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Abstract

Phylogenetic networks generalize evolutionary trees and are commonly used
to represent evolutionary relationships between species that undergo reticu-
late evolutionary processes such as hybridization, recombination and lateral
gene transfer. In this thesis all quarnets, networks on four species, of a
network are assumed to be known. We prove that each recoverable undi-
rected or semi-directed binary level-2 phylogenetic network without redun-
dant biconnected components is encoded by its set of quarnets, meaning
that the network is uniquely determined by its quarnets. Furthermore, two
decomposition theorems for undirected and semi-directed binary phyloge-
netic networks are presented. These decomposition theorems are proved for
undirected binary phylogenetic networks for all levels and for semi-directed
binary phylogenetic networks that are at most level-2.
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Chapter 1

Introduction

Many biological studies use the evolutionary histories of species. Therefore
it is important that these relationships can be represented in a suitable way.
Nowadays phylogenetic trees and networks are commonly used to represent
this. A rooted phylogenetic tree is a rooted (graph theoretical) tree that has
no indegree-1 outdegree-1 vertices and in which the leaves are bijectively
labelled by the elements in X, where X is a set of species.

Although phylogenetic trees are often used, they can not represent all
evolutionary relationships between the different species. We need another
way of representing the relationships for species that undergo reticulate evo-
lutionary processes such as hybridization, recombination and lateral gene
transfer. For this reason there has been growing interest in using phyloge-
netic networks instead of phylogenetic trees.

Figure 1.1: A directed phylogenetic network on wheat species. [9], [10], [12]
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A directed phylogenetic network is a directed acyclic graph that has a
single root, has no indegree-1 outdegree-1 vertices and has its leaves bijec-
tively labelled by the elements in X. A reticulate evolutionary process is
represented by a vertex with two incoming arcs. Such a vertex is called a
reticulation. In Figure 1.1 an example of a directed phylogenetic network
with three reticulations (representing hybridization events) can be found.

The intended purpose is to determine the relationships between the dif-
ferent species from the known biological data. Hereby the focus is often
on the different reticulate evolutionary processes. If this is the case, then
the relationships between the different species can also be represented by
semi-directed phylogenetic networks. A semi-directed phylogenetic network
can be obtained from a directed phylogenetic network by replacing the (di-
rected) arcs by (undirected) edges, except for the reticulate events, and then
suppressing the root.

A phylogenetic network is level-k if each biconnected component (non
tree-like part of the network) has at most k reticulate events. The network
in Figure 1.1 is an example of a network that is level-3. In [3], [4] and [1]
there have been results regarding when two phylogenetic networks can be
distinguished on the basis of data generated by Markov processes. Semi-
directed phylogenetic networks come up in these papers because the root
location is often not identifiable. These papers first show distinguishability
results for 4-leaf phylogenetic networks, which are called quarnets. These
results are then used to prove more general theorems for phylogenetic net-
works with more leaves. This approach has been successful for level-1 but
the results for level-2 are still severely limited. The reason for this is that it
is still mostly unclear which level-2 quarnets can be distinguished.

Here, we consider the question whether semi-directed level-2 phyloge-
netic networks can be distinguished if we assume that all quarnets can be
distinguished. In other words, this thesis is about phylogenetic networks
that can be reconstructed uniquely from their quarnets. In [11] and [13]
there are proofs of this encoding by quarnets for directed phylogenetic net-
works that are level-3. In [14] it is proved that directed level-2 phylogenetic
networks are even encoded by trinets, networks on three species.

Further we also consider undirected phylogenetic networks, networks
without any given direction. These networks can be used if it is unclear
which vertices represent reticulate events and which vertices represent spe-
ciation events. Note that we refer to Chapter 2 for all full definitions with
their explanations.

Both semi-directed and undirected phylogenetic networks are networks
for which the root is not known. There has been more research on these
types of phylogenetic networks. We give some examples. In [5] is studied
how an undirected phylogenetic network can be oriented. Note that this
then results in a certain directed phylogenetic network. In [6] is discussed
how semi-directed level-1 phylogenetic networks can be reconstructed from
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their quarnets.
In this thesis we will prove some results for undirected and semi-directed

binary (phylogenetic) networks. We show two decomposition theorems. A
CE-split is a partition of the leaves of the network through a cut-edge. The
first decomposition theorem shows that the CE-splits of a network are deter-
mined by the CE-splits of the quarnets of the network. This first decompo-
sition theorem holds for recoverable undirected binary networks for all levels
and recoverable semi-directed binary level-2 networks. With a restriction of
a network to a certain biconnected component we mean this biconnected
component with its incident cut-edges ending in leaves. Roughly speaking,
the second decomposition shows that a network is encoded by its quarnets
if and only if the restrictions to the biconnected components are encoded
by their quarnets. This second decomposition theorem holds for recoverable
undirected binary networks without redundant biconnected components for
all levels and recoverable semi-directed binary level-2 networks without re-
dundant biconnected components.

Using these two decomposition theorems we will be able to prove some
more results. We prove that every undirected and semi-directed binary
simple level-2 network is encoded by its set of quarnets. Moreover, we prove
that every recoverable undirected and semi-directed binary level-2 network
without redundant biconnected components is encoded by its set of quarnets.

To conclude the introduction, we give an overview of this thesis. In
Chapter 2 some preliminaries will be presented. In Chapter 3 we will prove
that the class of simple level-2 networks with at least four leaves is weakly
encoded by quarnets. In Chapter 4 we will prove the two decomposition the-
orems. In Chapter 5 we will combine the different results to prove that each
recoverable level-2 network without redundant biconnected components is
encoded by its set of quarnets. Note that in each of these already mentioned
chapters we discuss undirected and semi-directed binary networks in sepa-
rate sections. In Chapter 6 there is a discussion. Finally, the undirected
and semi-directed binary level-3 generators are given in Appendix A.
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Chapter 2

Preliminaries

In this chapter we will present some preliminaries. We will discuss in the
first section undirected binary networks and in the second section semi-
directed binary networks. These two sections can be read in parallel as many
definitions are similar. Note that some definitions are missing or defined in
a different way for undirected networks because of the differences between
undirected and semi-directed networks. Further note that some definitions
for directed binary networks are discussed in the second section.

The definitions in this chapter are based on the definitions of directed
binary networks as defined in [14]. These definitions of directed networks are
also extensively explained in [11]. Note that we refer to this type of networks
as directed networks while they call these networks rooted networks. In
this way it is easier to distinguish undirected, semi-directed and directed
networks in this thesis. Further it is important to keep in mind that however
the definitions of undirected and semi-directed networks mainly agree with
definitions in other papers, some definitions are defined in a slightly different
way.

2.1 Undirected

In this section we will discuss undirected binary networks. Note that some-
times this type of networks will be shortened to undirected networks in this
thesis. The definition of an undirected binary (phylogenetic) network can
be found below.

Definition 2.1. An undirected binary (phylogenetic) network on a set X
is a connected undirected graph without loops or parallel edges such that
each vertex has degree one or three and the vertices with degree one are
bijectively labelled by the elements of X.

A degree-1 vertex in this definition is called a leaf. The set of all leaves is
then called X. Here we assume that X denotes a non-empty finite set. As
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the leaves are bijectively labelled by the elements of X, we can identify each
leaf with its label. Since X often consists of species, this means each leaf
represents one of the species. Let N be an undirected binary network. A
directed binary network ND is an orientation of N if the undirected binary
network obtained from ND by replacing all arcs with edges and subsequently
suppressing its root equals N (see Definition 2.16). By suppressing the root
r, which is a degree-2 vertex, we mean that if there are edges ur and rv,
then this becomes a single edge uv. Note that an orientation is not always
unique. Furthermore, N is orientable at a cut-edge uv of N if there exists
an orientation ND of N such that ND has arcs (r, u) and (r, v) where r is
the root of ND. Moreover, N is orientable at a leaf ρ ∈ X if there exists
an orientation ND of N such that ND has the arc (r, ρ) where r is the root
of ND. In Figure 2.1 an example of an undirected binary network can be
found.

x

y

z

w

Figure 2.1: An example of an undirected binary network.

Later in this thesis we want to prove some results for an undirected
binary network. As the network can be very large, it is a good idea to cut
the network in different components. With this it is possible to look at each
component of the network separately. In order to do this we need some
definitions for an undirected binary network. First we give the definitions
of cut-vertices and cut-edges of an undirected binary network.

Definition 2.2. Let N be an undirected binary network. A vertex v of N
is a cut-vertex if its removal disconnects the graph of N . Similarly, an edge
e of N is a cut-edge if its removal disconnects the graph of N .
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Further we need the definition of a CE-split of an undirected binary network,
which is given below.

Definition 2.3. Let N be an undirected binary network on X and {P,Q}
a partition of X. {P,Q} is a CE-split (Cut-Edge split) of N if there exists
a cut-edge uv of N such that its removal gives two connected graphs with
leaves P and Q, respectively.

Now we use the definition of a cut-vertex in the definition below.

Definition 2.4. An undirected binary network is biconnected if it has no
cut-vertices.

With above definition we can define a component of an undirected binary
network.

Definition 2.5. A biconnected component of an undirected binary network
is a maximal biconnected subgraph (i.e. a biconnected subgraph that is not
contained in any other biconnected subgraph).

An undirected binary network often consists of many small components. A
biconnected component of an undirected binary network is trivial if it is a
cut-edge. The undirected binary network that is given in Figure 2.1 has
three nontrivial biconnected components.

Now we will consider some different types of undirected binary networks
by defining several conditions for undirected binary networks. In the follow-
ing definition we first define when a nontrivial component is redundant or
strongly redundant.

Definition 2.6. Let B be a nontrivial biconnected component of an undi-
rected binary network. An edge uv is an incident cut-edge of B if u is in B
and v is not in B. B is redundant if B has exactly two incident cut-edges.
B is strongly redundant if B has exactly one incident cut-edge.

With the following definition we can easily define networks without compo-
nents that are strongly redundant. Later in this thesis we will mainly look
at networks that fulfil this requirement.

Definition 2.7. An undirected binary network is recoverable if it has no
strongly redundant biconnected components.

The undirected binary network that is given in Figure 2.1 is not recoverable,
because the upper nontrivial biconnected component is strongly redundant.
Another requirement that is used a lot for a network in this thesis is simple,
which is defined below.

Definition 2.8. An undirected binary network is simple if for each cut-edge
uv holds that u or v is a leaf.
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Note that a simple network has only one nontrivial component. Each undi-
rected binary network can be transformed in such a way that it has only
one nontrivial component and is therefore simple. In the definition below
we can see that this can be done for each nontrivial biconnected component
of the network.

Definition 2.9. Let N be an undirected binary network and B a nontrivial
biconnected component with b cut-edges e1 = u1v1, . . . , eb = ubvb such that
ui is in B and vi is not in B. Consider the undirected binary network NB

obtained fromN by deleting all biconnected components except B, e1, . . . , eb
and labelling v1, . . . , vb by new labels y1, . . . , yb that are not in X. Then,
NB is a restriction of N to B.

Note that NB in the definition above is unique up to the choice of the new
labels y1, . . . , yb. We continue with the definition of another condition for
an undirected binary network, namely a network that is level-k.

Definition 2.10. An undirected binary network is level-k if each bicon-
nected component has at most |V |+ k − 1 edges.

To define it more precisely we introduce the definition of strict. An undi-
rected binary network is strict level-k if it is level-k but not level-(k−1). An
undirected binary simple (strict) level-k network is then a network with one
nontrivial biconnected component that is (strict) level-k. The undirected
binary network that is given in Figure 2.1 is strict level-2 since it has two
nontrivial biconnected components that are strict level-2 and one nontrivial
biconnected component that is strict level-1.

Another way to look at the biconnected components of an undirected
binary network is considering the underlying structure of each component.
Therefore we first give the definition of a generator.

Definition 2.11 (Definition 2.6 in [1]). An undirected binary level-k gen-
erator G is a multigraph as follows:

• G is a single vertex (if k = 0);

• G is the 2-regular multigraph with 2 vertices (if k = 1);

• G is a 3-regular biconnected multigraph with 2k−2 vertices (if k ≥ 2).

In Figure 2.2 the undirected binary generators for level-1 and level-2 are
given. It can be seen that there are multiple generators for k ≥ 3. For
the undirected binary level-3 generators and their discussion we refer to
Appendix A.1.
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(a) Level-1 generator. (b) Level-2 generator.

Figure 2.2: The level-1 and level-2 generator of undirected binary networks.

We continue with the definition of a side of a generator. Note that where
directed generators can have arc sides and reticulation sides undirected gen-
erators can only have edge sides.

Definition 2.12. The sides of an undirected binary level-k generator are
the edges of the generator.

Note that deleting all leaves of an undirected binary simple strict level-k
network N gives an undirected binary level-k generator GN . GN is then the
underlying generator of N . Conversely, N can be reconstructed from GN

by hanging leaves on its sides as follows:

• for each edge e of GN , replace e by an undirected path Pe with l ≥ 0
internal vertices v1, . . . , vl and, for each such internal vertex vi, add a
leaf xi ∈ X and an edge vixi.

A leaf x of an undirected binary simple strict level-k network is on side s if
it is hung on side s in the construction of N from GN . More precisely, for
a leaf x ∈ X of an undirected binary simple strict level-k network N with
underlying generator GN and a side s of GN , x is on side s if the following
holds:

• s is an edge uv of GN and there is a vertex y such that xy is an edge
of N and y lies on the undirected path Ps from u to v in N .

In the next definition is explained when a generator has symmetry. Intu-
itively, symmetry of a generator means that there exists a relabelling of the
sides of the generator giving an isomorphic generator.

Definition 2.13. An undirected binary generator G has symmetry if it has
parallel edges or if there exists a bijective function f : V (G) → V (G) such
that for all u, v ∈ V the number of edges between u and v is equal to the
number of edges between f(u) and f(v) but f(w) ̸= w for at least one w ∈ V .

Finally we look at definitions that are needed to consider the relationship
between networks and their subnetworks. Below the definitions of a trinet
and a quarnet are given.
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Definition 2.14. An undirected binary network is a trinet (quarnet) if it
has three (four) leaves.

Trinets and quarnets are examples of smaller networks. A subnetwork can
be exhibited by a larger network, as explained in the following definition.
By suppressing parallel edges we mean that each set of parallel edges is
replaced by a single edge. By suppressing strongly redundant biconnected
components we mean that each such component is replaced by a single
vertex.

Definition 2.15. Given an undirected binary network N on X and A ⊆ X,
the undirected binary network on A exhibited by N is the undirected binary
network obtained from N by deleting all leaves except the leaves in A and
repeatedly applying the following operations until none is applicable:

• deleting all unlabelled vertices with degree one;

• suppressing all vertices with degree two;

• suppressing all parallel edges; and

• suppressing all strongly redundant biconnected components.

If |A| = 3 or |A| = 4, then the undirected binary network on A exhibited
by N is a trinet or quarnet, respectively. With different sets A all trinets
or quarnets of an undirected binary network can be exhibited. Let N be an
undirected binary network. Then we denote the set of all trinets exhibited
by N with Tn(N) and the set of all quarnets exhibited by N with Qn(N).
In Figure 2.3 an example of an exhibited trinet is given.

x

y
z

Figure 2.3: A trinet exhibited by the quarnet that is given in Figure 2.1.

In the following definition is explained when two undirected binary networks
are equal. Shortly, this is the case when there is a graph isomorphism
between these two networks that preserves leaf labels.

Definition 2.16. Given two undirected binary networks N and N ′ on X,
we write N = N ′ if there exists a bijective function f : V (N) → V (N ′) such
that f(x) = x for each leaf x of N and such that for every u, v ∈ V (N) holds
that uv is an edge of N if and only if f(u)f(v) is an edge of N ′.
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Now we have defined when two undirected binary networks are equal, we can
define when an undirected binary network is encoded by its sets of trinets or
quarnets. Intuitively, it means that a recoverable undirected binary network
can be uniquely reconstructed with all of its trinets or quarnets, respectively.

