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Abstract

To improve the sustainability of electrical energy in the world, solar panels and
windmills are introduced all over the world. However, since the actual weather
differs from the forecast, the energy produced can differ from the predicted amount
of energy. This introduces energy trading. This thesis looks at how to control the
import and export of energy from different devices (called assets) within a single
location, to minimize the total energy costs.

All assets at a location are grouped into (multiple) so-called EANs, each with their
own energy contracts and prices. The total energy cost is made up of three parts:

o The deviation costs, which is the cost of an asset using more or less energy
than its given optimum;

o The energy supplier cost, paid over the total amount of energy imported or
exported per EAN;

o The transport cost, paid over all imported energy from the net.

When the deviation costs are linear, a linear programming (LP) method can be used
to find the optimal solution to minimize the energy costs. However, the time com-
plexity can be improved. Therefore, a fitting algorithm is made, which also results
in the optimal solution. This algorithm works for linear deviation costs and even
for piecewise linear deviation costs as long as they are convex.

The problem becomes more complex when the deviation costs are piecewise lin-
ear, but non-convex. Then finding the optimal solution is proven to be NP-Hard.
Although it is very complex, a fitting algorithm can be made that finds solutions
within 1.57% of the optimum. This results in an average cost reduction of 48.61%
compared to the unoptimized case, where each asset operates independently.
Finally, if the deviation costs are non-linear, but still convex, a similar algorithm can
be found as the algorithm for the problem with piecewise linear deviation, but this
algorithm takes longer as it can be seen as a piecewise linear function with infinite
intervals; however, this scenario is not very realistic currently.

In conclusion, the energy distribution problem can be optimally solved if the devi-
ation cost only increases or if they do not change at all. If the deviation cost also
decreases compared to its prior deviation cost, a solution can be found very close to
the optimal solution.






Laymen’s summary

To improve the sustainability of electrical energy in the world, solar panels and
windmills are introduced all over the world. However, since the actual weather
differs from the forecast, the energy produced can differ from the predicted amount
of energy. This introduces energy trading. This thesis looks at how to control the
import and export of energy from different devices (called assets) within a single
location, to minimize the total energy costs.

At a location, for example, a company, different assets can be active. Some of these
assets can be controlled, such as solar panels or batteries. Each of these assets has
a given individual optimal import in kW and a deviation cost in €/kW, that is, the
cost of deviating from this optimum. If all of these assets were looked at individually,
they would logically all be at their optimum. However, if there are multiple assets
on a location, it might be profitable to deviate from an asset optimum if this benefits
the total energy cost.

All assets at a location are grouped into (multiple) so-called EANs, each with their
own energy contracts and prices. The total cost consists of three parts:

o The deviation costs, which is the cost of an asset using more or less energy
than its given optimum;

o The energy supplier cost, paid over the total amount of energy going in or out
of an EAN;

o The transport cost, over all imported energy from the net.

The goal is to minimize the sum of these costs. In the base case, the deviation costs
are linear; every asset has a fixed deviation cost in €/kW. This situation can be
easily solved with a linear programming (LP) method, or a fitting algorithm can be
made, which is faster if a lot of assets are present.

If the deviation costs change every once in a while, it becomes more difficult to
solve. If the deviation cost only increases compared to the previous cost, the same
algorithm can be used again, and it remains quite simple. However, if this is not the
case, the problem becomes very difficult and thus quick algorithms cannot always
find the optimal solution. A quick algorithm can still be made with results within
1.57% of the optimal cost, which is an improvement of 48.61% over the unoptimized
scenario.

If the deviation cost can change at every moment (infinitely many), while still in-
creasing, a quick algorithm can still be made.

In conclusion, the energy distribution problem can be optimally solved if the devi-
ation cost only increases or if they do not change at all. If the deviation cost also
decreases compared to its prior deviation cost, a solution can be found very close to
the optimal solution.
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Introduction

The energy transition is one of the most important aspects in the battle against
global warming. Previously, the most important energy source was from fossil fuels,
but since this creates a lot of CO2 emissions, a different energy source had to be
used. This led to the introduction of solar panels, windmills, and other electrical
energy-generating devices. This is a more durable energy source, as it does not
produce a lot of CO2 emissions. However, there is still a problem with this method.
If more or less energy is produced than expected, there will be a (negative) surplus
of energy on the net. Therefore, the network operator will give money to the com-
panies that can correct this difference. If there is a surplus of energy on the net, a
company can buy new energy from the net very cheaply, and if there is a shortage of
energy on the net, companies can get a high price for supplying energy to the net.
This creates a new market; energy trading. This thesis will research how to find
the optimal import and export of energy of all controllable assets within an energy
network. This will be referred to as the energy distribution problem.

