Sequential Feature

Selection for Neu

Ranking Models

ral
N

LI NINgG-to- Rank

Sequential Feature

Selection for Neural
Ranking Models 1in

[earning-to-Rank

by

Alex Xingnan He

5773911

Thesis Supervisor: A.Anand

Daily Supervisor: L.Lyu
Project Duration: Mar, 2024 - Apr, 2024
Faculty: Faculty of Computer Science, Delft

]
TUDelft

| would like to express my gratitude to my thesis advisor, Avishek Anand, for his un-
wavering support, patience, and understanding throughout the course of my thesis.
Even during the difficult times when | doubted myself and felt overwhelmed, his en-
couragement helped me get back on track.

| am also grateful to Lijun Lyu for her insightful ideas and inspirational discussions
that laid the foundation for this thesis. Her input gave me the direction and motivation
| needed to begin and | am truly thankful.

| would like to thank the members of the reading group for organizing weekly sessions
and fostering an engaging academic environment. Although | did not attend most of
the meetings, knowing that such a community existed was a quiet source of reassur-
ance and motivation.

Lastly, | want to acknowledge myself for persevering and embracing the challenges,
and for continuing to push forward despite the difficulties. This journey has not been
easy, but | am proud of the growth it has brought me.

Abstract

Feature selection plays a crucial role in enhancing the efficiency, interpretability, and
generalization of Learning-to-Rank (LTR) models. While recent advances in neural
ranking have shown competitive performance, they often lack explicit mechanisms
for selecting relevant input features, resulting in increased computational costs and
reduced transparency. Moreover, existing feature selection methods frequently suf-
fer problems from feature and label leakage, which undermines interpretability and
inflates performance estimates.

In this thesis, we adapt and extend the Sequential Unmasking without Reversion
(SUWR) method in the context of neural Learning-to-Rank. Our approach introduces
a leakage-free, sequential feature selection method that iteratively reveals features
through a selector network, while maintaining a separate neural ranker for relevance
prediction. Additionally, we integrate NeuraINDCG, a differentiable approximation for
standard ranking metrics, to directly optimize ranking performance during training.

We evaluate our method on three benchmark LTR datasets: MQ2008, Web10K, and
Yahoo!. Experimental results demonstrate that our approach not only maintains rank-
ing effectiveness with significantly fewer features but also provides consistent and
interpretable feature selections across queries. This work provides a feasible solution
to feature selection in neural LTR models, with potential benefits for interpretable and
resource-efficient information retrieval systems.

11

contents

Summary
1 Introduction
1.1 Context

[N N -

2
3
4
5

1.1.1 Information Retrieval and LearningtoRank
1.1.2 Feature Selection in Machine Learning
1.1.3 Feature Selection in Learning-to-Rank
Research Gaps and Motivation
Research Questions
Contributions
Thesis Organization

Background

2.1

2.2

Learning-to-Rank
211 Definition
2.1.2 Learning Objectives and Optimization
213 RankingMetrics
2.1.4 Traditional Ranking Methods in Information Retrieval
2.1.5 Learning-to-RankModels
Feature Selection.

Related Works

3.1

3.2

3.3

Rankers in LearningtoRank
3.1.1 Gradient Boosted Decision Trees-based Rankers
3.1.2 MART . . . e
3.1.3 LambdaRank
3.1.4 LambdaMART
3.1.5 NeuralRankers.
3.1.6 Deep Neural Networks for Learning-to-Rank
3.1.7 Transformer-Based Rankers
3.1.8 Motivation for Feature Selection in Neural Rankers
Feature Selection Methodsfor LTR
3.2.1 FilterMethods,
3.2.2 WrapperMethods
3.2.3 EmbeddedMethods
Feature Selection Methods for Nerual LTR
3.3.1 Sampling-Based Feature Selection Methods
3.3.2 Regularization-Based Feature Selection Methods
3.3.3 Feature and Label Leakage in Local Feature Selection.
3.34 Challenges
3.3.5 Motivation for a Novel Feature Selection Approach

111

Contents v
3.4 Summary 21
4 Methodology 22
4.1 Overview of Sequential Feature Selection Method 22
4.2 Formal Definition of Sequential Unmasking 23
421 LeakagePrevention 24
4.3 Sequential Feature Selection for Neural Rankers 25
431 SelectorNetwork 26
43.2 RankerNetwork 27
4.3.3 Integrating NDCGintraining 27
4.3.4 Implementation Details. 29
4.3.5 Summary of Sequential Feature Selection for Neural Rankers . . 29
4.4 Training Strategies 29
441 JointTraining 30
442 Two-PhaseTraining 31
4.5 Summary of Methodology L 31
5 Experiment and Evaluation 32
5.1 ExperimentOverview 32
52 Datasets. e 33
521 MQ2008. e 33
522 Web10k e 33
523 Yahoo!. 33
5.3 ExperimentSetup 34
54 ExperimentResults 35
5.4.1 RQ1: Ranking Performance of SUWR Compared to Full-Feature
Baselines 35
5.4.2 RQ2: Comparing SUWR with Existing Feature Selection Meth-
odsinNeuralRankers 36
5.4.3 RQ3: Impact of Different Loss Functions on SUWR Performance 40
5.4.4 RQ4: Consistency and Interpretability of Selected Features . . . 42
55 Summary 44
6 Conclusion 47
6.1 Summaryofthe Thesis 47
6.2 Limitations 48
6.3 Future Directions 48
References 50

Introduction

1.1. Context

The rapid expansion of the internet has led to an unprecedented growth in data, mak-
ing efficient and effective information retrieval systems essential. As of 2024, there
are over 1.2 billion websites, each hosting vast amounts of digital information. The
sheer volume of available content makes traditional filtering impractical, requiring the
development of more sophisticated search engines to retrieve and rank relevant in-
formation efficiently. The increasing dependence on search engines underscores the
importance of ranking methodologies that optimize document retrieval and enhance
user experience.

1.1.1. Information Retrieval and Learning to Rank

Information retrieval (IR) is a fundamental area of study concerned with identifying
and retrieving relevant documents from large, unstructured datasets [24]. The core
objective of IR systems is to deliver the most relevant information in response to a
user’s query. Many IR tasks inherently involve ranking, including document retrieval,
collaborative filtering, key term extraction, sentiment analysis, product recommenda-
tion, and spam detection. This thesis primarily focuses on document retrieval, where
ranking plays a crucial role in determining the relevance of retrieved documents.

Learning to Rank (LTR) is a subfield of information retrieval that focuses on optimiz-
ing the ranking order of retrieved items within IR systems. Unlike traditional ranking
techniques based on heuristic rules, LTR models learn ranking functions from labeled
training data. These models can adapt to different ranking contexts, handle high-
dimensional feature spaces, and exploit complex relationships between features. The
primary advantage of LTR methods is their ability to improve retrieval accuracy by
leveraging large-scale data and optimizing for task-specific ranking objectives.

Traditional IR systems have long relied on heuristic models such as TF-IDF and BM25,
which apply predefined formulas based on term frequency and inverse document fre-
quency. While effective in many cases, these models do not fully exploit the vast and

1

1.1. Context 2

diverse datasets available today. Advances in machine learning and deep learning
have facilitated the development of more sophisticated ranking models. Specifically,
learning-to-rank (LTR) methods [22] leverage machine learning techniques to optimize
document ranking by automatically identifying complex relationships between features
and relevance scores. Unlike heuristic-based approaches, LTR models can learn from
large-scale data and adapt to different ranking contexts, leading to improved retrieval
performance and more relevant search results.

A defining characteristic of LTR methods is their focus on predicting the optimal rank-
ing order of documents rather than assigning absolute relevance scores [23]. Tradi-
tional LTR models often utilize gradient-boosted decision trees (GBDTs) such as Lamb-
daMART [3]. These models have demonstrated strong performance due to their ability
to model complex feature interactions while maintaining robustness against overfitting.

More recently, neural ranking models have emerged as a promising alternative. These
models leverage deep learning architectures to capture intricate feature representa-
tions and directly learn ranking functions. Neural rankers can model complex, non-
linear relationships within data, which traditional models may fail to capture. Tech-
niques such as attention mechanisms have been introduced to enhance ranking per-
formance further. Recent studies indicate that with appropriate feature transforma-
tions and data augmentations, neural ranking models can achieve performance on
par with, or even surpass, GBDT-based methods [29]. While GBDT-based models
like LambdaMART remain strong contenders due to their efficiency and interpretabil-
ity, neural models have shown competitive performance when trained with large-scale
data and optimized architectures. The trade-offs between interpretability, compu-
tational efficiency, and ranking effectiveness remain an active area of research in
learning-to-rank methodologies.

1.1.2. Feature Selection in Machine Learning

Feature selection is a critical process in machine learning that involves identifying
and retaining the most relevant features while discarding redundant or irrelevant ones.
This approach improves model interpretability, reduces computational complexity, and
mitigates overfitting [15].

While feature selection methods have proven effective in tasks such as classifica-
tion and regression, adapting them to more complex problems like learning-to-rank
poses additional challenges. In ranking scenarios, the relative importance of features
is crucial for ordering items correctly, and traditional feature selection techniques may
not fully capture the intricate dependencies required for optimal ranking performance.
This realization motivates the exploration of feature selection strategies specifically
tailored for learning-to-rank models, which is the focus of the next section.

1.1.3. Feature Selection in Learning-to-Rank

Feature selection plays an essentialial role in enhancing the interpretability and effi-
ciency of learning-to-rank models. As highlighted in [23], while interpretable machine

1.2. Research Gaps and Motivation 3

learning techniques have advanced significantly in various domains, their effective-
ness for feature selection in learning-to-rank remains an open challenge. In traditional
machine learning tasks, the objective of feature selection is to identify and retain a sub-
set of relevant features that can improve model performance while reducing computa-
tional complexity. However, when applied to learning-to-rank, the task becomes more
intricate because ranking models must determine the optimal ordering of documents
rather than simply predicting discrete labels or continuous outputs.

Neural ranking models must capture complex, nonlinear relationships between fea-
tures. However, to enhance efficiency and interpretability, the feature selection pro-
cess must limit the input to only the most relevant features, ensuring that no additional
information from unselected features is inadvertently encoded. Such unintended en-
coding can lead to feature or label leakage [25], undermining the model’s interpretabil-
ity. Moreover, many existing feature selection methods suffer from this leakage prob-
lem, as they sometimes incorporate extra information that should not be present in
the selected features. This challenge is compounded by the high degree of feature
redundancy found in LETOR datasets, making it difficult to isolate only those features
that truly belong in the final selection.

Existing feature selection techniques for neural ranking models include L2X [9], IN-
VASE [33], and TabNet [2]. These methods have indeed been applied to neural
rankers with the aim of enhancing interpretability by identifying and retaining the most
relevant features while preserving ranking performance. However, it is important to
note that these techniques were originally developed for classification and regression
tasks. As a result, although they are used in neural ranking contexts, their direct ap-
plicability to Learning-to-Rank scenarios is not automatically guaranteed.

In Learning-to-Rank, the objective is not to predict absolute labels but to determine
the optimal ordering of documents, a task that demands capturing subtle relative differ-
ences in feature importance and interactions among features. This means that while
methods like L2X, INVASE, and TabNet provide useful starting points, they may re-
quire adaptation or further refinement to fully address the unique challenges of ranking
tasks. Recent research has therefore focused on developing ranking-specific feature
selection techniques, such as G-L2X, which employs a global selector layer to pro-
duce a single, shared probability distribution that is applied uniformly across all items,
ensuring consistency in feature selection. However, there is still a critical gap in cur-
rent methods and motivates our research to explore and develop a feature selection
approach that explicitly mitigates feature leakage while enhancing interpretability and
efficiency in neural LTR models.

1.2. Research Gaps and Motivation

A critical limitation of current feature selection methods is their susceptibility to both
feature leakage and label leakage [25]. Feature leakage occurs when the feature
selection mask encodes information about non-selected features, resulting in an un-
faithful representation of those features that genuinely drive the model’s predictions.
Similarly, label leakage arises when the selected features unintentionally reveal infor-

1.3. Research Questions 4

mation about labels, thereby influencing the feature selection process. These issues
are particularly detrimental in neural LTR models, where leakage can create hidden
dependencies between selected and non-selected features or labels, ultimately lead-
ing to misleading interpretations that compromise model interpretability.

Prior work, such as the Sequential Unmasking Without Recursion (SUWR) method
presented in [25], has made significant progress in mitigating both feature and label
leakage in general supervised learning tasks. However, its application to Learning-to-
Rank remains largely unexplored. The unique challenges of ranking, where the goal
is to predict the relative ordering of documents rather than absolute labels, demand
more tailored adaptations.

To address this problem, this thesis aims to adapt the SUWR strategy from [25] to the
context of neural LTR models and introduces modifications by training a dedicated se-
lector and ranker network. The sequential feature selection method effectively limits
the input to only the most relevant features, ensuring that no extra information from
unselected features or labels is encoded, while preserving the critical features neces-
sary for accurate ranking. Additionally, we incorporate NeuralNDCG, a differentiable
approximation of the standard NDCG metric, into the training objective to better align
the optimization process with the ranking goals of LTR tasks. In doing so, our approach
should both interpretability and computational efficiency while maintaining a reason-
able level of ranking performance. We then conduct experiments across standard
LTR datasets to demonstrate the effectiveness of the proposed method in selecting
compact subsets of informative features without sacrificing ranking quality. In addition,
we evaluate the consistency of the selected features across queries and compare the
results with existing feature selection methods to assess interpretability and stability.

1.3. Research Questions

To evaluate the effectiveness of SUWR in Learning-to-Rank contexts, we formulate
the following research questions:

RQ1: Can SUWR achieve comparable ranking performance while selecting only a

subset of features, compared to baseline neural rankers that use the full feature
set?
This question investigates whether the sequential feature selection method can
identify informative features that effectively contribute to generating accurate
ranking results. By comparing SUWR to a baseline neural ranker that uses the
full feature set, we evaluate whether selecting a reduced subset of features can
preserve performance. This comparison helps determine the effectiveness of
the selection process and whether it meaningfully contributes to model efficiency
without sacrificing ranking quality.

