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Chapter 1

Introduction

With the increased focus on machine learning and artificial intelligence in general, Rein-
forcement Learning (RL) has also gained interest. Unlike classical machine learning, RL
can neither be described as supervised nor unsupervised learning. Instead, it learns through
interactions with a given environment. While it has been a research subject for a long time
and advancements have been made, the potential it bears is much greater [33]] [23]]. If fully
successful, RL could be applied to many real-world use cases, such as self-driving cars,
robotic applications, as well as sustainable management and energy control. However, in
order to achieve that potential, many challenges need to be overcome, such as poor sample
efficiency and lack of scalability. Among them, the ability to generalize is of high priority.

1.1 Motivation

Generalization allows an RL agent to apply learned knowledge to different contexts, which
is crucial for real-world applications like autonomous vehicles or control systems. This is
even more difficult in multi-context learning due to the increased variability of contexts. For
example, a vacuum robot should still navigate rooms effectively despite the furniture being
moved, or self-driving cars should be able to handle unmarked intersections and unexpected
road works [[19].

Just as leaving their comfort zone helps humans adapt more easily to unfamiliar situations,
this principle should also apply to RL agents. This could be achieved by increasing the
number of starting positions from which an agent begins an episode. This should further
lead to a higher diversity in the agent’s replay buffer, which are the experiences from which
it learns, as that has been shown to lead to better generalization|[37]]. Therefore, the aim
of this thesis is to find general and scaleable approaches that increase the diversity of the
agent’s replay buffer by first bringing the agent into interesting positions.

The broadly applicable methods introduced aim to improve the generalization capabilities
of RL agents. They focus on strategies that do not require specialized domain knowledge
and are not limited to niche applications. We utilize standard reinforcement learning algo-
rithms and environments with implicit goals and incorporate insights from goal-conditioned
learning research to enhance agent adaptability and performance.

1



1. INTRODUCTION

1.2 Research Questions

Q1: Does increasing the diversity of starting positions within the reachable set increase an
agent’s ability to generalize to unreachable states?

We hypothesize that agents’ generalization capabilities, specifically in multi-task learning,
improve with a higher diversity in starting positions within the reachable states. This hy-
pothesis stems from the intuition that training the agent to navigate from non-starting po-
sitions, which are, however, still within the reachable set, towards the goal will achieve a
broader and more general understanding of the environment, which would lead to a better
ability to generalize as well as higher robustness.

Q2: Does the diversity of the replay buffer impact the agent’s ability to generalize?

Additionally, we hypothesize that the composition of the experience replay buffer influences
the agent’s generalizability, particularly that the diversity of said buffer during training cor-
relates with the agent’s ability to generalize in evaluation to unseen contexts.

Q3: What are possible ways to achieve an increase in diversity of starting positions
without altering the environment?

Further, we want to investigate how to increase the diversity in starting positions without al-
tering the environment. As we postulate, this would lead to a higher generalizability. These
methods should enable implementation without domain knowledge and, therefore, lead to a
higher applicability.

Furthermore, we aim to provide applicable methods to achieve such a replay buffer. Through
comparative analyses and other analytical experiments, we strive to empirically investigate
the impact an increase in the diversity of starting positions has on agents’ replay buffer di-
versity and further on the agent’s ability to generalize. We further propose two different
methods to achieve a diverse replay buffer. By investigating these fundamental parts of
reinforcement learning and their connection, this thesis seeks to contribute a deeper under-
standing of how agents can effectively generalize across contexts and adapt to unseen sce-
narios in real-world applications while also aiming to make these possible improvements
accessible.

1.3 Thesis Structure

The remainder of this thesis is organized as follows: The next chapter (Chapter [2)) pro-
vides the necessary background information, followed by a review of related works (Chap-
ter [3). Subsequent chapters describe the methodologies (Chapter ) developed and ex-
periments (Chapter [5)) evaluating those. After presenting the results (Chapter [6), the final
chapter (Chapter [7) summarizes the findings, discusses the benefits and limitations of the
approaches introduced, and recommends potential future research. The appendix (Chapter
contains further experiments and the specific hyperparameter used for the main compar-
isons.



Chapter 2

Background

This chapter will cover the necessary background to understand this work. This introduc-
tion explains most core concepts, whereas the remainder of this chapter further elaborates
on the details.

Reinforcement Learning is a powerful tool for training agents to make sequential decisions
in complex environments. At its core lies the Markov Decision Process, a 6-tuple-based
foundational framework used for theoretical reasoning within the field. Generalization in
RL refers to an agent’s ability to apply learned knowledge to unseen situations, which is cru-
cial for adapting to diverse contexts efficiently. Techniques like Deep Q-Networks utilize
replay buffers and neural networks to learn policies from even high-dimensional raw data.
Exploration strategies, including €-greedy and utilizing intrinsic reward, play pivotal roles
in balancing the trade-off between exploiting known strategies and exploring novel states.
Further, goal-conditioned agents coupled with Hindsight Experience Replay enhance adapt-
ability, given an environment that gives explicit goals, by enabling agents to learn from more
than just the intended goal, promoting robustness and making learning more efficient.

2.1 Markov Decision Process

As a starting point, we can assume a standard setup for reinforcement learning. We denote
our Markov decision process (MDP) as a 6-tuple M = (S,A,T,R, po,Y), where S and A are
the state and action space respectively, T represents the transition probability function, R is a
reward function, py is the initial state distribution and y € (0, 1] is a discount factor [30]. To
model multi-task reinforcement learning, we will utilize a contextual MDP (CMDP, [13]))
where S = §' x C, for which C is a context space and S’ is the underlying state space. The
context ¢ € C cannot be changed during an episode and can also be considered the task of
the agent. A context can be understood as a variable of the environment that can differ but
cannot be changed by the agent. An example would be furniture placement in a room for the
vacuuming robot. The robot cannot change the placement, but it can differ between various
deployments.



2. BACKGROUND

Environments are practical implementations of the theoretical MDP. They simulate the
MDP with which an agent interacts and from which it learns [34]. In most cases, the
environment provides an observation and action space in which the agent interacts. The
observation space can entail anything from a simple binary vector (BitFlip [1]), the position
and velocity of the agent (MountainCar [25]]), to raw image data. The action space consists
of any action the agent can access and can take many forms, such as discrete, continuous,
or even a combination of both. Furthermore, in multi-task learning, oftentimes, there are
so-called “dead” actions, which means they are available to the agent but do not have any ef-
fect. As they are not mapped to an interaction with the environment, optimal agents should
learn not to use those dead actions.

Environments can be either stochastic, meaning that either the reward or transition function
involves some kind of randomness, or deterministic, meaning that they do not. Further, they
can be fully observable, meaning that the whole state is visible to the agent, or only partially
observable, meaning that some parts of the state are unknown to the agent. The environment
used for the experiments is both deterministic and fully observable.

2.2 Generalization

Generalization in reinforcement learning refers to the ability of an agent to apply its knowl-
edge to unseen situations. These unseen situations could mean that the goal state is in a
different position than during training or that the context c differs from any context it has
encountered before.

A key challenge of RL is the trade-off between exploration and exploitation, as higher ex-
ploration leads to a better understanding of the environment but can decrease performance.
On the other hand, too little exploration can lead to overfitting. During training, an agent
should learn which actions lead to the goal and a policy that is not only the given but any
possible goal. Otherwise, overfitting can occur, characterized by a high success rate on
training data but a very low success rate on test data. Conversely, if exploration is too high,
the learning efficiency of an agent is severely reduced [[17] [34].

While many general applicable techniques to counteract overfitting exist, such as dropout
layers in neural networks [20] or batch normalization, the choice of architecture and train-
ing algorithm also has a strong influence on the generalizability of an agent [6]].