The optimization takes place at a specific location. This location can be a fac-
tory or some other company with a connection to the electricity network. Every
location has a contract which limits the maximum import and export of energy; the
throttle. This contract also determines the transport cost, i.e., a tax over the energy
imported from the net.

At this location, multiple assets are connected. This can be a solar panel, a battery,
a charging station, or a machine that consumes energy. Some of these assets can be
controlled. A solar panel or a charging station can be turned on and off, and the
import of a battery can also be controlled. These are the assets that will be looked
at mainly.

Each of these assets is also in a certain EAN (European Article Numbering). An
EAN can be seen as a grouping of assets. Each asset is part of exactly one EAN.
Sometimes there is only one EAN, then all assets on the location are in this EAN.
Each EAN has an energy contract with certain costs known as the energy supplier
costs. This determines the price paid over the import and export of electricity on
this EAN. When the contract is fixed, this price does not fluctuate very often; how-
ever, when this contract is not fixed, these prices can change every fifteen minutes.

In this thesis, the control of the import of controllable assets will be discussed.
The goal is to manage them in such a way that the total energy costs are kept
to a minimum. This will be done every minute, since the parameters can change
quickly. In the first chapter, the base problem will be introduced. The parameters
will be explained, and two solutions to the problem are given. In Chapter 2, we
will look at the effect of changing the deviation cost to a piecewise linear function.
Finally, in Chapter 3, the effect of non-linear deviation costs will be discussed, and
an algorithm to find the optimal solution will be looked at.
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Chapter 1

The Energy Distribution Problem

The goal of the energy distribution problem is to minimize the total costs. The total
energy cost consists of the following costs.

 Deviation costs per asset (€/kW)
» Energy supplier costs per EAN (€/kW)
» Transport cost on location level (€/kW)

The deviating cost is the cost of an asset that deviates from its optimal import.
This optimal import is based on the current net prices or, in the case of batteries,
on a prediction of the future net prices. The total cost of the deviation per asset is
the deviation cost multiplied by the difference between the actual import and the
optimal import in kW. In Figure 1.1, an example of the deviating cost of multiple
assets is shown.

DEVIATION COST ASSET 1 DEVIATION COST ASSET 2 DEVIATION COST ASSET 3
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-250 -200 -150 -100 -50 0 50 100 150 200 250 0 50 100 150 200 250 300 350 400 450 -700 600 500 -400 -300 -200 -100 0 100
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Figure 1.1: Deviation costs in different assets

The energy supplier costs are calculated per EAN. Each EAN has its own contract
that determines the energy supplier cost of this EAN. The total cost per EAN is
the amount of energy flowing in or out of the EAN in kW, multiplied by its energy
supplier cost. An example of the total energy supplier costs is given in Figure 1.2.
Finally, the transport cost is calculated over the amount of energy imported from
the net. This transport cost depends on the network operator. When energy is
only exported to the net, there is no transport cost. The total cost for this is the
transport cost multiplied by the amount of energy imported in kW. An example of
the total transport costs is given in Figure 1.2.

11
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ENERGY SUPPLIER COSTS TRANSPORT COSTS
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Figure 1.2: Example of Energy Supplier costs (left) and Transport Cost (right)
The total costs will therefore be defined by equation 1.1.

n n m
> |zi — opt;| - dev_cost; + maxz (0, x;) -trans_cost+ Y _es_cost;-| Y x| (1.1)
i=1 i=1 j=1 i€ EAN,

where variables are defined as follows:
e x; is the import of asset 7 in kW.
e opt; is the optimum import of asset ¢ in kW
« EAN; is a set that contains all assets that are in EAN j.
 dev_cost; is the deviation cost of asset i in (€/kW)
 trans_cost is the transport cost on location level in (€/kW)

+ es_cost; is the energy supplier costs of EAN j in (€/kW)

1.1 LP optimization

To find the optimal x; for each asset ¢ a linear programming (LP) solver can be
used. This LP solver will find the optimal solution given certain decision variables
and constraints for these variables. The LP used in this project is Python PuLp
[J.S525]. This application uses CBC to solve its problems [FRV'24].

Since the cost function found in Equation 1.1 is not linear, some additional decision
variables must be introduced besides x;. All decision variables are listed below, each
with their own constraints.

1. z; is the amount of import of asset ¢ in kW

o I; > min;

o z; < max;
2. deviation; is the absolute value of the deviation in kW

e dewviation; > x; — opt;

e deviation; > opt; — x;
3. total_import is the amount of positive import in kW

o total_import > 0
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o total_import > 371" | x;
4. EAN _import; is the absolute amount of import over EAN j in kW

o EAN_import; > Yicpan, Ti
o EAN_import; > — Y icpan, Ti

Here, min; and max; are the minimum and maximum possible import for asset 7.
Two additional constraints must be added to ensure that the total import at the
location is within the throttle limits.

