
F R O M S TAT I C TO DY N A M I C V I S U A L I Z AT I O N O F T H E S E A S U R FA C E
H E I G H T O N A W E B G I S A P P L I C AT I O N

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Georgios Dimopoulos

September 2019

Georgios Dimopoulos: From Static to Dynamic Visualization of the Sea Surface Height
on a Web GIS Application (2019)
cb This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

ISBN 999–99–9999–999–9

The work in this thesis was made in the:

Faculty of Architecture & the Built Environment
Delft University of Technology

Supervisors: Prof.dr.ir. P.J.M van Oosterom
dr.ir. B.M. (Martijn) Meijers
dr. Fedor Baart (Deltares), Cindy Van de Vries (Deltares)

Co-reader:

http://creativecommons.org/licenses/by/4.0/

A B S T R A C T

During the last three decades, the Earth’s climate is changing rapidly, with higher
average temperatures every year that leads not only to the melting of the ice sheet in
the arctic and on most of the glaciers all over the world but also to extreme weather
phenomena. The rise of the temperature can affect the Sea Surface Height (SSH) in
more than one way, and since 70% of the Earth’s surface is covered by the oceans,
if the oceans are being affected then the whole Earth also is. The monitoring of the
SSH can help the scientist predict the changes that will take place in the future. The
SSH is a dynamic phenomenon that constantly changes not only within different
decades but also from year to year, month to month even within the same day.
These changes are the result of various phenomena and are called anomalies. When
the SSH is monitored different phenomena are represented in different time scales
and it is important to be taken into consideration if there is the need for a proper
understanding of the SSH phenomenon.

Many spatial data vendors are providing a large number of data-sets related to
the monitoring of SSH and its anomalies and as a result, there is the need to find the
most effective way to extract information from the data. Over the years has been
established that one of the most effective ways to extract information from data is
through the various visualization techniques and since the data of SSH is mainly
spatial the main visualization technique is cartography. The advancements of the
technology over the last couple of decades have led to a reality that the ”online”
application is the norm and consequently the web mapping and web geographical
information system (GIS).

The goal of this thesis is to propose an architecture for a web GIS application that
will be able to visualize dynamic data while adding elements of interactivity to im-
prove the chances of the Sea Surface Height Anomaly (SSHA). IN order to achieve
the goal of this thesis three main research questions need to be answered: What type
of animation should be used (in order to visualize the passing of time), what inter-
activity elements should be added (e.g. zooming/panning in space and time)and
what system’s architecture is optimal for such application (server-side/client-side
etc.).

This document is providing guidelines on how to create such an application and
is resulting in the production of a prototype. The first part of this thesis is the
review of the main ideas that are introduced in this project and how they were
implemented by other researchers. Then, a comparison between the different im-
plementation techniques (for every research question) is taking place to determine
the main characteristics of the application. The final part is related to the imple-
mentation of the chosen techniques that lead to the development of the prototype
application.

The resulted prototype even though it is not perfect, due to technical limitations
that were a consequence of implementing some of the most recent concepts in web
development, is functional and paves the way for the development of new improved
dynamic/interactive web GIS applications (https://giorgosdimo.github.io/MSc-Thesis/).

iii

A C K N O W L E D G E M E N T S

I would like to take the opportunity to express my gratitude to the people who
played an important role in the development of this thesis.

The first person that I would like to thank is Dr. Fedor Baart from Deltares that
he was the one that provided me with the project, helped me to define the research
goal and even though he was super busy he had also time to help me with the
technical aspects. The second person that was evolved with this thesis was my
supervisor Prof. dr. ir. Peter van Oosterom that provided his expertise in order
not only to define the topic but also due to his experience in the field of Geomatics
gave me some new insights about my project. I would also like to thank my second
supervisor dr.ir. B.M. (Martijn) Meijers was always present and ready to help me
with anything related to this thesis project.

I spent exactly one year in Deltares and I was able to meet new and interest-
ing people like Cindy van De Vries that was my second supervisor from Deltares
and helped a lot with my thesis especially during the first few months that I was
struggling with all the new information about HTML and JavaScript.

Finally, I would like to thank my family and friends that supported and toler-
ated me not only during my thesis project but also during the two years of MSc
Geomatics.

v

C O N T E N T S

1 introduction 1

1.1 Sea Surface Height . 1

1.2 Visualization . 3

1.3 Motivation . 4

1.4 Research Questions . 4

1.5 Research Scope . 5

1.6 Thesis Outline . 5

2 theoretical background 7

2.1 Cartography in the 20th Century . 7

2.1.1 Overview of Cartography . 7

2.1.2 Colors in Maps . 9

2.1.3 Animated Maps . 11

2.1.4 Geographic Information Systems 12

2.2 Cartography in the 21st Century . 15

2.2.1 Background of web mapping . 15

2.2.2 Static visualization . 17

2.2.3 Interactive Visualization (Static) 17

2.2.4 Dynamic visualization (Timeseries) 20

3 related work 21

3.1 Google Maps . 21

3.2 Ocean Motion . 23

3.3 Discover Magazine . 24

3.4 Earth Nullschool . 24

3.5 NOAA Sea Surface Height Anomaly . 25

3.6 Google Earth Engine Timelapse . 26

4 methodology 31

4.1 Animation . 31

4.2 Interactivity Elements . 35

4.2.1 Handling the x and y coordinates 36

4.2.2 Handling the z coordinate . 38

4.2.3 Handling the Time Dimension 40

4.2.4 Querying Capabilities . 41

4.3 System Architecture . 41

5 implementation/results 43

5.1 Data-set Used . 43

5.2 Animation . 45

5.2.1 Tools Used . 45

5.2.2 Video Creation Process . 46

5.2.3 Animation Results . 48

5.3 Handling the X and Y coordinates . 48

5.3.1 Tools Used . 49

5.3.2 Implementation (Tile Creation) 50

5.3.3 Implementation (Web) . 51

5.3.4 Tilling Scheme Results . 52

5.4 Handling the z coordinate . 55

5.4.1 Tools Used . 55

5.4.2 Implementation . 56

vii

viii Contents

5.4.3 Results . 57

5.5 Handling the Time Dimension (Temporal Scale) 58

5.6 Querying Capabilities . 59

5.7 System Architecture . 60

6 conclusions and future work 63

6.1 Conclusions . 63

6.1.1 Sea surface height is a dynamic phenomenon (2.5D + time),
what technique of animation should be used and why? 63

6.1.2 What elements of interactivity are relevant to a web mapping
application and which ones should be implemented? 63

6.1.3 What type of architecture is more appropriate for implemen-
tation with these characteristics? 65

6.1.4 Main research question: What is an optimal WebGIS-architecture
for making an interactive - dynamic visualization of the sea-
surface height phenomenon? . 66

6.2 Contribution to the Field of Geomatics 66

6.3 Discussion . 67

6.4 Future Work . 68

6.4.1 Towards a Reliable Working Prototype 68

6.4.2 Improving the Working Prototype 69

6.4.3 New Applications Ideas . 69

L I S T O F F I G U R E S

Figure 1.1 Summer meltwater collects in a lake on the surface of the
Greenland ice sheet. (https://www.nationalgeographic.com) 1

Figure 1.2 A Visualization of the Sea Surface Height. (https://svs.gsfc.nasa.gov) 2

Figure 2.1 Map of Konya from 6200 BCE. 8

Figure 2.2 Anaximander world map.(http://ccnmtl.columbia.edu) . . . 8

Figure 2.3 The first route map, showing the whole of the Roman world.
(http://datavis.ca/milestones/) 9

Figure 2.4 Examples of different hues and values 10

Figure 2.5 Example of different saturation for the same hue and value.([Christophe
et al., 2011]) . 11

Figure 2.6 Itten’s 12-hue color circle.([Bláha and Sterba, 2014]) 12

Figure 2.7 An example of warm-cold contrast that indicates the posi-
tive and negative values of a phenomenon in this case the
population growth of a region.([?]blaha2014)) 13

Figure 2.8 Examples of maps that utilize the differences in value (bright-
ness) and saturation for improved harmony. 13

Figure 2.9 Five frames from the Disney Studios production of the inva-
sion of Poland in 1939.(Peterson [1999]) 14

Figure 2.10 An example of a raster image.(https://en.wikipedia.org) . . . 14

Figure 2.11 The points, lines and polygons/shapes that represent the
vector data stucture.(https://gisgeography.com) 15

Figure 2.12 Framework of web mapping eras [Veenendaal et al., 2017]. . . 16

Figure 2.13 Global mean sea surface height from altimetry (https://www.esa.int) 17

Figure 2.14 A snapshot of the Google Maps that is a typical example of
an interactive map (https://www.google.nl/maps/) 18

Figure 2.15 A diagram that describes the request response process.([van
Oosterom and de Vries, 2018]) 19

Figure 2.16 A diagram that describes the request and response process
of Web Map Services (WMS) .([van Oosterom and de Vries,
2018]) . 19

Figure 2.17 A snapshot of the Cesium that is a typical example of a vir-
tual globe (https://cesiumjs.org) 20

Figure 3.1 Google Maps print screen (https://www.google.nl/maps/) . 21

Figure 3.2 A table with the number of tiles and the scale of each zoom
level (https://wiki.openstreetmap.org/) 22

Figure 3.3 Google Maps Tiling Scheme for zoom level 2 (https://developers.google.com/) 23

Figure 3.4 The TMS numbering scheme (https://wiki.osgeo.org/) 24

Figure 3.5 Microsoft’s Quadkeys encoding (https://docs.microsoft.com/) 25

Figure 3.6 The extent of Web Mercator projection. Square shape (ap-
prox. 40,000km x 40,000km; equal to the length of the equa-
tor line on WGS’84 ellipsoid) (Stefanakis 2017) 25

Figure 3.7 Ocean Motion (http://oceanmotion.org) 26

Figure 3.8 This animation shows how sea surface temperatures have
departed from the long-term average, from August through
early October 2018 (http://blogs.discovermagazine.com/imageo/2018/10/12/visualization-
shows-el-nino-brewing-in-pacific/) 27

Figure 3.9 The Earth implementation (https://earth.nullschool.net) . . . 27

Figure 3.10 The NOAA visualization of the Sea Surface Height (https://sos.noaa.gov/datasets/) 28

Figure 3.11 The Google Earth Engine Timelapse (https://earthengine.google.com/timelapse/) 28

ix

x List of Figures

Figure 3.12 The Google Earth Engine Timelapse tiling scheme for zoom
level 2 . 29

Figure 4.1 Average VMAF quality scores for 4 test clips. (https://www.streamingmedia.com/)
35

Figure 4.2 The application’s system architecture proposal. 42

Figure 5.1 The first image of the data-set as described in the Google
Earth Engine . 45

Figure 5.2 A diagram that shows the organizations of the images 46

Figure 5.3 A diagram that shows the directory right before the creation
of the videos . 47

Figure 5.4 The Google Earth Engine Code Editor 49

Figure 5.5 Tile numbering for the Google maps tilling scheme [Stefanakis,
2017] . 50

Figure 5.6 The interface of the application with the videos synchronized
(zoom level 1). 53

Figure 5.7 The interface of the application for256x256 pixels tiles (zoom
level 1) . 54

Figure 5.8 The interface of the application for 512x512 pixels tiles (zoom
level 1) . 55

Figure 5.9 The interface of the application with the videos synchronized
and the addition of the coloring buttons (zoom level 1). The
pallet that is used is the spectral 57

Figure 5.10 The interface of the application with the color pallet set to
RdBu (zoom level 1) . 57

Figure 5.11 The interface of the application with the zoom in time func-
tionality . 59

Figure 5.12 The interface of the application with the querying capabilities
added . 60

Figure 5.13 The architecture of the application 61

Figure 6.1 An example of corrupted tiles 67

L I S T O F TA B L E S

Table 2.1 Previously characterized eras of web mapping ([Veenendaal
et al., 2017]. 15

Table 4.1 Comparison of the three animation techniques 32

Table 4.2 Status of video format support in each web browser (https://en.wikipedia.org)
34

Table 4.3 Comparison of the video formats 35

Table 5.1 Comparison between the WebM/VP9 and the mp4/H.264 . . 48

Table 5.2 Comparison between the 256x256 pixels version of the appli-
cation and the 512x512 pixels version of the application 55

Table 5.3 Comparison between the 256x256 pixels version of the appli-
cation and the 512x512 pixels version of the application while
adding the coloring process in the application. 58

xi

A C R O N Y M S

GIS geographical information system . iii

GISs geographical information systems. .3

NASA National Aeronautics and Space Administration . 1

NOAA National Oceanic and Atmospheric Administration. .2

SSH Sea Surface Height . iii

SSHA Sea Surface Height Anomaly . iii

OGC Open Geospatial Consortium . 3

WMS Web Map Services . ix

WFS Web Feature Services . 18

WCS Web Coverage Services . 18

WPS Web Processes Services . 18

WMTS Web Map Tiled Services . 67

WVMS Web Video Map Services . 67

2D Two dimensions. .7

3D Three dimensions . 39

WWW World Wide Web. .9

HTML Hypertext Markup Language . 17

HTTP Hypertext Transfer Protocol . 17

DHTML Dynamic Hypertext Markup Language . 18

CGI Common Gateway Interface . 18

XML Extensible Markup Language . 19

AJAX Asynchronous JavaScript and XML . 18

SVG Scalar Vector Graphics . 19

KML Keyhole Markup Language . 19

GIF Graphics Interchange Format . 20

TMS Tiled Map Services. .22

CSS Cascading Style Sheets . 32

GPU Graphics processing unit .56

CPU Central Processing Unit . 32

RGBa Red, Green, Blue, alpha . 39

NetCDF Network Common Data Form) . 43

DOM Document Object Model .52

RAM Random Access Memory . 54

SSD Solid State Disk . 54

xiii

1 I N T R O D U C T I O N

The spring of 2019 has been the warmest for Alaska on record [Kaplan, 2019]. At
the same time, in mid-June, 45% of the Greenland’s ice sheet was melting while,
normally, this percentage should have been around 10% [Borunda, 2019].

Figure 1.1: Summer meltwater collects in a lake on the surface of the Greenland ice sheet.
(https://www.nationalgeographic.com)

The climate is changing, and a lot of areas will be affected all around the world
from Alaska and Greenland to Netherlands and Maldives. The melting of the ice in
the Arctic and the sea level rise are just part of the climate change related problems
that have major impact on the oceans and consequently on the built environment of
many coastal countries. The sea surface height with the sea surface temperature are
two phenomena that are being monitored by many environmental scientists, since
these phenomena can provide a good indication of the changes of the climate. The
use of the latest technology in remote sensing, satellite imagery etc., to gather as
much data as possible is an important for the scientific community, in their quest
to better understand these phenomena. Even though, extracting useful information
from a huge amount of data is not an easy task, visualization of the data is one of
the most effective and efficient ways to extract information from them.

1.1 sea surface height
One of the biggest and most important categories of geographic data is the one
related to the environment. Gathering environmental data can help to monitor the
Earth and can help us predict possible changes in the Earth’s physical environment.
National Aeronautics and Space Administration (NASA) is one of the largest produc-

1

2 introduction

ers of environment-related data and on their dedicated web page, they explain why
it is important to monitor the Ocean Surface Topography which they divide in Sea
Surface Height and Sea Surface Temperature. 70% of the surface of the Earth is cov-
ered by the oceans and through the hydrology cycle, the oceans, are the main factor
that affects the world climate. According to National Oceanic and Atmospheric Ad-
ministration (NOAA) the Sea Surface Height is of interest for the scientists because it
reveals information about how much heat is stored in the ocean. Furthermore, the
rate of global sea-level rise has been accelerating in recent decades [Weeman and
Patrick, 2018] and if the rate of ocean rise continues to change at this pace, sea level
will rise 65 centimeters by 2100 — enough to cause significant problems for coastal
cities.

The SSH is affected in a short timescale by the tidal forces of the Moon and the Sun
acting on the Earth. Over longer timescales, SSH is influenced by ocean circulation.
Typically, anomalies of the SSH resulting from these forces differ from the mean by
less than 1 m on a global scale. Among other sources that can cause anomalies on
the SSH, are the temperature, the salinity, the waves, and the loading of atmospheric
pressure [Stewart, 2008]. The SSH has many parameters that can influence its mea-
surements and all these parameters can vary not only from place to place (spatial
scale) but also from time to time (time scale) something that can affect the results
of an analysis and in the end, the information conveyed about this phenomenon.
In the past few years the main focus for the researchers and the public is the over-
all sea-level rise due to the greenhouse effect (as mentioned above) and this type
of change should be monitored yearly or even less frequent to have usable results
(large time scale). The reason that should not be monitored in a period of less than
a year is the presence of some extreme atmospheric phenomena (e.g. El Niño) that
can cause significant changes in the SSH on a seasonal basis. These atmospheric phe-
nomena are interesting for the scientists and they should be monitored on a yearly
time scale (medium time scale) but again not on a smaller time scale. Reducing
the time scale, even more, there is the tide that changes the SSH on a daily basis
(small time scale). As it is evident from the above examples the time scale plays an
important role in the SSH phenomenon and different time scales are representing
different phenomena and depending on what phenomenon the scientist/analyst is
interested in many different time scales can have its own importance.

Figure 1.2: A Visualization of the Sea Surface Height. (https://svs.gsfc.nasa.gov)

1.2 visualization 3

1.2 visualization

Every day the humans are producing a vast amount of data with a rate that is ever
increasing. It is a fact that during the last 2 years alone were produced 90% of the
total volume of the data of the history of mankind (Bernard, 2018) and this is a
trend that shows no signs of slowing down in the future. Humans are producing
so much data with the hope that these data will be useful to understand how our
world and our society works. Extracting information from all these data is not an
easy task. One of the best ways to extract information from data is by visualizing
them. Visualization of data/information is not something new, the first map can be
dated back to 6200 BC while the first world map was created on 550 BC [Friendly,
2006]. Tables, graphs and maps, static or dynamic, are some of the most common vi-
sualization techniques used in order to “see what lies within, determine the answer
to a question, find relations, and perhaps apprehend things which could not be
seen so readily in other forms” [Friendly, 2006]. All the above are possible through
visualization since vision is the most dominant sense in the human sensory system
[Hauser et al., 2018].

Cartography, the science/art of creating maps, is one of the oldest visualization
techniques [Friendly, 2006] and one that shows great advancements even in the
modern world. Actually, a large majority of the data produced daily is geographic
data and the need for efficiently and effectively visualizing them is ever-growing.
From the mid-20th century with the advancement of computers, the development
of Geographic Information Systems (GIS) changed the traditional cartography. Ac-
cording to Clarke [1986] the “Geographic Information Systems (GISs) are computer-
assisted systems for the capture, storage, retrieval, analysis and display of spatial
data”.

The advancement of the computers combined with the digital revolution and
subsequent information age, not only helped in the advancement of GIS but also,
have prompted changes that are as numerous as they are fundamental to the ways
in which maps are produced and consumed, with interactivity being among the
most significant of these new possibilities [Roth, 2013]. Numerous scholars have
argued that even the paper maps are interactive, but a digital environment affords
a wider array of interactions forms and can only be limited by the objectives of the
map user and the skills of the developer [Roth, 2013].

When the World Wide Web was invented in the late 1980s, during these past
30years, the number of applications created over the web is in the rise and the
geographical information systems (GISs) are not an exception. Since 1993 when
the first Web GIS developed it has grown into a rapidly developing discipline [Al-
Qurabat, 2015]. A Web GIS application provides the user with several advantages
over a traditional GIS since it provides the opportunity to the user to access, ana-
lyze and visualize geographic information from anywhere at any time [Al-Qurabat,
2015].

