentation faults were experienced, the total
gradient values calculated were equal to zero. It is concluded that further work is required to alter the code
in such a way that total gradient computation is successful. The current implementation may be faulty or
additional work may need to be done. This capability is an essential advancement in proving SU2’s ability to
perform adjoint optimization with body forces, and as such it is suggested as a recommendation for future
work in Section 6.2. A suggested method for validation of the obtained gradients has been worked out and is
presented in Appendix B.4.
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5.4.

Key Takeaways

The following points highlight the principal outcomes of this chapter.

The value of the adjoint vector indicates how the direct counterpart must be changed to improve the
objective function. Large values of adjoint density therefore indicate that design changes must be made
that increase the density of the flow in that region.

Body force source terms are successfully registered as input for the adjoint solver.

Registering body forces as input for the adjoint solver leads to adjoint flow variations in the body force
zone. Physical interpretations of the adjoint are logical and confirm successful implementation.

Changing stator angle of attack varies the adjoint flow in the body force domain. Physical interpretation
matches reality, confirming successful implementation.

Adjoint convergence is rapid and stable, reaching twelve orders of convergence in under 1000 iterations.

Computation of total gradient was unsuccessful in the time frame of the thesis.
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Conclusions

Section 6.1 presents concluding remarks for this thesis. A number of technical recommendations as well as
suggestions for future work are presented in Section 6.2.

6.1. Concluding Remarks

Hall’s body force model is implemented into the source code of SU2’s direct and adjoint solvers. Starting with
the direct solver the body force was tested for increasingly complex test cases ranging from a non-cambered
stator to the Whittle fan. Using these test cases the implementation was confirmed to accurately represent
trends in flow characteristics over the blade row. Mesh refinement of body force simulations was reduced and
reductions in grid size as well as computational time was observed with respect to physical blade simulations.
Extension of the BFM to the adjoint solver was partially successful. While computation of the total gradient
was not achieved, the body forces were successfully registered and the adjoint flow showed expected trends.
Obtaining the total gradient directly from SU2 will allow design optimization to be performed quickly, and
as such it should be a focus of future work. Combining Hall’s BEM with the adjoint method will accelerate
conceptual design optimization, making it a relevant goal in the field of turbomachinery. It will be especially
useful for design of interacting components, such as a BLI propulsor integrated with a fuselage.

The points below highlight the key takeaways from this thesis:

e Forces are calculated at each node using Hall’s BFM by adding a function to SU2’s CSolver class. The
CNumerics, CConfig, CVariable, and Clntegration classes are adapted to ensure that the code runs
without errors.

¢ Trendsin flow angle, pressure ratio, total pressure, total relative pressure, and x-momentum are consistent
with theory; varying a, Q, or B gives expected results. When compared to blade simulation counterparts,
openFOAM, or analytical calculations, flow characteristics of body force simulations differ by between
0.1% and 12%.

* Oscillatory residual behavior of BFM-based simulations is observed, however its impact on the results is
negligible as five to six orders of reduction are obtained. This is likely due to unregistered terms in the
Jacobian or stiffness of the equations and is suggested to be investigated further.

e A fourteen-fold reduction in grid size while retaining flow characteristics is possible for body force
simulations as compared to physical blade simulations. This results in one to two orders of magnitude
reduction in computational time.

* Registration of body forces as source terms in the adjoint solver is successful. Physical interpretations of
the adjoint indicate design changes are necessary at the trailing edge to increase cumulative y-velocity at
the outflow, which is consistent with theory.

e Total gradient computation returns inconclusive results for preliminary implementation. Given the
code structure of the adjoint solver it should be possible, however further work is required for this to be
successful.
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6. Conclusions

6.2. Recommendations for Future Work

There are a number of technical improvements that the author sees as beneficial for performance of the
model. They are mostly related to the code itself. Besides this, a number of suggestions for further research is
given. They are presented in no particular order.

6.2.1. Technical Improvements

Code Generalization

File Reading

SU2 V7.0 Compatibility

NURBS Representation

Hard-coding is currently present in the source code of SU2, meaning that it does
not work off the bat for any configuration. To ensure that the model works for
all configurations and that no errors appear when adapting the code to include
a third dimension, this hard-coding should be removed. All functions need
to be reviewed to ensure they are not made specifically for a two-dimensional
implementation. Furthermore the camber normals should be read from a file,
allowing for new configurations to be run without having to recompile. This
has been tried without success, and the code should be revised or removed
when attempting to include this feature. Finally, an expert on the structure
of SU2 should evaluate the current implementation and make sure that it is
computationally most effective.

