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GPU-Accelerated 3D-Aware Model Predictive Path Integral
Control for High-Speed Autonomous Lunar Navigation

Abstract— In the context of lunar exploration missions,
autonomous navigation is essential to limit reliance on human
intervention, which is hindered by significant communication
delays and limited bandwidth. However, due to constrained on-
board computational resources, complex robot-soil interactions,
and the inherent challenges of full autonomy, most lunar rovers
are currently limited to speeds of around 10cm/s. In this work,
we investigate the use of Model Predictive Path Integral Control
(MPPI) for high-speed navigation on uneven and cluttered
lunar terrain. To this end, we develop an MPPI controller
using the WARP framework, allowing to easily leverage the
inherent parallelisation capabilities of GPUs. Experiments were
conducted with a simulated Husky rover navigating realistic
lunar terrain generated from NASA data, demonstrating the
effectiveness of our motion planner. Since most MPPI im-
plementations assume flat ground when sampling trajectories,
this simplification can introduce inaccuracies, resulting in
suboptimal, and sometimes even risky paths. To address this
limitation, we propose a lightweight mathematical method for
3D trajectory projection, and evaluate its performance against
the standard 2D MPPI approach. Overall, simulation results
show that our 3D-enhanced MPPI significantly outperforms its
2D counterpart in terms of both traversal speed and obstacle
avoidance on sloped, rock-scattered terrain. On flat ground,
however, the traditional 2D MPPI still exhibits a high level
of robustness. These findings suggest that an adaptive strategy,
dynamically switching between 2D and 3D trajectory projection
based on local terrain features, could offer a valuable trade-off
between performance and power efficiency.

I. INTRODUCTION

The long distance between Earth and the Moon causes
important communication delays that make teleoperation
suboptimal and less reliable for controlling rovers [1]. It
also comes with severe bandwidth restrictions, limiting the
amount of data that can be sent in real-time to an Earth
station. Hence, the development of autonomous navigation is
crucial to enable robots to explore complex terrain without
constant human supervision. Reaching autonomy in such
an environment can be highly challenging. On the one
hand, rovers have limited onboard processing capabilities
and energy resources. On the other, the terrain topography
presents many constraints including slopes, loose regolith,
craters and rocks of varying sizes, as shown in Fig. 1. The
optimisation of lunar navigation requires a robust motion
planner to not only compute viable paths but also determine
the appropriate kinematic behaviour.

As of today, most lunar rovers operate typically at an
average speed limited to around 10cm/s [2]. If the life-span of

Fig. 1: (1) Topographic map of the Moon. (2) Lunar terrain
scattered with rocks of varying sizes. (3) Lunar terrain with
high crater density. (4) Average sun exposure map.

lunar rovers was long, this would not be an issue. However,
most modern rovers are only rated to survive a couple of
weeks at best on the lunar surface. Together with the low
speed of the rovers, this strongly limits the range and scope
of the robotics lunar missions. This limitation is due in part to
computational constraints, as motion planning requires real-
time processing and control. Achieving higher speeds up to
2m/s would enable rovers to complete more missions within
their limited lifespan. NASA Ames, for instance, recently
developed VIPER [3], a rapid lunar rover that explores the
Moon’s surface looking for ice or other specific resources,
travelling at speeds up to 0.2m/s.

Although the existing literature includes effective mo-
tion planners for lunar applications [4, 5, 6], there is still
interest in exploring alternative approaches. Specifically,
most current lunar planners were not originally designed
to support high-speed traversals. On Earth, recent research
has demonstrated the potential of sampling-based Model
Predictive Control (MPC) techniques for aggressive navi-
gation where several objectives must be jointly optimised
[7, 8]. These models also accommodate non-differentiable
kinematic models, allowing for greater flexibility. Thus, it
seemed interesting to investigate the use of such controllers
to increase the average speeds during long-distance traverses
on the Moon. In this study, we focus on the use of a
sampling-based MPC method known as Model Predictive
Path Integral Control (MPPI) [9]. This motion planner com-
putes control inputs by evaluating multiple stochastically



sampled sequences of commands to minimise a cost function.
As lunar navigation introduces a combination of multiple
constraints and objective functions, the computational burden
of MPPI controllers can become overwhelming. To address
this issue, prior works have highlighted how well-suited this
type of controller is for parallel calculations[10], making it
ideal for GPU acceleration. And while GPUs could have been
considered too power hungry a couple years back, modern
days SOC like the ones in Nvidia’s Jetson boards offer a good
trade-off between performance and power consumption.

Another key limitation of most existing motion planning
approaches, including MPPI, is their reliance on a flat-
ground assumption when predicting future trajectories [11].
Although this simplification can be computationally efficient,
it fails to account for the three-dimensional nature of the
lunar terrain. In particular, yaw variations induced by sloped
surfaces and especially craters can cause a rover to deviate
significantly from a planned 2D trajectory. This can lead to
navigational errors, increased energy consumption, and po-
tentially cause critical events such as rollovers or collisions.
On the moon, there are no second chances, and these events
must be avoided at all costs.

Two contributions are presented in this thesis. First, we
propose an implementation of MPPI using WARP [12], a
python-based framework allowing for JIT compilation of
GPU kernels enabling users to write highly parallelised code.
This controller was successfully evaluated in Nvidia’s Om-
niLRS environment in IsaacSim [13], where a Husky rover
navigates through large-scale, realistic lunar terrains gen-
erated from high-resolution digital elevation maps (DEMs)
provided by NASA. Secondly, we introduce a trajectory
prediction model that accounts for the 3D surface. The
mathematical model chosen to perform the projection was
purposely kept as simple as possible to keep the algorithm
as computationally light as possible. The impact of using the
3D trajectory prediction method instead of 2D is evaluated
by comparing the MPPI performances using both methods.

This thesis is structured as follows: Section II reviews
existing literature on GPU-accelerated MPPI implementa-
tions and various trajectory planning methods for uneven
terrain, with a particular focus on approaches that integrate
3D trajectory prediction into the MPPI controller. Section III
introduces the fundamental concepts necessary to understand
the core of this thesis, including an overview of classic
MPPI controllers, as well as the general principles of GPU
computing, and the planning approach specific to lunar
navigation. In Section IV, the mathematical approach for 3D
trajectory planning is detailed, followed by the formulation of
the cost function and the low-level controller used alongside
MPPI. Section V describes the implementation of the MPPI
controller on GPU and details how the navigation pipeline
manages interactions between the CPU and GPU. In Section
VI, the experimental setups and evaluation metrics used to
assess the contributions of this thesis are described. Section
VII presents the outcomes of these experiments, accom-
panied by relevant illustrations. The findings are further
discussed, along with the limitations, in Section VIII. Finally,

Section IX summarises the conclusions drawn from this
research.

II. RELATED WORK

Numerous motion planning algorithms have been investi-
gated for autonomous navigation, though their suitability for
lunar environments varies significantly. Reactive manoeuvre
methods [14], such as the Dynamic Window Approach
(DWA) [15], the Artificial Potential Field (APF) method [16],
and Velocity Obstacles [17], rely on binary occupancy grids
and are therefore limited in their ability to handle environ-
mental constraints like terrain topography, energy consump-
tion or illumination and temperature [18]. Some variants like
the Energy Efficient DWA [19] or extended DWA [20] were
introduced to account for the energy consumption. However,
those are only based on the commanded speed, and still
do not account for the surrounding environment properties.
The APF method framework can possibly be extended to
incorporate additional terrain features such as slope. Yet, it
is prone to getting stuck in local minima [21], and scales
badly in environments with a large number of constraints
[22].

By comparison, horizon-based methods like MPC aim at
finding an optimal trajectory over a finite prediction horizon,
considering constraints and using robot dynamics [23]. Those
methods have demonstrated strong performance in motion
planning across different applications [24, 25, 26]. One of
their drawbacks is that they remain particularly computa-
tionally intensive [27, 28], especially with resource-limited
rovers. Another limitation of optimisation-based MPC is its
reliance on differentiable cost functions and dynamic models,
which is even more pronounced in off-road conditions due
to complex wheel-terrain interactions [29].

To address this, sampling-based variants such as MPPI
control have emerged, which evaluate a distribution of sam-
pled control sequences to approximate the optimal policy
[8]. MPPI has already proven effective in off-road scenarios
and in high-speed applications [30, 31, 32, 33, 7]. Since
MPPI’s performance strongly depends on sampling density,
its computational cost can quickly grow with the number of
objectives to optimise. To address this, the potential of MPPI
for parallelisation on GPUs has already been highlighted
[34].