1. Y0,z > min_import
2. 30 x; < mazx_amport

Here, min_import and max_import are the minimum and maximum allowed import
at the location.

Given these decision variables and constraints, the linear minimization function
can be defined as in equation 1.2.

n m
Z deviation; -dev,costi+t0tal,imp0rt-trcms,costjtz EAN -import;-es_cost; (1.2)
i=1 Jj=1

This function can be optimized using an LP, where z; is the optimal import for
asset ¢ when looking on location level. Since this is an LP, the time complexity of
this method is at least O*(n*%°) according to Jiang (2020) [JSWZ20]. Here O* is
the notation of the time complexity where the polynomial factors are omitted. For
example, O(n? + 5n) = O*(n?). This is not bad, but it can be improved.

1.2 Algorithmic optimization

Another way to solve the energy distribution problem is by using a fitting algorithm.
Let all assets start with its import equal to its optimal import. Each controllable
asset can import less and/or more than it is currently doing. The cost of chang-
ing this import is the sum of the deviation cost, the energy supplier cost, and the
transport cost. However, this sum can also be negative. For example, if we lower
the amount of import from an asset, the total import of the EAN will also decrease,
which can result in lower energy supplier costs. If the gain from energy supplier
costs is higher than the loss due to the deviation costs, it is profitable to lower the
import of this certain asset. This can be done in a more organized way.

Let us look at a location with 3 EAN’s with each 3 assets. Each of these assets
can have a deviation interval to the ’left’ by importing less than currently and to
the 'right’ by importing more than currently. We can put all intervals of an EAN in
a set; L for 'left’ and R for 'right’. These sets can be sorted by deviation cost, per
EAN, and per direction.

We now use these sorted intervals to find the optimal distribution of the energy
for every possible import of the EAN. This is as follows. All assets start at their
optimum. First, we look at deviating to the left. We take the cheapest interval
and use this to deviate along the interval. The cost per kW in this interval depends
on the deviating costs and the energy supplier costs. If the import gets closer to
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zero, the energy supplier cost gets subtracted, if the import goes away from zero,
the energy supplier cost gets added. This is done for all intervals to the left, in
order of deviating cost, and next it is done for all intervals to the right, in the same
order. This will create a piecewise linear function. This piecewise linear function
represents the lowest possible cost for every possible amount of energy imported.

An example can be found in Figure 1.3. This EAN contains asset 1, a solar panel,
asset 2, a loading station, and asset 3, a battery. The combined optimum import
of these assets is —200 kW. If we look at importing less than currently, we see that
asset 2 is the cheapest option. The 100 kW interval of asset 2 will be used and the
cost is the sum of the deviation costs and the energy supplier cost (shown in the
middle of Figure 1.4), since more energy flows out of the EAN. The next cheapest
(and only) interval is in asset 3. This asset can deviate 300 kW to the left. There
are no more intervals to the left, so we now look at the right. The cheapest interval
there is again asset 2. The 150 kW interval is used, but now the energy supplier
cost is subtracted from the deviation costs, since the absolute import is decreasing.
Therefore, this interval has a negative cost. The next cheapest interval is from asset
1. This asset can deviate 400 kW to the right. We first get an interval of 50 kW
to the right, whose costs are equal to the deviating costs minus the energy supplier
costs. However, the zero mark has now passed, so the left 350 kW will have a sig-
nificantly higher cost, since this means that the energy supplier costs will now be
added to the deviation costs, since the absolute import is now increasing. The last
interval is 100 kW to the right of asset 3 with even higher costs. A piecewise-linear
convex function has now been created which can be used to find the optimal import
of this EAN. This function is shown on the right in Figure 1.4.

Asset 1 Asset 2 Asset 3
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Figure 1.3: Deviation cost of different assets

Combined deviation costs Energy Supplier Optimal costs EAN 1

\/ \/ \/
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Figure 1.4: Combining the deviating costs (left) with the energy supplier costs
(middle) gives the total optimum costs (right).
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Let this be done for all three EAN’s. Then we have three piecewise linear convex
functions as in Figure 1.5. We can now create a similar piecewise linear function on
location level by using the same algorithm as in the previous part. All intervals from
the EAN function are sorted by their cost (starting at their minimum, left and right
still separated), and since the functions are convex, we can use them in this order.
We now combine this list of intervals with the transport cost, left in Figure 1.6, to
obtain the piecewise linear function for the entire location, right in Figure 1.6. The
minimum of this function is the minimal cost, and by bookkeeping which intervals
have been used to get to this minimum, we can then find the new optimal import
for each asset. Note that the function is only defined on [—1200kW, 1200kW] since
these are the boundaries of the location, and more import or export is not allowed.