Definition 2.17. An undirected binary network N is encoded by its sets
of trinets (quarnets) if there is no recoverable undirected binary network
N ′ ̸= N with Tn(N) = Tn(N ′) (Qn(N) = Qn(N ′)).

As it is not always possible to show that a network is encoded, there is
also a weaker definition for a network being encoded. In this definition the
network can be reconstructed uniquely from a certain class of undirected
binary networks instead from all undirected binary networks.

Definition 2.18. A class of undirected binary networks C is weakly encoded
by trinets (quarnets) if there are no two recoverable undirected binary net-
works N and N ′, with N ̸= N ′, in class C such that Tn(N) = Tn(N ′)
(Qn(N) = Qn(N ′)).

2.2 Semi-directed

In this section we will discuss semi-directed binary networks. Note that
sometimes this type of networks will be shortened to semi-directed networks
in this thesis. Some of the definitions for semi-directed networks use defini-
tions for directed networks. Note that most of the definitions for directed
networks are not given in this section since these definitions are already
clearly explained in [11]. One of the definitions for directed networks we
will give explicitly is the definition of a directed binary network, which is
stated below.

Definition 2.19. A directed binary (phylogenetic) network on a set X is a
directed acyclic graph for which holds the following:

• there is a single indegree-0 vertex;

• there are no indegree-1 outdegree-1 vertices;

• the vertices have at most indegree two;

• the vertices have at most outdegree two;

• the vertices with indegree two have outdegree one; and

• the outdegree-0 vertices are bijectively labelled by the elements of X.

In this definition of a directed binary network the indegree-0 vertex is called
the root and the outdegree-0 vertices are called leaves. Using above defini-
tion of a directed network we can define a semi-directed network. Note that
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the suppressed degree-2 vertex in the definition was the root of the directed
binary network. By suppressing a degree-2 vertex r we mean that if there
are edges ur and rv, then this becomes a single edge uv, and if there is an
edge ur and an arc (r, v), then this becomes a single arc (u, v).

Definition 2.20. A semi-directed binary (phylogenetic) network on a set
X can be obtained from a directed binary network by replacing the arcs
by edges except for the incoming arcs of an indegree-2 vertex and then
suppressing the degree-2 vertex.

A degree-1 vertex of a semi-directed binary network is called a leaf. The set
of all leaves is then called X. Here we assume that X denotes a non-empty
finite set. As the leaves are bijectively labelled by the elements of X, we
can identify each leaf with its label. Since X often consists of species, this
means each leaf represents one of the species. Let N be a semi-directed
binary network. If ND is a directed binary network from which N can be
obtained (as described in above definition), then ND is called an orientation
of N . Note that by definition there exists at least one orientation of N . Fur-
thermore, N is orientable at a cut-edge uv of N if there exists an orientation
ND of N such that ND has arcs (r, u) and (r, v) where r is the root of ND.
Moreover, N is orientable at a leaf ρ ∈ X if there exists an orientation ND

of N such that ND has the arc (r, ρ) where r is the root of ND. In Figure
2.4 an example of a semi-directed binary network can be found.

x

y

z

w

Figure 2.4: An example of a semi-directed binary network.

Later in this thesis we want to prove some results for a semi-directed
network. As the network can be very large, it is a good idea to cut the
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network in different components. With this it is possible to look at each
component of the network separately. In order to do this we need some
definitions for a semi-directed binary network. First we give the definitions
of cut-vertices, cut-arcs and cut-edges of a semi-directed binary network.

Definition 2.21. Let N be a semi-directed binary network. A vertex v
of N is a cut-vertex if its removal disconnects the underlying undirected
graph of N . Similarly, an arc a of N is a cut-arc if its removal disconnects
the underlying undirected graph of N . An edge e of N is a cut-edge if its
removal disconnects the underlying undirected graph of N .

The following lemma shows that semi-directed binary networks have no cut-
arcs. Keep this in mind when comparing the definitions of directed networks
(see [11]) with the definitions of semi-directed networks.

Lemma 2.22. Let N be a semi-directed binary network. Then N has no
cut-arcs.

Proof. Let N be a semi-directed binary network. Assume that N has a cut-
arc (x, z). Then by definition z is a reticulation vertex with two incoming
arcs (x, z) and (y, z). Let ND be any directed binary network from which
N can be obtained. Let s be the lowest stable ancestor LSA({x, y}) in ND

(see definition LSA in [11] or [14]). Let Px be a directed path from s to
x and Py a directed path from s to y in ND. Note that these paths only
have vertex s in common. Then the underlying undirected graph of Px, Py,
(x, z) and (y, z) is an undirected cycle. By definition this implies that the
underlying undirected graph of N has also an undirected cycle containing x,
y and z. Then (x, z) is not a cut-arc since its removal does not disconnect
the underlying undirected graph of N because of the undirected cycle. This
gives a contradiction. So N has no cut-arcs.

We need an extra definition for directed binary networks next to the defini-
tions given in [11], namely the definition of a CA-split. Therefore we first
recall the definition of a CA-set of a directed binary network.

Definition 2.23. Let N be a directed binary network on X and Q ⊆ X.
Q is a CA-set (Cut-Arc set) of N if there exists a cut-arc (u, v) of N such
that Q = {x ∈ X|x is below v}.

Now we can define a CA-split of a directed binary network.

Definition 2.24. Let N be a directed binary network on X and {P,Q} a
partition of X. {P,Q} is a CA-split (Cut-Arc split) of N if P or Q is a
CA-set of N .

For a semi-directed binary network we define a CE-split. Note that we do
not define CA-splits for semi-directed binary networks as these networks do
not have any cut-arcs.
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Definition 2.25. Let N be a semi-directed binary network onX and {P,Q}
a partition of X. {P,Q} is a CE-split (Cut-Edge split) of N if there exists
a cut-edge uv of N such that its removal gives two connected graphs with
leaves P and Q, respectively.

Now we use the definition of a cut-vertex in the definition below.

Definition 2.26. A semi-directed binary network is biconnected if it has no
cut-vertices.

With above definition we can define a component of a semi-directed binary
network.

Definition 2.27. A biconnected component of a semi-directed binary net-
work is a maximal biconnected subgraph (i.e. a biconnected subgraph that
is not contained in any other biconnected subgraph).

A semi-directed binary network often consists of many small components.
A biconnected component of a semi-directed binary network is trivial if it
is a cut-edge. The semi-directed binary network that is given in Figure 2.4
has three nontrivial biconnected components.

Now we will consider some different types of semi-directed binary net-
works by defining several conditions for semi-directed binary networks. In
the following definition we first define when a nontrivial component is re-
dundant or strongly redundant.

Definition 2.28. Let B be a nontrivial biconnected component of a semi-
directed binary network. An edge uv is an incident cut-edge of B if u is in
B and v is not in B. B is redundant if B has exactly two incident cut-edges.
B is strongly redundant if B has exactly one incident cut-edge.

With the following definition we can easily define networks without compo-
nents that are strongly redundant. Later in this thesis we will mainly look
at networks that fulfil this requirement.

Definition 2.29. A semi-directed binary network is recoverable if it has no
strongly redundant biconnected components.

The semi-directed binary network that is given in Figure 2.4 is not recov-
erable, because the upper nontrivial biconnected component is strongly re-
dundant. Another requirement that is used a lot for a network in this thesis
is simple, which is defined below.

Definition 2.30. A semi-directed binary network is simple if for each cut-
edge uv holds that u or v is a leaf.
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Note that a simple network has only one nontrivial component. Each semi-
directed binary network can be transformed in such a way that it has only
one nontrivial component and is therefore simple. In the definition below
we can see that this can be done for each nontrivial biconnected component
of the network.

Definition 2.31. Let N be a semi-directed binary network and B a non-
trivial biconnected component with b cut-edges e1 = u1v1, . . . , eb = ubvb
such that ui is in B and vi is not in B. Consider the semi-directed binary
network NB obtained from N by deleting all biconnected components except
B, e1, . . . , eb and labelling v1, . . . , vb by new labels y1, . . . , yb that are not in
X. Then, NB is a restriction of N to B.

Note that NB in the definition above is unique up to the choice of the new
labels y1, . . . , yb. In the definition below we define a reticulation vertex of a
semi-directed binary network.

Definition 2.32. A reticulation (vertex) of a semi-directed binary network
is a vertex with two incoming arcs.

The following definition explains another condition for a semi-directed bi-
nary network, namely a network that is level-k.

Definition 2.33. A semi-directed binary network is level-k if each bicon-
nected component has at most k reticulations.

To define it more precisely we introduce the definition of strict. A semi-
directed binary network is strict level-k if it is level-k but not level-(k − 1).
A semi-directed binary simple (strict) level-k network is then a network with
one nontrivial biconnected component that is (strict) level-k. This implies
that the nontrivial biconnected component has exactly k reticulations if the
simple network is strict level-k. The semi-directed binary network that is
given in Figure 2.4 is strict level-2 since it has two nontrivial biconnected
components with two reticulations and one nontrivial biconnected compo-
nent with one reticulation.

Another way to look at the biconnected components of a semi-directed
binary network is considering the underlying structure of each component.
Before we give the definition of a semi-directed generator, we first recall the
definition of a directed generator.

Definition 2.34. A directed binary level-k generator is a directed acyclic
biconnected multigraph with exactly k reticulations with indegree-2 and
outdegree at most one, a single vertex with indegree-0 and outdegree-2, and
apart from that only vertices with indegree-1 and outdegree-2.

In Figures 2.5 and 2.6 the directed binary generators for level-1 and level-2
are given. Note that the directed binary level-2 generators are also discussed
in [14] and [11].
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Figure 2.5: The level-1 generator of directed binary networks.

(a) Generator 2a. (b) Generator 2b.

(c) Generator 2c. (d) Generator 2d.

Figure 2.6: The four level-2 generators of directed binary networks. [14]

Below the definition of a semi-directed binary generator can be found, which
is based on the definition of a directed binary generator. Note that the
suppressed degree-2 vertex in the definition was the root of the directed
binary generator.
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Definition 2.35. A semi-directed binary level-k generator can be obtained
from a directed binary level-k generator by replacing the arcs by edges except
for the incoming arcs of an indegree-2 vertex and then suppressing any
degree-2 vertex that does not have two incoming arcs or two outgoing arcs.

In Figures 2.7 and 2.8 the semi-directed binary generators for level-1 and
level-2 are given. Note that these generators are the only generators that
can be obtained from the generators in Figures 2.5 and 2.6 in the way as
described in the definition above and are therefore the only semi-directed
generators for level-1 and level-2. Hereby note that we do not suppress the
degree-2 vertex for the semi-directed binary level-1 generator. Otherwise we
would get an double directed arc in the generator which results in a loop.
The semi-directed binary generator 2.1 can be obtained from the directed
binary generator 2a or 2d. The semi-directed binary generator 2.2 can be
obtained from the directed binary generator 2b or 2c. For the semi-directed
binary level-3 generators and their discussion we refer to Appendix A.2.

Figure 2.7: The level-1 generator of semi-directed binary networks.

(a) Generator 2.1. (b) Generator 2.2.

Figure 2.8: The two level-2 generators of semi-directed binary networks.

We continue with the definition of a side of a generator. Note that where
directed generators can have arc sides and reticulation sides semi-directed
generators can have next to arc sides and reticulation sides also edge sides.
Further note that the sides that are degree-2 vertices by definition have
always two incoming arcs.

Definition 2.36. The sides of a semi-directed binary level-k generator are
the arcs, edges and the degree-2 vertices of the generator.
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Note that deleting all leaves of a semi-directed binary simple strict level-k
network N gives a semi-directed binary level-k generator GN . GN is then
the underlying generator of N . Conversely, N can be reconstructed from
GN by hanging leaves on its sides as follows:

• for each arc a of GN , replace a by a semi-directed path Pa (only the
last part is directed) with l ≥ 0 internal vertices v1, . . . , vl and, for
each each such internal vertex vi, add a leaf xi ∈ X and an edge vixi;

• for each edge e of GN , replace e by an undirected path Pe with l ≥ 0
internal vertices v1, . . . , vl and, for each such interval vertex vi, add a
leaf xi ∈ X and an edge vixi; and

• for each degree-2 vertex v, add a leaf x ∈ X and an edge vx.

A leaf x of a semi-directed binary simple strict level-k network is on side s
if it is hung on side s in the construction of N from GN . More precisely,
for a leaf x ∈ X of a semi-directed binary simple strict level-k network N
with underlying generator GN and a side s of GN , x is on side s if one of
the following holds:

• s is an arc (u, v) of GN and there is a vertex y such that xy is an edge
and y lies on the semi-directed path Ps from u to v in N ;

• s is an edge uv of GN and there is a vertex y such that xy is an edge
and y lies on the undirected path Ps from u to v in N ; or

• s is a degree-2 vertex of GN and sx is an edge of N .

With the following definition the order of two leaves on an arc side of the
generator can be distinguished.

Definition 2.37. Let x and y be two leaves on an arc side s = (u, v) of the
generator of a semi-directed binary network. If the parent of x is after the
parent of y on the semi-directed path Ps from u to v in N , then x is below
y on arc side s.

In the next definition is explained when a generator has symmetry. Intu-
itively, symmetry of a generator means that there exists a relabelling of the
sides of the generator giving an isomorphic generator.

Definition 2.38. A semi-directed binary generator G has symmetry if it
has parallel arcs or if there exists a bijective function f : V (G) → V (G) such
that for all u, v ∈ V the number of edges between u and v is equal to the
number of edges between f(u) and f(v) and the number of arcs between u
and v is equal to the number of arcs between f(u) and f(v) but f(w) ̸= w
for at least one w ∈ V .
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Finally we look at definitions that are needed to consider the relationship
between networks and their subnetworks. Below the definitions of a trinet
and a quarnet are given.

Definition 2.39. A semi-directed binary network is a trinet (quarnet) if it
has three (four) leaves.

Trinets and quarnets are examples of smaller networks. A subnetwork can
be exhibited by a larger network, as explained in the following definition. By
suppressing parallel arcs we mean that each set of parallel arcs is replaced
by a single arc. By suppressing strongly redundant biconnected components
we mean that each such component is replaced by a single vertex.

Definition 2.40. Given a semi-directed binary networkN onX andA ⊆ X,
the semi-directed binary network on A exhibited by N is the semi-directed
binary network obtained from N by deleting all leaves except the leaves in
A and repeatedly applying the following operations until none is applicable:

• deleting all unlabelled vertices with degree one;

• suppressing all vertices with degree two;

• suppressing all parallel arcs (except parallel arcs that were already in
N); and

• suppressing all strongly redundant biconnected components.

If |A| = 3 or |A| = 4, then the semi-directed binary network on A exhibited
by N is a trinet or quarnet, respectively. With different sets A all trinets
or quarnets of a semi-directed binary network can be exhibited. Let N be a
semi-directed binary network. Then we denote the set of all trinets exhibited
by N with Tn(N) and the set of all quarnets exhibited by N with Qn(N).
In Figure 2.9 an example of an exhibited trinet is given.

x

y
z

Figure 2.9: A trinet exhibited by the quarnet that is given in Figure 2.4.

In the following definition is explained when two semi-directed binary net-
works are equal. Shortly, this is the case when there is a graph isomorphism
between these two networks that preserves leaf labels.
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Definition 2.41. Given two semi-directed binary networks N and N ′ on
X, we write N = N ′ if there is a graph isomorphism between N and N ′

that preserves leaf labels, i.e. if there exists a bijective function f : V (N) →
V (N ′) such that f(x) = x for each leaf x of N and such that for every
u, v ∈ V (N) holds that (u, v) is an arc of N if and only if (f(u), f(v)) is an
arc of N ′ and uv is an edge of N if and only if f(u)f(v) is an edge of N ′.