Formally, let 7tg be a policy parameterized by 0, and let M,4in = (Sirain, A, Tirains Rirains P trainsY)
and Myesr = (Stest, A, Trest, Riest, Po sest,¥) be the MDPs representing the training and testing
environments, respectively. As this thesis focuses solely on zero-shot generalization, the
agent is only trained in the training environment and uses the test environment only during
evaluation. The generalization performance of g can be defined as the expected return in
the testing environment, further denoted as Jy.s (Tg).

The generalization gap can then be measured by comparing the expected return in the train-
ing environment, J;,4, (7 ), to the expected return in the testing environment, J;,s (Tg):

AJ(TCG) = Jtrain (RG) - Jtest (TCS)



2.3. Reachability

A smaller value of AJ(my) usually indicates higher robustness, as the policy performs simi-
larly in both the training and testing environments.

2.3 Reachability

In multi-task reinforcement learning, reachability refers to the set of states that can be en-
countered through some sequence of actions [37]]. Every state is either reachable or unreach-
able, given another state. This is important for understanding and improving generalization.
A state s, is considered reachable if a policy exists that has a non-zero probability of en-
countering s, when deployed in the training MDP. S?mm is the set of starting positions of the
training set. The set of reachable states, S,(M|S° . ), includes all states that can be reached
from the initial training states S?min in a given MDP M. This leads to two properties. If a
state s* is reachable from any state s € S,(M|S?. . ) then s* itself must also be in S, (M|S°, . ).
Further, it can be concluded that interaction with the M|S? . cannot lead to states outside
the reachable set S,(M|S° . ).

For Zero-Shot Generalization, this means that if the testing states S, are part of the reach-

able states S,(M |S?min), an optimal policy on the training environment will also perform
well during testing, even when the agents generalization ability to other context is low.
Therefore, to properly evaluate an agent’s ability to generalize to different unreachable con-
texts, it is important to include an additional test set, which is unreachable from the training

set.

2.4 On-Policy or Off-Policy

Reinforcement learning algorithms are categorized as either on or off-policy based on how
exactly they learn from the environment. On-policy algorithms learn the policy directly,
meaning they aim to learn exactly what to do given a certain state. On the other hand,
off-policy algorithms learn the value an optimal policy would evaluate a state as, indepen-
dently from the agent’s action given a state. This allows the agent to learn from data that is
collected through a different policy. Q-learning and all algorithms that are based on it are
classic examples of off-policy algorithms.

2.5 Replay Buffer

In reinforcement learning, the concept of a replay buffer, also known as experience replay,
has emerged as a fundamental tool for off-policy algorithms [22]. Essentially, it can be
viewed as the agent’s memory from which it learns. The agent’s trajectories within an en-
vironment are saved as tuples of the form (state, action, reward, next state) and are sampled
during the learning process.

The standard method for filling the buffer is first-in-first-out, but other variations exist, such
as prioritizing more significant experiences [14]]. Additionally, the sampling process, which
is usually uniformly random, can employ more sophisticated methods [32]. The primary

5



2. BACKGROUND

aim of a replay buffer is to stabilize learning and enhance sample efficiency. Most off-
policy algorithms rely on experience replay to learn efficiently.

Formally, let D denote the replay buffer containing tuples of the form (s;,a;,r;,s;41). At
each time step ¢, the agent’s experience gained from taking that specific action at that spe-
cific state is stored in . Until a predetermined amount of tuples has been stored, then the
oldest experiences are overwritten by new ones.

During training, a batch of experiences is sampled from 9D to update the agent’s policy.
The replay buffer helps to break temporal correlations, ensuring that the learning process is
more stable and efficient.

2.6 Deep Q-Networks

Deep Q-Networks (DQN) [24] represent a significant advancement in reinforcement learn-
ing, capable of handling environments with high-dimensional raw data. DQN is a deep
learning-based reinforcement learning algorithm that uses neural networks to learn the opti-
mal action-value function [23]]. By integrating deep learning techniques with the Q-learning
algorithm [[15]], DQN enables efficient learning of optimal policies from raw data, such as
images or other types of observational data.

The two main innovations in DQN are the replay buffer, which was previously explained,
and target networks. Target networks are added to the online network. While the online
network is updated at every iteration, the target network is a delayed copy. This addresses
the issue of moving targets in Q-learning by periodically updating a separate network with
the parameters of the main Q-network. This process helps stabilize training, preventing in-
stabilities and especially divergence.

Formally, in DQN, the Q-value function is approximated by a neural network Qg(s,a),
where 0 are the parameters of the network. The target value for the Q-learning update is
gained through

yi = re+ymax Qo- (sr+1,a)

where 06~ are the parameters of the target network. The network parameters 0 are then
updated by minimizing the loss:

L(e) = E(s,a,r,s’)~fD [(yr - QO(Sva))z]

An improvement on the standard DQN, known as Double Deep Q-Network (Double DQN),
aims to fix the inherent overestimation bias in Q-learning [|36]]. This is achieved by decou-
pling action selection and evaluation between the two different networks, the online part
selects the action, while the target network evaluates it.



2.7. Exploration

In Double DQN, the target value is modified to reduce possible overestimation bias:

Ve = 11 +YQ0- (Sr+1,argmax Qg (s1+1,d))
a

2.7 Exploration

Exploration refers to the strategy by which an agent interacts with the environment to dis-
cover new states and actions, thereby improving its understanding and capabilities [34].
Effective exploration is crucial in reinforcement learning, as it enables the agent to un-
derstand the environment and find the optimal policy. A common exploration strategy is
e-greedy, where the agent chooses the action dictated by the current policy with a probabil-
ity of (1 —€) and otherwise samples a random action from the action space [21]].

As e-greedy represents a shallow exploration method, meaning that it is unguided and does
not take prior experiences into account, other techniques, such as intrinsic motivation, have
been developed.

In these methods, the agent receives an additional intrinsic reward r;,, that encourages ex-
ploration. The total reward r, at time step 7 is then given by r; = rpyy + B rins, Where rey is
the extrinsic reward from the environment and [ is a scaling factor that has to be manually
set. This encourages the agent to explore through internal curiosity or novelty detection,
improving exploration, especially in high-dimensional or hard-exploration environments,
such as the MountainCar problem [4].

2.8 Random Network Distillation

Random Network Distillation (RND) [S] is an exploration strategy in reinforcement learning
that aims to enhance exploration. RND operates by initializing two neural networks with
the same architecture: the predictor and the target. The target network is fixed and does not
change, while the predictor network is trained to match the output of the target network.
The distance between the outputs of the two networks approximates the state’s novelty,
with higher values indicating states that have been visited less frequently [29]. In many
implementations of this algorithm, however, not only the state is included in the reward
evaluation, but also the action. This approach emulates curiosity and is often used as an
intrinsic reward-based exploration method [21]].

In RND, let fiurger(s,a) be the target network and fpredicior(s,@) be the predictor network.
The intrinsic reward r;,, for a state s is given by the prediction error:

rint(s) = ||ﬁ‘arget(s) _fpredicz‘or(s)||2

This intrinsic reward encourages the agent to explore states with high prediction errors,
thereby enhancing the agent’s exploration capabilities. The predictor network is trained to
minimize this prediction error on the states the agent has encountered. The data can be

7
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sampled in various ways, from training on the fresh data the agent encounters, or the data
can be the same batch the agent trains on.

2.9 Goal-Conditioned Agents & Hindsight Experience Replay

In many environments the objective never changes or the objective is implicitly given
through the observation, for example, the target square is marked. A third case is envi-
ronments that explicitly give the objective (’goal”) as an additional observation. Goal-
conditioned agents are a class of reinforcement learning techniques to enhance generaliza-
tion in goal-conditioned environments [31]]. These agents learn a policy that is conditioned
on a goal, allowing them to understand similarities between different goals and share pa-
rameters across different goals. This facilitates faster learning and better adaptation to new
contexts and goals, as knowledge gained from previous goals can be readily applied.