Based on current knowledge, the only publicly available
GPU-accelerated MPPI implementation is MPPI-Generic
[34]. It is a C++/CUDA library offering real-time perfor-
mance and modularity across dynamics models, cost func-
tions, and controller variants. However, this pure CUDA code
can be complicated to modify and prototype from. Hence, we
looked into building our own WARP based controller using
NVIDIA’s WARP framework [12]. This framework retains
python flexibility while allowing to write compiled CUDA
code with ease.

Many existing approaches model vehicle kinematics on
rough terrain by assuming low-speed conditions. For in-
stance, Datar et al. [35], Fan et al. [36], and Krüsi et al.
[37] rely on simplified kinematic models suited for slow



traversal. However, as speed increases, these models quickly
lose accuracy due to unmodeled dynamic effects. To address
this, some researchers developed more complex dynamics
models capable of explicitly predicting wheel forces and
vehicle motion. Yu et al. [38] implemented a complex 3D
rigid-body model with tire forces integrated into MPC.
While physically accurate, the control rate was limited to
3 Hz, which is more than ten times slower than what is
targeted in this study in order to enable safe high-speed
traversals. In contrast, Han et al. [7] proposed a different
approach combining simple geometry-based methods with
inertial dynamics model. Their model was integrated into
an MPPI controller and validated in real-world off-road
scenarios. However, their method was used to evaluate the
dynamic stability of the trajectories, not to predict them. For
prediction, they first sampled trajectories on a 2D plane,
then orthogonally projected them onto the elevation map.
This simplification overlooks how the topography itself can
influence the robot’s actual trajectory when control inputs
are applied, which is the focus of this research.

Existing research has also focused on learning-based
approaches to navigate uneven terrain. César-Tondreau et
al. [39] applied imitation learning for negative obstacle
traversal at speeds around 1 m/s. Although promising during
training, performance dropped by over 50% when tested in
different terrain geometries, highlighting poor generalisation.
Similarly, Gibson et al. [40] and Xiao et al. [41] developed
dynamics learning models trained on driving data. A notable
limitation of those methods is the collection of data. When
going high-speed, collecting data near the safety limits of the
vehicle can indeed be dangerous, and of course costly and
challenging when considering lunar navigation data. Lee et
al. [42] further extended this concept by predicting 6-DOF
motion using terrain-aware neural networks and integrating
them into an MPPI controller. While this method showed
reduced failure rates in simulation, it lacked yaw prediction
capabilities. Additionally, it struggled to generalise to irregu-
lar terrain, partly due to the smooth and differentiable ground
manifolds used in training.

An alternative approach was proposed by Pezzato et al.
[43], who used GPU-accelerated simulation in IsaacGym
to sample and evaluate 3D trajectories without explicitly
modeling dynamics. Although this method offers accuracy,
it involves a significant computational burden, limiting its
feasibility for real-time use on energy-constrained hardware
like rovers.

In summary, most existing approaches either ignore terrain
topography in trajectory prediction or incorporate it using
methods that are too computationally expensive or not suited
for high-speed applications. Additionally, they rarely com-
pare 3D and 2D trajectories to identify when 3D projection
is beneficial. In this work, we explore when and how a
simple 3D projection model can improve the performance
of traditional MPPI-style controllers.

III. BACKGROUND

This section provides the necessary background to un-
derstand the remainder of the thesis. An overview of the
MPPI algorithm is first given, followed by an overview of
the concept of GPU parallelisation, and finally a description
of the planning approach chosen for the lunar application.

A. MPPI Overview

Consider a general nonlinear system governed by discrete-
time dynamics and a state-cost function of an inputs sequence
defined as follows [9]:

xt+1 = A(xt, vt) where vt ∼ N (ut,Σ), (1)

S(X,V ) =

T−1∑
t=0

ϕ(xt, vt), (2)

where xt ∈ Rn is the state, A is the nonlinear dy-
namics model, ut ∈ Rm is the mean control input, and
vt is the noisy input drawn from a Gaussian distribution
centred in ut with a covariance Σ. The time horizon is
T , X = [x0, x1, . . . , xT−1] is the state trajectory, V =
[v0, v1, . . . , vT−1] is the sequence of inputs drawn from the
mean control sequence U = [u0, u1, . . . , uT−1]. The cost
function is denoted as ϕ. For compactness, the state-cost
function will simply be referred to as S(V ).

The core idea behind MPPI is to compute the next T
control inputs to apply to the robot to follow a trajectory that
optimises the cost function ϕ. The work of Williams et al.
[9] was among the first to provide the theoretical foundations
of MPPI. To grasp the principles of the algorithm, it is
essential to introduce certain mathematical concepts, starting
with free energy. Free energy quantifies a control system’s
performance relative to the cost associated with a specific
inputs sequence. Letting G be some probability density over
inputs sequences, the free energy F is calculated as:

F = EG

[
e−

1
λS(V )

]
(3)

where λ > 0 is a temperature-like parameter, and EG is
the expectation over trajectories sampled from G.

The second key concept is relative entropy, often referred
to as KL-divergence. It measures how different two proba-
bility distributions are. Letting H be another probability dis-
tribution, and the respective corresponding density functions
being g(V ) and h(V ), the KL-divergence between them is
given by:

DKL(G∥H) = EG

[
log(

g(V )

h(V )
)

]
(4)

Given the sequence of inputs V and mean inputs U defined
earlier, it is possible to define the distributions of Q and
P, which correspond to the controlled and uncontrolled
measures. They are characterised by their density functions
q(V ) and p(V ). The first one is given by:



q(V ) =

T−1∏
t=0

Z−1 exp

(
−1

2
(vt − ut)

⊤Σ−1(vt − ut)

)
(5)

where Z = ((2π)m|Σ|)1/2. The uncontrolled density
function p(V) is defined as:

p(V ) = q(V |Ũ ,Σ) (6)

where Ũ is some nominal control input applied to the
system, and is usually equal to zero, giving:

p(V ) =

T−1∏
t=0

Z−1 exp

(
−1

2
v⊤
t Σ

−1vt

)
(7)

Using the definition of the free energy of a control system
and the KL-divergence, it is possible to show that there is
always a lower bound on the cost for any optimal control
problem. This implies the existence of an optimal control dis-
tribution Q∗, from which the drawn samples should achieve a
lower cost than any other control distribution. It was shown in
[44] that this optimal distribution can be defined as follows:

q∗(V ) =
1

η
exp

(
− 1

λ
S(V )

)
p(V ) (8)

where η is a normalisation factor.
From there, the objective then becomes aligning the ar-

bitrary control distribution Q with the optimal one Q∗ by
minimising the KL-divergence between them, as illustrated
in Fig. 2.

Fig. 2: Process of aligning Q with Q∗ [9]

Minimising the KL-divergence yields to the following
expression for the optimal solution:

u∗
t = EQ∗ [vt] =

∫
q∗(V )vt dV (9)

In order to solve this, it would be necessary to draw sam-
ples directly over Q∗, which is impossible since this is the
distribution that we aim to estimate. The alternative method
suggested is to use the concept of importance sampling:

u∗
t =

∫
w(V )q(V )vt dV

= EQ[w(V )vt]

(10)

where w(V ) is:

wk =
1

η
exp

(
− 1

λ

(
S(V ) +

λ

2

T−1∑
t=0

(2vt − ut)
TΣ−1ut

))
(11)

Based on the expressions derived above, it is now possible
to formulate an algorithm that approximates the optimal
control sequence through sampling. The process begins by
selecting a time horizon T , which determines the number
of discrete time steps, each of fixed duration dt. Then, K
sequences of control inputs are sampled from a Gaussian
distribution centred on the previous control sequence. Each
sampled sequence is then propagated through the system
dynamics to generate a corresponding state trajectory. These
trajectories are assigned a weight using Equation 11. The
approximation of the optimal control sequence U∗ is then
computed by taking the weighted average of the sampled
sequences, as expressed in Equation 10. Finally, the first
input of U∗ is sent to the robot, and the rest of the sequence
is shifted to be used as the next initial control sequence. Fig.
3 exhibits a visual illustration of the MPPI process, while
Algorithm 1 provides the pseudocode representation of the
MPPI control procedure.