Now we have defined when two semi-directed binary networks are equal, we
can define when a semi-directed binary network is encoded by its sets of
trinets or quarnets. Intuitively, it means that a recoverable semi-directed
binary network can be uniquely reconstructed with all of its trinets or quar-
nets, respectively.

Definition 2.42. A semi-directed binary network N is encoded by its sets
of trinets (quarnets) if there is no recoverable semi-directed binary network
N ′ ̸= N with Tn(N) = Tn(N ′) (Qn(N) = Qn(N ′)).

As it is not always possible to show that a network is encoded, there is
also a weaker definition for a network being encoded. In this definition the
network can be reconstructed uniquely from a certain class of semi-directed
binary networks instead from all semi-directed binary networks.

Definition 2.43. A class of semi-directed binary networks C is weakly en-
coded by trinets (quarnets) if there are no two recoverable semi-directed
binary networks N and N ′, with N ̸= N ′, in class C such that Tn(N) =
Tn(N ′) (Qn(N) = Qn(N ′)).
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Chapter 3

Simple networks

In this chapter we consider undirected and semi-directed binary simple net-
works. We will show that the class of simple level-2 networks is weakly
encoded by quarnets. First we prove that this holds for undirected binary
networks, then for semi-directed binary networks. Note that the different
level-1 and level-2 generators are given in Chapter 2.

3.1 Undirected

In this section we prove that the class of undirected binary simple level-2
networks is weakly encoded by quarnets. We will show this by first proving
it for strict level-1 and strict level-2 networks separately. In the theorem
below we prove the result for undirected strict level-1 networks.

Theorem 3.1. The class of undirected binary simple strict level-1 networks
with at least four leaves is weakly encoded by quarnets.

Proof. Assume there are two recoverable phylogenetic networks N and N ′

in the class of undirected binary simple strict level-1 networks with at least
four leaves such that Qn(N) = Qn(N ′). To prove that the class is weakly
encoded by quarnets we have to show that N = N ′.

By definition of the class the networks are all of the same form, which is
given in Figure 3.1. Therefore we only have to show that the circular order
of the leaves is the same for N and N ′.
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an

a1 a3

a2

. . .

Figure 3.1: The form of an undirected binary simple strict level-1 network.

Let x and y be two leaves that are neighbours inN . Consider any quarnet
containing x and y. This quarnet is level-1 and is therefore of the same form
as N and N ′. This holds also for the quarnets that will be considered later in
the proof. Since x and y are neighbours in N , x and y are also neighbours in
the quarnet. Suppose x and y are not neighbours in N ′. Then there exists a
quarnet with leaves p and q such that the circular order of these four leaves
is x, p, y and q. This gives a contradiction since Qn(N) = Qn(N ′). So x
and y are also neighbours in N ′.

Now we can see the circular order of the leaves as starting with x and
ending with y. Then the remaining leaves are between x and y in the circular
order, as can be seen in Figure 3.2.

y

x

. . .

Figure 3.2: The form of an undirected binary simple strict level-1 network
with two leaves fixed for the start and end of the circular order.
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Let v and w be any two leaves, not x or y. Consider the quarnet with x,
y, v and w. If v is earlier in the circular order than w in N , then the circular
order of the quarnet is x, v, w and y. Suppose w is earlier in the circular
order than v in N ′. Then the circular order of the considered quarnet is x,
w, v and y, which is a contradiction since Qn(N) = Qn(N ′). Similarly, we
get that if w is earlier in the circular order than v in N , w is earlier in the
circular order than v in N ′. As this can be done for all the different pairs of
leaves, the circular order of the leaves is the same for N and N ′. With this
we can conclude that N = N ′.

In the theorem below we prove the wanted result for undirected strict
level-2 networks. In this proof we use the underlying structure of such a
network, the undirected level-2 generator as given in Figure 2.2b. Note that
in the theorem above we did not use the undirected level-1 generator (see
Figure 2.2a) as underlying structure explicitly since the two different sides
can not be distinguished. Therefore we did not look at the order of the
leaves on both sides separately, but at the order of the leaves on the two
sides together. In this way we were still able to obtain the wanted result for
level-1.

Theorem 3.2. The class of undirected binary simple strict level-2 networks
with at least four leaves is weakly encoded by quarnets.

Proof. Assume there are two recoverable phylogenetic networks N and N ′

in the class of undirected binary simple strict level-2 networks with at least
four leaves such that Qn(N) = Qn(N ′). To prove that the class is weakly
encoded by quarnets we have to show that N = N ′.

By definition of the class the networks in this class have only one level-2
generator. Therefore N and N ′ have the same underlying generator (see
Figure 3.3).

E1

E2

E3

BA

Figure 3.3: The level-2 generator of undirected binary networks.

Observe that the generator has symmetry since sides E1, E2 and E3

can be interchanged to obtain an isomorphic generator. Let x and y be
two leaves on the sides E1 and E2 in N , respectively. If there is no leaf
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on side E1 or E2 in N , interchange the label of this side with E3 in N
in order to have leaves x and y on sides E1 and E2, respectively. Note
that there are at least two sides with a leaf on it, otherwise the underlying
generator was not level-2 as an undirected network has no parallel edges by
definition. Consider a quarnet that contains x and y. This quarnet has the
same underlying generator as N and N ′. This holds also for the quarnets
that will be considered later in the proof. Since x and y are, respectively, on
sides E1 and E2, x and y are on different sides in the quarnet. This shows x
and y are also on different sides in N ′ as Qn(N) = Qn(N ′). The sides E1,
E2 and E3 in N ′ can be interchanged such that x and y are, respectively,
on sides E1 and E2 in N ′ because of the symmetry.

Let z be a leaf, not x or y. Consider a quarnet that contains x, y and z.
This quarnet has again the same underlying generator as N and N ′. If z is
on side E1 in N , then x and z are on the same side of the generator in the
quarnet which implies z is also on side E1 in N ′. Note that the symmetry
of the sides of the generator is already fixed. If z is on side E2 in N , then y
and z are on the same side of the generator in the quarnet which implies z
is also on side E2 in N ′. If z is on side E3 in N , then z is not on the same
side of the generator in the quarnet as x or y which implies z is also on side
E3 in N ′. This shows that N and N ′ have the same leaves on each side.

We continue with the order of the leaves on each side to end the proof.
Without loss of generality assume that side E1 is a side with the largest
number of leaves and side E3 is a side with the least number of leaves. Side
E1 has then at least two leaves as each network in the class has at least
four leaves by definition while the generator has three sides. Let p be the
first leaf on side E1 and s the first leaf on side E2, both viewing from label
A in N (see Figure 3.4). Consider any quarnet containing p and s. Then
p is always the first leaf on side E1 viewing from A or B in the quarnet.
Suppose this is not the case for N ′. Then p is between two other leaves on
side E1. This is only possible if side E1 has more than two leaves. Then p
has also to be between two other leaves on side E1 in a quarnet, which is a
contradiction since Q(N) = Q(N ′). So p is always the first leaf on side E1

viewing from A or B in N ′. Note that this especially becomes clear from
the considered quarnets that have two or, if possible, three leaves on side
E1.

If p is the first leaf on side E1 in N ′ viewing from B, the labels A and B
have to be interchanged for N ′. Note that this does not change the network
itself as the labels A and B are not part of the network as only the vertices
that are leaves are labelled. The labels A and B are useful for distinguishing
the order of the leaves from left to right versus right to left on the different
sides in the proof.
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E1

E2

E3

BA

. . .

. . .

. . .

s

p

Figure 3.4: The level-2 generator of undirected binary networks with some
leaves labelled. Side E1 has at least two leaves, side E2 at least one leaf and
side E3 has no minimum amount of leaves.

If side E1 has two leaves, then the order of the leaves on side E1 is already
fixed as p is fixed. Now assume that side E1 has more than two leaves. Let v
and w be any two leaves on side E1, not p. Consider the quarnet with p, s, v
and w. Since p is fixed, the order of v and w on side E1 can be determined.
If v is nearer to p than w on side E1 in the quarnet, then this is also the
case in N ′. If w is nearer to p than v on side E1 in the quarnet, then this is
also the case in N ′. As this can be done for all the different pairs of leaves,
the order of the leaves on side E1 is the same for N and N ′.

If side E2 has one leaf, the order of the leaves on side E2 is already
determined and therefore the order is the same for N and N ′. We continue
with the case that side E2 has more than one leaf. Again consider any
quarnet containing p and s. Then s is always the first leaf on side E2

viewing from A or B in the quarnet. Suppose this is not the case for N ′.
Then s is between two other leaves on side E2. This is only possible if side
E2 has more than two leaves. Then s has also to be between two other leaves
on side E2 in a quarnet, which is a contradiction since Q(N) = Q(N ′). So s
is always the first leaf on side E2 viewing from A or B in N ′. Note that this
especially becomes clear from the considered quarnets that have two or, if
possible, three leaves on side E2.

Let q be the second leaf on side E1 and t the second leaf on side E2,
both viewing from A in N . Consider the quarnet with p, q, s and t. Then p
and s are both first leaves viewing from A or both first leaves viewing from
B on, respectively, side E1 and E2. As p is the first leaf on side E1 viewing
from A in N ′, s is also the first leaf on side E2 viewing from A in N ′.

If side E2 has one leaf or two leaves, then the order of the leaves on side
E2 is already fixed as s is fixed. Now assume that side E2 has more than
two leaves. Let v and w be any two leaves on side E2, not s. Consider the
quarnet with p, s, v and w. Since s is fixed, the order of v and w on side
E2 can be determined. If v is nearer to s than w on side E2 in the quarnet,
then this is also the case in N ′. If w is nearer to s than v on side E2 in
the quarnet, then this is also the case in N ′. As this can be done for all the
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different pairs of leaves, the order of the leaves on side E2 is the same for N
and N ′.

For side E3 we can do the same as for side E2 to show that the leaves
are in the same order viewing from A for N and N ′. Note that the only
difference is that side E3 can also have no leaves, but then the order of the
leaves is always the same for N and N ′.

Now the order of the leaves on each of the sides of the generator in the
same for N and N ′. Also the order of the leaves on each side with respect
to the different sides is the same for N and N ′. Hence we have showed that
N = N ′.

We conclude this section by combining the results for strict level-1 and
strict level-2 networks to obtain the result for level-2 networks as stated in
the theorem below.

Theorem 3.3. The class of undirected binary simple level-2 networks with
at least four leaves is weakly encoded by quarnets.

Proof. Assume there are two recoverable phylogenetic networks N and N ′

in the class of undirected binary simple level-2 networks with at least four
leaves such thatQn(N) = Qn(N ′). To prove that the class is weakly encoded
by quarnets we have to show that N = N ′.

By definition of the class the networks in this class are level-1 or level-2.
Note that there are no level-0 networks in the class. Level-0 networks are
networks without reticulations, also known as trees. Each edge in a tree is
a cut-edge. If a tree has more than two leaves, then it has an cut-edge that
not ends in a leaf. This implies a level-0 network with at least four leaves
can not be simple.

Suppose N and N ′ are not both level-1 or level-2. Without loss of
generality, say N is a level-1 network and N ′ is a level-2 network. The
underlying generator of N ′ is the level-2 generator (see Figure 3.3). Let x
and y be two leaves on two different sides of the generator in N ′. Note that
there exist at least two sides with a leaf on it since N ′ is level-2 and there are
no parallel edges in N ′ by the definition of a network. Consider a quarnet
of N that contains x and y. The quarnet has the same underlying generator
as N ′ and is therefore level-2. This is a contradiction as N is level-1 and
Qn(N) = Qn(N ′). So N and N ′ are both level-1 or level-2.

If N and N ′ are both level-1, then by Theorem 3.1 we have that N = N ′.
If N and N ′ are both level-2 networks, then by Theorem 3.2 we have that
N = N ′. So in both cases we can conclude that N = N ′.

3.2 Semi-directed

In this section we prove that the class of semi-directed binary simple level-2
networks is weakly encoded by quarnets. We will show this by first prove
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it for strict level-1 and strict level-2 networks separately. In the theorem
below we prove the result for semi-directed strict level-1 networks.

Theorem 3.4. The class of semi-directed binary simple strict level-1 net-
works with at least four leaves is weakly encoded by quarnets.

Proof. Assume there are two recoverable phylogenetic networks N and N ′

in the class of semi-directed binary simple strict level-1 networks with at
least four leaves such that Qn(N) = Qn(N ′). To prove that the class is
weakly encoded by quarnets we have to show that N = N ′.

By definition of the class the networks are all of the same form, which is
given in Figure 3.5. Therefore we only have to show that the leaf below the
reticulation and the circular order of the remaining leaves are the same for
N and N ′.

a3

an a2

a1

. .
.

Figure 3.5: The form of a semi-directed binary simple strict level-1 network.

Let x be the leaf below the reticulation vertex in N . Let y be one of the
two neighbours of x in N . Consider any quarnet containing x and y. This
quarnet is level-1 and is therefore of the same form as N and N ′. This holds
also for the quarnets that will be considered later in the proof. Now x is also
the leaf below the reticulation vertex in the quarnet. Since the direction of
the order of the remaining leaves is the only symmetry, it follows that x is
the leaf below the reticulation vertex in N ′.

Since y is a neighbour of x in N , y is also a neighbour of x in the quarnet.
Suppose y is not a neighbour of x in N ′. Then there exists a quarnet with
leaves p and q such that the circular order of these four leaves is x, p, y
and q. This gives a contradiction since Qn(N) = Qn(N ′). So y is also a
neighbour of x in N ′.

Now we can see the circular order of the leaves as starting with x and
ending with y. Then the remaining leaves are between x and y in the circular
order, as can be seen in Figure 3.6.
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y

x

. .
.

Figure 3.6: The form of a semi-directed binary simple strict level-1 network
with two leaves fixed for the start and end of the circular order.

Let v and w be any two leaves, not x or y. Consider the quarnet with x,
y, v and w. If v is earlier in the circular order than w in N , then the circular
order of the quarnet is x, v, w and y. Suppose w is earlier in the circular
order than v in N ′. Then the circular order of the considered quarnet is x,
w, v and y, which is a contradiction since Qn(N) = Qn(N ′). Similarly, we
get that if w is earlier in the circular order than v in N , w is earlier in the
circular order than v in N ′. As this can be done for all the different pairs
of leaves, the circular order of the leaves is the same for N and N ′. Now we
can conclude that N = N ′.

In the theorem below we prove the wanted result for semi-directed strict
level-2 networks. In this proof we use the possible underlying structures of
such a network, the two semi-directed level-2 generators as given in Figure
2.8. In contrast to undirected strict level-2 networks we have to distinguish
the possible underlying generators for semi-directed strict level-2 networks
as there are now multiple generators for the class of networks. Note that
in the theorem above we did not use the semi-directed level-1 generator
(see Figure 2.7) as underlying structure explicitly since the two different arc
sides can not be distinguished. Therefore we did not look at the order of the
leaves on these sides separately, but at the order of the leaves on these two
sides together. In this way we were still able to obtain the wanted result for
level-1.

Theorem 3.5. The class of semi-directed binary simple strict level-2 net-
works with at least four leaves is weakly encoded by quarnets.

Proof. Assume there are two recoverable phylogenetic networks N and N ′

in the class of semi-directed binary simple strict level-2 networks with at
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least four leaves such that Qn(N) = Qn(N ′). To prove that the class is
weakly encoded by quarnets we have to show that N = N ′.

By definition of the class the networks in this class can have two different
level-2 generators. In Figure 3.7 the two generators can be find with labelled
sides.

S5

S4S3

S1

S2

(a) Generator 2.1.

S4

S7

S6S5

S1

S2 S3

(b) Generator 2.2.