The development of many maps generated by map servers and a range of map-
ping options for users to view maps online led to the need to combine data from
multiple sources on one hand and on the other hand to achieve platform indepen-
dence came with the need to package and standardize the interface to these web
map servers. The purpose is to provide mapping information directly, not just
to users, but also to other software programs that can consume and produce in-
formation [Veenendaal et al., 2017]. The Open Geospatial Consortium (OGC) is an
international industry consortium of over 529 companies, government agencies, and
universities participating in a consensus process to develop publicly available inter-
face standards. OGC Standards support interoperable solutions that ”geo-enable”
the Web, wireless and location-based services and mainstream IT. The standards em-
power technology developers to make complex spatial information and services ac-
cessible and useful with all kinds of applications (http://www.opengeospatial.org).

4 introduction

1.3 motivation

Even though many researchers have tried in the past to visualize spatial data such
as the SSH (Chapter 2, Chapter 3), there is more than enough room for improvement,
while adding some extra value to such visualizations. One part that can add value
to such a visualization is related with the fact that the SSH is a dynamic phenomenon,
which means that this phenomenon changes over time, so, it is preferable to create
an animated visualization to represent the time dimension of the phenomenon as
accurate as possible. The time dimension can also be visualized by introducing
the different time scales in which the SSH can be represented to give to the user
the opportunity to observe the different phenomena that can affect it. Another
important aspect that should be added in web visualizations is the introduction of
interactivity elements that can help the user to better understand the information
that the mapmaker wants to deliver. Nowadays more and more GIS applications are
available online (over the web) and, as it is described in Section 1.2, the geographic
related topics have an important added value when provided over the web. In
order to create a visualization with the above characteristics it is important also to
consider the architecture of the Web GIS platform that will host it.

The above-mentioned characteristics of the visualization (animated, different
time scale, interactive, over the web) of Sea Surface Height even though are not
unique as standalone, the combination of them is the challenging part of this thesis
project.

1.4 research questions

The main research question that derives from the motivation part can be described
as:” What is an optimal WebGIS-architecture for making an interactive - dynamic visualiza-
tion of the sea-surface height phenomenon?”. In order to answer this question a series
of sub - questions should be also answered.

1. Sea surface height is a dynamic phenomenon (2.5D + time), what technique of anima-
tion should be used and why?

Historically, animation techniques that have been used are simple slide –
shows and GIFs (Graphics Interchange Format) but the past years the videos
are the most widespread. The answer to this question is to describe what an-
imation format is the most relevant, why and how to use it for the context of
this thesis project.

2. What elements of interactivity are relevant to a web mapping application and which
ones should be implemented?

This question should answer what interactivity elements can be considered
important for such visualization and why. The most commonly used inter-
activity elements are zooming and panning but examples of interactivity ele-
ments can also be the click on a button that triggers a certain process, turn a
layer on or off, change portrayal/color of a map, options that manipulate the
animation such as stop, slow, back, forward, etc.

3. What type of architecture are more appropriate for an implementation with these char-
acteristics?

In order to implement the interactivity and the animation of the Web GIS ap-
plication it is important to have a decision on architecture related topics such
as server-side/client-side: communication protocols, formats, buffers/blocks,
streaming.

1.5 research scope 5

1.5 research scope
The focus of this thesis project is to create a Web GIS application for dynamic vi-
sualization of the Sea Surface Height phenomenon. This application will use pre-
processed data-sets, which are described in Chapter 5, and as a result no extended
data analysis will be performed. In the interactivity part only a few interactivity
elements will be chosen and will be implemented. These elements will be an out-
come of a literature review and no usability test will be performed. Even though
the Sea Surface Height is a 2.5D + time phenomenon, in the framework of this thesis
project it will be portrayed as a 2D + time with the height value represented with
color. Finally, about the architecture of the application, it will be based on exist-
ing implementations with additions/changes/transformations in the parts that are
needed to achieve the goals of the research questions.

1.6 thesis outline
After the conclusion of the introduction (Chapter 1) that is the first chapter of this
thesis, follows the Chapter 2 that references the theoretical background on the re-
lated topics of this thesis will take place. Chapter 3 describes the related work while
Chapter 4 describes the methodology that is a description of the approach used in
order to answer the research questions. Chapter 5 is about the implementation of
the methodology described in Chapter 4 and the final results of this thesis. The
last (Chapter 6) is the one that describes the conclusions of this thesis as well as a
reference to some future work is proposed as a result of these conclusions.

2 T H E O R E T I C A L B A C KG R O U N D

The introduction chapter (Chapter 1) has two main purposes that help the reader
to have a first insight into what this thesis project is about. The first purpose is
about the introduction of the concepts and technologies that will be mentioned in
the course of this thesis and the second one is to describe the motivation for this
thesis and the research questions on which this thesis project will be based. The
goal of the present chapter is to focus on the above-mentioned concepts in order to
help the reader better understand the parts that will follow in this thesis.

2.1 cartography in the 20th century
The first section of the Theoretical Background Chapter is focused on the description
of the technologies and novelties that were introduced in cartography during the
20th century. The focus on the 20th century is based on the fact that on one hand,
it was the period that some really important ideas were introduced on the field
of cartography and on the other hand the concepts that will be used in this thesis
project are based on technologies introduced during this period. The section starts
with a short description of Cartography as a discipline and a brief reference on the
history of cartography in order to demonstrate that even though this section focuses
on the 20th centuries this discipline is one of the oldest visualization techniques.
After the introductory subsection there will be a subsection for every important (and
relevant with this thesis) ideas that were introduced in the 20th century starting
from the ”colors in maps”, the ”animated maps” and concluding with the ”GIS”
subsections.

2.1.1 Overview of Cartography

According to encyclopedia Britannica the definition of cartography is:”Cartography,
the art and science of graphically representing a geographical area, usually on a flat
surface such as a map or chart. It may involve the superimposition of political, cul-
tural, or other non-geographical divisions onto the representation of a geographical
area.” The goal of cartography is to model reality in ways that the spatial informa-
tion should be represented effectively. Every cartographer while designing a map
should answer some basic questions in order to produce an effective map. The
first question is about the feature (physical like land masses or abstract like polit-
ical boundaries)of the reality that need to be visualized. The second question is
related with the ”how” to represent the the above mentioned features on a Two
dimensions (2D) surface. The process that represents the surface of the earth on
a 2d plain is called map projection. The third question is about the reduction of
map’s complexity and about the elimination of irrelevant characteristics. These two
procedures are called map generalization. The last question is related with the map
design that is about the best possible selection of the visualization techniques and
elements in order to better convey its message to its audience.

After the definition and the purpose of cartography it is interesting to refer to its
history that spans over several millennia. According to the research contacted by
[Friendly and Denis, 2001] the first ever map that have been found dates back to
6200 BCE in Konya of present day Turkey. This first map represents the Konya town

7

8 theoretical background

with an erupting volcano (Figure 2.1). Whitehouse [2000] dates the first map even
further back during the ice age that a cave was found at Lascaux in central France,
with a painting of what is believed to be the night sky with stars and planets.

Figure 2.1: Map of Konya from 6200 BCE.

Harrell and Brown [1992] mentions that the Turin Papyrus Map, That dates back
to 1160 BCE, is the oldest geological map. It was found in Egypt and it was rep-
resenting geological resources and providing also information about quarrying of
those resources. Between the 6th century BCE and 3rd century BCE some more
unique maps were created such as the first world map (Figure 2.2) and the first
route map (Figure 2.3) [Friendly, 2006]. The idea of coordinates was used by an-
cient Egyptian surveyors in laying out towns, earthly and heavenly positions were
located by something akin to latitude and longitude at least by 200 BCE, and the
map projection of a spherical earth into latitude and longitude by Claudius Ptolemy
[c. 85–c. 165] in Alexandria would serve as reference standards until the 14th cen-
tury [Friendly, 2006].

Figure 2.2: Anaximander world map.(http://ccnmtl.columbia.edu)

According to Friendly [2006] for the next almost two millennia (until the 17th
century) cartography was evolving but in a really slow pace nevertheless, some ma-
jor advancements took place during that period like the introduction of paper, the
introduction of triangulation for the determination of mapping locations and the
invention of cylindrical projection. From the 17th century, there was a bigger inter-

2.1 cartography in the 20th century 9

Figure 2.3: The first route map, showing the whole of the Roman world.
(http://datavis.ca/milestones/)

est in cartography and data visualization in general in such a degree that almost
every new century the advancements are comparable in number and importance
with those of the previous 1700 years. Referring to all these new ideas even though
can be interesting are not relevant to the concept of this thesis.

The only century that it appears to have the relevance of its innovations with
the present project is the 20th. The first half of the century does present important
new ideas in the field of cartography but it is considered important in the history
of cartography because it was a period that it was mainly focused on applications
[Friendly, 2006]. During this period there was the advancement in photography
and the use of airplanes that led to the increase of the map production (making
the map production process easier and faster) and as a result, many theories that
were formulated in previous centuries found the ground to be implemented and
analyzed in more depth. Such theories are the use of colors in maps, in order to
improve the understanding of the maps by the audience (until then the majority
of the maps were black and white), and the map generalization. Lastly during the
first half of the 20th century was the time that modern animation techniques and
computer systems were invented two technologies that will be used later in the
same century.

In the second half of the 20th century, it was the time that new ideas are formu-
lated again at an accelerating rate especially after the pause that it was experienced
during the first half of the century. The most important innovation of the period
is the use of computers in order to analyze, produce, store and visualize spatial
data ultimately creating what is known today as GIS. The use of computing systems
helped in the introduction of the interactive maps as well as the animated maps.
The last major innovation of the second half of the 20th century is the introduction
of the World Wide Web (WWW) that actually defined the next century (21st) and will
be analyzed in the next section (Section 2.2)

2.1.2 Colors in Maps

Adding color in maps is not an idea that was first introduced during the 20th cen-
tury but rather an idea that it was popularized during that period. After all, as
it has already mentioned in Section 2.1.1 the early 20th century it was a period of
applications. The main reason that it became more popular it has to do with the
extended use of photography since until then all the maps and especially those with
color where hand made a really difficult and time-consuming method.

10 theoretical background

According to Christophe et al. [2011] the ”Color is physiological sensation result-
ing from all radiations received by the eye when looking at an object lit in solar
light. We can define color as a personal impression but it is difficult to measure it,
because variations in human perception are big, and it’s quite impossible to make
standard, objective observations or develop standardized or quantitative rules for
using color”. In the context of cartographic visualization, the color can be consid-
ered as the most important graphic variable or means of cartographic expression.
In the cases that the color is well-chosen the content of the map is easier to be dis-
tinguished. Also, the color can evoke certain feelings to the user that can affect his
understanding and decision-making process to a larger degree than with any other
cartographic mean of expression [?]blaha2014).

There are three main dimensions of the color and these are the hue, the value,
and the saturation. The hue is defined as the different colors that humans can
perceive (e.g. red, green, blue)(Figure 2.4a). The value is defined as the lightness
or the darkness of a hue. The value of a hue can be affected by the background
and for example, the value looks lighter when surrounded by darker shades or
vise versa (Figure 2.4b). The last dimension is the saturation that is defined as the
intercity of color and is related to the percentage of gray that is contained in a color
(Figure 2.5)[Christophe et al., 2011].

(a) Example of different hues.([Christophe
et al., 2011]) (b) Example of different values of gray with

a different background color.([Christophe
et al., 2011])

Figure 2.4: Examples of different hues and values

The first that worked on color theory was Newton that his primary focus was the
analysis of the visible spectrum of the electromagnetic spectrum (380 to 780 nm)
and how the ”white” light can decompose into seven basic colors and then how
these seven colors can be recomposed into the white light. The second that worked
on color theory was Goethe that he was devoted to answering the physiological,
physical and chemical questions related to color, as well as to psychology and aes-
thetics. Itten was one of the pioneers of the color theory and he was the one that
divided the color spectrum into three primary colors (yellow, red, blue), the sec-
ondary colors (orange, green and violet) by mixing the primary ones and finally the
tertiary colors (yellow-orange, red-orange, red-violet, blue-violet, blue-green and
yellow-green) that is a result of mixing the primary colors with the secondary ones
[?]blaha2014)(Figure 2.6).

The use of color in cartography is extremely important mainly for surface areas
since it affects the map’s harmony the most. According to Christophe et al. [2011]
“harmony is the art of how to bind a variety of colors in a “good” equilibrium of
threshold contrasts (intrinsic and spatial), giving a sense of understanding particu-

2.1 cartography in the 20th century 11

Figure 2.5: Example of different saturation for the same hue and value.([Christophe et al.,
2011])

larly subjective”. Equally important as the selection of colors for the surface areas
is the selection of the color of the points and lines that are typically the overlaying
layer of a map [Bláha and Sterba, 2014].

The three dimensions of color (hue, value, saturation) can be used in order to
produce a more harmonious map. The difference in hue and especially the use of
the three primary colors can be used in the depiction of qualitative phenomena like
the demarcating of regions on political maps. In the same concept of different hues,
it is important to mention the theory of cold and warm colors. Warm colors are
those that are associated with the yellow and red hues (top part of Figure 2.6) and
the cold colors are associated with the blue hues (lower part of Figure 2.6). The
contrast between warm and cold colors is typically associated with positive and
negative values of a phenomenon (Figure 2.7).

The next dimension is about the value of a color (how bright or dark a color is)
that in cartography is mainly associated with quantitative phenomena, in which
light tones are used for lower values and dark tones for higher values (Figure 2.8a).
The last dimension is the saturation of the color that is used for the improve-
ment of the formation of gure and background, for differentiating special terrain
and for the visual balancing of large geographic phenomena, such as forests or
lakes[?]blaha2014))(Figure 2.8b) .

2.1.3 Animated Maps

Today one of the most significant research challenges is the monitoring of the
environment and pend upon capturing, analysing and representing dynamic ge-
ographic processesHarrower et al. [2008]. For thousands of years the cartographers
where trying to perfect the visualization of dynamic phenomena with static 2D maps.
Since the early decades of the 20th century some cartographers where experiment-
ing with animated map displays. According to [Harrower et al., 2008] animations
are “defined as sequences of static graphic depictions (frames), the graphic content
of which, when shown in rapid succession (typically 24-30 frames per second), be-
gins moving in a fluid motion”. The animated maps have become really popular
nowadays not only among the experts for data exploration and knowledge discov-

12 theoretical background

Figure 2.6: Itten’s 12-hue color circle.([Bláha and Sterba, 2014])

ery but also to the simple user that can, for example, see the weather maps loops
on television. The main advantage of the animated maps and the reason that they
have become really popular the recent years is the fact that the passage of time can
be represented congruently.

The first attempts for the production of animated maps date back to 1930s where
the animation process was manual drown by hand each frame at a time using car-
toon animation techniques. Interestingly one of the first popular animated map was
created by the Walt Disney Company in 1940 and it was depicting the invasion of
the Warsaw by the Nazis in 1939 (Figure 2.9)(cartography2.org [2018]).

In 1963 it was the time that the first computer assisted animated map was pro-
duced in bell laboratories. This visualization was showing the orbital path and po-
sition of a satellite around a planet. Even though the animated map was produced
and displayed through a computer, all the frames were transferred to conventional
film in order to store the animation. During the 1980s the desktop computers ar-
rived and as a result the animated maps had found a new production platform, a
new storage method and a new display device. But the most important characteris-
tic of this era was the massively decreased cost for the production of the animated
maps that was a result of the advancements in both the hardware and software of
the computing systems. After the 1990s the introduction of the World Wide Web
gave the opportunity to display animated maps through the internet (Section 2.2.4).

2.1.4 Geographic Information Systems

One of the most important developments of the 20th century in cartography is the
development of Geographic Information Systems (GIS). According to Clarke [1986]
the GISs are computer-assisted systems for the capture, storage, retrieval, analysis
and display of spatial data. The spatial data are data related to the ”where” things
are, were or will be. More specifically, spatial data are related to the geographic
space which is having positional data relative to the Earth’s surface.

Our world is dynamic and many aspects of our lives are changing over time.
These changes can be caused either due to natural phenomena (e.g. volcano, earth-

2.1 cartography in the 20th century 13

Figure 2.7: An example of warm-cold contrast that indicates the positive and negative values
of a phenomenon in this case the population growth of a region.([?]blaha2014))

(a) Example of a map that uses different value
of a color (employment in agricultural sec-
tor).([Christophe et al., 2011])

(b) Example of a map that uses satura-
tion in order to distinguish the back-
ground from the foreground (foreign trade)
.([Christophe et al., 2011])

Figure 2.8: Examples of maps that utilize the differences in value (brightness) and saturation
for improved harmony.

quakes) or by us humans (e.g. reclaiming land from the sea). There are also and
some changes that we do not yet fully understand why they happen. So, to better
understand our world we study the phenomena that bring about geographic change
having as a goal not only to deepen our understanding but also help us in our de-
cision making to follow the best course of action. One of the biggest challenges
that are related to many GIS applications is the solution of spatiotemporal problems.
In these cases, the problem’s characteristic does not only change between different
locations but also through time [Huisman and De By, 2009]. Overall, the desire of
humans to understand how our world works and how we can utilize this knowl-
edge to improve our decision making led to the development of spatial analysis and
ultimately of Geographic Information Systems.

The first attempt to try to explain a phenomenon that is related to the geographic
space took place in Paris, France in 1832 that geographer Charles Picket tried to
visualize the number of deaths by cholera per district of the city. Following the
footsteps of Picket, John Snow determined the source of the cholera outbreak in
London in 1854. These two cases are considered for many as the first attempts of
spatial analysis.

In the early years of the 20th century, it was the development of the photozincog-
raphy that made it possible to divide a map into layers simplifying the process that
until then was time-consuming and most of the time confusing for the draughtsman.
The layers were at first drawn on glass plates that later where replaced by plastic
films. The use of layers in map-making is now considered as the main feature of
any modern GIS.

14 theoretical background

Figure 2.9: Five frames from the Disney Studios production of the invasion of Poland in
1939.(Peterson [1999])

In the late 1950s and 1960s advances in computing technology were making pos-
sible forms of automated cartography that in due course would lead to the devel-
opment of GIS. The 1960s was also the decade that the development of scanners
and plotters took place that along with rapid advances in software, began to open
exciting possibilities, even at that very early stage in the development of computing
Goodchild and Haining [2004].

The first true GISystem was created due to Roger Tomlinson’s pioneering work
to initiate, plan, and develop the Canada Geographic Information System resulted
in the first computerized GIS in the world in 1963. The Canadian government had
commissioned Tomlinson to create a manageable inventory of its natural resources.
He envisioned using computers to merge natural resource data from all provinces.
Tomlinson created the design for automated computing to store and process large
amounts of data, which enabled Canada to begin its national land-use management
program. He also gave GIS its name [ESRI, 2019].

The development of computer systems and GIS produced a new type of data
structure called raster or bitmap. A bitmap is a rectangular grid of pixels, with
each pixel’s color being specified by a number of bits. The main characteristic of
a bitmap the width and height of the image in pixels and the number of bits per
pixel (which determines the number of colors it can represent) Figure 2.10. This
new data structure is the widest used data structure for storing geographic infor-
mation surpassing the more traditional one called vector data structure. The vector
data structure is defined by points that are connected by lines and curves to form
polygons and other shapes Figure 2.11.