Optimal costs EAN 1 Optimal costs EAN 2 Optimal costs EAN 3

2
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o0 200 0 00 00 0
Import (W)

Figure 1.5: Optimal cost of different EAN’s
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Figure 1.6: Combining the transport costs (left) with the optimal EAN costs (Figure
1.5) gives the total optimal location costs (right).
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A pseudocode of this algorithm can be found in Algorithm 1. First, the empty sets
L and R are created. Then, all intervals for both directions, [ and r, are created
and placed in the correct set, L and R, respectively. These intervals each consist of
a length and a cost interval_cost. Then, these sets are sorted by their cost. The
algorithm starts at the combined optimum of the parts. Then it uses the intervals in
order, combining its cost with positive or negative energy supplier costs. This loops
until we run out of intervals or the location boundaries are reached. This results in
a function with the cost and optimal distribution of the import over the assets for
every amount of total import.

This algorithm can first be used to create a piecewise linear function for each EAN
and finally, these piecewise linear functions can then be put in this same algorithm,
with EANs instead of assets and transport cost instead of energy supplier cost, to
find the piecewise function for the location. Using this, the optimum can be found.
In the pseudocode, PART'S is a list of assets or EAN’s with a (piecewise) linear
function.

Since sort is the largest operation that occurs in this algorithm, the time complexity
of this algorithm is the same as the time complexity of the sorting. According to
Patel (2024) [Pat24], Merge Sort is the quickest sorting algorithm and has a time
complexity O(n - logn). This is therefore a faster method than using the LP opti-
mization, since the time complexity of this method is O(n?). (n is here equal to the
number of assets.)

Algorithm 1 The minimization algorithm

L+ 0
R+ 0
starting_point < 0
for part € PARTS do
for direction € (I,r) do
Find intervals of part: part in direction: direction
Add intervals to L or R
end for
starting_point = starting_point + part_optimum
end for
: Sort L and R by cost per kW
. ean_point_list < ()
. Add starting_point with its cost to point_list

= = = =
W N = O

14: for direction € (I,r) do

15: current_point <— starting_point

16: 10

17: while current_point is within boundary of direction do
18: interval < i*" item of L or R

19: interval_cost = interval_cost £ ES_cost (or trans_cost)
20: new_point = current_point + interval

21: Add new_point to ean_point_list

22: current_point = new_point

23: 1=14+1

24: end while
25: end for
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The testing is done with assets with a random optimum between 20kW and 200kW,
and deviation costs between 0.01€/kW and 1.00€/kW. The energy supplier and
transport costs are also randomly generated between 0.01€/kW and 1.00€/kW. Mul-
tiple different scenarios have been tested, the results of which can be found in Table
1.1. In the column ’Assets’ the distribution of the assets can be found. Each ’x’ is
an asset with a random optimum and deviation cost, and a white space is a new
EAN. For example, 'xxx xx x” means that the first EAN has three assets, the second
EAN has two assets, and the third EAN has one asset. The energy supplier cost
and transport cost are also random In the columns ’Alg’ and "Unopt’ the average
total cost of five hundred iterations of each scenario is noted if, respectively, the
above described algorithm is used to find a solution or the system is not optimized.
Finally, in the last column, the average improvement in cost of the algorithm case
compared to the unoptimized case is noted.

Results of the base algorithm
Scenario Assets Alg Unopt Alg/Unopt
1 XXX XX 303.40 551.18 44.96%
2 XXXX XX 319.06 579.85 44.96%
3 XXX XXX XXX 438.66 823.63 46.75%
4 XXXXX XXXXX 342.03 710.12 51.82%
5 XX XX XX XX XX 644.96 1110.39 41.91%

Table 1.1: Results of the base algorithm versus the unoptimized scenario

In the table, it can be seen that the average improvement is 46.08%, which is very
significant. This saves a lot of costs and can thus be very useful for companies with
multiple assets.
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Chapter 2

Piecewise linear deviation

In the previous chapter, the deviation cost in the energy distribution problem is
linear and symmetric for all assets. However, this is not always realistic. In case
of a battery for example, a little more import than the optimum will not be a big
problem, but a lot of extra import might be a bigger problem, since this can result
in a fully loaded battery, which can cause problems with importing in the future.
Therefore, (limited) piecewise linear deviation costs might be relevant. Due to the
complexity, this can be divided into two categories; convex and non-convex.

2.1 Convex piecewise linear deviation

Convex piecewise linear deviation brings a lot less complications along than non-
convex piecewise linear deviation. This is because the second interval of the devi-
ation is by definition more expensive than the first, so the algorithm can still sort
all intervals by cost and operate in that order. Therefore, the algorithm for convex
piecewise linear deviation is the same as the algorithm for assets with fully linear
deviation. The only difference is that there are now multiple deviation intervals per
asset and per direction, which can be used separately, whereas the original algorithm
would use the entire deviation interval of an asset before moving on to another asset.
This change only affects steps 6 and 7 in Algorithm 1. Here, multiple intervals can
be found instead of only one interval.