RQ2: How does SUWR compare with existing feature selection methods in terms of
ranking accuracy and feature sparsity?
This question evaluates SUWR with other feature selection methods by con-
straining all approaches to select the same number of features and comparing
their resulting ranking performance. The objective is to determine which method

1.4. Contributions 5

is more effective at identifying relevant features that lead to higher ranking qual-
ity. In addition, we investigate the trade-off between ranking accuracy and fea-
ture sparsity. Specifically, how reducing the proportion of selected features im-
pacts performance across different selection methods, and whether a smaller
subset can still produce satisfactory ranking results.

RQ3: How do different loss functions affect SUWR'’s performance in feature selection
and ranking?
In Learning-to-Rank scenarios, training objectives typically fall into three cate-
gories: pointwise, pairwise, and listwise loss functions. This question investi-
gates how the choice of LTR-specific loss function influences SUWR’s ability to
select more informative features in order to achieve higher ranking accuracy. By
comparing performance under different loss formulations, we aim to understand
the trade-offs involved and determine which loss functions are most effective for
guiding the sequential feature selection process in neural rankers.

RQ4: Are the features selected by SUWR consistent across queries, thereby enhanc-
ing model interpretability?
This question explores whether SUWR consistently selects the same or similar
features across different queries, which would indicate that certain features are
generally more important for effective ranking. By analyzing the frequency of
selected features, we aim to gain insights into which features the neural ranker
relies on most. Such consistency enhances the interpretability of the model by
revealing patterns in feature usage, helping users understand which features
drive the ranking decisions.

1.4. Contributions

This thesis addresses the identified research gaps by making the following contribu-
tions:

» Adapting the feature selection strategy from [25] to neural LTR models through
modifications that involve training a dedicated selector and ranker network.

» Conducting a comprehensive evaluation of the adapted feature selection ap-
proach against established techniques, demonstrating its impact on ranking ef-
fectiveness and computational efficiency in LTR tasks.

* Providing insights into the trade-offs between feature sparsity, model interpretabil-
ity, and computational cost, thereby contributing to a broader understanding of
effective feature selection in neural LTR models.

1.5. Thesis Organization

The thesis is organized as follows: Chapter 2 provides background on Learning to
Rank and feature selection techniques. Chapter 3 reviews related work on feature se-
lection in LTR and neural ranking models. Chapter 4 introduces the proposed feature
selection method, along with details of the experimental setup. Chapter 5 presents

1.5. Thesis Organization 6

the experimental results and analysis. Finally, Chapter 6 concludes the thesis and
discusses potential future research directions.

The implementation codes for this thesis is available at ' this GitHub repository.

"https://github.com/DizzyMizLizzy/thesis_feature_selection

https://github.com/DizzyMizLizzy/thesis_feature_selection

Background

This chapter provides an overview of the fundamental concepts that serve as the foun-
dation for this research. The discussion begins with Learning-to-Rank, introducing its
significance and different modeling approaches. Traditional ranking models, including
gradient-boosted decision trees, are explored, followed by an examination of neural
ranking models and their characteristics. The latter sections focus on feature selec-
tion, emphasizing its role in improving efficiency and interpretability in ranking models.
The challenges associated with feature selection in Learning-to-Rank tasks and ex-
isting methodologies are also discussed, establishing the foundation for the research
contributions of this thesis.

2.1. Learning-to-Rank

2.1.1. Definition

Learning-to-Rank(LTR) is a supervised machine learning approach that constructs
ranking functions to order a list of items based on their relevance to a query or task-
specific objective [22]. The objective is to optimize ranking quality by learning an
optimal sorting function from labeled data. LTR models typically rely on a dataset of
query-document pairs ¥ = {(z,y) € x" x R"}, where:

- x represents a list of n items, each described by a feature vector z; € R¥.

» y denotes the associated relevance labels, where y; € R represents the degree
of relevance of z; to the query.

* The ranking function s(z) predicts an ordering of items, optimizing ranking met-
rics such as Normalized Discounted Cumulative Gain (NDCG) or Mean Average
Precision (MAP).

2.1. Learning-to-Rank 8

2.1.2. Learning Objectives and Optimization

From the formulation above, it is evident that the ranking function plays a central role
in the effectiveness of Learning-to-Rank models. Since the core objective of LTR is
to produce an optimal ordering of items, optimizing the ranking function becomes a
fundamental challenge. An ideal ranking function should not only correctly differen-
tiate between relevant and irrelevant documents but also generalize well across di-
verse datasets and retrieval tasks. Therefore, research in LTR focuses extensively on
learning robust ranking functions that enhance retrieval performance while minimizing
computational complexity and overfitting risks.

A ranking function is a mathematical model that assigns a score to each item in a
set based on its relevance to a query. The primary objective of Learning-to-Rank
methods is to learn an effective ranking function that optimally sorts items according to
their importance. The choice of ranking function varies across different models; linear
models such as logistic regression, tree-based models like LambdaMART, and neural
ranking models such as transformers each define their ranking function differently.

The training process of an LTR model is guided by a loss function, which measures
how well the ranking function’s predictions align with the ground truth. The loss func-
tion plays a critical role in optimizing the ranking function by minimizing discrepancies
between predicted and ideal rankings. Unlike traditional supervised learning, where
loss functions minimize classification or regression errors, LTR loss functions focus
on optimizing the ranking order. The loss functions used in LTR models can be cate-
gorized as follows:

» Pointwise Loss Functions: Treat each query-document pair independently, opti-
mizing mean squared error (L2 loss) or logistic regression-based loss [21]. One
commonly used loss is the L1 loss, which minimizes the absolute difference be-
tween predicted and actual relevance scores and is defined as:

Ly = Z |yi — s(;)]

where y; is the ground truth relevance and s(x;) is the predicted relevance score.

» Pairwise Loss Functions: Optimize ranking quality by reducing the number of
incorrectly ranked pairs, commonly using hinge loss or logistic loss [5]. A well-
known pairwise loss function is the hinge loss, which is used to enforce a margin
between correctly and incorrectly ordered pairs:

Lhinge = Z max(0,1 — (s(z;) — s(x;)))

(i,5)eP
where (i, j) represents a pair where z; should be ranked higher than z;, and s(z)
is the ranking function.

+ Listwise Loss Functions: Directly optimize ranking metrics such as NDCG through
methods like softmax cross-entropy or surrogate ranking losses [6]. A commonly

2.1. Learning-to-Rank 9

used loss function in this category is the softmax cross-entropy loss, which en-
courages higher relevance scores for documents ranked at the top:

Lsoftma:c = - Z Pz IOg Qz

where P, is the ground truth probability distribution over ranked documents and
Q; is the predicted probability distribution obtained through softmax normaliza-
tion of scores.

The effectiveness of LTR models depends not only on the optimization of ranking
functions but also on how ranking quality is assessed. Evaluating a ranking model
requires appropriate ranking metrics that measure the alignment between predicted
and ideal rankings. These metrics guide model selection and optimization, ensuring
that ranking functions produce results that align with user expectations. The next
section introduces key ranking metrics commonly used in Learning-to-Rank research.

2.1.3. Ranking Metrics

LTR models are trained to optimize specific ranking evaluation measures that quantify
the effectiveness of ranked lists. One of the most widely used metrics is Normalized
Discounted Cumulative Gain (NDCG), which accounts for both the position and the
relevance of retrieved documents. It is defined as:

DCGQk

NDCGOk = 5 =car

where Discounted Cumulative Gain (DCG) is computed as:

k
r) — 1
D = _—.
coak ; log,((7) + 1)

In this formulation:

* 7(i) represents the position of the document ranked at index i in the predicted
ranking order.

* Y=y denotes the relevance score of the document at position 7 (i), indicating how
relevant the document is to the query.

The Ideal DCG (IDCG) is the DCG computed using the optimal ranking order of the
documents based on their true relevance scores. NDCG is commonly used because it
captures two key aspects of ranking quality: relevance and position. Higher relevance
scores contribute more to the ranking, ensuring that the most relevant documents
receive greater weight. Additionally, the logarithmic discounting factor penalizes lower-
ranked documents, reflecting the intuition that users are more likely to focus on top-
ranked results. By normalizing DCG with IDCG, NDCG ensures comparability across
different queries, making it a robust metric for ranking evaluation.

2.1. Learning-to-Rank 10

Ranking metrics serve as critical benchmarks for assessing the performance of Learning-
to-Rank models. The choice of metric depends on the specific application and ranking
objective. For instance, web search engines prioritize metrics like NDCG, whereas
recommendation systems may focus on MAP or MRR. Given the diversity of ranking
tasks, selecting an appropriate evaluation metric is essential for ensuring that models
optimize for relevant ranking objectives.

The effectiveness of a ranking model is largely determined by its ability to optimize
these metrics. To achieve this, various Learning-to-Rank models have been devel-
oped, ranging from traditional tree-based methods to modern neural ranking archi-
tectures. The following section explores these approaches in detail, discussing their
fundamental principles, strengths, and limitations in different ranking scenarios.

2.1.4. Traditional Ranking Methods in Information Retrieval

Before the emergence of supervised learning-based ranking methods, information re-
trieval systems largely used traditional ranking models. These approaches often rely
on well-established theoretical frameworks such as the probabilistic model to score
and rank documents. For instance, term frequency, inverse document frequency, and
document length are some of the core statistical properties used in models like BM25.

These methods are typically not considered LTR because they do not train a ranking
function directly from labeled data in a supervised manner. Instead, their scoring
formulas are usually defined by a closed-form equation or probabilistic framework, with
limited adaptation to new domains or specific ranking tasks. Two widely recognized
classical approaches are:

» Term Frequency-Inverse Document Frequency (TF-IDF): Measures the impor-
tance of a term within a document relative to its occurrence in the entire corpus.
It is defined as:

TF —IDF(t,d) =TF(t,d)- IDF(t),

where T'F(t,d) represents the frequency of term ¢ in document d, and IDF(t) is
the inverse document frequency, computed as:

N
IDF(t) =1 _ 1.
(t) = log <DF(t) + 1) *
Here, N is the total number of documents, and DF(t) is the number of docu-
ments containing term ¢. The smoothing term +1 in the denominator ensures
that terms appearing in all documents do not receive an IDF score of zero.

« BM25: A probabilistic ranking function that extends TF-IDF by incorporating term
saturation and document length normalization. It is given by:

BM?25(d, q) = ZIDFBM%(t)) TE(td) (i +1)

teq TF(t,d)+ ky - <1 —b+b- a\|/Cgl;|d|>

where:

2.2. Feature Selection 11

— ki and b are tunable hyperparameters.
— |d| is the length of document d.
— avgdl is the average document length in the corpus.
— The inverse document frequency in BM25 is calculated as:
N —DF(t)+0.5 1)
DF(t)+ 0.5

[DFBM25(t) = log (

The BM25 formulation accounts for the diminishing returns of term frequency,
preventing excessively frequent terms from dominating the ranking while also
adjusting for varying document lengths.

TF-IDF and BM25 are widely used in search engines due to their efficiency and sim-
plicity. However, they serve different purposes: TF-IDF is effective in basic keyword
matching, while BM25 enhances ranking by considering term saturation and docu-
ment length normalization, making it more adaptive to varying query-document rela-
tionships. Despite their success, these methods rely on manually defined weighting
functions and do not leverage large-scale relevance feedback, limiting their ability to
model complex feature interactions and optimize ranking dynamically. As a result,
more sophisticated ranking approaches have been developed, leading to the rise of
machine-learning-based LTR models. These models leverage labeled data to learn
optimal ranking functions that better generalize across different queries and docu-
ments.

2.1.5. Learning-to-Rank Models

The core objective of Learning-to-Rank models is to learn an optimal ranking function
that orders documents based on their relevance to a given query. LTR approaches dif-
fer from traditional methods in that they use supervised learning techniques to optimize
ranking functions. Among these models, Gradient-Boosted Decision Trees-based
models, such as LambdaMART, have been widely adopted due to their robustness
and interpretability in handling structured data, while Neural Network-based models
excel at capturing complex non-linear interactions from high-dimensional data, mak-
ing them well-suited for intricate ranking tasks despite often being less transparent. A
more detailed discussion on recent advancements and challenges in LTR models is
provided in the related works section.

2.2. Feature Selection

Feature selection is a crucial step in many machine learning tasks, aimed at identifying
the most informative subset of input features while discarding those that are irrelevant
or redundant. By reducing the dimensionality of the input space, feature selection
can improve model generalization, reduce training and inference costs, and enhance
interpretability. This is particularly important in applications where understanding the
influence of features on a model’s predictions is essential, such as in decision-critical
or user-facing systems.

2.2. Feature Selection 12

In the context of Learning-to-Rank, feature selection presents unique challenges. Un-
like classification or regression tasks that predict absolute labels, LTR models must
capture relative orderings among items, which often depend on relationships between
features. As a result, feature selection methods for LTR must preserve not just indi-
vidual feature relevance, but also feature dependencies that influence ranking quality.

Feature selection methods can be categorized into three main classes in the context
of machine learning: filter, wrapper, and embedded methods [7]. Filter methods eval-
uate features based on statistical properties independent of any learning algorithm,
offering computational efficiency. Wrapper methods assess subsets of features using
a predictive model’s performance, typically yielding better results but at higher com-
putational cost. Embedded methods incorporate feature selection within the model
training process itself, striking a balance between performance. A more detailed dis-
cussion of existing feature selection approaches can be found in the related work
section.