Figure 2.10: An example of a raster image.(https://en.wikipedia.org)

During the late 1990s and early 2000s, the internet and the World Wide Web
started to become extremely popular among the users and as a result, the concept
of web mapping started to flourish within the GIS community. The development
of free-to-use and easily accessible mapping applications like Google Maps, Bing
Maps, and OpenStreetMaps, gave public access to huge amounts of geographic
data.

2.2 cartography in the 21st century 15

Figure 2.11: The points, lines and polygons/shapes that represent the vector data stuc-
ture.(https://gisgeography.com)

2.2 cartography in the 21st century

This section discusses the new ideas that were introduced in cartography during
the 21st century. Even though it has been only two decades into the 21st century,
some major concepts have been introduced in cartography that has changed the
field quite heavily. These new concepts are Web GIS and web mapping. The World
Wide Web was invented during the last decade of the 20th and the first web GIS and
mapping applications were introduced, but from the beginning of the new century
(21st) it started to become mainstream with a plethora of important applications to
be developed.

2.2.1 Background of web mapping

The term web mapping has a short history starting from the early 90s with the
development of the World Wide Web. This discipline has three main elements: the
geodata/geoinformation and their visualization, a geospatial application (Web GIS

application/platform) and the web [Veenendaal et al., 2017]. Overall, the terms web
mapping and Web GIS are getting confused with each other and in many cases, they
are considered synonymous, but the term web GIS is considered as more general
[Veenendaal et al., 2017].

Web mapping in its development over the years has been heavily influenced by
the parallel development of the general web. The general web is divided into four
different generations described with the terms Web 1.0 to Web 4.0 [Choudhury,
2014]. Each generation of the web is described as the hypertext web (Web 1.0),
social web (Web 2.0), semantic web (Web 3.0), and ultra-intelligentnt web (Web 4.0)
[Choudhury, 2014]. Similarly, web mapping has been also divided into different
eras from various researchers (Table 2.1)

mapping eras.PNG

Table 2.1: Previously characterized eras of web mapping ([Veenendaal et al., 2017].

16 theoretical background

The above-mentioned eras have been defined by a major development that has
played a significant influence on web mapping developments (technology, data)
and communities [Veenendaal et al., 2017]. Even though all the above-mentioned
developments are related to this thesis project, it is important to focus on one main
part of the developments, the visualization. The most recent classification of web
mapping has been proposed by Veenendaal et al. [2017] and it is demonstrated in
fig:frameweb.

of web mapping eras.PNG

Figure 2.12: Framework of web mapping eras [Veenendaal et al., 2017].

In Figure 2.12 there are defined nine eras (classes) and almost all of them are
related to the visualization, starting from the static and the dynamic in the 1990s,
continues to the services and reaches to the interactive, the digital globes and the
mobile in the 2000s.

The visualization part of the web mapping can be divided into two main cate-
gories the static maps and the dynamic ones. The term static map is rather clear
and in the case of maps it represents simple images that represent one moment
in time and does not allow any interaction with user [Adnan et al., 2010]. On the
other hand, the dynamic visualizations as a term are rather general and, in related
literature, have different meanings. Some papers when referring in the dynamic vi-
sualizations are oriented to maps that the user has the ability to interact (e.g. digital
globe) [Veenendaal et al., 2017] [Adnan et al., 2010] or in other papers it is ori-
ented towards representations that the time is also a parameter of the visualization
[Harrower et al., 2008] [MacEachren, 1998] and this second category of dynamic
visualization is related with the term animation. In the context of this thesis project,
the second approach on the dynamic maps will be used and with the term dynamic,
the presence of the time dimension will be implied. Even though the development
of the digital globe had major importance on the development of web mapping
introducing the third dimension on the users and a more accurate representation
of the earth, it can actually be considered as a subcategory of the two main cate-
gories of maps, static and dynamic, depending on the inclusion or not of the time
as dimension. As a result, this chapter will refer to three main categories of rep-
resentations and these are the static, the interactive (static) and the dynamic (time
series).

2.2 cartography in the 21st century 17

2.2.2 Static visualization

Throughout the course of history and until very recently the only way that geo-
graphic information can be visualized is by drawing a static map on a paper. Ac-
cording to [Roth, 2013] many researchers believe that these paper maps are inter-
active but through the advancement of technology and the digital revolution has
made possible different levels of interactivity for the user and as a result, the old
paper maps are still considered as static. Even though the digital epoch that we
live in is providing a lot of interactivity options the first maps that were found on
the web were static. The static web mapping era refers to the beginnings of Web
1.0 in the early 1990s, where the phenomena of a web map were realized through
an Hypertext Markup Language (HTML) image, especially clickable images, and
hyperlinks. Web 1.0 defines the read-only web focusing on the retrieval of informa-
tion from what was then essentially a data repository of web pages. This era was
founded on the basic Hypertext Transfer Protocol (HTTP) and HTML technologies
implemented to disseminate online linked information according to the vision of
Berners – Lee [Veenendaal et al., 2017].

Even though this first category of static maps does not allow any user interaction
with the maps because they are just static images, so they do not allow users to
pan or zoom in, out or around the map, the resulting map is very simple and easy
to interpret, because there is nothing required on the client-side. Because, a user
cannot interact with the maps they are not suitable for rich Internet applications, or
the new Web 2.0 applications [Adnan et al., 2010]. An example of such visualization
is presented in Figure 2.13

sea surface.PNG

Figure 2.13: Global mean sea surface height from altimetry (https://www.esa.int)

2.2.3 Interactive Visualization (Static)

The interactive maps were possible due to the digital revolution that allowed the
map-maker to add elements to the visualization according to the user’s needs. The
web mapping discipline was the natural second step after the introduction of the

18 theoretical background

static maps in the early 90s. The first attempts were using Dynamic Hypertext
Markup Language (DHTML), Common Gateway Interface (CGI), Java applets and
servlets, plugins and ActiveX technologies that enabled users to retrieve maps that
were dynamically created and constructed on the server according to user prefer-
ences and choices [Veenendaal et al., 2017]. This kind of first interactive representa-
tion was used to produce the first interactive online atlases and the beginnings of
GIS functionality on the web.

The limitation of the early dynamic maps was that client requests and server re-
sponses were synchronized so that users, after submitting a map request, had to
wait patiently for the server to assemble and return the response. The technological
solution to enhance user interaction with the map was to provide user-client inter-
action simultaneously with client-server interaction. The emerging Asynchronous
JavaScript and XML (AJAX) technology combined with image tiling technology sig-
nificantly enhanced user interaction with the map by allowing online maps to be
delivered to a user in a continuous and responsive manner while the user was si-
multaneously interacting with the map interface [Veenendaal et al., 2017]. Google
Maps, Microsoft Virtual Earth, Yahoo Maps, Mapnik, Open Layers, and ArcGIS, as
well as derivative products such as MapTube, are based on this new technology that
revolutionized the web mapping discipline [Adnan et al., 2010].

maps.PNG

Figure 2.14: A snapshot of the Google Maps that is a typical example of an interactive map
(https://www.google.nl/maps/)

The introduction of the interactive maps on the web happened in parallel with
the rapid increase of the web maps in general. All these web maps should not
be meant to be used only by the users but also by other applications. The inter-
operability of the spatial data was so important that many companies, institutions,
and universities founded the OGC. Some of the first standards issued by the OGC

include WMS with the first version released in 2000 for web maps, Web Feature Ser-
vices (WFS) in 2002 for vector-based features, Web Coverage Services (WCS) in 2005

for multidimensional coverage data, and Web Processes Services (WPS) in 2007 for
processing operations. 1 The number of geospatial standards has since increased to
over 50 specifications currently released by the OGC to support web mapping and
the GeoWeb [Veenendaal et al., 2017].

In order to explain how the applications that are implementing these standards
work, there will be the use of WMS as an example. In general, most modern web
applications have two main parts: the server (a system for storage and comput-
ing that is more powerful and efficient than the machine that the users normally
have) and the client (the web browser that runs on the user’s machine). The client

1 http://www.opengeospatial.org

2.2 cartography in the 21st century 19

through its interface sends requests through a web server (a software that handles
the requests and responses of/to the client) to provide data from a local file system
(server) (Figure 2.15).

Figure 2.15: A diagram that describes the request response process.([van Oosterom and
de Vries, 2018])

The OGC standards and in this example the WMS is providing a specific format for
this request-response process in order to be able to be used from all the applications
that are designed following these standards without the requirement of any kind
of extra computation/transformation/change. For the case of WMS the standard
dictates that the first request from the client is the GetCapabilities that is actually
the get metadata operation. The response is an Extensible Markup Language (XML)
file. The second step is the GetMap that the response should be in one of three data
formats: raster, Scalar Vector Graphics (SVG) and Keyhole Markup Language (KML).
The last step is related with any extra information that the user may request through
the GetFeatureInfo request (Figure 2.16).

Figure 2.16: A diagram that describes the request and response process of WMS .([van Oost-
erom and de Vries, 2018])

The most advanced part of the interactive maps are the digital globes that in-
troduces the third dimension on the visualization. The digital globes made the
visualizations more immersive for the users and as a result improved their effi-
ciency. While the number of virtual globes is increasing, new technologies that

20 theoretical background

Figure 2.17: A snapshot of the Cesium that is a typical example of a virtual globe
(https://cesiumjs.org)

enable open and pervasive development of virtual globes and their applications are
rapidly evolving. A number of open-source solutions, e.g., NASA World Wind, Ce-
sium WebGL, Glob3 Mobile and osgEarth, have made the development of virtual
globe applications easier [Veenendaal et al., 2017].

2.2.4 Dynamic visualization (Timeseries)

The last category of mapping visualizations is the animated map (time-series). A
description of what the animated maps are can be found in Section 2.1.3.The imple-
mentation of animated maps on the web at the very early stages of its development
was using the animation format of Graphics Interchange Format (GIF) that is one of
the two first image formats that were implemented 2. After the introduction of GIF

on the Web, the Adobe Flash was the main animation source on the web and was
also used for web mapping animation. Another format that was used for animating
maps was the SVG that as its name implies was created for managing vector data.
According to [Midtbø, 2005] there are many examples of animated maps but the
majority of those examples has been entirely prepared in advance and offer poor
analyzing functionality beyond the visual inspection assisted by some interactive
tools.

2 https://en.wikipedia.org

3 R E L AT E D W O R K

In this chapter, some example web visualizations will be presented related to the
main techniques that are been used for the visualization of spatial data. The ex-
amples that will be presented are: the Google Maps, the Ocean Motion, Discover
Magazine, Earth Nullschool , Google Earth Engine Timelapse and NOAA Sea Sur-
face Height Anomaly. Each one of the applications will add a small stone to reach
the goal that is to create an optimal dynamic and interactive visualization for the
SSH phenomenon.

3.1 google maps
The most characteristic and widespread example of an interactive (static) map can
be considered the Google Maps (Figure 3.1) but the recent years the visualization
has changed from a typical 2D visualization to a virtual globe one. Nevertheless, it
is not possible to talk about web cartography without referring to the Google maps.

Figure 3.1: Google Maps print screen (https://www.google.nl/maps/)

Despite the many capabilities that this implementation has, the most important
ones are the rather smooth zooming and panning capabilities as well as the intro-
duction of the Web Mercator projection.

The developing team of Google Maps was one of the first that introduced the tiled
web maps (for raster data format) and many other web map vendors followed their
example and nowadays the tiled web maps are considered as the most common
technique for the web maps. The conventions used for implementing the map tiles
for Google Maps is now used widely from most of the vendors. These conventions
include the tile shape and size that is rectangular with dimensions of 256x256 pixels.
The numbering of the tiles for the zoom level starts from the 0 in which the whole
world fits inside a tile (256x256 pixels). Then, in zoom level 1 the first tile is replaced
by exactly 4 tiles of 256x256 pixel size. In general, each tile is replaced from 4 tiles
for the next zoom level reducing at the same time the ground resolution (Figure 3.2).

The numbering of the tiles does not refer only to the zoom level but also to the
tiles for each zoom level. The numbering for each tile in every tile zoom is described
by 2 numbers x, y, with the x referring to the row starting from 0 in 180 degrees
longitude and it increases while moving eastwards. The y coordinate is referring to
the row starting from 0 in 85.051129 degrees latitude and it increases while moving

21

22 related work

Figure 3.2: A table with the number of tiles and the scale of each zoom level
(https://wiki.openstreetmap.org/)

southward (Figure 3.3). Since there is not yet an efficient way to create the tiles on
the client-side all the rendering is taking place on a server and the tiles are streamed
to the client.

Even though the tiling scheme of Google Maps is the widest spread other tiling
schemes are being used with most of them having small differences with each other.
One of the first standardized tiling schemes was produced by the OSGeo and was
named Tiled Map Services (TMS). The main difference of this tiling scheme is the
fact that the tile numbering starts from the south of the map (-85.051129 degrees)
and increases towards the north (Figure 3.4). A second tiling scheme that has a
different encoding of the tiles is the one used in Bing Maps. The new encoding
is based on the Quadtree spatial index structure and it is called “quadkeys” and
improves the performance in the storage and indexing of the tiles (Figure 3.5).

One last option that has started to increase into popularity is to use bigger tile size
and instead of 256x256 pixels to quadruple the size and reach the 512x512 pixels.
Mapbox is one of the main vendors that have changed its focus towards these bigger
tiles that, according to their blog (https://blog.mapbox.com/), are better suited for
the high-resolution displays on one hand, and it costs fewer bytes in size over the
network that leads to faster rendering of the maps.

The second important characteristic of this implementation is the introduction of
the Web Mercator Projection. The Web Mercator projection is based on the original
Mercator projection that for many years was considered as the most common pro-
jection in cartography. The Mercator projection is a cylindrical projection that has as
output a map that is rectangular, better fitting in the rectangular screens, and also
the meridians and the parallels and perpendicular to each other in every place of
the world and also are parallel to the borders of the map/screen that help the users
to better orient themselves on the map. The other characteristic of the Mercator
projection is that due to the cylindrical projection it has big distortion while mov-

3.2 ocean motion 23

Figure 3.3: Google Maps Tiling Scheme for zoom level 2 (https://developers.google.com/)

ing from the equator either to the north or to the south and that it is con-formal.
The Web Mercator uses the WGS 84 ellipsoid but the formulas that are used to
project the coordinates on the map are those from the spherical Mercator and no
transformation from the ellipsoid to spherical is taking place. The reason for this
decision is to reduce the computational cost on the server-side. That leads, on one
hand, to have large deviations for the original Mercator, to lose the con-formality
(it is retained at small scales) and also the lines of constant course are not straight,
but, on the other hand, it retains the characteristics of the cylindrical projection and
also if the map is cut at the latitude of around 85 degrees north and south the re-
sulted map is practical a square (Figure 3.6) something that helps with the tilling
as explained in the previous paragraph. This projection even though it has been
criticized by the Geodesy Subcommittee of the Oil and Gas Producers (aka EPSG)
as a not valid projection, over the years it has been accepted as the main projection
for web applications with the official identifier: EPSG:3857.

3.2 ocean motion

The second implementation (Figure 3.7) is a Sea Surface Temperature, Height, Chloro-
phyll Visualizer, and introduces probably the simplest technique for adding the time
dimension on a map using the so-called slideshow. In this implementation, a new
image is loaded for every new date with available data (in a specific time inter-
val). The interactivity elements that this implementation is providing are panning
in different areas of the world, the change layer selects the date of interest, query-
ing and animation. No zooming capabilities are provided and as a result, fewer
tiles are needed comparing with the Google Maps implementation. Due to the lack
of the zooming capabilities, it is efficient enough to use an approach like this one
(slideshow) for dynamic visualization. On the other hand, most of the modern
data-sets are dense enough that there is a need for zooming and if the slideshow
technique is used for such application the storage requirements are increasing ex-
ponentially.

24 related work

Figure 3.4: The TMS numbering scheme (https://wiki.osgeo.org/)

3.3 discover magazine

This implementation (Figure Figure 3.8) is trying to handle more efficiently the
storage requirement for a dynamic visualization, which is the use of GIF. The goal
of this visualization is to observe the Sea Surface Temperature during El Nino. This
format is using the Lemp-Ziv-Welch (LZW) lossless data compression technique to
reduce the file size without degrading the visual quality. The main problem with
the GIF is the fact that it is a never-ending loop without any possible intervention
from the user to select a specific frame. This leads to limited interactivity and less
immersive experience for the user.

3.4 earth nullschool

The Earth Nullschool implementation (Figure 3.9) is considered as one of the best
visualizations of the Earth providing multiple interactivity elements like layer se-
lection, zooming and panning, querying and animation. The Earth implementation
is a visualization of global weather conditions forecast by supercomputers updated
every three hours. The most important characteristic that is introduced in this im-
plementation is the use of a virtual globe. The virtual globes can help the user better
understand the spatial data but in this implementation, the time is not represented
accurately. The animation that is used is not true dynamic but rather it is static since
the value of each phenomenon depicted does not change. The animation is present
just to show a trend (e.g. the direction of the wind) and it is mainly a visual trick
that helps the user to understand how some phenomena are evolving. There is also
the opportunity to jump to different times in the past but this element is handled
as in the case of the Ocean Motion and actually, the change can only happen manu-
ally without the existence of an animation that could help to have a better general
understanding of the phenomenon.

3.5 noaa sea surface height anomaly 25

Figure 3.5: Microsoft’s Quadkeys encoding (https://docs.microsoft.com/)

Figure 3.6: The extent of Web Mercator projection. Square shape (approx. 40,000km x
40,000km; equal to the length of the equator line on WGS’84 ellipsoid) (Stefanakis
2017)

3.5 noaa sea surface height anomaly
Continuing on the topic of the virtual globe there is an implementation from the
NOAA(Figure 3.10) referring to the SSH Anomaly that handles the time dimension
in a more efficient way that the Earth implementation mentioned above and as a
matter of fact from any other application mentioned previously. In this visualization
instead of using images (.png) as texture as it happens in most cases, it uses a video
(.mp4). As a result, it is not only a more accurate representation of the phenomenon
but also the user can manipulate the animation. The manipulation of the animation
is extended from the start and pause until the speed of the animation and the
luminosity. Another useful interactivity element of this visualization is the panning
allowing the users to find the area that they are interested in. This implementation
even though it is equipped with the best animation among the rest it is far from
perfect. The first omission is the absence of zooming capabilities that in this case
can be considered as a logical choice since the data-set used is too coarse to that
extent that even when the user observes the whole globe it can easily distinguish

26 related work

Figure 3.7: Ocean Motion (http://oceanmotion.org)

the different pixels of the video. Also, the user is unable to understand for which
period of time the whole animation is referring to as well as each separate frame,
so, even though it is possible to select a specific frame from the animation it is of no
use since it is not possible to understand to which date it corresponds. Overall, this
implementation can give you a general idea of how this phenomenon is changing
over time but nothing more.