A function should be created that reads camber normals from a file.
Currently, they are generated using a Python script and hard-coded into the
CEulerSolver::ComputeBodyForce_Turbo function. This is tedious work and
requires recompiling the code before being able to run another simulation. A
solution to this could be the generation of blades using ParaBlade. Generation
of a camber line and the respective camber normals could then be output to a
file. This could then be used as the standard input used for SU2 to simplify and
quicken the process of running new simulations.

Recently SU2 was updated to its most recent version, V7.0 Blackbird. The
implementation should be tested in the new version to ensure everything still
works.

Camber line generation using Non-Uniform Rational B-Splines (NURBS) (as done
by [Anand et al., 2018]) could simplify the design process. Using only two design
variables the camber line can be defined, from which the camber normal values
at a self-defined number of locations can be determined.

6.2.2. Research Suggestions

Total Gradient Adapting the source code for successful total gradient computation is the next big
step in confirming SU2’s adjoint solver’s compatibility with body forces. For this, the
steps in Section 3.4.3 should be followed.

Three-Dimensional Adding a third dimension to the model is a matter of including a z-component to
the body force computation and ensuring all code works for an arbitrary number of
dimensions. Verification of the model will have to be performed in a similar way
as to that presented in the current work. It is recommended to undertake this after
successful integration of the BFM with the adjoint solver. A suggested approach for
this task is presented in Appendix A.5
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Shape Optimization

Model Complexity

Distorted Inlet Flow

More Test Cases

Multiple Blade Rows

Following the computation of total gradient it would be valuable to look into using it
to perform optimization of the camber line. Topics to look into include the kind of
optimization to perform, what the objective function is, what the constraints are, and
if the code can support this optimization process given that it normally runs using
grids that deform. What gains can be achieved using this method and does it perform
as expected? Being able to answer this question would be unique, as it would confirm
that optimization can be performed on camber normal values using SU2’s adjoint
solver.

Similar to the work by [Thollet, 2017], a number of additions can be made to Hall’s
model. Including viscosity in the form of a parallel force term would allow losses to be
modeled. Further additions include a blockage factor, which would account for the
thickness distribution naturally present in any blade row (see work by [Thollet, 2017]
and [Benichou et al., 2019]). A compressibility correction is included in the current
code, however it has only been tested on flow at M = 0.05, which means testing
could be extended to higher Mach number flow. All three of these additions could be
pursued, with viscosity being a noteworthy addition to achieve more accurate flow
representations when looking into losses.

Inlet flow distortion can be simulated in SU2 by specifying a velocity profile at the
inlet of the domain. As mentioned in Section 2, BLI fans have the potential for fuel
reduction on next-generation aircraft. Two-dimensional testing using Hall's model
should be performed first. Once verified it can be extended to a 3D BFM.

For further verification of the solver and its BFM implementation more
configurations can be tested. NASA rotor test cases can be tried out or Mach numbers
can be increased to evaluate transonic flow. Ideally a number of configurations are
tested that have empirical data, which can then be used to validate the model to the
fullest extent.

Adding a second body force zone immediately following the first would be a method
of modeling multiple blade rows using a body force model. The current research is
focused on using the model solely for fans, however in the future it could be applied
to reduce computational time of conceptual compressor design. To the author’s
knowledge this has not been pursued as of the time of writing.
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Direct Implementation

This appendix contains supporting information regarding the direct implementation.

A.1. Resources
All adaptations to the source code can be found in the branch "feature_turbo_bodyforce" on the SU2
repository. It can be accessed at:

https://github.com/su2code/SU2/tree/feature_turbo_bodyforce

All other relevant files such as test cases, camber generators, results, and relevant documentation is stored on
the a publicly-accessible repository:

https://github.com/mtlatour/Thesis_MarcLatour.git

A.2. Difference Between Structured and Unstructured Grids

Throughout the process of the work both a structured and unstructured meshing program were used to
generate grids for simulations. To identify the difference in results between the two a comparison of the same
simulation was performed to identify potential variations in numerical error. When visualizing the flow there
were apparent differences between the two, specifically when analyzing the flow’s x-momentum. For this
flow variable the structured grid indicated a vertical line of error in the y-direction at one cell width from the
interface between the upstream and body force zones. Unstructured mesh leads to a more spread numerical
error over the first half of the body force zone. This is largely due to non-conformal mesh at the interface,
which leads to interpolation error. Although present in visualizations of the results, the error is negligible
when taking the meridional variation in a flow characteristic. For a stator test case the error between the
two mesh types is on the order of 0.005%. While this means it shouldn't even deserve a second glance, for
consistency reasons simulations use the same mesh type where possible.