Let us look at an example of this energy distribution problem with convex piecewise
linear deviation. Similarly to the example in Chapter 1.2, asset 1 is a solar panel,
asset 2 is a loading station, and asset 3 is a battery. However, the deviation costs
are now piecewise linear, as can be seen in Figure 2.1. The algorithm will still sort
the set of all intervals in both directions and will use this to determine the cheapest
intervals. In this case, deviating to the left will start with using 100 kW from asset
3. Then it will again use an interval of 100 kW from asset 3. Next, it will use (in
order): 50 kW from asset 2, 100 kW from asset 3, and finally 50 kW from asset
2. Deviating to the right will start with 200 kW from asset 1, and then continue
with (in order): again 200 kW from asset 1, 100 kW from asset 2, 100 kW from
asset 3, 100 kW from asset 1, and finally 50 kW from asset 2. The final result when
combining the deviation costs with the energy supplier costs can be seen in Figure
2.2.

19
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The piecewise linear deviating costs give more switches between the assets when
deviating over the whole EAN, however, this does not bring any complications. The
algorithm will only take slightly longer, depending on the amount of pieces in the
function. The time complexity of the algorithm is still O(n-logn), but now n is the
total number of intervals of all assets combined.

Assetl Asset 2 Asset 3

s 7 w0
& . El
. 5
5 7
8¢ 83 8 4
: 2 a >
2 2
1 N \ 1
o 0 o
450 00 @50 300 250 200 150 100 50 o 50 0 50 00 250 3 50 200 -15 100 150 200 250

250 200 100 150 00 s 0
Import (kW) Import (kW) Import (kW)

Figure 2.1: Piecewise linear deviation costs of different assets
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Figure 2.2: Combining the energy supplier costs (left) with the optimal EAN costs
(Figure 2.1) gives the total optimal EAN costs (right).

2.2 Non-convex piecewise linear deviation

When the deviation is not convex, finding the optimal import for each asset can
become quite complicated. This is because the algorithm must take into account
that it might be profitable to use an expensive interval if the interval behind it
is very cheap. Therefore, we can no longer sort all intervals and simply use the
cheapest one.

To find the optimal solution, the algorithm must know the cheapest possible import
distribution for every amount of import. This number of combinations can be very
large since the energy can be distributed over all assets in many different ways.
Therefore, an algorithm would take a long time to find this cheapest combination,
making finding the optimal solution quite difficult.

Finding an optimal solution is actually so complex that it can be proven to be
NP-Hard.

Theorem 1. The energy distribution problem with non-convex piecewise linear de-
viation is NP-Hard.

Proof. This will be done by reducing the subset sum problem to the energy distri-
bution problem. In the subset sum problem, a set of integers & and an objective
value V' are given. The task is to find a subset S C &, such that > ,cqs = V.

When looking at the energy distribution problem with convex piecewise linear devi-
ation, a similar case can be found. Let there be an arbitrary amount of assets, but
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each with similar deviation costs; the cost of the first 1% of the total allowed devi-
ation length is equal to 0.099€/kW - length, where length is the total length in kW
and the second 99% of the total interval costs only 0.001€/kW -length. For example,
if an asset can import 100 kW more than its optimum, the deviating cost for the
first kW is 9,90€, and the total cost of deviating from one kW to one hundred kW
extra only costs 0, 10€. Now, let the optimum for the assets in the EAN combined
be equal to a value W. If the energy supplier cost were equal to (0.10 4+ a)€/kW
with a > 0 significantly small enough, the whole interval must be used to make a
profit by deviating (assuming the deviation is rounded to one decimal). To maxi-
mize profit, we must find a set of assets such that the sum of the total deviation of
these assets is equal to W. This would create a profit of W - , which is maximal.
We can now reduce the subset sum problem to this case. For every item s € S, let
us create an asset with [0, s] as its only interval, with cost as described above. Now,
let V' be equal to W. If the energy distribution problem with non-convex piecewise
deviation is not NP-hard, we could find the optimal solution for this problem in
polynomial time. All assets in the optimal solution will use a deviation of either 0
or s. Thus, the profit per asset is either 0 or s - «. If the optimal profit is W - «,
we found a subset S of the assets such that > ,cgs = V. If the optimal profit is less
than W - «, there is no such subset since our solution is optimal. This, however,
would imply that the subset sum problem is also not NP-Hard. This leads to a con-
tradiction, and therefore the energy distribution problem with non-convex piecewise
deviation is NP-Hard.

m

Although this is quite a difficult problem, a fitting algorithm can still be created to
optimize the costs.

We start by looking at the current import on location level. Using this, we can create
a possible interval length for both directions while not changing in transport cost.
For example, if the current import is above zero, the length of the interval to the
left is equal to the difference between the current import and zero, and the length
of the interval to the right is equal to the difference between the current import and
the boundary on the right. This way, the throttle cannot be exceeded. This will be
referred to as the usable length in both directions.