3.6 google earth engine timelapse

The last implementation that will be analyzed is one of the most complete dynamic
visualizations that can be found on the web (Figure 3.11). This application is visu-
alizing the differences on the surface of the Earth during the past 34 years using
satellite images. It uses videos for the animation and it also has the interactivity
elements that can be considered as most important in today’s web applications.
These elements are the zooming and panning. The important difference of this im-
plementation in comparison with the one from NOAA is the fact that due to the
zooming, way more videos should be rendered to have proper worldwide coverage.
Actually, this implementation is using a similar technique with the Google Maps in
which the map has been organized into tiles, but in this case, the tiles are not im-
ages, but they are videos. Another difference is that the tiles are rendered in higher
resolution (1424x800 pixels instead of 256x256 pixels) and different aspect ratio that
leads to fewer columns than rows, in comparison with the same number in columns

3.6 google earth engine timelapse 27

Figure 3.8: This animation shows how sea surface temperatures have departed
from the long-term average, from August through early October 2018

(http://blogs.discovermagazine.com/imageo/2018/10/12/visualization-shows-
el-nino-brewing-in-pacific/)

Figure 3.9: The Earth implementation (https://earth.nullschool.net)

and rows that can be found in the most widely used tiling schemes. Two different
approaches have been used for this implementation. In the first one the tiles are
overlapping (around 75% overlap between the tiles) and every time only one of the
tiles is visible with some cases to be able to see at most three. This can help with the
synchronization of the videos that it is not even necessary since just the knowledge
of the timestamp is enough for the new video(s)’s starting point. In the second ap-
proach even though they have produced the overlapping videos like in the previous
approach, the overlapped videos are not loaded on the client but only the adjacent
ones. The rest of the characteristics of this approach (resolution, number of visible
tiles in the viewport) are the same as the first one Figure 3.12. The approach of the
overlapping tiles has been withdrawn but through the tile numbering in Figure 3.12

it can be assumed that three extra tiles were added between the two that exists in
the current implementation. The problem with the large overlapping tiles is that
the number of tiles is increasing exponentially with every new zoom level and as a
result, the requirement for storage on the server-side will increase accordingly.

28 related work

Figure 3.10: The NOAA visualization of the Sea Surface Height
(https://sos.noaa.gov/datasets/)

Figure 3.11: The Google Earth Engine Timelapse (https://earthengine.google.com/timelapse/)

3.6 google earth engine timelapse 29

Figure 3.12: The Google Earth Engine Timelapse tiling scheme for zoom level 2

4 M E T H O D O LO GY

In the introductory chapter of this report, the motivation for this thesis has been
described as well as the research questions and sub-questions. In this chapter, the
methodology to answer the mentioned research questions will be presented. This
chapter is organized according to the sub-questions and there will be an attempt to
answer them in each of the main sections of this chapter. The first part (Section 4.1)
is dedicated to the animation techniques that can be used. The second part (??)
is dedicated to the different interactivity elements, which ones were selected and,
according to the existing technology, how is it possible to implement them, and the
last part (??) will describe the architecture of the application.

4.1 animation
There have been three main animation techniques that have been used for visualiza-
tion on the web. These three animation techniques are the GIF, the SlideShow, and
the Video. In this section, there will be a comparison between them with the goal
to select the optimal one for this project. The animation that will be used for this
project should compile with some requirements to offer to the user the best possible
experience as well as to follow the characteristics that can make the implementation
optimal.

1. The first 2 requirements for an optimal implementation are about the storage
requirements and the streaming speeds something that for the animation can
be translated into the size of the files used and ultimately into the compression
that can be applied for each animation technique.

2. Another important characteristic is the fact that this implementation should be
an open-source with any user to be able to have access to it, so, it is important
to check the proprietary status of its technique.

3. Since the final application that will be the result of this thesis will be interac-
tive, the animation should be also interactive.

4. One last characteristic is that the animation should be compatible with the
most popular browsers available to the users.

The first animation technique that was introduced on the web was the GIF and
still is considered one of the most common formats used providing up to 4:1 lossless
compression. Also, since the GIF was one of the two first image formats compatible
with the HTML, after 30 years it is compatible with the most popular browsers. Even
though it has some positive characteristics the GIF is far from ideal having some
important weaknesses. The first important disadvantage of this technique is the
fact that it is limited to only 256 colors or shades of gray. The second one is the
fact that the LZW compression technique is proprietary but when the company
attempted to collect royalties from the users, they simply stopped using this format.
Another important problem that the GIF formats have is that the animation as it is
defined in the GIF89a version as well as the Netscape Application Block (NAB) the
number of loops or the frame-rate are predefined in the file and the user has no
access on them limiting the interactivity of the user with this format.

31

32 methodology

Using slideshow for animation is one of the easiest techniques to implement on
the web due to the collaboration of Cascading Style Sheets (CSS)3 and JavaScript.
Besides the use of CSS3 for the creation of a slideshow, there is also the WebGL API
that can be used for the same purpose. The main difference between the CSS3 and
the WebGL is that on one hand the CSS3 is more straight forward in its implementa-
tion but on the other hand since WebGL uses the GPU! (GPU!) instead of the Central
Processing Unit (CPU) is more efficient. One advantage of this technique is the use
of image formats that are common in use for web maps since the first years of the
web and the first static web maps in the early 1990s. One more important aspect
of this kind of animation is that through JavaScript, the users can manipulate the
animation adding one more element of interactivity to the final application. As far
as the browser compatibility is concerned, the slideshow, since it uses image files
it is compatible with the modern browsers, and even though some image file for-
mats are proprietary there are enough formats that are free for the users. The main
disadvantage of this technique is the fact that it does not offer any type of compres-
sion between frames and as a result, there is a requirement for storage space on the
servers.

Since the introduction of the video element in HTML5 the videos are the best
option for animation on the web especially when the animation is a product of a
rather big number of frames. As a matter of fact, the more frames the more ef-
ficient the use of video animation becomes. The main reason for the improved
efficiency is due to the encoding techniques that are used that lead to high com-
pression rates retaining at the same time high detailed content. If retaining the best
possible quality of the outputted file is of the most important, the most commonly
used encodings also provide lossless versions. As it is already mentioned in the
previous techniques, since the final application that will be the result of this thesis
will be interactive, the animation should be also interactive that means that the user
should be able to pause the animation or to move forward or backward in time and
even to speed up the animation or slow it down, characteristics that are available
in a video formatted animation. The video format even though it complies with
most of the requirements of the optimal animation technique it also has a couple of
drawbacks. The first disadvantage is the fact that not all video encoding standards
are compatible with all the browsers, and the second one is the fact that some of
the widest spread encoding standards are proprietary.

In order to have a more clear comparison of the three animation techniques that
were presented above, the Table 4.1 was created. In this table, an effort has been
made in order to quantify the four requirements for each technique. The scale that
was used the symbol ” - ” for the technique that was characterized as insufficient,
with ” o ” as average and with ” + ” as excellent.

Animation
Technique

Compression Proprietary
Status

Browser
Compatibil-
ity

Interactivity
Options

GIF + o + -
Slideshow - o o +
Video + o o +

Table 4.1: Comparison of the three animation techniques

The results of the comparison presented in Table 4.1 shows that the best-suited
animation technique (the one with the highest score overall) for this application is
the Video. Selecting the video as the best animation technique does not finalize this
analysis since the video techniques are providing several different compression
standards as well as different containers. So, a second comparison should take
place to select the best encoding and container within the possible selections for the
video format.

4.1 animation 33

The most important part of a video is the encoding/compression formats that are
a content representation format for storage or transmission of digital video content.
The first video format standard was the H.121 developed in 1984 and over the years
many more standards have been implemented. Some of the most common formats
are the H.262 (MPEG-2 Part 2), MPEG-4 Part 2, H.264 (MPEG-4 Part 10), HEVC
(H.265), Theora, VP9, and AV1. Even though the number of formats available is
large not all of them are supported by the HTML5 video element. Another support
issue that multiple formats faces are the fact that even though they can be supported
by the HTML5 they are not supported by several browsers.

The second important part of the video is the container format that is a type of
file format for storing digital video data on a computer system. A typical video file
contains video data in one of the video encoding formats (e.g. H.264) and audio
data in one of the audio encoding formats as well as other important information
like synchronization information, subtitles and metadata. Not all the container
formats support all the video encoding formats. It is common practice when a
developer creates a new encoding format also creates a container format. Just like
in the case of the encoding formats there is a large number of formats available
but only a small number of them can be supported by HTML5 and the most used
browsers. As a matter of fact, the HTML5 supports only three video file formats
and those are the OGG, the MP4 and the WebM 1. These three file formats that are
supported by HTML5 leads to the limitation of the video encoding formats that are
supported. The OGG supports the Theora compression format, the MP4 supports
the H.264 and the HEVC formats and the WebM supports the VP8, the VP9 and
AV1 format.

In order to start the comparison between the different file formats and encoding
formats it is important to define the characteristics of the optimal implementation.
The three characteristics (out of the four) that were defined for the animation in
general can also be used in this comparison accompanied by two new ones:

1. the compression

2. the proprietary status

3. the compatibility

4. the quality

5. the encoding/decoding speed

The comparison between the encoding format and the file formats is not an easy
task. So, this comparison starts with the one characteristic that is the most straight-
forward one and this is the compatibility with the browsers.

In Figure 4.1 it is clear that the combination (codec and file format) that is the most
compatible with the browsers is the MP4 with H.264. The second most compatible
is the combination of WebM/VP8 and it is closely followed by the OGG/Theora, the
WebM/VP9 and the WebM/AV1. In the last place is the MP4/H.265 combination.
It is important to mention in this point that the first format that was compatible
with the HTML5 video element was the OGG/Theora. But, Apple Inc was worried
about the proprietary status of the technologies used for the Theora codec and for
the fact that maybe if this codec becomes mainstream then the owners of those to
ask for financial resources to permit usage. In a similar situation, it is also the
MP4/H.264 format but since it was already used widely Apple Inc believed that
most of the owners have all-ready reveled themselves and as a result is safer to use.
The MP4 format even though it is the widest spread in use it is not free to use.
The last container that was introduced was the WebM with Google (the company
responsible for the development of this format) has the license distributed freely for
the user. Overall, considering the proprietary status of the three main file formats

1 https://www.w3schools.com

34 methodology

Table 4.2: Status of video format support in each web browser (https://en.wikipedia.org)

and the codecs that they support is that the only free for use is the WebM with
all its codecs (VP8, VP9, AV1), then with some ubiquity on it’s status follows the
OGG/Theora and the one that is not free to use is the MP4 with the codecs it
supports (H.264, H.265)

The next characteristics that can be compared are compression and quality. These
two characteristics are analyzed together since the most important efficiency indi-
cator is the ratio between them. When a new encoding format is introduced the
developers are looking to improve the ratio mentioned above (compression/qual-
ity) and as a result the newer the format the most efficient the encoding. The most
efficient one is considered to be the AV1 that through the literature review and
different tests was determined that it is between 20% and 30% more efficient than
the VP9 and the H.265 that have about the same efficiency with each other [Ozer,
017a],[Ozer, 017b],[Vatoliny et al., 2018]. The difference increases even more when
in the comparison comes in the H.264 that it is around 50% less efficient [Ozer,
017a], [Vatoliny et al., 2018]. Lastly, the Theora and the VP8 encodings have similar
results as the H.264 and for some analysts, they are not even as efficient as the H.264

[Ozer, 2010],[Maxwell, 2009].
The last characteristic that the different formats should be compared is the en-

coding/decoding speed. For the comparison of the encoding speed, the results are
reversed compared with the compression/quality one since having the best possible
ratio between the compression and quality the encoding becomes more complicated
and as a result more time-consuming. For this comparison, the fastest one is the
H.264 with comparable times with the Theora and then the VP8, the H.265, and
the VP9 follows with the slowest of them all to be the AV1. The decoding speeds
follows a different pattern in comparison to the the encoding speed. The fastest is
considered to be the decoding of VP9 followed by H.264 and in the last place is the
H.265 with the AV1 (https://blogs.gnome.org). It is important to mention in this
point that both encoding and decoding speeds are depended on the hardware and
software that was used for these processes. The affect of the hardware and software
on the decoding speed is even more significant and as a result it is not always easy
to define the said speed.

The scores that were used in the Table 4.3 have the same logic as in the case of
the Table 4.1. As an overall score, the best results are for the WebM/VP9 that does
not excel in any category but is average in most of them. The worst score goes for
the MP4/H.265 that is not recommended for use in a web application, at least as
for the moment of the writing of this thesis. The other four combinations have the

4.2 interactivity elements 35

Figure 4.1: Average VMAF quality scores for 4 test clips.
(https://www.streamingmedia.com/)

Format Com-
bination
(File format/-
Codec)

Compression
and Quality

Proprietary
Status

Browser
Compatibil-
ity

Encoding/
Decoding
Speed

OGG/Theora - o o +
MP4/H.264 - - + +
MP4/H.265 o - - o
WebM/VP8 - + o o
WebM/VP9 o + 0 0

WebM/AV1 + + - -

Table 4.3: Comparison of the video formats

same total score but not all of them can be considered as equally appropriate for a
web application. From the four it is important to distinguish the MP4/H.264 and
the WebM/AV1. The first combination can be considered extremely useful for a
web developer since it is supported by all the browsers and if the key characteristic
is to create the videos in only one format and never consider compatibility issues
then the MP4/H.264 is the format to choose. On the other hand, if the efficiency is
the most important characteristic as well as the future-proofing of the application
then the WebM/AV1 is the one to choose.

4.2 interactivity elements
As it has already been established, the advancements in computing have given the
opportunity not only to create the GISs but also to produce advancements in the field
of interactivity. According to [Roth, 2013] through cartography the mapmakers are
trying to communicate with the user some insights they have on a phenomenon
and at the same time, the users can apply their knowledge and experience in order
to extract their own information for the mapped phenomenon. The layers of infor-
mation that are available in every given map can be more than one and through
the different interactivity elements, the user is able to gain access to as many layers

36 methodology

as possible in a more efficient way. In this section, there will be presented the four
interactivity elements that are considered as the most fitting for this application.
The selection of the four interactivity elements was a result of a literature review, a
comparison between the existent applications and a consideration of the dataset’s
characteristics. For every element, there will be a sort motivation, a reference on
the existing technologies that can help implement each element and a comparison
between these technologies in order to select the most fitting one for the application.

4.2.1 Handling the x and y coordinates

In Chapter 2 there was an extended reference on the spatial/geographic data, the
maps and the different variations that they exist with the main focus being on the
part of the web maps. The web maps have been divided into three main categories
that are the static, the interactive and the dynamic ones. The resolution of each of
these map categories is the one that will determine the level of details that can be
represented on a map. The data that are available nowadays can reach a high level of
details and of course most of them have a global coverage. It has been established
for many years (since Google Maps) now that the two characteristics of the data
(high detail and global coverage) can co-exist in the modern web application and the
user should not give up one for the other. As a result, the widest spread interactivity
elements that have been introduced into the web maps are the zooming (provides
different scales for the map)and panning (changes the position of the center of the
map) that are the elements that can help the user to interact with the 2D space in
the most efficient way.

The zoom levels for a common web mapping application can reach as many as
23 with a ground resolution of 0.01870 meters per pixel and a scale of 1:70.53. The
production of a global raster map with a scale of 1:70 will require an image of pro-
hibitively large size to be displayed. This problem becomes even more prominent
when the application that needs to load this map should be on the web that for
the average user would have been impossible to load. The problems with a single
huge map do not stop only on the size of the outputted map but extend also in
other cartographic related elements like the names of the locations on the map, the
representation of important facilities, etc. The solution for this problem is not some-
thing new, it has been implemented since the era of paper maps and this solution
is to use tile maps that represent a specific area and that when combining them the
user is able to observe a larger area. This technique was used for the creation of
Google Maps that is the first major application that utilizes the tilling technique for
the zooming and the panning of the map.

Even though many different implementations have been proposed over the years
two of them are the most relevant with this application and those are the tilling
scheme of the Google Maps (with its different versions) and the Google Earth En-
gine Timelapse one that is based on the Carnegie Mellon University CREATE Lab’s
Time Machine library (with the two different versions).

These two tilling schemes are used as references since they are the ones that have
important differences but also they have been used successfully in web applications
(like the ones described in the related work chapter). The two main differences
between the two tilling schemes are the size of the tiles and the overlap between
the tiles. As has already been mentioned the Google Maps tilling schemes rely on
256x256 pixels size while the Time Machine scheme relies on large 1480x800 pixels
tiles. This difference leads on one hand to smaller file sizes for the Google Maps
approach but also leads to the need for way more tiles to be loaded at the same
time in comparison with the Time Machine approach. As a matter of fact, it is
common for a typical size viewfinder to display as many as 16 tiles for the Google
Maps scheme but only 1 to at most 3 tiles for the Time Machine one. MapBox, one
of the biggest map vendors that are using the Google Maps approach is proposing
to use bigger tiles (512x512 pixel) in order to compensate for the higher resolution

4.2 interactivity elements 37

screens, that are common to modern PCs and mobile devices, but also for the fact
that the bigger tiles can be more efficient for the network, rendering faster than the
numerous smaller tiles [Lyzi, 2016].

The second part of the comparison is about the overlap of the tiles. While in
Google Maps approach the tiles do not overlap, in the Time Machine’s first ap-
proach did overlap (while in the latest implementation do not). As was discussed
in the previous paragraph (about the size of the tiles) having bigger tiles has the
advantage that the application requires fewer tiles to be created on the server side
and streamed to the client. But, having an overlap (as big as 75%) leads to the need
not only to create more tiles but also to streaming them even though there is no
need to display all of them. The only reason that can help have overlapping tiles is
to better synchronize the videos that it is the biggest issue, that needs to be resolved
efficiently and reliably, in having video tiles.

One more issue that needs to be addressed is the shape of the tiles. In the Google
Maps tilling scheme, square tiles are being used while in the Time Machine tilling
scheme the tiles are rectangular. Some may argue that the rectangular tiles are more
efficient due to the fact that the screen is also rectangular. Even though there is an
undeniable logic behind the use of rectangular tiles, there is the problem that nor
all screens have the same aspect ratio especially when it comes to mobile devices.
Having rectangular tiles can be more efficient for some applications (mainly for
desktop-oriented applications) but for other applications are not (mobile-oriented
applications).

In order to select the best tilling scheme it is important to specify on one hand
the different options and on the other hand, the characteristics that each of the
scheme should in order to be defined as optimal. The schemes that are going to be
compared are the Google Maps scheme with small tiles (256x256 pixels Figure 3.3)
and no overlap, the Mapbox scheme that has bigger tiles (512x512 pixels), the Time
Machine scheme with the overlapping (75%) large rectangular tiles (1480x800pixels)
and the last option is the newer variation of the Time Machine with the same large
tiles but without overlap (Figure 3.12). Since the different tilling schemes have been
defined, the characteristics of these schemes that the comparison will be based on
should be defined too. The first characteristic is the requirement for storage space,
the second is the network efficiency, the third one has to do with the Existing
Technology Compatibility and the last one is the synchronization efficiency and
reliability .

The storage space can be considered a rather controversial topic for a web appli-
cation nowadays. In the application presented in this thesis, due to the fact that the
data-set used is rather coarse in order to provide extra information for more than
four zooming levels, the number of the videos required is not large enough to con-
sider the storage an issue. The maximum storage space needed for this application
is a few hundred megabytes that for the modern servers can be considered negli-
gible. But this application should be also able to utilize a denser data-set without
changing the whole approach and as a result, the tile storage can be considered cru-
cial for the efficiency of the application. The comparison is quite straight forward
for the first two schemes that use the same number of tiles with the bigger tiles to
need more space to e stored. The two-time machine options do not have a difference
in tile size but in the number of tiles leaving the option with the large overlapping
tiles to be the least efficient one. The most efficient on is the Google Maps scheme
with the small tiles and then the Mapbox one closely followed by the last version
of the Time Machine that even though it has around four times larger tile than the
Mapbox one it needs fewer tiles for every zoom level. The number of tiles changes
since the Mapbox tiles are square while the Tile Machine ones are rectangular and
as an example for the zoom level 1 the Mapbox requires the typical number of four
tiles while the Time Machine only two.