Computational time reduction simulations are performed on unstructured mesh, which is due to a lack of
access to the structured mesh generator Pointwise after the author left the University of Windsor. This is no
problem as all simulations are consistent with the type of mesh being used. All other simulations could also
have been run on unstructured mesh as the increase in error would not lead to any significant difference
in the results. The key difference lies at the interface between the upstream and body force zones, where
numerical error is largest due to high gradients.

A.3. Source Code Adaptation for the Direct Solver
A more detailed specification of the classes that are adjusted is given below. Each of the adapted files are
included in this section, with an explanation given as to what exactly has been changed.
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ClIteration
iteration_structure.cpp

CSolver

solver_direct_mean.cpp

solver_direct_mean.cpp

solver_structure.hpp/.inl

CVariable
variable_structure.cpp

variable_structure.hpp

CNumerics

numerics_direct_mean.cpp

numerics_structure.hpp

CConfig
config_structure.cpp

option_structure.hpp

config.cfg

In the function CFluidlteration::Iterate, a call is made to the function
computing the body force: CEulerSolver::ComputeBodyForce_Turbo. After the
flow has been calculated this function is called if the condition that a body
force has been specified is met.

The function CEulerSolver::ComputeBodyForce_Turbo is created and contains
the calculations for Hall’s body force. Algorithm 1 elaborates on the steps taken
by the function. Once computation is complete the value is stored to the node.
To ensure that body force residuals are computed correctly
CEulerSolver::Source_Residual is changed. In this function the source
term residuals are computed using their respective functions in the numerics
class. The numerics function computing the body force residual is adapted
such that it takes as input the body force vector at the node.

Both the header and inline files must be adjusted so that they contain
newly-defined functions or functions with a new set of inputs.

Defined and initialized the variable Body_Force_Turbo so that it can be used to
store the body force vector at each node.

To be able to store and acquire the body force vector at each node, functions
are added to this file specifically for this purpose. SetBodyForceVector_Turbo
and GetBodyForceVector_Turbo perform these tasks and allow the vector to be
set in the CSolver class and grabbed when loading the CNumerics class.

The function CSourceBodyForce::ComputeResidual is adapted so that it takes
the value of the body force vector at the node as input and stores it to the vector
used in calculating the residual.

Added the body force vector pointer as input for the function
CSourceBodyForce::ComputeResidual.

Included a number of options for body force computation in the
function CConfig::SetConfig Options. These are BODY_FORCE_ZONE,
BODY_FORCE_TYPE, BODY_FORCE_BLADES, BODY_FORCE_ROTATION,
BODY_FORCE_RADIUS, and BODY_FORCE_NORMALS. ZONE specifies
where the body force should be applied, TYPE can be either constant or
varying (Hall), BLADES is the number of blades, ROTATION is the rotational
speed in RPM, RADIUS is in meters, and NORMALS is an array with camber
normal values. NORMALS has been included as an option but does not work
yet.

Added a list of options for the configuration option BODY_FORCE_TYPE,
which allows a number of options to be specified.

Configuration options for Hall's body force model are added to the
configuration file under the header BODY FORCE DEFINITION.
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AA4.

Rotor Test Case

Figure A.1 visualizes the flow angle and x-momentum for the rotor test case.
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Figure A.1: Flow angle and x-momentum for the rotor test case at a = 30, B = 20, and Q = 500.

A.S.

Development into 3D-capable Code

Supporting the recommendations given in Section 6.2 is a high-level action plan for implementing a 3D
version of Hall’s body force model. The following clarifies what is necessary on both a theoretical and practical
level to convert the code into one that works for 3D simulations. If further information is required the reader
should contact the author or Dr. Jeffrey Defoe at the University of Windsor'’s MAME faculty.