Figure 3.7: The two level-2 generators of semi-directed binary networks with
labelled sides.

If N has underlying generator 2.1, consider any quarnet of N with a leaf
on the reticulation side S5. The quarnet is a simple strict level-2 network
with underlying generator 2.1. This quarnet is also a quarnet of N ′ since
Qn(N) = Qn(N ′). This implies N ′ has underlying generator 2.1 as N ′ and
the quarnet are both simple level-2 networks. If N has underlying generator
2.2, consider any quarnet of N with two leaves on the reticulation sides S4

and S7. In the same way we get that N ′ has underlying generator 2.2. So N
and N ′ have the same underlying generator. In the remainder of the proof
we show for each of the generators that N = N ′.

Generator 2.1
Observe that generator 2.1 has symmetry. Sides S1 and S2 can be inter-
changed with each other to obtain an isomorphic generator. First consider
the case that there are no leaves on sides S1 and S2 in N (see Figure 3.8).
Note that in this case N has parallel arcs. Since any directed binary network
that is an orientation of the semi-directed binary network N can not have
any parallel arcs by definition, the root has to be on side S1 or S2 in N .
Note that it does not matter if the root is on side S1 or S2 in N because
of the symmetry. Since the root of N is known, the directions of all edges
are known. This implies there is only one possible directed binary network
ND that is an orientation of N . Since N has a pair of parallel arcs, each
q ∈ Q(N) has also parallel arcs by definition. Since Qn(N) = Qn(N ′) and
each q ∈ Qn(N) has parallel arcs, N ′ has also parallel arcs by definition of
an exhibited quarnet. In the same way as for N , this implies that there is
only one possible directed binary network N ′

D that is an orientation of N ′.
Recall that each q ∈ Q(N) has parallel arcs. Similar as for N , we now get
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that qD is known for each q ∈ Q(N). In other words, for each four leaves we
have a quarnet in Qn(N) that corresponds to a quarnet in Qn(ND). Since
Qn(N) = Qn(N ′), we have Qn(ND) = Qn(N ′

D). We get by Corollary 1 of
[14] that ND = N ′

D since N ′
D is recoverable as N ′ is simple. This implies

N = N ′ as wanted.

a3 a4
a5a2

a1

(a) N .

a1

a2

a3

a4

a5

(b) ND.

Figure 3.8: An example of a semi-directed binary networkN with underlying
generator 2.1 that has a unique orientation ND.

Now we assume that there is at least one leaf on side S1 or S2 in N .
Let x be the leaf on the reticulation side S5 in N . Consider any quarnet
containing x. The quarnet is level-2 and has therefore the same underlying
generator as N and N ′. Now x is also the leaf on the reticulation side S5 in
the quarnet. Since generator 2.1 has no symmetry which involves side S5,
it follows that x is also the leaf on the reticulation side S5 in N ′.

We assumed that there is at least one leaf on side S1 or S2 in N . Assume
without loss of generality that this leaf is on side S1 in N . Let p be a leaf
on side S1 in N . Let q be any other leaf on any side Si, not side S5, in
N . Consider a quarnet containing x, p and q. As before we have that the
quarnet is level-2 with underlying generator 2.1. The quarnet implies that
p is on side S1 or S2 in N ′. If p is on side S2 in N ′, sides S1 and S2 have to
be interchanged for N ′. Note that this is allowed because of the symmetry
of the generator. Since the symmetry of the generator is now fixed and
Qn(N) = Qn(N ′), using the same quarnet we have that q is a leaf on side
Si in N ′. We can do this for each leaf q on sides S1, S2, S3 and S4. Now N
and N ′ have the same leaves on each side of the generator.
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x

z y

Figure 3.9: A possible quarnet that can be used for a network to determine
the order of the leaves y and z on side S1. In this case y is below z on arc
side S1.

Let Si be any side with at least two leaves. Note that Si can be S1, S2,
S3 or S4. Let y and z be two leaves on side Si. Consider a quarnet contain-
ing x, y and z. Again we have that the quarnet is level-2 with underlying
generator 2.1. The order of y and z on side Si can be determined as the
side is an arc side (see Figure 3.9). If y is below z on arc side Si in N , then
this holds also for the quarnet. Since Qn(N) = Qn(N ′), y is also below z
on arc side Si in N ′. Similarly, we get that if z is below y on arc side Si in
N , y is also below z on arc side Si in N ′. So the order of the leaves on the
different sides is the same for N and N ′. Since N and N ′ have on each side
the same leaves in the same order, we can conclude N = N ′.

Generator 2.2
Observe that generator 2.2 has some symmetry. Sides S2, S3 and S4 can
be interchanged with sides S5, S6 and S7, respectively, to obtain an iso-
morphic generator. Sides S2 and S5 can be interchanged with sides S3 and
S6, respectively, again yielding an isomorphic generator. Note that for the
last mentioned symmetry the order of the leaves on the edge side S1 turns
around.

Let x be a leaf on side S4 and y a leaf on side S7 in N . Consider any
quarnet containing x and y. The quarnet is level-2 and has therefore the
same underlying generator as N and N ′. The quarnet implies that x and y
are on sides S4 and S7 in N ′. Assume without loss of generality that x is on
side S4 and y on side S7 in N ′.

Let z be a leaf on any side Si, not side S4 or S7, in N . Consider a
quarnet containing x, y and z. As before we have that the quarnet is level-2
with underlying generator 2.2. Now we get some results from the quarnet
using the symmetry and Qn(N) = Qn(N ′). If z is a leaf on side S1 in N ,

30



then z is a leaf on side S1 in N ′. If z is a leaf on side S2 or S3 in N , then z
is a leaf on side S2 or S3 in N ′. If z is a leaf on side S5 or S6 in N , then z
is a leaf on side S5 or S6 in N ′.

First we consider the case that there is at least one leaf on side S2, S3,
S5 or S6 in N . Let a be such a leaf. Without loss of generality, assume that
a is on the same side in N ′ as in N . Let b a leaf on side s ∈ {S2, S3, S5, S6},
not a, in N . Consider the quarnet with x, y, a and b. Again we have that
the quarnet is level-2 with underlying generator 2.2. Since a is fixed, b is
now on side s in N ′. So N and N ′ have on each side the same leaves.

Let p and q be two leaves that are both on side S2, S3, S5 of S6 in N .
Consider the quarnet with x, y, p and q. Again the quarnet is level-2 with
underlying generator 2.2. Using this quarnet we get that p and q are in the
same order in N ′ as in N .

If side S1 has no leaves or just one leaf, the order on side S1 is already
determined. For the case that side S1 has more than one leaf, the order of
the leaves have to determined. Let k be such a leaf on side S2, S3, S5 or
S6. Let l be the first leaf on side S1 viewing from side S2 in N . Consider
the quarnet with x, y, k and l. Again the quarnet is level-2 with underlying
generator 2.2. Using the quarnet l is also the first leaf on side S1 viewing
from side S2 in N ′ since the symmetry is already fixed.

If side S1 has two leaves, the order is now determined. For the case that
side S1 has more than two leaves, we continue with the order of the leaves.
Let m and n be two leaves on side S1, not l. Consider the quarnet with x,
l, m and n. Note that this quarnet is level-1. Since l is fixed, the order of m
and n on side S1 can be determined. If m is a neighbour of l in the quarnet,
then m is nearer to l than n on side S1 in N ′. If n is a neighbour of l in the
quarnet, then n is nearer to l than m on side S1 in N ′. As this can be done
for all leaves, the order of the leaves on side S1 is determined.

Now we consider the case that there are no leaves on sides S2, S3, S5 and
S6 in N . Then there are at least two leaves on side S1. If side S1 has two
leaves, the order of the two leaves on side S1 does not change the network
and we are done. For the case that S1 has more than two leaves, we continue
with the order of the leaves. Let r be the first leaf on either end of side S1 in
N . Consider a quarnet containing x, y and r. Again the quarnet is level-2
with underlying generator 2.2. Using the quarnet r is also the first leaf on
either end of side S1 in N ′. Note that it does not matter which first leaf it is
as the order of the leaves on side S1 can be turned around without changing
the network.

Let s and t be two leaves on side S1, not r. Consider the quarnet with x,
r, s and t. Note that this quarnet is level-1. Since r is fixed, the order of s
and t on side S1 can be determined. If s is a neighbour of r in the quarnet,
then s is nearer to r than t on side S1 in N ′. If t is a neighbour of r in the
quarnet, then t is nearer to r than s on side S1 in N ′. As this can be done
for all leaves, the order of the leaves on side S1 is determined.
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For all different cases N and N ′ have on each side the same leaves in the
same order. Therefore we can conclude N = N ′.

In the proof above we had to deal with networks that have parallel arcs.
We did not have these parallel arcs in the previous proofs of undirected and
semi-directed networks. Now we had a semi-directed network with parallel
arcs if the semi-directed network has underlying generator 2.1 and has no
leaves on sides S1 and S2 of the generator. Since we then know the root and
therefore also the directed network from which the semi-directed network
is obtained from, we use this unique orientation to prove the case of semi-
directed networks with parallel arcs. But note that the proof of this case
could also be shown in the same way as the other cases by proving that the
leaves are on the same sides of the generator using the quarnets. If we prove
the case of parallel arcs in the same way as the other cases, the orientation
of the network is no longer needed and only semi-directed networks are
considered. We preferred the way of proving using directed networks as
then the proof uses that the directions in the whole network are known.

If the network N has underlying generator 2.1, we only need quarnets
with at most three leaves fixed in the proof. Therefore the result for the
semi-directed binary generator 2.1 can also be proved by using trinets instead
of quarnets. This does not hold for the other considered generators in this
chapter.

We conclude this section by combining the results for strict level-1 and
strict level-2 network to obtain the result for level-2 networks as stated in
the theorem below.

Theorem 3.6. The class of semi-directed binary simple level-2 networks
with at least four leaves is weakly encoded by quarnets.

Proof. Assume there are two recoverable phylogenetic networks N and N ′

in the class of semi-directed binary simple level-2 networks with at least
four leaves such that Qn(N) = Qn(N ′). To prove that the class is weakly
encoded by quarnets we have to show that N = N ′.

By definition of the class the networks in this class are level-1 or level-
2. Note that there are no level-0 networks in the class. Level-0 networks
are networks without reticulations, also known as trees. Since level-0 net-
works have no reticulations, semi-directed level-0 networks have no arcs,
only edges. Each edge in a tree is a cut-edge. If a tree has more than two
leaves, then it has an cut-edge that not ends in a leaf. This implies a level-0
network with at least four leaves can not be simple.

Suppose N and N ′ are not both level-1 or level-2. Without loss of
generality, say N is a level-1 network and N ′ is a level-2 network. The
underlying generator of N ′ is level-2 generator 2.1 or 2.2 (see Figure 3.7).
Generator 2.1 has one reticulation side and generator 2.2 has two reticulation
sides. If the underlying generator of N ′ is 2.1, let x be the leaf on the
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reticulation side S5 in N ′. If the underlying of N ′ is 2.2, let x and y be the
leaves on the reticulation sides S4 and S7 in N ′. Consider a quarnet of N
that contains x (and y). The quarnet has the same underlying generator
as N ′ and is therefore level-2. This is a contradiction as N is level-1 and
Qn(N) = Qn(N ′). So N and N ′ are both level-1 or level-2.

If N and N ′ are both level-1, then by Theorem 3.4 we have that N = N ′.
If N and N ′ are both level-2 networks, then by Theorem 3.5 we have that
N = N ′. So in both cases we can conclude that N = N ′.
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Chapter 4

Decomposition theorems

In this chapter we will prove two decomposition theorems for undirected and
semi-directed binary networks. The first theorem considers CE-splits and
the second theorem considers restrictions.

4.1 Undirected

In this section we prove the two decomposition theorems for undirected
binary networks. For the first theorem, which is about CE-splits, we first
give some results. In the observation below the relation of CE-splits between
a network and its exhibited networks, for example its quarnets, is discussed.

Observation 4.1. Let N be an undirected binary network on X. Let {A,B}
a partition of X and C ⊆ X such that A ∩ C ̸= ∅ and B ∩ C ̸= ∅. Denote
N ′ as the undirected binary network on C exhibited by N . If {A,B} is a
CE-split of N , then {A ∩ C,B ∩ C} is a CE-split of N ′.

In contrast to semi-directed networks undirected networks do not always
have an orientation (see Figure 4.1).

x

Figure 4.1: An example of an undirected binary network that has no ori-
entation. Both nontrivial biconnected components are strongly redundant.
Since these components are not connected to a leaf, they must both contain
the root in order to have an orientation of the network, which is not possible.
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Following lemma implies that if we add the condition recoverable to the
undirected binary network, it is guaranteed that there is an orientation of
the network. This lemma is therefore used in Observations 4.3 and 4.4. Note
that it is even guaranteed that there is an orientation at a leaf.

Lemma 4.2 (Lemma 2.69 in [8]). Let N be an undirected binary network on
X. Then N is orientable at any leaf ρ ∈ X if and only if N is recoverable.

Above theorem considers orientations at a leaf. If an undirected network
is not recoverable, it can still have an orientation (see Figure 4.2).

x

Figure 4.2: An example of an undirected binary network that is not redun-
dant, but has an orientation. In an orientation of the network the root is in
the nontrivial biconnected component. For example, the root can be placed
on the upper edge of the network.

The following observation describes the relationship between the CE-
splits of an undirected network and the CA-splits of any of its orientations.

Observation 4.3. Let N be a recoverable undirected binary network on X,
ND any directed binary network that is an orientation of N (ND exists by
Lemma 4.2) and {A,B} a partition of X. Then {A,B} is a CE-split of N
if and only if {A,B} is a CA-split of ND.

For semi-directed networks the choice for an orientation does not have
any influence on its exhibited networks (see Observation 4.8). This is differ-
ent for undirected networks as it can make a difference.

35



b1 b2

a1 a2
c

(a) N .

b1 b2

a1 a2

(b) A quarnet N ′ of N .

a1

a2 b2

b1

c

(c) An orientation ND of N .

a1 a2 b2

b1

(d) A quarnet N ′
D of ND.

Figure 4.3: An undirected binary network N with an orientation ND for
which the exhibited quarnets N ′ and N ′

D on {a1, a2, b1, b2} holds that
{{a1, a2}, {b1, b2}} is a CA-split of N ′

D but not a CE-split of N ′.

Figure 4.3 shows that not both implications of Observation 4.3 hold for
a quarnet of an undirected network and a quarnet of any orientation of the
undirected network. Therefore we get the following observation for exhibited
networks.

Observation 4.4. Let N be a recoverable undirected binary network on X
and ND any directed binary network that is an orientation of N (ND exists
by Lemma 4.2). Let C ⊆ X and {A,B} a partition of C. Denote N ′ as
the undirected binary network on C exhibited by N and N ′

D as the directed
binary network on C exhibited by ND. If {A,B} is a CE-split of N ′, then
{A,B} is CA-split of N ′

D.

Using the results above we are able to prove the first decomposition
theorem for undirected networks, which is given below. We already saw
that recoverable undirected binary networks are always orientable at a leaf.
Therefore we use this relation with directed networks in the proof. Note
that in order to do this we use some results of directed networks.
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Theorem 4.5. Let N be a recoverable undirected binary network on X and
{A,B} a partition of X.

(i) If |A| = 1 or |B| = 1, then {A,B} is a CE-split of N .

(ii) Otherwise, if |A| ≥ 2 and |B| ≥ 2, then {A,B} is a CE-split of N if
and only if for all a1, a2 ∈ A with a1 ̸= a2 and b1, b2 ∈ B with b1 ̸=
b2, {{a1, a2}, {b1, b2}} is a CE-split of the quarnet on {a1, a2, b1, b2}
exhibited by N .