Formally, let g represent a goal, and let the policy mg(s,g) and value function Qg(s,a,g)
be parameterized by the goal. The goal-conditioned value function approximates the ex-
pected return given a state s, action a, and goal g:

Qo(s,a,8) =E Zy‘rt | s0=s,a0 =a,g,n
=0

Hindsight Experience Replay (HER) is a technique designed to improve generalization and
facilitate faster learning in goal-conditioned reinforcement learning, particularly in environ-
ments with sparse and binary rewards [1]. HER enhances learning by not only using actual
outcomes of actions but also by learning from virtual goals based on “hindsight,” similar
to humans who think about what they could have done differently. While goal-conditioned
agents enable the learning of a general value function across different goals, HER allows the
agent to learn from a broader range of experiences, enhancing efficiency and effectiveness,
especially in sparse reward scenarios.

Formally, in HER, for each trajectory T = (so.,&,d0:,70:,51:), @ new goal g* is created
using a state sampled from the trajectory. T is then copied, g is replaced with g* and the
rewards are recalculated. The new trajectory 7 = (so./,8", 0., 7, 51:) is then added to
the replay buffer. This can be done multiple times per trajectory with different goals. This
approach allows the agent to learn from one set of experiences in multiple ways, which is
particularly beneficial in sparse environments. Specifically, it increases the agent’s success
rate during training and, because of that, facilitates faster learning.



Chapter 3

Related Work

Reinforcement Learning has gained attention due to its success in solving complex decision-
making problems, such as Atari games. However, achieving robust performance across
diverse environments and contexts remains a challenge. Zero-shot generalization is a cen-
tral focus of current research, with extensive efforts being made in various facets of this
problem. This chapter examines previous work that has inspired this thesis and attempts to
tackle similar challenges.

3.1 Exploration Strategies

This thesis aims to increase an agent’s ability to generalize by increasing the diversity of
the replay buffer, which can also seen as a goal of good exploration. While some of the
following papers were used as inspiration, they are not directly comparable to our proposed
methods, as they alter the agent directly.

3.1.1 First Return, Then Explore

“First Return, Then Explore” [9] by Ecoffet et al. introduces GoExplore, a family of novel
exploration methods in RL. The authors identify “derailment,” the inability to reach pre-
viously visited states, and “detachment,” the inability to return to an interesting state to
explore from, as key problems in deep exploration.

Their algorithm, which significantly outperformed other state-of-the-art results in various
Atari benchmarks [3]], works in two phases. The first phase, the "Exploration Phase,” in-
volves the agent starting each episode at the most promising spot encountered in previous
episodes and exploring its surroundings. This is repeated as necessary to explore the state-
action space thoroughly. In the second, optional "Robustification Phase,” the concatenated
trajectory is utilized as a demonstration, and the agent is trained on the resulting trajectory
to become more robust. This achieved previously unseen scores in Atari games like "Mon-
tezuma’s Revenge.” While the paper does not focus on generalization, we took inspiration
from the exploration phase to increase the replay buffer diversity of the agent.

9



3. RELATED WORK

3.1.2 BeBold: Exploration Beyond the Boundary of Explored Regions

The BeBold algorithm, introduced by Zhan et al. [39]], presents an innovative approach
to enhance exploration in RL. Traditional methods like count-based and state-difference
approaches often struggle with issues such as short-sightedness, which means only consid-
ering the near future, and detachment. The BeBold algorithm addresses these challenges
by combining count-based and state-difference into one criterion to encourage agents to ex-
plore beyond known boundaries. Unlike GoExplore, the algorithm does not rely on human-
designed down sampling of images, and it has a lower dependence on hyperparameter tun-
ing. This algorithm significantly improves performance on environments like MiniGrid and
NetHack without requiring extensive tuning or meta-learning techniques such as curriculum
learning.

3.1.3 Efficient Self-Supervised Data Collection for Offline Robot Learning

Endrawis et al. [[10] introduce a data collection method for robotic RL applications. The
agent fully explores an environment in simulation to collect exhaustive data for an offline
robot. The algorithm first explores, then selects a target from its replay buffer and tries to
reach it. The target selection is based on an RND module, which determines the state with
the highest attributed uncertainty as a target. The aim of this paper is to exhaust the state-
action pairs of an environment and use those to gather a complete training set for an offline-
trained agent. While the paper is mostly aimed at offline RL, the way the exploration works
is similar to our proposed solution and is therefore included. However, this algorithm does
focus purely on exploration and not on exploitation and is therefore not a feasible solution
for online learning.

3.2 Generalization Methods for RL

As the primary research objective is to increase the Zero-Shot Generalization performance
of reinforcement learning agents, we will now introduce some other works in this field to
put ours into context properly. These papers showcase that exploration and generalization
are interlinked and that diverse experiences can improve generalization.

3.2.1 The Role of Diverse Replay for Generalisation in Reinforcement
Learning

”The Role of Diverse Replay for Generalisation in Reinforcement Learning” by Weltevrede
et al. [37] explores the importance of diverse training data on an agent’s ability to generalize
to unseen contexts. The concept of reachable states is utilized to demonstrate that a diverse
buffer increases generalizability, especially in Zero-Shot situations. In an experiment, two
different ways of sampling from the buffer are compared to showcase the importance of
diverse state-action pairs in the training data. While this paper lays the groundwork for this
research, it mainly investigates the importance of the replay buffer on Zero-Shot generaliza-
tion, providing the simple solution of increasing the replay buffer size to fit every transition

10
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experienced into it. This approach, however, tends to be suboptimal in practice in multiple
ways. Firstly, hardware limitations are a concern, as memory becomes an issue with large
replay buffers. Further, the data in the replay buffer can become stale, meaning that either
the experiences do not reflect the current policy anymore and are, therefore, of less use or
that experiences have been sampled enough times already and are no longer impactful.

3.2.2 On the Importance of Exploration for Generalization in
Reinforcement Learning

”On the Importance of Exploration for Generalization in Reinforcement Learning” by Jiang
et al. [16] explores the importance of exploration on generalizability and proposes “Explo-
ration via Distributional Ensemble” (EDE), a novel exploration method. The paper inves-
tigates disentangling reducible epistemic uncertainty from non-reducible aleatoric uncer-
tainty, which is caused by an uncertainty of the current context. EDE uses an ensemble of
networks that are trained to estimate the uncertainty of a state, as they believe this will bet-
ter discern between epistemic and aleatoric uncertainty. They argue that putting the agent
into sub-optimal states during training helps improve its performance during testing when
such under-visited sub-optimal states may be unwillingly reached. While their motivation
and proposed goal are similar to this thesis’s, the use of ensembles differs strongly from our
solution. While their improvements compared to €-greedy exploration or Noisy Net [12] are
significant, they do not compare against state-of-the-art exploration methods such as such
as intrinsic reward-based exploration. Nonetheless, they exemplify that better exploration
not only improves an agent’s generalizability but is vital to its generalization performance.

3.2.3 Zero-Shot Task Generalization with Multi-Task Deep Reinforcement
Learning

”Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning” by Oh et
al. [28] tackles a specific subgenre of generalization, as they focus on sequential tasks.
The aim is to improve an agent’s zero-shot task generalization capabilities with a focus on
sequences of parameterized sub-tasks, meaning that the agent’s immediate goal changes
whenever it reaches its previous goal. It does so by learning variations of the sub-tasks and
then, through meta-learning, adapts the agent to understand previously unseen combinations
and orders of parameterized subtasks.

3.2.4 Towards Robust Bisimulation Metric Learning

”Towards Robust Bisimulation Metric Learning” by Kemertas and Aumentado-Armstrong
[[L8]] builds on the use case of a bisimulation metric introduced by Zhang et al. [38]. It
aims to improve the robustness of learned representations under complex conditions. Tradi-
tional deep RL algorithms often struggle with noisy or distracting environments, leading to
reduced performance. To combat this, the authors propose improvements such as general-
izing value function approximation bounds and incorporating norm constraints to mitigate
instability issues regarding the embedding. This means the agent learns to disregard irrele-
vant information in the observation, increasing efficiency and robustness. They empirically
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validate the work and demonstrate that the proposed methods not only increase the stability
of the learning process but also work well in sparse reward conditions.