Related Works

This chapter provides a comprehensive review of the literature on ranking methods
in Learning-to-Rank and feature selection techniques. The discussion begins with
an analysis of widely used ranking models in LTR, with a focus on Gradient Boosted
Decision Trees-based rankers and neural rankers. Following this, various feature se-
lection methodologies and their applications in machine learning are examined, where
their potential to enhance model performance, reduce complexity, and improve inter-
pretability in the context of LTR remains an area of ongoing investigations.

3.1. Rankers in Learning to Rank

Learning-to-Rank is a fundamental task in Information Retrieval, where the objective
is to learn a model that can predict the optimal ordering of items based on their rel-
evance to a query. Over the years, various ranking models have been developed,
ranging from traditional approaches to more advanced neural network-based meth-
ods. Among the various approaches to LTR, the most prominent rankers are Gradi-
ent Boosted Decision Trees-based rankers, particularly LambdaMART. GBDT mod-
els are widely used due to their strong generalization ability across different ranking
tasks, their efficiency, and their inherent interpretability through decision tree struc-
tures. LambdaMART, in particular, optimizes ranking-specific metrics like NDCG,
making it one of the most widely adopted ranking algorithms. The effectiveness of
GBDT models in ranking tasks can be attributed to their ability to model complex
feature interactions while maintaining interpretability, as well as their robustness in
learning from structured tabular data, which is common in ranking scenarios.

Recent research has explored the potential of neural rankers, leveraging deep learn-
ing architectures to model intricate ranking patterns. Unlike GBDT models, neural
rankers can directly learn feature representations from raw data. They have demon-
strated strong performance in capturing complex query-document relationships, partic-
ularly in text-based ranking tasks. However, neural rankers often require significantly
larger amounts of labeled training data and high computational resources. Further-
more, their black-box nature presents challenges in interpretability, making it difficult

13

3.1. Rankersin Learning to Rank 14

to understand how ranking decisions are made.

While our study primarily focuses on GBDT-based and neural rankers, several other
ranking models have been influential in LTR, which have laid the groundwork for mod-
ern retrieval systems. Some of the most influential rankers include:

* RankSVM: RankSVM [18] is a pairwise ranking model that leverages support
vector machines (SVMs) to learn a ranking function. By optimizing a hinge loss
over pairs of documents, RankSVM captures relative ordering preferences ef-
fectively, making it a popular choice for various ranking applications.

+ ListNet: ListNet[6]is a listwise LTR approach that directly optimizes a permutation-
based loss function over entire ranking lists. Unlike pairwise methods, ListNet
considers the whole order of documents, allowing it to capture complex depen-
dencies within the list, which can lead to improved ranking performance.

* AdaRank: AdaRank [32] is a boosting-based ranking algorithm that iteratively
adjusts the weights of training instances according to their ranking errors. By
combining multiple weak rankers into a strong ensemble, AdaRank is capable of
directly optimizing ranking metrics, making it particularly effective for information
retrieval tasks.

The following sections provide an in-depth examination of both GBDT-based rankers
and neural ranking models. While GBDT-based models have been widely used in
LTR due to their strong performance, recent advancements in deep learning have
introduced neural rankers as a competitive alternative. Their ability to learn feature
representations directly from raw data makes them particularly suitable for complex
ranking tasks. However, feature selection remains a crucial aspect of LTR, and GBDT-
based models offer valuable insights into this process through their intrinsic ability to
rank feature importance. This study explores these insights and investigates how
they can be leveraged to enhance the feature selection process for neural rankers in
Learning to Rank.

3.1.1. Gradient Boosted Decision Trees-based Rankers

Gradient Boosted Decision Trees have been widely adopted in LTR tasks due to their
strong performance and ability to handle complex feature interactions [10]. GBDT-
based rankers are ensemble models that combine the predictions of multiple decision
trees, built sequentially to correct the errors of preceding trees. These models iter-
atively refine the decision boundary, allowing them to model non-linear relationships
between features and ranking outcomes.

Among these models, LambdaMART [3] stands out as one of the most widely used
ranking models. LambdaMART builds upon two key predecessors: Multiple Addi-
tive Regression Trees (MART) [10], which applies boosting techniques to decision
trees, and LambdaRank [4], which introduces ranking-specific gradient adjustments
to optimize information retrieval metrics. By integrating the strengths of both models,
LambdaMART refines ranking functions with enhanced effectiveness. In the follow-
ing sections, we present a detailed introduction of MART, LambdaRank, and their

3.1. Rankersin Learning to Rank 15

combination in LambdaMART, highlighting their progression and contributions to LTR
models.

3.1.2. MART

MART is the foundation of many GBDT-based ranking models. Itis a variant of GBDT
that sequentially builds regression trees to minimize loss functions, making it highly
effective for ranking tasks. MART trains an ensemble of decision trees sequentially,
where each new tree corrects the errors of the previous ensemble. It optimizes for
squared error loss by iteratively fitting decision trees to the residuals of previous trees.
The model updates follow:

Fo(z) = Froa(@) + 1Y wihy(),

where F),(z) is the ensemble model at iteration m, 7 is the learning rate, w; is the
weight of the ¢-th tree, h,(x) represents the individual regression trees.

MART’s strength lies in its ability to capture non-linear relationships through decision
trees, making it particularly useful for structured data. However, its primary limitation in
ranking tasks is its use of squared error loss, which does not directly optimize ranking
metrics, making it less suited for LTR tasks.

3.1.3. LambdaRank

LambdaRank is an extension of RankNet [5], introducing lambda gradients to opti-
mize ranking-specific objectives more effectively. Unlike traditional gradient boosting,
LambdaRank modifies gradient updates to prioritize changes that improve ranking
order based on a chosen ranking metric, such as NDCG.

LambdaRank modifies the gradient of RankNet by incorporating a weighting factor,
lambda, which reflects the change in ranking quality due to a swap of two documents
i and j. The gradient is adjusted as:

Xij = |ANDCG| -0 - (1 = Py)

where:

« ANDCG is the change in NDCG if documents i and j swap positions.
* P;; is the predicted probability from RankNet.
* o is a scaling factor.

This adjustment ensures that errors that have a higher impact on ranking metrics, re-
ceive stronger gradient updates, aligning the training process more closely with rank-
ing performance. This approach makes LambdaRank metric-aware, differentiating it

3.1. Rankersin Learning to Rank 16

from RankNet by improving the correlation between model training and ranking effec-
tiveness.

3.1.4. LambdaMART

LambdaMART [3] combines the boosting mechanism of MART with the ranking op-
timization of LambdaRank. It refines traditional boosting approaches by employing
lambda gradients, ensuring that ranking models directly optimize for ranking-specific
measures, and dynamically adjusts gradient updates to maximize ranking performance.

By building decision trees and adjusting their predictions using lambda gradients itera-
tively, LambdaMART efficiently refines ranking scores in a way that aligns with ranking
objectives. This iterative refinement allows the model to adapt dynamically, making
it one of the most widely used LTR algorithms. LambdaMART’s ability to capture
feature interactions while directly optimizing ranking metrics contributes to its strong
performance across various benchmark datasets, such as the Yahoo! Learning to
Rank Challenge [8] and Microsoft's LETOR datasets [28].

3.1.5. Neural Rankers

Neural LTR models have gained significant attention in recent years due to their ability
to model complex interactions between ranking features. Unlike GBDT-based rankers,
which rely on structured feature engineering, neural rankers can learn feature rep-
resentations directly from raw data. However, recent studies [29] have shown that
GBDT-based models, particularly LambdaMART, still outperform neural rankers on
many benchmark datasets. To address these shortcomings, [29] has focused on im-
proving neural rankers through enhanced feature representations, data augmentation,
and feature selection and regularization. Despite these improvements, neural rankers
still exhibit challenges in training stability, computational efficiency, and interpretability.
In the following sections, we introduce two of the most widely adopted neural ranking
architectures: Deep Neural Network-based rankers and Transformer-based rankers.

3.1.6. Deep Neural Networks for Learning-to-Rank

Deep Neural Networks (DNNs) were among the first neural architectures explored for
Learning-to-Rank tasks [16, 14]. These models utilize fully connected layers to learn
non-linear transformations of input features, enabling them to model complex ranking
relationships.

A typical DNN-based ranking function is formulated as:

S(I’) = f(WL : O'(WL_I . O'(Wll’ + bl) + bL—l) + bL)

where:

» x represents the input feature vector,

3.1. Rankersin Learning to Rank 17

« W, and b, are the weights and biases for the I-th layer,
* o is a non-linear activation function (e.g., ReLU),
* s(x) is the final ranking score.

DNN-based rankers operate by mapping input feature vectors to ranking scores, which
are then used to order query-document pairs. Compared to traditional ranking models,
DNNs offer greater flexibility in learning complex patterns but often require substantial
training data and regularization techniques to prevent overfitting [11].

3.1.7. Transformer-Based Rankers

Transformers [31] have revolutionized neural ranking by introducing self-attention mech-
anisms, which enable models to capture both local and global dependencies within
ranking inputs. Unlike DNNs, which rely on fixed-length feature vectors, Transformer-
based models process sequential data in a context-aware manner, making them par-
ticularly effective for text-based ranking tasks.

A typical self-attention operation in Transformer-based ranking models is given by:

s(x) = W - softmax(QK™ /v d)V

where:

* Q, K,V are the query, key, and value matrices, computed from input embed-
dings,

* d is the dimensionality of the embeddings,
« W is a learnable weight matrix.

By leveraging pre-trained language models, Transformer-based rankers can encode
rich contextual representations to improve ranking accuracy. However, they also re-
quire substantial computational resources and large-scale pretraining to achieve com-
petitive performance. Additionally, their black-box nature poses challenges in inter-
pretability, making them less practical for ranking applications where feature impor-
tance analysis is crucial.

3.1.8. Motivation for Feature Selection in Neural Rankers

This thesis focuses on neural rankers due to their ability to automatically learn feature
representations and adapt to diverse ranking tasks. Despite their increasing adop-
tion, one major challenge remains: neural ranking models often lack explicit feature
selection mechanisms, making their decision-making process less interpretable and
potentially inefficient. While deep learning models excel at capturing complex, high-
dimensional feature interactions, they do not inherently prioritize the most relevant
features, which can lead to redundancy, increased computational costs, and reduced
interpretability.

3.2. Feature Selection Methods for LTR 18

In contrast, GBDT-based models, particularly LambdaMART, have long been consid-
ered the state-of-the-art in Learning-to-Rank due to their structured decision-making
and inherent feature selection capabilities. The success of GBDT models stems from
their ability to selectively split on the most informative features, effectively reducing
noise and improving model efficiency. This structured decision process offers valu-
able insights into how feature selection can enhance ranking models.

This thesis investigates how feature selection can be incorporated into neural ranking
models to achieve better performance and interpretability. By drawing inspiration from
the structured decision processes of GBDTs, we aim to develop novel feature selection
strategies that enable neural rankers to focus on the most informative features, reduce
computational overhead, and produce more explainable ranking decisions.

3.2. Feature Selection Methods for LTR

Feature selection methods for LTR can be broadly classified into three categories:
filter methods, wrapper methods, and embedded methods.

3.2.1. Filter Methods

Filter methods assess each feature independently from any LTR model training, typi-
cally relying on statistical methods that estimate how well a single feature (or a simple
combination of features) correlates with a relevance signal. Unlike wrapper or embed-
ded techniques, these methods do not require iterative training of a ranking model,
making them computationally efficient and easy to implement.

Examples of filter-based approaches in LTR often adapt established metrics from clas-
sification or regression tasks. Geng et al. [12] discuss how correlation-based filters,
which quantify the degree to which a feature’s values align with relevance scores
across documents, can be effective baselines in ranking settings. Mutual Information
has also been explored as a way to measure the reduction of uncertainty in relevance
when a feature is observed; higher mutual information typically indicates a more infor-
mative feature. Similar logic underpins the use of Chi-square tests, which evaluate
the dependence between feature values and relevance labels to identify statistically
salient dimensions. Although these metrics are straightforward to compute, they may
overlook complex interactions among features.

3.2.2. Wrapper Methods

Wrapper methods perform feature selection by iteratively training and evaluating a
ranking model, using performance metrics such as NDCG or MAP to guide the search
for informative features. This process can be computationally expensive, as each
feature subset under consideration must be assessed with a full training cycle of the
LTR model. Geng et al. [12] illustrate how wrapper methods can adapt traditional
feature selection strategies to ranking by directly optimizing ranking-based objectives
rather than classification accuracy or regression error. This direct coupling often yields

3.3. Feature Selection Methods for Nerual LTR 19

more reliable insights into which features genuinely enhance a model’s ability to order
documents by relevance.

However, the iterative nature of wrapper methods presents scalability challenges when
the feature space is large or training data is extensive. Gigli et al. [13] address these
concerns by introducing accelerated strategies, such as parallelization and approx-
imate ranking objectives, that reduce the number of full model evaluations needed.
By doing so, they maintain much of the performance benefit inherent in wrapper ap-
proaches while mitigating the associated computational overhead. As a result, wrap-
per methods remain an attractive option in scenarios where model accuracy and fine-
grained feature evaluation outweigh runtime constraints.

3.2.3. Embedded Methods

Embedded methods integrate feature selection into the training of the ranking model
itself, using mechanisms such as regularization [30] or attention-based gating to quan-
tify and enforce feature importance. In these methods, feature weights or masks are
updated together with model parameters, allowing the selection process to be directly
informed by the optimization of ranking metrics. One key advantage of embedded
methods is their ability to capture intricate feature interactions without the need for re-
peated retraining on multiple subsets, as in wrapper approaches. They are also more
flexible than filter methods in addressing the relative nature of relevance by tailoring
regularization or gating criteria to ranking losses. However, the success of an embed-
ded method can hinge on the quality of the inductive biases or architectural choices
within the model, meaning that performance may vary significantly across different
LTR datasets and tasks. Despite these caveats, embedded methods continue to gain
popularity as they often strike a favorable balance between computational efficiency,
interpretability, and ranking effectiveness.