Fig. 3: MPPI process illustration [45]

B. GPU Parallelisation Overview

GPUs are hardware devices designed to execute multiple
processes in parallel, making them well-suited for computa-
tional tasks such as MPPI, which can handle up to thousands
of trajectories per control loop. Unlike CPUs, which are
limited to running only a few threads in parallel, GPUs can
launch thousands simultaneously. These threads are grouped
into units of 32 called warps, which are then grouped into
blocks and further into grids. Threads within the same block
can quickly share data using a shared memory, which is both



Algorithm 1 Model Predictive Path Integral Control
1: Given: A, g: Dynamics and clamping function
2: K,T : Number of samples and timesteps
3: dt: Timestep duration
4: u: Initial control sequence
5: S: Array of the cost of each trajectory
6: Σ, λ: Covariance, temperature parameters
7: ϕ: Cost function
8: while Goal not reached do
9: x← GetState()

10: for k = 0 to K − 1 do
11: Sk ← 0
12: for t = 0 to T − 1 do
13: vkt ← g(ut + ϵkt ) where ϵkt ∼ N (0,Σ)
14: xk

t ← A(xk
t−1, g(v

k
t ), dt)

15: Sk ← Sk + ϕ(xk
t ) +

λ
2 (2v

k
t − uk

t )Σ
−1uk

t

16: end for
17: end for
18: ρ← min(S0, S1, . . . , SK−1)
19: η ←

∑K−1
k=0 exp(− 1

λ (S
k − ρ))

20: for k = 0 to K − 1 do
21: ωk ← 1

η exp(− 1
λ (S

k − ρ))
22: end for
23: for t = 0 to T − 1 do
24: ut ← ut +

∑K−1
k=0 ωkϵkt

25: end for
26: SendToActuators(u0)
27: for t = 1 to T − 1 do
28: ut−1 ← ut

29: end for
30: end while

high-bandwidth and low-latency. This architecture allows for
efficient data exchange and coordination between threads.

GPU programs are written as kernels that can be launched
with a specified number of threads. In the case of MPPI,
the number of trajectories typically defines the kernel’s di-
mensionality. In other words, this means that each trajectory
is handled in parallel, enabling to increase the sampling of
trajectories with only a minimal impact on the computation
time.

C. Planning on the Moon

When navigating on the Moon, motion planners must ad-
dress physical constraints arising from the lunar topography.
The surface is scattered with rocks and boulders ranging
in size from small fragments to large obstacles, particularly
concentrated around impact craters due to material ejection,
as shown in Fig. 4. Additionally, the terrain is uneven, with
frequent slopes of varying steepness. These slopes have a
direct impact on energy consumption and pose risks such as
slippage or instability.

When performing autonomous navigation, motion plan-
ning is usually preceded by global planning. This process
consists in using the data of the environment to compute
a path that connects a start point to a destination while

Fig. 4: Clusters of small rocks around a crater [46]

optimising an objective function. This global path is usually
converted into a series of waypoints, which are then provided
to the motion planner. One of the constraints for traditional
motion planners is to adhere to this reference path. Since
the robot perceives the local environment in greater detail
than the global map allows, the obstacles and constraints that
were not represented in the global map can then be taken into
account to adjust the path in real-time.

In the lunar context, this process faces two key challenges.
First, the resolution of lunar maps is generally low [47],
which makes it difficult to capture local features such as
small rocks, ground roughness, and craters. Second, some
environmental factors like sunlight exposure or temperature
that need to be taken into account in the trajectory processing
might vary over time. For those reasons, it is complicated,
if not impossible, to consider all the constraints during the
computation of the global plan.

Facing this challenge, there is interest in exploring a
different approach. Instead of generating a detailed global
path, the global mapping process produces distanced way-
points that account for larger-scale geometric features. The
motion planner will then compute the path as the rover goes
between these distanced waypoints, progressively adapting to
the local environment. In other words, the MPPI controller
will be responsible for the local trajectory planning, while
also ensuring to get close to the goal without a predetermined
global path.

IV. METHOD

Since the flat-ground assumption does not, by definition,
apply to uneven terrain, the trajectory prediction of tradi-
tional MPPI may be inaccurate. Instead, the proposed method
aims to approximate the robot’s motion over 3D terrain using
a high-resolution DEM, defined as having a maximum cell
width of 10cm. The first subsection focuses on describing
the mathematical model developed to predict these rollouts
in 3D, taking the terrain’s topography into account.

Next, as the target application is lunar navigation, we pro-
vide a detailed mathematical formulation of the cost function
constructed for this specific context. This cost function will



later be used to assess the impact of our projection method on
MPPI performance in challenging lunar terrain. It will also
serve to evaluate the effectiveness of the new GPU-based
MPPI implementation.

A. Rollouts Projection in 3D

The first step is to convert the inputs into the correspond-
ing linear and angular velocities. To do this, the kinematics
model of the robot is needed:(

v̇
ω̇

)
= A

(
v
ω

)
+B

(
u1

u2

)
(12)

where v and v̇ are respectively the linear velocity and
linear acceleration, ω and ω̇ are the angular velocity and
angular acceleration, A is the state matrix, B is the input

matrix, and
(
u1

u2

)
is the input vector, corresponding to the

left wheel and right wheel inputs, respectively.
Since the traditional MPPI uses the flat-ground assump-

tion, it can use the following basic vector calculus to itera-
tively compute the trajectory waypoints:

d⃗2D = t⃗2D · v · dt
xnew = x+ dx, ynew = y + dy

(13)

where d⃗2D is the 2D vector which contains the x and
y distances travelled, respectively dx and dy , during one
iteration of dt seconds, t⃗2D is the 2D unit heading vector,
and v is the linear velocity at this timestep. Given the
current heading vector (tx, ty), the updated heading vector
(tx,new, ty,new) is obtained using the angular velocity:

θ = ωdt

tx,new = tx cos θ − ty sin θ

ty,new = tx sin θ + ty cos θ

(14)

Now, as explained, the goal of the proposed model is
to account for the terrain elevation in order to compute
the trajectories in 3D. The general idea is to perform the
2D propagation that was just described, but within the
tangent plane of the current position. That tangent plane
must therefore be updated at each timestep to accurately
reflect the terrain beneath the robot. This model relies on the
assumptions that all four wheels are permanently in contact
with the ground, and all belong to the same DEM cell.

The first step is to compute the linear displacement during
one timestep. Since the heading vector lies within the current
tangent plane, the robot position (x, y, z) is shifted along this
heading direction by a distance based on the linear velocity:

d⃗3D = t⃗3D · v · dt
xnew = x+ dx, ynew = y + dy

(15)

where d⃗3D is the 3D vector which contains the x,y and
z distances travelled, t⃗3D is the 3D unit heading vector
indicating where the robot is pointing at. Note that only the
x and y positions are updated at this step. Indeed, since the
displacement is computed in the tangent plane where the

robot is driving, the robot will immediately detach from the
surface once it gets out of its DEM cell. To ensure the robot
stays in contact with the surface, the z-coordinate is thus
updated by using the DEM cell height at the new x and
y coordinates. The z-coordinate is obtained by taking the
average of the cell’s corners heights.

In addition to the z-coordinate, the heading vector must
also be updated to remain tangent to the surface. To do that,
the equation of the tangent plane at the new robot’s position
must first be computed. This is achieved by identifying the
DEM cell in which the robot is located. Each cell, defined by
four corners, can be divided into two triangles. By knowing
the height at each corner, it is possible to calculate the normal
vector for each triangle. The average of these two normals
is then used to approximate the tangent plan at the robot’s
position. Here is the equation to find the vector n⃗ normal to
that plane:

n⃗ =

 l(−bz+az+cz−dz)
2

l(−cz+az+bz−dz)
2
l2

 (16)

where l is the width and length of one cell of the DEM,
and az , bz , cz , dz are respectively the heights of the top left,
top right, bottom left and bottom right corners of the cell,
considering the frame positioned as shown in Fig. 5.

Fig. 5: DEM cell with corners labels and frame

The previous heading vector is then projected onto this
new tangent plane, resulting in the projected 3D heading
vector t⃗3D,projected, computed using the following formula:

t⃗ = t⃗3D − (⃗t3D · n⃗) · n⃗

t⃗3D,projected =
t⃗

∥t⃗∥
(17)

The last step of the process is to apply the angular velocity.
The robot needs to turn around its own z-axis, which means,
in other words, around the normal vector of the surface n⃗.
The Rodrigues’ rotation formula is used to calculate the
rotation of the robot:

θ = ωdt

t⃗3D,rotated = t⃗3D,projected cos θ+

(n⃗× t⃗3D,projected) sin θ+

n⃗(n⃗ · t⃗3D,projected)(1− cos θ)

(18)

where θ is the angle that the robot rotates by, and
t⃗3D,rotated is the heading vector at the end of this iteration.