Create a standard template for the arraysx, 7y, 1y, and 72.. Write a piece of code (in Python) that creates
this standard template using a number of input variables.

Add capability for reading camber normal arrays.

Ensure that code in the function CEulerSolver::ComputeBodyForce_Turbo accepts both 2D and 3D
arrays.

Go through all code relevant to body force computation to make sure that it worked independent of the
number of dimensions.

Extend interpolation of camber normals to 7, and .

Make constant and variable body force different from each other so that they don’'t mistakenly interact.

Once these changes have been made it is required to perform simulations with test cases to confirm that
the implementation behaves in a similar manner to that of physical blade simulations. This ensure that the
implementation is consistent with physical behavior.
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A.6. Computational Time

Figure A.2 and A.3 show a number of flow characteristics for the stator and Whittle fan computational time
test cases.
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Figure A.2: Momentum in x-direction and pressure ratio are plotted over the domain for a number of body force simulations with
descending number of cells. Decreasing the number of cells does not have a large impact on the flow with a 189-cell mesh giving essentially
the same results as one with 13377 cells. These runs are for a stator at &« =5 and B = 20; the number of cells used in the blade computation
is 12903.
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Figure A.3: Flow angle and x-momentum are plotted over the domain for a physical blade simulation of the Whittle fan (Q = 2362) as well
as body force simulations with a range of mesh refinement. Decreasing the number of cells has no significant impact on the body force
model’s representation of the flow, the flow’s trends are accurately predicted for the entire range of meshes.
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This appendix contains supporting information regarding the adjoint implementation.

B.1. Custom Objective Function

Included in SU2 are a number of objective functions that can be used with the adjoint solver, however,
these require a physical blade to be present in the simulation to work. When used with body forces the
results are meaningless, producing an adjoint flow with values extremely close to zero. Figure B.1 shows
the adjoint density for three different objective functions: velocity in y-direction (custom objective function),
outlet flow angle, and entropy generation. The second and third are in-house functions and as such produce
insignificant results. A novel objective function can be created from scratch in the source code, however this
can be time consuming and is not aligned with the goal of this thesis. To show the adjoint capability it is
easiest to adapt a current objective function (such as drag, lift, or moment) and replace it with one relevant
to the test case. In this case it is the vertical velocity, as it is an indicator of flow turning.

0

-19.4887 153900 -11.2032 -7.19547 -3.00773 1

V,/ FLOW_ANGLE_OUT ENTROPY_GENERATION

Figure B.1: Adjoint density ¥ in the body force zone for three different objective functions (for non-cambered stator at & = 5). Using the
solver’s native objective functions leads to erroneous results as they require a blade to be present in the computational domain.

B.2. Mesh Sensitivity

Figures B.2 and B.3 show the adjoint x-momentum and energy results for the adjoint implementation. In
Figure B.2 a comparison is made between non-registered and registered source terms. Figure B.3 shows the
adjoint flow for varying angle of attack.
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Figure B.2: Adjoint x--momentum ¥, and energy ¥4 for non-cambered stator at & =5, B = 20, and R = 1, optimized for cumulative Vy at

outflow of body force zone.
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Figure B.3: Adjoint x-momentum ¥, and energy ¥4 for non-cambered stator at a: 5, 10, and 20. Simulation is optimized for cumulative
Vy at outflow of body force zone. B =20 and R = 1.

B.3. Source Code Adaptation for the Adjoint Solver
Listed below are the files that are adapted for the adjoint solver to compute the mesh sensitivity 5—)]( and total
gradlent J with the body force source term registered.

B.3.1. Mesh Sensitivity

CSolver
solver_adjoint_discrete.cpp

solver_adjoint_discrete.cpp

solver_adjoint_discrete.cpp

CDiscAdjSolver::SetRecording includes a loop resetting the body force source
term to the initial converged solution.

CDiscAdjSolver::RegisterSolution includes a loop registering body force
source term as input for the adjoint computation
CDiscAdjSolver::RegisterOutput includes a loop registering body force
source term as output of the adjoint computation
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B-7

solver_adjoint_discrete.cpp

solver_adjoint_discrete.cpp

CVariable
variable_adjoint_discrete.cpp

variable_structure.inl

variable_structure.hpp

B.3.2. Total Gradient

CConfig
option_structure.hpp

config_structure.hpp

config_structure.inl

config_structure.cpp

CDriver
driver_structure.cpp

Clteration

iteration_structure.cpp

CSolver
solver_adjoint_discrete.cpp

CDiscAdjSolver::SetAdjoint_Output includes a loop gets body force source
term and adds it to the auxiliary solution vector. The derivative value of the
auxiliary solution vector is then initialized as well.
CDiscAdjSolver::ExtractAdjoint_Solution includes a loop that gets the direct
and derivative values of the body force source term from the auxiliary
solution vector and assigns them to the node.

