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ABSTRACT

To evaluate the effect of interplay due to breathing of the patient during proton treatment of lung tumors
Interplay dose calculation techniques have been proposed in literature. The proposed method requires
the deformation vector field (DVF) to register dose distributions of different phases in the breathing
cycle to a reference phase. The DVF is obtained by registering 4DCT lung scans between the phases.
Current methods of image registration are too slow to make the interplay dose calculation techniques
clinically feasible.

Advances in deep learning have allowed for models that predict the DVF in orders of magnitude
quicker than traditional methods. In this research, two model architectures, previously applied for reg-
istration of brain MRI images, will be evaluated to predict the DVF between scans at different phases of
a 4DCT lung scan. The quality of the registration is evaluated based on the mean absolute error between
the images and contour metrics of organs including the Dice score, Hausdorff distance and the mean
surface distance. In addition, the amount of grid folding was evaluated based on the number of voxels
with a negative Jacobean determinant.

The first model architecture, VoxelMorph, is an unsupervised model with an U-net architecture. Two
hyperparameters were varied: the maximum size of the DVF limited by a HardTanh, and secondly the
weight of the loss function for the divergence of the DVF during training. The model performed poorly
in predicting the DVF, the values of the DVF were too small. Varying the hyperparameter seems to have
no significant impact on the prediction quality of the model. Limiting the maximum of the DVF prevents
the registration of large deformations, which is not favourable.

The second model architecture has a multi-resolution approach. The images are downsampled to
1/2 and 1/4 the resolution. Multiple sub-network predict a DVF at each of the resolutions in a coarse to
fine order. Each of the networks consisted of a feature encoder, residual blocks and a feature decoder.
By upsampling and combining the multiple DVFs, the final DVF is obtained. Hyperparameter search
is performed: The number of residuals blocks and their filters were varied. At first only for the coarses
network, and later for all the networks. Lastly, an additional resolution was added to the model. The
model was capable of predicting good-quality DVFs. Only varying the number of residual blocks and
their filters for all resolutions resulted in a significant difference in the quality of the prediction.

Predictions are performed in 260±4 ms and 24±4 ms for the first and second architectures respec-
tively. Which is faster than other deep learning methods found in literature, and significantly faster
compared to traditional registration methods.
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1
INTRODUCTION

In 2020, 20 million new cancer cases were diagnosed worldwide. Making it the leading cause of death
worldwide. More than 50% of the patients receive radiation treatments. Currently, most patients are
irradiated using photons, but the use of proton treatments is increasing due to the advantages such as
finite range, highly local dose deposition and highly conformable dose distribution. Despite best efforts,
in 2020, cancer accounts for nearly 10 million deaths. [1, 2].

The highly local dose deposition allows for better sparing of healthy tissue surrounding the tumor.
For patients with lung tumors, breathing results in changing anatomy within the lungs. This can result
in high-dose depositions at the wrong position. As a result, the actual dose uptake by the patient can
differ from to the planned dose [3, 4].

Before treatment lung tumors patients, multiple computed tomography scans are made at different
phases of the breathing cycle, called a four-dimensional computed tomography (4DCT) scan. By track-
ing the breathing of the patient during the treatment, the breathing phase can be determent at the time
a proton spot is delivered. Combing the breathing phase with the delivered proton spot, dose calcula-
tion is performed using the correct scan from the 4DCT. To obtain the total delivered dose during the
treatment, the dose of all the spots has to be combined. Firstly, the dose of spots within the same phase
can be accumulated. Next, these accumulated doses have to deformed to a reference phase. The de-
formation is obtained using image registration. Image registration predicts an deformation vector field
between images of the phase and the reference phase. This vector field is used to transform the accu-
mulated dose from each phase to the reference phase. Next, all the transformed dose distributions are
accumulated to get the final dose distribution.

Current methods of image registration use iterative methods to perform registrations and predict the
deformation vector field. These current methods of image registration can take minutes. To make the
dose accumulation methods faster, image registration has to be performed quicker [2].

Recent advances in deep learning have allowed for convolutional neural network architectures which
are capable of predicting deformation vector fields within tens of milliseconds. These architectures have
mainly been applied for the registration of magnetic resonance images of the brain [5, 6].

In this thesis, two convolutional neural network architectures will be adapted and evaluated to pre-
dict deformation vector fields between lung images of four-dimensional computed tomography images.
The performance will be evaluated based on the image intensity as well as metrics for organ contours
and landmarks and the registration speed.

In Chapter 2 background information regarding proton therapy, image registration and neural net-
works will be discussed. Chapter 3 gives an overview of the literature concerning image registration
techniques. In Chapter 4 the used convolutional neural networks architectures will be discussed. Ad-
ditionally, the used datasets, evaluation metrics and training routines are discussed. In Chapter 5 the
results from the evaluated using the evaluation metrics will be given. Chapter 6 discusses these results
and gives suggestions for further research. Chapter 7 will give a conclusive overview.
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2
BACKGROUND INFORMATION

This chapter gives background information on the workings of proton therapy and the treatment work-
flow, image registration and breathing interplay. In addition, basic concepts and workings of neural
networks are also discussed.

2.1. PROTON THERAPY
In contrast to conventional radiation therapy, which uses photons to irradiate tumor tissue, proton ther-
apy uses accelerated protons to deliver dose to the tumor tissue at a set range. The range is the distance
the proton travels through the tissue. The dose deposited by protons increases sharply near the end of
the particle range, known as the Bragg peak, and a rapid fall-off of the dose at the end of the range, as is
illustrated in Figure 2.1. This local dose deposition makes protons suitable for cancer treatment since a
high dose is delivered at the tumor tissue and it spares surrounding healthy tissue.

In contrast to protons, the dose fall-off of photons is only a few percent per centimetre, resulting in
high doses for surrounding tissue [3]. This is also illustrated in Figure 2.1 as a red line.

Treatment of cancer using proton therapy is performed through a Pencil Beam Scanning (PBS) ma-
chine. The dose is delivered by a series of proton beamlets from multiple external positions at a certain
energy level, referred to as spots. By altering the energy of the protons, the penetration depth can be
adjusted. Using magnets inside of the machine, off-axis coverage is possible. The dose at each spot is
adjusted using irradiation time [3].

To achieve a highly conformable dose distribution Intensity Modulated Proton Therapy (IMPT) is
used. The total dose is delivered by thousands of beamlets from various directions. Each of the beamlets
is adjusted individually, to jointly achieve a highly conformable final dose and better sparing of organs
at risk [7].

2.2. PROTON TREATMENT WORKFLOW
The workflow for treating patients with proton therapy consists of multiple steps. First, anatomical in-
formation needs to be obtained to make a treatment plan. To obtain anatomical information about
the tissue at various stages in the breathing cycle, multiple 3-dimensional computational tomography
(3DCT) scans are made. This type of scan is referred to as a 4-dimensional CT (4DCT) scan.

A breathing cycle consists of an inhalation phase where air flows into the lungs, a brief pause, and an
exhalation phase where air flows out of the lungs [9]. The movement during inhalation and exhalation
are not identical, which is called breathing hysteresis. Due to the breathing hysteresis, scans are made at
multiple discrete phases within the breathing cycle. For example, a breathing cycle of 8 phases consists
of 0%, 25%, 50%, 75% and 100% inhale and 75%, 50%, 25% exhale phases [10].

Based on these scans, contours around the tumour volume are made. The visible tumour volume
is defined as the Gross Tumor Volume (GTV). A margin of a few millimetres is added for microscopic
extensions of the disease that are not visible on the scan, the enlarged volume is named the Clinical
Tumor Volume (CTV). For photons, the volume is further enlarged to account for uncertainties such as
setup errors, patient motion, and linear accelerator alignment errors. This results in the final volume
used for planning: the Planning Target Volume (PTV) [11]. Proton therapy does not use a PTV, since the
dose distribution can change substantially when the patients anatomy within the beam path is changed
[12].

3
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Figure 2.1: Relative dose as a function of depth in water for various radiation methods. The target volume is a shaded grey.
The red line indicates treatment with photons. The dark-blue line illustrates the relative dose of a single proton, with a Bragg
peak at the end of the path. Image taken from Barker et al. [8].

2.3. DOSE CALCULATION
Dose calculation methods are used to calculate the resulting dose distribution from the delivered spots.
Current methods for dose calculations are either analytical methods or Monte Carlo methods.

Analytical methods use water as a reference medium, therefore a water-equivalent thickness of the
tissue is used along the axial direction of a pencil beam [13]. As the beam traverses through the medium,
the dose distribution diffuses in the lateral direction. There are two leading causes of diffuses: The first
comes from the spread optical properties of the system. The second spread comes as a result of multi-
coulomb scattering in the medium, which is depth-dependent. These diffuses are gaussian shaped. The
total diffusion is the product of the two gaussian distributions [13]. Analytical methods assume a homo-
geneous medium in the lateral direction. This assumption leads to range degradation in complex and
heterogeneous geometries such as air-tissue interfaces as present in the lung [13]. Analytical methods
yield results at low computational costs.

Monte Carlo methods can yield highly accurate dose calculations. Many different particles are tracked
through the geometry, simulating their trajectories, where the interaction of the particles is determined
based on the sampling of a probability distribution. Examples of interactions are nuclear interactions,
annihilation, scattering and creation of secondary particles [13]. Monte Carlo simulations also allows
the modelling of uncertainties such as setup and range errors. A large number of particles need to be
simulated to reach an acceptable statically precision, therefore the simulations have a high computa-
tional cost [14].

Novel approaches exists which use deep learning to predict the dose based on CT data and the beam
energy. The results are comparable to results from Monte Carlo simulations. The computational time
per pencil beam is 5.0±4.9 ms down from 44±12 seconds for conventional Monte Carlo simulations [2].

2.4. IMAGE REGISTRATION
Image registration is the process of finding the optimal one-to-one mapping of voxels from a moving
image Im to a fixed image I f such that the transformed moving image represents the fixed image. The

moving and fixed images consist of Ωm and Ω f voxels respectively, with size Ωζ in each direction with
ζ ∈ {x, y, z} and each voxel is indicated by p . Each of the voxels has a single intensity value. The trans-
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formations between Im and I f is given by T θ(p), were θ are the transformation parameters [15]. The
displacement of each voxel between Im and I f is given by the deformation vector field (DVF) φ [15,
16]. The DVF has the same size as the images but has three values per voxel, the displacement in each
direction ζ.

2.4.1. TRANSFORMATION
The transformation, T θ(p), can be a linear transformation, examples of a linear transformation are
translation, rotation, affine and shearing of the image. Alternatively, non-rigid transformations which
are not linear can be applied such as the B-spline transform. Examples of rigid and non-rigid transfor-
mations are given in Figure 2.2. The fixed and moving images are divided into a grid of lines with spacing
τ resulting in Pζ =Ωζ/τζ points in each direction ζ. The crossings of grid lines are the control points, xc ,
that are moved to transform the image. There are a total of Px ·Py ·Pz control points.

Figure 2.2: Overview of different transformations between fixed and moving image. (a) Fixed image I f , (b) moving image
Im , (c) deformed image using translation, (d) deformed image using rigid transformation, (e) deformed image using affine
transformation, (f) deformed image using B-spline transform. Images taken from S. Klein et al. [15]

A common non-rigid transformation is a B-spline parametrization. The transformation of voxel be-
tween the control points are interpolated using B-spline parametrization as given in Equation (2.1). It
sums over control points which are within a set distance of the voxel, this distance is called the local sup-
port of the B-spline. Hence, the sum is over xc ∈Nx , where Nx are the points within the local support.
By having a small local support this transformation can be calculated quickly.

T θ(p) = p + ∑
xc∈Nx

θxcβ
3
( p −xc

τ

)
(2.1)

β3(x) is the cubic multidimensional B-spline polynomial as given in Equation (2.2). The B-spline
basis functions are piecewise continuous polynomials which allows for the cheap calculation of deriva-
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tives [17]. θxc is the B-spline coefficient for each control point, with θ = (θ1,θ2,θ3, ...,θPx ·Py ·Pz )T , which
are optimised to obtain the best registration.

β3(x) =


2
3 −|x|2 + |x|3

2 , 0 ≤ |x| < 1
(2−|x|)3

6 , I ≤ |x| < 2
0, 2 ≤ |x|.

(2.2)

2.4.2. ALIGNMENT QUALITY METRIC
The quality of alignment is defined by a cost function, the goal of the image registration is to minimize
the cost function. Commonly used cost functions are the mean square error (MSE) and the normalised
cross-correlation (CC). The MSE cost function is only suitable if the two images are with equal intensity.
The MSE is defined in Equation (2.3).

MSE
(
θ; I f , Im

)= 1∣∣Ω f
∣∣ ∑

p∈Ω f

(
I f

(
p

)− Im
(
T θ

(
p

)))2 (2.3)

The cross-correlation is robust against intensity differences between scans, and is defined by Equa-
tions (2.4) and (2.5)

NCC
(
θ; I f , Im

)= ∑
pl ∈Ω f

(
I f

(
pl

)− I f

)(
Im

(
T θ

(
pl

))− Im

)
√∑

pi ∈Ω f

(
I f

(
pi

)− I f

)2 ∑
p j ∈Ω f

(
Im

(
T θ

(
p j

))− Im

)2
, (2.4)

with

Iα = 1

|Ωι|
∑

p∈Ωι
Iα

(
p

)
for ι= { f ,m}. (2.5)

If the two images are from different image modalities the mutual information cost function is best
suitable. The mutual information cost function is defined in Equation (2.6).

MI
(
θ; I f , Im

)= ∑
m∈LM

∑
f ∈LF

ρ( f ,m;θ) log2

(
ρ( f ,m;θ)

ρF ( f ;θ)ρM (m;θ)

)
(2.6)

Were ρ is the discrete joint probability between the images, and ρF and ρM are the marginal discrete
probabilities for the fixed and moving image. The HU values of the fixed and moving image are divided
into L f and Lm histogram bins of width ω f and ωm [15].

2.4.3. PARAMETER OPTIMISER
The parameter vector θ is updated in an iterative approach as given in Equation (2.7), where k is the
current iteration, ak the step size and d k the search direction [15].

θk+1 = θk +ak d k , k = 0,1,2, · · · . (2.7)

The search direction is determined using gradient descent, which takes the negative gradient of the
cost function, C with respect to θk , as the search direction as given in Equation (2.8) [15].

d k
(
θk

)
=−∇

θk C (2.8)

2.4.4. MULTI RESOLUTION APPROACH
Image registration is an iterative optimization process, often performed using a so-called multi-resolution
strategy. There are two main methods for multi-resolution.