Using this, we can look for a deviation in one of the assets that can be used to make
a profit on this interval as follows. Two lists are created for possible deviation inter-
vals. For each asset, the intervals are made by walking over the usable length and
adding an interval with its length and cost to the list for each breakpoint (a point
where the cost per kW of deviation changes) that is come across. Here, a change in
the energy supplier costs also counts as a breakpoint. The interval over the entire
usable length is also added to the list. When this is done, the energy supplier costs
are added or subtracted, depending on the current state of the EAN. The result of
this process is a list with the intervals of every asset for each direction.

The next step is to find the cheapest interval in both directions by sorting the lists
and adding or subtracting the transport cost to the interval costs. Finally, if the
cost of one of these intervals is below zero (if both are profitable, then the lowest is
used), then this interval is used to deviate from the asset and the process repeats
itself. This happens until no more profitable intervals can be found.
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In Algorithm 2, a pseudocode for this algorithm can be found. First, Current_opt
is found. Then, using this Current_opt, the range is calculated in both directions.
For each EAN, for each asset, the intervals to each breakpoint within this range are
found in both directions, the energy supplier cost ES_cost is added or subtracted
to the cost of these intervals and then the intervals are added to L or R. This
list is then sorted. The cheapest intervals of both lists are taken and the transport
cost is added. Note that trans_cost can be positive, negative, or zero, depending
on Current_opt and the direction of used_interval. Then the cheapest of these two
intervals is taken, and this will be our used_interval. If the cost of this interval is
less than zero, then used_interval is added to C'urrent_opt and the process repeats
itself. If not, the algorithm is finished.

Algorithm 2 The minimization algorithm for non-convex piecewise deviation

1: Current_opt =3 jssete Assettist ASS€t_optimum
2: Profitable = True
3: while Profitable = True do

4: if Current_opt < 0 then

5: Left_Range = Le ft_Boundary — Current_opt
6: Right_Range = —Current_opt

7: else if C'urrent_opt > 0 then

8: Left_Range = —Current_opt

9: Right_Range = Right_Boundary — C'urrent_opt
10: else

11: Left_Range = Le ft_Boundary

12: Right_Range = Right_Boundary

13: end if

14: L=

5. R=0

16: for direction € (I,r) do

17: for FAN € EAN list do

18: for Asset € FAN do

19: Find interval for each breakpoint within Left/Right_Range
20: Add or subtract ES_cost to interval_cost
21: Add each interval to L or R
22: end for
23: end for

24: end for

25: Sort L and R on cost per kW

26: for direction € (I,r) do

27 Cheapest_(direction) = the first interval in L or R
28: Add trans_cost to Cheapest_(direction)

29: end for

30: used_interval = min(Cheapest_l, Cheapest_r

31: if Cost of used_interval < 0 then

32: Add used_interval to Current_opt
33: else

34: Profitable = False

35: end if

36: end while
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The results of this algorithm can be tested against an integer linear program (ILP).
This ILP finds the optimal solution, but it takes a long time to calculate this when
the assets have more deviation intervals. The testing is done with assets with ran-
dom intervals of lengths ranging from 20kW to 200kW, and costs between 0.01€/kW
and 1.00€/kW. The energy supplier and transport costs are also randomly generated
between 0.01€/kW and 1.00€/kW. Multiple different scenarios have been tested, the
results of which can be found in Table 2.1. In the column ’Assets’, the distribution
of the assets can be found. Each 'x’ is a random asset, and a white space is a new
EAN. For example, 'xxx xx x’ means the first EAN has three assets, the second
EAN has two assets, and the third EAN has one asset. In the columns 'Alg’ and
'ILP’, the average total cost of one hundred iterations of each scenario is noted if,
respectively, the above described algorithm or the ILP is used to find a solution. In
the column ’Alg/Unopt’, the average improvement of algorithm cost compared to
the unoptimized cost is noted. Finally, in the last column, the average improvement
of the ILP cost compared to the unoptimized cost is noted.