B. Cost function

The cost function ϕ mentioned at the beginning of subsec-
tion III-A is evaluated at each waypoint, characterised by its
state x and the corresponding input v. The cost function is
defined as a weighted sum of terms that each correspond to
one objective to optimise, referred to as a critic. For a cost
function composed of N critics, ϕ is defined as:

ϕ(x, v) =

N−1∑
i=0

αiCi(x, v) (19)

where αi ∈ R+ is the relative importance given to
the critic Ci. The proposed MPPI controller relies on a
cost function that includes four critics: goal reaching, slope
avoidance, obstacle avoidance, and traversal speed maximi-
sation. While this selection addresses key constraints for
safe and efficient navigation, it is not exhaustive for lunar
application. Additional factors such as sun exposure, surface
roughness, and thermal conditions shall be integrated in
future extensions, but are excluded here to focus the analysis
on those objectives.

Goal Critic: this critic is responsible for favouring trajec-
tories that bring the robot closer to the goal than others. Be-
cause of the planning system explained in Subsection III-C,
the algorithm does not aim to follow a predefined global path.
Instead, the path planner ensures that the robot makes global
progress towards the destination while balancing multiple
constraints. On one hand, this critic must be flexible enough
to allow the robot to deviate from the path going straight to
the goal, in order to optimise the other constraints. On the
other, it should become stricter as the robot nears the goal,
to prevent deadlock situations if the goal point is located
in a high-cost region. For instance, as illustrated in Fig. 6,
the robot circles around the goal point because the cost of
climbing the hill and the cost of the goal critic compensate
each other.

Fig. 6: Deadlock situation. The blue point is the start
position, and the green point is the destination to reach.

To calculate this cost, we use the position of the last
point of each trajectory to evaluate how close it gets to the
goal. However, the cost cannot be based on the absolute
distance to the goal. Indeed that would make this critic
almost insignificant in situations where the robot is still far
away from its destination. For instance, assuming it is located
100m away from the goal, one trajectory might end at 92m
and another at 94m. While a 2m difference can be considered
significant, the relative difference is only of around 2.15%
and will not affect the trajectories weights much.

To ensure effectiveness, we propose a function that consid-
ers the closest point to the goal the robot could theoretically
reach after K inputs, which will be referred to as the
intermediate goal point. In other words, this involves drawing
a straight line from the robot to the goal and selecting the
point along that line at a distance equal to the MPPI horizon.
Fig. 7 illustrates this idea, where G is the destination, and
G′ is the intermediate goal point:

Fig. 7: Goal critic based on intermediate goal

When the goal point is not within the horizon distance yet,
the cost function term Cgoal related to the goal critic is thus
computed as:

Cgoal = dist(Q, G′) ·
(
1 +

2

d

)
(20)

where Q is the last point of the trajectory and d is the
distance between the robot and the destination. Whenever
the goal enters the horizon range, the cost function changes
such that all the points of the trajectory should get as close
as possible to the destination:

Cgoal =

T−1∑
t=0

dist(xt, G) (21)

Slope Avoidance Critic: Driving on sloped terrain in-
volves several risks for the rover. Ascending a slope increases
energy consumption and reduces speed, while descending
requires stronger braking, which also consumes energy and
may lead to situations where the rover must climb back up.
More generally, navigating across inclined surfaces raises the
risk of slipping, especially when executing turns.

To assess how well a trajectory remains on relatively flat
terrain, a slope-related cost term is introduced. The objective



is to evaluate the slope between each pair of consecutive
waypoints. Here, the use of 3D projection offers a clear
advantage, as the 3D position of each waypoint has already
been computed. This allows to evaluate the slope at any
segment using the horizontal distance and the elevation
change between two successive points.

The calculation of the exact slope angle would require the
computationally expensive use of the arctan function. It is
therefore replaced by the calculation of the ratio between the
elevation change and the horizontal distance between two
consecutive waypoints. This simplification holds since the
arctan function is strictly increasing, meaning larger slopes
correspond to large ratios. This approach has two advantages:
it avoids the computational overhead of evaluating arctangent
at every segment of every trajectory, and due to the shape
of the tangent function, it naturally penalises steeper slopes
more heavily than a linear cost would. Below is the equation
used to compute the cost function term Cslope related to the
steepness of a trajectory:

Cslope =

T∑
t=1

(
1 +

∣∣∣∣ ∆zt
dt + ϵ

∣∣∣∣)2

(22)

where ∆zt and dt are respectively the height difference
and the horizontal distance between the waypoint t− 1 and
t, and ϵ is a small term that prevents a division by 0 to
occur. Note that the absolute value of the ratio is taken, since
both positive and negative slopes are avoided. To further
emphasise this penalisation towards slopes, each term of the
sum is squared. This strongly discourages steeper slopes.

Obstacle Avoidance Critic: Avoiding collisions is a
fundamental requirement in path planning. While selecting
collision-free trajectories is a good start, it is even safer and
more reliable to choose trajectories that stay as far away
as possible from obstacles. Indeed, on challenging terrain,
several factors like slippage on sandy surfaces or noise in
the motors, can cause the robot to drift and/or deviate from
its intended path. In cluttered areas, this increases the risk
of a collision if safety measures are not taken. Additionally,
by staying away from high-risk areas, the MPPI algorithm
remains able to generate a larger number of valid trajectories.
As explained earlier, improving the diversity of the samples
leads to a better approximation of the optimal solution.

This critic relies on a costmap that quantifies collision
risk. As a first step, each rock is enclosed within a sphere
whose position and radius are known. The radius of each
sphere is then expanded by the radius of the robot, to account
for the robot’s physical footprint. Any cell in the costmap
that lies within one of these spheres is considered part of
the collision space. In the cost function, these regions are
assigned an extremely high cost, ensuring that any trajectory
colliding with an obstacle is discarded. In the second step, a
Gaussian-shaped cost field is added around the obstacles. It
creates a gradient of increasing cost as the robot approaches
an obstacle, encouraging it to keep a safe distance. The cost
remains finite to allow the planner to weigh proximity against
other objectives. In the example costmap shown in Fig. 8,

random rocks were distributed across the area ranging from
-55 to +55 in both the x and y directions.

Fig. 8: Costmap quantifying collision risk

The obstacle cost Cobs for a trajectory of waypoints is
defined as:

Cobs =

T∑
t=1

[I(c(xt)) · Chard + c(xt)] (23)

where xt is the t-th waypoint position of the trajectory,
c(xt) is the costmap value at position xt and Chard is a
very large penalty. I(xt) is a binary variable that is equal
to 1 when a waypoint is inside the collision space, meaning
when c(xt) is equal to 1:

I(c(xt)) =

{
1, c(xt) = 1

0, c(xt) < 1
(24)

High-speed Critic: This critic is responsible for en-
couraging the rover to maintain a targeted high speed. At
first glance, it might seem that the goal critic alone would
already push the rover to move faster. Indeed, higher speeds
typically bring the robot closer to the goal, resulting in
lower associated costs. However, relying solely on the goal
critic for speed regulation leads to a trade-off. For instance,
increasing the goal critic weight to prioritise fast trajectories
would also reduce the planner’s flexibility to deviate from
the shortest path, making it more likely to ignore slopes and
to take riskier trajectories in terms of obstacle avoidance.
Conversely, lowering the goal critic’s weight to promote
safer paths would result in slower speeds. Throughout the
experiments, this imbalance even led to deadlock situations,
where the MPPI chooses to reduce the velocity down to
nearly zero to avoid both slopes and obstacles.

Tuning the goal critic’s weight to achieve an optimal
balance between safety and speed is not only difficult, but the



result is often highly dependent on the terrain topography,
while not allowing to fix a certain target velocity. To address
those limitations, we introduce an independent high-speed
critic to the cost function. The term Chigh−speed sums the
differences between the velocity at each timestep and the
target velocity, giving:

Chigh−speed =

T∑
t=1

|vtarget − vt| (25)

where vtarget is the targeted velocity, and vt is the velocity
of the robot at timestep t. Finally, since the robot needs to
slow down when it reaches its destination, this high-speed
critic term becomes equal to 0 as soon as the destination is
within the horizon range of the robot.

C. Low-level controller

As will be discussed later, tests were carried out in the
IsaacSim simulation environment, which offers a better de-
gree of realism. During these tests, recurring wheel slippage
was observed, causing the velocities expected by the MPPI to
not always match the rover’s actual motion. To mitigate this
issue, a low-level PI feedback controller was introduced to
reach the desired speed from MPPI. This controller compares
the predicted linear and angular velocities vp to the ones
actually measured vm, and computes a correction term ucorr

using the following control law:

ucorr = −KP (vm − vp)−KI

∫
(vm − vp)dt (26)

where KP and KI are the proportional and integral
gains and dt is the timestep duration. Using an empirically
identified mapping function, ucorr is then converted to ul,corr

and ur,corr which are the input corrections for the left and

right wheels. This corrective layer enables smoother and
more accurate motion that aligns with MPPI predictions.