The first option is to first smooth and downsample the images. This results in images with fewer
voxels, reducing the registration complexity. Performing this iteratively with increasingly finer images
results in the final registration [15].

A second option is transformation complexity. The registration is first done with fewer degrees of
freedom and then again with more degrees. An example is to first perform a rigid transformation to get
a rough registration and then perform a nonrigid registration using e.g., B-spline [15].



2.5. BREATHING MONITORING

2

7

2.4.5. DIFFEOMORPHIC TRANSFORMATION

A common issue with image registration is the folding of the registration grid over itself, which is not
physical [18]. Therefore, the transformation should be diffeomorphic. A diffeomorphic transformation
gives a smooth one-to-one mapping between the images and is invertible [19]. To obtain a diffeomor-
phic transformation, integration over time of a velocity vector field v has to be performed. This was
proposed by following the method by Arsigny et al. [20] and the implementation by chen et al. [19] was
used. The velocity field is assumed stationary, as is described by the ordinary differential equation given
in Equation (2.9). The ordinary differential equation described the change of the DVF over time t with
t ∈ [0,1] [20].

∂φ(t )

∂t
= v

(
φ(t )) (2.9)

The integration is performed using the scaling and squaring method. In the scaling and squaring
method, the DVF at time t = 1 is the exponent of v , φ(1) = exp(v), where v is a Lie algebra member. As a
result, the DVF is diffeomorphic and invertible [20].

The scaling and squaring method is performed by discretizing the time into T time steps. The initial
DVF is given by Equation (2.10), were the stationary velocity field v is divided with a factor of 2T , such
that v/2T is close to zero [19].

φ1/2t = p + v(p)

2T
(2.10)

Next, T recursive squaring steps are performed as given by Equation (2.11).

φ1/2t−1 =φ1/2t ◦φ1/2t
(2.11)

The resulting diffeomorphic DVF at t = 1, φ1, is given by Equation (2.12).

φ1 =φ1/2 +φ1/2 ◦φ1/2 (2.12)

In practical application, the initial velocity field is scaled to v/2T . Next, the squaring is performed
for T times using the spatial transformation function. The use of interpolation in the transformation
function can result in interpolation errors, as a result, some vectors in the DVF may not be invertible
[19].

To evaluate grid folding, local volume changes can be observed by calculating the determinant of
the Jacobian matrix of the DVF. If the determinant of the Jacobian matrix is larger than 1 the volume has
increased, if the determinant is between 0 and 1 the volume has decreased. A negative determinant is
nonphysical and is an indicator that grid folding has occurred [18].

2.5. BREATHING MONITORING
During treatment, it is important to monitor the breathing of the patient, for the timing of the delivery
and quality assurance of the delivered dose. Monitoring is done using a breathing model, a breathing
model approximates the relationship between the surrogate breathing data and the breathing phase of
the patient [21]. There are various methods to obtain surrogate data, often markers are implanted inside
of the patient near the region of interest for alignment of the patient at the start of the treatment. These
markers can also be tracked using multiple X-ray beams during the treatment. The disadvantage of this
method is the additional radiation dose for the patient [21]. Another method is by tracking external
motion such as the point on the chest and abdomen. This can be done using optical tracking through
LEDs and cameras and markers placed on the patient skin. There are also treatment setups available
that include an MRI scanner. This allows for continuous imaging of soft tissue and does not have the
disadvantage of additional radiation dose.

A common problem is variations between each breathing cycle, known as inter-cycle variations.
There are multiple options to take this into account, the first option is to ignore the variations. This
is possible if the variations are smaller than the required accuracy. A second option is to coach the
breathing of the patient using visual or audio feedback which helps the patient breathe more regularly.
A third option is to incorporate inter-cycle variations into the model [21].
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2.6. INTERPLAY EFFECT
The Bragg peak of protons gives the ability for highly localization deposition of energy. This can result in
highly con dose distributions. However, density changes along the beam path can impact the range of
protons. These changes occur in the lung when the patient is breathing during the time that the proton
beam is on. In addition, the target volume moves due to breathing. This can result in local over- and
under-dosages of the target and surrounding tissue and results in distortions of the dose distribution.
This effect is known as the breathing interplay effect [4, 22].

Currently, interplay mitigation techniques are available for treatment planning and during treatment
delivery such as breath holding, beam gating and re-scanning. Currently, clinical practice for inter-
player mitigation is done using robust treatment plans.

2.6.1. MITIGATION DURING TREATMENT PLANNING
One of the mitigation techniques at the treatment planning stage consists of enlarging the CTV into an
internal target volume (ITV). This is done using the data from the 4DCT scan. The contours of CTV at
all the phases are registered to a single phase reference, e.g. 0% inhale. The ITV is set as the union of all
registered contours. This results in a larger area being irradiated [10, 23].

A secondary mitigation technique in treatment planning is 4DCT planning. The treatment plan is
optimized for delivering the dose in all the phases of the 4DCT scan [24]. 4DCT planning yield more
robust plans but is more time-consuming. Hence, currently most treatments allow the patient to breathe
freely and increase the ITV to have a robust treatment plan.

2.6.2. MITIGATION DURING DELIVERY

BREATH HOLDING

In deep inspiration breath-hold (DIBH) the patient maintains a breath-hold for a prescribed period at
approximately 100% inhale. During this period spots are delivered. This reduces the tumour motion
during the delivery and reduces the needed margins for the PTV [25].

RE-SCANNING

A second method is re-scanning, here the dose for each voxel is not delivered at once, but in multiple
passes. One could re-scan all the voxels within an energy level multiple times before proceeding to the
next energy level, this is called layered re-scanning. Alternatively, one could do volumetric re-scanning.
Where one scans all the voxels; in the volume first before re-scanning any voxels again [26]. There are
two options to divide the total dose among the re-scanning passes.

The first option is to re-scan each voxels a preset amount of times. The delivered dose per rescan is
the total dose per voxels divided by the set number of re-scans. This is called scaled repainting [27], and
it is depicted in Figure 2.3a.

The second option is iso-layered repainting, where a maximum dose per visit is set. The voxels are
revisited until the total dose per voxels is delivered. This could result in not all voxels being rescanned an
equal number of times, since voxels with lower doses need fewer visits which is depicted in Figure 2.3b.

BEAM GATING

A third method is beam gating, where treatment is delivered within an interval of the breathing cycle. By
using the breathing signal, it can be determined within which window a spot can be delivered. Usually,
the end-exhale phase is chosen as the window since the tumour is most stable. Beam gating minimises
the effect of respiration on motion but it increases the treatment time [21, 26].
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Figure 2.3: Different repainting methods: a) scaled repainting, each position is visited N times and a dose of 1/N is delivered.
b) Iso-layered, for each visit a maximum fraction is delivered. Each voxels is revisited until the total dose is delivered. Taken
and adapted from S. M. Zenklusen et al. [27].

2.6.3. INTERPLAY DOSE CALCULATION TECHNIQUES

There are approaches to calculating the effective total dose by combining the treatment plan with the
breathing signal and the 4DCT data. Based on the treatment plan, the machine parameters, and the
breathing signal, it is possible to determine in which breathing phase the patient was when a spot was
delivered. The dose of each spot is accumulated in the appropriate phase. The dose distribution for
each phase is then transformed to a reference phase through image registration, e.g., the 50% inhale
phase. The dose registered distributions from each of the phases are combined to obtain the total dose
distribution [10]. A schematic overview of this workflow is given in Figure 2.4.

Figure 2.4: Dose accumulation workflow: Based on the treatment plan, machine parameters and the breathing, the correct
phase in which a spot was delivered is determined. The dose from each individual spot is accumulated in its respective
phase. These accumulated doses are subsequently transformed into the reference phase and accumulated to give the final
dose distribution. Retrieved from Oscar Pastor-Serrano et al. [10].
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2.7. ARTIFICIAL NEURAL NETWORKS
Artificial neural networks are parametric non-linear models that learn the relationship between input
and output samples. This is useful when the relationship is complex to describe or unknown. After
sufficient learning of the relationship between known input and output pairs, the model is capable of
predicting the output for unseen inputs.

The most basic network architecture is a fully connected dense neural network also known as multi-
layer perceptrons (MLP). It consists of layers with neurons (also known as nodes), and all the neurons in
each layer are connected to all the neurons in the next layer. The first layer of the network is the input
layer, where the input data is fed into the network. The last layer of the network is the output layer, the
outcome of this layer is the prediction of the network. The input and output layers are the only layers
where the network interacts with the outside. Layers in between these are called hidden layers, as they
are not visible to the outside. An illustration of a fully connected neural network is given in Figure 2.5.

Within each neuron a function is predefined. The neuron evaluates this function based on its input
values and then passes the output to the neurons it is connected to in the next layer. The connection
between the nodes have weights, which are trainable. By passing many examples of inputs and desired
outputs, the network can adjust the weights to find the optimal values. This process is called training.
Some parameters are not optimised during the training but are set manually, such as the number of
layers and the number of neurons. The manually set parameters are called hyperparameters.

Figure 2.5: Illustration of a fully connected dense neural network. Neurons are represented as circles, and inputs as squares.
Arrows represent weighted connections of neurons between different layers. Image adapted from van der Meulen [28].

2.7.1. MODEL TRAINING
To obtain the optimal weights for the network training is conducted. During training, many input and
output sample pairs are given to the network. The input propagates through the network and an out-
put is predicted. The predicted output is compared with the desired output using an error function.
Next, the error function is a backpropagation and the weights of the network are updated based on the
backpropagated error [29].

During the forward pass, the propagation direction is from left to right. Each node evaluates its
function f as well as the derivative of the function f ′ using the given input from the left. Both results are
stored in the node. The output of the function is multiplied with a trainable weight wi j and passed to
the next node on the right. This is illustrated in Figure 2.6 [29].
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Figure 2.6: Illustration of a forward pass through two nodes with function g and f for input x. On the right side of each node,
the nodes function is displayed, and on the right side, the derivative of the function is displayed. Image taken from Feldman
et al. [29].

During the backward pass, the propagation direction is from right to left. A 1 is set as the input on
the right, and the stored derivative is multiplied by the input. The resulting output is the derivative of
the network with respect to the input. This is illustrated in Figure 2.7.

Figure 2.7: Illustration of backward pass through two nodes function g and f for input 1. Image taken from Feldman et al.
[29].

Networks often have nodes which have multiple inputs and thus multiple weights. As a result, each
node needs to compute and store the partial derivatives of the function f with respect to all inputs. This
is illustrated in Figure 2.8.

To evaluate the performance of the network, one can compare the output of the last node, on with
respect to the target output tn . The error, E , between the target and the output is calculated using a loss
function, for example, using the quadratic deviation given as E = 1

2 (on −tn )2. During the backward pass,
each node calculates the backpropagated error δ [29]. Where δ is given in Equation (2.13) between the
output of node i and input node j .

δ j = ∂E

∂oi wi j
(2.13)

The partial derivative of the error E with respect to the weight wi j between the output of node i and
input node j is given in Equation (2.14).

∂E

∂wi j
= oi

∂E

∂oi wi j
= oiδ j (2.14)

The adjustment of the weight is calculated using Equation (2.15), where γ is the learning rate.

∆wi j =−γ ∂E

∂wi j
=−γoiδ j (2.15)
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Figure 2.8: Illustration of a node with two inputs, the partial derivative of each input is stored in the node. Image taken from
Feldman et al. [29].

By iteratively adjusting the weights wi j the error is reduced, and the network converges to the opti-
mal weights with minimal error.

When updating the network parameters during backpropagation, the gradients of the lower levels
can become increasingly smaller. This could result in the parameters of the lower layers changing very
little. This prohibits the network from converging to the optimal solution, this is known as the vanishing
gradients problem [30].

For the training of neural networks, the available samples are split into three different datasets. A
training dataset, which contains a majority of the samples, is used during the training of the model for
finding the optimal weights. The second dataset is the validation dataset, these samples are used to
evaluate the performance of the network during the training process. These samples are not used to
update the weight. The third dataset is the testing dataset, this dataset is used after training to evaluate
the performance of the network after training has finished.

During the training, samples are passed through the network in batches. By using batches the
weights are updated based on the average error of multiple samples. This prevents large fluctuations.
After all the training samples were passed through the network one training iteration is completed. This
is called an epoch. After each epoch, the samples from the evaluation dataset are passed through the
network to evaluate the performance of the network. This process is repeated for a set number of epochs.

2.7.2. DATA REPRESENTATION
The data within a neural network is represented as tensors, images are stored in tensors with the shape
(N ,C ,D, H ,W ). Were D, H ,W are the spatial depth, height and width of the image and C represents the
number of channels, this gives the number of values per voxel. For example, the Hounsfield Unit (HU)
for a CT scan only has a single value per voxel. Hence, the number of channels is one. For a vector
field, the number of values per voxel is three, thus the number of channels is three. N is the number of
samples.
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2.7.3. CONVOLUTIONAL LAYER
For computer vision tasks, networks with layers of convolutional kernels are used. In contrast to a fully
connected layer, convolutional neurons learn convolutions filters. The filters, also known as kernels, are
3-dimensional tensors where the values of each voxel is a trainable parameters.

The convolutional layers calculate the 3D cross-correlation between the input tensor and the con-
volutions filters. The resulting outputs are called feature maps and are high-level representations of the
input data [31]. A 2D example of a convolution is displayed in Figure 2.9. Around the image zero padding
is applied to increase the size of the tensor such that the feature map has the same shape as the input
image.

The dot product is calculated between matrix elements within the receptive field, shown as the blue
and red squares, of the input image and the convolution kernel. The output is stored in the feature
map. The receptive field shifts along the image with a step size known as the stride. The elements of
the kernel are trainable and are adjusted during backpropagation. The size of the filters is known as the
kernel size which is a hyperparameter. The convolutional layer has a set number of kernels which is also
a hyperparameter.

Figure 2.9: Illustration of a convolution in 2D. The input image is zero-padded such that the feature map has the same shape
as the input image. The dot product between matrix elements of the input image within the receptive field, shown as the
blue and red squares, and the kernel are calculated. The output of the dot product is stored in the feature map. The receptive
field shifts along the image with a step size known as the stride. Image taken from B. Ramsundar et al. [32].

The feature maps are passed to the next convolution layer. There is no weight between these con-
nections. Subsequent layers should produce higher-level representations of the input. This process can
also be reversed, by transposed convolution where feature maps are used as input.

The total number of trainable parameters per convolution layer is the product of the kernel sizes
times the number of filters plus a bias term. For example, a convolutional layer with 32 filters which
have a kernel size of (3x3x3) has 865 trainable weights.