3.3 Task and Learning Enhancements

While many traditional approaches in RL focus on optimizing an agent’s policy or its abil-
ity to generalize through behavioral changes, other strategies exist. This section discusses
strategies that, for example, focus more on the training loop than the actual agent, aiming
to improve an agent’s qualities through different means. This is, in some ways, similar to
our approach, as the underlying agent has not been changed. These methods could further
be used together with our proposed methods, therefore they are not used as comparisons.

3.3.1 Meta Learning

Meta-learning involves training models on various tasks to improve the performance and
generalizability of the agent [2]. Meta-learning tries to find similarities across tasks and
infers useful representations. Further meta-learning aims to find an optimal set of hyperpa-
rameters for a given agent. Unlike many other methods, this does not focus on zero-shot
generalization, as the knowledge gained through prior tasks should facilitate quick adapta-
tion to new tasks. Prominent versions of meta-learning are Reptile [27] and MAML [11]],
but other research in that area has also been fruitful.

3.3.2 Domain Randomization

”Domain Randomization for Transferring Deep Neural Networks from Simulation to the
Real World” by Tobin et al. [35] explores domain randomization, a technique where the
simulation environment is varied randomly during training to improve the robustness and
generalization of the RL agents. This approach has successfully trained agents in simulated
environments that can effectively transfer their skills to real-world scenarios. Further, some
of the methods in this thesis can be considered an alternate version of domain randomiza-
tion, in which only the starting position of the agent gets changed and not the context, which
is also controlled by the agent and not the environment.

3.3.3 Curriculum Learning

Curriculum learning involves altering the training cycle so that the tasks or data become pro-
gressively more demanding, starting with simpler or more familiar instances and gradually
increasing in complexity. By providing a structured learning curriculum, agents can build
basic skills first, avoid overfitting to specific tasks, and then further enhance performance
and generalization capabilities by incrementally increasing the diversity and difficulty of
the tasks provided[26].
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Chapter 4

Methodology

This section will explain the methodological framework employed in our experiments. This
thesis focuses on proposing novel techniques to enable RL algorithms to generalize more
effectively across contexts. As previously mentioned, this is achieved by increasing the
diversity present in an agent’s replay buffer. To do so, every method introduced consists of
two phases. The first brings the agent into a new interesting” state, meaning one that is
under-explored and, therefore, somewhat outside of the agent’s comfort zone. In the second
phase, the agent continues with its off-policy algorithm. This enables all the methods to
be utilized as extensions of any off-policy reinforcement learning algorithm; however, we
chose DQN for the purpose of this thesis. This chapter explains the concept behind each
algorithm and provides pseudo-code.

4.1 Teleportation

The Teleportation method is a proof of concept, partly inspired by the first stage of the Go-
Explore algorithm. The aim is to demonstrate that learning to reach the goal from various
states assists the agent at better generalizing to unseen situations and enhances understand-
ing of the environment. To do this, this method takes the approach of “teleporting” the
agent to a new position, which is usually impossible without modifying the environment,
but makes the impact of the diversifying start states stronger and more noticeable. Pseu-
docode for this method is provided in Algorithm I}

At the start of an episode, the teleportation is activated with a user-set probability of c.
The reason for setting ¢ lower than 1 could be to ensure a stable replay buffer diversity.
States are sampled from the replay buffer of the agent and are evaluated with an RND mod-
ule to select state g with the highest uncertainty associated. The before-mentioned RND
module is, however, strictly used for uncertainty evaluation and not for exploration, as the
e-greedy strategy is used. The sampling of states from the replay buffer is necessary to use
this method without domain knowledge, as otherwise teleportation states could be invalid
or outside of the reachable set S,(M|S°, . ). The environment then loads the current context
but sets the agent’s position to be the same as in g, initiating an episode from the given po-
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sition. The agent then tries to reach the goal while continuously employing the exploration
strategy, as he would in standard DQN learning.

The strength of this method lies in its ability to teleport, similar to the first phase of the
original version of GoExplore [8|]. However, it relies on state-loading, a feature most envi-
ronments do not provide. Even then, further modifications to the environment and, there-
fore, high domain knowledge are still required. Following this algorithm is merely a proof
of concept and is meant as an upper bound of the potential of the following methods.

Algorithm 1 Teleportation Algorithm

1.

—_— = = =
W N = O

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

R e A A S

Hyperparameters: teleportation chance ¢, sample size ¢, Loss function £
Initialize agent A with replay buffer D
Initialize random network distillation function RND(x)
Initialize done = False
Initialize environment ‘£
s+ E
while Training not finished do
while Rollout not finished do
if done = True then
Sample a random number r ~ Uniform (0, 1)
if r < c then
b'~D > t samples are drawn

Smax = argmax RND(s)
seb .
p,c=s > every state consists of (state’ X context)

P/, d = Smax
s=p,c
end if
end if
action a <— A4(s)
reward r, next state s', done < E(a)
store transition (s,a, r,s",done) in D
s s
end while
if enough experiences in D then
b~D
update 4 with L(b)
update RND with RND(b)
end if
end while
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4.2. Pure Exploration

4.2 Pure Exploration

As the Teleportation method is not always applicable, we aim to emulate the same procedure
in a generally applicable way while keeping the complexity low. As exploration strategies
naturally tend to move to novel states, they are also helpful for our purpose. Our novel
method, ”Pure Exploration,” can be understood as an extension of traditional exploration,
combined with the aim of diversifying the starting positions of an agent and, therefore, also
aims to increase the diversity of the replay buffer. This thesis will test Pure Exploration with
a shallow exploration strategy, €-greedy, and a deep exploration strategy, intrinsic reward
based on RND.

Algorithm 2 Pure Exploration Algorithm
1: Hyperparameters: exploration duration d, Loss function £
2: Initialize exploration policy exp
3: Initialize agent A with replay buffer D
4: Initialize done = False

5: Initialize environment E

6

7

8

9

: Initialize c =0 > ¢ is an episodic step counter
s+ E
: while Training not finished do

while Rollout not finished do

10: if done = True then

11: c+0

12: end if

13: if ¢ < d then

14: a < exp(s)

15: s < E(a)

16: else

17: a<— A(s)

18: reward r, next state s', done < E(a)
19: store transition (s,a, r,s’,done) in D
20: s s

21: end if

22: cc+1

23: end while

24: if enough experiences in 2 then

25: b~D

26: update 4 with L(D)

27: end if

28: end while

The algorithm splits every episode in the training cycle into two phases: a pure explo-
ration phase and a goal finding or main phase. The length of the pure exploration phase
is determined by the hyperparameter d. Pseudocode is provided in Algorithm [2] During
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the exploration phase, the agent strictly(’purely”) follows its own exploration strategy, for
example, e€-greedy(1-greedy in this use case), while ignoring its currently trained policy.
These trajectories should not be added to the replay buffer as they would be strongly off
policy and hinder efficient training. After the set amount of actions d has been taken, the
agent switches to the main phase. In this stage, the agent continues as usual by trying to
find the goal with the help of its policy while continuing to utilize its original exploration
strategy.

An immediate advantage of this method is its simplicity and the fact that it does not rely on
any particular methods of the environment or any modifications to it. However, the higher
d is set, the less time the agent has available to reach the goal, as the steps taken during
the exploration phase count towards the environment’s timeout limit. While this parameter
can usually be set by the user, this also means the algorithm has a lower sample efficiency.
Further, the algorithm does not provide as much control over the state distribution the agent
encounters as Teleportation does.

4.2.1 e-greedy based Exploration

The first choice of exploration strategy for testing is the standard e-greedy, as it is a widely
used exploration strategy and relies on uniform sampling from the action space and choos-
ing the selected action. During the usage in Pure Exploration, it can be understood as being
set to € = 1, and furthermore, the trajectory generated can also be seen as a Random Walk.
Its shortcomings are scenarios in which the wrong action leads to terminal states, as well as
scenarios that require a specific sequence of action to escape.