V. IMPLEMENTATION

This section details the implementation of the MPPI
controller and how its parallelisation on GPU was handled.
The overall workflow is summarised in the flowchart in Fig.
9, which illustrates the key steps involved in one control loop
and the interactions between the CPU and GPU devices.

The MPPI controller is initialised by collecting the robot’s
current state, which includes its position, its heading orienta-
tion, and the wheels speed, and by loading the DEM repre-
senting its local environment. The GPU memory allocation
is then performed such that all the data structures required
during the control loop are available on the GPU device.
Once done, the MPPI control loop will repeat as long as the
task is not finished. That loop is composed of a series of
GPU kernels followed by an exchange of data between the
CPU and the GPU.

A. GPU Kernel Design

The control loop of the MPPI algorithm launches multiple
GPU kernels in a row, each handling a distinct computa-
tional task. This modular breakdown was chosen for two
reasons. First, it improves code readability and makes the
implementation easier to debug, as each kernel can be
tested independently from the others. Second, it allows for
parallelisation across different dimensions depending on the
task. Below, the role and functioning of each kernel are
described, along with the corresponding pseudo-code.
generate inputs(): This kernel generates sequences

of inputs by sampling from the normal distribution centred
on the previous optimal sequence of inputs. The sampled
values are then clamped based on the inputs limitations of

Fig. 9: Flowchart of the GPU-accelerated MPPI



the robot. As expressed in Equation 1, each input only de-
pends on the corresponding one from the previous sequence.
Consequently, every input of every trajectory can be sampled
at the same time, which means the process is parallelisable
over K (# trajectories) x T (# timesteps) dimensions.

Algorithm 2 generate inputs()

1: Given: u∗
l , u

∗
r : Previous optimal inputs sequence for the

left wheel, right wheel
2: ul, ur: Generated inputs sequence for the left

wheel, right wheel
3: ϵl, ϵr: input noise sequence for the left wheel,

right wheel
4: umin, umax: Minimal, maximal input values
5: Σ: Covariance
6: tid← warp.tid()
7: ϵtidl ← N (0,Σ)
8: ϵtidr ← N (0,Σ)
9: if not last input then

10: utid
l ← clamp(u∗,tid+1

l + ϵtidl , umin, umax)
11: utid

r ← clamp(u∗,tid+1
r + ϵtidr , umin, umax)

12: else
13: utid

l ← clamp(u∗,tid
l + ϵtidl , umin, umax)

14: utid
r ← clamp(u∗,tid

r + ϵtidr , umin, umax)
15: end if

convert inputs to velocities(): This kernel
applies the forward kinematics of the system to compute the
linear and angular velocities at each timestep. The wheels
velocities are first determined using the update model W .
These are then converted into linear and angular velocities
via a differential wheel model D, which can be replaced
to suit different wheeled systems. This highlights one key
advantage of segmenting the control loop into kernels, and
more generally of using MPPI. Since the velocity at a given
timestep depends on the one from the previous timestep,
parallelisation can only be performed across trajectories, i.e.,
over K dimensions.

Algorithm 3 convert inputs to velocities()

1: Given: vl, vr: left and right wheel velocity
2: ul, ur: left and right wheel control sequences
3: W : update model for the wheel velocities
4: D: differential wheel model
5: vlin, vang: linear, angular velocities sequences
6: tid← warp.tid()
7: vl, vr ← GetV elocities()
8: for t = 0 to T − 1 do
9: vl ←W (vl, u

tid
l,t )

10: vr ←W (vr, u
tid
r,t )

11: (vtidlin,t, v
tid
ang,t)← D(vl, vr)

12: end for

generate trajectories(): This kernel is responsi-
ble for propagating each trajectory based on the sequences

of linear and angular velocities previously calculated. To
do this, the algorithm follows the 3D projection method
described in Section IV-A. Similarly to the previous kernel,
this process is iterative, meaning that a certain waypoint can
only be computed once the one before is. The parallelisation
is therefore in K dimensions.

Algorithm 4 generate trajectories()

1: Given: q: array containing the corner heights of the
robot’s current DEM cell

2: h: height of the robot
3: n: normal vector of the local surface
4: t: heading vector of the robot
5: p: 2D position of the robot
6: X: array (KxT) of the trajectories waypoints
7: tid← warp.tid()
8: for t = 0 to T − 1 do
9: ptid ← UpdatePositionsXY () ▷ Equation 15

10: qtid ← GetCornersHeights()
11: htid ← UpdatePositionZ()
12: ntid ← NormalToSurface() ▷ Equation 16
13: ttid ← TangentToSurface() ▷ Equation 17
14: ttid ← UpdateOrientation() ▷ Equation 18
15: Xtid

t ← array(ptid0 , ptid1 , htid)
16: end for

evaluate trajectories(): Given the critics in-
volved, this kernel assigns a cost to each trajectory. A
significant portion of the tuning process focuses on this
part of the code, as it determines the weight assigned to
each critic. That process is parallelised over the number of
trajectories.

Algorithm 5 evaluate trajectories()

1: Given: S: Array containing the cost of each trajectory
2: ϕ: Cost function
3: X: array (KxT) of the trajectories waypoints
4: tid← warp.tid()
5: for t = 0 to T − 1 do
6: Stid ← StateCost(Xtid

t , utid
t ) ▷ Equations 11, 19

7: end for

compute weights(): In this kernel, the importance
sampling weights are calculated based on the costs previ-
ously computed, using the aforementioned Equation 11. All
the weights are computed in parallel, which means that this
kernel has a dimension of K.
compute weighted sum(): Finally, the optimal con-

trol input is estimated as a weighted average of all sampled
inputs. This kernel is parallelised over the number of trajec-
tories K.

B. CPU-GPU Interaction

Memory transfers between the CPU and GPU are signif-
icantly time-consuming compared to operations performed
directly on the GPU. For this reason, the control loop is



Algorithm 6 compute weights()

1: Given: S: Array containing the cost of each trajectory
2: ω: Array of weights
3: ρ: Minimum cost
4: η: Normalisation factor
5: λ: Temperature
6: tid← warp.tid()
7: ρ← min(S0, S1, . . . , SK−1)
8: η ← η + exp(− 1

λ (S
tid − ρ))

9: ωtid ← 1
η exp(− 1

λ (S
tid − ρ))

Algorithm 7 compute weighted sum()

1: Given: ϵl, ϵr: input noise sequence for the left wheel,
right wheel

2: u∗
l , u

∗
r : optimal inputs sequence for the left

wheel, right wheel
3: ω: array of weights
4: tid← warp.tid()
5: for t = 0 to T − 1 do
6: u∗

l ← u∗
l + ωtidϵtidl,t

7: u∗
r ← u∗

r + ωtidϵtidr,t

8: end for

implemented to minimise data exchange at each iteration.
From the GPU to the CPU, only the first control input of
the optimal sequence is transferred. In the other direction,
the robot’s position and orientation must be updated at each
control loop. The local DEM also needs to be updated, but
the update frequency depends on its size. Since it represents
a large amount of data, updates should only occur when
absolutely necessary. In fact, the DEM only needs to be
refreshed when the edge of the map enters the horizon range.
Otherwise, as can be seen in Fig. 10, the MPPI already has
all the data it needs to operate.

Fig. 10: Left: the height data are available for any trajectory.
Right: the height data are not available for trajectories ending
up in the red area.

The same goes for the costmap used for obstacle avoid-
ance; it will be computed and updated at the same time as
the DEM is.

VI. EXPERIMENTS
This section aims at evaluating the contributions presented

in this work. Each subsection presents a specific experiment,
including its setup, visual context, and evaluation metrics.
The corresponding results are then presented in the subse-
quent section.

A. Validation

Before integrating the proposed model used to project
trajectories in 3D into the MPPI controller, a validation
step was necessary. This ensured that the mathematical
formulation could accurately predict the motion of a real
robot across uneven terrain.

To evaluate the reliability of the proposed projection
method, a comparative experiment was conducted. The ob-
jective was to assess how closely the trajectory predicted
by the algorithm matches the actual trajectory followed by
a robot simulated in Gazebo, when subjected to the same
sequence of control inputs and navigating the same terrain. In
other words, the ground truth data was considered obtained
from the Gazebo simulator [48].