3.3. Feature Selection Methods for Nerual LTR

Feature selection is an essential technique for improving model interpretability, re-
ducing computational complexity, and enhancing generalization performance. While
extensively studied in classification and regression tasks, its application in neural LTR
remains an emerging area of research. Recent studies have evaluated whether inter-
pretable machine learning methods can effectively perform feature selection in neural
ranking models [23]. These methods can be broadly categorized into sampling-based
and regularization-based approaches.

3.3.1. Sampling-Based Feature Selection Methods

Sampling-based methods aim to select a subset of informative features by training
supplementary models to learn feature importance. These approaches typically rely
on learning an explicit selection mechanism that identifies the most relevant features
based on predictive performance. In sampling-based methods, L2X [9] employs an
encoder-decoder to sample feature subsets that maximize predictive information but

3.3. Feature Selection Methods for Nerual LTR 20

remains unadapted for ranking losses; G-L2X [23] extends L2X by focusing on pair-
wise feature importance for ranking, yet does not mitigate feature leakage; INVASE
[33] leverages a reinforcement learning framework for data-driven selection but lacks
direct integration with ranking metrics; CAE [1] uses a differentiable concrete distribu-
tion for feature selection but is untested in LTR settings; IFG [20] adds a secondary
model for importance estimation, which may limit scalability in ranking tasks.

3.3.2. Reqularization-Based Feature Selection Methods

Regularization-based methods introduce sparsity constraints during model training,
encouraging the selection of relevant features while penalizing redundant or irrelevant
ones. These methods integrate feature selection directly into the optimization process,
making them computationally efficient and well-suited for large-scale ranking tasks.
Among regularization-based methods, TabNet [2] integrates sparse attention masks to
dynamically select features but does not explicitly account for ranking dependencies,
and LassoNet [19] applies hierarchical L1 constraints within deep networks, though it
remains unexplored for ranking-specific objectives.

3.3.3. Feature and Label Leakage in Local Feature Selection

Local feature selection methods produce instance-specific masks, revealing only a
subset of input features for each sample, whereas global selection methods employ
a single, fixed mask for an entire dataset [25]. Although local approaches can offer
more flexible and fine-grained explanations, they are prone to two forms of leakage
that fundamentally undermine interpretability.

Label Leakage. According to Oosterhuis et al. [25], label leakage occurs when a
feature selector’s output encodes information about the label itself rather than strictly
reflecting the relevant features. In other words, the act of selecting features should
not alter the conditional distribution of the label given the selected features. However,
if the selection mask allows a predictor to infer information about the true label that is
not contained in the chosen features alone, the method exhibits label leakage. This
situation defeats the intended purpose of local feature selection, because the resulting
explanations no longer indicate which input features genuinely determine the predic-
tion.

Feature Leakage. Oosterhuis et al. [25] similarly define feature leakage as the unin-
tended encoding of non-selected (masked) feature values into the selection mask.
Even though certain features appear “excluded” from the prediction, the selection
mechanism can inadvertently embed information about them, allowing the model to
effectively use hidden variables it is not supposed to access. This behavior compro-
mises the interpretability of local selection, because it implies the chosen subset is not
the sole information source used by the predictor.

As Oosterhuis et al. [25] emphasize, preventing both forms of leakage is critical for en-
suring faithful local feature selections. In contrast, global feature selection methods

3.4. Summary 21

use a uniform mask for all instances, reducing opportunities for leakage but forfeiting
the instance-specific explanations that make local approaches attractive. Nonethe-
less, leakage is primarily a concern in local feature selection, where the flexible, per-
instance nature of the masking process can unintentionally encode extra information
and undermine the trustworthiness of the selected features.

3.3.4. Challenges

Despite advancements in feature selection methods for neural models, their applica-
tion in LTR presents several challenges:

* Ranking-Specific Optimization: Most existing methods were originally designed
for classification or regression, making it unclear how well they adapt to ranking-
specific objectives.

» Feature Leakage: Many feature selection techniques inadvertently introduce bi-
ases by conditioning feature importance on the model’s predictions, reducing
interpretability.

 Scalability: Feature selection in ranking requires evaluating feature importance
across entire lists, making computation significantly more expensive than in stan-
dard supervised learning tasks.

3.3.5. Motivation for a Novel Feature Selection Approach

Given these challenges, there is a need for dedicated feature selection approaches
designed specifically for neural LTR models. Existing methods do not fully address
ranking-specific constraints, and feature leakage remains an unsolved problem. This
thesis aims to develop a novel feature selection approach that aligns with ranking
objectives while maintaining interpretability and computational efficiency. Inspired by
the structured decision paths of GBDT models, we explore how feature selection can
be effectively integrated into neural ranking architectures.

3.4. Summary

In this chapter, we reviewed the existing literature on ranking methods in Learning to
Rank and feature selection techniques. We discussed the strengths and limitations of
GBDT-based rankers and neural rankers, highlighting the evolution of ranking models.
We also explored various feature selection methods, emphasizing their importance in
improving model performance and interpretability. The gap identified in applying fea-
ture selection to neural rankers in LTR sets the foundation for the research presented
in this thesis.

Methodology

This chapter outlines our approach to integrating feature selection into neural LTR.
Neural rankers have not fully capitalized on explicit feature selection, consequently,
neural models often require large feature sets, leading to reduced interpretability and
higher computational cost.

However, many feature selection methods face a critical challenge: feature leakage
and label leakage, wherein the selected features unintentionally contain information
about hidden features and labels that should not be available at training time [25].
Oosterhuis et al. [25] have shown that such leakage can compromise both the inter-
pretability and reliability of ranking models. They further propose a Sequential Un-
masking without Reversion(SUWR) method with formal guarantees against leakage,
demonstrating its effectiveness on tasks like MNIST digits recognition. Despite its
promise, the application of this leakage-free approach in LTR scenarios remains un-
explored.

Motivated by the need for robust feature selection in neural rankers and inspired
by GBDT's iterative, split-based feature reduction, we adapt and extend the SUWR
method to address ranking-specific objectives by incorporating loss functions that ex-
plicitly optimize towards NDCG. Our proposed sequential feature selection framework
is designed to maintain ranking performance while enhancing interpretability and com-
putational efficiency. By integrating SUWR’s leakage-free principles with an NDCG-
focused objective, our method is better aligned with the unique demands of LTR and
seeks to provide a more principled path toward robust feature selection for neural
rankers.

4.1. Overview of Sequential Feature Selection Method

Our framework for integrating feature selection into neural rankers in LTR builds upon
the principle of sequential feature unmasking. The core idea is that, at any point in
time, the model only observes a subset of available features. The decision to unmask
additional features is given by a Selector, which uses only the currently revealed sub-
set to predict whether new features would substantially improve ranking performance.

22

4.2. Formal Definition of Sequential Unmasking 23

Only revealed subset is visible Update mask my 1

Masked Fea-
Full Feature Vector ture Vector Unmask Next
x Feature(s)
X O my

Sekictor Stop? Yes Raiker Final Ranking
£(x ® m/,) f(x - mf)

Decides whether more features should be revealed

Figure 4.1: lllustration of the sequential feature selection procedure. At each time step ¢, the Selector
decides whether to stop or unmask additional features. If it chooses to unmask more features, the
mask is updated and the process repeats. If the Selector stops, the Ranker computes the final
relevance score using the current masked input, outputting both the final ranking and mask.

Once afeature is unmasked, it remains visible for subsequent steps—the model never
reverts a previously unmasked feature. This constraint ensures that hidden features
remain inaccessible, preventing unintended signals about masked features from influ-
encing future decisions.

In contrast to other traditional feature selection methods, which typically decide on a
single subset of features all at once, our approach unfolds in multiple steps. At each
step:

1. A partially observed feature vector x ©® m is fed to the Selector network.

2. The Selector decides whether to stop (i.e., proceed with the current subset of
features) or to unmask additional features.

3. If additional features are to be unmasked, the Selector generates a probabil-
ity distribution over the currently masked features and then samples from this
distribution to determine which feature(s) to reveal next.

4. The updated masked input is then passed to the Ranker, which computes the
ranking and estimates performance metrics (e.g., NDCG) based on the currently
revealed subset.

The process repeats until either the user-defined maximum number of features or train-
ing steps is reached or until the Selector decides that revealing more features would
yield marginal utility. By only accessing the subset of features that have already been
revealed, the Selector is guaranteed not to rely on or encode any hidden-feature in-
formation, thus mitigating the risk of feature leakage.

4.2. Formal Definition of Sequential Unmasking

Formally, let x € R? be the full feature vector for a query—document pair, and let
m € {0, 1}¢ be a binary mask denoting which features are currently revealed (m; = 1)
or hidden (m; = 0). Our feature selection method involves a sequence of T steps. At
step ¢:

1. The Selector applies a learned function ¢;*”(-) to the partially observed feature

4.2. Formal Definition of Sequential Unmasking 24

vector x ©® m, to produce a scalar value
pZtop<X © mt) S [07 1]

This value represents the probability of stoping further feature unmasking at this
step. A Bernoulli trial (a random experiment with two outcomes, where a value of
1 indicates that the process should stop and 0 indicates that it should continue) is
then performed using pf,,,. If the trial yields 1, the unmasking process stops and
the Ranker will later compute the final ranking based on the features revealed
so far.

2. If the Bernoulli trial indicates that the process should continue, the Selector out-
puts a probability distribution

Wt(x © mt) € A{masked}a

over the set of features that remain hidden. This distribution, defined over the
remaining hidden features, represents how likely it is that revealing each one
would improve ranking performance.

3. Based on the probability distribution 7*(x ® m;), the Selector samples more fea-
tures to reveal. Let newMask; denote the sampled one-hot vector indicating the
newly unmasked features. The mask is updated as

m;yp = Iy -+ neWMaSkf

Since newMask; > 0, the mask only ever expands—once a feature is unmasked,
it remains visible in all subsequent steps.

After step T (or earlier if the Bernoulli trial signals to stop), the Ranker f processes
the fully updated masked input x ® my to compute the final ranking and estimate
performance metrics like NDCG. And we record both the final prediction and the final
mask m. This sequential unmasking procedure ensures that each decision is based
solely on the features that have already been revealed, thereby minimizing the risk of
feature leakage.

All Features Selected Subset All Features Step 1 Step 2
— — [z]—
(a) Traditional Feature Selection (b) Sequential Feature Selection

Figure 4.2: Comparison of Traditional vs. Sequential Feature Selection. In (a), all features are
observed in a single step, yielding one final subset. In (b), features are revealed gradually across
multiple steps, with each decision based on the partial set of unmasked features.

4.2.1. Leakage Prevention

In local feature selection, the Selector can leak information about currently hidden
features or the relevance label by embedding it in the selection mask. Oosterhuis et
al. [25] formally characterize this phenomenon, demonstrating that mitigating leakage

4.3. Sequential Feature Selection for Neural Rankers 25

requires any selection policy to depend solely on features already revealed in previous
steps. To that end, they propose a sequential unmasking without reversion algorithm,
wherein features, once exposed, cannot be reverted back to hidden. By forbidding
reversion, the selection process ensures each unmasking decision is based purely on
the observed features, i.e., on x ® m, at step t.

In this thesis, we adapt the general sequential unmasking framework of Oosterhuis et
al. [25] to Learning-to-Rank scenarios by retaining its stepwise exposure of features
and the no-reversion property, while incorporating ranking-specific loss functions dur-
ing training phases. This modification preserves the leakage-free guarantees of the
original algorithm, yet better aligns the selection process with ranking metrics critical
to many real-world search and recommendation tasks.

4.3. Sequential Feature Selection for Neural Rankers

Algorithm 1 (adapted from [25]) illustrates how the inference proceeds. Initially, all
features are masked (my, = 0). At each iteration:

Algorithm 1 Sequential Feature Selection in Rankers

Require: Features x € R? Initial Mask m < 0; Selector &; Ranker f; Max step T}
Max features I .
1. fort+ 1to T do
Paop ¢ Eliop(X O)
if BernoulliTrial(pstop) = True or |m||; > Fi.x then

return (f(x ®m), m)

end if

T 4 eet(Xx O m) > Prob. over still-masked features
newMask <« SampleMask(r)

8: m < m + newMask

9: end for

10: return (f(x@m),m)

Noa h wbd

* At each step ¢, &, outputs pop € [0,1]. A Bernoulli trial with this probability

stop
determines whether to terminate, preventing unnecessary feature selection.

« If termination does not occur, the next features to reveal are sampled from 7 €
A¢masked}- The updated mask m is strictly greater than the previous one, ensuring
no-reversion in feature selection.

» The process ends if any of the following conditions are met: (i) the maximum
number of steps 7' is reached, (ii) ps.op Signals termination, or (iii) the predefined
maximum number of revealed features has been reached. Once terminated,
the ranker f evaluates the partially observed input x ® m to generate the final
scoring.

4.3. Sequential Feature Selection for Neural Rankers 26

4.3.1. Selector Network

The Selector network, denoted as &, is implemented in our code as a deep neural
network that takes the partially observed feature vector x ©® m as input. The network
comprises several layers:

* Encoder: A sub-network, denoted as FFenc, encodes the input into a hidden
representation. In our experiments, this encoder is configured with 3 hidden
layers.

» Stop Head: From the encoded representation, a stop head outputs a single
probability value in [0, 1], denoted as

Pstop (X © m) = Cstop (X ©O) m)

A sigmoid activation is applied so that this output can be interpreted as a proba-
bility for a Bernoulli trial used to decide whether to stop unmasking.

» Selection Head: A separate sub-network outputs raw scores over the remaining
masked features. These scores are passed through a softmax layer to yield a
discrete probability distribution

(X © M) € Afmasked features} »

ensuring that each probability 7, > 0 and that > . m; = 1. This distribution is

interpreted as a discrete probability distribution from which one or more features
are sampled to be unmasked next.