4.2.2 Intrinsic reward-based exploration

Intrinsic Reward has become a widely used deep exploration strategy, with many imple-
mentations being based on RND [3]]. Instead of randomly sampling from the action space,
the RND module guides the agent towards uncertainty. During normal usage, the output of
the RND module is scaled with a § value. During the first phase of Pure Exploration, it can
be understood as a beta value of co. After d actions, the agent should be in a completely new
position, and the main phase of Pure Exploration should start. This, as is also the case with
e-greedy, leads to an increased variance in starting positions. However, it should be both
more evenly distributed as well as consist of more “interesting” states.

4.3 GoExploit

The GoExploit method is the most advanced solution presented in this paper with pseu-
docode provided in Algorithm It also aims to replicate the Teleportation method but
without domain knowledge or modifications to the environment. It is comparable to the
first phase of GoExplore [9], but after reaching the state selected, we want to reach the ac-
tual goal (exploit”) instead of exploring the surroundings. It employs the use of not only
the main agent but also a secondary agent, which is a goal-conditioned agent, henceforth

16



4.3. GoExploit

called GC, that is trained as a universal value function approximator [31]. Both agents have
their own architecture and replay buffer, which gets only filled by their own actions. This is
necessary to avoid causing instability in the learning process by including data that shows
strongly off-policy behavior.

Like Pure Exploration, GoExploit works in two phases. The first aims to reach an inter-
esting starting position for the main agent to continue from in the second stage. As we have
to find reachable states to move to, at the start of an episode, states are sampled from the re-
play buffer of the main agent and, similar to Teleportation, evaluated with an RND module.
As we aim to move the agent out of its "comfort zone” and increase the diversity of both
the starting state and of those in the replay buffer, the state with the highest uncertainty
attributed to it is selected as an interim goal. This interim goal is given to the GC, which
aims to reach this state within a maximum of d actions, where d is a hyperparameter set by
the user. After reaching either the interim goal or the maximum allowed trajectory length,
the GC stops, and the main agent continues to reach its goal.

The latter case of ending the GC phase is expected to be common, as the interim goal from
the replay buffer cannot be guaranteed to be within the same context and topology as the
current environment. This also leads to the importance of using Hindsight Experience Re-
play in the training of the GC, as it enables the agent to learn from its interactions with the
environment even when only rarely reaching its goal.

The drawbacks of this algorithm are the fact that an additional agent is necessary, as well
as greatly increased wall clock run time and further an increased computational demand as
two agents have to be trained at the same time. However, the advantages of this method are
its close approximation of the Teleportationmethod and, therefore, a greatly increased gen-
eralizability of the agent without relying on domain knowledge or altering the environment
in any way.
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Algorithm 3 GoExploit algorithm

1:

[ S S = T
AN O A el =

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

RN R R

Hyperparameters: exploration duration d, Loss functions £,,4i, and L,
Initialize agent A4,,,;, with replay bufter Dy,
Initialize agent A, with replay buffer Dy,
Initialize random network distillation function RND
Environment ‘E
Initialize done = False
Initialize gc_done = True
Initialize c =0 > ¢ is an episodic step counter
s E
while Training not finished do
while Rollout not finished do
if done = True then

c+0

gc_done < False

b ~ Dyain

g = argmax RND(s)

s€b
sample goal state g ~ Duqin

end if
if c >=d or gc_done then
action a < Apgin(s)
reward r, next state s', done < E(a)
store transition (s,a,r,s",done) in D,,4in
else
action a < Ag(s,8)
reward r, next state s, done < E(a)
store transition ((s,g),a,r,s’,done) in Dg,
gcdone<s' ==g
end if
s s
c+—c+1
end while
if enough experiences in D,,,;, then
sample b ~ Dygin
update A,;4in With Ly, (D)
update RND with RND(b)
end if
if enough experiences in D, then
update D, with HER algorithm
sample b ~ Dy,
update Ag. with L,.(b)
end if
end while
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Chapter 5

Experiments

This chapter will cover the setup of the experiments and the architecture used for the agent.
It will also explain the environment and the different configurations of environments used.
Further, it will list the experiments done to evaluate the performance of the methods pro-
posed in chapter [4] as well as to answer the research questions asked in[I.2] The reasoning
behind the experiments’ inclusion will also be explained.

5.1 Architecture

The agent has the same architecture in every experiment and method used. As the ob-
servation is an image, the data is first passed through 3 CNN layers and, after this, through
incrementally shrinking fully connected layers. A ReLLU activation function is used between
each layer. Exact hyperparameters are in the appendix [A.2]

5.2 Environment

The environment used in all experiments is a fully observable FourRoom adaption of the
popular Minigrid environment. It is a 2D grid-world scenario consisting of four connected
rooms, separated by walls with doorways (Fig[5.1)). The agent’s task is to navigate from a
starting position to the goal. Upon reaching the goal, a reward of 1 is given to the agent.
No other rewards, neither positive nor negative, are given. The contexts differ by starting
position, goal position, and doorway position. Furthermore, five different sets of configura-
tions are used in this thesis. The corresponding validation and test sets each utilize identical
topologies, meaning the door positions are the same but with different starting and goal po-
sitions.

* Training set:
The training set consists of 40 different contexts.

¢ Validation/Test Reachable set:
The reachable set consists of 40 contexts that are the same as the Training ones, but
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with different starting positions. The name comes from the fact that every context in
this set is reachable from one of the contexts of the training set.

* Validation/Test Unreachable set:
The unreachable set consists of 40 contexts that differ in starting position, wall po-
sition, and goal position from the training and both reachable sets. No context of
this set can be reached from any context of prior sets through interaction with the
environment.

The average reward over the evaluated environments, 40 for each set, has been chosen as
the metric for evaluation. Another metric originally included was the average steps taken
to reach the goal, but as this is just an inverted version of the reward average, it has been
excluded from the graphs. Further, most graphs display the values achieved on the y-axis
alongside the training steps taken on the x-axis, often denoted in "Timesteps (1e3)”. How-
ever, some graphs solely focus on the results achieved at the end of training to simplify
comparison.

Figure 5.1: Visualization of the environment with the agent’s position marked by a red arrow
and the goal given by the green square. The picture does not represent the observation the
agent receives (see[A.T).

5.3 Hyperparameter tuning

Every method was hyperparameter-tuned on the validation sets to achieve optimal perfor-
mance. These include the duration (step-count) for which the proposed methods are active,
as well as the chance of activation for both the Teleportation method as well as GoExploit.
Further, as GoExploit consists of two different agents, various architecture choices were
evaluated for the goal-conditioned agent. Another experiment was also done to determine
whether the training length is enough for the goal-conditioned agent to reach its potential.
Some of the more interesting results have been added to the appendix [A.3] Also, for a list
of the hyperparameters that were used further, see[A.2]
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5.4 Generalization performance comparison

The core experiment of this thesis evaluated the methods proposed in a quantitative compar-
ison. Every method was assessed on 50 seeds and compared against each other as well as a
baseline regarding their generalization performance. Each method was first hyperparameter
tuned on the validation sets, and the best performance was compared on both test sets. As
Pure Exploration depends on an agent’s exploration strategy, it was tested with e-greedy
and intrinsic reward-based exploration, with both being compared against their respective
baseline. The hyperparameters that were used for the architecture and the comparison of
the agents can be found in the appendix (A.2).

5.5 Starting Positions

An experiment evaluated the number of starting positions each method generates. Every
method proposed splits an episode into two parts. The first is the phase in which various
methods steer the agent to a new position. Therefore the start of the second phase, in which
the traditional DQN agent acts, is considered a starting position for this purpose. This was
done to showcase the impact of more starting positions, for which we have to confirm that
the methods indeed increase the number of starting positions an agent experiences. Every
method has been evaluated on 5 different seeds.