Defines and initializes the arrays BFSource_Direct and Adjoint_BFSource for
saving of the direct and adjoint source terms of the body force to the node.
Creates GetBFSource_Direct for CVariable and CDiscAdjVariable,
SetAdjoint_BFSource  and GetAdjoint_BFSource  for  CVariable,
CEulerVariable, and CDiscAdjVariable, and CVariable::RegisterBFSource.
These are wused throughout the functions added to the
solver_adjoint_discrete.cpp to ensure the adjoint solver works with the
body force source term as input.

Adds pointers to the arrays BFSource_Direct and Adjoint_BFSource for use
in the CVariable and CDiscAdjVariable classes. Add a number of functions
from the variable_structure.inl file that are used to register body force source
terms, get them from an array, or set them to an array.

Added option CAMB_NORM to ENUM_RECORDING, which is used in
iteration_structure.cpp as a condition if camber normal values are used as
input.

Added vectors for default camber normal, actual camber normal, and total
gradient. These are used in calculations for storing values. Defined functions
to register input and obtain derivative, which are used in config_structure.cpp.
Function CConfig::GetBody_Force_Camb_Norm created that returns camber
normal array.

Defined and initialized default camber normal and total gradient
arrays. Added option BODY_FORCE_CAMB_NORM to configuration file,
allowing camber normal vector to be specified in config.cfg. Defined
function CConfig::Register_Camb_Norm that uses AD::Registerlnput to
register camber normal values as input for adjoint. Defined function
CConfig::TotalGrad_Camb_Norm that gets derivative of camber normal (total
gradient) and assigns the value to the total gradient array.

Changed SetRecording input to CAMB_NORM.

Added conditions statement in CDiscAdjFluidlteration::Registerinput that
calls CConfig::Register_Camb_Norm if condition CAMB_NORM is met.

Added call to total gradient computation function
CConfig::TotalGrad_Camb_Norm in CDiscAdjSolver::SetSensitivity.

B.4. Total Gradient Validation

Computing the total gradient

j—i can be used as an initial indication of its magnitude but also as validation

of the output from SU2. Once the capability is included this step is necessary to evaluate the accuracy of the
implementation. Presented below are the steps to obtain an analytical computation of the total gradient.
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Figure B.4: Computation of total gradient using flow output at each node. Flow adjoint is taken from the adjoint solver for each node
while ‘Zl—g must be computed by hand.

As shown in Section 3.4.1, once the influence of the mesh is removed from the computation of the total
gradient, all that is left is the flow and the design variables. To obtain the total gradient, Equation B.1 must be
solved. When running SU2’s adjoint solver, its output is the adjoint flow equation in Equation B.2. For each of
the conservative variables (four in the 2D case) a value is obtained. For each of these conservative variables
the sensitivity with respect to the design variables (camber normal values) must be computed (Equation B.3);
this is not an output from SU2 but must be calculated separately.

ar_ar av .
da dU da )
aj ] dJ dJ
Tew=| g Y (B.2)
dau,  du, | dUp
da; das dap
dv,  du. du
w_ |8 . -
da : . : ’
au, auv, .. dU,
da; day da,,

Computing Z—Z and subsequently j—i is simplified by the fact that there is tangential uniformity in the flow.
For every node in the x-direction, the flow adjoint can be multiplied by the flow sensitivity to obtain the total
gradient (see Figure B.4). At every node 71, and 7, are synonymous with the design variables a; and a,. By
multiplying both matrices with each other a total gradient matrix per node is obtained, which in this case

is g—i = [dd—é ddT]Z]' An example of this calculation is presented in Equation B.4. Validation can then be

performed with this output.

dlu, dlu,
dal dag
d dU, dU,

Y _Ja a4 a4 ar].|dm  da (B.4)
da lauy au; au; au;| |au;  au '
da1 daz
dU, dU,

da1 dag
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