Typically when a web mapping application is designed one of the first decisions
is the size of the viewfinder or the ”place” that the map will be displayed. The

38 methodology

viewfinder can have a standard size in pixel or it can be a percentage of the size
of the screen. Either way, the size of the viewfinder specifies the number of tiles
that need to be rendered. Having bigger tiles means fewer tiles to be rendered. For
example for one Mapbox tile four Google Maps tiles are needed and due to the
video compression the bigger tile is about 15% smaller in size (bytes) than the four
smaller ones, and as a result, the bigger tiles are more efficient for the network.
Due to the above characteristic somebody could propose that the bigger the tile the
better for the application and the network, but the most important part in designing
web applications is the user experience. Having smaller tiles it will take more time
to cover the viewfinder but it will start loading the tiles one by one starting from
the center and the user will have at least ”some” map to interact with until the rest
of the tiles finish loading.

One important aspect of a proposal of a new methodology for the solution of a
problem is whether it is possible to be integrated into the existing technology. If it is
easy to be integrated into the existing technology, the chances to be established and
used within the community increases. Considering the case of the tilling schemes
the existing technology that the proposed methodology should be integrated in the
web servers/JavaScript libraries that are being used for serving the static tiles. Most
of these servers are designed to mainly serve the small square tiles (256x256 pixels)
of the Google Maps and with one parameter change to serve also the bigger tiles
of the Mapbox. Serving tiles like the ones of the Time Machine is possible but for
most of the softwares and the developers is not something that straight forward to
accomplice.

The last and probably the most important characteristic that every tilling scheme
should have is the efficient and reliable synchronization of the video tiles in order to
ensure the best possible experience for the user. The fewer the videos that need to be
synchronized the easiest and more accurate the synchronization becomes. Having
at most 4 videos to synchronize is way more accurate than having 16 videos to syn-
chronise since the seeking (for loops) for every video element that is loaded and the
setting of the proper timestamps that need to be the same for every video in every
given time is not an easy task. The for loops used take some time to be completed
(when the number of tiles is increasing) and that can affect the reliability of the
synchronization process, a few milliseconds difference and the neighbor-hooding
tiles displaying different frames (depends of course on the frame rate) making the
experience for the user confusing and unsatisfying. So the fewer the tiles the fastest
the seeking and the most reliable the synchronization of the tiles becomes.

4.2.2 Handling the z coordinate

The SSH is a phenomenon that is focusing on the changes in the third dimension
of the space (z) that is the height. As it is already mentioned in the scope section
of the Introduction, the third dimension will be described with the color on the
map. Each user has its way to interpret the colors and what he/she consider as
higher value or lower even though through the years some standards have been
established in the cartography. Furthermore, the extent of the different pallets that
are available nowadays can help the users to better understand the phenomenon
and they should be able to select the one that better suits them. So, the second
interactivity element that will be added in the application and will be described in
this section, is the representation of the third dimension of the data-set with the
use of color in order to give the users the opportunity to intuitively understand the
changes of the values in the visualization and if there is the case that the original
visualization is not satisfying enough for them, to give them the opportunity to
select which color pallet is the most suitable for them, after all the goal of this
application is to communicate to the users the changes that take place all over the
world in the Sea Surface Height phenomenon.

4.2 interactivity elements 39

Before starting about changing the color of the tile it is important to be mentioned
the original color that every video is encoded in. The videos are encoded in a gray-
scale that provides three main advantages. The first advantage of the gray-scale is
the fact that the file size of each video is smaller in comparison with an Red, Green,
Blue, alpha (RGBa) encoding since there is less information to be encoded. The file
size is important not only for the storage requirements but also for the network
efficiency since smaller file size leads to faster rendering. The second advantage
of the gray-scale is related to the fact that it can effectively depict the differences
in multi-dimensional phenomena. The last advantage is the fact that can easily be
transformed into an RGBa encoding reducing the calculations needed in order to
achieve the different pallets.

In order to achieve the color changing in a video element, there are to main
techniques. The first technique is to apply filters on the video with the use of
the CSS3. This technique is rather straight forward since the only thing that the
developer has to do is to apply a CSS style on the video. This CSS style will contain
the filter(s) that need to be applied. The number of filters that can be applied are
numerous and some of the most widely used are the blur, the hue, the saturation,
the brightness, the sepia, the gray-scale, the invert, and the opacity. All of these
filters even though can be helpful in some cases but for a map is not that useful. The
pallets that are being used in a typical map contain interpolated colors that can, in
many cases, be a result of three different colors. These situations are rather difficult
to be achieved by the CSS filters even though the developer has the opportunity to
create his/her own filter.

The second technique utilizes the canvas element and more specifically its capa-
bility to draw on it the frames of the video. It is possible to extra the frames from
the video and saves it as an array with every pixel being described of four values
for the Red, Greed, Blue, and Alpha. Then it is possible to manipulate the values
in the array for every pixel something that gives the developer excellent control in
order to apply the color pallet he/she thinks it is best fitted for the visualization.
There are two different APIs that can help the developer to manipulate the canvas
element and these are the Canvas API and The WebGL API. even though both of
these APIs can achieve almost the same results, they are completely different in the
way they achieve it. The Canvas API provides the means to draw mainly 2D graph-
ics on the client using the JavaScript and the Canvas element. The methodology
that is used in order to change the color with the help of Canvas API includes the
use of two different Canvas elements as well as the video element. The Canvas API
uses the CPU of the computer and since the CPU is responsible also for other tasks
that run at the same time as the rendering, it is possible to lead to some delays. The
WebGL API has been developed for drawing not only 2D graphics but also Three
dimensions (3D) graphics. WebGL also uses the canvas element and it is based on
the OpenGL ES 2.0 but with the ability to use the HTML elements. The WebGL is a
more powerful tool in comparison with the Canvas API but these extra capabilities
come with extra complexity on the coding. With WebGL, it is possible to draw both
2D and 3D graphics but always the ”drawing” is taking place in a 3D space. Since
both APIs can achieve the color changing of the videos the decision on which to be
used relies upon the fact that the WebGL API is a way more complicated approach
than the canvas API and even though it uses the GPU for the rendering and it is
way faster than the Canvas API the simplicity of the latter is the one that makes the
difference.

The last part that needs to be mentioned is about the proper selection of the
color pallets that will be used (Section 2.1.2). Even though the users will have
the opportunity to select the pallet that they prefer, the selection will be among
a finite number of pre-selected options. These different color options need to be
selected carefully to help the users in decision making. The color picking for a
map application is not an easy task and even though throughout the years some
standards have been established within the map makers in order to apply specific

40 methodology

colors in specific map elements, as well as the fact that many users due to long years
of interaction with maps have developed an understanding of the said standards, it
is tricky to predict the perception of every user for every pallet.

4.2.3 Handling the Time Dimension

The last dimension that is important to handle the application is the time. The
passing of time affects how a natural phenomenon will evolve and the SSH, as it
has already been mentioned in the introduction, is one that is heavily dependable
on the time. So, to make as clear as possible to the users how this phenomenon is
changing it is important not only to show them how it changes over time but also
how it changes while using different time scale. The users will have the opportunity
to select the time scale [how dense the data-set that they inspect is (5days, monthly,
yearly)] as well as to be able to select which time spam it is of their interest.

Defining how dense or coarse the data are while inspecting them is not a new
concept. The zooming capabilities that most of the mapping applications provide
is exactly that. The first zoom level in a map (level 0) is the most coarse and for ex-
ample the whole world fits in a 256x256 pixels tile that translates in 156543.03m/px
(spatial resolution). While the zoom level increases the spatial resolution decreases
to 78271.52m/px, 39135.76m/px etc until it reaches the maximum zoom level eg. 18

with spatial resolution of 0.5972m/px. The same can also happen with time. It is
possible to create zoom levels in time like in the case of space but now instead of
pixel there are the frames of the video and instead of spatial resolution there is a
temporal resolution. Like in the case of the spatial zoom the temporal zoom when
the zoom level increases the temporal resolution per frame will be reduced. The
difference with the time is that the information provided in any new level should
have a meaning for the user. For example, if the whole time period that is covered
by the data-set is 25 years the first zoom level (zoom level 0) should be a map with
the average values of these 25 years. If a similar logic is used as in the space division
the next zoom level (zoom level 1) should be a ”video” with two frames that each
frame represents, for instance, the average value of every 12.5 years that is half the
value of the first zoom level, then (zoom level 2) it will be a video with four frames
for every 6.25 years, then (zoom level 3) a video with 8 frames for every 3.125 years,
etc temporal values that have no real meaning for the user. So, the next level (zoom
level 1) could have been every 10 years to help the user better integrate the idea
of temporal resolution of the phenomenon in a time span that is meaningful for
him/her. The problem is solved by using the predefined divisions of time that are,
for example, day/month/year/decade/eon, etc. The problem with these divisions
is that numerically are rather arbitrary especially for the scale that the users are
more familiar with (day/month/year). Nevertheless, since the goal of the applica-
tion is to help the user better understand how the Sea Surface Height phenomenon
evolves there is no alternative but to use these divisions even though it complicates
the computations.

In order to achieve the zooming in time there are two main alternatives and these
are the creation of every temporal zoom level on the server or to have on the server
only the temporally denser data-set and then to try to produce the extra zoom
levels on the client. The first option, on one hand can provide reliable results due
to the available tools, but with requirement of extra storage space for every zoom
level. The second option provides more efficient storage management but it adds
complexity on the calculations on the client, it is less reliable and can use extra
computational resources (CPU) slowing down the application as a whole.

4.3 system architecture 41

4.2.4 Querying Capabilities

One last element that is important to be added has to do with the inspection of the
visualized data. The different palettes that can be used in order to visualize the
phenomenon can give the users a general idea of how the SSH changes over space
and time. Many users want to inspect a specific area and even though the zooming
and panning elements of the application can help, still there are some cases that
color is not enough. In most cases even having a legend cannot help understand the
true values of the phenomenon since the users cannot easily distinguish the limits
of every color used in a pallet, so, it is important to give them the opportunity to
click on a specific point on the map and to be able to see the numerical value of the
surface height for this point. So, this section will be described the methodology on
how the querying can be achieved.

In order to achieve the querying option for the application, the canvas element is
used as in the case of the color-changing described in Section 4.2.3. The similarities
with the coloring do not stop only on the use of the canvas element but also they
are extended in the use of getImageData functionality of the canvas that results in
the array of the RGBa values for every pixel. The difference, in this case, is that
the whole image is not needed but only the pixel that the cursor is clicking on
or hovering over. The similarities of this technique with the coloring technique
can help the developer to implement both interactivity elements with minimum
requirements for extra coding. The last step is to transform the RGBa values back to
the height values interpolating between the minimum and maximum values of the
data-set.

4.3 system architecture

The last part of the methodology is related to the architecture of the application.
As the architecture of a system is considered the description of all the components
of the system, how they are connected and in general how the data flows within
the system from the producer to the analyst and ultimately to the user. Every
web application consists of two main components for their architecture described
as server-side and client-side. The processes that are taking place on the server-
side have the characteristic that does not use the user’s system for the computation
and in many cases includes processes that have already been pre-computed since
these are computationally intensive. The client-side of the application uses for the
computations, the user’s system and since the developer cannot rely on the power
of every user’s system to have an efficient application, it is advisable to compute
on the client-side mainly simple tasks to have a more responsive application. The
most important task of the client is the hosting of the interface with which the user
interacts.

Since the goal of this application is to visualize data, the first step is to acquire
the data. For this thesis, the data source is the NASA that provides data acquired
by satellite imagery and is encoded into a NetCDF formatted data-set (the data-sets
used for this application will be described extensively in the next chapter). This
application even though it uses NetCDF formatted data it is possible to also use
other formats that include the time dimension. The next step is about the pre-
processing of the original data-set to be transformed into a more usable format.
The pre-processing face is possible due to the use of different software tools that
can vary depending on the type of the original data. For this thesis, the goal of
the pre-processing phase is to produce the video tiles organized into directories
according to the tilling scheme used. Also in this stage, the creation of the extra
directories for the zooming in time is taking place. All the processes described until
this point are taking place in the so-called server-side.

42 methodology

The next component of every web-based application is the web server, a software
that handles the requests and the responses between the server and the client. One
example for the webserver related with this application is when the user is zooming
in the map the client through the web server requests new tiles to be loaded from
the server and the server will find the proper directory that the tiles are stored and
it will return as a response the tiles to the client in order to be rendered.

When the tiles are rendered into the client they are stored as HTML elements
that now the client can manipulate. One example of a process that takes place in
the client is the handling of the z dimensions that actually means the color changing
of the video. A second example that also takes place on the client is the querying ca-
pabilities described in the previous section. In the diagram that follows (Figure 4.2)
the architecture of the system is described graphically.

Figure 4.2: The application’s system architecture proposal.

5 I M P L E M E N TAT I O N / R E S U LT S

In this chapter, there will be a detailed description of the implementation of the
methodology that was proposed in Chapter 4. This chapter will be organized simi-
larly as the Chapter 4 with the main difference being the addition of a first section
related to the data-set that was is used for this application. Every other section will
be divided into three sub-sections, with the first one being related to the tools used,
the second one with the description of the details of the implementation and the
last one will focus on the results.

5.1 data-set used
The first section is about the data-set used since it is not possible to talk about vi-
sualizations without firstly to refer to the data that are visualized. The data that
are visualized is about the Sea Surface Height Anomaly of the earth’s oceans. As
it is described in the motivation chapter, the Sea Surface Height is a phenomenon
that many researchers are interested in and there are many different data-sets re-
lated to this topic. Most related data-sets are using the term “Anomaly” in which,
according to NASA, the main parameter of this product, represents the difference
between the best estimate of the sea surface height and a mean sea surface. The
sea surface height used was corrected for atmospheric effects (ionosphere, wet and
dry troposphere), effects due to surface conditions (electromagnetic bias), and other
contributions (ocean tides, pole tide, and inverse barometer) 1.

The main data-set that will be used is the “JPL MEaSUREs Gridded Sea Surface
Height Anomalies Version 1609” provided by NASA. This data-set contains gridded
Sea Surface Height Anomalies SSHA above a mean sea surface in a Network Com-
mon Data Form) (NetCDF) format with a temporal resolution of 5 days. The time
– span is from 1992/10/01 and reaches until the present. In order to contain fully
corrected heights, it is delayed from 1 to 3 months (NASA also provides a data-set
without any delay, but this data-set is less accurate). The spatial resolution is of 0.17

degrees in both latitude and longitude that represents about 18.5km for the latitude
and for the longitude this number varies depending on the latitude. The spatial
resolution is not extremely high but since this project aims to create a visualization
on a global scale this resolution is adequate for providing zooming capabilities of
four zoom levels. This NASA product is a result of the combination of multiple
sensors and these sensors are:

• JASON-1 / POSEIDON-2 (Nadir pointing Radar altimeter using C band (4 –
8 GHz) and Ku band (12–18 GHz) for measuring height above sea surface.)

• JASON-1 / JMR (measures water vapor along altimeter path to correct for
pulse delay)

• TOPEX/POSEIDON / POSEIDON ALTIMETER (The NASA-built Nadir point-
ing Radar Altimeter using C band (5.3 GHz) and Ku band (13.6 GHz) for
measuring height above sea surface)

• TOPEX/POSEIDON / TOPEX MICROWAVE RADIOMETER (operating at 18,
21, and 37 GHz was used to correct for atmospheric wet path delay.)

1 http://www.altimetry.info

43

44 implementation/results

• OSTM/Jason-2 / POSEIDON-3 (Nadir pointing Radar altimeter using C band
and Ku band for measuring height above sea surface.)

• OSTM/Jason-2 / AMR (Advance Microwave Radiometer measures the 18.7
GHz, 23.8 GHz and 34.0 GHz sea surface microwave brightness temperatures.)

• Jason-1 Geodetic / POSEIDON-2 (Jason-1 was moved to a lower orbit and
began its geodetic mission on 7 May 2012. The core payloads were switched
ON on May 4th and after some POSEIDON-2 radar (PRF) adjustments, the
mission was resumed on May 7th) In this new operational phase the Jason-1
mission is in a drifting geodetic orbit.)

• Jason-1 Geodetic / JMR (measures water vapor along altimeter path to correct
for pulse delay)

(https://podaac.jpl.nasa.gov)

According to the latest announcement from NASA this data-set has been retired
and will not be maintained in the future. The data-set will be still available for
archive purposes but the access to it by the users is limited. NASA is providing other
data-sets that are also measuring the SSHA in a NetCDF format and can be used in
similar applications. (”OSTM GPS based orbit and SSHA OGDR”, ”SARAL Near-
Real-Time Value-added Operational Geophysical Data Record Sea Surface Height
Anomaly”)

This data-set, as already has been mentioned, is in NetCDF format. According to
the web page of the Unidata (the program responsible for the NetCDF software, stan-
dards development, updates, etc.) NetCDF is a set of interfaces for array-oriented
data access and a freely-distributed collection of data access libraries for C, For-
tran, C++, Java, and other languages. The NetCDF libraries support a machine-
independent format for representing scientific data. Together, the interfaces, li-
braries, and format support the creation, access, and sharing of scientific data.2.
The NetCDF is a binary format with the Classic and 64-bit Offset versions to be an
international standard of OGC.

Even though NetCDF is a very efficient way to store array data, there are not many
applications that can load a data-set in NetCDF format and to be able to visualize it
right away. As a result, it is quite common to transform the data-set to an image
format (e.g. tiff). This is also the case for the present application, and the program-
ming language used for the transformation of the NetCDF data-set into images in
TIFF format is the Python and more specific the library GDAL that is a translator li-
brary for raster and vector geospatial data formats that is released under an X/MIT
style Open Source License by the Open Source Geospatial Foundation 3. The re-
sulted data-set is an image collection with every image represents the global data
of Sea Surface Height Anomaly for every five days that is the temporal resolution
of the original data-set. The newly created image collection then was uploaded to
the Google Earth Engine that is an online software for the processing of spatial data
(more information about this software in a later section).

For the last part of this section, there will be a reference on some statistics and
facts about the data-set. The first interesting fact is about the file size of the original
data-set (in the NetCDF format) that was a little over the 165 MB when the size of
the image collection was more than 12 GB. The large difference in the file sizes
indicates the compression capabilities of the NetCDF format over the simple image
formats. Some other facts that can be interesting are that the number of images in
the image collection is 1878 with the first image to refer to the data of SSHA of the
20/10/1992 while the last one refers to the data of the 18/06/2018. In order to have
only full years of data the data that were used have as starting date 01/01/1993 and

2 https://www.unidata.ucar.edu/software/netcdf/
3 https://gdal.org/

5.2 animation 45

Figure 5.1: The first image of the data-set as described in the Google Earth Engine

as the last one 01/01/2018. Finally, as it is visible on the Figure 5.1 the dimensions
of every image are 2160x960 pixels while the average file size per image is 6.5 MB.

5.2 animation
In the same section in the methodology chapter, there was an extensive reference on
the three more common animation techniques for the web, a comparison between
them and in the end the decision of using Videos as the most efficient and effective
animation technique in the context of this thesis. The decision making about the
animations did not stop there since the video can have many different codecs and
containers with different positives and negatives. In this section, there will be a
description of how to create the videos, what tools will be used and a comparison
between the different options considering the file size, the encoding speed, and the
quality.