In our implementation, these two heads share initial hidden layers but branch out into
separate output layers for the stop probability and the selection probability distribution,
respectively. Missing features (where m; = 0) are zeroed out before being passed to
the network, ensuring that the Selector never sees values of masked features. This
design aligns with our goal of avoiding feature leakage.

Training. During training, we backpropagate through the Selector by sampling par-
tial masks in an online fashion (see Section 4.4). For the stop head, we treat the
output pg., as the probability parameter of a Bernoulli trial; for the selection head, we
interpret the softmax output as a discrete probability distribution from which we sample
one or more features to reveal. Both heads are trained end-to-end. However, because
sampling discrete features is a non-differentiable operation, we need to use special
techniques to propagate gradients through the Selector. One common approach is
to use the Gumbel-Softmax relaxation [17], which approximates discrete sampling
with a continuous, differentiable function by adding Gumbel noise to the logits and
applying a softmax with a temperature parameter; as the temperature decreases, the
output more closely approximates a one-hot vector. This method allow gradients to
flow through the Selector’s decision-making process, enabling end-to-end training of
the model despite the discrete nature of the sampling step.

4.3. Sequential Feature Selection for Neural Rankers 27

4.3.2. Ranker Network

Let f(x ® m; @) denote our neural ranker. Our neural ranker is built using a deep neu-
ral network (DNN) architecture, and produces a relevance score for each document.
These scores are then used to generate the final ranking by sorting the documents
in order of decreasing relevance. In our implementation, the ranker is designed as
follows:

* Input Processing: It receives the masked input x ® m, where masked entries
are replaced by zero.

» Hidden Layers: The input is processed through several fully-connected layers.
In our experiments, the ranker typically consists of 3 hidden layers with non-
linear activations such as ReLU, enabling the network to capture complex fea-
ture interactions.

» Output Layer: Finally, the network outputs a single relevance score for each
document. These scores are then used to derive the final ranking by sorting the
documents and to compute performance metrics such as NDCG.

Because the ranker only operates on the unmasked portion of the input, it is agnostic
to the features that remain hidden. This ensures that the final ranking is based solely
on the information revealed through the sequential feature selection process.

4.3.3. Integrating NDCG in training

In the leakage-free local selection framework of Oosterhuis et al. [25], the selector ¢
and predictor 6 are jointly optimized so that the selector only conditions on the already
revealed features, thereby avoiding feature or label leakage, and the predictor accu-
rately models the label distribution from the selected inputs. Originally, the training
signal combined a loss (e.g. mean squared error) with a sparsity regularization term.
To adapt this approach to ranking scenarios, we replace the loss with NeuraINDCG
[26] while preserving the leakage-free guarantees through sequential unmasking and
no reversion.

NeuralNDCG is a differentiable metric that approximates NDCG used in ranking mod-
els to improve their performance on ranking tasks. It addresses the discrepancy be-
tween the optimization objective and the evaluation metric in LTR models by replacing
the non-differentiable sorting operator in NDCG with NeuralSort, a differentiable ap-
proximation of sorting. NeuralNDCG consists of a multi-layer perceptron for learning
latent document scores and an innovative NDCG layer for computing the NDCG score
based on the predicted document scores. The NDCG layer has a temperature param-
eter that allows control over the trade-off between exploration and exploitation during
training. It is formulated as below:

k
NeuralNDCG = N, ! Z (scale (y)) -d(j)

Jj=1

4.3. Sequential Feature Selection for Neural Rankers 28

where N~!is the maxDCG at the kth rank, 7 is the temperature parameter which allows
to control the trade-off between the accuracy of the approximation and the variance
of the gradients, scale(+) is the Sinkhorn scaling, and ¢(-) and d(-) are the gain and
discount functions, respectively.

By minimizing the negative NeuralNDCG, which serves as a ranking objective, our
framework directly optimizes ranking quality and is better adpated to LTR tasks while
preserving leakage-free feature selection.

Let {(:ci, yi)}fvzl be the training set, where z; € R represents the feature vector for
instance ¢ and y; denotes its associated relevance labels. We denote by m; the random
mask sampled from the selector ¢ for x;. Inspired by Oosterhuis et al. [25], we define
the combined loss over the dataset as:

N
L($,0) = % > Eoetian [— NeuraNDCG(f(z; © my), ui) +)\Q(mi)},

=1
where:

* NeuraNDCG(f(z; ® h;), y;) denotes the differentiable NDCG reward computed
from the subset of features revealed by h; [26].

* Q(h;) is a regularization term (e.g., L1 or cardinality penalty on the number of
selected features) that discourages revealing too many features, thus enhancing
interpretability.

) controls the trade-off between maximizing ranking quality (via NeuralNDCG)
and minimizing the number of unmasked features.

 The expectation E;,.¢(,) arises because the selector (samples masks stochas-
tically, in line with the reinforcement learning perspective of sequential unmask-

ing.

As in [25], the no reversion rule ensures once a feature is revealed, it remains un-
masked for all subsequent steps, and the selector never has access to hidden feature
values or labels. This construction guarantees no label leakage as the probability of
selecting a particular mask h; does not depend on y; when (never observes the label
directly. Similarly, it also guarantees no feature leakage as the probability of selecting
a feature does not depend on features that remain hidden; each selection step relies
only on the partially revealed input x; ©® m;. Hence, even though NeuralNDCG inter-
nally uses label information to compute a reward signal, the selector itself only sees
previously unmasked features, preserving the leakage-free guarantee.

Altogether, by combining NeuralNDCG within the leakage-free sequential unmasking
framework, we obtain a training objective that directly aligns local feature selection with
ranking performance, without inadvertently exposing the selector to hidden features
or true labels.

4.4. Training Strategies 29

4.3.4. Implementation Details.

In our experiments, the ranker network is implemented as a standard DNN, typically
using 3 hidden layers, with additional techniques such as dropout or batch normaliza-
tion employed as needed to enhance generalization. The network is trained using a
ranking loss, softmax cross-entropy, over the documents of a query, following stan-
dard LTR practices. This means that for each query, we collect all document vectors
and their corresponding mask x ©® m and compute the loss relative to the ground-truth
relevance labels. Because f is agnostic to masked features, it can easily work with
partial inputs. When only a few features are unmasked, the ranker simply makes
predictions based on the information that is available.

Overall, the Selector and Ranker form a cohesive system: the Selector dynamically
decides which features to reveal, while the Ranker predicts the relevance score for
each document based on the unmasked features. This setup ensures that the final
ranking reflects only the information actually revealed by the sequential feature selec-
tion procedure, mitigating feature leakage and improving interpretability.

4.3.5. Summary of Sequential Feature Selection for Neural Rankers

In summary, our sequential unmasking framework achieves the following:

1. It ensures that each decision step is based exclusively on the features that have
already been revealed, thereby preventing any hidden information from influenc-
ing subsequent selections.

2. It maintains a strictly expanding mask by enforcing the no reversion rule, which
prevents re-masking and thus minimizes the risk of feature leakage.

3. It integrates seamlessly with the neural ranker by incorporating a ranking loss
that is designed to operate on partially observed feature inputs.

4. It balances ranking performance with the cost of feature acquisition by including
a regularization term (e.g., A||m||;) that encourages sparsity in the unmasking
process.

5. It is adapted to LTR tasks by employing a differentiable approximation of the
NDCG metric, NeuraINDCG. By optimizing the negative NeuraINDCG as a sur-
rogate ranking objective, our framework directly enhances ranking quality while
maintaining leakage-free feature selection.

This framework provides a principled feature selection method for neural Learning-to-
Rank to enhance both interpretability and efficiency.

4.4. Tralining Strategies

Training our sequential feature selection framework requires jointly optimizing two
components:

» Selector &: A network that determines, at each step, which features to reveal

4.4. Training Strategies 30

and when to stop, based solely on the currently visible features.

* Ranker f(-;0): A deep neural network that produces relevance scores (which
are then used to generate the final ranking) based on a partially masked input.

Our training framework supports two approaches: joint (end-to-end) training and a
two-phase pipeline.

4.4.1. Joint Training

In joint training, both the Ranker and Selector are optimized simultaneously. The
procedure is as follows:

1. Parameter Initialization: Initialize the Ranker’s parameters ¢ and the Selector’s
parameters ¢ randomly, with a fixed random seed for reproducibility.

2. Forward Pass with Partial Masks: For each query—document pair in a mini-batch,
a partial unmasking sequence is sampled from the Selector until a maximum
steps/number of features or a stop decision is reached. The Ranker then com-
putes relevance scores for the partially revealed feature vector x ©® m.

3. Loss and Regularization: The overall loss is defined as:

N
L£(6,0) = 5 D Emyeeion) |~ NewalNDCG(f(z:i @ my), i) + AQ(my).
1=1

1
N

where (h;) is a regularization term that discourages revealing too many fea-
tures, thus enhancing interpretability, and \ controls the trade-off between maxi-
mizing ranking quality via NeuraINDCG and minimizing the number of unmasked
features.

4. Gradient Estimation with Discrete Sampling: Since the unmasking decisions are
discrete, we require special techniques to propagate gradients through Gumbel-
Softmax Relaxation [17]: given logits z; for each masked feature, we add Gum-
bel noise g; and compute:

e — exp((z + 9:)/7)
CXen((z+9)/7)
where 7 is the temperature parameter. As 7 decreases, the output y becomes

closer to a one-hot vector, approximating the discrete sampling while still allow-
ing gradients to flow.

5. Parameter Updates: Finally, we update both 6 and ¢ using an optimizer such as
Adam.

This integrated approach enables the Ranker to adapt to partial feature inputs while
the Selector refines its policy for revealing features, thereby improving the final ranking
performance and controlling the feature cost.

45. Summary of Methodology 31

4.4.2. Two-Phase Training

Alternatively, training can be divided into two phases:

1. Phase 1 - Train Ranker: Train a conventional neural ranker f(x;#) using the full
feature set to establish a strong baseline.

2. Phase 2 — Train Selector: With 6 fixed, train the Selector £ to simulate partial
unmasking so that the ranker scores masked inputs f(x ® m). The Selector’s
parameters ¢ are optimized to minimize:

ngn Em-e [— NeuralNDCG(f(oci ® mi), yz) + A Q(ml)])

While this two-phase approach is simpler to implement, it is generally less optimal
than joint training since the ranker does not adapt to partial feature inputs during its
own training.

We will introduce further training implementation details in the next experiment chap-
ter.

4.5. Summary of Methodology

In this chapter, we presented a comprehensive methodology for integrating our pro-
posed sequential feature selection method into neural Learning-to-Rank systems. We
began by examining the challenges in neural LTR—particularly its dependence on
large, unrefined feature sets that can undermine interpretability and increase compu-
tational costs—and then explored the strengths of GBDT, drawing valuable insights
from its iterative decision tree structure.

Motivated by these observations, we proposed a sequential feature selection frame-
work that progressively unmasks features. At each step, the Selector operates solely
on the currently revealed subset of features to decide whether to continue or stop fur-
ther unmasking, thereby mitigating the risk of feature leakage. We provided a formal
definition of this process, detailing the use of a learned stop function and a probability
distribution via a softmax layer) for selecting the next features to reveal.

We then compared our approach with both traditional static methods and other dy-
namic feature selection techniques, highlighting its advantages in terms of adaptivity,
leakage prevention, interpretability, and efficiency. Finally, we outlined our training
strategies, describing both joint (end-to-end) and two-phase optimization pipelines,
and discussed the use of gradient estimation techniques such as REINFORCE and
Gumbel-Softmax relaxation to handle the discrete nature of the unmasking decisions.

Overall, our methodology offers a principled framework that not only improves com-
putation efficiency by revealing only the most informative features, but also enhances
interpretability in neural LTR systems. We will introduce further experiment details
and results in the next chapter.

Experiment and Evaluation

5.1. Experiment Overview

To evaluate the effectiveness of the proposed sequential feature selection method in
neural Learning-to-Rank settings, we design a set of experiments that directly corre-
spond to the research questions outlined in Chapter 1. Our primary goal is to assess
whether SUWR can maintain ranking performance while reducing input dimensional-
ity, and whether it offers advantages in interpretability, efficiency, and feature selection
quality.

Experiments are conducted on three widely used LTR benchmark datasets: MQ2008,
Web10K, and Yahoo!. These datasets provide a diverse set of query-document pairs
with rich feature representations, making them well-suited for evaluating feature se-
lection strategies in neural ranking models.

To address RQ1, we compare the ranking performance of SUWR against a baseline
neural ranker that uses the full feature set. This allows us to assess whether SUWR
can achieve comparable results with significantly fewer features.

To address RQ2, we evaluate SUWR against other existing feature selection meth-
ods, such as L2X and CAE, under a fixed feature budget. This setup enables a fair
comparison of how effectively each method selects relevant features that contribute
to ranking performance, while also analyzing the trade-off between feature sparsity
and accuracy.

To investigate RQ3, we evaluate the impact of different LTR-specific loss functions
(pointwise, pairwise, and listwise) on SUWR’s ability to select informative features
and maintain high ranking quality. This helps determine which loss formulations best
support effective sequential feature selection.

Finally, to address RQ4, we analyze the consistency of SUWR’s selected features
across queries. We measure how frequently individual features are selected and ex-
amine whether the most frequently selected features are consistent across different
ranking contexts, offering insights into the interpretability and generalization of the

32

5.2. Datasets 33

model.

The remainder of this chapter introduces the datasets, details the experimental setups
for each research question, describes the evaluation metrics and baseline methods,
and presents a comprehensive analysis of the results.

5.2. Datasets

To evaluate the proposed feature selection framework for neural LTR, we conduct ex-
periments on three widely used benchmark datasets: MQ2008, Web10k, and Yahoo!.
These datasets provide different ranking environments in terms of feature dimensional-
ity, query-document distributions, and relevance annotations, making them suitable for
assessing the generalizability and effectiveness of feature selection in neural rankers.