Results Non-Convex Algorithm

Scenario Assets Alg ILP Alg/Unopt | ILP/Unopt
1 XXX XX 293.29 285.84 50.46% 51.73%
2 XXXX XX 312.35 304.75 49.54% 50.80%
3 XXX XXX XXX 479.62 465.96 49.73% 51.14%
4 XXXXX XXXXX 375.83 365.43 51.92% 53.30%
5 XX XX XX XX XX 706.80 687.95 42.42% 43.95%

Table 2.1: Results of the non-convex algorithm versus the ILP

The average improvement over the unoptimized scenario is 48.61%, which is quite a
good result, as the ILP has an average improvement of 50.18% over the unoptimized
scenario. The algorithm is therefore only 1.57% worse than the optimal solution.
The most time-consuming step in the algorithm is again sorting, which happens
once in every iteration of the while loop. The number of iterations of the while loop
is bounded by the total number of intervals. Therefore, the time complexity of this
algorithm is also O(n? - logn), where n is equal to the total number of intervals of
all assets combined. This is a nice time complexity for such a good result.
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Chapter 3

Non-linear deviation

The solution of this energy distribution problem also becomes more complex when
the deviating costs are non-linear, even while assuming that they are convex. In
the algorithm used in Section 1.2, the deviation intervals are sorted by their slope.
However, if the deviation is non-linear, this slope changes constantly. Therefore,
this algorithm must be adjusted to deal with the non-linear deviation.

The algorithm must start with the deviation with the lowest slope at the beginning
of the deviation. It will continue to use this deviation as the cheapest deviation
until it reaches a slope that is equal to the next lowest slope. This moment will
be determined by comparing the derivatives of the deviation cost. When this point
is found, the algorithm stops deviating from the first asset and continues with the
second cheapest asset. It continues using the second asset until it reaches a steeper
slope than the other options, and then it switches again. Using this method, the
result will be a new non-linear function. If the functions of two (or more) assets are
similar, it is possible that the algorithm will switch a lot between these assets; how-
ever, this is not a problem for the final result. To prevent infinitely many switches,
a minimum length must be introduced in the algorithm. This ensures that the algo-
rithm will use at least this length when it switches to an asset, which puts a lower
bound on the number of switches.

Algorithm 1 is still quite relevant except for a few steps. Steps 6 and 7 must be
changed so that the initial slope is added to the list instead of an interval. Now,
when the while loop is reached, the slope is added to the current point and this
point is added to the point list. The new slope of the used asset is then calculated
and this slope is compared with the second lowest slope in the slope list. As long as
this new slope is lower than the slope of the second cheapest asset, it will continue
to add the slope to the points and calculate the new slope. If the slope of the second
cheapest asset is lower, it will switch to this asset and will repeat this 'while’ loop.

25
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Let us look at a simple example. In Figure 3.1, the deviation costs of three assets
can be found. Asset 1 has a deviation function: dev_cost = |z — opt|* - 8 - 107°.
Assets 2 and 3 have linear deviation costs, with a constant slope of 0.05 and 0.035,
respectively. When comparing the derivatives of these functions in Figure 3.2a, we
can see that asset 1 starts with the lowest derivative. Therefore, the algorithm will
use this asset to deviate until it reaches a slope of 0.035. Then it will switch to
asset 3, where the slope does not change. Once the maximum amount of deviation
is used, the algorithm will continue to deviate from asset 1, until it reaches a slope
of 0.05. Now, it uses the 100 kW from asset 2 to deviate. If this is done, it will
finally use the last deviation interval from asset 1. The result will look like Figure
3.2b. This is a new non-linear function, which shows the cost of deviating over the
whole EAN. This can be used to find the function for the cost per import of the
whole location using the same algorithm, which will give the solution to the energy
distribution problem.

Cost(€)
Cast(€)
Cost(€)

450 400 350 300 250 200 150 100 50 0 -120 -100 80 80 -40 20 0 -250 -200 -150 -100 50 0
Import (kW) Import (kW) Import (kW)

Figure 3.1: An example of (non-linear) deviation costs of different assets

Derivative of deviation cost Optimal cost of deviation per import amount

\\\\\\ 7
(a) The derivatives of the deviation costs (b) Total optimal cost per import on
of different assets EAN level

Figure 3.2: Derivative of deviation costs (a) and the optimal cost per import (b)
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Now, we can look at a more complex example. Figure 3.3 shows an example of
non-linear deviation costs. In asset 1, the deviation cost function is defined as
dev_cost = |z — opt[> - 1077, In asset 2, the deviation cost to the left is defined as
dev_cost = (|x—opt|*+16- |z —opt|)- 1073, while the deviation to the right is defined
as dev_cost = (4-|z —opt[>4+10-|x—opt|*)-107%. Finally, in asset 3 the deviation cost
in both directions is defined as dev_cost = (|x —opt|*+3-10°- |z —opt|) - 107°. When
comparing the derivatives of these functions (only looking at deviating to the left),
we can see that asset 1 starts with the lowest derivative in Figure 3.4a. Therefore,
when deviating to the left, asset 1 will be used first. After a while, the deviation
costs of asset 1 start to rise and will increase above asset 3. When this happens,
the algorithm will switch to asset 3 for the next deviation. Now, the deviating costs
of asset 3 will start to increase, and thus the algorithm will switch back to asset
1. After a while, asset 2 will be the lowest, and then the algorithm will constantly
switch between each of the three assets. If asset 1 is maximally deviated, it will
continue to switch between assets 2 and 3 until asset 3 is also maximally deviated,
and then the last part will just be asset 2. In Figure 3.4b, the order of the deviation
pieces can be found. Here, it is clearly visible that the asset used for deviation can
switch a lot if this algorithm is used. In this example, the interval lengths have been
minimized at 1 kW. If there was no minimum interval length, the algorithm would
switch infinitely many times.