2.7.4. POOLING LAYER
To reduce the spatial dimension of a sample pooling can be applied. During pooling, the image is sub-
sampled to reduce the spatial dimension of the image. The subsampling is performed on voxels within
a receptive field. There are multiple sampling modes such as average sampling in which the mean value
of all the voxels within the receptive field is used. A second option is max pooling in which the maximum
value within the receptive field is used. Max pooling is the most used type of pooling [30]. An example
of max pooling is shown in Figure 2.10. Pooling results in successive layers having increasingly coarser
feature maps [5].
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Figure 2.10: Illustration of max pooling in 2D with kernel size 2x2. The spatial dimension is reduced to half by taking the
voxel with the maximum value within the 2x2 receptive field. Image taken from van der Meulen [28].

2.7.5. UPSAMPLING LAYER

To increase the spatial dimension upsampling can be applied. An example of upsampling is depicted
in Figure 2.11. The number of voxels is increased in each direction and the points extra voxels are filled
with either the nearest value or the values could be interpolated.

Figure 2.11: Illustration of nearest neighbour upsampling in 2D. The spatial dimension is doubled, and the points of extra
voxels are filed with the nearest value.

2.7.6. GROUP NORMALISATION LAYER

Group normalisation has been shown to accelerate the convergence of the model during training. The
input channels are divided into a set number of groups. Within the groups, the values are normalised
according to Equation (2.16) where E[p] is the group mean and Var[p] the group variance. The values
γ and β are channel-specific weights which are trainable. ϵ is a constant offset of 10−5 for numerical
stability [33].

y = x −E[p]√
Var[p]+ϵ ∗γ+β (2.16)
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2.7.7. NON-LINEAR ACTIVATION LAYER
In order to add non-linearity to the network, layers with activation functions are added. Commonly used
activation functions are sigmoid functions, tanh, Hardtanh and (leaky) rectified linear unit functions
[31].

The sigmoid activation function as defined in Equation (2.17) limits the output between 0 and 1 [31].

Sigmoid(x) = 1

1+e−x (2.17)

The hyperbolic tangent limits the output between -1 and 1 and is defined as given Equation (2.18)
[31].

Tanh(x) = ex −e−x

ex +e−x (2.18)

The Hardtanh activation function as given in Equation (2.19) is linear within a set range ±Γ and has
a constant value of ±Γ outside of this range.

HardTanh(x) =


Γ if x > Γ
−Γ if x <−Γ
x otherwise.

(2.19)

The leaky rectified linear unit (LeakyReLU) function is defined in Equation (2.20), the function is
linear for positive input but suppresses negative input towards zero, where α is small [34].

LeakyReLU(x) =
{

x, if x ≥ 0

αx, otherwise.
(2.20)

2.7.8. LOSS FUNCTIONS
In order to find the optimal parameters for the convolutional filter, a loss function is needed to calculate
the error. A loss function can be composed of multiple metrics, such as a similarity loss Lsi m and a
smoothness loss Lsmooth . Three relevant similarity loss functions for computer vision are the Mean
Square Error, Normalised Cross-Correlation and Mutual Information. The mean square error is given in
Equation (2.3). The normalised cross-correlation is robust against intensity differences between scans
and is given in equations (2.4) and (2.5).

In addition to a similarity loss function, a regulation loss can also be used to have a smooth displace-
ment field. The smooth function, Lsmooth , is defined as the spatial gradient of the displacement field
with neighbouring voxels as given in Equation (2.21) [5].

Lsmooth (φ) = ∑
p∈Ω

∥∇φ(p)∥2 (2.21)

As discussed in Section 2.4.5, folding of the registration grid over itself is a common issue. Therefore
an additional loss function can be used to penalise the folding of the registration grid. The loss is based
on the determinant of the Jacobian matrix of the DVF. A negative determinant is nonphysical and is an
indicator that folding has occurred [18]. The loss function is defined in Equation (2.22) [35].

L j ac (φ) = 1

|Ω|
∑

p∈Ω
[ReLU

(− ∣∣Jφ(p)
∣∣)] with Jφ(p) =∇φ(p) (2.22)



2

16 2. BACKGROUND INFORMATION

2.7.9. U-NET ARCHITECTURE
A commonly used architecture for convolutional neural networks is the U-net architecture as shown in
Figure 2.12. It consists of an encoder part and a decoder part.

The encoder layers are represented as grey blocks. Each layer contains a convolutional layer to pro-
duce feature maps, group normalisation, a LeakyReLU activation function and a max pooling layer to
reduce the spatial dimension of the image.

The decoder layers are represented by blue blocks. Each layer contains a transpose convolutional
layer, group normalisation and a LeakyReLU activation function. To increase the spatial dimension
nearest-neighbour upsampling is applied. Lastly, the filters are concatenated with the filter from the
encoding step. These filters were passed over the black lines with arrows which represent skip connec-
tions. These connections also prevent vanishing gradients during propagation.

Figure 2.12: Schematic overview of UNet architecture. The network takes two images, Im and I f , as input. The network
produces a velocity vector field (v). The boxes represent convolutional layers, and the value inside of the layers represents the
number of kernels. The lines at the top represent skip connections. The number underneath is the relative spatial resolution
of the volume. Retrieved from Balakrishnan et al. [5].
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This chapter will give an literature overview of deep learning methods for image registration. The appli-
cation of deep learning methods for image registration can be divided into two main categories: simi-
larity metrics for traditional registrations and direct estimations of the DVF.

3.1. SIMILARITY METRICS
Deep learning has been applied to learn similarity metrics to evaluate the performance of the registra-
tion obtained by traditional iterative methods. Traditionally, manually crafted similarity metrics such as
the MSE, CC and MI metrics are used. [36]. The deep learning models learn similarity metrics to asses
the image performance of the registration. This results in a collaboration between traditional iterative
image registration methods and performance evaluation using deep learning methods This approach is
useful when performing registration between different image modalities [36].

3.2. DEFORMATION VECTOR FIELD PREDICTION
Deep learning has also been applied for the direct prediction of a DVF for registration between images.
These methods can be divided into supervised and unsupervised methods. A majority of studies per-
formed registration on images from an MRI modality, with CT being the second most used [37]. Regis-
tration of the brain is the most studied, followed by cardiac and lung [37].

SUPERVISED LEARNING METHODS

Supervised learning methods require the ground truth DVF to calculate the loss between the predicted
DVF and the ground truth. The ground truth DVF can be obtained by manually performing registration
or by generating an artificial DVF and applying the DVF to an image. As a result, only a limited number of
samples are available for training. In addition, the ability of the network to learn accurate registrations is
dependent on the quality of the ground truth DVF. Therefore, supervised learning methods have mainly
been used for rigid registrations [36, 37].

When the ground truth DVF is unknown, other labelled d data such as contours or landmarks in
the images can be used. The landmarks or contours are used to evaluate the quality of the registration.
Obtaining landmarks or contours is time-consuming and has to be performed manually by a specialist
such as a radiation oncologist, therefore limiting the amount of available data [36]. The quality of the
landmarks and contours also impacts the quality of the prediction.

UNSUPERVISED LEARNING METHODS

Since the ground truth DVF is often unknown and scans with landmarks or contours are limited, many
approaches use unsupervised methods. Unsupervised methods predict the DVF and apply the DVF to
the moving image using resampling and then compare the registered image with the fixed image [37].

3.3. REGISTRATION OF LUNG SCANS
This section will give an overview of others who have also performed image registration on 4DCT lung
scans using deep learning models.

A commonly used dataset for evaluating the performance of the registration was the DIRLAB dataset
from the Emory University School of Medicine (Atlanta, GA, USA) [38, 39]. The scans were obtained
using a Discovery ST PET/CT scanner (GE Medical Systems, Waukesha, WI). The dataset contains 10
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4DCT-lung scans with 300 manually placed landmarks between the end-exhalation and end-inhalation
scans.

A commonly used metric for evaluating the performance is the Target Registration Error (TRE), as
described by Equation (3.1).

TRE = 1

n

n∑
i=1

∥∥∥φi + l i
f − l i

m

∥∥∥
2

(3.1)

Where l i
m is the landmark location in the moving image, l i

f the landmark location in the fixed im-

age, andφi the displacement vector at the point l i
M for landmark i . The TRE gives the average euclidean

between n landmark pairs [40]. The mean TRE of the DIRLAB dataset before registration is 8.46±5.48
mm. The three best scores for the TRE using traditional methods for registration were 1.43± 1.3 mm,
1.36±0.99 mm, and 1.32±1.24 mm [41].

De Vos et al. [42], proposed an unsupervised approach. The model takes patches of the images and
predicts a DVF for each patch. The model, named ConvNet, consists of 3 blocks with a convolution and
downsampling layer, followed by two convolutional layers and two fully connected layers to predict the
DVF of each patch. The ConvNets were used in a multi-resolution approach from coarse to fine, multi-
ple ConvNets were placed in sequence to predict a DVF on increasingly finer resolutions of the image.
The images were resampled using the upsampled DVF predicted by the previous ConvNet on a coarser
grid. The mean TRE was 2.64±4.32 mm for the 300 landmarks using the multi-resolution network. The
registration time was less than 1 second on an NVIDIA Titan-X GPU [41].

Sentker et al. [43], proposed a supervised network to predict the DVF using pretrained residual neu-
ral network (ResNet) blocks. The architecture consists of two separate encoders for each of the images.
The features are then concatenated and passed to 5 blocks of pretrained ResNet, followed by a 20%
dropout. Next are 10 more blocks of pretrained ResNet and followed by a second 20% dropout, and 5
more blocks of pretrained ResNet. The feature decoder which takes the features from the ResNet and
also takes in the moving and fixed image is used to predict the DVF. The resulting TRE was 2.50±1.16
mm. The registration time was a few seconds using an NVIDIA Titan-Xp GPU [41].

Fu et al. [44], used an unsupervised patch-based approach. Patches of 64x64x64 were extracted from
the images. The patches were downsampled to 8x8x8 and a first network predicted a coarse DVF. The
DVF is upsampled and the original moving patch is registered. Next, the registered patch and the fixed
patch are down sampled to 32x32x32 and a finer DVF is predicted by a second network. All the DVFs
for each of the patches are combined to obtain a coarse DVF and a fine DVF for the entire image. The
resulting TRE was 1.59±1.58 mm. The registration time was less than 1 minute using an NVIDIA Tesla
V100 GPU [44, 41].

Sokooti et al. [40], proposed a supervised approach which was trained using artificial DVFs. Three
architectures were evaluated. Firstly a U-net architecture with down-sampled images due to memory
limitations. The second architecture was an adapted U-net network where the skip connection had
additional convolution filters. Due to the increase in filters and memory limitations, the model was up-
dated to have a patch-based approach. The last architecture was a multi-view model, patches of the
images were passed to three pipelines at 1/4, 1/2 and full resolution of the patch and were later com-
bined to predict a single DVF. The multi-view model was best performing with a TRE of 1.86±2.12 mm.
The registration time was less than 3 seconds using an NVIDIA Titan-Xp GPU [41].

Jiang et al. [45], proposed a multi-resolution unsupervised approach. The full images were down-
sampled to a coarser resolution and a CNN network predicted a coarse DVF. The predicted DVF was
upsampled to the full resolution and the moving image was registered. These images were downsam-
pled and passed to a network at a finer resolution to predict a secondary DVF. This was repeated for a
third time. The DVFs predicted at different grid sizes were upsampled to the full resolution and com-
bined to obtain the final DVF. Multiple scales were evaluated, the TRE where 1.75±1.39 mm, 1.58±1.19
mm, 1.56±1.13 mm, for the 2-, 3-, and 4-scale models respectively. The registration time was less than
2 seconds using an NVIDIA Quadro P4000 GPU [41].
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Fechter and Baltas [46], also proposed an unsupervised multi-view approach. Patches at the 1/2 and
1/4 and full resolution were passed to three identical U-net networks to predict the DVF at three reso-
lutions. These patches were combined to get obtain a DVF for the full image at each resolution. The
coarser DVF are upsampled and added to obtain the final DVF. The TRE was 1.83±2.35 mm. The regis-
tration time using an NVIDIA Titan-Xp GPU was about 4 minutes [41].





4
METHODS

First in this chapter the architecture and the loss function of the two models are introduces. Next, the
used data sets are described, followed by the evaluation methods. Lastly, the training routines are dis-
cussed.

4.1. VOXELMORPH
The first model was proposed in a paper by Balakrishnan et al. [5], an unsupervised convolutional neu-
ral network (CNN) framework is described. The framework learns a registration function between two
images which predicts the DVF between these images. This framework is referred to as VoxelMorph
(VM). It learns the parameterized registration function based on a collection of image pairs during the
training. After training, registration of a new image pair can be performed in under a second using the
learned registration function [5].

4.1.1. NETWORK ARCHITECTURE

A schematic overview of the model is given in Figure 4.1. The model takes two 3D images as input, one
fixed image and one moving image I f and Im respectively. The input shape of the images was set to
80x256x256 voxels. Beforehand, an affine alignment should be performed using conventional methods.
The I f and Im images are concatenation into a 2-channel 4-D tensor. Then, the concatenated tensor
is passed through a CNN with U-net architecture as described in Section 2.7.9. The network learns the
function gθ(I f , Im ) to produce a velocity field v between the fixed and moving image. θ are the network
parameters, in this case, the convolutions filters of the convolutional layers.

The U-net architecture consists of 3D convolutional layers with a kernel size of 3 and a stride of 1.
Group normalisation and LeakyReLU activation layer with α set to 0.2 is applied after each convolu-
tion [5]. To reduce the spatial dimension max pooling is applied to the output of the activation layer.
During decoding, the same convolutional layer, Group normalisation and activation layer are present.
To double the spatial resolution, upsampling to the nearest neighbour is applied. The output is then
concatenated with the filters from the encoding stage using the skip connections.

The range of the predicted velocity field was limited using a Hardtanh activation function as given
in Equation (2.19) where Γ is the set range. The Hardtanh activation function with range Γ was placed
after the U-net, this prevents large deformations. After the Hardtanh activation function an integration
layer way present. The integration layer performed integration of the velocity vector v using scaling and
squaring as described in Section 2.4.5 to obtain a diffeomorphic DVF φ.

Next, the DVF is used to spatially transform the moving image to the predicted image, Ip = Im ◦φ.
The model is unsupervised since the ground truth DVF is unknown, and only the deformed and the fixed
images are evaluated.