Each dataset consists of query-document pairs, where each document is represented
by a feature vector and assigned a graded relevance label. The datasets also in-
corporate multiple numerical ranking features derived from search engine signals,
document-query interactions, and retrieval heuristics such as term frequency and
BM25 scores. A summary of dataset statistics is presented in Table 5.1.

5.2.1. MQ2008

MQ2008 is a dataset from the LETOR 4.0 collection [28], consisting of 784 queries
sampled from real-world search logs, each associated with a set of retrieved docu-
ments. Each document-query pair is represented by 46 numerical features, derived
from retrieval heuristics such as BM25, query-document similarity, and PageRank.
Relevance labels range from 0 to 2, with higher values indicating stronger relevance.

5.2.2. Webl10k

The Microsoft LTR Web10k dataset [27] contains 10,000 queries and approximately
1.2 million query—document pairs. Each document is represented by 136 numerical
features, such as term frequency statistics, BM25 scores, and user behavior signals.
Relevance labels range from 0 to 4, providing a more fine-grained benchmark com-
pared to smaller datasets like MQ2008. Given its larger size and richer label space,
Web10k offers a challenging yet realistic environment for evaluating Learning-to-Rank
algorithms.

5.2.3. Yahoo!

Yahoo! LTR Challenge [8] contains 36,000 queries and 709,877 query-document
pairs, with each document represented by 700 features extracted from Yahoo's search
engine logs. Features include content-based signals, click-through rates, and link-
based metrics. This dataset represents a high-dimensional real-world ranking sce-
nario.

5.3. Experiment Setup 34

Table 5.1: Summary of datasets used for evaluation.

Dataset # Queries # Documents # Features Relevance Levels

MQ2008 784 ~15k 46 {0,1,2)
Web10k 10,000 ~1.2M 136 {0,1,2,3,4}
Yahoo! 36,000 ~710K 700 {0,1,2,3,4}

5.3. Experiment Setup

This section outlines the experimental setup used to evaluate the proposed sequen-
tial feature selection framework in neural Learning-to-Rank models. Our experiments
are designed to answer the research questions defined in Chapter 1, focusing on
evaluating SUWR’s performance in terms of ranking effectiveness, feature sparsity,
interpretability, and sensitivity to different loss functions.

For each dataset, we preprocess and split the data into training, validation, and test
sets following standard LTR practices.

For RQ1, which investigates whether SUWR can achieve comparable ranking per-
formance to baseline neural rankers trained on the complete feature set, we use a
neural ranker trained with all available features as our primary baseline. Additionally,
we include LambdaMART, a strong tree-based LTR model widely recognized for its
competitive ranking performance, as a reference point to contextualize SUWR'’s re-
sults against established ranking approaches. We evaluate and compare the ranking
quality of each method using NDCG@1, NDCG@5, and NDCG@10.

For RQ2, which explores how SUWR compares with existing feature selection meth-
ods, we design experiments in two scenarios: unconstrained and fixed-budget. In the
unconstrained scenario, feature selectors dynamically determine the number of fea-
tures to select based on their contribution to ranking performance, without an imposed
selection limit. Here, we compare SUWR against TabNet and LassoNet, methods that
inherently operate without explicit constraints on numbers of selections. In contrast,
in the fixed-budget scenario, we explicitly limit all feature selection methods to choose
a predetermined number of features (e.g., top-5). Under this scenario, SUWR is com-
pared with composable methods such as L2X and CAE, which naturally support fixed
feature constraints. Ranking effectiveness across these comparisons is assessed
using the same metrics: NDCG@1, NDCG@5, and NDCG@10. Additionally, to an-
alyze the relationship between feature sparsity and ranking accuracy, we conduct
experiments by incrementing the proportion of selected features and evaluating the
corresponding ranking performance using NDCG@10. This analysis helps identify
whether selecting more features consistently leads to improved ranking effectiveness,
or if diminishing returns occur beyond a certain selection threshold.

For RQ3, we aim to investigate how different loss functions affect SUWR’s perfor-
mance in terms of feature selection and resulting ranking accuracy. By default, our
approach employs a listwise loss function, NeuralNDCG, which leverages ranking in-
formation to guide the training process, potentially leading to more relevant features.

5.4. Experiment Results 35

However, the influence of alternative loss functions remains an open question. To ex-
plore this, we design experiments comparing the effectiveness of three different types
of loss functions: a pointwise loss (Mean Squared Error), a pairwise loss (logistic loss,
as used in RankNet [3]), and our default listwise loss (NeuraINDCG). In these exper-
iments, we standardize the number of selected features across all loss functions to
ensure fairness. The performance of each loss function is then assessed by compar-
ing their ranking effectiveness using metrics NDCG@1, NDCG@5, and NDCG@10,
enabling us to identify which loss most effectively guides SUWR towards selecting
features that enhance ranking quality.

For RQ4, we investigate whether the features selected by SUWR are consistent across
queries, thus providing enhanced interpretability and insights into the feature select-
ing process. Since datasets such as MQ2008 and Web10K explicitly define and label
their features (e.g., BM25 scores, IDF values, PageRank), we analyze feature selec-
tion frequencies across all queries to identify patterns in feature importance. By iden-
tifying features that are consistently chosen by SUWR, we aim to determine whether
these frequently selected features align with known, critical metrics in LTR context.
Given that SUWR is designed to be leakage-free, any consistently selected feature is
more likely to genuinely contribute to ranking performance, thereby providing reliable
insights into feature importance and confirming that the selected features faithfully
reflect the ranking task.

5.4. Experiment Results

In this section, we present experimental results to answer the research questions de-
fined in Chapter 1. Specifically, we evaluate whether our sequential feature selection
method (SUWR) can achieve comparable ranking performance to full-feature base-
line neural rankers, how it compares against existing feature selection methods under
both unconstrained and fixed-budget scenarios, the impact of different loss functions
on SUWR’s ranking effectiveness, and the consistency and interpretability of the se-
lected features across queries. We compare our proposed method to established
feature selection techniques (L2X, CAE, TabNet, and LassoNet) as well as to strong
baselines, including a neural ranker trained on all features and the widely-used Lamb-
daMART model.

5.4.1. RQl: Ranking Performance of SUWR Compared to Full-Feature
Baselines

RQ1 investigates whether our sequential feature selection method, SUWR, can achieve
ranking performance comparable to neural rankers trained on the complete feature

set. Tables 5.2, 5.3, and 5.4 show experimental results across the three benchmark

datasets: MQ2008, Web10K, and Yahoo!.

From these results, we observe that both the full-feature neural ranker and Lamb-
daMART establish strong baseline performances across all datasets. SUWR, how-
ever, achieves substantial reductions in the number of selected features, demonstrat-

5.4. Experiment Results 36

ing a significant strength in computational efficiency. For instance, on the MQ2008
dataset, SUWR selects only around 6 features (an approximately 87% reduction from
the full set), resulting in a modest performance drop of roughly 6% in NDCG@10. This
demonstrates SUWR’s ability to identify informative features effectively while maintain-
ing competitive ranking performance.

In contrast, the performance drop on the Web10K dataset is more noticeable (approxi-
mately 21%), suggesting that SUWR’s highly restrictive feature selection may be overly
aggressive for large-scale datasets, potentially neglecting features whose information
significantly contribute to ranking effectiveness. This pattern indicates that although
SUWR excels at minimizing the number of features used, it might not adequately cap-
ture complex feature interactions critical for ranking in larger and more nuanced data
scenarios.

Based on these findings, we address RQ1 as follows: SUWR effectively reduces com-
putational costs by selecting substantially fewer features, though this typically leads to
a moderate decrease in ranking accuracy. Such a trade-off may be acceptable in sce-
narios where interpretability or efficiency is prioritized. Additionally, SUWR performs
notably well on smaller datasets such as MQ2008, where it successfully identifies es-
sential ranking signals. However, its unmasking strategy may limit its effectiveness
on larger, more complex datasets such as Web10K, suggesting that future feature se-
lection strategies should incorporate adaptive mechanisms capable of capturing more
complex feature interactions in larger datasets.

Table 5.2: Ranking Performance on MQ2008 (Unconstrained Setting)

Model NDCG@1 NDCG@5 NDCG@10 Avg. # Selected Features
Full-feature Neural Ranker 0.679 4+ 0.016 0.722 £+ 0.011 0.757 £ 0.008 46
LambdaMART 0.684 + 0.020 0.742 + 0.0015 0.765 + 0.018 46

SUWR 0.646 + 0.025 0.688 + 0.021 0.719 £ 0.016 7

TabNet 0.661 + 0.017 0.721 + 0.015 0.734 £ 0.012 7+3
LASSONET 0.659 £ 0.022 0.718 £ 0.016 0.732 £+ 0.016 7+3

Table 5.3: Ranking Performance on Web10k (Unconstrained Setting)

Model NDCG@1 NDCG@5 NDCG®@10 Avg. # Selected Features
Full-feature Neural Ranker 0.419 4+ 0.010 0.473 4+ 0.006 0.491 + 0.005 136
LambdaMART 0.436 + 0.005 0.490 + 0.004 0.505 + 0.003 136

SUWR 0.358 + 0.013 0.373 +0.009 0.399 + 0.008 10

TabNet 0.426 + 0.006 0.468 + 0.007 0.485 + 0.004 10+2
LASSONET 0.354 +£ 0.008 0.367 + 0.005 0.382 + 0.007 10+2

5.4.2. RQ2: Comparing SUWR with Existing Feature Selection Meth-
ods in Neural Rankers

This research question investigates how SUWR compares to existing feature selection
methods in terms of ranking accuracy and feature sparsity. To thoroughly explore this
comparison, we designed two experimental scenarios: an unconstrained scenario,

5.4. Experiment Results

37

Table 5.4: Ranking Performance on Yahoo! (Unconstrained Setting)

Model NDCG@1 NDCG@5 NDCG®@10 Avg. # Selected Features
Full-feature Neural Ranker 0.640 4+ 0.004 0.698 + 0.003 0.726 + 0.004 700
LambdaMART 0.695 4+ 0.003 0.736 + 0.002 0.775 + 0.003 700

SUWR 0.629 + 0.012 0.685 + 0.008 0.718 + 0.007 10

TabNet 0.688 + 0.005 0.730 £ 0.004 0.773 £ 0.002 8+2
LASSONET 0.632 £ 0.008 0.692 £ 0.006 0.721 + 0.005 10+ 2

where methods dynamically determine the number of features to select, and a fixed-
budget scenario, where all methods select a predefined number of features.

In the unconstrained scenario, we train and evaluate two feature selection methods,
TabNet and LassoNet, both of which inherently determine their number of selected
features without explicit constraints. These methods require hyperparameter tuning
to balance feature sparsity and ranking effectiveness. To ensure fairness in our com-
parison, we configure SUWR to select the same number of features as identified by
TabNet and LassoNet, allowing us to directly evaluate whether SUWR can select more
informative features with the same number of selection.

Tables 5.2, 5.3, and 5.4 show results with SUWR comparing against TabNet and LAS-
SONET. Across all three datasets, TabNet consistently achieves the highest ranking
performance. TabNet's superior accuracy largely benefits from its tree-style neural
architecture, and also its attentive transformer blocks, which effectively transform and
select features through sparsemax activation. This mechanism allows TabNet to im-
plicitly capture intricate feature relationships and adaptively model feature importance.
However, this approach might also introduce feature and label leakage by encoding
additional information from unselected features or labels, potentially inflating its rank-
ing performance.

In contrast, SUWR explicitly prevents feature leakage through a masking mechanism.
Although SUWR achieves slightly lower ranking accuracy compared to TabNet, it con-
sistently matches or outperforms LassoNet. This indicates that SUWR reliably iso-
lates relevant features without relying on potentially encoding extra information from
masked features. Nevertheless, the observed performance gap with TabNet, espe-
cially on larger datasets such as Web10K, highlights room forimprovement to enhance
SUWR’s capability in modeling more complex feature interactions.

Figures 5.1, 5.2, and 5.3 summarize ranking performance on MQ2008, Web10k, and
Yahoo! datasets under the fixed-budget scenario, where models are explicitly limited
to selecting only a small subset of available features (approximately 10% for MQ2008
and Web10k, and roughly 1% for Yahoo!). Across all datasets, SUWR consistently
outperforms CAE, demonstrating a clear advantage over it. It also performs compara-
bly to L2X, with stronger performance on Web10k, slightly better results on MQ2008,
and nearly identical outcomes on Yahoo!.

This overall performance highlights SUWR'’s effectiveness compared to other sampling
based feature selection methods, such as CAE and L2X. Although all three methods
share a common sampling-based architecture, which is jointly optimizing a probabilis-

5.4. Experiment Results 38

tic feature selector and a ranker, they differ notably in how feature importance distri-
butions are constructed and optimized. SUWR sequentially unmasks features based
explicitly on their incremental contribution to ranking performance, ensuring leakage-
free and interpretable feature selection. In contrast, methods such as L2X rely on
instance-level feature selection through repeated stochastic sampling, potentially re-
sulting in less stable selections across instances, while CAE uses an autoencoder-
based reconstruction strategy that may prioritize redundancy reduction rather than
direct ranking relevance. SUWR’s explicit sequential masking procedure allows it to
consistently identify informative feature subsets that enhance ranking effectiveness in
fixed-budger settings.

Collectively, the fixed-budget scenario clearly demonstrates that SUWR outperforms
or matches other composable filtering-based feature selection methods, confirming
its suitability and competitiveness when feature budgets are limited.

Relationship Between Selected Feature Proportion and Performance Figures 5.4,
5.5, and 5.6 further investigate the impact of increasing the proportion of selected fea-
tures on ranking performance of SUWR compared with filtering-based methods (CAE
and L2X).