5.2.1 Tools Used

A video is a series of images (frames) encoded together to be presented one after
the other, in a specific order, in a specified time interval. The images that were used
to produce the videos were a product of the Google Earth Engine software that will
be described Section 5.3. In this section, the focus will be on the encoding of the
videos and as a result, there will a description of the FFmpeg that is a complete,
cross-platform solution to record, convert and stream audio and video 4. FFmpeg is
designed for command-line-based processing of video and audio files and widely
used for format transcoding, basic editing, video scaling, video post-production
effects, and standards compliance. The FFmpeg project started in 2000 and since
then it has become part of the workflow of many software, and its libraries are
used in the core of many media players. Even though the project has created its
codecs and containers, it also supports most of (if not all) the rest of the codecs
and containers for both audio and video. In the context of this thesis, there is no
audio to encode and as a result, only the video formats are of interest. All six of the
different formats that were compared in the methodology part are supported by the
FFmpeg even though the main focus of the analysis will be about the mp4/H.264

4 https://ffmpeg.org

46 implementation/results

and the WebM/VP9 that are the most commonly used and as it was concluded in
Section 4.1 the best options for this thesis. Finally, FFmpeg provides a large number
of filters for many different purposes and a detailed wiki 5 in which the user can
find the command that he/she needs.

Although FFmpeg is the main tool used in the video creation process it is im-
portant to also refer to the subprocess module of Python that is used to run new
applications or programs through Python code by creating new processes. It also
helps to obtain the input/output/error pipes as well as the exit codes of various
commands. With Python, it is possible to handle a large number of images and
directories that work as the input for the video creation, but this process (the video
creation) should be repeated multiple times and with the simple use of FFmpeg
through the command line is not an easy task. For this reason, the subprocess mod-
ule handles all the repetitive processes and calls the FFmpeg only for the encoding
of the videos.

5.2.2 Video Creation Process

In this section, there will be only referenced on the video encoding part and not on
the organization of the directories and the images where produced since this is a
part that will be described in the tilling scheme section.

In order to produce a video from images the first step is to have all the images
stored in a folder in the correct order (Figure 5.3). The images that will be used
as the frames of the video are stored into directories with identical structure and
with identical naming with every directory representing a frame of the video. The
only difference between the directories is the out-most folder that is named with an
ascending number(Figure 5.2).

Figure 5.2: A diagram that shows the organizations of the images

The goal is to end up with just one directory similar with the original with the
only difference being that in the position of the images (0.png, 1.png, etc in Figure
5.2) there will be folders with the same name and inside these folders there will be
the images enumerated according to the out-most folder (Figure 5.3).

5 https://trac.ffmpeg.org/wiki

5.2 animation 47

Figure 5.3: A diagram that shows the directory right before the creation of the videos

After the creation of the proper directory with the images (Figure 5.3) it is the time
for the subprocess and the FFmpeg to produce the videos. The use of the subprocess
is really simple since the main input is the FFmpeg command as a string. As soon
as the string is formulated the subprocess is called with the argument being the
formulated sting.

Off-course, the tricky part is to formulate the proper FFmpeg command and since
it does not run in the Python interpreter there is no error message if the command
is incorrect and the only way to see if something is wrong is by checking the output.
The FFmpeg command has a certain number of arguments that need to be correctly
executed.

• Call FFmpeg (ffmpeg.exe)

• Specify the framerate (-framerate)

• Specify the input that in our case is the folder that contains the images (-i)

• Specify the video codec that will be used in order to encode the video (-
codec:v)

• Specify the quality that is described by a number (crf) between 0 and 63 with
the smaller number meaning higher quality. The typical values are between
15 and 35. Values outside this range rarely have a reason to be used with the
really small values to be related to the lossless encoding that results in really
high-quality videos but also really big in size something that leads to limited
usability. (-crf)

• In the case of this thesis is important to respecify the framerate to avoid cor-
rupted videos (-r)

• The last argument that needs to be specified is the output file with the correct
indication for the file container (eg. mp4 or webm) and the proper name that
should be the same as the one in the original directories with images.

One last detail that needs to be taken care of is the removal of the folder with the
images from which the video was created. A command in FFmpeg that can be used
looks like:

’ffmpeg.exe -framerate 10 -i videoTilesPerMonthm p4/0/0/%03d.png− codec : vlibx264−
cr f 22− r10videoTilesPerMonthm p4/0/0/0.mp4′

48 implementation/results

5.2.3 Animation Results

In this last part some numbers and facts descriptive of the video creation process
described above.

The first interesting number is the file size of the images that were used as in-
put. In the case that the data-set is aggregated with per month data the file size
is 281 MB while the videos were more than ten times smaller in size, something
that indicates how efficient the video encoding can be. More specific the file size
for the two formats that were selected to be used in the application mp4/H.264 and
WebM/VP9, for framerate of 15 frames per second (fps) and crf value equal with
22, is 25 MB and 20.7 MB respectively. The file size for both formats is really small
but when the zoom levels will be increased into more than four the file sizes will
be increased exponential and the improved efficiency of the VP9 codec will be even
more evident. The improved efficiency of the VP9 codec comes at a cost since the
time that needs in order to encode the videos is more than three times longer than
that of the H.264 (the actual number is irrelevant in this case since it depends on
the power of the processor of the computer). The decoding speed would be also
interesting to be measured but the measurement has two main problems. The first
is the same as in the case of the encoding and is the fact that it is depended on the
hardware and software that the user uses. The second problem is that there is not
an easy way to measure the decoding time for an HTML5 video element. The final
numbers that need to be mentioned are related to the quality of each encoding and
these numbers are the bitrate of each video with higher value meaning higher qual-
ity. The bitrate of the videos is not always constant and varies within the different
sections of the video (Through the FFmpeg it is possible it set a constant bitrate but
it is time-consuming and for many cases does not improve the final result signifi-
cantly). Returning to the comparison between the VP9 and the H.264 the bitrate is
around 330 kbps and 270 kbps respectively demonstrating once again the superior-
ity of the former in comparison to the latter. The comparison described above can
be summarized in Table 5.1

Comparison
Element

WebM/VP9 mp4/H.264

Example
File size
(KB)

515 863

Bitrate
(kbps)

330 270

Example En-
coding Time
(s)

1467 427

Table 5.1: Comparison between the WebM/VP9 and the mp4/H.264

5.3 handling the x and y coordinates
This section is about the first of the interactivity elements that were analyzed in the
methodology chapter. The X and Y coordinates are linked with the zooming and
panning capabilities of the interactive maps. The most commonly used solution to
this problem is the introduction of tiles and since the Google Maps many different
tilling schemes have been introduced but in the end, this technology has been stan-
dardized around the implementation of Google Maps. The Typical size of a tile is
256x256 pixel while some newer approaches introduce the 512x512 pixel tiles (Map-
Box) due to the improved network efficiency and for the fact that the screens are

5.3 handling the x and y coordinates 49

Figure 5.4: The Google Earth Engine Code Editor

getting higher resolution with every year. The only other good example of video
tiles comes from the Carnegie Mellon University CREATE Lab’s Time Machine li-
brary that even though it is the only one that is operational and reliable enough is
not an elegant solution to the problem (see section 4.2.1). This section will begin
with the analysis of the tools that were used on one hand for the creation of the tiles
and on the other hand for the implementation on the web. The next sub-section will
be about the implementation and the last one about some interesting results related
to the tilling.

5.3.1 Tools Used

The first tool that will be described is one that has already been referred to in
the previous sections of this chapter and it is non-other than the Google Earth En-
gine. In the website of the Google Earth Engine 6 is explained that Earth Engine
is a platform for scientific analysis and visualization of geospatial datasets, for aca-
demic, non-profit, business and government users, while it hosts satellite imagery
and stores it in a public data archive that includes historical earth images going
back more than forty years. The images, ingested daily, are then made available for
global-scale data mining. One last characteristic of the Earth Engine is that provides
APIs and other tools to enable the analysis of large data-sets. There are two APIS for
the Earth Engine. The first one is based on the JavaScript programming language
and is accompanied by a web-based code editor and the second one is based on the
Python programming language. Due to the web-based code editor of the JavaScript
API is used more widely this was the one that was used in the context of this thesis
project.

In the code editor (Figure 5.4) and on the left side it is visible the part in which
the user can find the scripts that he/she has created, the docs tab in which the
documentation for every function that the API contains and lastly the assets tab
in which the user can upload its data-sets. In the middle is the main body of
the code editor in which the user can create and modify his/her scripts. In this
point it is important to highlight the fact that even though the code editor is using
the JavaScript programming language the API provides a large number of extra
functions focused in the analysis of spatial data and also it has a different logic in

6 https://earthengine.google.com/faq/

50 implementation/results

programming compared with the simple JavaScript and is closer to the logic used in
the big data analysis (eg. instead of using ”for” loops it uses ”map”). Concluding
with the description of the script editor, on the top of the main body there is a search
bar in order to look for the data-set that you need (among the satellite imagery that
the Earth Engine hosts), on the right side there is the panel for the outputs of the
scripts (if it is numerical or a file that can be stored in the user’s drive or cloud)
and on the lower part there is a map that is displayed the visualized outputs of the
analysis.

The second tool that was briefly used in the first stages of the implementation is
the Mapbox API. Mapbox is the location data platform for mobile and web appli-
cations. It provides building blocks to add location features like maps, search, and
navigation into any experience you create 7. The mapbox provides also a web-based
editor of spatial data but in this case, is more similar to a GISsoftware in which the
analysis is not based on scripts that the user creates but rather the functions have
been encoded into buttons of an interface. Mapbox also provides two JavaScript
libraries (mapbox js and mapbox gl) for creating and handling maps on the web.
the mapbox js will handle basic tasks and is comparable with the Leaflet and the
Google Maps API. Finally, the mapbox gl is a library that uses WebGL to render
interactive maps.

The last tool used is Leaflet that is the leading open-source JavaScript library for
mobile-friendly interactive maps. It is lightweight and according to the developers it
is designed with simplicity, performance and usability in mind three characteristics
that were appreciated in this thesis project and was selected in the end for the
application instead of the mapbox js.

5.3.2 Implementation (Tile Creation)

sec:anime-r

• (2*x, 2*y)

• (2*x, 2*y+1)

• (2*x+1, 2*y)

• (2*x+1, 2*y+1)

Figure 5.5: Tile numbering for the Google maps tilling scheme [Stefanakis, 2017]

In Figure 5.5 are visible the tile coordinates that needed in order to produce the
bigger tile and how the above equations are applied (eg. for the tile in zoom level 1

with coordinates (1,1) the tiles that are needed are: (2,2),(3,2),(2,3),(3,3)). The merge
of the 256x256 tiles to produce the 512x512 tiles where possible through python and
more specific the pillow library.

7 mapbox.com/about/company/

5.3 handling the x and y coordinates 51

5.3.3 Implementation (Web)

After the creation of the tiles on the server is the step that these tiles are loaded
on the browser for the user to interact with. The handling of the tiles is a result of
the use of the leaflet library and more specifically the methods of ”tileLayer” and
”gridLayer”. In this project the gridLayer method was used since it is more generic
and easier to manipulate. The gridLayer contains many different options that can be
changed from the developers according to their needs. Some of the more important
options that can be changed are:

• tile size

• minimum zoom

• maximum zoom

• bounds (the boundaries (latitude/longitude) in which the tiles will load)

• keepbuffer (how many rows or columns of tiles will be kept before unloading
while panning)

This method also contains the function createTile that is the one that can be ma-
nipulated in order to add for example the video element instead of the images or a
canvas element even a ”div” with multiple HTML elements. In order to set up the
createTile function two things are actually needed:

• to create the HTML element (eg. document.createElement(’video’))

• and to provide the source of the element

While specifying the source of the tiles need to be in a format that can easily be
used from the browser in to find in the server the correct file as fast as possible. In
the case of the Google Maps tilling scheme, the source (that is actually a path in the
server) looks like:

”videoTiles/’+ coords.z + ’/’ + coords.x + ’/’ + coords.y + ’.mp4”

where the coord.z refers to the zoom level.

All the process that was described in the previous sub-section leads to this sim-
ple path that can be read efficiently by the browser and the leaflet library that is
responsible for the tilling. The map pane is where the tiles are added and while
the user is panning the translation of the center of the pane in comparison with the
original position, in pixels, is measured in order to specify which tiles need to be
added or removed from the pane. The last part is to add this new ”gridLayer” that
was created into a map element as part of its active layers.

With a rather simple function of the Leaflet library, it is possible to load the video
tiles on the browser. Unfortunately, it is almost impossible to load all the tiles at
exactly the same time while zooming and of course, there is no need for discussion
on the topic while panning. Since the videos are loading at different times they are
not possible to render the same frame at the same time and the result is a group of
videos that play randomly resulting in a confusing and unpleasant experience. For
this reason, there is the need of defining a way to synchronize the videos in order
all the videos in the group to render the same (or almost the same) frame leading
to a smooth result that in perfect conditions looks like that there is only one video
instead of multiple.

The synchronization of the videos especially when they load at different times
and almost always new videos are rendered is not an easy task. The reasons why
this is difficult are multiple and can begin from the performance of each device
that can struggle to render multiple videos at the same time, it can also be related

52 implementation/results

with the fact that the browsers do not follow the frame rate of the videos to the
millisecond since they take into consideration the refresh rate of the screen too, and
can reach t the fact that the main libraries that could help with the synchronization
(popcorn.js, mediagroup.js) have been discontinued from the browsers.

Many different approaches were implemented during the course of this project
but most of them failed. The one that is considered as closer to the ideal result is
the so-called timing object. The timing object is a very simple object, essentially an
advanced stopwatch. If started, its value changes predictably in time, until at some
point later, it is paused, or perhaps reset. It may be queried for its value at any time.
Such deterministic behavior is required for reliable distributed synchronization. In
terms of implementation, the timing object is a fairly thin wrapping around a mono-
tonic system clock (integration with online timing resources adds complexity). The
precision of the timing object is limited by the underlying system clock. 8. The
proposed timing model is one where timed components are connected to timing
objects, thereby accepting the timing object as director of timed operation. In other
words, the timing object is the master, and the timed component is the slave.

In more practical matters in order to use the timing object in the application, it
needed just to set up a timing object:

var to = new TIMINGSRC.TimingObject();

It is important here to add that the above expression is the simplest format and
it is possible for the developer to intervene and to set different parameters like the
time range [0, 30] for the timing object and to enable the loop option on the medi-
aSync(loop: true). and then to utilize the ’tileload’ function of Leaflet in order to
synchronize every new tile (video element) with the timing object:

var sync = MCorp.mediaSync(tile, to);

In order to optimize the synchronization process the ”sync” is triggered when
the tile has loaded (tile.onloadeddata functionality of JavaScript) as well as due to
the fact that some times the video where not ”sync”ing with the timing object, a
keep in sync function was created that was triggered with a time interval and it
was looking in the Document Object Model (DOM) for all the video elements and
forced them to ”sync”.

5.3.4 Tilling Scheme Results

The results part of the chapter will have two parts like in the case of the implemen-
tation one for the tilling scheme and the second one for the web.

In the first part, the main results are the maps that were the output from the Earth
Engine. The comparison in file size can be between the small tiles 256x256 and the
bigger ones 512x512 that the bigger tiles end up being slightly bigger than the small
ones. In numbers, the small tiles folder size is 281 MB while the big tiles folder is
283 MB. The interesting part is when these images are transformed into video tiles.
In this case, the folder the videos were created with the exact same parameters and
encoding and with the only difference being the tile size and the different directory
structure. The folder sizes are reverse with the 512x512 being smaller at 27.5 MB
while the 256x256 being 31.5 MB. This difference is more important in this case (in
comparison with the case of the images) because on one hand the 3 MB in 30 is 10%
difference that is considered especially when extra zooming levels are added, and
on the other hand the true storage requirements in an application like this one are
related with the video tiles since these are the ones that are needed.

8 https://webtiming.github.io/timingobject/the-timing-object

5.3 handling the x and y coordinates 53

Figure 5.6: The interface of the application with the videos synchronized (zoom level 1).

In Figure 5.6 is shown the explanation of the first generic interface that it was cre-
ated for the application. There are two categories main of categories of buttons: the
video related (start, pause, reset) and the map related (zoom in, zoom out). For the
panning of the map, like in most similar applications, the ”mouse” of the computer
is required with which the user clicks (left click) on the map and without releasing
the button move the mouse. In the images of the description of the interface, the
map is tiled but due to the synchronization, the edges of the tiles are not detectable.

In figures Figure 5.7 and Figure 5.8 due to the enabling of the videos controls the
tiles are visible for both tile sizes (256x256 pixels and 512x512 pixels).

The second part of the results is about the web and how the video tiles can
perform depending on the tile size. As some general remarks can be noticed that
four smaller videos are bigger in size than one larger. For zoom level 1, the four
small videos have a combined size of 2.9 MB while the larger one has 2.5 MB a
considerable difference for the load on the network. The other big difference is in
the synchronization that is not something that it is easily measured but it is rather
straight forward the fact that the fewer the videos the easier is for the browser to
handle them. Another factor that helps the synchronization is the creation of videos
with a rather low frame rate (eg. 10fps) that increases the time interval between the
frames and as a results the ”timeUpdate” function that is triggered every 15 to

54 implementation/results

Figure 5.7: The interface of the application for256x256 pixels tiles (zoom level 1)

250ms want to miss a frame and the possibilities for displaying the ”wrong” frame
will be reduced.

In order to present some numerical results, some parameters need to be defined.
The first parameter is about the fact that the web users will pay attention to a web
page for average no more than 15 seconds that means that whichever element is
considered important for the web application need to load faster than 15 seconds to
keep the attention of the user. A second parameter that needs to be defined is that,
as has already been mentioned the process that takes place on the client is using the
user’s systems and as a result these numbers are subjective. Finally, the parameters
that are of interest and would be measured are:

• Loading time of zoom in (from level 1 to level 2)

• Loading time of zoom out (from level 3 to level 2)

• Loading time of panning one row (zoom level 3)

The comparison will take place between the 256x256 pixels version and the 512x512

pixels one. The comparison of mp4 and WebM implementations even though they
were considered to be added in the results but the resulting numbers were always
too close and consequently it was decided that adding one of them is enough. Be-
fore the demonstration of the results, it is important to specify the system’s hard-
ware details since the results heavily rely upon them.

• Intel Core I7-4810MQ CPU

• 16GB Random Access Memory (RAM) ddr3 1600MHz

• 256GB Solid State Disk (SSD)

• 60Hz Screen 1920x1080 pixels resolution

The test results demonstrate that the time needed to perform the main task of the
application is rather small and all of them are less than 2 seconds. It is clear that
even though the differences are small the bigger tiles (512) are faster in rendering
the tiles than the smaller ones (256).

5.4 handling the z coordinate 55

Figure 5.8: The interface of the application for 512x512 pixels tiles (zoom level 1)

Comparison Element 256 512
Loading time of zoom in (from
level 1 to level 2)

1.8s 1.5s

Loading time of zoom out
(from level 3 to level 2)

1.5s 1.1s

Loading time of panning one
row (zoom level 3)

1.9s 1.1s

Table 5.2: Comparison between the 256x256 pixels version of the application and the 512x512

pixels version of the application

5.4 handling the z coordinate

It is not possible to write about the Sea Surface Height and not to talk about the
representation of the height in this visualization. From the introduction, it is clear
that the height will be represented with different colors depending on the values.
Also, since not all users can interpret the colors in the same way it was proposed
to give to the users the possibility to select the pallet that they prefer. In section
4.2.2 it was analyzed the two different methodologies that can be followed as well
as a short description of the APIs that can be used. This section will have the same
structure as the previous ones and will start with the tools used part, followed by
the implementation and concluded with the results.