4.1.2. LOSS FUNCTION

To find the optimal values of θ, gradient descent is used to minimise the loss function. The loss function
for the network is given in Equation (4.1). It consists of a similarity score between the predicted image
and the fixed image Lsi m (I f , Im ◦φ), a regularization term to enforce a spatially smooth deformation,
Lsmooth (φ) and a loss to penalise the folding of the registration field L j ac (φ). Whereψ,λ and γ are hyper
parameter.
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Figure 4.1: Schematic overview of the VoxelMorph model. The model takes two input images, the fixed image I f and the
moving image Im . The model, gθ has a U-net architecture and predicts a velocity field between these images. The velocity
field is limited by a Hardtanh activation layer and an integration layer ensures a diffeomorphic DVF. The DVF is used to
transform the moving image to the moved image. The moved image is compared to the fixed image using the similarity loss
Lsi m . Also, the smoothness of the DVF is evaluated by a regularization term Lsmooth . Image adapted from Balakrishnan et al.
[5].

LV M (I f , Im ,φ) =ψ(
Lsi m (I f , Im ◦φ)+Lsi m (Im , I f ◦−φ)

)+λLsmooth (φ)+γL j ac (φ) (4.1)

The used cost functions for the similarity score, Lsi m , is the local cross-correlation as given in Equa-
tions (2.4) and (2.5). The similarity score is applied bi-directionally. Im ◦φ and I f ◦−φ, this penalises
if the transformation is not invertible and thus not diffeomorphic. The smoothness function, Lsmooth ,
is defined as the spatial gradient of the displacement field with neighbouring voxels as given in Equa-
tion (2.21). The used function for L j ac (φ) is given in Equation (2.22).

4.1.3. VOXELMORPH ADAPTATIONS IN LITERATURE

Multiple options have been proposed to make increase the prediction made by Voxelmorph.
Pal et al. [18], proposed adding an additional cost function that penalises a negative determinant of

the Jacobian. This would penalise grid folding. This proposal was implemented in the loss function in
this thesis.

Kim et al. [47], proposed to double the network to train both the transform and the inverse transform
separately.

Yongnan Zheng et al. [48], proposed an adaption to network architecture. In addition to the direct
skip connection in the UNet architecture, it has additional skip connections which have convolutional
layers with kernels of different sizes.

Hu et al. [49], adapted the network to have a multi-resolution approach. By down-sampling the
image to three coarser grids and predicting DVFs at each resolution and later combining the DVFs. This
showed an increase in the quality of the registration.

Hoopes et al. [50], describes expanding the model with a second network to predict the optimal
hyperparameters for the registration network. This eliminates the need for manual hyperparameter
optimization.

4.2. LAPLACIAN PYRAMID MODEL
The second model used is a Laplacian pyramid network (LAP) proposed by Mok et al. [6]. The model
is also based on an unsupervised convolutional neural network that learns to predict the deformation
vector field (DVF) between the image pairs. However, the Laplacian model has a multi-resolution ap-
proach, where multiple deformation vector fields are predicted at multiple resolutions. The multiple
DVFs at increasingly finer grids allow for registration at increasingly finer details. The coarser DVF can
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correct for large deviations between the images and the finer DVFs correct for more detailed features
[51].

4.2.1. NETWORK ARCHITECTURE

The model consists of identical CNN-based registration networks (CRN) at various resolutions. A schematic
overview of the Laplacian pyramid network is given in Figure 4.2.

Figure 4.2: Schematic overview of the Laplacian Pyramid model. Three identical CNN-based registration networks (CRN)
at increasingly finer grids. The first and coarses CRN is at the bottom. Each CRN consists of a feature encoder (Blue), Con-
ditional Image Registration Module (CIRM) blocks (Green) and a feature decoder (orange). A skip connection is present
between the feature encoder and decoder indicated by the blue arrow. The features from the CIRM are element-wise added
to the features from the encoder of the finer CRN (orange arrow). The predicted DVF, φ, is upsampled and applied to the
moving image of the finer CRN. The predicted DVF is upsampled and element-wise added to the finer predicted DVF. Image
taken from Mok et al. [6].

First, the image pairs are downsampled using trilinear interpolation to obtain representations of the
images at 1/2 and 1/4 of the original resolution. Next, the coarses image pair is used to predict a DVF
at the coarses resolutions. This coarse DVF is upsampled to 1/2 the original resolution and applied to
the moving image at 1/2 resolutions. These warped finer images are used to predict a finer DVF using
a second CRN network at 1/2 the original resolution. Again, the finer DVF is upsampled and warps the
moving image at the original resolution, which is then used to predict an even finer DVF. At last, the
three DVF are all upsampled to the original resolution and combined to obtain the final DVF.

Each CRN consists of three components: a feature encoder, Conditional Image Registration Module
(CIRM) blocks and a feature decoders. The feature encoder consists of a 3D convolutional layer with a
kernel size of 3 and a stride of 1. This layer is flowed by a LeakyReLU layer with a value of 0.2 followed by
an identical 3D convolutional layer. Then a third 3D convolutional layer is added with a kernel size of 3
and stride of 1 to halve the spatial resolution of the input.

The high-level embedding output from the feature encoders is fed into the CIRM blocks. A schematic
overview of the CIRM architecture is given in Figure 4.3. The CIRMs consist of a Conditional Instance
Normalization layer, a LeakyReLU layer with a value of 0.2, and a 3D convolutional layer with a kernel
size of 3. This is repeated a second time and an additional LeakyReLU layer is added. A skip connection
is present from the input until the last LeakyReLU layer.

The Conditional Instance Normalization (CIN) layer regulates the smoothness of the features and in-
troduces a non-linearity and is simulair to group normalisation as discussed in section 2.7.6. the CIRM
performs normalisation and shifting of the feature map, as described by Equation (4.2), where wi rep-
resents the feature map, i is the channel and µ (w i ) ,σ (w i ) are the channel-wise mean and standard
deviation for channel i .

w ′
i = γθ,i (z)

(
w i −µ (w i )

σ (w i )

)
+βθ,i (z) (4.2)
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The variables γθ,i ,βθ,i ∈R are learned parameters for each CIRM. These variables are predicted using
a separated mapping network based on a regularization parameter, ξ, as input. This mapping network
consists of a 4-layer multilayer perceptron (MLP) with 48 neurons with a LeakyReLU activation layer
with a value of 0.2 and the number of output features of the MLP is twice the number of filters of the
CIRM [6]. Learning the variables for each CIRM allows for finding the optimal values for each CIRM at
different depths. If a constant value for γθ,i ,βθ,i is used for modulating the CIRM at different depths the
performance becomes inconsistent [6].

Figure 4.3: Schematic overview of the Conditional Instance Normalization layer (CIRM). The high-level embedding w is
passed to a conditional instance normalization layer followed by a LeakyReLU layer with a value of 0.2 and a 3D convolutional
layer with a kernel size of 3. This is repeated a second time. The output is concatenated with the input w via a skip connection
and is passed through a LeakyReLU layer. The values for γθ ,βθ of the conditional instance normalization layer are predicted
using a mapping network based on a regularization parameter ξ. The mapping network consists of a 4-layer multilayer
perceptron (MLP) with 48 neurons with a LeakyReLU activation layer with a value of 0.2. The number of output features of
the MLP is twice the number of filters of the CIRM. Adapted from Mok et al. [6].

4.2.2. LOSS FUNCTION

To leverage the fact that a good alignment will yield high similarity values among all resolutions, a sim-
ilarity pyramid framework is proposed. The similarity score is calculated on all the preceding grid sizes
and summed with a weight for each level. Lower weights are assigned to coarser resolutions, since
coarser levels are less sensitive to noise. Summing over all the grid levels avoids local minima during
training on fine resolutions [6].

The resulting loss function for the Laplacian model is given in Equation (4.3), where K is the number
of grids used, and k is the current grid level. The local cross-correlation as given in Equations (2.4)
and (2.5) is used for the similarity scoreLsi m . Equation (2.21) is used for theLsmooth loss. The penalty for
folding of the deformation field, L j ac , is given in Equation (2.22). Whereψ,λ and γ are hyper parameter.

LL AP (I f , Im ,φ) = ∑
k∈[1,..,K ]

− ψ

2(K−k)
Lsi m (I f , Im ◦φ)+ λ

2(K−k)
Lsmooth (φ)+γL j ac (φ) (4.3)

4.3. IMAGE REGISTRATION USING ELASTIX

To compare the quality of the image registration, the image pairs from the test data are also registered
using Elastix. The parameters for the registration were taken from a published study [52, 53]. The regis-
tration is a β-spline Transform between the moving and the fixed image pairs. The registration is multi-
resolution on three resolutions, 1/4th, 1/2th and full resolution respectively. On each resolution 2000
iterations were performed to obtain the optimal registration. To evaluate the quality of the registration
the mutual information metric was calculated for 5000 random samples [53].



4.4. DATA SET GENERATION

4

25

4.4. DATA SET GENERATION

4.4.1. 4DCT DATA SET

For training and evaluation of the neural networks, three different data sets with 4DCT scans from non-
small cell lung cancer patients were used. An overview of the datasets is given in Table 4.1.

• The first dataset is from the Cancer Imaging Archive containing 4DCT scans from non-small cell lung
cancer patients [54]. Each 4DCT consists of 10 CTs at phases between 0 to 90% of the breathing cycle
with increments of 10%. The 4DCT images were acquired using a Brilliance Big Bore 16-slice helical CT
scanner by Philips Medical Systems, (Andover, MA, USA) [54]. The data set consists of 77 4DCT scans
from twenty different patients. The number of scans per patient ranged between one and eight. Seven
patients have gold coils implanted around the tumor as markers [54]. The scans consist of 512x512 vox-
els in the x and y directions with a spatial resolution of 0.97 mm. The spatial resolution in the axial
direction is 3 mm, and the number of slices in the axial direction varied between the scans ranging from
77 to 149 [54]. The scans from this dataset have contours available, which were delineated by a single
radiation oncologist. The delineated regions are the esophagus, the left and right lungs, the tumor and
the heart [54]. However, some scans and phases only had a subset of these contours available.

• The second dataset consisting of seven 4DCT scans from seven patients with 10 phases per scan. These
scans were obtained from the Léon Bérard Cancer Center & CREATIS lab, (Lyon, France) [55, 56, 57]. The
scans consist of 512x512 voxels in the x and y directions with varying spatial resolutions in the x and y
directions. The spatial resolution in the axial direction was 2 mm, and the number of slices in the z di-
rection varies between the scans ranging between 140 and 187. These scans have landmarks available
[55].

• The third dataset consisting of 10 4DCT-lung scans with 10 phases per scan, was obtained from the
Emory University School of Medicine, (Atlanta, GA, USA) [38, 39]. The scans were obtained using a
Discovery ST PET/CT scanner (GE Medical Systems, Waukesha, WI). Only 5 scans were used since these
scans have a spatial resolution of 0.97 mm in the x and y direction and consist of 512x512 voxels. Whereas
the other scans had only 256x256 voxels. The slices have a thickness of 2.5 mm with the number of slices
ranging between 120 and 136. The scans have landmarks available [38, 39]. This dataset is the same as
used for calculating the TRE between landmarks in Section 3.3.

Table 4.1: An overview of available data per dataset. Elastix indices if the dataset was used for comparison with registrations
by Elastix.

Dataset 1 Dataset 2 Dataset 3
Number of scans 77 7 5

Contours ✓ ✗ ✗
Landmarks ✗ ✓ ✓

Registerd using Elastix ✓ ✓ ✗

To reduce the GPU memory the number of grid points in the x and y plane was reduced to 256x256
voxels, and the 4DCT scans were resampled to a spatial resolution of 1.94 mm in the x and y plane and a
resolution of 3 mm in the z-direction. If the resampled images had less than 256x256 grid points in the
x and y plane, the image was padded in the x and y direction with air. If the number of grid points in
the x and y plane was larger than 256x256, the image was cropped to 256x256 grid points. The resulting
number of slices in the z direction from the resampled image was not altered. The resulting image has
a shape of 256x256xNz, where Nz is the number of slices in the z-direction. The resampled images of all
phases from a scan were stored together in a single Hierarchical Data Format version 5 (HDF5) file [58].

4.4.2. CONTOURS

Scans from the first dataset also include contours for organs. The contours of all the organs for each
scan were stored in a single DICOM file. The contours are a set of points with an exact coordinate for
each point. As the neural network only takes tensor indices, each point is sampled to the nearest voxel
positions inside of the tensor. This introduces an error because the original contour points had exact
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coordinates, whereas in the tensor the coordinates are limited to the voxel positions. The tensor of each
individual organ is stored in a separate sparse tensor.

4.4.3. LANDMARKS
The second and third datasets have landmarks available. Landmarks are points with an exact coordinate
and were manually identified at each phase. An example of a landmark at various phases is shown in
Figure 4.4.

Figure 4.4: Example of a landmark in, green cross indicated by the yellow arrow, at 6 different phases of the breathing cycle.
Image taken from Castillo et al. [38].

4.4.4. DATA AUGMENTATION
The voxel values of the three datasets ranged between -1000 and 3000 Hounsfield units (HU). The HU
were rescaled to range between 0 and 1 values by increasing the values by 1000 and then dividing by
4000. To prevent overfitting of the network, data augmentation was applied before being fed to the
neural networks. Augmentation was performed by randomly shifting the moving and fixed images in
the x-y direction within a set range of ±5 voxel in the x direction and [0,15] in the y direction. The
number of available slices per scan was larger than the input of the network of 80 slices, and therefore a
sub-volume of 80 slices was randomly selected.

4.5. NETWORK IMPLEMENTATION
For both the VM and LAP models the original Pytorch implementations are publicly available [59, 35].
These implementations of the networks were adapted and optimised to work with the 4DCT lung data.

4.5.1. GRADIENT ACCUMULATION
Due to the limited available GPU memory, only batches of a limited number of image pairs could be
passed through the network simultaneously. Training with small batches could lead to large fluctua-
tions and thus hinder training. To update the weights of the network based on more samples, gradient
accumulation was used.

A set number of batches is passed through the network and their loss is calculated and divided by the
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set number of batches. Next, the loss gradients calculated and are accumulated. After all the set batches
are passed, the weights are updated using the accumulated gradient.

4.5.2. TRAINING AND VALIDATION DATA
Each 4DCT scan consists of 10 phases per breathing cycle, resulting in 100 image pairs (90 combinations
between phases plus 10 identity registrations) per scan. The training data consisted of 61 scans from 11
patients taken from dataset 1. This resulted in a total of 6100 image pairs. The validation set consisted of
500 image pairs from a single patient in dataset 1 with five 4DCT scans. Only CT data was used as input
for training and validation, no contours or landmarks data was used during the training

4.5.3. TRAINING ROUTINE

VOXELMORPH

The Voxelmorph model was trained for 25 epochs with batches of two image pairs due to GPU memory
limits. However, the gradients of ten batches were accumulated as described in Section 4.5.1 before
updating the weights. This has an effective batch size of 20 image pairs. The set values of ψ was set to
2500, λ to 10, γ to 350000 and Γwas 10.