Proof. Let N be a recoverable undirected binary network on X and {A,B}
a partition of X.

(i) Assume |A| = 1 or |B| = 1. Since each leaf of an undirected binary
network is connected to a cut-egde, {A,B} is a CE-split of N .

(ii) Assume |A| ≥ 2 and |B| ≥ 2.
“ =⇒ ” Assume {A,B} is a CE-split of N . Let a1, a2 ∈ A with

a1 ̸= a2 and b1, b2 ∈ B with b1 ̸= b2. There exists a unique quarnet Q
on {a1, a2, b1, b2} in Qn(N). Now by Observation 4.1 {{a1, a2}, {b1, b2}} is
a CE-split of Q.

“ ⇐= ” Assume that for all a1, a2 ∈ A with a1 ̸= a2 and b1, b2 ∈ B with
b1 ̸= b2, {{a1, a2}, {b1, b2}} is a CE-split of the quarnet on {a1, a2, b1, b2}
exhibited by N . Let ρ ∈ X. By Lemma 4.2 N is orientable at ρ. Let ND be
the directed binary network that is the orientation of N that corresponds
to orienting N at ρ. Note that Qn(ND) is the set of quarnets that can be
exhibited by ND as defined in [11] or [14].

Since {A,B} is a partition of X, we have ρ ∈ A or ρ ∈ B. Without loss
of generality, we can say that ρ ∈ A. The leaves in X \ {ρ} are below a
different cut-arc leaving the root of ND than leaf ρ. Therefore ρ is not in a
CA-set of ND that contains at least one other x ∈ X. This implies that A is
not a CA-set of ND. Further observe that with the same reasoning we get
that for each quarnet qD ∈ Qn(ND) there exists no CA-set that contains ρ
and at least one other x ∈ X.

By Observation 4.4 our assumption implies that for all a1, a2 ∈ A with
a1 ̸= a2 and b1, b2 ∈ B with b1 ̸= b2, {{a1, a2}, {b1, b2}} is a CA-split of the
quarnet on {a1, a2, b1, b2} exhibited by ND. Choosing a2 = ρ implies that
for all a1 ∈ A with a1 ̸= ρ and b1, b2 ∈ B with b1 ̸= b2, {{a1, ρ}, {b1, b2}} is
a CA-split of the quarnet on {a1, ρ, b1, b2} exhibited by ND. Then {a1, ρ} or
{b1, b2} is a CA-set of the quarnet on {a1, ρ, b1, b2} exhibited by ND. Earlier
we saw that {a1, ρ} is not a CA-set. So {b1, b2} is a CA-set of the quarnet
on {a1, ρ, b1, b2} exhibited by ND.

Now, by Observation 4 of [14], {b1, b2} is a CA-set of the trinet on
{a1, b1, b2} exhibited by ND, where a1 ∈ A \ {ρ}. Again by Observation
4 of [14], {b1, b2} is a CA-set of the trinet on {ρ, b1, b2} exhibited by ND.
Combining these results gives that for all a ∈ A and b1, b2 ∈ B with b1 ̸= b2,
{b1, b2} is a CA-set of the trinet on {a, b1, b2} exhibited by ND.
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Then, by Theorem 1 of [14], B is a CA-set of ND. So {A,B} is a CA-split
of ND. By Observation 4.3 {A,B} is a CE-split of N as wanted.

Now we have proved the first decomposition theorem for undirected bi-
nary networks, we continue with the second decomposition theorem. The
proof of this theorem is based on the proof of Theorem 2 in [14] for directed
binary networks. The structure of the proof is therefore very similar. The
main difference is that we now make an extra assumption, namely that the
network has no redundant biconnected component.

Theorem 4.6. A recoverable undirected binary network N on X, with
|X| ≥ 4 and no redundant biconnected components, is encoded by its quar-
nets Qn(N) if and only if, for each nontrivial biconnected component B of
N with at least five incident cut-edges, NB is encoded by Qn(NB).

Proof. Let N be a recoverable undirected binary network on X with |X| ≥ 4
and no redundant biconnected components.

“ =⇒ ” Assume N is encoded by its quarnets Qn(N). Consider any
nontrivial biconnected component B of N with at least five incident cut-
edges. Suppose that NB is not encoded by Qn(NB). Then there exists
a recoverable undirected binary network N ′

B ̸= NB such that Qn(NB) =
Qn(N ′

B). By Theorem 4.5 N ′
B has the same CE-splits as NB. By definition

of NB this implies that each CE-split of N ′
B has one set that is a singleton.

Suppose N ′
B has a redundant biconnected component R. Note that R

has exactly two incident cut-edges. Since each CE-split of N ′
B has one set

that is a singleton, one incident cut-edge of R leads to a single leaf x and the
other incident cut-edge of R leads to the other leaves. Now each quarnet con-
taining x also contains R. This is not possible because Qn(NB) = Qn(N ′

B)
and an undirected binary simple network without redundant biconnected
components has no quarnets with redundant biconnected components. This
shows that N ′

B has no redundant biconnected components.
If we combine that N ′

B has no redundant biconnected components and
that all CE-splits of N ′

B have one set that is a singleton, we get that N ′
B

consists of one nontrivial biconnected component with incident cut-edges to
the leaves. So N ′

B is a simple network.
Let B′ be the nontrivial biconnected component of N ′

B. Let N ′ be the
result of replacing B by B′ in N . Note that N ′ is recoverable. We will show
that Qn(N) = Qn(N ′).

Let Q ∈ Qn(N) and let w, x, y and z be the leaves of Q. If the incident
cut-edges of B that are leading to w, x, y and z are all different or all the
same, then we have that Q ∈ Qn(N ′) since the only difference between N
and N ′ is that B is replaced by B′ and that Qn(NB) = Qn(N ′

B).
Now suppose the incident cut-edges of B that are leading to w, x, y and

z are not all different and also not all the same. Let A be a maximal subset
of {w, x, y, z} such that each incident cut-edge of B is leading to at most one
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leaf in A. Note that |A| = 2 or |A| = 3. Since B has at least five incident
cut-edges, we can find one leaf (if |A| = 3) or two leaves (if |A| = 2) such
that together with A we have four leaves which corresponds to four different
incident cut-edges of B. Since Qn(NB) = Qn(N ′

B) we now have that the
subnetworks on A exhibited by N and N ′ are the same. Now the quarnet
on w, x, y and z is the same for N and N ′ since the only differences are in
the parts corresponding to incident cut-edges of B and these parts outside
B are the same for N and N ′. Now we have showed that Qn(N) = Qn(N ′).
This contradicts the assumption that N is encoded by Qn(N).

“ ⇐= ” Assume that for each nontrivial biconnected component B of N
with at least five incident cut-edges, NB is encoded by Qn(NB). Suppose
that N is not encoded by Qn(N). Then there exists a recoverable undirected
binary network N ′ ̸= N with Qn(N) = Qn(N ′). We will show that N = N ′.

Suppose N ′ has a redundant biconnected component R. If R is con-
nected to other redundant biconnected components, we redefine R as the
maximum set of connected redundant biconnected components that con-
tains the redundant biconnected component R. The two incident cut-edges
that connect R with the rest of N ′ we then call the incident cut-edges of R.
By Theorem 4.5 N ′ has the same CE-splits as N . Since R has exactly two
incident cut-edges, R is always connected to two other biconnected com-
ponents by its incident cut-edges. If one of the incident cut-edges of R is
connected to a leaf, then with a similar reasoning as we used for NB and
N ′

B in the proof for the other implication of the theorem we get that N
and N ′ have no redundant biconnected components. Now if both incident
cut-edges of R are not connected to a leaf, then both incident cut-edges
of R are connected to a biconnected component with at least two incident
cut-edges besides the incident cut-edge connected to R. So both incident
cut-edges of R are leading to at least two leaves. Consider the quarnet on
{w, x, y, z} such that one incident cut-edge of R leads to w and x and the
other incident cut-edges of R leads to y and z. Then this quarnet contains
R. This is a contradiction since Qn(N) = Qn(N ′) and N has no redundant
biconnected components. So in both cases we get that N ′ has no redundant
biconnected components.

At this point, we observe that, for a biconnected component B with
exactly four incident cut-edges, NB is trivially encoded by Qn(NB), since
in that case NB is isomorphic to the single quarnet in Qn(NB).

The rest of the proof is by induction on |X|. If |X| = 4, then, since N
and N ′ are recoverable, N and N ′ are both equal to the single quarnet in
Qn(N) and we are done.

Now assume |X| ≥ 5. Let B0 an arbitrary biconnected component of N .
Let e1 = u1v1, . . . , eb = ubvb be the incident cut-edges of B0, where u1, . . . ,
ub are in B0. Note that b ≥ 3 since N is recoverable and has no redundant
biconnected components.

Let N1, . . . , Nb be the connected components after deleting B0 and
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new leaves p1, . . . , pb with edges vipi for 1 ≤ i ≤ b, such that Ni contains
vi. We call Xi the set of leaves of Ni for 1 ≤ i ≤ b. Then, since b ≥ 3,
we have |Xi| < |X|. Note that Ni is recoverable and has no redundant
biconnected components for 1 ≤ i ≤ b since N has no redundant biconnected
components.

We saw that N ′ has the same CE-splits as N . Thus, {Xi, X \ {Xi}} is
a CE-split of N ′ for 1 ≤ i ≤ b. Now, since a tree is uniquely defined by its
splits ([2]), viewing the biconnected components of N and N ′ as vertices of
two trees shows that N ′ has a biconnected component B′

0 with b incident
cut-edges for which the CE-splits agree with the CE-splits of the incident
cut-edges of B0. Let e′1 = u′1v

′
1, . . . , e

′
b = u′b, v

′
b be the incident cut-edges

of B′
0, where u′1, . . . , u′b are in B′

0. Let N ′
1, . . . , N ′

b be the connected
components after deleting B′

0 and new leaves p′1, . . . , p
′
b with edges v′ip

′
i for

1 ≤ i ≤ b, such that N ′
i contains v

′
i. Assume without loss of generality that

N ′
i is a network on Xi for 1 ≤ i ≤ b. Note that we can choose the new leaves

p′1, . . . , p
′
b such that p′i = pi holds for 1 ≤ i ≤ b. Further note that N ′

i is
recoverable and has no redundant biconnected components for 1 ≤ i ≤ b
since N ′ has no redundant biconnected components.

Now we look at the quarnets of Ni and N ′
i . Let i ∈ {1, . . . , b}. Let l1,

l2, l3 and l4 be four different leaves of Ni. If pi is not of the four leaves,
then the quarnet exhibited on {l1, l2, l3, l4} by Ni is also a quarnet of N and
therefore known. If pi is one of the four leaves, say l4, then we can obtain
the quarnet exhibited on {l1, l2, l3, pi} by Ni in the following way. Let p ∈ X
a leaf that is not in Ni. Let Q be the quarnet exhibited on {l1, l2, l3, p} by
N and subsequently suppressing all the redundant biconnected components
that are connected to p. Then Q is the wanted quarnet of Ni. For N

′
i we can

obtain the quarnets in the same way. So Qn(Ni) and Qn(N ′
i) are known. To

show that N = N ′, it remains to show that NB0 = NB′
0
and that Ni = N ′

i

for 1 ≤ i ≤ b.
First, we show that NB0 = NB′

0
. Observe that Qn(NB0) = Qn(NB′

0
) (if

for any four leaves yj , yk, yl, ym the quarnet in Qn(NB0) and the quarnet
in Qn(NB′

0
) would be different, then for any four leaves xj , xk, xl, xm in

the parts of the network corresponding to incident cut-edges ej , ek, el, em,
respectively, the quarnet in Qn(N) and the quarnet in Qn(N ′) would be
different). If b ≥ 5, then NB0 = NB′

0
holds because Qn(NB0) = Qn(NB′

0
)

and by assumption NB0 is encoded by Qn(NB0). Moreover, b ≥ 3 since N is
recoverable and has no redundant biconnected components. For b = 4 the
statement NB0 = NB′

0
is trivially true.

The only case left is b = 3. Consider a leaf in each of the three parts
corresponding to the three incident cut-edges of B0, namely leaves l1, l2 and
l3. Since |X| ≥ 4, we can find another leaf l4 ofN . Consider the quarnetQ in
Qn(N) on {l1, l2, l3, l4}. Since Qn(N) = Qn(N ′) we now get that the trinets
on {l1, l2, l3} exhibited by N and N ′, respectively, are the same. Let B0(T )
be the biconnected component of this trinet T such that the component has
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three incident cut-edges that lead to l1, l2 and l3, respectively. Then we
have that NB0(T ) = NB0 . Moreover, since N ′ also exhibits T , we have that
NB0(T ) = NB′

0
. It follows that NB0 = NB′

0
.

Now let i ∈ {1, . . . , b}. We will show that Ni = N ′
i . Observe that

Qn(Ni) = Qn(N ′
i) for similar reasons as we used for showing thatQn(NB0) =

Qn(NB′
0
). Since |Xi| < |X|, the statement Ni = N ′

i follows by induction
if (a) Ni and N ′

i are recoverable and have no redundant biconnected com-
ponents and (b) |Xi| ≥ 4. Note that (a) holds since N and N ′ have no
redundant biconnected components. If |Xi| = 1, then clearly Ni = N ′

i be-
cause both consist of a single leaf. The only cases left are |Xi| = 2 and
|Xi| = 3.

First we consider the case that |Xi| = 2. Denote the two leaves of Xi

with l1 and l2. Since |X| ≥ 4, we can find two other leaves l3 and l4 of N .
Consider the quarnet Q in Qn(N) on {l1, l2, l3, l4}. Since Qn(N) = Qn(N ′)
we now get that the binets on {l1, l2} exhibited by N and N ′, respectively,
are the same. So Ni = N ′

i holds.
Now we consider the case that |Xi| = 3. Denote the three leaves of Xi

with l1, l2 and l3. Since |X| ≥ 4, we can find another leaf l4 of N . Consider
the quarnet Q in Qn(N) on {l1, l2, l3, l4}. Since Qn(N) = Qn(N ′) we now
get that the trinets on {l1, l2, l3} exhibited by N and N ′, respectively, are
the same. So Ni = N ′

i holds.
Since for all cases NB0 = NB′

0
and Ni = N ′

i for 1 ≤ i ≤ b holds, we can
conclude that N = N ′, which gives a contradiction.

4.2 Semi-directed

In this section we prove the two decomposition theorems for semi-directed
binary networks. For the first theorem, which is about CE-splits, we first
give some results. Recall from Lemma 2.22 that semi-directed binary net-
works have no cut-arcs and therefore we do not have to consider cut-arcs
or CA-splits for semi-directed binary networks. In the observation below
the relation of CE-splits between a network and its exhibited networks, for
example its quarnets, is discussed.

Observation 4.7. Let N be a semi-directed binary network on X. Let
{A,B} a partition of X and C ⊆ X such that A ∩ C ̸= ∅ and B ∩ C ̸= ∅.
Denote N ′ as the semi-directed binary network on C exhibited by N . If
{A,B} is a CE-split of N , then {A ∩ C,B ∩ C} is a CE-split of N ′.

In contrast to undirected networks semi-directed networks always have
an orientation by definition. Now we do not need the condition recoverable
to guarantee this.

The following observation shows that the order of exhibiting a network
and obtaining a semi-directed binary network from a directed binary net-
work gives the same semi-directed binary network as result. In other words,
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the choice for an orientation does not have any influence on its exhibited
networks. Note that this was not the case for undirected binary networks.

Observation 4.8. Let N be a semi-directed binary network on X and ND

any directed binary network that is an orientation of N . Then for all C ⊆ X
the semi-directed binary network on C exhibited by N can be obtained from
the directed binary network on C exhibited by ND.