The 3D projection algorithm was fully implemented in
Python. As a reminder, starting from a sequence of control
inputs, it calculates the corresponding linear and angular
velocities using the differential wheeled robot kinematics
model. These velocities are then used to simulate the robot
movement over time. In this Python simulation, the robot
was treated as a point. The entire process, including terrain
handling, pose updates, and trajectory generation, takes place
within the Python framework where the terrain was repre-
sented as a DEM. Fig. 11 shows the Python simulation with
the robot represented as a red dot, and its heading angle
being the red vector.

Fig. 11: Robot on uneven terrain in Python simulation

In the Gazebo simulation environment, the exact same
sequence of inputs was sent to a simulated Leo Rover.
This setup leveraged the Robot Operating System (ROS) to
send velocity commands and record the robot’s actual path
as it moved across the terrain. To ensure consistency, the
Python DEM was stored and then converted into a Gazebo-
compatible mesh format, as shown in Fig. 12. It is important
to note that, for the purpose of this comparison, a no-
slip condition was enforced in the Gazebo simulation. This
was done by increasing the friction coefficient of both the
rover’s wheels and the ground at maximum. Even though
this does not reflect real-world conditions, it matched the



assumptions of the 2D and 3D projection algorithms, which
do not account for wheel slippage.

Fig. 12: Leo Rover on uneven terrain in Gazebo simulation

The test protocol was designed using two types of terrain.
The first is the one shown in Fig. 11 and 12, and the
second one is illustrated in Fig. 13. One features a large,
prominent bump at the centre, and the other has smaller
bumps randomly distributed across the surface. To ensure the
robot would spend significant time on sloped terrain, it was
systematically positioned either facing a slope or directly on
one. This setup was essential, as the advantages of 3D over
2D trajectory prediction become apparent when navigating
sloped surfaces. Indeed, on flat ground, both methods tend
to produce similar results.

Fig. 13: Second terrain used for validation

For each terrain, 20 runs were conducted using random
sequences of inputs for both the left and right wheels.
Each run must be launched three times: once using the 2D
projection, once using the 3D projection method proposed,
and once using the simulated rover. The distance travelled
was limited to ∼ 12m, reflecting a realistic horizon length
for the MPPI algorithm.

To assess the accuracy of the 2D and 3D MPPI projections,
two key metrics were considered: the orientation difference
(expressed in radians), and the Euclidean distance between
corresponding waypoints (expressed in meters). These met-
rics were calculated at each waypoint to observe how the
error evolves along the trajectory. The comparison was per-
formed separately between the simulated robot’s trajectory
and the one predicted by the 2D MPPI, and between the
simulated trajectory and the one predicted by the 3D MPPI.
To provide a clear comparison of how each approach aligns
with the actual robot motion, a graph will display how the
average error in both metrics grows throughout the trajectory.

B. Impact of 3d over 2d

To evaluate the impact of using 3D trajectory prediction
within the MPPI control, a targeted proof-of-concept scenario
was first developed. The goal is to give the reader a visu-
alisation of how using 3D projection affects the controller
behaviour. Then, a performance comparison was conducted
to evaluate the benefits of the 3D approach over the tradi-
tional 2D projection when using MPPI for lunar navigation.

1) Proof of concept: In this setup, the robot started in
(0,−13) on flat terrain, with a prominent bump placed
directly in front of it, and the destination was positioned
on the opposite side of the bump in (0, 13). The bump was
dimensioned in such a way that if the projection is done in
2D, the shortest path directly goes through, resulting in the
robot climbing over it. However when projecting the samples
in 3D, then the shortest path is to go around the bump. Those
two paths are illustrated in Fig. 14.

Fig. 14: Shortest path to cross a bump

This configuration allowed to assess whether incorporating
3D projections into MPPI leads to different navigation be-
haviours compared to the standard 2D implementation. The
only critic that was used in this test was the goal critic. The
result is primarily visual, as the goal was to observe whether
either of the MPPI controllers decided to go around the bump
to get close to the optimal path, rather than go straight and
climb it up and down. To quantitatively compare both paths,
the total lengths and height travelled were computed.

2) Performance comparison: The following performance
comparison was done within the context of lunar navigation.
As previously discussed, navigating on the Moon comes
with unique challenges, such as avoiding scattered rocks and
dealing with uneven and sloped terrain to maintain stability.
An additional goal is to reach higher speeds, which induces
more instability on sloped terrain, and a limited reaction time
as well. This set of experiments aimed to measure how well
each controller addresses such constraints.

The comparison was carried out entirely within a custom
Python simulation. A differential wheeled robot model was
used to simulate movement: control inputs were translated
into linear and angular velocities, which in turn updated the
position of a point representing the robot’s location.

The terrain used in the simulation is based on real lunar
data. The underlying topography comes from NASA’s ”High-
Resolution LOLA Topography for Lunar South Pole Sites”



dataset, specifically the Site20v2 region [49]. This real-
world terrain was then enhanced with additional features
like rocks and craters. Those were randomly sampled using
a Thomas point process, which allows for regions with
varying densities. The realistic representation of such terrain
is displayed in Fig. 15.

Fig. 15: Site20v2 with rocks and craters randomly sampled

The replication of this terrain in the Python simulation
is represented in Fig. 16. For the sake of simplicity, the
DEM that was extracted only included the elevation data
corresponding to the terrain itself, meaning the sloped ground
and the craters. The rocks were approximated to spheres
whose position and radius are known. The slope informa-
tion is visualised through a colormap. The collision space
represented by the red dots is based on the rocks radius, the
robot radius, and a safety margin.

Fig. 16: Visualisation of the Python representation of
Site20v2 with rocks and craters randomly sampled

To test both 2D and 3D MPPI, several configurations
were used. Indeed, the goal was not only to quantify the
performances, but also to determine the conditions in which
they differ the most. First, the number of sampled trajectories
varied between 1500, 800, and 350. Since the computational
resources of a lunar rover are particularly limited, it is

important to study how the MPPI reacts with fewer samples.
Secondly, the runs were performed on terrains with and
without additional rocks. Thirdly, the slope critic’s weight
was also tuned, to test both strict and soft slope avoidance
strategies. For each fixed configuration, 60 navigation tasks
were executed twice: one run using the 2D MPPI and one
using the 3D version. In each run, start and goal positions
were sampled randomly from opposite ends of the terrain,
ensuring a diverse set of scenarios across the map. Such
traverses have an average length of around 170m. A horizon
of 100 timesteps was chosen, with a targeted speed of 2m/s,
and a dt of 0.05s, resulting in a horizon length of 10m.

The performance comparison is based on four main met-
rics:

• the total length of the path
• the average speed
• the slope climbed up or down
• the obstacle avoidance safety
The first two criteria are quite direct to evaluate: the total

length and the average speed are simply computed based on
the waypoints composing the full path, and on the list of
linear velocities stored from the run.

To quantify the slope avoidance performance, the slope
cost term already implemented in the MPPI controller is
used. Indeed, this term already estimates the slope by
calculating the ratio between the height change and the
horizontal distance between each waypoint. Additionally, it
penalises steep slopes much more heavily than moderate
ones, providing a meaningful measure of the difficulty of
the terrain traversed.

The final criterion is the evaluation of obstacle avoidance
safety. In high-speed navigation scenarios, since a collision
can have critical or even fatal consequences, it is essential
to ensure maintaining a sufficient distance from obstacles.
To thoroughly evaluate the obstacle avoidance safety, two
different methods are used.

The first approach relies on the cost function term used
within the MPPI controller. Each waypoint is assigned a cost
based on the costmap, and the total cost of a trajectory is
obtained by summing the individual waypoint costs. The ad-
vantage of this evaluation method is that it is consistent with
how trajectories are evaluated during the MPPI optimisation
process. However, it has a notable drawback: it does not
provide insight regarding the safety level at specific points
along the trajectory. In other words, while it captures the
overall safety, it might miss out local risky passages.

This limitation is illustrated with the example shown in
Fig. 17. The trajectory obtained using 2D MPPI is green,
and the one using 3D MPPI is purple.

The total costs of both trajectories are very similar. In
fact, the trajectory using 2D MPPI is even rated globally
slightly safer than the one using 3D MPPI. However, as
highlighted in three different places, it appears that the 2D
MPPI sometimes passes dangerously close to rocks because
of the trajectory prediction inaccuracies. On the other hand,
3D MPPI consistently maintains a fair distance from the
rocks.