LAPLACIAN MODEL

The total training routine of the Laplacian Pyramid Networks consists of three consecutive training rou-
tines in a coarse-to-fine training scheme. First, only a single CIRM at the coarsest resolution on 1/4 is
trained to predict a DVF. For the next training routine, an additional CIRM is added to the network at 1/2
the resolution level. The weights of the previously trained coarser CIRM are frozen for the first 200 image
pairs in the first epoch to initialise the weights of the finer CIRM. During the third training routine, the
third CIRM is added at the original resolution. Again, the weights of the previously trained coarser CIRM
are frozen for the first 200 image pairs in the first epoch. The initial number of CIRM blocks was 5, with
32 filters each.

The CIRM at the coarsest level is trained for 40 epochs with a batch size of 20 image pairs. The sec-
ond level was also trained for 40 epochs with a batch size of 5 image pairs and the finest level is trained
for 25 epochs with a batch size of two image pairs. The set values of ψ was set to 1, λ to 4, γ to 350000.

Training, validation and testing of the networks were performed on a machine with an NVIDIA Tesla
V100S GPU with 32GB of memory. This machine was available through DelftBlue, the high-performance
computer cluster at the TU Delft [60].

4.6. EVALUATION METHODS
To compare the accuracy of the predictions made by the different models three evaluation methods were
used.

4.6.1. MEAN ABSOLUTE ERROR
The first evaluation method is the mean absolute error. The mean absolute error is defined in Equa-
tion (4.4), which compares the image intensities in HU units. Where I f is the fixed image, Im is the
moving image and φ is the DVF The function sums over all voxels p in the volume Ω. The intensity
values of the fixed and moving images were rescaled from [0,1] to [-1000, 3000] on the HU scale.

MAE(I f , Im ◦φ) = 1

|Ω|
∑

p∈Ω
|I f (p)− [Im ◦φ](p)| (4.4)

4.6.2. REGISTRATION GRID FOLDING
As discussed in Section 2.4.5 a common issue with image registration is the folding of the registration
grid over itself, this results in the transformation not being diffeomorphic [18]. Therefore the determi-
nant of the Jacobian matrix from the deformation vector field is calculated for each voxel point. Then
the fraction of grid points with negative determinate is calculated. This is mathematically formulated in
Equation (4.5).

JAC(φ) = 1

|Ω|
∑

p∈Ω

(∣∣Jφ(p)
∣∣≤ 0

)
with Jφ(p) =∇φ(p) (4.5)



4

28 4. METHODS

4.6.3. EVALUATION USING CONTOURS
As stated in Section 4.4.1, some scans have contours available for the esophagus, the left and right lung,
the tumor, and the heart. The network is trained with an image dimension of 80x256x256 voxels, whereas
the original 4DCT images and the contours have a dimension of 80x512x512. Therefore the predicted
DVF is upsampled in the x and y direction using trilinear interpolation to have the same size as the
contours. The contours are deformed using the upsampled DVF and the PyTorch grid sample function
to the nearest neighbour [61].

To evaluate the deformed contour the Hausdorff Distance (HD), the mean surface distance (MSD)
and the surface dice similarity coefficient (DSC) are calculated. These metrics were calculated using a
publicly available surface distance metrics package [62, 63]. An illustration of each metric is given in
Figure 4.5.

The Hausdorff Distance gives the maximum distance between the nearest points from the two con-
tours, A and B . The function calculates the maximum distance for a point in the contour A to its nearest
point in contour B . This is formulated in Equation (4.6). The Hausdorff Distance is the maximum from
Equation (4.6) for h(A,B) and h(B , A) as given in Equation (4.7), were a and b are points in contour A
and B respectively [64].

h(A,B) = max
a∈A

min
b∈B

∥a −b∥ (4.6)

HD = max(h(A,B),h(B , A)) (4.7)

The mean surface distance gives the average distance between points on the contours. For each
point on the contour A the closed point on contour B is determined, and these results are averaged.
The same is done in the opposite direction, and both results combined with a weight of 1/2. This is
formulated in Equation (4.8) where q(A,B) is given in Equation (4.9) [64].

MSD = 1

2
(q(A,B)+q(B , A)) (4.8)

q(A,B) = 1

A

∑
a∈A

min
b∈B

∥a −b∥ (4.9)

For the overlap of organs the volumetric Dice similarity coefficient (DSC) is commonly used. The
volumetric DSC compares the overlap between the volumes enclosed by the contour, which requires
the generation of a mask enclosed for each layer. The surface Dice Similarity Coefficient (surface DSC)
asses the overlap between the outer surfaces of the contours. It is defined as twice the union of the
surface of the two contours, normalised by the sum of the surface of the two contours, this is given
in Equation (4.10), where the verticle bars, |, denote the surfaces of the contour [64]. The value of the
surface DSC ranges between 0 and 1, where 0 is no overlap of the contours, and 1 is a perfect overlap
within the acceptable tolerance [63]. Since the contours are stored as discrete voxels and the DVF is
upsampled from 2mm to 1 mm and a tolerance of 1 mm is allowed in each of the directions. In this
report, the surface DSC is used.

DSC = 2|A∩B |
|A|+ |B | (4.10)

4.6.4. EVALUATION OF PREDICTION TIME
Besides the accuracy of the registration, prediction time is also important, since long prediction times
limit the practical use of the network. The average time to predict the DVF on both a CPU and a GPU is
measured and compared.

4.7. PERFORMED SIMULATIONS

4.7.1. VOXELMORPH MODEL
During early simulations of the VM model, the predicted DVF would diverge. Therefore a HardTanh
activation layer, as given in Equation (2.19), is added after the U-net and before the integration step.
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This limits the maximum value of the vectors in the DVF. The range of the linear region, Γ, is evaluated
for values of 5,6,8,10,15,20.

Additional simulations were formed with a range of values for λ as a weight for Lsmooth (φ) loss func-
tion. Simulated values for λwhere powers of then, 10n with n (ranging between 0 and 5), and additional
values of 500, 5000, and 50000. The value of Γ for the HardTanh was 10. These models were individually
trained as described in Section 4.5.3.

4.7.2. LAPLACIAN PYRAMID MODEL
For the Laplacian pyramid model, the number of CIRM blocks as well as the number of filters was varied
for the coarsest level. The tested number of CIRM blocks was 5,7,9 and the number of filters was 32, 48,
and 80. This resulted in nine different models.

First, only the coarsest level was varied, since the additional computational cost is limited due to the
coarser resolution. All other levels had the original setting of 5 CIRM blocks with 32 filters. Second, the
number of CIRM blocks and filters for all three levels was varied.

The last simulation was expanding the model to have a fourth grid size at 1/8 the resolution. This
level had the same number of residual CIRM blocks and filters as the original model, namely 5 residual
blocks and 32 filters. Adding a fourth grid size increases the model size and the computational cost.
However, the additional grid size is on a coarse grid the computational is cheap. These models were
individually trained as described in Section 4.5.3.
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Figure 4.5: Illustration and formula showing the Surface Dice Similarity Coefficient, Hausdorff Distance and Average Surface
Distance for contour evaluation between contours A and B in 2D. For the surface Dice, the purple section indicates accepted
overlap, without tolerance (left) and with tolerance (right). The Hausdorff distance is the maximum distance between points
contour A and B indicated with the black line on the right. And the Average Surface Distance between the contours. Illustra-
tion taken from K.J. Kiser et al. [64].
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RESULTS

The model of the performed simulations described in Section 4.7 are evaluated using the metrics de-
scribed in section 4.6. The evaluation is performed using the three data sets described in section 4.4.1.
From dataset 1 500 unseen image pairs were used in the testing set. Testing data from the second dataset
consists of 700 image pairs, and from the third 500 image pairs were used.

Please note that the centre value of the box gives the median value. The box gives the 25% to 75% in-
terval, known as the interquartile range (IQR). The whiskers extents to 1.5 * IQR values. Circles represent
are outliers. The tables give the average value and the standard deviation.

5.1. VOXELMORPH MODEL

5.1.1. RESULTS VARYING THE HARDTANH VALUE
The calculated mean absolute error in HU units of the three testing datasets for various values of Γ for
the HardTanh is given in Table 5.1 and displayed in Figure 5.1.

Table 5.1: Mean absolute error in HU units between the prediction and the fixed image on three testing datasets for various
values of Γ for the VM model. Calculated as described in Section 4.6.1.

Γ value Dataset 1 Dataset 2 Dataset 3 Average
Baseline 19.50±9.02 18.22±7.77 23.41±10.54 20.06±9.26

5 16.76±6.92 16.52±5.17 19.38±6.35 17.36±6.29
6 17.43±6.30 17.37±4.71 20.28±5.92 18.16±5.80
8 16.32±6.46 17.52±4.84 19.56±6.30 17.62±6.01

10 17.85±7.04 17.03±5.27 21.03±7.14 18.38±6.67
15 17.17±6.63 16.29±4.81 19.77±6.09 17.53±6.04
20 16.98±6.70 16.70±4.53 19.55±5.76 17.55±5.85

31
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Figure 5.1: Mean absolute error in HU units between the prediction and the fixed image for various values of Γ for the VM
model. Calculated as described in Section 4.6.1. Values are given in Table 5.1.
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The ratio of voxels in the DVF with a negative Jacobian determinant for various values of Γ for the
HardTanh is given Table 5.2 and shown in Figure 5.2.

Table 5.2: Ratio of voxels with a negative Jacobian determinant for various values of Γ for the HardTanh of the VM model.
Calculated as described in Section 4.6.2.

Γ value Dataset 1 Dataset 2
5 1.764 ·10−5 ±3.866 ·10−5 3.884 ·10−5 ±9.709 ·10−5

6 2.232 ·10−5 ±7.261 ·10−5 2.287 ·10−5 ±4.788 ·10−5

8 2.232 ·10−5 ±7.261 ·10−5 2.287 ·10−5 ±4.788 ·10−5

10 2.155 ·10−6 ±1.211 ·10−5 2.001 ·10−6 ±1.428 ·10−5

15 1.942 ·10−5 ±4.110 ·10−5 4.065 ·10−5 ±9.267 ·10−5

20 7.821 ·10−5 ±1.747 ·10−4 7.058 ·10−5 ±1.381 ·10−4

Γ value Dataset 3 Average
5 2.812 ·10−5 ±3.726 ·10−5 2.821 ·10−5 ±6.687 ·10−5

6 8.594 ·10−5 ±1.444 ·10−4 3.927 ·10−5 ±9.516 ·10−5

8 5.830 ·10−4 ±6.143 ·10−4 3.878 ·10−4 ±5.077 ·10−4

10 1.256 ·10−5 ±3.308 ·10−5 4.836 ·10−6 ±2.094 ·10−5

15 1.039 ·10−5 ±1.813 ·10−5 2.486 ·10−5 ±6.349 ·10−5

20 2.955 ·10−5 ±4.219 ·10−5 6.259 ·10−5 ±1.383 ·10−4

Figure 5.2: Ratio of voxels with a negative Jacobian determinant for various values of Γ for the VM model. Calculated as
described in Section 4.6.2. Values are given in Table 5.2.

The calculated dice scores are given in Table 5.3 and are depicted in Figure 5.3. The calculated mean
surface distances are given in Table 5.4 and displayed in Figure 5.4. The Hausdorff results are given in
Table 5.5 and displayed in Figure 5.5.
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Table 5.3: The Dice score between the prediction and the fixed contour for various values of Γ for the HardTanh for the VM
model. Calculated as described in Section 4.6.3

Γ value Esophagus Right Lung Left Lung Tumor Heart
Baseline 0.89±0.08 0.83±0.12 0.83±0.12 0.79±0.13 0.76±0.17
5 0.89±0.08 0.88±0.08 0.87±0.09 0.82±0.11 0.77±0.14
6 0.90±0.08 0.87±0.09 0.86±0.09 0.82±0.11 0.78±0.15
8 0.90±0.08 0.88±0.09 0.87±0.09 0.82±0.10 0.79±0.15
10 0.87±0.07 0.88±0.08 0.87±0.09 0.81±0.10 0.74±0.13
15 0.90±0.08 0.86±0.10 0.85±0.10 0.81±0.12 0.78±0.15
20 0.90±0.08 0.87±0.09 0.86±0.10 0.82±0.11 0.78±0.16

Figure 5.3: The Dice score between the prediction and the fixed contour for various values of Γ for the VM model. Calculated
as described in Section 4.6.3. Values are given in Table 5.3.
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Table 5.4: Mean surface distance in mm between the prediction and the fixed contour for various values ofΓ for the HardTanh
of the VM model. Calculated as described in Section 4.6.3.

Γ value Esophagus Right Lung Left Lung Tumor Heart
Baseline 0.41±0.34 0.92±0.80 0.80±0.73 0.71±0.46 0.98±0.79
5 0.43±0.35 0.63±0.66 0.58±0.55 0.62±0.37 0.90±0.62
6 0.40±0.34 0.64±0.60 0.60±0.52 0.62±0.36 0.85±0.65
8 0.41±0.34 0.61±0.62 0.56±0.49 0.62±0.36 0.85±0.63
10 0.55±0.35 0.61±0.57 0.56±0.45 0.67±0.34 1.03±0.61
15 0.40±0.33 0.66±0.60 0.61±0.50 0.64±0.38 0.88±0.66
20 0.41±0.35 0.69±0.75 0.63±0.62 0.61±0.36 0.89±0.70

Figure 5.4: The mean surface distance in mm between the prediction and the fixed contour for various values of Γ. Calculated
as described in Section 4.6.3. Values given in Table 5.4.
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Table 5.5: The Hausdorff distance in mm between the prediction and the fixed contour for various values of Γ for the Hard-
Tanh of the VM model. Calculated as described in Section 4.6.3.

Γ value Esophagus Right Lung Left Lung Tumor Heart
Baseline 8.23±4.48 17.49±9.27 16.79±10.55 7.33±3.94 13.62±5.72
5 8.40±4.00 16.98±7.33 16.76±9.80 7.45±3.43 13.98±4.79
6 8.23±4.48 17.24±8.70 16.37±10.40 7.11±3.65 13.61±5.71
8 8.21±4.46 17.75±8.79 16.35±10.40 7.10±3.63 13.61±5.70
10 8.82±4.00 17.46±7.59 16.82±9.83 7.61±3.29 14.29±4.89
15 8.22±4.47 17.14±8.79 16.43±10.39 7.12±3.68 13.61±5.72
20 8.16±4.44 16.98±8.42 16.24±10.40 7.09±3.58 13.60±5.70

Figure 5.5: The Hausdorff distance in mm between the prediction and the fixed contour for various values of Γ. Calculated
as described in Section 4.6.3. Values given in Table 5.5.
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5.1.2. RESULTS VARYING LAMBDA VALUE WITH HARDTANH(10)
The value of λ was varied for the Voxelmorph model. The value of Γ for the HardTanh was set to 10.
The mean absolute error in HU units for the three test sets are given in Table 5.6 and are displayed in
Figure 5.6.