By how a semi-directed network is constructed from a directed network
it is easy to obtain the following observation about the relationship between
the CE-splits of a semi-directed network and the CA-splits of any of its orien-
tations. Note that this also holds for the exhibited networks by Observation
4.8.

Observation 4.9. Let N be a semi-directed binary network on X, ND any
directed binary network that is an orientation of N and {A,B} a partition
of X. Then {A,B} is a CE-split of N if and only if {A,B} is a CA-split of
ND.

Using the results above we are able to prove the first decomposition
theorem for semi-directed networks, which is given below. Note that re-
coverable semi-directed binary networks are not always orientable at a leaf.
This differs with recoverable undirected binary networks as they are always
orientable at a leaf. Therefore we distinguish for semi-directed networks the
case that the network is orientable at a leaf and the case that this does not
hold.

Theorem 4.10. Let N be a recoverable semi-directed binary level-2 network
on X and {A,B} a partition of X.

(i) If |A| = 1 or |B| = 1, then {A,B} is a CE-split of N .

(ii) Otherwise, if |A| ≥ 2 and |B| ≥ 2, then {A,B} is a CE-split of N if
and only if for all a1, a2 ∈ A with a1 ̸= a2 and b1, b2 ∈ B with b1 ̸=
b2, {{a1, a2}, {b1, b2}} is a CE-split of the quarnet on {a1, a2, b1, b2}
exhibited by N .

Proof. Let N be a recoverable semi-directed binary level-2 network on X
and {A,B} a partition of X.

(i) Assume |A| = 1 or |B| = 1. Since each leaf of a semi-directed binary
network is connected to a cut-edge, {A,B} is a CE-split of N .

(ii) Assume |A| ≥ 2 and |B| ≥ 2.
“ =⇒ ” Assume {A,B} is a CE-split of N . Let a1, a2 ∈ A with

a1 ̸= a2 and b1, b2 ∈ B with b1 ̸= b2. There exists a unique quarnet Q
on {a1, a2, b1, b2} in Qn(N). Now by Observation 4.7 {{a1, a2}, {b1, b2}} is
a CE-split of Q.
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“ ⇐= ” Suppose N is orientable at a leaf ρ ∈ X. Assume that for all
a1, a2 ∈ A with a1 ̸= a2 and b1, b2 ∈ B with b1 ̸= b2, {{a1, a2}, {b1, b2}}
is a CE-split of the quarnet on {a1, a2, b1, b2} exhibited by N . Let ND be
the directed binary network that is the orientation of N that corresponds
to orienting N at ρ. Note that Qn(ND) is the set of quarnets that can be
exhibited by ND as defined in [11] or [14]. Further note that the quarnets
Qn(N) can be obtained from Qn(ND) by Observation 4.8.

Since {A,B} is a partition of X, we have ρ ∈ A or ρ ∈ B. Without loss
of generality, we can say that ρ ∈ A. The leaves in X \ {ρ} are below a
different cut-arc leaving the root of ND than leaf ρ. Therefore ρ is not in a
CA-set of ND that contains at least one other x ∈ X. This implies that A is
not a CA-set of ND. Further observe that with the same reasoning we get
that for each quarnet qD ∈ Qn(ND) there exists no CA-set that contains ρ
and at least one other x ∈ X.

By Observation 4.9 our assumption implies that for all a1, a2 ∈ A with
a1 ̸= a2 and b1, b2 ∈ B with b1 ̸= b2, {{a1, a2}, {b1, b2}} is a CA-split of the
quarnet on {a1, a2, b1, b2} exhibited by ND. Choosing a2 = ρ implies that
for all a1 ∈ A with a1 ̸= ρ and b1, b2 ∈ B with b1 ̸= b2, {{a1, ρ}, {b1, b2}} is
a CA-split of the quarnet on {a1, ρ, b1, b2} exhibited by ND. Then {a1, ρ} or
{b1, b2} is a CA-set of the quarnet on {a1, ρ, b1, b2} exhibited by ND. Earlier
we saw that {a1, ρ} is not a CA-set. So {b1, b2} is a CA-set of the quarnet
on {a1, ρ, b1, b2} exhibited by ND.

Now, by Observation 4 of [14], {b1, b2} is a CA-set of the trinet on
{a1, b1, b2} exhibited by ND, where a1 ∈ A \ {ρ}. Again by Observation
4 of [14], {b1, b2} is a CA-set of the trinet on {ρ, b1, b2} exhibited by ND.
Combining these results gives that for all a ∈ A and b1, b2 ∈ B with b1 ̸= b2,
{b1, b2} is a CA-set of the trinet on {a, b1, b2} exhibited by ND.

Then, by Theorem 1 of [14], B is a CA-set of ND. So {A,B} is a CA-
split of ND. By Observation 4.9 {A,B} is a CE-split of N as wanted.

Now suppose N is not orientable at a leaf ρ ∈ X. Assume that for all
a1, a2 ∈ A with a1 ̸= a2 and b1, b2 ∈ B with b1 ̸= b2, {{a1, a2}, {b1, b2}} is
a CE-split of the quarnet on {a1, a2, b1, b2} exhibited by N . Let ND be any
directed binary network that is an orientation of N . Note that Qn(ND) is
the set of quarnets that can be exhibited by ND as defined in [11] or [14].
Further note that the quarnets Qn(N) can be obtained from Qn(ND) by
Observation 4.8.

By Observation 4.9 our assumption implies that for all a1, a2 ∈ A with
a1 ̸= a2 and b1, b2 ∈ B with b1 ̸= b2, {{a1, a2}, {b1, b2}} is a CA-split of the
quarnet on {a1, a2, b1, b2} exhibited by ND.

Denote the biconnected component of ND that contains the root as Br.
Further denote the number of outgoing cut-arcs of Br with k. Since N has
no strongly redundant components, Br has at least two outgoing cut-arcs.
So we have k ≥ 2. Since the outgoing cut-arcs of Br are not ordered, we
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fix the cut-arcs in an arbitrary order for the prove. We define the following
sets for i = 1, . . . , k:

Ai = {a ∈ A|a is below the i-th outgoing cut-arc of Br}

Bi = {b ∈ B|b is below the i-th outgoing cut-arc of Br}
Ci = Ai ∪Bi

Note that {∪k
i=1Ai,∪k

i=1Bi} = {A,B} and ∪k
i=1Ci = X.

Claim: At least one of the following holds:

(a) there exists i ∈ {1, . . . , k} such that Ai = A,

(b) there exists j ∈ {1, . . . , k} such that Bj = B,

(c) for all l ∈ {1, . . . , k} holds that Cl = Al or Cl = Bl (which implies
Bl = ∅ or Al = ∅).

Proof of claim: Assume (a) and (b) are both not true. Then there exist
i1, i2 ∈ {1, . . . , k} with i1 ̸= i2 such that Ai1 ̸= ∅ and Ai2 ̸= ∅. There exist
also j1, j2 ∈ {1, . . . , k} with j1 ̸= j2 such that Bj1 ̸= ∅ and Bj2 ̸= ∅. Let
a1 ∈ Ai1 , a2 ∈ Ai2 , b1 ∈ Bj1 and b2 ∈ Bj2 .

Suppose a1, a2, b1 and b2 are not below four different outgoing cut-arcs of
Br. Without loss of generality, a1 and b1 are below the same outgoing cut-arc
of Br. Then a2 and b2 are not below this outgoing cut-arc of Br. Note that
then {{a1, a2}, {b1, b2}} is not a CA-split of the quarnet on {a1, a2, b1, b2}
exhibited by ND. This gives a contradiction.

So a1, a2, b1 and b2 are below four different outgoing cut-arcs of Br.
Since a1 ∈ A and b1 ∈ B were chosen arbitrarily, we now see that for any
a1 ∈ A and b1 ∈ B holds that they are below different outgoing cut-arcs of
Br. This implies that (c) holds, which concludes the proof of the claim.

Br

. . .A B1 B2 Bl

Figure 4.4: Br with outgoing arcs to different components when (a) (or (b))
of the claim holds.

Assume (a) or (b) of the claim holds (see Figure 4.4). Without loss of
generality, we can say there exists i ∈ {1, . . . , k} such that Ai = A. This
implies all a ∈ A are below the same outgoing cut-arc of Br.
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Assume there is no b ∈ B that is below the same outgoing cut-arc of Br

as the leaves of A. Consider the outgoing cut-arc of Br that has the leaves
of A below it. In other words, we consider the i-th outgoing cut-arc of Br.
This cut-arc implies that A is a CA-set. So {A,B} is a CA-split of ND. By
Observation 4.7 {A,B} is a CE-split of N .

Now assume there is a b ∈ B that is below the same outgoing cut-arc
of Br as the leaves of A. Note that there is at least one b∗ ∈ B that is not
below the same outgoing cut-arc of Br as the leaves of A since there are at
least two outgoing cut-arcs leaving Br. Choose such a b∗ arbitrary. Further
note that B is not a CA-set of ND since the biconnected component Br

contains no cut-arcs by definition and at least two outgoing cut-arcs of Br

have a leaf b ∈ B below it. Therefore we need to prove that A is a CA-set
of ND.

To show this we consider a part of ND. Therefore we define the directed
binary network N ′

D. We get this network by first replacing the root compo-
nent Br of ND by a single vertex r. Subsequently r has the outgoing arcs
(r, v) and (r, b∗), where v comes from the i-th outgoing cut-arc (u, v) of Br.
This implies the part below the i-th outgoing cut-arc of Br of ND is also in
N ′

D.
Note that we can get the quarnets Qn(N ′

D) from the corresponding quar-
nets of ND. If such a quarnet does not contain b∗, then the quarnet of ND

and N ′
D are equal. On the other hand, if such a quarnet contains b∗, we can

get the quarnet exhibited by N ′
D in the same way from the quarnet exhibited

by ND as we constructed N ′
D from ND. Note that the root component of

a quarnet containing b∗ can already be a single vertex before it is replaced.
Further note that the parts below outgoing cut-arcs of Br without leaves of
A are removed from the network except for b∗.

Now we know the directed binary network N ′
D and its quarnets Qn(N ′

D).
Observe that N ′

D has the arc (r, b∗) where r is the root of N ′
D. Now using

the proof for the case that N is orientable at a leaf ρ ∈ X gives that A is
now a CA-set of N ′

D. By how we constructed N ′
D from ND we know that A

is also a CA-set of ND. Then {A,B} is a CA-split of ND. By Observation
4.9 {A,B} is now a CE-split of N as wanted.
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Br

. . .A1 B1 B2 Bl2. . .A2 Al1

Figure 4.5: Br with outgoing arcs to different components when (c) of the
claim holds.

Now assume (a) and (b) of the claim do not hold. By the claim we know
that (c) holds (see Figure 4.5). Now we know that Br then has at least four
outgoing cut-arcs since it has at least two outgoing cut-arcs with leaves of
A below it and at least two outgoing cut-arcs with leaves of B below it.

Note that since N is level-2, ND is also level-2. Therefore Br has at most
2 reticulations. If the underlying generator of Br is level-0, Br is a single
vertex. Then Br has at most two outgoing cut-arcs, which is a contradiction.
Now we know that the underlying generator of Br is the level-1 generator
or one of the two level-2 generators 2.1 and 2.2.

First we consider the case that Br has the level-1 generator as underlying
generator. Suppose without loss of generality that the leaves below the
reticulation are in B. Let b1 one of the leaves below the reticulation. Let
b2 ∈ B a leaf below another outgoing cut-arc of Br. Let a1, a2 ∈ A be
two leaves below two different outgoing cut-arcs of Br. We already saw
that a1, a2, b1 and b2 are now below four different outgoing cut-arcs of Br.
Consider the quarnet on {a1, a2, b1, b2} exhibited by ND. The quarnet is
simple, because there is one reticulation side and we have a leaf below it.
This implies that the only cut-arcs are the outgoing cut-arcs to the leaves
a1, a2, b1 and b2. So only the four singletons {a1}, {a2}, {b1} and {b2} are
CA-sets of the quarnet. Therefore {{a1, a2}, {b1, b2}} is not a CA-split of
the quarnet. By Observation 4.9 {{a1, a2}, {b1, b2}} is not a CE-split of the
quarnet on {a1, a2, b1, b2} exhibited by N . This gives a contradiction.
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b1
b2

a1 a2

Figure 4.6: A possible quarnet without CE-split {{a1, a2}, {b1, b2}} that has
underlying generator 2.1.

We can deal with the case that Br has level-2 generator 2.1 as underly-
ing generator in the same way (see Figure 4.6). This is because the level-1
generator and level-2 generator 2.1 have both one reticulation side. Now
we consider the case that Br has level-2 generator 2.2 as underlying gen-
erator. Let x1 be a leaf below the reticulation that corresponds to side S4

of generator 2.2. Let x2 be a leaf below the reticulation that corresponds
to side S7 of generator 2.2. Let y and z be two leaves such that x1, x2, y
and z are below four different outgoing cut-arcs of Br and that two leaves
are in A and two leaves are in B. Consider the quarnet on {x1, x2, y, z}
exhibited by ND. The quarnet is simple, because there are two reticula-
tion sides and we have a leaf below both of them. This implies that the
only cut-arcs are the outgoing cut-arcs to the leaves x1, x2, y and z. So
only the four singletons {x1}, {x2}, {y} and {z} are CA-sets of the quar-
net. Therefore {{x1, x2, y, z} ∩ A, {x1, x2, y, z} ∩ B} is not a CA-split of
the quarnet. Note that we have chosen the leaves in such a way that each
part of the partition consists of two leaves. By Observations 4.8 and 4.9
{{x1, x2, y, z} ∩ A, {x1, x2, y, z} ∩ B} is not a CE-split of the quarnet on
{x1, x2, y, z} exhibited by N . Since the quarnet has two leaves in A and two
leaves in B, this gives a contradiction.

The decomposition theorem above has another difference with the de-
composition theorem for undirected networks. The decomposition theorem
for semi-directed networks is only stated for level-2 networks. The level-2
condition is only used for semi-directed binary networks that are not ori-
entable at a leaf. We have used the level-2 condition there only in the proof
for the part that (a) and (b) of the claim both do not hold. In other words,
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we have used there the level-2 condition if only (c) of the claim holds. For
the rest of the proof the level-2 condition is not used and is therefore proved
for general recoverable semi-directed binary networks. This means, for ex-
ample, that for semi-directed binary networks that are orientable at a leaf
the theorem always holds.

Since the proof for the part that only (c) of the claim holds is the only
part of the proof that depends on level-k of the root component Br, we
only have to investigate this part of the second decomposition theorem for
k ≥ 3. For semi-directed binary level-k generators (k ≥ 3) with one or
two reticulation sides the proof follows in the same way as we did in the
proof for the level-1 generator or level-2 generator 2.2, respectively. If such
a generator has more than two reticulation sides more proof is needed in
order to show the wanted result for higher level networks.

If we consider the part that only (c) of the claim holds for a recoverable
semi-directed binary level-3 networks, then we know that Br is level-3. The
cases that Br is level-3 but not strict level-3 we already considered in the
proof of the theorem. If Br is strict level-3, then Br has one of the 17
semi-directed binary level-3 generators (see Appendix A.2) as underlying
generator. These generators have at most three reticulation sides. If the
level-3 generator of Br has one or two reticulation sides, we can deal with
this generator in the same way as we did in the proof for the level-1 generator
or level-2 generator 2.2, respectively.

The proof for a semi-directed binary level-3 generator with three reticu-
lation sides does not follow easily and is therefore different from the proofs
for the generators we already have discussed. If we could assume that N is
not orientable at any cut-edge of N , then the rest of the proof for level-3
would be as follows: In the beginning of (c) of the claim we showed that
Br has at least four outgoing cut-arcs. Three of these outgoing cut-arcs are
below the three reticulation sides. Since there are at least four outgoing
cut-arcs, there exists a fourth outgoing cut-arc that is above these reticu-
lations. Then N is orientable at the cut-edge in N corresponding to this
fourth outgoing cut-arc of Br in ND. This gives a contradiction.