5.6 Diversity

The aim of all methods proposed is to increase generalizability through an increase in di-
versity in the replay buffer. To showcase this connection, the impact of the method on the
replay buffer’s diversity had to be evaluated. This was also necessary to show a link be-
tween an increase in starting positions and the diversity of the replay buffer.

To do so, 10 seeds were run in each method and on both baselines. During these train-
ing runs, the replay buffer was evaluated every 1000 steps, and the unique state-action pairs
and unique states were counted. As this is a small environment, there are only 6240 dif-
ferent states reachable from the training set environments. However, to fully exhaust the
possibilities of experience, the action that was taken in a given state has to be taken into ac-
count as well. With an action space size of 3 this means that a total of 18720 of state-action
pairs are reachable from the training set in theory.

5.7 GoExploit ablation

As GoExploit offered many design decisions, we decided to investigate those further. This
includes but is not limited to evaluating the impact that adding the experiences of the main
agent to the goal-conditioned agent would have. Further, the importance of the tournament-
size, the number of possible goals that are sampled from the replay buffer, was also put into
question.
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As the GoExploit method also depends on many design decisions of the second, the goal
conditioned agent, we also investigated those choices, however only included them in the
experiment section of the appendix |[A.3| as most likely vary between environments and
applications.
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Chapter 6

Results

This chapter will cover the most notable experimental results. Further results that are not
included here are attached in the appendix [A.3]

6.1 Generalization Perforamnce

The core experiments of this thesis are quantitative comparisons. The methods will be
iteratively added to a plot and compared against a baseline and each other.

6.1.1 Teleportation

Training Reward Reachable Test Reward Unreachable Test Reward

100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400
Timesteps (1e3) Timesteps (1e3) Timesteps (1e3)

Method
mmmm Baseline === Teleport

Figure 6.1: Results of Teleportation methods with a buffer size of 50,000.

The Teleportation method served as a proof of concept and demonstrated promising results
across the board. Even though the performance was below the baseline in the training
set, it significantly outperformed it in both the reachable, as well as the unreachable test
and validation set with both a buffer size of 50,000 (Fig. [6.1) as well as 500,000 (Fig.
[7.I). As the aim of these methods is to improve generalizability, we care more about the
performance in the test and validation sets, as these are important to evaluate an agent’s
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ability to generalize. Therefore, the slight reduction in performance on the training set
is acceptable. The performance will be used as an upper bound of expectation regarding
generalization for the following methods. However, it again has to be stressed that this
method is enabled by strong modifications to the environment, without which it would not
be feasible to implement. Therefore it is only usable as a proof of concept and an idealised
implementation of the basic idea of all methods proposed in this thesis.

6.1.2 Pure Exploration

As Pure Exploration heavily relies on the exploration strategy employed by the agent, we
tested it both with e-greedy exploration and an RND-based intrinsic reward exploration
strategy.

e-greedy Exploration

Training Reward Reachable Test Reward Unreachable Test Reward

100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400

Timesteps (1e3) Timesteps (1e3) Timesteps (1e3)

Method
mmmm Baseline  =m==m Teleport === Pure Exploration - Epsilon Greedy

Figure 6.2: Results of Pure Exploration method using €-greedy with a buffer size of 50,000.

Despite its relatively simple implementation, the Pure Exploration method utilizing eps-
greedy exploration exceeded expectations with a disproportional success. With both a buffer
size of 50,000 (Fig. as well as 500,000 (Fig. [7.I), the improvements on both the
reachable as well as the unreachable test set are significant.

However, the amount of randomly sampled actions compared to an agent that purely utilizes
e-greedy is not to be understated. This reduces the sample efficiency, which explains the
delayed learning visible in the performance on the training set. Another problem of this
approach is the sampling of the action space, as both continuous action spaces and discrete
action spaces, with many dead actions (for example ProcGen [7]), pose a challenge if not
properly adjusted. Regardless of these complications, the results of this method on this
environment were above expectations.
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Intrinsic Reward Exploration

When utilizing the Pure Exploration method with the intrinsic reward-based exploration, we
included both the standard baseline, utilizing €-greedy exploration, as well as the baseline
for intrinsic reward exploration. The results can be seen in figure[6.3]

Training Reward Reachable Test Reward Unreachable Test Reward

100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400

Timesteps (1e3) Timesteps (1e3) Timesteps (1e3)

Method
Baseline with Intrinsic Reward === Teleport === Pure Exploration - Intrinsic Reward

Figure 6.3: Results of Pure Exploration method using intrinsic Reward Exploration with a
50,000 buffer.

Unfortunately, this method performed below expectations, which might have been caused
by improper implementation and tuning or by an unfortunate combination with this specific
environment.

Therefore, despite being based on a usually smarter exploration strategy, this method’s per-
formance showcases the importance of selecting a valid exploration strategy for this algo-
rithm. However, as this phenomenon might be environment-based, we assume that smarter
action sampling improves this method’s chances in complex and especially continuous en-
vironments.

6.1.3 GoExploit

The most intricate method in this chapter is the GoExploit approach, which relies on training
two agents simultaneously, resulting in a multitude of hyperparameters to tune as the second
agent is not a direct copy of the first one, therefore it has to be designed independently from
the ground up. Further, it is also the most complex method to implement.
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Training Reward Reachable Test Reward Unreachable Test Reward

100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400

Timesteps (1e3) Timesteps (1e3) Timesteps (1e3)

Method
mmmm Baseline == Teleport === Pure Exploration - Epsilon Greedy — =mssm GoExploit

Figure 6.4: Results of the GoExploit method with a 50,000 buffer

The quantitative experiment revealed mixed results. Improvements to the baseline are sig-
nificant in both reachable as well as unreachable test sets, with both a buffer size of 50,000
(Fig. [6.4) as well as 500,000 (Fig. [7.1)). It performed approximately the same in all evalua-
tion cases as Pure Exploration with e-greedy did. However, after 300,000 steps, the agent’s
performance started to deteriorate slightly, which could be caused by various reasons. One
of which will be further discussed in Subsection Overall, it performed very well,
though somewhat below expectations, particularly considering the complexity of the imple-
mentation compared to its performance equivalent Pure Exploration.

6.2 Analytical Experiments

Other experiments aside from comparing test results of the proposed methods were con-
ducted to analyze the methods further and investigate their effect. They will be presented
in this section. Further experiments that are either inconclusive or not impactful were not
included here and were added to the appendix [A.3]

6.2.1 Starting Positions

The experiment to evaluate the number of starting positions an agent starts from throughout
a training run showed expected results. The baseline has 40 different starting positions
in the training set. The next lowest was Pure Exploration, using intrinsic reward-based
exploration, with an average amount of 463 unique starting positions. The next was the
GoExploit method with an average of 1,889 unique starting positions. Pure Exploration,
using e-greedy exploration, achieved an average of 2,690. Teleportation more than doubled
that with 5,698, showcasing one of the reasons behind its impressive performance. To put
these numbers into proper context, the total amount of states reachable from the training
set is 6,240. That means the percentage of possible states that were started from, from
the lowest to the highest: Baseline (0.6%), intrinsic reward-based Pure Exploration (7.4%),
GoExploit (30.3%), e-greedy Pure Exploration (43.1%), Teleportation (91.3%).
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Method
Baseline
Pure Exploration - Epsilon Greedy
Pure Exploration - Intrinsic Reward
Teleport
GoExploit

5000

4000

3000

2000

1000

Figure 6.5: Comparison of the number of starting positions an agent starts from in a training
run. All agents used a buffer size of 50,000.

6.2.2 Diversity

1.0
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Timesteps (1e3)
Method
— Baseline - Baseline with Intrinsic Reward —— Teleport
—— Pure Exploration - Epsilon Greedy =~ —— Pure Exploration - Intrinsic Reward =~ —— GoExploit

Figure 6.6: Comparison of the diversity of state-action pairs in the replay buffer for a buffer
size of 50,000. Normalized with a maximum possible value of 18,720 state-action pairs.