Asset 1 Asset2 Asset3
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Figure 3.3: An example of non-linear deviation costs of different assets

Derivative of deviation costs

——Asset]l ———Asset? ——Asset3

02

0,15

0,1
0,05
0

450 400 350 300 250 200 150 -100 50 O ‘
Import (kW) ’ - |’|”I’|‘||’|I|I|||||||”||||||||||||||IIIIII|||

Cost (€/kW)

(a) The derivatives of the deviation costs (b) The optimal deviation per amount of
of different assets import for the EAN

Figure 3.4: Derivatives of the deviation cost(a) and asset used for each deviation(b)
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Chapter 4

Conclusion

The aim of this thesis was to minimize the total energy costs at locations with mul-
tiple assets and EAN’s. This has been done for different situations; linear deviation
costs, piecewise linear deviation costs, and non-linear deviation costs.

4.1 Results

In Chapter 2, the base problem was looked at. An LP could be used to solve this
problem, but the time complexity, O(n*%%), could be improved. Therefore, a fit-
ting algorithm has been created to find the same optimal solution, but with a time
complexity of only O(n - log(n)). The improvement that has been made by finding
the combined optimum, instead of individual optima, is 241.2% on average over five
scenarios with each 500 iterations. This is a very significant improvement.

In Chapter 2, the deviation costs have changed from linear to piecewise linear. In the
scenario where all deviation costs are still convex, the same algorithm as in Section
1.2 could be used, and thus similar improvements can be made by using this algo-
rithm. The change from linear to piecewise linear will only ensure it takes slightly
more time, since more intervals are used, and thus more iterations are needed.

If the piecewise linear deviation is non-convex, the algorithm is not usable any
more, and a new solution must be found. This new problem can even be proven
to be NP-Hard, as is done in Section 2.2. Nonetheless, an almost optimal solution
can be found by creating a fitting algorithm, with a difference of only 1.57% from
the optimal solution in randomly generated instances. This is very small, definitely
compared to the improvement of 48.61% compared to the unoptimized scenario.
This algorithm has a time complexity of O(n? - logn), which is quite good.

Finally, in Chapter 3, we have looked at a situation where the deviation costs of the
assets are non-linear. In this situation, we can use an algorithm that deviates from
the cheapest asset until another asset becomes cheaper. This is not a very complex
algorithm, however, a lower bound for the interval lengths must be introduced to
prevent the algorithm from constantly switching between the assets, as can be seen
in the second example in the chapter. Although it is not really a realistic situation
currently, this algorithm can still find an optimal solution.
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4.2 Discussion

Improvements can be made to make the scenarios more realistic. For example, con-
sumption tax is not included. This is a tax over the energy that is consumed by
for example machines or loading stations, however this tax is not over the energy
imported by batteries.

Another improvement that can be made is to take into account that the energy
supplier costs and transport costs are calculated once every fifteen minutes, instead
of every minute [Nex25]. This could mean that the throttle can be exceeded for a
couple of minutes, as long as the average import over fifteen minutes does not exceed
the throttle. Another possibility of improvement is by compensating for the previ-
ous minutes. For example, if the total import over an EAN is positive in the first
few minutes of the quarter, then exporting the next few minutes could be profitable
if the total import over the fifteen minutes gets closer to zero.

Also, state 2 regulations are not taken into account in this research [Nex25]. Sim-
ply explained, if there is a shortage of energy on the net over an interval of fifteen
minutes, the price for exporting to the net is very profitable and importing from the
net is quite expensive. If there is an overload of energy on the net, importing is very
cheap, and exporting can cost money. However, if there is a shortage in the first ten
minutes but an overload in the next five minutes, the cost of both importing and
exporting is very high. Therefore, once state 2 regulations are noticed to be active,
the average import per EAN should ideally be brought to zero (except if the devia-
tion costs are even higher) to make sure these high energy supplier prices are evaded.

Other possible improvements could be to try different mathematical methods for
solving the problems. For example, for the energy distribution problem with non-
linear convex deviation, the gradient descent method [Kwi24] might be suitable to
find a good solution quickly.

Since the algorithm for the energy distribution problem with non-convex piecewise
deviation is not optimal, improvements can be made in that algorithms as well.

Finally, it is worthwhile to mention that the algorithms in this thesis are designed
to solve the energy distribution problem, however, they may be applicable to other
problems which require combining multiple functions to find a new function with a
new optimum.
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