5.4.1 Tools Used

The tools used are referring mainly to the two APIs that were mentioned in section
4.2.2 and these are the Canvas API and the WebGL API. The Canvas API is really
simple to use and among other things, it can be used for animation, game graphics,
data visualization, photo manipulation, and real-time video processing. Since there
are not many things to talk about the Canvas API there will be a reference on the
WebGL that can be considered as an extremely good alternative especially if the
performance is the goal for the web application.

56 implementation/results

The most important component of WebGL is the shaders. The shaders are pro-
grams, written using the OpenGL ES Shading Language (GLSL), that take infor-
mation about the vertices that make up a shape and generates the data needed to
render the pixels onto the screen: namely, the positions of the pixels and their col-
ors. Two shader functions run when drawing WebGL content: the vertex shader
that is responsible for the shapes that consist of vertices and the fragment shader
that is responsible for the color of the pixels in the shape. The vertex shader and
the fragment shader are written in GLSL and pass the text of the code into WebGL
to be compiled for execution on the Graphics processing unit (GPU). Together, a set
of vertex and fragment shaders is called a shader program. In order to implement
the color changing with WebGL canvas is needed and the video element. In the
fragment shaders, it is also possible to use video as a texture and this mode is used
for this methodology.

The last tool/library that was used is the D3.js that is a JavaScript library for
visualizing data using web standards. D3 helps you bring data to life using SVG,
Canvas, and HTML. ”D3 combines powerful visualization and interaction techniques
with a data-driven approach to DOM manipulation, giving you the full capabilities
of modern browsers and the freedom to design the right visual interface for your
data” 9.

5.4.2 Implementation

Until now in the implementation parts the discussion has been revolved around the
video elements and how to produce, load and synchronize them. After the solution
of these problems, it is time to use the videos as inputs to implement the coloring
part of the application.

The first task of the implementation is to add the two extra HTML elements while
creating the tiles. These two elements are canvases and since these two canvases
are bound together with the video element it is necessary to create a div element
and then to append the video and canvas elements as ”children”. In this next part
is where the d3.js is used to produce the color maps.

• Select the pallet (eg. Spectral)

• Set the interpolation within the colors of the pallet

• Define the type of the scale (eg. sequential)

• Produce the new colors with d3.rgb

Then starts the process that have been already referenced with the drawing of
the video frame in the first canas element (ctx1.drawImage(video)), get the image
data from the first canvas (ctx1.getImageData) and save them into an array. With a
for loop traverse the array every four elements (red, green, blue, alpha) that corre-
sponds in every pixel’s values and with the colors created from the d3.rgb (color =
this.rgbs) set the new color for every pixel:

data[i] = color.r data[i+1] = color.g data[i+2] = color.b

The last step is take the changed array with the new colors and to draw it in the
second canvas (ctx2.putImageData) that is the only element that is actually visible
to the users (for both the video and the first canvas the ”display” is set to ”none”).

Since it has been discussed, the color pallets that are most commonly used in the
visualizations of the Sea Surface Height are having blue as the low values and red

9 https://d3js.org/

5.4 handling the z coordinate 57

as high values. This color pallet can be changed a little using for example green for
low values or brown for high values. It is also possible to use only one color and
that being the blue with almost white being for the low values and deep blue for
the high values.

5.4.3 Results

Just like in the case of the Section 5.3 the Figure 5.9 is presenting the two extra
buttons that where added in order to change the color pallets. In Figure 5.9 is also
visible the color pallet instead of just the grayscale that it was used in Figure 5.6. In
Figure 5.10 is used the RdBu color pallet.

Figure 5.9: The interface of the application with the videos synchronized and the addition
of the coloring buttons (zoom level 1). The pallet that is used is the spectral

Figure 5.10: The interface of the application with the color pallet set to RdBu (zoom level 1)

The comparison between the different video tile formats will have the same char-
acteristics as the one on Section 5.3. The measuring of the color changing process
was also considered but every time the change was taking place almost instanta-
neous and as a result there is no reason to measure it.

The numbers in Table 5.3 even though they are subjective it show a general pat-
tern, that was present also in Table 5.2, the performance of the application has a

58 implementation/results

Comparison Element 256 512
Loading time of zoom in (from
level 1 to level 2)

1.928s 1.5s

Loading time of zoom out
(from level 3 to level 2)

3.9s 2.8s

Loading time of panning one
row (zoom level 3)

2.7s 1.6s

Table 5.3: Comparison between the 256x256 pixels version of the application and the 512x512

pixels version of the application while adding the coloring process in the applica-
tion.

considerable difference in the performance between the small and the big tiles with
the bigger ones being more efficient. The difference in performance is also visible
when comparing the grayscale tiles and the colored one with the second ones be-
ing slower. Also, it is important to notice that the numbers in seconds for every
performed task is considerably smaller than the 15 seconds that is considered the
maximum for the user to pay attention. Even though, this technique is the slow-
est between the alternatives it is fast enough for this application. In the case that
more videos should be rendered then maybe the use of WebGL API will be more
efficient (even though more videos can cause problems with the previous part of
the application and is not advisable to use).

5.5 handling the time dimension (temporal scale)

The handling of time is considered as one of the key characteristics of this thesis
project. Using a video as an input a major factor in presenting to the user the
passing of time. But the concept of handling the time is mainly related to the term
”zooming in time”. As it has already been described how the zooming in time works
(section 4.2.3) the focus will be on how to create the three ”zoom” levels: per year,
per month and per five days. The zooming in time is selected to be implemented
by creating different video-sets for every zoom level. So there is a directory in
the server that it contains videos that each frame represents the mean value of Sea
Surface Height Anomaly for a year, another directory with videos that each frame
represents the mean value of Sea Surface Height Anomaly of a month and a third
directory that contains videos with non aggregated values for every frame.

This section will have a different structure than the previous ones of the chapter
since it is heavily related to Section 5.4. The part of the tools used is omitted since
all the directories have been created from the Google Earth Engine with the only
difference being that before the exporting map one mar filter is applied. This filter
is the calendar range (ee.Filter.calendarRange). Every image of the image collection
is described by the date that it was created and with the calendar range function,
it is possible to select all the images that were created each month or each year.
Then there are numerous aggregation options like the mean, the median the sum,
etc. In the context of this thesis, it was used the mean value. A problem that came
up during the creation of the ”zoom” levels was the fact that the data-set was too
big (1825 images) to export all the maps for every 5 days case. The problems were
found in the Earth Engine API that could not compute the maps. For this reason, it
was decided to cut the data-set into 5 parts one for every 5 years. Each part of the
data-set will contain 365 images that are slightly bigger than the monthly one that
has 300 images. Another reason that it was decided to cut the data-set into smaller
parts was the fact that the resulted video for the 1825 frames it would have been too
big to be loaded and rendered efficiently on the browser.

5.6 querying capabilities 59

The new issue that needs to be solved is that to give to the user the opportunity to
inspect the whole data-set the videos from each part need to play one after the other.
This is possible in JavaScript since the video element will be still only one but the
source of the video will change. The new code will be added in the create tile part
since it is the one that creates the video elements. So, the sources (file paths) of the
videos will be stored into an array and the timing object will be used to as trigger
to change the source. More specific there will be a function that will be triggered
on the time update and it will check if the position of the timing object will reach
the duration of the video. If the duration of the video is reached an index will be
increased by one and will point to the index of the array with the source of the next
part. Finally when the index will have reached the length of the array then it will
be re-sated and will start over with the first source for the videos.

The technique that implements the sequential play of the video-sets works flu-
ently enough even for as many as 16 videos that are loading at the same time. For
the user when the sources are changing it will look as small lag that normally it is
less than a second and looks similar as in the case that the videos play in a loop.

Figure 5.11: The interface of the application with the zoom in time functionality

The Figure 5.11 is showing the interactivity element of zooming in time as it is
implemented in the interface.

5.6 querying capabilities
The querying capabilities in an application is really important can allow the user to
inspect the visualized phenomenon in more depth. The color pallets that are being
used can give a general idea of how a phenomenon changes but every quantitative
phenomenon is better to also be represented with its numerical value. The combi-
nation of the numerical value and the color can help the users understand how a
phenomenon change and which change is considered significant and which not so.

In order to achieve the querying capabilities, the use of the Canvas API and the
d3.js library is required. The ”tools used” part will be omitted since both tools
have already been explained. This technique will start from the point that the color-
changing process has finished (Section 5.4) with the second canvas element being
colored with the new pallet. Firstly, an event listener is being created that can be
even the move over or the click that triggers a coloring picking function. Then

60 implementation/results

according to the ”mouse” position the pair of coordinates of the pixel underneath
will be extracted, the data will be extracted from the canvas (ctx2.getImageData)
but this time not for the whole image but only the specific pixel. Then, the average
value of the red, green, blue of the pixel will be extracted and since this average can
have values between 0 and 255 it is easy to determine the value as the percentage of
the maximum. The last step is to set up an interpolation between the minimum and
maximum values of the original data-set (-1,1) with d3.js (d3.interpolateNumber(-1,
1)) and access the real value.

This method for querying the map is rather straight forward to implement and
also utilizes the tools and elements that have already been used in previous steps
of the implementation of the application.

Figure 5.12: The interface of the application with the querying capabilities added

5.7 system architecture
The system architecture is the one that describes the flow of the data, from the
producer to the user. In Section 4.3 it was described a somewhat general system
architecture scheme and at this point, it is the time to be explained more in-depth.
The main parts of the architecture of a web-based application are the ”server-side”
and the ”client-side”.

The analysis will start from the server-side and more specific with the download-
ing of the original data-set from NASA named “JPL MEaSUREs Gridded Sea Surface
Height Anomalies Version 1609”. The first process is about the transformation of
the data-set from NetCDF into tiff format (images), creating in this way a new data-
set. The new data-set is uploaded into the Earth Engine to pass through the second
face of processing (creating ”maps” for every zoom level in space and time). This
new process creates multiple image directories (seven in number) that will be used
as input in the final process that takes place on the server. This last process is about
the use of the images created in the previous step to create videos with the use of
FFmpeg through Python programming. All the processes used until this point are
meant to be used only once and all the intermediate data-sets that were created are
of no real use in the application. The goal from the start was to create the seven
directories that contain the videos that will be used for the visualization on the
browser.

The web server that was used is the Apache Tomcat. this server will handle
the requests from the client (browser) to the server and it will respond with the

5.7 system architecture 61

Figure 5.13: The architecture of the application

appropriate files (for this application the responses are the video tiles). Applications
that are handling spatial information are also using the Geoserver. The Geoserver
implements the OGC standards but there is not one that can handle the video tiles
used in this application.

The other big part of the architecture is referring to the client-side of the appli-
cation. A client can handle several elements specified in HTML. In the case of this
application, the HTML elements are the video tiles that are loaded from the server
through the web server and the canvas element that will be used to achieve the
coloring of the maps and the querying. The client is also the one that renders the
interface of the application with which the user can interact with. The client is not
static just rendering HTML elements to the users but with the help of JavaScript
and its libraries, it is also possible to perform some processes that can be triggered
either automatically from the browser itself or by the user that can press a button
or use a slider, etc. The efficiency of the processes that are computed on a browser
is relying on the user’s system and as a result, the experience can vary among them.
The first process that is taking place on the client and it is probably the most im-
portant one is the decision on which tiles should be loaded and in which position
should be placed. The second process can also be included in the first one and it is
the one that helps with the synchronization of the video tiles. The last process that
is taking place on the client is the coloring and the querying that, like in the case
with the first two processes, are connected and the second cannot exist without the
first one.

The architecture section is the last one of the implementation/results chapter and
this means that the prototype has reached its final form. The application can be
found online on https://giorgosdimo.github.io/MSc-Thesis/ for anyone that wants to

62 implementation/results

check all the above-mentioned characteristics live. This application is not perfect.
The interface is generic and the performance needs enhancement but the issues and
their possible solutions are part of the discussion in the that follows.

6 C O N C L U S I O N S A N D F U T U R E W O R K

This chapter answers the research questions that were posed in the introduction
chapter since they reflect the goals of this thesis. Starting from the sub-questions
first and, in this way, covering all the different parts of the application will help to
gather the information required to answer the main research question and actually
how close the final result is to the expected one. This chapter will also include a
section that will discuss the contributions of this thesis to the field of Geomatics
and a discussion about the parts that were tackled successfully, the shortcomings
and which decisions should have been different and why. The last section will be
about future work and which technologies will be interesting to be added to such
an application.

6.1 conclusions

This section will be divided into four subsections that is equal with the number of
the sub-question plus the main research question.

6.1.1 Sea surface height is a dynamic phenomenon (2.5D + time), what technique
of animation should be used and why?

The sea surface height is alike most of the physical phenomena are dynamic mean-
ing that change over time. Also, in most cases, the changes that take place in
the world are not leaner and as a result, a simple trend cannot fully explain the
changes of the phenomenon on one hand and on the other hand, statistical values
can demonstrate only part of the truth. As a result, it is important to show to the
user the data as raw as possible and one way is to create an animation that shows
the exact values for each capturing date. So, the animation technique that was se-
lected (Section 4.1) to be implemented is the video one and more specific the VP9

encoding in a WebM file format. A second option that can be considered as viable
is the mp4/H.264 that even though it is the worst performer than the VP9/WebM
it has the plus that it is supported by all the modern browsers and even most of
the older ones. Overall using a video VP9/WebM visualization, a format that was
actually created for the web, provides better storage performance in high quality
and reliable output.

6.1.2 What elements of interactivity are relevant to a web mapping application
and which ones should be implemented?

Since the advancements in computing systems, cartography is a science that utilized
the new technology to a great degree introducing, on one hand, the Geographic
Information Systems but also the interactive maps. The interactive maps can help
the user better understand the phenomenon that is visualized since the experience
of interacting with the map is more immersive. A second reason that the interactive
maps are really important is that it allowed the map producer to better utilize and
visualize the spatial data and as a result to bring to the user even more information

63

64 conclusions and future work

to consume. For the above reason, it was considered important to introduce some
interactivity elements into the application.

1. Handling the x and y coordinates

The first and the most important aspect that needs to be considered on a map
is how to handle the horizontal plane. Most application is 2D representations
of the world and as a result, the horizontal plane is the one that stands out
in a visualization. the two interactivity elements that are used in this case
are called ”zoom” and ”pan”. The zooming and panning in web applications
is something new and as a result, there have been proposals and implemen-
tations on the methodologies that can be used. The methodology that it is
mostly used online and as a result in this application as well as the use of
tiles and more specific to use the tilling scheme of Google Maps. The Google
Maps tilling scheme organizes the directories of the saved tiles in the server in
such a way that the webserver to be able to send the responses as efficient as
possible. Most of the web applications that are using a tilling scheme such as
the Google Maps, are using tiles 256x256 pixels in size but, the advancements
in technology has led to the creation of screen with really high resolution that
results to extreme numbers of tiles to be rendered at the same time and also
considering the fact that most browsers have limited amount of elements that
can be streamed at the same time, it can lead to lag-ish applications. The
solution to the problem is to render bigger tiles (512x512 pixels in size) that
reduces, on one hand, the number of tiles that need to be rendered and on the
other hand, it reduces the load on the network. Overall, for the zooming and
panning the best option is the use of a tilling scheme like the one of the Google
Maps with tiles 512x512 pixels in size something that can be achieved simply
enough through the Google Earth Engine (export map) for the server-side of
the process and through the Leaflet JavaScript for the client-side. The final
remark that need to be made, considering the zooming and panning, is the
fact that since the tiles in this application are videos in order to offer a decent
experience the least that can be done is to synchronize the video in order all
of them to represent the same instance in time something that can be achieved
with the use of the timing object technology.

2. Handling the z coordinate

The sea surface height phenomenon, as it is implied by the name, mainly
focuses on the third coordinate (z coordinate) and consequently, it is not pos-
sible to not handle it properly in this application. From the beginning of this
project, it was decided that the height value will be represented with color. It
will be easy to produce images, and consequently the videos, with a nice color
pallet and then use this as an input for the tilling of the map (see handling the
x and y coordinates) but the colors are all about the perception of the users
and as a result it was decided to give them the opportunity to select (among
a list of pre-selected options) which pallet fits them the best and use that one
while trying to understand how the phenomenon changes through time and
space. The original data-set was decided to be represented into a grayscale
that one hand reduces the size of the encoded image and videos and on the
other hand, it is easier to manipulate latter. The coloring process was decided
to be implemented with the use of the Canvas API that is specifically designed
for handling 2D drawings. The new colors (pallets) that are being used are pro-
duced through the d3.js library and then used by the Canvas API (that uses
canvas elements to achieve it) to change the color of the original video.

3. Handling the Time Dimension

The user when is trying to understand a phenomenon maybe he/she prefers
to have at first a general overview (worldwide) and then to focus on more

6.1 conclusions 65

detailed data, for example, a specific area that is of interest, something that is
possible through the zooming in space (spatial scale). Similar behavior can be
observed also for the time dimension that a user can be interested in having
a more general overview of a phenomenon over the past 25 years or he/she
can be also interested for more detailed data, for example, a specific year, that
is also possible with zooming in time (temporal scale). The coarse data are
represented as the average value per year, then there is an intermediate zoom
level that is the mean value per month and lastly, there is the highest detail
possible that in the case of the Sea Surface Height Anomaly data-set is per 5

days. The solution that it was used, Unlike the color-changing part, was the
easiest one in simply creating a new directory for each zoom level. The tricky
part was the handling of the most detailed zoom level that is actually the
whole data-set (1825 images) which on one hand it could not be computed as
a whole in Google Earth Engine but also the size of the final video that would
have been too big to be loaded and rendered efficiently on the client. For this
reason, this zoom level was divided into five different directories that it was
called and played on the client consecutively. So, the user can zoom in time
with a click of a button that calls a function to change the source of the video
element.

4. Querying Capabilities

The last interactivity element that it was decided to be added in the applica-
tion it was the querying capabilities. As it has already been explained the sea
surface height values are being represented by the color added with the can-
vas API. Even though the color is considered as one of the main techniques
for communicating information in cartography it is not always descriptive
enough. The color is better used in order to provide a general idea of a phe-
nomenon especially since it relies on the perception of the user. A large num-
ber of the users have a hard time distinguishing color hues that are close in the
spectrum and as a result, it is difficult for them to distinguish what the actual
values are. For that reason, it was introduced the querying option that the
user with a click can see the actual numerical value of the height for a specific
point on the surface of the Earth. This can be achieved since it is possible to
translate the colors into RGBa values (Canvas API) and after interpolating the
true values (in meters) to find the one that corresponds to the specific hue.

6.1.3 What type of architecture is more appropriate for implementation with these
characteristics?

Every web application has as a goal to provide the users with data that are not
(normally) stored on the HTML document that is the basis of the application, but
it is retrieved from a server that is stored. The data that is stored on a server can
be either produced on it with a specified process or it can also be retrieved from
another source. There is also the possibility that this information that is presented
to the user is processed on the client before reaching its final form. All this flow of
information is described in the system architecture and it is considered as one of
the most important aspects of the application. The system architecture is divided
into two main components that are named server-side and client-side. For this
application the even though many processes took place on the server-side since it
was a one-time computation of the video directories it can be considered that it
plays the role of the storage of the video tiles. In order to connect the server with
the client, there is the webserver that is a software that ”serves” the requests for data
(in this case video tiles) of the client from the server. The application developed for
this thesis is mainly client-based since most of the processes (interactivity elements)
happen on the browser something that requires enough processing power on the
user’s computers.