Table 5.6: Mean absolute error in HU units between the prediction and the fixed image for various values of λ for the VM
model with HardTanh value Γ of 10. Calculated as described in Section 4.6.1.

Hardtan value Dataset 1 Dataset 2 Dataset 3 Average
Baseline 19.50±9.02 18.22±7.77 23.41±10.54 20.06±9.26
1 16.80±6.28 18.39±4.97 20.02±6.20 18.23±5.95
10 16.58±6.49 16.76±4.90 19.89±6.33 17.52±6.08
100 17.85±7.04 17.03±5.27 21.03±7.14 18.38±6.67
500 16.84±6.69 16.70±4.88 19.46±6.69 17.48±6.20
1000 17.12±6.62 18.13±4.88 19.82±6.04 18.20±5.97
10000 17.66±7.41 17.03±5.75 20.76±7.79 18.24±7.12
50000 16.27±6.14 17.04±4.60 20.39±6.28 17.47±5.95
100000 17.55±6.68 17.72±4.69 20.83±6.22 18.47±6.06

Figure 5.6: Calculated mean absolute error in HU units between the prediction and the fixed image for three test sets for
various values of the gradient weight for the VM model with HardTanh value Γ set to 10. Values given in Table 5.6.
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The ratio of voxels in the DVF with a negative Jacobian determinant for various values of λ are given
in Table 5.7 and are displayed in Figure 5.7.

Table 5.7: Ratio of voxels with a negative Jacobian determinant for various values of λ for the VM model with HardTanh value
Γ of 10. Calculated as described in Section 4.6.2.

Hardtan value Dataset 1 Dataset 2
1 6.904 ·10−5 ±1.245 ·10−4 1.120 ·10−4 ±2.048 ·10−4

10 4.739 ·10−4 ±6.863 ·10−4 3.583 ·10−4 ±5.748 ·10−4

100 2.155 ·10−6 ±1.211 ·10−5 2.001 ·10−6 ±1.428 ·10−5

500 1.017 ·10−4 ±2.214 ·10−4 3.784 ·10−5 ±9.720 ·10−5

1000 3.181 ·10−5 ±6.559 ·10−5 7.100 ·10−5 ±1.485 ·10−4

10000 2.469 ·10−6 ±1.626 ·10−5 6.894 ·10−7 ±3.580 ·10−6

50000 1.575 ·10−7 ±9.833 ·10−7 5.601 ·10−6 ±2.273 ·10−5

100000 0.000 ± 0.000 0.000 ± 0.000

Hardtan value Dataset 3 Average
1 3.128 ·10−5 ±5.718 ·10−5 7.491 ·10−5 ±1.518 ·10−4

10 1.972 ·10−4 ±2.234 ·10−4 3.585 ·10−4 ±5.658 ·10−4

100 1.256 ·10−5 ±3.308 ·10−5 4.836 ·10−6 ±2.094 ·10−5

500 6.514 ·10−5 ±1.270 ·10−4 6.854 ·10−5 ±1.629 ·10−4

1000 4.660 ·10−5 ±9.262 ·10−5 5.014 ·10−5 ±1.107 ·10−4

10000 2.270 ·10−7 ±1.252 ·10−6 1.223 ·10−6 ±1.017 ·10−5

50000 0.000 ·100 ±0.000 ·100 1.878 ·10−6 ±1.318 ·10−5

100000 0.000 ± 0.000 0.000 ± 0.000
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Figure 5.7: Ratio of voxels with a negative Jacobian determinant for various values of λ for the VM model with HardTanh
value Γ set to 10. Calculated as described in Section 4.6.2. Values given in Table 5.7.
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The calculated dice scores are given in Table 5.8 and are depicted in Figure 5.8. The calculated mean
surface distances in mm are given in Table 5.9 and displayed in Figure 5.9. The Hausdorff results in mm
are given in Table 5.10 and displayed in Figure 5.10.

Table 5.8: The Dice score between the prediction and the fixed contour for various values of λ for the VM model with Hard-
Tanh value Γ of 10. Calculated as described in Section 4.6.3.

λ value Esophagus Right Lung Left Lung Tumor Heart
Baseline 0.89±0.08 0.83±0.12 0.83±0.12 0.79±0.13 0.76±0.17
1 0.90±0.08 0.86±0.09 0.85±0.10 0.82±0.11 0.78±0.16
10 0.90±0.08 0.88±0.08 0.88±0.09 0.83±0.10 0.79±0.15
100 0.87±0.07 0.88±0.08 0.87±0.09 0.81±0.10 0.74±0.13
500 0.90±0.08 0.87±0.09 0.86±0.10 0.82±0.11 0.78±0.15
1000 0.90±0.08 0.88±0.09 0.87±0.09 0.82±0.10 0.78±0.15
10000 0.90±0.08 0.85±0.11 0.84±0.11 0.81±0.12 0.77±0.16
50000 0.90±0.08 0.86±0.10 0.85±0.11 0.81±0.11 0.77±0.16
100000 0.90±0.08 0.85±0.10 0.85±0.11 0.81±0.11 0.78±0.16

Figure 5.8: The Dice score between the prediction and the fixed contour for various values of λ for the VM model with
HardTanh value Γ set to 10. Calculated as described in Section 4.6.3. Values are given in Table 5.8.
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Table 5.9: Mean surface distance in mm the prediction and the fixed contour for various values of λ for the VM model with
HardTanh value Γ of 10. Calculated as described in Section 4.6.3.

λ value Esophagus Right Lung Left Lung Tumor Heart
Baseline 0.41±0.34 0.92±0.80 0.80±0.73 0.71±0.46 0.98±0.79
1 0.40±0.34 0.72±0.69 0.66±0.61 0.61±0.36 0.88±0.67
10 0.40±0.34 0.60±0.66 0.56±0.55 0.60±0.35 0.85±0.64
100 0.55±0.35 0.61±0.57 0.56±0.45 0.67±0.34 1.03±0.61
500 0.40±0.34 0.66±0.61 0.60±0.50 0.61±0.35 0.88±0.66
1000 0.40±0.34 0.59±0.57 0.55±0.48 0.61±0.35 0.86±0.64
10000 0.41±0.35 0.82±0.78 0.71±0.66 0.65±0.40 0.90±0.71
50000 0.41±0.34 0.73±0.70 0.68±0.63 0.64±0.38 0.90±0.70
100000 0.40±0.33 0.73±0.68 0.66±0.58 0.63±0.37 0.88±0.66

Figure 5.9: The mean surface distance in mm between the prediction and the fixed contour for various values of λ for the VM
model with HardTanh value Γ set to 10. Calculated as described in Section 4.6.3. Values given in Table 5.9.
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Table 5.10: The Hausdorff distance in mm between the prediction and the fixed contour for various values of λ for the VM
model with HardTanh value Γ of 10. Calculated as described in Section 4.6.3.

λ value Esophagus Right Lung Left Lung Tumor Heart
Baseline 8.23±4.48 17.49±9.27 16.79±10.55 7.33±3.94 13.62±5.72
1 8.23±4.48 17.37±8.93 16.48±10.42 7.19±3.73 13.60±5.70
10 8.19±4.44 16.95±8.29 16.22±10.35 7.11±3.62 13.60±5.69
100 8.82±4.00 17.46±7.59 16.82±9.83 7.61±3.29 14.29±4.89
500 8.22±4.47 17.84±9.01 16.63±10.44 7.12±3.68 13.60±5.71
1000 8.21±4.47 17.04±8.11 16.32±10.32 7.08±3.62 13.63±5.65
10000 8.23±4.47 17.40±9.17 16.62±10.49 7.17±3.71 13.62±5.72
50000 8.21±4.46 17.05±8.87 16.43±10.44 7.13±3.66 13.61±5.71
100000 8.22±4.47 17.27±9.09 16.58±10.45 7.12±3.70 13.60±5.71

Figure 5.10: The Hausdorff distance in mm between the prediction and the fixed contour for various values of λ for the VM
model with HardTanh value Γ set to 10. Calculated as described in Section 4.6.3. Values given in Table 5.10.
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5.2. LAPLACIAN PYRAMID MODEL

5.2.1. VARY LAYERS AND FILTERS FOR COARSEST LEVEL
The number of CIRM blocks and filters of the coarsest grid size varied, the other two grid sizes used the
original implementation of 5 CIRM blocks with 32 filters. The mean absolute error in HU units between
the predicted and the fixed images was calculated as described in Section 4.6.1. The results are given in
Table 5.11 and are depicted in Figure 5.11.

Table 5.11: Mean absolute error in HU units for various number of CIRM blocks and filters for the coarses layer. Other layers
have 5 CIRM blocks with 32 filters. Calculated as described in Section 4.6.1.

CIRM blocks Filters Dataset 1 Dataset 2 Dataset 3 Average
Baseline 19.50±9.02 18.22±7.77 23.41±10.54 20.06±9.26

9 80 13.99±6.38 13.94±4.82 15.64±5.20 14.41±5.59
7 80 13.83±6.37 13.76±5.00 15.29±5.34 14.19±5.66
5 80 13.83±6.40 13.88±4.97 15.66±5.58 14.33±5.75
9 48 13.83±6.36 13.81±4.99 15.14±5.31 14.16±5.65
7 48 13.92±6.66 13.95±4.73 15.20±5.43 14.27±5.71
5 48 13.80±6.27 14.10±4.76 15.37±5.17 14.32±5.50
9 32 13.59±6.44 13.92±5.06 15.10±5.41 14.11±5.73
7 32 13.65±6.38 13.39±4.96 14.95±5.20 13.90±5.62
5 32 12.75±5.60 13.50±4.72 15.35±5.36 13.71±5.33

Figure 5.11: Calculated mean absolute error in HU units for the LAP model with varying number of CIRM blocks and filters
in the coarsest level. Calculated as described in Section 4.6.1. Values given in Table 5.11.
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The ratio of voxels where the DVF has a negative Jacobian determinant is calculated as described in
Section 4.6.2. The results are given in Table 5.12.

Table 5.12: Ratio of voxels with a negative Jacobian determinant, for various number of CIRM blocks and filters for the coars-
est layer of the LAP model. Other layers have 5 CIRM blocks with 32 filters. Calculated as described in Section 4.6.2.

CIRM blocks Filters Dataset 1 Dataset 2
9 80 8.719 ·10−8 ±3.294 ·10−7 5.338 ·10−7 ±1.382 ·10−6

7 80 1.038 ·10−7 ±3.219 ·10−7 6.673 ·10−7 ±1.473 ·10−6

5 80 5.886 ·10−8 ±2.436 ·10−7 4.455 ·10−7 ±1.250 ·10−6

9 48 1.458 ·10−7 ±4.705 ·10−7 1.745 ·10−6 ±4.606 ·10−6

7 48 3.815 ·10−8 ±2.508 ·10−7 1.945 ·10−7 ±5.314 ·10−7

5 48 1.054 ·10−7 ±4.697 ·10−7 9.817 ·10−7 ±2.730 ·10−6

9 32 3.079 ·10−8 ±1.263 ·10−7 4.747 ·10−7 ±1.118 ·10−6

7 32 2.880 ·10−7 ±1.051 ·10−6 1.648 ·10−6 ±4.072 ·10−6

5 32 4.905 ·10−9 ±3.643 ·10−8 5.760 ·10−7 ±1.440 ·10−6

CIRM blocks Filters Dataset 3 Average
9 80 6.275 ·10−7 ±1.143 ·10−6 3.939 ·10−7 ±1.069 ·10−6

7 80 7.149 ·10−7 ±2.584 ·10−6 4.722 ·10−7 ±1.635 ·10−6

5 80 9.800 ·10−7 ±3.072 ·10−6 4.437 ·10−7 ±1.792 ·10−6

9 48 1.777 ·10−6 ±6.459 ·10−6 1.164 ·10−6 ±4.414 ·10−6

7 48 7.614 ·10−7 ±4.263 ·10−6 2.861 ·10−7 ±2.235 ·10−6

5 48 7.214 ·10−7 ±2.636 ·10−6 5.904 ·10−7 ±2.192 ·10−6

9 32 3.971 ·10−7 ±1.094 ·10−6 2.907 ·10−7 ±9.068 ·10−7

7 32 1.197 ·10−6 ±3.446 ·10−6 1.028 ·10−6 ±3.161 ·10−6

5 32 2.518 ·10−7 ±1.241 ·10−6 2.803 ·10−7 ±1.109 ·10−6
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For four patients from dataset 1 contours metrics were calculated. The results for dice scores are
given in Table 5.13 and are depicted in Figure 5.12.

Table 5.13: Calculated Dice score for various organs for various number of CIRM blocks and filters for the coarsest layer of
the LAP model. Other layers have 5 CIRM blocks with 32 filters. Calculated as described in Section 4.6.3.

CIRM blocks Filters Esophagus Right Lung Left Lung Tumor Heart
Baseline 0.89±0.08 0.83±0.12 0.83±0.12 0.79±0.13 0.76±0.17

9 80 0.90±0.06 0.92±0.07 0.91±0.08 0.84±0.09 0.78±0.13
7 80 0.91±0.06 0.91±0.07 0.90±0.08 0.84±0.09 0.78±0.13
5 80 0.91±0.06 0.91±0.07 0.90±0.08 0.84±0.09 0.78±0.13
9 48 0.91±0.06 0.91±0.07 0.90±0.08 0.84±0.09 0.78±0.13
7 48 0.91±0.06 0.91±0.07 0.90±0.08 0.85±0.09 0.78±0.13
5 48 0.91±0.06 0.91±0.07 0.91±0.08 0.84±0.09 0.78±0.12
9 32 0.91±0.06 0.91±0.07 0.90±0.08 0.85±0.09 0.78±0.13
7 32 0.91±0.06 0.92±0.06 0.91±0.08 0.84±0.09 0.78±0.13
5 32 0.91±0.06 0.91±0.07 0.91±0.08 0.84±0.09 0.77±0.12

Figure 5.12: Calculated dice score for organs from four patients from dataset 1 for LAP model with varying number of CIRM
blocks and filters in the coarsest level for the LAP model. Calculated as described in Section 4.6.3. Values given in Table 5.13.
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The results for the mean surface distances in mm are given in Table 5.14 and displayed in Figure 5.13.