To simplify the graphs, they were normalized following the maximum number of state-

. . .. # of unique state-acti i .
action pairs reachable from the training set (——1=7 2" P%2) and the maximum num-

ber of reachable states reachable from the training set (%)

For the state-action pair diversity, it can be seen in the graph (Fig. that the methods
achieving a higher generalization performance also achieved a higher diversity. Notably,
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Figure 6.7: Comparison of the diversity of state-action pairs in the replay buffer for a buffer
size of 50,000. Normalized with a maximum possible value of 6,240 states.

the only crossing of lines is GoExploit with Pure Exploration using €-greedy. This almost
directly lines up with their performance on both the unreachable test set and the validation
set. This mostly also holds for the state diversity graph (Fig. [6.6). However, the difference
between methods is more pronounced. This can be explained by the fact that the proposed
methods do not influence the agent’s decisions after ending their corresponding phase. This
means the methods proposed in this thesis have a stronger influence on state diversity than
state-action diversity.

6.3 GoExploit ablation

As the GoExploit method is the most intricate proposed in this thesis, it also required more
experiments regarding its qualities. Especially as multiple agents lead to a multitude of
implementation decision and hyperparameter choices. As the secondary agent differs both
in architecture as well as use case the choices are up to the implementation and have to
take the environment at hand into account. The following experiments were done to verify
choices made and to showcase potential options.

6.3.1 Extended Replay Buffer

An additional experiment was done to explore the effect that off-policy data would have on
the goal-conditioned agent. As both agents act independently and have independent replay
buffers, the training data, especially of the secondary agent, is fairly limited. To combat this,
the trajectories controlled by the main agent were added to the secondary buffer. Under nor-
mal circumstances, this would be strongly off policy and lead to deteriorating performance.
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Reward

6.3. GoExploit ablation

However, as the agent learns mostly through the effect of Hindsight Experience Replay, it
could lead to an improvement. As is shown in Figure [6.8] the effect is very slight and not a
signifcant improvement. Further, it seems that the extended replay buffer leads to a higher

level of instability.
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Figure 6.8: Results of adding main agent buffer to goal conditioned agent’s buffer compared

to the standard way.
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6.3.2 Effect of tournamentsize

Another experiment was done to investigate the impact of tournamentsize in the algorithm.
This size determines how many states are sampled from the replay buffer, which will then
be evaluated through the RND module to select the most uncertain ones. A tournamentsize
of 1 would mean that the first state that was sampled will be used. As a comparison, 150
was chosen. As can be seen, the larger tournamentsize leads to improved performance. A
smaller tournamentsize would reduce computational costs. As shown in Figure |6.9|the per-
formance difference is visible, even if not particularly significant. A size of 3 was utilized

for further experiments.
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Figure 6.9: Comparison of different tournamentsize used for GoExploit with a buffer size

of 500,000.
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Chapter 7

Discussion & Conclusion
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Figure 7.1: A comparison of all methods proposed used in this thesis, using a replay buffer
size of 50 000
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Figure 7.2: A comparison of all methods proposed used in this thesis, using a replay buffer
size of 500 000
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7. DISCUSSION & CONCLUSION

In this thesis, we introduced and analyzed three novel methods aimed at improving the
generalizability of reinforcement learning agents. However, only two of these are actually
usable. Each method offered advantages and disadvantages, bringing us further insight and
understanding of how RL agents adapt to diverse environments and contexts. This chapter
will focus on discussing these findings. For reference, see the comparative results of all
novel methods against a baseline using €-greedy as an exploration strategy utilizing a replay
buffer size 50,000 (Fig. and 500,000 (Fig. respectively. Alternatively, the plots
that also include results from the validation set have been added to the appendix

7.1 Teleportation

It is clear from the Teleportation experiment results that it serves as a good synthetic upper
bound for determining generalization performance, as the results across all evaluation sets
and on both buffer sizes exceed any other method. Its limitations are severe, as it can only
be used when a valid MDP can be generated on demand to meet the requirements of the
Teleportation method employed. As this is not the case in any environment we are aware
of, this method’s applicability is limited. Despite this, the method functions as a proof
of concept and showcases that increasing the number of starting positions, especially in
such a way that selects interesting states to start from, is a viable solution to closing the
generalization gap.

7.2 Pure Exploration

Pure Exploration as a method is more of a concept than an actual specific implementation.
As it depends strongly on the exploration strategy employed by the agent, the difficulty of
implementation mirrors that. For both use cases at hand, the implementation only has a
few lines of code. The success of both versions of this method differs strongly depending
on the exploration strategy used, as you can see further in the following sections. This,
however, again showcases both the importance of selecting the right exploration strategy
for an environment, as well as the dependency of this method on said strategy. While the
performance of intrinsic reward-based Pure Exploration was disappointing, it did not harm
the agent’s performance in any way. Therefore, at minimum, a small Pure Exploration phase
should be strongly considered.

7.2.1 e-greedy exploration

e-greedy based Pure Exploration performed above expectations. It was originally intended
as a lower bound, but it prevailed and outperformed any other method than the upper bound
of Teleportation. This might be caused by the amount of starting positions it generates as
can be seen in section With its simplicity, its downfall might be terminal states, as it
cannot learn to avoid them.
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7.3. GoExploit

7.2.2 Intrinsic reward exploration using RND

Despite its surprisingly poor performance compared to the €-greedy implementation, the
intrinsic reward exploration-based Pure Exploration still outperformed its baseline (see Fig.
[6.3). This showcases that even when using this exploration strategy, a Pure Exploration
phase can benefit the agent’s ability to generalize. This is especially beneficial as intrinsic
reward exploration is commonly used in more complex environments and should be able
to perform even better when the underlying intrinsic reward exploration properly improves
exploration.

7.3 GoExploit

GoExploit was the original aim of this thesis, as it mirrors the first phase of “First return
then explore” [9] with a focus on exploitation instead of exploration.

While GoExploit exhibits promising results in all evaluation sets, it also reaches about the
same level of generalization that e-greedy based Pure Exploration does. As experiments
(Section ??) showed, this is not only a problem of training as even with longer training
time, the performance did not increase significantly. Furthermore, its plethora of hyperpa-
rameters poses a tuning challenge, and the architecture of the secondary agent also has to
be designed in a fitting way. While these statements seem to diminish the results at hand,
they just showcase the need for improved investigation of Hindsight Experience Replay or
even better alternatives as the secondary agent strongly relies on this algorithm.

A niche use case could be situations in which a perfect goal-conditioned agent can be uti-
lized as a plug-in. The secondary agent does not aim to generalize to non-training environ-
ments, so it can replace the teleportation part without worrying about overfitting.

7.4 Conclusion

To return to the original questions asked in Section|1.2

Does increasing the diversity of starting positions increase an agent’s ability to general-
ize?

Yes, all methods introduced showcased an increase in starting positions, as can be seen in
Figure [6.3] Further, the correlation between starting positions and generalization perfor-
mance is visible, as all of the methods led to higher performance on the test sets and overall
a smaller generalization gap, as can be seen in both Figure and

Does the diversity of the replay buffer impact the agent’s ability to generalize?
Yes, as can be seen in the experiment comparing the diversity of replay buffers, the results
seem to be correlated to the results of the agent on the test environments (see Fig. ?? and

respectively).

What are possible ways to achieve an increase in diversity of starting positions without
altering the environment?
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7. DISCUSSION & CONCLUSION

Pure Exploration (Alg. [2)) is an easily implementable solution to achieve a diverse buffer
without relying on domain knowledge and does not rely on domain knowledge. GoExploit
(Alg. is a more intricate solution that could achieve more success in complex envi-
ronments. While Teleportation is not applicable in real-world scenarios, it underlines the
finding that all these methods increased the diversity of starting positions and the replay
buffer and further increased the generalization performance of the agent.

In total, this work not only conclusively answered the questions asked but also provided
methods and algorithms to achieve the performance and improvements that were investi-
gated and aimed for.