66 conclusions and future work

6.1.4 Main research question: What is an optimal WebGIS-architecture for mak-
ing an interactive - dynamic visualization of the sea-surface height phe-
nomenon?

The term optimal is rather strong on one hand but on the other hand, it has room
for different interpretations. Through the sub-questions that were answered in the
previous sub-sections, it is possible to extract one opinion on what can someone
interpret as an optimal architecture. The only other relevant application that is
available online is the Google Earth Engine Timelapse that uses a unique tilling
scheme and tile size that is difficult to implement, limited interactivity elements
and bad storage managements storing unnecessary overlapping tiles. The key char-
acteristics that are trying to improve the disadvantages of the Google Earth Engine
Timelapse implementation are:

• The use of videos as animations that provides good data compression with
good quality

• Use a simple tilling scheme (Google Maps) widely used in the industry with
an easy application through the use of already created javascript libraries.

• Big rectangular tiles (512x512) are improving the efficiency of the application
but not too big that affects the user’s experience.

• Combine the coloring with the querying in order to help the user better un-
derstand the visualized phenomenon.

• Handling the time dimension (zooming) is something that is not yet common
on similar applications and can provide a deeper understanding of the visual-
ized phenomenon.

Hopefully, this research is considered to add a few stepping stones towards the
correct direction and other researchers to consider that it is close to what they
think as optimal implementation (https://giorgosdimo.github.io/MSc-Thesis/). it is rec-
ognized that some parts can be improved but these aspects of the research will be
analyzed in the discussion section that follows.

6.2 contribution to the field of geomatics
The field of Geomatics is the one responsible for handling spatial data. A large cate-
gory of spatial data is the environmental data that is not effective enough to analyze
them ignoring the time dimension. The use of video elements for the inclusion of
time in the visualization is not an uncommon technique while analyzing this type
of data but, the use of videos as tiles in a web map tiled application is not some-
thing that can easily be found and only the Time Machine implementations can be
found online (eg. Google Earth Engine Timelapse). The try to use visualization tech-
niques conventional for static maps (tilling scheme) is something that never been
tried before, even though it should have been since it can help with the interoper-
ability of this kind of application. The use of 512x512 pixels in size tiles is rather
common nowadays (Mapbox) but not for the case of videos. The use of such tiles
(the methodology can work with smaller tiles (256x256)too but it is not advisable)
leads to another first of this approach that is the try to synchronize the video tiles
to visualize almost fluid passing of time on a browser. The use of different spatial
scales in mapping applications is really common (through zooming and panning in
space), but the use of temporal scales (zooming in time) is something new. The final
part of the firsts for this research is the use of more complex interactivity elements

6.3 discussion 67

Figure 6.1: An example of corrupted tiles

than just the zooming and panning that have been tried in the Time Machine ap-
proach too. Hopefully, in the future, some more refined version of the methodology
used in this application to pass through the process of standardization and just like
there is a Web Map Tiled Services (WMTS) of OGC or a TMS of OsGeo to also exist a
Web Video Map Services (WVMS) for online tiled video maps.

6.3 discussion

In this section, the goal is to pinpoint the parts of this research that the decisions
that were made can be described as controversial.

The video creation technique even though it was able to produce reliable videos
as results, there were also times that the result either they were corrupted from the
beginning (as soon as they were created through the process described in section
5.2) or they were appeared corrupted when they were loaded on the browser (Figure
6.1).

Such cases appeared mainly when mp4/H.264 formatted video tiles were used
and this is one of the reasons that the WebM/VP9 was suggested, nevertheless some
of the browsers do not support the WebM/VP9 format and as a result, it is possible
to have to handle mp4/H.264 formatted tiles with the dangerous of some times
when they load to appear corrupted.

Probably the biggest struggle of this project was related to the synchronization
of the video tiles. The use of the timing object fixed the large part of the problem
but still, it is not 100% reliable. The most important problem of the timing object
is the fact that the tiles that are connected with it are unable to be properly deleted
when zooming and panning and as a result, the sum of all the videos that have been
loaded are still running in the background slowing down the application consider-
ably. There are cases that some videos need a second or two until they get truly

68 conclusions and future work

synchronized. Another issue that appears from time to time is that some videos
will freeze while all the neighborhooding videos continue to play. This problem can
be corrected most of the time by pausing and start playing again. This issue is not
just with this application but with similar implementations all over the web. At the
moment there is not an absolutely reliable technique that will make sure that from
the moment of the loading of the video all the videos will be perfectly synchronized
and never lose it.

The process that contributes the highest load on the user’s computer is the col-
oring one and more specific the reading of the data from the first canvas. The lag
that appears, in this case, can, on one hand, slow down the visualization and on
the other hand, can cause visible desynchronization of the canvases (not video any-
more). A solution to this problem can be the use of any of the other two techniques
that have already been discussed in section 2.4. Of the two the most efficient one,
although the most challenging one, is the use of WebGL API. Related with the same
topic is the limitation that appears on the querying capabilities that require the use
of a canvas something that adds complexity to the system.

One last issue noticed is that since the architecture of the application almost all
the processes related with the interactivity elements are computed on the client and
as a result appears to load the CPU significantly reaching at some points even the
20% mark that even though it is not considered terrible, if it is combined with other
processes that run on the users computer it can cause overload. So, maybe some
of the processes need to be ”relocated” to other components of the application, for
example, the server, or to other components of the user’s computer like the GPU

through the use of WebGL API.

6.4 future work

This section introduces some ideas for the expansion of the present project. These
ideas will be divided into three main parts. The first part of suggestions is about
ideas that were not implemented due to time and technology constraints or ideas
that can help to have a bug free properly working prototype. The second part
is about improving the working prototype introducing ideas that can improve the
performance and the experience for the user in general. The last part is about
ideas that are drastically different from the proposed implementation that can be
considered as new applications with fundamental changes in areas of the project
such as the data format and the architecture of the system.

6.4.1 Towards a Reliable Working Prototype

• The bigger issue with the implementation presented in this thesis is the syn-
chronization. This issue even though it is solved almost entirely it still has
some problems with the most important being the inability to disconnect the
video tiles from the timing object something that slows down the application.
The proposed idea is to communicate with the developing team of the timing
object to provide some new insights on how this issue can be solved and how
to improve the reliability of the video synchronization as a whole.

• Supposedly the technology issues derived from the timing object have been
solved, the next step is to create a proper, user-friendly interface to be able to
disseminate the ideas surrounding this project more effectively.

• The last proposal that belongs to this first part is related with the perfor-
mance of a usability test in order to determine how users are perceiving the
concepts introduced by this projects, which ones are considered more useful

6.4 future work 69

and maybe to have an insight on what other options the user would like to be
implemented in such an application.

6.4.2 Improving the Working Prototype

• The first idea that can be implemented in order to improve the performance
of the application is the use of WebGL API as the main platform on which the
interactivity elements will be computed. The WebGL API will introduce the
use of GPU as the main computational unit something that can improve the
performance of the application dramatically.

• An idea that can improve the user experience considerably is related to the
improvement of the querying capabilities of the application. Until this point,
the ”click” on the map shows the value of the SSHA for a specific moment in
time something that it is useful but it does not help the user to fully under-
stand how the phenomenon changes. Producing, for example, a diagram that
will be updated through time with the new values of the SSHA is providing a
complete overview of the specified point in space. Another idea is to select
a polygon and not just a point in order to have an improved overview of an
area. One last idea related to the querying capabilities is to allow the user to
export the resulting diagrams/histograms for his/her personal use.

• In this part of the future work also belongs to the proposal for the WVMS.
Since through the above-mentioned ideas the prototype is considered to be in
its best possible iteration then it is also ready to be standardized in order to
be implemented by the community.

6.4.3 New Applications Ideas

• Since the phenomena that are similar to the SSHA are, in most cases, 3D, an
idea is to use for the third dimension instead of just color a proper elevation
difference something that may help the user better understand these three-
dimensional phenomena.

• This thesis project is using raster data as data format and even though is effi-
cient enough it has some drawbacks. One drawback is related to the fact that
the raster data format is a storage requirement heavy format, especially when
compared with vector data. Also, in order to be efficient in the animation part,
it requires the use of video that has to be pre-computed on a server increasing
the complexity of the computation on the server-side. As a result, a proposed
idea is to use vector data format for such visualizations using SVG file format
and WebGL or CSS3 for the animations on the client-side.

• Even though the proposed system architecture is leaning more towards a
client-based approach it is possible to become even more ”client-based”. In
such an architecture the input will be the NetCDF data from NASA and will be
loaded, decoded and animated on the client-side without any pre-processing
on the server-side. It will also be interesting to increase the performance of
such an application by not loading the whole data-set when the application is
launched but to load only the part of the data that are useful for the render-
ing of the animation with the specified characteristics (e.g. spatial/temporal
scale).

• There is a trend in web visualizations (Chapter 3) in using virtual globes
instead of a simple 2D map. The virtual globes are making the experience of
the user more immersive and as a result, can be used for applications such as
the one presented in this thesis project.

B I B L I O G R A P H Y

Adnan, M., Singleton, A., and Longley, P. (2010). Developing efficient web-based
gis applications.

Al-Qurabat, A. (2015). Web geographic information system. https:

//www.researchgate.net/publication/320357022_Web_Geographic_

Information_System. [Online; accessed 24-October-2019].

Bláha, J. and Sterba, Z. (2014). Colour contrast in cartographic works using the
principles of johannes itten. Cartographic Journal The, 51:203–213.

Borunda, A. (2019). A heat wave is turning greenland’s ice to slush. that’s
bad news. https://www.nationalgeographic.com/environment/2019/07/

greenland-melting-second-time-this-summer-bad/. [Online; accessed 24-
October-2019].

cartography2.org (2018). A history of animated maps. https://www.cartography2.
org/a-history-of-animated-maps/. [Online; accessed 28-October-2019].

Choudhury, N. (2014). World wide web and its journey from web 1.0 to web 4.0.
International Journal of Computer Science and Information Technologies, 5(6):8096–
8100.

Christophe, S., Christine, Z., and Roussaffa, H. (2011). Colours harmony in cartog-
raphy. 25th International Cartographic Conference (ICC2011).

Clarke, K. C. (1986). Advances in geographic information systems. Computers, envi-
ronment and urban systems, 10(3-4):175–184.

ESRI (2019). History of gis.

Friendly, M. (2006). A brief history of data visualization. In Chen, C., Härdle, W.,
and Unwin, A., editors, Handbook of Computational Statistics: Data Visualization,
volume III, pages ???–??? Springer-Verlag, Heidelberg. (In press).

Friendly, M. and Denis, D. J. (2001). Milestones in the history of thematic car-
tography, statistical graphics, and data visualization. URL http://www. datavis.
ca/milestones, 32:13.

Goodchild, M. F. and Haining, R. P. (2004). Gis and spatial data analysis: Converg-
ing perspectives. Papers in Regional Science, 83(1):363–385.

Harrell, J. and Brown, V. (1992). The world’s oldest surviving geological map – the
1150 bc turin papyrus from egypt. Journal of Geology, 100:3–18.

Harrower, M., Fabrikant, S. I., and Dodge, M. (2008). The role of map animation in
geographic visualization.

Hauser, H., Rheingans, P., and Scheuermann, G. (2018). Foundations of data vi-
sualization (dagstuhl seminar 18041). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

Huisman, O. and De By, R. (2009). Principles of geographic information systems.
ITC Educational Textbook Series, 1:17.

Kaplan, S. (2019). One of alaska’s warmest springs on record is causing a
dangerous thaw. https://www.washingtonpost.com/science/2019/04/19/

one-alaskas-warmest-springs-record-is-causing-dangerous-thaw/. [On-
line; accessed 24-October-2019].

71

https://www.researchgate.net/publication/320357022_Web_Geographic_Information_System
https://www.researchgate.net/publication/320357022_Web_Geographic_Information_System
https://www.researchgate.net/publication/320357022_Web_Geographic_Information_System
https://www.nationalgeographic.com/environment/2019/07/greenland-melting-second-time-this-summer-bad/
https://www.nationalgeographic.com/environment/2019/07/greenland-melting-second-time-this-summer-bad/
https://www.cartography2.org/a-history-of-animated-maps/
https://www.cartography2.org/a-history-of-animated-maps/
https://www.washingtonpost.com/science/2019/04/19/one-alaskas-warmest-springs-record-is-causing-dangerous-thaw/
https://www.washingtonpost.com/science/2019/04/19/one-alaskas-warmest-springs-record-is-causing-dangerous-thaw/

72 BIBLIOGRAPHY

Lyzi, D. (2016). 512 map tiles. https://blog.mapbox.com/

512-map-tiles-cb5bfd6e72ba. [Online; accessed 28-October-2019].

MacEachren, A. M. (1998). Cartography, gis and the world wide web. Progress in
Human Geography, 22(4):575–585.

Maxwell, G. (2009). Youtube / ogg/theora comparison. https://people.xiph.

org/~greg/video/ytcompare/comparison.html. [Online; accessed 28-October-
2019].

Midtbø, T. (2005). Interactive cartographic animations–analysing functionality in a
web environment.

Ozer, J. (2010). Vp8 vs. h.264. https://www.streamingmedia.com/conferences/

west2010/presentations/SMWest-2010-H264-VP8.pdf. [Online; accessed 28-
October-2019].

Ozer, J. (2017a). Hevc: Rating the contenders. https://streaminglearningcenter.
com/wp-content/uploads/2017/05/Comparing_Best_HEVC_Codec.pdf. [On-
line; accessed 28-October-2019].

Ozer, J. (2017b). Netflix on av1. https://streaminglearningcenter.com/codecs/
netflix-on-av1.htmlf. [Online; accessed 28-October-2019].

Peterson, M. (1999). Active legends for interactive cartographic animation. Interna-
tional Journal of Geographical Information Science, 13:375–383.

Roth, R. E. (2013). Interactive maps: What we know and what we need to know.
Journal of Spatial Information Science, 2013(6):59–115.

Stefanakis, E. (2017). Web mercator and raster tile maps: two cornerstones of online
map service providers. GEOMATICA, 71:100–109.

Stewart, R. H. (2008). Introduction to physical oceanography. Texas A & M University
College Station.

van Oosterom, P. and de Vries, M. (2018). Web map/feature services (wms/wfs).

Vatoliny, D., Kulikov, D., Erofeev, M., Dolganov, S., and Zvezdakov, S. (2018). Msu
codec comparison 2017. http://compression.ru/video/codec_comparison/

hevc_2017/MSU_HEVC_comparison_2017_P5_HQ_encoders.pdf. [Online; ac-
cessed 28-October-2019].

Veenendaal, B., Brovelli, M. A., and Li, S. (2017). Review of web mapping: Eras,
trends and directions. ISPRS International Journal of Geo-Information, 6(10):317.

Weeman, K. and Patrick, L. (2018). New study finds sea
level rise accelerating. https://climate.nasa.gov/news/2680/

new-study-finds-sea-level-rise-accelerating/. [Online; accessed
24-October-2019].

Whitehouse, D. (2000). Ice age star map discovered. http://news.bbc.co.uk/2/

hi/science/nature/871930.stm. [Online; accessed 24-October-2019].

https://blog.mapbox.com/512-map-tiles-cb5bfd6e72ba
https://blog.mapbox.com/512-map-tiles-cb5bfd6e72ba
https://people.xiph.org/~greg/video/ytcompare/comparison.html
https://people.xiph.org/~greg/video/ytcompare/comparison.html
https://www.streamingmedia.com/conferences/west2010/presentations/SMWest-2010-H264-VP8.pdf
https://www.streamingmedia.com/conferences/west2010/presentations/SMWest-2010-H264-VP8.pdf
https://streaminglearningcenter.com/wp-content/uploads/2017/05/Comparing_Best_HEVC_Codec.pdf
https://streaminglearningcenter.com/wp-content/uploads/2017/05/Comparing_Best_HEVC_Codec.pdf
https://streaminglearningcenter.com/codecs/netflix-on-av1.htmlf
https://streaminglearningcenter.com/codecs/netflix-on-av1.htmlf
http://compression.ru/video/codec_comparison/hevc_2017/MSU_HEVC_comparison_2017_P5_HQ_encoders.pdf
http://compression.ru/video/codec_comparison/hevc_2017/MSU_HEVC_comparison_2017_P5_HQ_encoders.pdf
https://climate.nasa.gov/news/2680/new-study-finds-sea-level-rise-accelerating/
https://climate.nasa.gov/news/2680/new-study-finds-sea-level-rise-accelerating/
http://news.bbc.co.uk/2/hi/science/nature/871930.stm
http://news.bbc.co.uk/2/hi/science/nature/871930.stm

colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.

	1 Introduction
	1.1 Sea Surface Height
	1.2 Visualization
	1.3 Motivation
	1.4 Research Questions
	1.5 Research Scope
	1.6 Thesis Outline

	2 Theoretical Background
	2.1 Cartography in the 20th Century
	2.1.1 Overview of Cartography
	2.1.2 Colors in Maps
	2.1.3 Animated Maps
	2.1.4 Geographic Information Systems

	2.2 Cartography in the 21st Century
	2.2.1 Background of web mapping
	2.2.2 Static visualization
	2.2.3 Interactive Visualization (Static)
	2.2.4 Dynamic visualization (Timeseries)

	3 Related work
	3.1 Google Maps
	3.2 Ocean Motion
	3.3 Discover Magazine
	3.4 Earth Nullschool
	3.5 NOAA Sea Surface Height Anomaly
	3.6 Google Earth Engine Timelapse

	4 Methodology
	4.1 Animation
	4.2 Interactivity Elements
	4.2.1 Handling the x and y coordinates
	4.2.2 Handling the z coordinate
	4.2.3 Handling the Time Dimension
	4.2.4 Querying Capabilities

	4.3 System Architecture

	5 Implementation/Results
	5.1 Data-set Used
	5.2 Animation
	5.2.1 Tools Used
	5.2.2 Video Creation Process
	5.2.3 Animation Results

	5.3 Handling the X and Y coordinates
	5.3.1 Tools Used
	5.3.2 Implementation (Tile Creation)
	5.3.3 Implementation (Web)
	5.3.4 Tilling Scheme Results

	5.4 Handling the z coordinate
	5.4.1 Tools Used
	5.4.2 Implementation
	5.4.3 Results

	5.5 Handling the Time Dimension (Temporal Scale)
	5.6 Querying Capabilities
	5.7 System Architecture

	6 Conclusions and Future Work
	6.1 Conclusions
	6.1.1 Sea surface height is a dynamic phenomenon (2.5D + time), what technique of animation should be used and why?
	6.1.2 What elements of interactivity are relevant to a web mapping application and which ones should be implemented?
	6.1.3 What type of architecture is more appropriate for implementation with these characteristics?
	6.1.4 Main research question: What is an optimal WebGIS-architecture for making an interactive - dynamic visualization of the sea-surface height phenomenon?

	6.2 Contribution to the Field of Geomatics
	6.3 Discussion
	6.4 Future Work
	6.4.1 Towards a Reliable Working Prototype
	6.4.2 Improving the Working Prototype
	6.4.3 New Applications Ideas