Table 5.14: Calculated mean surface distance in mm for various organs for various number of CIRM blocks and filters for the
coarsest layer for the LAP model of the LAP model. Other layers have 5 CIRM blocks with 32 filters. Calculated as described
in Section 4.6.3.

CIRM blocks Filters Esophagus Right Lung Left Lung Tumor Heart
Baseline 0.41±0.34 0.92±0.80 0.80±0.73 0.71±0.46 0.98±0.79

9 80 0.39±0.25 0.41±0.36 0.41±0.32 0.57±0.32 0.87±0.48
7 80 0.38±0.23 0.43±0.38 0.42±0.34 0.57±0.32 0.87±0.48
5 80 0.38±0.24 0.42±0.36 0.42±0.33 0.56±0.32 0.86±0.48
9 48 0.38±0.23 0.42±0.37 0.41±0.32 0.56±0.32 0.86±0.48
7 48 0.37±0.22 0.43±0.39 0.42±0.34 0.56±0.32 0.85±0.47
5 48 0.37±0.22 0.41±0.37 0.41±0.32 0.56±0.32 0.86±0.47
9 32 0.38±0.23 0.41±0.36 0.41±0.33 0.56±0.31 0.86±0.47
7 32 0.39±0.24 0.40±0.34 0.41±0.32 0.56±0.32 0.88±0.49
5 32 0.38±0.22 0.42±0.36 0.41±0.31 0.56±0.32 0.87±0.46

Figure 5.13: Calculated mean surface distances in mm for organs from four patients from dataset 1 for models with varying
number of CIRM blocks and filters for the coarsest layer for the LAP model. Calculated as described in Section 4.6.3. Values
given in Table 5.14.
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The Hausdorff results in mm are given in Table 5.15 and displayed in Figure 5.14.

Table 5.15: Calculated Hausdorff distance in mm for various organs for various number of CIRM blocks and filters for the
coarsest layer for the LAP model. Other layers have 5 CIRM blocks with 32 filters. Calculated as described in Section 4.6.3.

CIRM blocks Filters Esophagus Right Lung Left Lung Tumor Heart
Baseline 8.23±4.48 17.49±9.27 16.79±10.55 7.33±3.94 13.62±5.72

7 80 6.76±3.35 15.71±7.84 15.67±10.03 7.19±3.85 13.32±5.48
9 80 6.70±3.38 15.75±7.97 15.73±10.05 7.15±3.80 13.38±5.52
5 80 6.86±3.45 15.57±7.86 15.64±10.00 7.19±3.81 13.32±5.53
9 48 6.66±3.36 15.77±8.03 15.73±10.09 7.18±3.79 13.34±5.49
7 48 6.64±3.33 15.79±8.03 15.76±10.07 7.15±3.79 13.30±5.50
5 48 6.72±3.32 15.69±7.86 15.74±10.03 7.24±3.85 13.33±5.53
9 32 6.70±3.29 15.79±7.98 15.73±10.08 7.13±3.76 13.30±5.48
7 32 6.73±3.38 15.56±7.79 15.69±10.08 7.19±3.85 13.38±5.54
5 32 6.50±3.12 15.83±7.87 15.74±9.89 7.07±3.61 13.48±5.24

Figure 5.14: Calculated Hausdorff distance in mm for organs from four patients from dataset 1 for models with varying
number of CIRM blocks and filters for the coarsest layer for the LAP model. Calculated as described in Section 4.6.3. Values
given in Table 5.15.
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5.2.2. VARY LAYERS AND FILTERS FOR ALL LEVELS
The number of CIRM blocks and filters was varied for all grid sizes of the LAP model. The mean ab-
solute error between in HU units the predicted and the fixed images was calculated as described in
Section 4.6.1. The results are given in Table 5.16 and are depicted in Figure 5.15.

Table 5.16: Mean absolute error in HU units for networks with various number of CIRM blocks and filters for the LAP model.
Calculated as described in Section 4.6.1.

CIRM blocks Filters Dataset 1 Dataset 2 Dataset 3 Average
Baseline 19.50±9.02 18.22±7.77 23.41±10.54 20.06±9.26

7 80 18.99±6.18 20.78±4.93 22.91±5.09 20.68±5.67
5 80 16.44±6.46 16.88±5.15 19.90±6.33 17.51±6.14
9 48 18.65±5.70 21.81±5.44 23.21±5.92 21.01±5.97
7 48 19.13±6.75 22.68±5.80 22.31±5.50 21.27±6.31
5 48 17.43±6.33 18.03±4.78 19.67±5.81 18.24±5.73
9 32 16.54±7.09 16.59±5.69 18.61±6.46 17.10±6.50
7 32 13.30±5.80 14.65±4.81 15.96±5.25 14.50±5.41
5 32 12.75±5.60 13.50±4.72 15.35±5.36 13.71±5.33

Figure 5.15: Calculated mean absolute error in HU units for three datasets for models with varying number of CIRM blocks
and filters for all levels of the LAP model. Calculated as described in Section 4.6.1. Values given in Table 5.16.
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The ratio of voxels where the DVF has a negative Jacobian determinant is calculated as described in
Section 4.6.2. The results are given in Table 5.17.

Table 5.17: Ratio of voxels with a negative Jacobian determinant for various number of CIRM blocks and filters for all layers
of the LAP model. Calculated as described in Section 4.6.2.

CIRM blocks Filters Dataset 1 Dataset 2
7 80 0.000 ·100 ±0.000 ·100 2.371 ·10−6 ±8.201 ·10−6

5 80 0.000 ·100 ±0.000 ·100 1.567 ·10−6 ±2.988 ·10−6

9 48 0.000 ·100 ±0.000 ·100 1.744 ·10−8 ±1.282 ·10−7

7 48 0.000 ·100 ±0.000 ·100 8.174 ·10−8 ±4.964 ·10−7

5 48 0.000 ·100 ±0.000 ·100 0.000 ·100 ±0.000 ·100

9 32 1.196 ·10−5 ±3.847 ·10−5 7.666 ·10−6 ±2.363 ·10−5

7 32 5.450 ·10−8 ±2.103 ·10−7 1.564 ·10−6 ±4.318 ·10−6

5 32 4.905 ·10−9 ±3.643 ·10−8 5.760 ·10−7 ±1.440 ·10−6

CIRM blocks Filters Dataset 3 Average
7 80 0.000 ·100 ±0.000 ·100 8.735 ·10−7 ±5.107 ·10−6

5 80 0.000 ·100 ±0.000 ·100 5.773 ·10−7 ±1.965 ·10−6

9 48 3.815 ·10−10 ±8.521 ·10−9 6.525 ·10−9 ±7.837 ·10−8

7 48 0.000 ·100 ±0.000 ·100 3.012 ·10−8 ±3.039 ·10−7

5 48 0.000 ·100 ±0.000 ·100 0.000 ·100 ±0.000 ·100

9 32 1.625 ·10−5 ±7.999 ·10−5 1.151 ·10−5 ±4.946 ·10−5

7 32 1.379 ·10−6 ±2.927 ·10−6 9.591 ·10−7 ±3.102 ·10−6

5 32 2.518 ·10−7 ±1.241 ·10−6 2.803 ·10−7 ±1.109 ·10−6
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The calculated dice scores are given in Table 5.18 and are depicted in Figure 5.16. The calculated
mean surface distances in mm are given in Table 5.19 and displayed in Figure 5.17. The Hausdorff results
in mm are given in Table 5.20 and displayed in Figure 5.18.

Table 5.18: Calculated Dice score for various organs for networks with various number of CIRM blocks and filters for the LAP
model. Calculated as described in Section 4.6.3.

CIRM blocks Filters Esophagus Right Lung Left Lung Tumor Heart
Baseline 0.89±0.08 0.83±0.12 0.83±0.12 0.80±0.14 0.76±0.17

7 80 0.88±0.08 0.88±0.09 0.87±0.09 0.84±0.10 0.77±0.15
5 80 0.90±0.08 0.89±0.08 0.89±0.09 0.84±0.10 0.77±0.14
9 48 0.89±0.08 0.88±0.08 0.89±0.08 0.84±0.10 0.76±0.14
7 48 0.89±0.08 0.89±0.08 0.89±0.08 0.84±0.09 0.75±0.13
5 48 0.88±0.08 0.89±0.07 0.89±0.08 0.85±0.08 0.74±0.14
9 32 0.90±0.08 0.90±0.08 0.90±0.08 0.86±0.09 0.78±0.14
7 32 0.90±0.06 0.91±0.07 0.90±0.08 0.85±0.09 0.77±0.12
5 32 0.91±0.06 0.91±0.07 0.90±0.08 0.85±0.09 0.77±0.12

Figure 5.16: Calculated dice score for organs from four patients from dataset 1 for models with varying number of CIRM
blocks and filters for all levels of the LAP model. Calculated as described in Section 4.6.3. Values given in Table 5.18.
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Table 5.19: Calculated mean surface distance in mm for various organs for networks with various number of CIRM blocks
and filters for the LAP model. Calculated as described in Section 4.6.3.

CIRM blocks Filters Esophagus Right Lung Left Lung Tumor Heart
Baseline 0.41±0.34 0.92±0.80 0.80±0.73 0.71±0.46 0.98±0.79

7 80 0.50±0.26 0.61±0.54 0.57±0.49 0.62±0.33 0.94±0.58
5 80 0.39±0.30 0.51±0.46 0.47±0.39 0.60±0.35 0.87±0.57
9 48 0.42±0.27 0.56±0.44 0.49±0.34 0.63±0.37 0.91±0.50
7 48 0.45±0.33 0.51±0.42 0.47±0.36 0.57±0.32 0.97±0.51
5 48 0.48±0.28 0.50±0.40 0.48±0.38 0.55±0.30 1.01±0.52
9 32 0.39±0.30 0.49±0.43 0.44±0.36 0.57±0.32 0.86±0.54
7 32 0.39±0.23 0.40±0.34 0.40±0.31 0.58±0.32 0.87±0.47
5 32 0.38±0.22 0.42±0.36 0.41±0.31 0.58±0.32 0.87±0.46

Figure 5.17: Calculated mean surface distance in mm for organs from four patients from dataset 1 for models with varying
number of CIRM blocks and filters for all levels. Calculated as described in Section 4.6.3. Values given in Table 5.19.
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Table 5.20: Calculated Hausdorff distance in mm for various organs for networks with various number of CIRM blocks and
filters. Calculated as described in Section 4.6.3.

CIRM blocks Filters Esophagus Right Lung Left Lung Tumor Heart
Baseline 8.23±4.48 17.49±9.27 16.79±10.55 7.33±3.94 13.62±5.72

7 80 7.52±3.40 17.30±8.24 16.60±9.93 7.36±3.31 13.76±4.91
5 80 7.22±3.67 16.13±8.18 16.09±10.01 7.29±3.74 13.53±5.52
9 48 7.17±3.12 16.55±7.32 16.26±9.58 7.45±3.42 13.77±4.70
7 48 7.60±3.50 16.59±7.95 16.13±9.84 6.80±2.93 13.88±4.72
5 48 7.18±3.25 16.25±7.86 16.08±9.92 6.79±2.91 13.96±4.88
9 32 7.02±3.60 16.19±8.16 15.81±10.14 7.13±3.72 13.40±5.40
7 32 6.54±3.27 15.78±7.86 15.58±9.93 7.28±3.79 13.33±5.47
5 32 6.48±3.13 15.77±7.91 15.69±9.91 7.28±3.84 13.43±5.29

Figure 5.18: Calculated Hausdorff distance in mm for organs from four patients from dataset 1 for models with varying
number of CIRM blocks and filters for all levels of the LAP model. Calculated as described in Section 4.6.3. Values given in
Table 5.20.
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5.2.3. 4 GRID SIZES
The third variation of the Laplacean model was adding a 4th grid size of 5 CIRM blocks with 32 filters.

The results for the mean absolute error in HU units and the Jacobian are given in Table 5.21.

Table 5.21: The calculated Mean absolute error and Ratio of voxels with a negative Jacobian determinant for LAP model with
four grid sizes. Calculated as described in Sections 4.6.1 and 4.6.2.

Mean Absolute Error Jacobian
Dataset 1 14.15±6.28 9.610 ·10−7 ±4.060 ·10−6

Dataset 2 14.43±4.68 2.258 ·10−6 ±7.559 ·10−6

Dataset 3 16.31±5.35 1.890 ·10−6 ±5.976 ·10−6

Total 14.82±5.56 1.683 ·10−6 ±6.070 ·10−6

The contour metric results are given in Table 5.22.

Table 5.22: The calculated Mean absolute error and Ratio of voxels with a negative Jacobian determinant for LAP model with
four grid sizes. Calculated as described in Section 4.6.3.

Mean surface distance [mm] Hausdorff distance [mm] Dice Score
Esophagus 0.38±0.24 6.82±3.47 0.91±0.06
Right Lung 0.42±0.38 15.75±7.96 0.91±0.06
Left Lung 0.41±0.32 15.62±10.08 0.90±0.08

Tumor 0.55±0.31 7.13±3.76 0.85±0.09
Heart 0.84±0.47 13.29±5.53 0.78±0.12

5.3. ELASTIX RESULTS
The calculated MAE and the ratio of voxels with a negative Jacobian determinant for dataset 1 and 2 are
given in Table 5.23.

Table 5.23: The calculated mean absolute error and ratio of voxels with a negative Jacobian determinant for the Elastix defor-
mations. Calculated as described in Sections 4.6.1 and 4.6.2.

Mean Absolute Error [HU] Jacobian
Dataset 1 15.50 ± 5.13 5.440 ·10−7 ± 7.822 ·10−7

Dataset 2 18.51 ± 3.97 2.860 ·10−7 ± 6.460 ·10−7
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5.3.1. COMPARISON BETWEEN MODELS
The prediction from the VM, LAP and Elastix are compared. The compared models are the VM model
with a Γ value of 15 and λ of 100. The LAP model consists of 5 CIRM blocks with 32 filters. The models
are compared to Elastix with the parameters as described in Section 4.3. No image registration was
performed for dataset 3 using Elastix. Also, no contours were evaluated using Elastix. Slices of the fixed,
moving and predicted images for three patients predicted using the VM and LAP model are given in
Figures 5.19 to 5.22. Additional images are given in Appendices A.1 and A.2.