7.5 Future Work

While working on this thesis, various details would have been strongly out of scope, but this
showed us the many possible avenues for future research in this direction.

Starting with GoExploit, which again relies strongly on the use of HER, which, however,
limits the usage of this method to Off-Policy algorithms such as DQN. Therefore, a potential
future work would be to adapt HER to On-Policy algorithms, as these seem to outperform
in many use cases. This, in turn, would lead to a potential implementation of GoExploit to
On-Policy algorithms.

The success of Pure Exploration opens the possibility of designing exploration strategies
specifically for this use case, as well as investigating the effects of different exploration
strategies.

Furthermore, the again-shown direct link between an agent’s ability to generalize and the
diversity of state-action pairs present in the replay buffer would lead to the assumption
that an overall focus on increasing said diversity should be a priority for further research
into generalization. Possibilities here range from using the diversity of the replay buffer
as a benchmark during training to aiming to find novel ways to increase said diversity.
This includes specific replay buffer implementations or further research into exploration
strategies.
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Appendix A

Appendix

A.1 Libraries

Aside from the altered FourRoom adaption of MiniGrid, other libraries were also utilized.
A visualization of the environment can be seen in Figure[A.T] However, the observation the
agent has access to is set up differently. It is a 3-dimensional array consisting of {0, 1}, with
4 9x9 arrays. Further, the observation of the agent is centered around the agent. Layer 0 and
Layer 1 represent the agent’s position and viewing direction, respectively. Layer 2 displays
the walls, and Layer 3 displays the goal position.

For implementation, the library stable_baselines3 was used. For the most part, the algo-
rithms were used as is. However, the DQN implementation has been extended to a Double
DQN version. Further, as the HER implementation of this library has a bug, we changed it
to assert "done” flags correctly for virtual trajectories.

The code utilized for this project is public, and the link can be found in the abstract.

Figure A.1: Visualization of the environment with the position of the agent given by the
arrow and the goal given by the green square.
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A. APPENDIX

A.2 Hyperparameter

Hyperparameter Value
Total timesteps 500,000
DQN
Buffer size 500,000
Batch size 256
Discount factor y 0.99
Max. gradient norm 1
Gradient steps 1
Train frequency (steps) 10
Target update interval (steps) 10

Target soft update coeffcient T 0.01

e-greedy exploration

Exploration initial € 1
Exploration final € 0.1
Exploration fraction 0.5

Intrinsic reward exploration

Beta 0.1
Adam
Learning rate 1x1074
Weight decay 1x107°
CNN
Kernel size 3
Stride 1
Padding 1
Padding mode Circular
Channels 32

Table A.1: Hyperparameters used if not stated otherwise.
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A.2. Hyperparameter

Hyperparameter Value
Teleportation

”Teleportation” chance 1.0

Pure Exploration

Maximum steps 30
GoExploit
Maximum steps 30

Table A.2: Hyperparameters of the proposed methods used in the main generalization com-
parison.
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A.3 Experiments

A.3.1 Method Comparison
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Figure A.2: A comparison of all methods proposed used in this thesis, using a replay buffer
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A.3.2 Impact of more actions
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Figure A.4: Comparison of the agent’s performance in an environment with increased action
space of 10 actions using a replay buffer size of 50,000.

Another experiment investigated the impact of dead actions on the proposed methods. This
was done by extending the action space from 3 to 10 actions and mapping the additional
actions to ”Do nothing”. None of the hyperparameters were changed between the original
main experiment and this. As we originally assumed that especially €-greedy based Pure
Exploration would struggle in this case, we were surprised to find it still outperforming
all other methods except for Teleportation, aside from a slight lead in the training envi-
ronment. Furthermore, GoExploit performed somewhat worse than expected. We assume
this is caused by the overhead of training two networks to ignore the majority of possible
outputs.

A.3.3 Effect of Teleportation chance on the Teleportation method

One experiment was done to investigate whether a value exists from which onward the
teleportation is more of a hindrance than an improvement. This was investigated on both
the 50,000 Buffer (Fig. @ as well as the 500,000 Buffer. Values of 70% and 100%
performed the best with a significant difference to other teleportation chances values on
the unreachable validation set. Further, on the smaller Buffer sizes higher teleportation
chance also increased the training performance and made training more stable. This might
come from the fact that otherwise, the buffer is filled with many duplicate entries, which
the teleportation combats. This leads to a higher diversity in training data and, therefore, to
higher performance.

A.3.4 Effect of e-greedy Pure Exploration duration
The importance of the Pure Exploration phase’s duration was investigated for the e-greedy
based Pure Exploration method (Fig. [A.6). However, it shows that the value is less impact-

ful than expected, influencing the reachable test set results more than the unreachable ones.
However, the trend is still visible in both and reaches a soft peak at 30 in the reachable set
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Training Reward Reachable Validation Reward Unreachable Validation Reward
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Figure A.5: Comparison of different teleportation chances on the performance of the agent,
using a buffer size of 50,000.

and 40 in the unreachable set. After that, the stability of the agents appears to deteriorate
again, as the number of steps the agent has left over to reach the goal is reduced too much.
Further, a higher value also decreases the sample efficiency of the agent. This showcases
that the parameter should be carefully selected and heavily depends on the chosen environ-
ment, especially the maximum number of steps allowed. 30 has been chosen for further
experiments.

Reward Reachable Test
o000 o00o0o0oor
OFRNWARUIONOWOO

Reward Unreachable Test
OCOoo0o0o00o00oor
OFRNWARUIONOOO

0 5 10 20 30 40 50
Max Steps

Figure A.6: Comparisons of lengths of the Pure Exploration phase using e-greedy and a
buffer size of 50,000.
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A.3. Experiments

A.3.5 GoExploit

As the GoExploit method is the most intricate proposed in this thesis it also has the most
experiments regarding its qualities.

Effect of MaxStep

The first one was a simple investigation into the optimal value of allowed maximum steps
of the goal-conditioned agent (A.7). The value is of even higher significance in this method
than for the Pure Exploration, as it controls not only the duration available to reach the
interim goal but also the number of transitions fed to the secondary agent. However, the
actual impact seems to be nonconclusive. The performance reaches a soft peak at a value of
30 —40 in all test categories. After that, the performance decreases again, as the main agent
likely has too few actions left to learn and generalize properly. 30 has been chosen as the
standard value for other experiments.
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000000000
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Figure A.7: Comparison of different amounts of steps available to the goal-conditioned
agent of GoExploit using a buffer size of 50,000.
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Effect of longer training time

Another experiment was done to discern whether the agent suffers from too little training
time. This could be caused by the split of replay buffers. As both agents have their own
replay buffer, it could be that they need longer in total to reach their full potential. To show
that this is not the case, an experiment was carried out in which the results were compared
against an agent that had double the time steps (1,000,000) (Fig. [A.8). The experiment

results indicate that 500,000 time steps sufficed to reach the agent’s full potential.

Training Reward

Reachable Validation Reward

Unreachable Validation Reward

1.0

0.8

0.6

0.4

0.2

0.0

—

1.0

0.8

0.6

0.4

0.2

0.0

N

r

)

0 200 400 600

Timesteps (1e3)

800

1000

0 200 400 600

Timesteps (1e3)

800 1000

Method

0

200 400 600

Timesteps (1e3)

800 1000

=== Baseline Double Duration

Figure A.8: Comparison of different training durations, using a buffer size of 50,000.

Architecture Choice

The last experiment was done to verify which architecture to choose for the goal-conditioned
agent. However, as this is a highly environment-dependent choice, the implications of this
choice do not extend further than the FourRoom Environment. We compared both stack-
ing observations on top of each other, as well as utilizing a hypernetwork (Fig. [A.9), and
came to the conclusion that the hypernetwork architecture achieved slightly better results.

Therefore, hypernetwork was chosen as the architecture for further experiments.
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Figure A.9: Comparison of using a hypernetwork or stacking observations for the goal
conditioned agent of the GoExploit method, both using a buffer size of 50,000.
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