A notable trend across all three datasets is that performance generally improves as
the proportion of selected features increases, yet the rate and pattern of improvement
differ between the methods. SUWR consistently demonstrates performance improve-
ment even when selecting a very limited number of features, indicating that it effec-
tively identifies highly influential features early in the selection process. This is par-
ticularly advantageous in practical ranking scenarios, where computational efficiency
and interpretability often demand significantly reduced feature sets.

By comparison, CAE and L2X exhibit different behavior: CAE’s performance improve-
ments are generally modest and fluctuate inconsistently with increasing feature pro-
portion. SUWR consistently outperforms CAE at nearly all feature proportions, sug-
gesting that CAE’s autoencoder-based reconstruction criterion may not effectively pri-
oritize the most ranking-relevant features, especially at limited feature budgets.

On the other hand, L2X improves consistently and notably across datasets, demon-
strating a steady ability to identify increasingly informative subsets of features. SUWR
achieves stronger performance compared to L2X on MQ2008 and Web10k datasets
but slightly falls short on Yahoo! dataset, which has much higher feature dimensions.
This result suggests that L2X’s repeated sampling and selection maximization may
more effectively model complex feature interactions in highly dimensional input spaces
for ranking tasks.

Conclusion for RQ2 Our analyses yield clear insights into RQ2: SUWR consis-
tently excels in fixed-budget scenarios, effectively outperforming or matching other
filtering-based feature selection methods (CAE, L2X) in the context of neural ranking
in LTR, and shows distinctive advantages in early selection stages across incremen-
tal feature selection proportions. The results underscore SUWR’s strength in identi-
fying highly informative features quickly and efficiently, providing clear advantages in

5.4. Experiment Results 39

terms of interpretability and computational efficiency without substantial sacrifices in
ranking performance. However, TabNet still outperforms SUWR in all three datasets,
suggestingn future enhancements in SUWR should consider improved strategies for
leveraging additional complementary features, especially in large-scale, more com-
plex ranking tasks.

o 07[l0 CAE
é 0.682 0.676 0-68 ln L2x
w
o 0.65 | 0.64 (36 0.643 i
Z
06 I I I
NDCG@1 NDCG@5 NDCG@10
Figure 5.1: Ranking Performance on MQ2008 (Fixed Budget: 5 Features)
0.411 losuwWR
i 11 CAE
o 0.4 0.387 0.38 0o LoX
o .
c(/.)) 0.362 0.357 0.364
0.35 | o B
S 0.325 0.331
D DYe):
Z 03 [0.295 |
I I I
NDCG@1 NDCG@5 NDCG@10

Figure 5.2: Ranking Performance on Web10k (Fixed Budget: 14 Features)

The results indicate that even when only a small fraction of the full feature set is used,
our method is capable of achieving reasonable ranking performance. And as more
features are revealed, the performance of our method steadily improves.

While incorporating more features generally leads to improved ranking accuracy, a
carefully selected subset of highly informative features can capture most of the es-
sential relevance signals. Our method effectively identifies these critical features, as
evidenced by its competitive performance even at low feature budgets. In addition,
our method consistently outperforms CAE, and its performance is comparable to that
of L2X.

Overall, these findings highlight that with only a small proportion of features, our
method achieves a favorable balance between ranking performance and computa-
tional efficiency. This is particularly important in real-world applications, where reduc-
ing the number of features can lead to significant efficiency gains without sacrificing
much in terms of ranking quality.

5.4. Experiment Results

40

0.698 0.705 l0SUWR

o 0.7 0.674 - l0 CAE
S 0665 I L2x
((/.)) 0.65 |- 0.641 E
S 0.608 0-615 0.609
2 06} 0.582)

0.55 | i

I I I
NDCG@1 NDCG@5 NDCG@10
Figure 5.3: Ranking Performance on Yahoo! (Fixed Budget: 7 Features)
MQ2008

078 T T T T

o6 iae O L §
% g e .»- CAE

2 s SUWR

8 074 ["‘4' “““““““ — - L2X
% S S I " —— LambdaMART

0.72 .%o e e i

T e ’ .*
f -
07 | | | |
0.1 0.2 0.4 0.6 0.8 1

% of Features (k)

Figure 5.4: Impact of Unmasked Feature Proportion on Ranking Performance on MQ2008.

5.4.3. RQ3: Impact of Different Loss Functions on SUWR Performance

In RQ3, we investigated how the choice of training loss function—pointwise (MSE),
pairwise (RankNet), and listwise (NeuralNDCG)—affects the ranking performance of
SUWR, given an identical number of selected features. Figures 5.7, 5.8, and 5.9 sum-
marize the comparative performance across MQ2008, Web10k, and Yahoo! datasets.

Pointwise loss treats ranking as a regression problem, where the model predicts the
relevance score of each document independently. We use Mean Squared Error (MSE)
as our pointwise loss, which minimizes the squared difference between predicted and
true relevance scores. While simple and widely used, MSE does not consider the
relative ordering of documents, which may limit its effectiveness in ranking tasks.

Pairwise loss functions aim to optimize the relative order between pairs of documents
instead of absolute relevance scores. We use logistic loss, which is commonly used
in RankNet, to minimize the probability of ranking a less relevant document above a
more relevant one. This loss function better captures relative ranking but does not
directly optimize global ranking metrics like NDCG.

5.4. Experiment Results

41

Web10k
0.52 | | ! | ‘
¥
0.48 - . ;
B e
———————— .» CAE
l 4 T * SUWR
PR R Sl A I R T i
| -——'—'—— JPRUTPPPTEELL POrie LambdaMART
0.36Fewee, POPSRPPFRE L PRIt 7
| | | |
0.1 0.2 0.4 06 — 1

% of Features (k)

Figure 5.5: Impact of Unmasked Feature Proportion on Ranking Performance on Web10k.

Yahoo!
0.8 : ‘ | | |
""""""" =7
0.76 |- errr G | N 1 :
l" --'. CAE
0.72 |, 7 o
' - - L2X
068 [P [LT T P e P T T T L L 7-. - LambdaMART
0.64T" 7
1.10720. 0.2 0.4 0.6 0.8 1

% of Features (k)

Figure 5.6: Impact of Unmasked Feature Proportion on Ranking Performance on Yahoo!.

Listwise loss functions optimize the ranking of entire document lists, rather than treat-
ing individual items or pairs separately. We use NeuralNDCG, a differentiable approx-
imation of NDCG, which directly aligns the learning objective with ranking metrics,
leading to improved ranking performance, especially in neural ranking models.

A clear and consistent pattern emerges across all datasets: the listwise loss func-
tion achieves significantly better ranking performance compared to both pairwise and
pointwise losses. The pointwise loss consistently yields the weakest results, reflecting
its fundamental limitation in optimizing a ranking problem, as it treats each item inde-
pendently, neglecting inter-item relationships crucial to effective ranking. The pairwise
loss notably outperforms the pointwise loss but still falls short of the listwise loss per-
formance, as it explicitly optimizes the relative ordering between pairs of documents

but may miss higher-order dependencies within ranked lists.

The superior performance of the listwise loss can be directly attributed to its alignment

5.4. Experiment Results 42

with the nature of ranking tasks. By optimizing ranking metrics over entire ranked lists,
the listwise loss effectively enhances SUWR’s ability to select the most informative fea-
tures for better ranking. This list-level optimization encourages the selector to choose
features that consistently improve the accuracy of ranking predictions.

Overall, these results demonstrate that a listwise training approach aligns best with the
SUWR method’s objective. The clear advantage of NeuraINDCG over RankNet and
MSE underscores the importance of matching loss functions explicitly to the structure
of the ranking problem. In practical terms, adopting a listwise loss function like Neural-
NDCG is essential for effectively leveraging SUWR’s sequential, leakage-free feature
selection strategy, enabling it to consistently identify features that robustly improve
ranking performance.

) 0.715 |lDPointwise

o 0.7 ‘ 0.682 0.663 10 RankNet
= 0.64 0.628 I0 Listwise
S 06 0.589 :
8 0.526

0.5 i
% 0.447

04 0.404

' I I I
NDCG@1 NDCG@5 NDCG@10

Figure 5.7: Impact of Loss Functions on Ranking Performance with 5 features selected (MQ2008)

0.5 loPointwise
I , 0.411 ln Rgnkl_\let
5 04l) 0.387 0.378 10 Listwise
(&) 0.362 0.353
n
%) 0.316
O 03} 0.277 .
e
2 0.248

0ol 0.204 |

I I I
NDCG@1 NDCG@5 NDCG@10

Figure 5.8: Impact of Loss Functions on Ranking Performance with 14 features selected (Web10k)

5.4.4. RQ4: Consistency and Interpretability of Selected Features

RQ4 investigates whether SUWR selects features consistently across different queries,
thereby enhancing interpretability and trustworthiness in ranking decisions. Tables 5.6
and 5.5, along with the accompanying heatmaps, illustrate the most frequently se-
lected features by SUWR on the Web10k and MQ2008 datasets, as well as their se-
lection frequencies relative to L2X.

5.4. Experiment Results 43

. 0.698 |l0Pointwise

0.665
o 0.608 0.613 0 RankNet
5 06| - 58 ' [0 Listwise
A 0.538
0] 0.485
8
0.4
<04 0.361 1
NDCG@1 NDCG@5 NDCG@10

Figure 5.9: Impact of Loss Functions on Ranking Performance with 7 features selected (Yahoo!)

Feature Name Feature ID
Query—document cosine similarity (body) 20
TF-IDF (body) 17
BM25 (body) 15
BM25 (title) 16
LMIR.JM of title 38

Table 5.5: Top 5 most frequently selected features on MQ2008, ranked in descending order of
selection frequency.

The results clearly demonstrate that SUWR consistently prioritizes features widely rec-
ognized as critical ranking signals within LTR tasks. On Web10k, SUWR consistently
selects traditional ranking metrics such as language modeling scores (e.g., LMIR.JM
with Jelinek-Mercer smoothing), BM25 scores, inlink counts, and quality indicators like
QualityScore. Similarly, on MQ2008, SUWR prominently selects fundamental text-
based features including query-document cosine similarity, TF-IDF, and BM25 scores
across title and body texts. These features are well-known signals that strongly cor-
relate with document relevance in ranking literature.

Comparing SUWR’s selection patterns with L2X highlights the robustness and con-
sistency of SUWR’s choices. For instance, on MQ2008, SUWR and L2X both fre-
quently select top-ranked features, though their prioritization differs. The heatmap
(Figure 5.11) indicates that SUWR consistently selects certain features such as co-
sine similarity (body) and TF-IDF (body) across queries with relatively high frequency,
whereas L2X exhibits a somewhat less consistent and different selection pattern. This
discrepancy suggests that while both methods identify relevant features, SUWR’s se-
lection process is more stable and interpretable due to its explicit leakage-free mech-
anism, enhancing the reliability and trustworthiness of the identified features.

The critical advantage of SUWR is its explicit design to eliminate feature and label
leakage. SUWR ensures that each selected feature genuinely contributes to improved
ranking performance without leveraging hidden correlations. Thus, the features iden-
tified by SUWR are inherently more faithful and trustworthy compared to those from
other selection methods that might encode unintended or leaked information.

55, Summary 44

Feature Name Feature ID
LMIR.JM (body) 121
BM25 (anchor) 107
Inlink number 128
BM25 (body) 106
QualityScore 132
Covered query term ratio (whole doc) 10
BM25 (title) 108
Sum of TF*IDF (body) 71
LMIR.DIR (body) 116
Query-url click count 134
LMIR.JM (title) 123
LMIR.DIR (title) 118
PageRank 130
URL click count 135

Table 5.6: Top 10 most frequently selected features on WEB10K, ranked in descending order of
selection frequency.

Consequently, the features selected by SUWR provide reliable, transparent insights
into the factors driving ranking decisions, directly addressing RQ4. SUWR consis-
tently selects a core set of meaningful features across different queries, as demon-
strated by the high and stable selection frequencies of well-known relevance signals
such as BM25, TF-IDF, cosine similarity, and language-model-based scores. This con-
sistency enhances interpretability by allowing us to identify which features the model
repeatedly relies on to produce high-quality rankings.

Furthermore, because SUWR eliminates both feature and label leakage through its
sequential masking mechanism, the features it selects can be trusted as responsible
for the model’s ranking behavior, not as a result of hidden or indirect signals. This
makes SUWR'’s selections not only consistent but also faithful to the task, enabling
researchers to acquire credible insights from them. In summary, SUWR produces sta-
ble, interpretable, and trustworthy feature selections, thus effectively answering RQ4
and confirming that it is well-suited for scenarios where understanding and explaining
ranking decisions is critical.

5.5. Summary

In this chapter, we conducted a set of experiments to evaluate the effectiveness of
the proposed sequential feature selection method, SUWR, in neural Learning-to-Rank
models. Through these experiments, we addressed all four research questions out-
lined in Chapter 1.

For RQ1, we demonstrated that SUWR is capable of achieving competitive ranking
performance while selecting only a small subset of input features, offering significant
improvements in computational efficiency without severe loss in accuracy compared

5.5. Summary 45

Cosine Sim (body)
TF-IDF (body)

BM25 (body)

Feature Name

BM25 (title)

0.5

LMIR.JM (title)

Methods

Figure 5.10: Heatmap showing how frequently the top 5 features selected by SUWR were chosen
across all queries on MQ2008, along with their corresponding selection frequencies by L2X. Higher
values indicate more frequent selection.

to full-feature neural rankers and LambdaMART baselines.

In RQ2, we compared SUWR against existing feature selection methods in both un-
constrained and fixed-budget settings. SUWR consistently outperformed CAE and
performed competitively with L2X, particularly in smaller datasets. These results high-
light SUWR’s strength in selecting compact and relevant feature subsets, especially
under fixed budgets.

Addressing RQ3, we examined the impact of different loss functions on SUWR’s per-
formance. The results show that listwise losses, lead to the best ranking outcomes,
reinforcing the importance of aligning the optimization objective with the structure of
the ranking task.