Note that in order to prove the second decomposition theorem for level-3
we still need to show that the theorem holds in case that N is orientable at
a cut-edge of N . In the proof of the theorem we now have showed that the
theorem holds in case that N is orientable at a leaf ρ ∈ X, which is only a
special case of N being orientable at a cut-edge of N .

Now we have proved the first decomposition theorem for semi-directed
binary networks, we continue with the second decomposition theorem. The
proof of this theorem is based on the proof of Theorem 2 in [14] for directed
binary networks. The structure of the proof is therefore very similar. The
main difference is that we now make an extra assumption, namely that
the network has no redundant biconnected component. A difference with
the second decomposition for undirected binary networks is that we now
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consider only semi-directed binary networks that are level-2 since Theorem
4.10 is only proved for semi-directed binary networks that are level-2. For
the rest of the proof we do not use that the network is level-2 and holds
therefore for semi-directed binary networks in general.

Theorem 4.11. A recoverable semi-directed binary level-2 network N on
X, with |X| ≥ 4 and no redundant biconnected components, is encoded by
its quarnets Qn(N) if and only if, for each nontrivial biconnected component
B of N with at least four incident cut-edges, NB is encoded by Qn(NB).

Proof. Let N be a recoverable semi-directed binary level-2 network on X
with |X| ≥ 4 and no redundant biconnected components.

“ =⇒ ” Assume N is encoded by its quarnets Qn(N). Consider any
nontrivial biconnected component B of N with at least four incident cut-
edges. Suppose that NB is not encoded by Qn(NB). Then there exists a
recoverable semi-directed binary network N ′

B ̸= NB such that Qn(NB) =
Qn(N ′

B). By Theorem 4.10 N ′
B has the same CE-splits as NB. By definition

of NB this implies that each CE-split of N ′
B has one set that is a singleton.

SupposeN ′
B has a redundant biconnected component R. Note that R has

exactly two incident cut-edges. Since each CE-split of N ′
B has one set that is

a singleton, one incident cut-edge of R leads to a single leaf x and the other
incident cut-edge ofR leads to the other leaves. Now each quarnet containing
x also contains R. This is not possible because Qn(NB) = Qn(N ′

B) and it is
easily checked that for each such a leaf x there exists a quarnet in Qn(NB)
with no such redundant biconnected component since NB is simple. This
shows that N ′

B has no redundant biconnected components.
If we combine that N ′

B has no redundant biconnected components and
that all CE-splits of N ′

B have one set that is a singleton, we get that N ′
B

consists of one nontrivial biconnected component with incident cut-edges to
the leaves. So N ′

B is a simple network.
Let B′ be the nontrivial biconnected component of N ′

B. Let N ′ be the
result of replacing B by B′ in N . Note that N ′ is recoverable. We will show
that Qn(N) = Qn(N ′).

Let Q ∈ Qn(N) and let w, x, y and z be the leaves of Q. If the incident
cut-edges of B that are leading to w, x, y and z are all different or all the
same, then we have that Q ∈ Qn(N ′) since the only difference between N
and N ′ is that B is replaced by B′ and that Qn(NB) = Qn(N ′

B).
Now suppose the incident cut-edges of B that are leading to w, x, y and

z are not all different and also not all the same. Let A be a maximal subset
of {w, x, y, z} such that each incident cut-edge of B is leading to at most one
leaf in A. Note that |A| = 2 or |A| = 3. Since B has at least four incident
cut-edges, we can find one leaf (if |A| = 3) or two leaves (if |A| = 2) such
that together with A we have four leaves which corresponds to four different
incident cut-edges of B. Since Qn(NB) = Qn(N ′

B) we now have that the
subnetworks on A exhibited by N and N ′ are the same. Now the quarnet
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on w, x, y and z is the same for N and N ′ since the only differences are in
the parts corresponding to incident cut-edges of B and these parts outside
B are the same for N and N ′. Now we have showed that Qn(N) = Qn(N ′).
This contradicts the assumption that N is encoded by Qn(N).

“ ⇐= ” Assume that for each nontrivial biconnected component B of N
with at least five incident cut-edges, NB is encoded by Qn(NB). Suppose
that N is not encoded by Qn(N). Then there exists a recoverable semi-
directed binary network N ′ ̸= N with Qn(N) = Qn(N ′). We will show that
N = N ′.

Suppose N ′ has a redundant biconnected component R. If R is con-
nected to other redundant biconnected components, we redefine R as the
maximum set of connected redundant biconnected components that con-
tains the redundant biconnected component R. The two incident cut-edges
that connect R with the rest of N ′ we then call the incident cut-edges of R.
By Theorem 4.10 N ′ has the same CE-splits as N . Since R has exactly two
incident cut-edges, R is always connected to two other biconnected com-
ponents by its incident cut-edges. If one of the incident cut-edges of R is
connected to a leaf, then with a similar reasoning as we used for NB and
N ′

B in the proof for the other implication of the theorem we get that N
and N ′ have no redundant biconnected components. Now if both incident
cut-edges of R are not connected to a leaf, then both incident cut-edges
of R are connected to a biconnected component with at least two incident
cut-edges besides the incident cut-edge connected to R. So both incident
cut-edges of R are leading to at least two leaves. Consider the quarnet on
{w, x, y, z} such that one incident cut-edge of R leads to w and x and the
other incident cut-edges of R leads to y and z. Then this quarnet contains
R. This is a contradiction since Qn(N) = Qn(N ′) and N has no redundant
biconnected components. So in both cases we get that N ′ has no redundant
biconnected components.

At this point, we observe that, for a biconnected component B with
exactly four incident cut-edges, NB is trivially encoded by Qn(NB), since
in that case NB is isomorphic to the single quarnet in Qn(NB).

The rest of the proof is by induction on |X|. If |X| = 4, then, since N
and N ′ are recoverable, N and N ′ are both equal to the single quarnet in
Qn(N) and we are done.

Now assume |X| ≥ 5. Let B0 any biconnected component of N that
contains the root in a directed binary network ND from which N can be
obtained. Let e1 = u1v1, . . . , eb = ubvb be the incident cut-edges of B0,
where u1, . . . , ub are in B0. Note that b ≥ 3 since N is recoverable and has
no redundant biconnected components.

Let N1, . . . , Nb be the connected components after deleting B0 and
new leaves p1, . . . , pb with edges vipi for 1 ≤ i ≤ b, such that Ni contains
vi. We call Xi the set of leaves of Ni for 1 ≤ i ≤ b. Then, since b ≥ 3,
we have |Xi| < |X|. Note that Ni is recoverable and has no redundant
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biconnected components for 1 ≤ i ≤ b since N has no redundant biconnected
components.

We saw that N ′ has the same CE-splits as N . Thus, {Xi, X \ {Xi}} is
a CE-split of N ′ for 1 ≤ i ≤ b. Now, since a tree is uniquely defined by its
splits ([2]), viewing the biconnected components of N and N ′ as vertices of
two trees shows that N ′ has a biconnected component B′

0 with b incident
cut-edges for which the CE-splits agree with the CE-splits of the incident
cut-edges of B0. Let e′1 = u′1v

′
1, . . . , e

′
b = u′b, v

′
b be the incident cut-edges

of B′
0, where u′1, . . . , u′b are in B′

0. Let N ′
1, . . . , N ′

b be the connected
components after deleting B′

0 and new leaves p′1, . . . , p
′
b with edges v′ip

′
i for

1 ≤ i ≤ b, such that N ′
i contains v

′
i. Assume without loss of generality that

N ′
i is a network on Xi for 1 ≤ i ≤ b. Note that we can choose the new leaves

p′1, . . . , p
′
b such that p′i = pi holds for 1 ≤ i ≤ b. Further note that N ′

i is
recoverable and has no redundant biconnected components for 1 ≤ i ≤ b
since N ′ has no redundant biconnected components.

Now we look at the quarnets of Ni and N ′
i . Let i ∈ {1, . . . , b}. Let l1,

l2, l3 and l4 be four different leaves of Ni. If pi is not of the four leaves,
then the quarnet exhibited on {l1, l2, l3, l4} by Ni is also a quarnet of N and
therefore known. If pi is one of the four leaves, say l4, then we can obtain
the quarnet exhibited on {l1, l2, l3, pi} by Ni in the following way. Let p ∈ X
a leaf that is not in Ni. Let Q be the quarnet exhibited on {l1, l2, l3, p} by
N and subsequently suppressing all the redundant biconnected components
that are connected to p. Then Q is the wanted quarnet of Ni. For N

′
i we can

obtain the quarnets in the same way. So Qn(Ni) and Qn(N ′
i) are known. To

show that N = N ′, it remains to show that NB0 = NB′
0
and that Ni = N ′

i

for 1 ≤ i ≤ b.
First, we show that NB0 = NB′

0
. Observe that Qn(NB0) = Qn(NB′

0
) (if

for any four leaves yj , yk, yl, ym the quarnet in Qn(NB0) and the quarnet
in Qn(NB′

0
) would be different, then for any four leaves xj , xk, xl, xm in

the parts of the network corresponding to incident cut-edges ej , ek, el, em,
respectively, the quarnet in Qn(N) and the quarnet in Qn(N ′) would be
different). If b ≥ 5, then NB0 = NB′

0
holds because Qn(NB0) = Qn(NB′

0
)

and by assumption NB0 is encoded by Qn(NB0). Moreover, b ≥ 3 since N is
recoverable and has no redundant biconnected components. For b = 4 the
statement NB0 = NB′

0
is trivially true.

The only case left is b = 3. Consider a leaf in each of the three parts
corresponding to the three incident cut-edges of B0, namely leaves l1, l2 and
l3. Since |X| ≥ 4, we can find another leaf l4 ofN . Consider the quarnetQ in
Qn(N) on {l1, l2, l3, l4}. Since Qn(N) = Qn(N ′) we now get that the trinets
on {l1, l2, l3} exhibited by N and N ′, respectively, are the same. Let B0(T )
be the biconnected component of this trinet T such that the component has
three incident cut-edges that lead to l1, l2 and l3, respectively. Then we
have that NB0(T ) = NB0 . Moreover, since N ′ also exhibits T , we have that
NB0(T ) = NB′

0
. It follows that NB0 = NB′

0
.
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Now let i ∈ {1, . . . , b}. We will show that Ni = N ′
i . Observe that

Qn(Ni) = Qn(N ′
i) for similar reasons as we used for showing thatQn(NB0) =

Qn(NB′
0
). Since |Xi| < |X|, the statement Ni = N ′

i follows by induction
if (a) Ni and N ′

i are recoverable and have no redundant biconnected com-
ponents and (b) |Xi| ≥ 4. Note that (a) holds since N and N ′ have no
redundant biconnected components. If |Xi| = 1, then clearly Ni = N ′

i be-
cause both consist of a single leaf. The only cases left are |Xi| = 2 and
|Xi| = 3.

First we consider the case that |Xi| = 2. Denote the two leaves of Xi

with l1 and l2. Since |X| ≥ 4, we can find two other leaves l3 and l4 of N .
Consider the quarnet Q in Qn(N) on {l1, l2, l3, l4}. Since Qn(N) = Qn(N ′)
we now get that the binets on {l1, l2} exhibited by N and N ′, respectively,
are the same. So Ni = N ′

i holds.
Now we consider the case that |Xi| = 3. Denote the three leaves of Xi

with l1, l2 and l3. Since |X| ≥ 4, we can find another leaf l4 of N . Consider
the quarnet Q in Qn(N) on {l1, l2, l3, l4}. Since Qn(N) = Qn(N ′) we now
get that the trinets on {l1, l2, l3} exhibited by N and N ′, respectively, are
the same. So Ni = N ′

i holds.
Since for all cases NB0 = NB′

0
and Ni = N ′

i for 1 ≤ i ≤ b holds, we can
conclude that N = N ′, which gives a contradiction.
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Chapter 5

Recoverable networks

In this chapter we will combine some of the different results we obtained
earlier in this thesis for undirected and semi-directed binary networks. Note
that the proofs in this chapter are based on the proofs in [14] that are
about directed binary networks. Therefore the structure of the proofs in
this chapter are quite similar to these proofs.

5.1 Undirected

In this section we prove some results for recoverable undirected binary net-
works. First we prove that an undirected binary simple level-2 network is
encoded by its set of quarnets. This is a more general result of Theorem 3.3
since this theorem showed that the class of undirected binary simple level-2
networks is weakly encoded by quarnets. Note that an undirected binary
simple network is recoverable by definition.

Theorem 5.1. Every undirected binary simple level-2 network N on X,
with |X| ≥ 4, is encoded by its set of quarnets Qn(N).

Proof. Let N be an undirected binary simple level-2 network on X with
|X| ≥ 4. Assume that this network is not encoded by its set of quarnets
Qn(N). Then there exists a recoverable undirected binary network N ′ ̸= N
with Qn(N) = Qn(N ′). We will show that N = N ′.

We want to show that N ′ is an undirected binary simple level-2 network.
In other words, we need to show that N ′ is simple and level-2.

First we show that N ′ is simple. By Theorem 4.5 the set of CE-splits
of N ′ equals the set of CE-splits of N . Since N is a simple network this
implies that each CE-split of N ′ has one set that is a singleton.

Suppose N ′ has a redundant biconnected component R. Note that R has
exactly two incident cut-edges. Since each CE-split of N ′ has one set that is
a singleton, one incident cut-edge of R leads to a single leaf x and the other
incident cut-edge of R leads to the other leaves X \ {x}. Now each quarnet
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containing x also contains R. This is not possible because Qn(N) = Qn(N ′)
and an undirected binary simple network without redundant biconnected
components has no quarnets with redundant biconnected components. This
shows that N ′ has no redundant biconnected components.

If we combine that N ′ has no redundant biconnected components and
that all CE-splits of N ′ has one set that is a singleton, we get that N ′

consists of one nontrivial biconnected component with incident cut-edges to
the leaves. So N ′ is a simple network.

Now we show that N ′ is level-2. Suppose that N ′ is a simple strict level-k
network with k > 2. If N ′ has no sets of parallel edges, choose four arbitrary
leaves. If N ′ has exactly one set of parallel edges, choose one leaf that is on
one of these edges and three other leaves arbitrary. If N ′ has at least two
sets of parallel edges, choose two leaves on two different sets of parallel edges
and two other leaves arbitrary. Consider the quarnet exhibited on these four
leaves by N ′ for each of these cases.

Note that a quarnet exhibited by N ′ can only be a level-k′ network with
k′ < k if at least one pair of parallel edges of N ′ is suppressed. If there are at
most two sets of parallel edges in N ′, then the quarnet is strict level-k since
no parallel edges are suppressed. If there are more than two sets of parallel
edges in N ′, then there are some parallel edges suppressed in the quarnet
since we have only chosen two leaves on two different sets of parallel edges.
Since the two sets of parallel edges that are kept in the quarnet are then
in one biconnected component in N ′ they are also in the same biconnected
component in the quarnet. This implies that the quarnet is strict level-k′

with k′ > 2.
In each of the cases N ′ has a quarnet that is level-k′ with k′ > 2. Since

Qn(N ′) = Qn(N) contains only level-2 quarnets, this gives a contradiction.
It follows that N ′ is a level-2 network.

So N ′ is a recoverable undirected binary simple level-2 network. By
Theorem 3.3 we now get that N = N ′, which gives a contradiction.

Note that in the above proof we could not use reticulations to show
that N ′ is level-2 as is done in the proof for directed binary networks in
Theorem 3 of [14] since we have not defined reticulations for undirected
binary networks. This is also a difference between this proof and the proof
in the next section for semi-directed binary networks since it is then possible
to follow the proof for directed binary networks quite well.