Fig. 17: Global metric missing local risk

To capture such local safety variations, a second evaluation
method is introduced. Instead of relying solely on the overall
trajectory cost, a table will display the number of waypoints
falling within four specific distance slices from the obstacle
region. The first band includes points within 10cm of the
collision boundary. The second covers the next 20cm, the
third the following 30cm, and the final band includes all
points beyond this range. This makes it possible to clearly
identify whether one controller results in trajectories that, at
any point, get significantly closer to obstacles than another.

C. GPU-Implemented 3D MPPI for Lunar Navigation

This subsection presents tests related to the MPPI im-
plementation on GPU tailored for lunar navigation. The
first experiment assesses the performance improvements in
control loop speed and scalability as the number of trajec-
tories increases. Subsequently, the algorithm is validated in
IsaacSim using a Husky rover simulated on real DEM data,
aiming to evaluate its practical performance for high-speed
navigation over challenging uneven terrain.

1) Control Loop Speed and Scalability: The key motiva-
tion behind implementing MPPI in WARP is to accelerate the
control loop. All sampled trajectories are processed simulta-
neously across many GPU cores, allowing it to perform more
efficiently than it otherwise would on regular CPU executed
through languages such as C++ or Python.

Accordingly, the MPPI control loop was benchmarked
across its Python, C++, and WARP-based GPU implementa-
tions. The Python implementation was coded from scratch in
Python. The C++ version was the MPPI controller included
in the Navigation2 stack of ROS2. That implementation has
many modules running in parallel and consuming a lot of
CPU resources. In order to time the MPPI control loop
without being influenced by other processes running, the
whole MPPI controller was ran on an isolated computer.

Each run was performed under identical conditions, using
the same cost function and hyperparameters. Control loop
durations are measured and compared across varying num-

bers of trajectories, considering both 2D and 3D projection
approaches. The control loop performance of each imple-
mentation is evaluated based on execution time, measured in
seconds (s).

2) Deployment in IsaacSim for Lunar Navigation: To
evaluate the real-world viability of the proposed controller,
experiments were carried out in the IsaacSim simulation
environment using the Husky rover, a differential wheeled
rover. In contrast to the Python-based simulation, where the
robot’s position and orientation are updated manually, the
IsaacSim simulation is more physically accurate. Indeed,
the MPPI directly outputs low-level wheel joint commands,
which are applied to the robot’s actuators. This level of
realism introduces additional considerations. Since the joint
commands are updated every simulation frame, the MPPI’s
time step (dt) had to be aligned with the loop duration of
the simulator, which was empirically measured to be around
4.5 milliseconds. On top of that, an additional low-level
controller, which was mentioned in subsection IV-C, was
necessary to address the slippage issue. The KP and KI

gains were tuned empirically.
Three sets of 30 runs were conducted to assess the

controller performance under realistic lunar navigation condi-
tions, each set using respectively 350, 800 and 1500 sampled
trajectories. The experiments were performed on three NASA
DEMs [49]: Site20v2, LM4, and LM7, illustrated in Fig. 18:

Fig. 18: Lunar South Pole Sites

To simulate the most challenging situations for the lunar
rover, craters and rocks were manually added to each DEM,
making it look like in Fig. 15. A random goal point was
systematically set around 200m away from the start position.
The target velocity was set to approximately 2m/s. For each
configuration, performance was evaluated using the follow-
ing metrics: goal reached (%), number of collisions, the
number of times a wheel passed over a crater, and the average
speed throughout one run. The results corresponding to each
number of trajectories are summarised in a comparative table
in the following section.



VII. RESULTS

This section presents the results obtained by conducting
the experiments described in the previous section.

A. Validation

Fig. 19 displays two illustrative plots confronting the 2D
and 3D trajectories with those captured in Gazebo, using the
same input sequence. The terrain elevation is represented by
the grey gradient circles. As one can see, the 3D and Gazebo
paths deviate from the 2D one to somewhat follow the shape
of the bumps.

Fig. 19: 2D, 3D and Gazebo trajectories on sloped terrain

Quantitatively, the validation is based on two metrics:
Euclidean distance error and orientation error. Fig. 20 and
21 summarise these errors. The horizontal axis in both
graphs represents the cumulative distance travelled along the
trajectory. The vertical axis in Fig. 20 shows the Euclidean
distance error between a point on the 2D trajectory and the
corresponding point on the Gazebo trajectory at the same
travelled distance. Similarly, the vertical axis in Fig. 21
shows the orientation error between the two corresponding
points.

Fig. 20: Average distance error

As can be seen from the figures, both the distance and
orientation errors increase more rapidly in the 2D projection
compared to the 3D case. For the distance error, the 2D
trajectory diverges at roughly twice the rate of the 3D
trajectory over the first 6 to 8 meters. Beyond 8 meters, the
error in 2D increases drastically. In terms of orientation error,
the 2D projection begins to diverge noticeably after just 2
meters and shows a sharp increase after 6 meters. In contrast,

Fig. 21: Average orientation error

the orientation error for the 3D trajectory remains below 0.05
radians up to 6 meters and stays under 0.1 radians throughout
the rest of the trajectory.

B. Impact of 3d over 2d

1) Proof of concept: The paths taken by both controllers
are shown in Fig. 22 and 23 using a bird’s-eye-view. The
red trajectories represent the trajectories sampled during one
loop, and the black one represents the approximated optimal
trajectory during that same loop.

Fig. 22: 2D MPPI going straight and climbing

Fig. 23: 3D MPPI going around the bump

As can be seen, the MPPI controller using 2D trajectories
chooses to go straight, therefore climbing the bump up
and down, and taking the longer path. When using 3D
trajectories, however, the controller understands that it is
faster to go around the bump, as is illustrated in Fig. 14.

The second frame in Fig. 23 clearly highlights the impact
of the 3D projection on the geometry. It is important to recall
that those frames present a bird’s-eye view, meaning the dis-
tances observed correspond only to horizontal displacement.
When looking carefully one can see that the trajectories
going around the bump have a longer horizontal length than



those passing through the centre. This is because the central
paths involve a significant vertical ascent, which reduces the
horizontal displacement viewed from above.

Below is Table I that compares the vertical distance and
the total distance travelled by the 2D and 3D controllers:

Metric MPPI 2D MPPI 3D
Vertical distance travelled (m) 15.87 8.12
Total Distance Travelled (m) 31.32 27.98

TABLE I: Comparison of Vertical Distance and Total Dis-
tance Travelled Between MPPI 2D and MPPI 3D

The MPPI controller using 3D projection naturally chooses
a path that is more optimal thanks to its accurate trajectory
prediction.

2) Performance Comparison: The following tables
present a performance comparison between the 2D MPPI
and 3D MPPI approaches across various lunar environment
configurations. Each configuration was evaluated using three
different numbers of sampled trajectories, 350, 800, and
1500, to examine the impact of sampling resolution on
navigation quality. The comparison is based on the following
performance metrics: the total path length, the average speed,
the slope avoidance, and the obstacle avoidance in terrains
containing rocks.

As a point of information, the results are presented as
relative performance differences rather than absolute values.
Specifically, each metric will be expressed as a percentage
indicating how much the 3D MPPI controller outperforms
the 2D MPPI. For example, if the total path length for
the 2D MPPI is 100 and for the 3D MPPI is 80, the
reported result will be 20%, meaning the 3D MPPI achieved
a 20% improvement over the 2D MPPI. When the 2D MPPI
performs better than the 3D MPPI, the percentage will thus
be negative.

Table II corresponds to the environment containing craters
only. As can be seen, the percentage of improvement of 3D
over 2D is around 0%, meaning that their performance was
very similar. Also, the results remain constant as the number
of sampled trajectories varies.

Metric 350 samples 800 samples 1500 samples
Total Path Length -0.25% 0.01% 0.07%
Average Speed -0.25% 0.80% 0.94%
Slope Cost 0.63% -0.28% 1.56%

TABLE II: Performance in Crater-Only Environment

Table III reports the performance in an environment that
includes both rocks and craters. In this case, the slope
penalty weight in the cost function was set high, enforcing
strict slope avoidance during navigation. At 350 and 1500
sampled trajectories, both 2D and 3D MPPI show similar
performance. However, with 800 samples, 3D MPPI shows
a slight advantage, achieving over 2.5% improvement in
average speed, slope avoidance, and obstacle avoidance.