Finally, for RQ4, we analyzed the consistency and interpretability of the features se-
lected by SUWR. We found that SUWR selects stable and widely accepted relevance
features across queries, and due to its leakage-free design, these selections can be
considered trustworthy and faithful to the model’s ranking behavior.

Collectively, these findings validate SUWR as a robust, interpretable, and efficient
approach for feature selection in neural Learning-to-Rank systems.

5.5. Summary 46

0.6
LMIR.JM (body)
0.55
g BM25 (anchor)
g 0.5
©® Inlink number
% 0.45
D BM25 (body)
0.4
QualityScore 0.35

S i
%\) e

Methods

Figure 5.11: Heatmap showing how frequently the top 5 features selected by SUWR were chosen
across 1000 queries on Web10k, along with their corresponding selection frequencies by L2X.Higher
values indicate more frequent selection.

Conclusion

This chapter summarizes the main findings and contributions of the research pre-
sented in this thesis, highlights its limitations, and proposes future directions for ex-
tending this work.

6.1. Summary of the Thesis

This thesis investigates the application of SUWR, a sequential feature selection method
originally proposed in prior work [25], within the context of neural Learning-to-Rank
(LTR) models. The method aims to improve both interpretability and computational
efficiency, while explicitly addressing the challenges of feature and label leakage. To
better adapt SUWR to the LTR setting, we extend it by incorporating a selector that
sequentially unmasks input features to the ranker, ensuring that only the selected fea-
tures contribute to the final ranking output, and by integrating NeuralNDCG, a differ-
entiable approximation of the standard NDCG metric, into the training objective. The
masking mechanism guarantees that unselected features remain entirely inaccessible
to the model, thereby preventing leakage and preserving the integrity of the feature
selection process.

The proposed method was evaluated on three widely used benchmark LTR datasets:
MQ2008, Web10k, and Yahoo!. Experimental results showed that SUWR achieves
competitive ranking performance while drastically reducing the number of features
used, thus significantly lowering model complexity. Furthermore, the sequential se-
lection process yields interpretable insights into feature importance, revealing which
signals are most influential in ranking decisions. These characteristics contribute to
building ranking models that are not only efficient and accurate, but also transparent
and trustworthy.

In sum, this thesis demonstrates that sequential, leakage-free feature selection can
serve as a robust and interpretable approach to enhancing neural ranking models,
with strong potential for application in real-world Learning-to-Rank scenarios.

47

6.2. Limitations 48

6.2. Limitations

While the proposed framework demonstrates promising results, several limitations re-
main. First, the balance between ranking performance and feature sparsity depends
on hyperparameters. Although tuning these parameters yielded good results, it also in-
creases the risk of overfitting, which may reduce the overall robustness of the method.
Additionally, despite the potential for lowering inference costs through sequential fea-
ture selection, the training procedure can become computationally demanding when
applied to very deep neural networks or extremely large datasets. This computational
complexity may limit the immediate applicability of the approach in real-time systems
with strict latency requirements.

Furthermore, the range of baseline feature selection methods evaluated here, while
representative, remains relatively narrow; structured or group-wise selection tech-
niques and more advanced neural architectures were not explored in depth. This
narrower scope may have constrained the discovery of potentially more effective or
interpretable feature selection strategies.

Another limitation concerns interpretability. Although the step-by-step unmasking pro-
cess elucidates which features drive the final ranking decision, the analysis of inter-
pretability in this thesis is largely confined to numerical and heuristic validation rather
than comprehensive user-centric evaluations. In practical deployments, real users
could require more comprehensive interpretability assessments such as user studies
to confirm the practical usefulness of this transparency. The potential impact of fea-
ture semantics also varies across datasets; for instance, the Yahoo! dataset does
not disclose detailed feature definitions, limiting the ability to interpret or validate the
method’s selection choices in that scenario.

Overall, these limitations suggest that additional work is needed to broaden the appli-
cability and deepen the evaluation of the proposed sequential feature selection frame-
work. Enhancements in scalability, more extensive testing across diverse ranking
contexts, and more rigorous interpretability evaluations may help address these short-
comings and further strengthen the method’s practical utility.

6.3. Future Directions

Future research should address these limitations and explore several promising av-
enues for further improvement. One direction is to scale the approach to large-scale
and real-time environments by optimizing the selection and masking mechanisms—
such as through parallel or distributed inference—to accommodate industrial-scale
datasets and meet stringent latency requirements. Another promising direction is
to investigate the integration of sequential feature selection with emerging neural
paradigms, such as Transformers, large language models, or multimodal architec-
tures, which could broaden the impact and applicability of the framework, particularly
for complex retrieval tasks. Finally, conducting comprehensive interpretability stud-
ies, including user studies or practitioner-focused evaluations, will be important for
assessing how effectively the step-by-step unmasking process provides an intuitive

6.3. Future Directions 49

and trustworthy rationale for the model’s ranking decisions.

In conclusion, this thesis has demonstrated that integrating feature selection into neu-
ral ranking models can reduce computational cost, enhance interpretability, and main-
tain competitive performance. Although our approach addresses several key chal-
lenges associated with traditional feature selection methods, open questions remain
regarding the automation, extension, and generalization of these ideas. The results
presented herein suggest that sequential feature selection offers a promising frame-
work for building accurate, efficient, and interpretable ranking systems, and they pave
the way for multiple avenues of future exploration.

References

[11 Abubakar Abid, Muhammad Fawaz Balin, and James Zou. “Concrete Autoen-
coders: Differentiable Feature Selection and Reconstruction”. In: International
Conference on Machine Learning (ICML). 2019, pp. 444—453.

[2] Suleyman Arik and Tomas Pfister. “TabNet: Attentive interpretable tabular learn-
ing”. In: Proceedings of the AAAI Conference on Atrtificial Intelligence. 2021.

[3] Christopher JC Burges. From RankNet to LambdaRank to LambdaMART: An
Overview; 2010. Tech. rep. MSR-TR-2010-82. Available from: https://www. mi-
crosoft. com/en-us/research ..., 2010.

[4] Christopher JC Burges. “Learning to rank with gradient descent”. In: Advances
in neural information processing systems 19 (2007).

[5] Christopher JC Burges et al. “Learning to rank using gradient descent”. In: Pro-
ceedings of the 22nd international conference on Machine learning (2005), pp. 89—
96.

[6] Zhe Cao et al. “Learning to rank: from pairwise approach to listwise approach”.
In: Proceedings of the 24th international conference on Machine learning. 2007,
pp. 129-136.

[7] Girish Chandrashekar and Ferat Sahin. “A survey on feature selection methods”.
In: Computers & electrical engineering 40.1 (2014), pp. 16-28.

[8] Olivier Chapelle and Yi Chang. “Yahoo! Learning to Rank Challenge Overview”.
In: Journal of Machine Learning Research 14 (2011), pp. 1-24.

[9] Jianbo Chen et al. “Learning to explain: An information-theoretic perspective
on model interpretation”. In: Proceedings of the International Conference on
Machine Learning (ICML) (2018).

[10] Jerome H Friedman. “Greedy function approximation: A gradient boosting ma-
chine”. In: Annals of statistics (2001), pp. 1189-1232.

[11] Jianfeng Gao, Michel Galley, and Lihong Li. “Neural Approaches to Conversa-
tional Al”. In: Foundations and Trends in Information Retrieval 13.2-3 (2019),
pp. 127-298. doi: 10.1561/1500000074.

[12] Xiubo Geng et al. “Feature selection for ranking”. In: Proceedings of the 30th
annual international ACM SIGIR conference on Research and development in
information retrieval. 2007, pp. 407—-414.

[13] Andrea Gigli et al. “Fast feature selection for learning to rank”. In: Proceedings of
the 2016 ACM International Conference on the Theory of Information Retrieval.
2016, pp. 167-170.

50

https://doi.org/10.1561/1500000074

References 51

[14] Jiafeng Guo et al. “A Deep Relevance Matching Model for Ad-hoc Retrieval”.
In: Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management (CIKM). ACM, 2016, pp. 55-64. doi: 10. 1145/
2983323.2983769.

[15] Isabelle Guyon and André Elisseeff. “An Introduction to Variable and Feature
Selection”. In: Journal of Machine Learning Research 3 (2003), pp. 1157-1182.

[16] Po-Sen Huang etal. “Learning Deep Structured Semantic Models for Web Search
Using Clickthrough Data”. In: Proceedings of the 22nd ACM International Con-
ference on Information and Knowledge Management (CIKM). ACM, 2013, pp. 2333~
2338. doi: 10.1145/2505515.2505665.

[17] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with
gumbel-softmax”. In: arXiv preprint arXiv:1611.01144 (2016).

[18] Thorsten Joachims. “Optimizing search engines using clickthrough data”. In:
Proceedings of the ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD). ACM. 2002, pp. 133-142.

[19] Ibrahim Lemhadri, Feng Ruan, and Robert J Tibshirani. “LassoNet: A Neural
Network with Feature Sparsity”. In: Journal of Machine Learning Research (2021).

[20] Benjamin J Lengerich et al. “Learning Feature Selection Interactions”. In: Pro-
ceedings of the 37th International Conference on Machine Learning (ICML).
2020, pp. 5809-5819.

[21] Ping Li. “Mcrank: Learning to rank using multiple classification and gradient
boosting”. In: Advances in Neural Information Processing Systems. 2007, pp. 897—
904.

[22] Tie-Yan Liu et al. “Learning to rank for information retrieval”. In: Foundations
and Trends® in Information Retrieval 3.3 (2009), pp. 225-331.

[23] Lijun Lyu et al. “Is Interpretable Machine Learning Effective at Feature Selec-
tion for Neural Learning-to-Rank?” In: European Conference on Information Re-
trieval. Springer. 2024, pp. 384-402.

[24] Christopher D Manning. An introduction to information retrieval. 2009.

[25] Harrie Oosterhuis, Lijun Lyu, and Avishek Anand. “Local feature selection with-
out label or feature leakage for interpretable machine learning predictions”. In:
arXiv preprint arXiv:2407.11778 (2024).

[26] Przemystaw Pobrotyn and Radostaw Biatobrzeski. “Neuralndcg: Direct optimisa-
tion of a ranking metric via differentiable relaxation of sorting”. In: arXiv preprint
arXiv:2102.07831 (2021).

[27] Tao Qin and Tie-Yan Liu. “Introducing LETOR 4.0 Datasets”. In: arXiv preprint
arXiv:1306.2597 (2013). url: https://arxiv.org/abs/1306.2597.

[28] Tao Qin et al. “LETOR: A Benchmark Collection for Research on Learning to
Rank for Information Retrieval”. In: Information Retrieval 13.4 (2010), pp. 346—
374.

[29] Zhen Qin et al. “Are neural rankers still outperformed by gradient boosted deci-
sion trees?” In: International Conference on Learning Representations. 2021.

https://doi.org/10.1145/2983323.2983769
https://doi.org/10.1145/2983323.2983769
https://doi.org/10.1145/2505515.2505665
https://arxiv.org/abs/1306.2597

References 52

[30] Ashwini Rahangdale and Shital Raut. “Deep neural network regularization for

feature selection in learning-to-rank”. In: IEEE Access 7 (2019), pp. 53988—
54006.

[31] Ashish Vaswani et al. “Attention Is All You Need”. In: Advances in Neural Informa-
tion Processing Systems (NeurlPS). 2017, pp. 5998—6008. url: https://proce
edings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html.

[32] Jing Xu et al. “AdaRank: A boosting algorithm for information retrieval”. In: Pro-
ceedings of the 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM. 2007, pp. 107-114.

[33] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. “INVASE: Instance-
wise variable selection using neural networks”. In: International Conference on
Learning Representations (ICLR). 2018.

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

	Summary
	Introduction
	Context
	Information Retrieval and Learning to Rank
	Feature Selection in Machine Learning
	Feature Selection in Learning-to-Rank

	Research Gaps and Motivation
	Research Questions
	Contributions
	Thesis Organization

	Background
	Learning-to-Rank
	Definition
	Learning Objectives and Optimization
	Ranking Metrics
	Traditional Ranking Methods in Information Retrieval
	Learning-to-Rank Models

	Feature Selection

	Related Works
	Rankers in Learning to Rank
	Gradient Boosted Decision Trees-based Rankers
	MART
	LambdaRank
	LambdaMART
	Neural Rankers
	Deep Neural Networks for Learning-to-Rank
	Transformer-Based Rankers
	Motivation for Feature Selection in Neural Rankers

	Feature Selection Methods for LTR
	Filter Methods
	Wrapper Methods
	Embedded Methods

	Feature Selection Methods for Nerual LTR
	Sampling-Based Feature Selection Methods
	Regularization-Based Feature Selection Methods
	Feature and Label Leakage in Local Feature Selection
	Challenges
	Motivation for a Novel Feature Selection Approach

	Summary

	Methodology
	Overview of Sequential Feature Selection Method
	Formal Definition of Sequential Unmasking
	Leakage Prevention

	Sequential Feature Selection for Neural Rankers
	Selector Network
	Ranker Network
	Integrating NDCG in training
	Implementation Details.
	Summary of Sequential Feature Selection for Neural Rankers

	Training Strategies
	Joint Training
	Two-Phase Training

	Summary of Methodology

	Experiment and Evaluation
	Experiment Overview
	Datasets
	MQ2008
	Web10k
	Yahoo!

	Experiment Setup
	Experiment Results
	RQ1: Ranking Performance of SUWR Compared to Full-Feature Baselines
	RQ2: Comparing SUWR with Existing Feature Selection Methods in Neural Rankers
	RQ3: Impact of Different Loss Functions on SUWR Performance
	RQ4: Consistency and Interpretability of Selected Features

	Summary

	Conclusion
	Summary of the Thesis
	Limitations
	Future Directions

	References