Further note that Theorem 5.1 can be extended to a more general result.
In this thesis we define undirected binary networks by a single definition. If
undirected and binary networks are defined separately, we can define being
encoded such that N ′ is not necessarily binary (see [14]). In that case we
can show that N ′ is still binary using that Qn(N) = Qn(N ′) and that N
is binary. So with this different definition of encoding the results of this
section still holds for undirected binary networks.
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Finally, in the corollary below we combine the results in order to obtain
a result for recoverable undirected binary level-2 networks.

Corollary 5.2. Every recoverable undirected binary level-2 network N on
X, with |X| ≥ 4 and no redundant biconnected components, is encoded by
its set of quarnets Qn(N).

Proof. Follows from Theorems 4.6 and 5.1.

5.2 Semi-directed

In this section we prove some results for recoverable semi-directed binary
networks. First we prove that a semi-directed binary simple level-2 network
is encoded by its set of quarnets. This is a more general result of Theorem
3.6 since this theorem showed that the class of semi-directed binary simple
level-2 networks is weakly encoded by quarnets. Note that a semi-directed
binary simple network is recoverable by definition.

Theorem 5.3. Every semi-directed binary simple level-2 network N on X,
with |X| ≥ 4, is encoded by its set of quarnets Qn(N).

Proof. Let N be a semi-directed binary simple level-2 network on X with
|X| ≥ 4. Assume that this network is not encoded by its set of quarnets
Qn(N). Then there exists a recoverable semi-directed binary network N ′ ̸=
N with Qn(N) = Qn(N ′). We will show that N = N ′.

We want to show thatN ′ is a semi-directed binary simple level-2 network.
In other words, we need to show that N ′ is simple and level-2.

First we show that N ′ is simple. By Theorem 4.10 the set of CE-splits
of N ′ equals the set of CE-splits of N . Since N is a simple network this
implies that each CE-split of N ′ has one set that is a singleton.

Suppose N ′ has a redundant biconnected component R. Note that R has
exactly two incident cut-edges. Since each CE-split of N ′ has one set that is
a singleton, one incident cut-edge of R leads to a single leaf x and the other
incident cut-edge of R leads to the other leaves X \ {x}. Now each quarnet
containing x also contains R. This is not possible because Qn(N) = Qn(N ′)
and it is easily checked that for each such a leaf x there exists a quarnet in
Qn(N) with no such redundant biconnected component since NB is simple.
This shows that N ′ has no redundant biconnected components.

If we combine that N ′ has no redundant biconnected components and
that all CE-splits of N ′ has one set that is a singleton, we get that N ′

consists of one nontrivial biconnected component with incident cut-edges to
the leaves. So N ′ is a simple network.

Now we show that N ′ is level-2. First note that Tn(N) = Tn(N ′)
since the trinets can be exhibited by the quarnets and Qn(N) = Qn(N ′).
Now suppose we have any simple strict level-k network with k > 2. Then
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this network has exactly k reticulations. If there are at least three leaves
on reticulation sides, take three such leaves. Otherwise take all leaves on
reticulation sides and take the remaining leaves on sides that form parallel
arcs in the underlying generator (if this is possible), choosing at most one leaf
per pair of parallel arcs. If the network has parallel arcs, then the underlying
network has two sides that form parallel arcs which have no leaves on it. In
this case one leaf can be chosen arbitrarily since this set of parallel arcs will
not be suppressed. Now the trinet on these three leaves has at least three
reticulations. Note that if a leaf is chosen on one of the parallel arcs in the
underlying generator, the pair of parallel arcs will not be suppressed, and
so we get a reticulation. So a simple strict level-k network, with k > 2, has
a level-k′ trinet with k′ > 2. Since Tn(N ′) = Tn(N) contains only level-2
trinets, it follows that N ′ is a level-2 network.

So N ′ is a recoverable semi-directed binary simple level-2 network. By
Theorem 3.6 we now get that N = N ′, which gives a contradiction.

Note that Theorem 5.3 can be extended to a more general result. In
this thesis we define semi-directed binary networks by a single definition.
If semi-directed and binary networks are defined separately, we can define
being encoded such that N ′ is not necessarily binary (see [14]). In that case
we can show that N ′ is still binary using that Qn(N) = Qn(N ′) and that
N is binary. So with this different definition of encoding the results of this
section still holds for semi-directed binary networks.

Finally, in the corollary below we combine the results in order to obtain
a result for recoverable semi-directed binary level-2 networks.

Corollary 5.4. Every recoverable semi-directed binary level-2 network N
on X, with |X| ≥ 4 and no redundant biconnected components, is encoded
by its set of quarnets Qn(N).

Proof. Follows from Theorems 4.11 and 5.3.
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Chapter 6

Discussion

A number of interesting open problems remain. First of all, this thesis
focused mostly on level-2 networks. For k ≥ 3, it would be of great interest
to investigate which undirected and semi-directed binary level-k networks
are encoded by quarnets. Furthermore, we can look for a largest class of
level-k networks that is weakly encoded by quarnets.

In this thesis we have looked at networks that are encoded by quarnets,
subnetworks on four leaves. It might also be interesting to investigate which
undirected and semi-directed binary level-k networks are encoded by sub-
networks with five or more leaves. For example, we can investigate for a
certain k if all level-k networks are encoded by networks on l leaves for a
certain l. Note that in order to get the strongest result, we need l to be
as small as possible. Furthermore, note that if a network is encoded by
subnetworks on p leaves, then the network is also encoded by subnetworks
on q leaves if q > p. Some results in this direction are given in [7].

We have showed that simple level-2 networks are weakly encoded by
using the undirected and semi-directed binary level-k generators for k ≤ 2.
To the best of my knowledge, the undirected and semi-directed binary level-
k generators have not been studied a lot. In this thesis we have given the
level-k generators for k ≤ 3 explicitly. This can be extended to higher levels.
This would be of interest since the proofs of encodings are often based on
generators.

Similar as for directed binary level-k networks, the number of generators
grows as k increases. Therefore we need a shorter and more efficient way to
investigate the level-k networks if k is large. Possibly there is another way
to decompose the undirected and semi-directed binary level-k networks in
order to investigate these networks in a more efficient way.

Note that some of the directions for further research we mention here also
hold for directed binary networks and were therefore already mentioned in
the discussion of [11] for directed binary networks. The first decomposition
theorem holds for undirected and directed binary networks for all levels. For
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semi-directed binary networks the first decomposition theorem can not be
proved easily for all levels in a similar way. It could be of some interest
to compare the current results for undirected, semi-directed and directed
binary networks and to study these different types of networks in parallel.

Some definitions of semi-directed binary networks can be reconsidered.
In this thesis they mainly depend on the definitions of directed binary net-
works. In [6], semi-directed binary networks are defined in a different way.
The semi-directed binary networks have then not always a valid root loca-
tion. It could be of some interest to generalize the results from this thesis to
results that hold for semi-directed binary networks that are defined in this
different way. This is especially relevant if there are possibly multiple roots.
Note that if the definition of a semi-directed binary network changes in this
way, the definition of a semi-directed binary level-k generator then also has
to be changed.

The semi-directed binary level-k generators can be obtained in differ-
ent ways. A first way can be by defining the semi-directed binary level-k
generators for each k directly as we did in this thesis for undirected binary
level-k generators. A second way can be by using the directed binary level-k
generators for a certain k. Note that these directed binary level-k generators
must then be known. For the levels we have considered in this thesis this was
already the case. A third way can be by using the undirected binary level-k
generators to obtain the semi-directed binary level-k generators. This could
then be possible by creating reticulations at vertices or on edges. A fourth
way can be by using the semi-directed binary level-(k− 1) generators to ob-
tain the semi-directed binary level-k generators. Then an extra reticulation
has to be added to the generator. Although we already have a definition
which can be used to obtain the different undirected binary level-k genera-
tors, we can possibly also look at the undirected binary level-k generators
in similar ways to obtain the generators in a more intuitive way. Note that
this can be done for all different levels. It is especially important to choose
the most efficient way to obtain the generators if k becomes larger.

We now continue with discussing the decomposition theorems. We have
proved that the first decomposition theorem holds for recoverable undirected
binary networks in general. However, this is not the case for recoverable
semi-directed binary networks. In the second implication of the proof for
the case that (c) of the claim holds (and (a) and (b) of the claim do not
hold) the proof depends on k. The first decomposition is now only proved
for recoverable semi-directed binary level-2 networks. It would be of great
interest to investigate this special case in the proof further for k ≥ 3.

For level-3 this could possibly be showed by distinguishing in the cases
that the network is or is not orientable at a cut-edge. We saw that the proof
for the case that the network is not orientable at any cut-edge follows then
quite easily. This gives a motivation for the following conjecture.
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Conjecture 6.1. Let N be a recoverable semi-directed binary level-3 net-
work on X and {A,B} a partition of X.

(i) If |A| = 1 or |B| = 1, then {A,B} is a CE-split of N .

(ii) Otherwise, if |A| ≥ 2 and |B| ≥ 2, then {A,B} is a CE-split of N if
and only if for all a1, a2 ∈ A with a1 ̸= a2 and b1, b2 ∈ B with b1 ̸=
b2, {{a1, a2}, {b1, b2}} is a CE-split of the quarnet on {a1, a2, b1, b2}
exhibited by N .

Note that the case that the network is orientable at a cut-edge still has to
be investigated before we can conclude if this conjecture holds.

The second decomposition theorem is now proved for recoverable undi-
rected binary networks without redundant biconnected components and re-
coverable semi-directed binary level-2 networks without redundant bicon-
nected components. In further research this decomposition theorem could
possibly be extended to networks that may have redundant biconnected
components. Note that if the first decomposition theorem can be proved for
semi-directed binary level-k networks for a certain k (k ≥ 3), then the second
decomposition theorem can also be extended to this level of semi-directed
binary networks.

Further note that the combined results as described in Chapter 5 can
possibly be extended if undirected and semi-directed binary networks are
investigated further. If it can be proved that simple level-k networks are
weakly encoded for a certain k (k ≥ 3) and the first decomposition theorem
holds for this k, then we know by the proofs of this thesis that then each such
a simple level-k network is encoded. Moreover, if also the second decom-
position theorem holds for these networks, then each of these recoverable
level-k networks is encoded.

Furthermore, this thesis can give some ideas for an algorithm to recon-
struct recoverable undirected and semi-directed level-2 networks from their
sets of quarnets. Note that it is not guaranteed that all level-2 networks can
be reconstructed from their sets of quarnets since networks with redundant
biconnected components have to be investigated further.

Finally, it would be of great interest to investigate if a recoverable undi-
rected or recoverable semi-directed binary network can be uniquely recon-
structed by its set of quarnets if not all the quarnets of the network are
known. This is relevant for studies using Markov models, as in [3], [4] and
[1], since then not all quarnets can be distinguished from each other. In fur-
ther research it can be investigated if with less knowledge about the quarnets
of the network, certain networks still can be reconstructed.
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Appendix A

Level-3 generators

In the following sections the level-3 generators of undirected and semi-
directed binary networks will be given. Note that, since we do not use the
different sides of these level-3 generators in this thesis, the different sides of
the level-3 generators will not be labelled.

A.1 Undirected

In this section we look at the undirected binary level-3 generators. Recall we
have used Definition 2.6 of [1] for the definition of an undirected binary level-
3 generator in this thesis. Using this definition we know that a multigraph
G is an undirected binary level-3 generator if and only if G is a 3-regular
biconnected multigraph with four vertices. This implies that the two undi-
rected binary level-3 generators as given in Figure A.1 are level-3 generators
and that these are the only possible level-3 generators for undirected binary
networks.

(a) Generator 3.1. (b) Generator 3.2.

Figure A.1: The two undirected binary level-3 generators.
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A.2 Semi-directed

In this section we look at the semi-directed binary level-3 generators. We
recall the definition which states that a semi-directed binary level-3 gener-
ator can be obtained from a directed binary level-3 generator by replacing
the arcs by edges except for the incoming arcs that belong to an indegree-
2 vertex and then suppressing the degree-2 vertex that does not have two
incoming arcs. Since each semi-directed binary level-3 generator can be
obtained from a directed binary level-3 generator, we can use the level-3
generators of directed binary networks.

There are 65 different directed binary level-3 generators, which are given
in Appendix A of [11]. These 65 level-3 generators are numbered by 3.1,
. . . , 3.65. We keep this numbering for the directed binary level-3 generators.
Therefore we will use another numbering for the semi-directed binary level-3
generators.

From each of the 65 directed binary level-3 generators we can obtain a
semi-directed binary level-3 generator. This does not imply that there are
65 different semi-directed binary level-3 generators. In Table A.1 we can
see which directed binary level-3 generators are corresponding to the same
semi-directed binary level-3 generator. Note that each semi-directed binary
level-3 generator can be obtained from at least two different directed binary
level-3 generators.

Semi-directed Directed

3a 3.15, 3.23, 3.25, 3.32, 3.62
3b 3.16, 3.24
3c 3.19, 3.22
3d 3.18, 3.20, 3.36, 3.65
3e 3.28, 3.64
3f 3.31, 3.63
3g 3.12, 3.17, 3.21, 3.35, 3.43, 3.55, 3.59
3h 3.4, 3.5, 3.29, 3.34, 3.42, 3.48, 3.49
3i 3.9, 3.26, 3.41
3j 3.13, 3.33, 3.44, 3.54
3k 3.27, 3.40
3l 3.11, 3.30, 3.38, 3.53, 3.56, 3.61
3m 3.2, 3.3, 3.47
3n 3.7, 3.8, 3.45, 3.51, 3.57
3o 3.1, 3.6, 3.46, 3.58
3p 3.10, 3.37, 3.39, 3.52, 3.60
3q 3.14, 3.50

Table A.1: The semi-directed binary level-3 generators with the directed
binary level-3 generators from which they can be obtained.
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Now we see that there are 17 different semi-directed binary level-3 gen-
erators. These 17 generators are given in Figures A.2 - A.10. Note that the
generators with an ∗ have symmetry next to the symmetry that is caused
by the possible parallel arcs.

Further note that each semi-directed binary level-3 generator can be
oriented in at least two different ways since we already saw that each semi-
directed binary level-3 generator corresponds to at least two different semi-
directed binary level-3 generators. Moreover, for a semi-directed binary
level-3 generator the number of different possible roots is equal to the number
of directed binary level-3 generators from which the semi-directed binary
level-3 generator can be obtained.

(a) Generator 3a. (b) Generator 3b.*

Figure A.2: The two semi-directed binary level-3 generators that have one
reticulation side and no parallel arcs.
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(a) Generator 3c. (b) Generator 3d.

Figure A.3: The two semi-directed binary level-3 generators that have one
reticulation side and one set of parallel arcs.

(a) Generator 3e. (b) Generator 3f .*

Figure A.4: The two semi-directed binary level-3 generators that have one
reticulation side and two sets of parallel arcs.
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(a) Generator 3g. (b) Generator 3h.

Figure A.5: Two of the four semi-directed binary level-3 generators that
have two reticulation sides and no parallel arcs.

(a) Generator 3i.* (b) Generator 3j.*

Figure A.6: Two of the four semi-directed binary level-3 generators that
have two reticulation sides and no parallel arcs.
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(a) Generator 3k. (b) Generator 3l.

Figure A.7: Two of the three semi-directed binary level-3 generators that
have two reticulation sides and one set of parallel arcs.

(a) Generator 3m.*

Figure A.8: One of the three semi-directed binary level-3 generators that
have two reticulation sides and one set of parallel arcs.
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(a) Generator 3n. (b) Generator 3o.*

Figure A.9: Two of the four semi-directed binary level-3 generators that
have three reticulation sides and no parallel arcs.

(a) Generator 3p.* (b) Generator 3q.*

Figure A.10: Two of the four semi-directed binary level-3 generators that
have three reticulation sides and no parallel arcs.
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