Figure 5.19: Overview of upper slices for the fixed, moving and predicted image of scan 132 from 0 to 50 phase. Prediction by
the VM model with Γ set to 10 and λ is 100.
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Figure 5.20: Overview of lower slices for the fixed, moving and predicted image of scan 132 from 0 to 50 phase. Prediction by
the VM model with Γ set to 10 and λ is 100.
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Figure 5.21: Overview of upper slices for the fixed, moving and predicted image of scan 132 from 0 to 50 phase. Prediction by
the LAP model with 5 CIRM blocks of 32 filters.
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Figure 5.22: Overview of lower slices for the fixed, moving and predicted image of scan 132 from 0 to 50 phase. Prediction by
the LAP model with 5 CIRM blocks of 32 filters.
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The mean absolute error for the three methods are given in Table 5.24 and are displayed in Fig-
ure 5.23.

Table 5.24: Mean absolute error in HU units between the prediction and the fixed image for the registration methods. Calcu-
lated as described in section 4.6.1.

Method Dataset 1 Dataset 2 Dataset 3 Average
Baseline 19.50±9.02 18.22±7.77 23.41±10.54 20.06±9.26
VoxelMorph 17.17±6.63 16.29±4.81 19.77±6.09 17.53±6.04
Laplacian model 12.75±5.60 13.50±4.72 15.35±5.36 13.71±5.33
Elastix 15.50±5.13 18.51±3.97

Figure 5.23: Calculated mean absolute error in HU units between the prediction and the fixed image for three datasets for
three registration methods. Calculated as described in Section 4.6.1. Values given in Table 5.24.
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The ratio of voxels in the DVF with a negative Jacobian determinant for three registration methods is
given in Table 5.25.

Table 5.25: Ratio of voxels with a negative Jacobian determinant for the registration methods. Calculated as described in
Section 4.6.2.

Method Dataset 1 Dataset 2
VM 1.942 ·10−5 ±4.110 ·10−5 4.065 ·10−5 ±9.267 ·10−5

LAP 4.905 ·10−9 ±3.643 ·10−8 5.760 ·10−7 ±1.440 ·10−6

Elastix 1.252 ·10−5 ±5.850 ·10−5 5.169 ·10−7 ±3.857 ·10−6

Method Dataset 3 Average
VM 1.039 ·10−5 ±1.813 ·10−5 2.486 ·10−5 ±6.349 ·10−5

LAP 2.518 ·10−7 ±1.241 ·10−6 2.803 ·10−7 ±1.109 ·10−6
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The calculated Dice score are given in Table 5.26 and are depicted in Figure 5.24. The calculated
mean surface distance are given in Table 5.27 and displayed in Figure 5.25. The Hausdorff results are
given in Table 5.28 and displayed in Figure 5.26.

Table 5.26: Calculated Dice score for various organs for the registration methods. Calculated as described in Section 4.6.3.

Method Esophagus Right Lung Left Lung Tumor Heart
Baseline 0.89±0.08 0.83±0.12 0.83±0.12 0.79±0.13 0.76±0.17
VM 0.90±0.08 0.86±0.10 0.85±0.10 0.81±0.12 0.78±0.15
LAP 0.91±0.06 0.91±0.07 0.91±0.08 0.84±0.09 0.77±0.12

Figure 5.24: The Dice score between the prediction and the fixed contour for three registration methods. Calculated as
described in Section 4.6.3. Values are given in Table 5.26.
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Table 5.27: Mean surface distance in mm between the prediction and the fixed contour for the registration methods. Calcu-
lated as described in Section 4.6.3.

Method Esophagus Right Lung Left Lung Tumor Heart
Baseline 0.41±0.34 0.92±0.80 0.80±0.73 0.71±0.46 0.98±0.79
VM 0.40±0.33 0.66±0.60 0.61±0.50 0.64±0.38 0.88±0.66
LAP 0.38±0.22 0.42±0.36 0.41±0.31 0.58±0.32 0.87±0.46

Figure 5.25: The mean surface distance in mm between the prediction and the fixed contour for three registration methods.
Calculated as described in Section 4.6.3. Values given in Table 5.27.
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Table 5.28: Calculated Hausdorff distance in mm for various organs for the registration methods. Calculated as described in
Section 4.6.3.

Method Esophagus Right Lung Left Lung Tumor Heart
Baseline 8.23±4.48 17.49±9.27 16.79±10.55 7.33±3.94 13.62±5.72
VM 8.22±4.47 17.14±8.79 16.43±10.39 7.12±3.68 13.61±5.72
LAP 6.48±3.13 15.77±7.91 15.69±9.91 7.28±3.84 13.43±5.29

Figure 5.26: The Hausdorff distance in mm between the prediction and the fixed contour for three registration methods.
Calculated as described in Section 4.6.3. Values given in Table 5.28.

The time to predict the DVF on both an Intel i7-8550u CPU and NVIDIA Tesla V100S GPU for the
three registration methods are given in Table 5.29.

Table 5.29: Prediction times of DVF per method for both the Intel i7-8550u CPU and NVIDIA Tesla V100S GPU. Elastix was
not performed on the GPU.

Method CPU GPU
Elastix 248±11 s
VM 23±1 s 260±4 ms
LAP 19±1 s 24±4 ms
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DISCUSSION

In this chapter, the results given in Chapter 5 from each of the performed simulations will be discussed.
This will be followed by recommendations for additional research.

6.1. VOXELMORPH MODEL

6.1.1. VARYING HARDTANH VALUE

Comparing the results of varying Γ for the Hardtanh range given in Section 5.1.1. No significant dif-
ference is observed between the models performance based on the MAE. When comparing the ratio of
voxels with a negative Jacobian determinant, the value for the model with a Γ of 8 is an order of mag-
nitude higher than the other models. For the model with Γ set to 20, the ratio of voxels with a negative
Jacobian determinant was double the value compared to the others. Among the other models, there
is no significant difference in the ratio of voxels with a negative Jacobian determinant. Comparing the
contour metrics gives no significant difference between the models in any of the metrics.

As a result, there is no significant impact on the performance by varying the value of the Γ, except
for the higher voxels with a negative Jacobian determinant Γ value of 8 and 20.

Since the ground through DVF is unknown, choosing the maximum value of the DVF is difficult. The
value of Γ limits the values of the DVF, as a result, large deformations are not possible. If contours or
landmarks are available the maximum value of Γ could be based on the maximum Hausdorff distance
between the moving and fixed images. Overall, it is better to have a large value for Γ as long as the values
of the predicted DVF do not diverge towards infinity.

6.1.2. VARYING λ VALUE

The results of varying the weight of the regulation loss λ are given in Section 5.1.2. When comparing
the models based on the MAE no significant difference is observed. Comparing the results observed
for the ratio of voxels with a negative Jacobian determinant, the model trained with λ is 10 has a larger
value. Comparing the contour metrics gives no significant difference between the models in either of
the metrics.

Increasing the value of λ penalizes the gradient of the DVF. It would be expected that the gradient of
the DVF decreases and the DVF would become more suppressed for increasing values of λ. A DVF which
is suppressed too much can result in a decrease of the quality of the registration.

Overall, varying the hyperparameter for Γ and λ seems to have no significant impact on the models
performance.

6.2. LAPLACIAN PYRAMID MODEL

6.2.1. VARY COARSES LAYER

The results of varying the number of CIRM blocks and filters for the coarses level are given in Sec-
tion 5.2.1. When comparing the models based on the MAE no significant difference is observed. Also, no
significant difference is observed for the ratio of voxels with a negative Jacobian determinant. Compar-
ing the contour metrics, for the Dice score, the mean surface distance and the Hausdorff distance there
is no significant difference between the models.
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6.2.2. VARY ALL LAYER
The results of varying all the levels of the LAP models are given in Section 5.2.2. When comparing the
MAE for the models, one observes significant differences between the models. The best-performing
model is the base model of 5 CIRM blocks with 32 filters.

When comparing the ratio of voxels with a negative Jacobian determinant large variations are ob-
served. Models with 48 filters are the best performing. The model with 9 layers and 32 filters is the
worst-performing model. When comparing the models based on contour metrics no significant differ-
ence is observed.

Varying the number of layers and filters does not result in better results compared to the base model
of 5 CIRM blocks with 32 filters. The increase in the number of layers and filters increases the number
of network parameters. It could be that these models need more training epochs to converge to the
optimal values. However, these larger models also take longer to train and use more memory.

6.2.3. 4 GRID SIZES
The results for the models with 4 grid sizes are given in Section 5.2.3. The results do not show an im-
provement for the MAE compared to the 3-grid model. In addition, the results for the ratio of voxels with
a negative Jacobian determinant are worse than the model with 3 grid sizes. The results of the contour
metrics are similar for both models.

The addition of a coarser 4th grid size increases the number of parameters in the model but does not
improve the quality of the predicted DVF.

Based on the evaluated metrics it can be concluded that changing the number of layers and filters
does not significantly improve the performance compared to the base model of 5 CIRM blocks with 32
filters. The addition of a 4th grid size also does not significantly improve the performance of the model.

6.3. COMPARISON OF METHODS
The VM model with a Γ value of 15 and λ of 100 and the LAP model with 5 CIRM blocks of 32 filters are
compared. The models are also compared to the registration performed using Elastix with the parame-
ters as described in Section 4.3.

Based on the MAE results given in Section 5.3.1 the LAP model performs better than the VM and
Elastix in all data sets. The VM model performs similarly to Elastix based on the MAE.

The VM model has the poorest score when comparing the ratio of voxels with a negative Jacobian
determinant. The LAP model performs best and the ratio of voxels with a negative Jacobian determi-
nant is two orders of magnitude smaller compared to the VM model. Elastix performance differs largely
between the two datasets. When comparing the contour metrics, the LAP models perform best for the
Esophagus and the Lungs. For the tumor and the heart, there is no significant difference between the
models.

Prediction of three scans made by the VM and LAP model are displayed in Appendices A.1 and A.2.
When comparing the results visually, it is observed that the DVF of VM is minimal. Also, the predicted
image is hardly deformed compared to the moving image. The VM model is thus unable to predict
good-quality DVF between lung scans. Comparing the results from the LAP model, a much larger DVF
is visible. Also, the predicted image seems to match the fixed image better. Therefore the LAP model is
suitable for predicting good-quality DVF between lung scans.

The time to predict the DVF by the VM and the LAP models on a CU were 23±1 seconds and 19±1
seconds respectively. The prediction times of both the VM and LAP models are significantly shorter
compared to Elastix with 248±11 seconds. On the GPU the prediction times were 260±4 ms and 24±4
ms for the VM and LAP models respectively. Although the VM has 327635 parameters compared to the
LAP model which has 1515488 parameters, the VM model takes an order of magnitude longer compared
to the LAP model on the GPU. Both the VM and LAP models are faster than other deep learning methods
described in Section 3.3. However, the time is dependent on the size of the scans, and the type of GPU
used.
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6.4. RECOMMENDATIONS
For further research on applying deep learning for DVF prediction the following points are suggested:

• To compare the results obtained in this thesis to others, such as given in Section 3.3, the TRE
could be calculated for the landmarks from the DIRLAB dataset. This was attempted but, due to
lack of time, was not finished and therefore not in this report.

• In addition to evaluating the quality of the DVF using the registration on the 4DCT images, the
predicted DVF could also be used to perform the interplay dose calculation as the method de-
scribed in Section 2.3. The resulting dose distribution could then be compared with a dose dis-
tribution calculated with a DVF obtained with conventional registration techniques.

• The performance of the model is dependent on the training of the model, since neural networks
optimise their convolutional filters by training from samples. Additional training on 4DCT scans
from different datasets will help to optimise the convolutional filters further and improve the
quality of the registration. As a result, the model could become more versatile for scans from
unseen machines and patients.
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CONCLUSION

7.1. CONCLUSION
In this report, two model architectures have been evaluated to predict the DVF between scans at differ-
ent phases of a 4DCT lung scan. The DVF can be used to evaluate the effect of interplay due to breathing
of the patient during proton treatment of lung tumors.

The findings of this report can be summarized as:

• The Voxelmorph model is unable to predict good-quality DVFs which could be used for image
registration. Hyperparameter tuning of the maximum size of the DVF limited by a HardTanh did
not result in a significant increase in the quality of the prediction.

Varying the loss weight of the divergence of the DVF during training also did not result in a sig-
nificant increase in the performance of the model. Therefore, in the current state, Voxelmorph is
not usable for DVF prediction between 4DCT lung scans.

• The LAP model was capable of predicting good-quality DVFs. Hyperparameter tuning of the
number of CIRM blocks and filters did only yield better results when varying all the grid sizes.
Also, the addition of a 4th grid size did not yield better results.

• The prediction times for both models were faster than other deep learning methods found in
literature, and significantly faster compared to traditional registration methods.

• To better compare the results with other approaches found in the literature, the TRE could be
calculated for the landmarks from the DIRLAB dataset.

• Combing the fast prediction of the DVF using the LAP model in combination with the deep learn-
ing dose calculation method could result in interplay dose calculation on timescales which are
clinically feasible.

7.2. APPLICATIONS OF FAST DEFORMATION VECTOR FIELDS PREDICTION
The LAP model allows for fast prediction of the DVF between the 4DCT phases in 24±4 ms. The deep
learning dose calculation method described in Section 2.3 performs dose calculation in 5.0±4.9 ms per
pencil beam. The interplay dose calculation described in Section 2.6.3 could be speedup by combining
the LAP model and the deep learning dose calculation.
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A.1. VOXELMORPH IMAGES

Figure A.1: Overview of upper slices for the fixed, moving and predicted image of scan 101 from 0 to 6x0 phase. Prediction by
the VM model with Γ is 10 and λ is 100.
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Figure A.2: Overview of lower slices for the fixed, moving and predicted image of scan 101 from 0 to 60 phase. Prediction by
the VM model with Γ is 10 and λ is 100.
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Figure A.3: Overview of upper slices for the fixed, moving and predicted image of scan 124 from 0 to 40 phase. Prediction by
the VM model with Γ is 10 and λ is 100.
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Figure A.4: Overview of lower slices for the fixed, moving and predicted image of scan 124 from 0 to 40 phase. Prediction by
the VM model with Γ is 10 and λ is 100.
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A.2. LAPLACIAN PYRAMID IMAGES

Figure A.5: Overview of upper slices for the fixed, moving and predicted image of scan 101 from 0 to 60 phase. Prediction by
the LAP model with 5 CIRM blocks of 32 filters.
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Figure A.6: Overview of lower slices for the fixed, moving and predicted image of scan 101 from 0 to 60 phase. Prediction by
the LAP model with 5 CIRM blocks of 32 filters.
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Figure A.7: Overview of upper slices for the fixed, moving and predicted image of scan 124 from 0 to 40 phase. Prediction by
the LAP model with 5 CIRM blocks of 32 filters.
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Figure A.8: Overview of lower slices for the fixed, moving and predicted image of scan 124 from 0 to 40 phase. Prediction by
the LAP model with 5 CIRM blocks of 32 filters.
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