Table IV corresponds to the same environment containing
both rocks and craters, but with a lower slope penalty weight,

Metric 350 samples 800 samples 1500 samples
Total Path Length -0.36% 0.40% 0.14%
Average Speed 1.33% 3.89% 0.75%
Slope Cost 1.22% 2.50% 0.67%
Obstacle Cost 3.00% 2.89% 1.49%

TABLE III: Performance in Rock and Crater Environment
with Strict Slope Avoidance

allowing softer slope avoidance behaviour. This setting en-
ables the rover to occasionally take small slopes to optimise
for other navigation factors. In this setup, the 3D MPPI
outperforms the traditional one independently of the number
of samples. Notably, it achieves over 3.8% higher average
speed and more than 3.5% better obstacle avoidance.

Metric 350 samples 800 samples 1500 samples
Total Path Length 0.53% -0.18% 0.71%
Average Speed 3.80% 4.92% 4.02%
Slope Cost 2.18% 0.4% 3.19%
Obstacle Cost 4.59% 3.57% 3.74%

TABLE IV: Performance in Rock and Crater Environment
with Soft Slope Avoidance

To evaluate obstacle avoidance safety more precisely, the
second metric that was presented is used. This method
involves quantifying how many waypoints, across a total
of 60 trajectories, fall within distance slices surrounding
obstacles. As a reminder, the first slice corresponds to the
point being withing 10cm from the collision boundary, the
second covers the next 20cm, the third the following 30cm,
and the fourth includes the remaining points. In order to
provide the reader with more interpretability, note that 100
waypoints represent a duration of 100dt = 5s. In other
words, 100 waypoints located in the first slice means that
the rover spent 5s in the closest area to the collision space.

Table V shows the distribution of waypoints across the
four defined slices for both 2D and 3D trajectory projections,
at three different sampling levels (350, 800, and 1500 tra-
jectories). Those results correspond to the case where strict
slope avoidance is selected. The number of waypoints in the
closest region using 2D MPPI consistently exceeds that of
the 3D MPPI, with a difference of more than 15% for any
number of sampled trajectories.

Slice Region 350 trajectories 800 trajectories 1500 trajectories
Slice 1 (2D) 365 190 246
Slice 1 (3D) 283 164 210
Slice 2 (2D) 4136 3524 4045
Slice 2 (3D) 4275 2775 3905
Slice 3 (2D) 16206 14348 14838
Slice 3 (3D) 15617 13001 15317
Slice 4 (2D) 84769 80332 81633
Slice 4 (3D) 85304 77176 81234

TABLE V: Obstacle Avoidance Safety (with strict slope
avoidance)

When softening the slope avoidance, the following results
observed are shown in Table VI. In this case, the previously
observed trend is even more pronounced, with the 2D MPPI



generating over 25% more waypoints in the closest region
to obstacles compared to the 3D MPPI. In addition to that,
the 2D MPPI also has significantly more waypoints than the
3D MPPI in the second slice.

Slice Region 350 trajectories 800 trajectories 1500 trajectories
Slice 1 (2D) 202 182 191
Slice 1 (3D) 163 89 112
Slice 2 (2D) 3114 2623 2655
Slice 2 (3D) 2887 2171 2299
Slice 3 (2D) 12902 13501 13178
Slice 3 (3D) 12542 12939 12905
Slice 4 (2D) 85342 82741 83124
Slice 4 (3D) 85169 83614 83076

TABLE VI: Obstacle Avoidance Safety (with soft slope
avoidance)

C. GPU-Implemented 3D MPPI Performance for Lunar
Navigation

1) Control Loop Speed and Scalability: To evaluate and
compare the computational efficiency of the different MPPI
implementations, the average execution time per control loop
was measured for each of them. Table VII presents those
durations in seconds:

Implementation 350 samples 800 samples 1250 samples 1500 samples
CPU Python (2D) 0.25 0.53 0.86 1.45
CPU C++ (2D) 0.021 0.031 0.049 0.091
GPU WARP (2D) 0.0021 0.0024 0.0027 0.0034
GPU WARP (3D) 0.0022 0.0025 0.0029 0.0037

TABLE VII: Average Control Loop Execution Time (s)

Looking at those results, one order of magnitude sepa-
rates each programming language. This demonstrates that
the GPU-based implementation significantly outperforms the
CPU-based MPPI in terms of computational efficiency. The
difference between the MPPI controller using 2D and 3D
projections is less than 0.3ms.

In addition to that, the control loop duration increases
significantly faster with the number of trajectories in the CPU
implementations. Specifically, it becomes more than 4 times
greater in Python and C++ when going from 350 to 1500
samples. In GPU, however, it scales much more efficiently,
increasing of a bit more than 1.5.

2) Deployment in IsaacSim for Lunar Navigation: The
navigation performance of the Husky rover over 30 runs
in various lunar environments, using 350, 800 and 1500
sampled trajectories, is summarised in Table VIII.

Metric 350 trajectories 800 trajectories 1500 trajectories
Goal Reached (%) 89.12 94.57 97.21
Collisions 2 0 0
Crater Traversals 14 9 8
Avg Speed (m/s) 1.74 1.85 1.83

TABLE VIII: Lunar Navigation Performance in IsaacSim

In terms of computational efficiency, no lag in IsaacSim
was observed, indicating a high-control loop rate. Given that
the controller operates synchronously with the simulator, any
computation delays would have resulted in a frozen or stut-
tering simulation. The absence of such issues demonstrates

the effectiveness of the proposed implementation for high-
frequency real-time deployment.

VIII. DISCUSSIONS

This section discusses the experimental findings and re-
flects on their implications. The first subsection focuses on
the impact of the 3D trajectory projection on the MPPI
performance. The second one addresses the considerations
regarding the GPU-based MPPI controller for lunar naviga-
tion application. The third one discusses the limitations of
the contributions and the ways of improvements.

A. MPPI with 3D Trajectories Prediction

The 3D trajectory projection method was validated against
simulated rover behaviour, demonstrating its ability to ap-
proximate the robot’s motion in Gazebo with greater fidelity
than 2D methods. Significant errors in Euclidean distance
and orientation were observed when using 2D trajectories.
The cumulative yaw deviation led to a growing offset,
reaching in average 50 cm at a 5-meter horizon. Beyond
that distance, the difference keeps increasing even faster.
Since 50cm is an average, it is important to mention that this
error exceeds this value in many cases. Although one might
argue that the controller is able to compensate for trajectory
prediction errors over time, high-speed motion limits the
vehicle’s manoeuvrability. This can reduce the freedom to
respond in the event that an unexpected obstacle enters in
the sampling space because of some trajectory prediction
error.

The performance benefits of using 3D projections were
found to be dependent on terrain characteristics. In crater-
only environments, 3D and 2D MPPI showed similar per-
formance regardless of the number of trajectories. This can
be explained by the fact that the absence of rocks removes
the trade-off between avoiding obstacles and optimising for
slope. The controller can simply choose the flattest terrain,
which results in similar predictions for both 2D and 3D
MPPI.

In terrains containing both rocks and craters, with strict
slope avoidance, performances remained relatively similar.
However, an improvement was observed with the 3D MPPI
in terms of average speed and obstacle avoidance when using
800 samples. This behaviour can be interpreted as follows:
with 350 samples, both controllers lacked sufficient data to
identify optimal trajectories, resulting in similar suboptimal
trajectories for both. With 1500 samples, the convergence
toward optimal solutions allowed the 2D controller to balance
the predictions inaccuracies, and perform similarly to the
3D MPPI. With 800 samples, however, a tipping point was
found. The inaccuracies of 2D projections, combined with
the lower sample count, prevented it from following trajecto-
ries as good as the 3D MPPI, leading to poorer performances
in average speed, slope management and obstacle avoidance
safety.

When slope avoidance was softened, the benefits of 3D
MPPI became more pronounced. As the rover drove more
on sloped terrain, the trajectory prediction error of 2D MPPI



increased, leading to less safe trajectories, as evidenced by
reduced obstacle avoidance performance. To compensate for
this, the 2D controller reduced speed to return to safer
paths. In contrast, the 3D planner was able to follow safer
trajectories, allowing it to maintain a higher average speed.

On top of that, the second approach to compare obstacle
avoidance safety revealed a critical performance gap between
2D and 3D MPPI. The 2D MPPI significantly spent more
time in the high-risk zone near obstacles. This phenomenon
became even more pronounced when the slope avoidance
was softened. In such cases, the 2D MPPI chose paths with a
largely higher number of waypoints in the two closest regions
to obstacles, regardless of the number of sampled trajectories.

The overall analysis shows that traditional 2D MPPI is
inherently robust to uneven ground and to the resulting
trajectory prediction inaccuracies. However, some scenario
were highlighted where the 3D MPPI outperforms it, in
particular when the robot must navigate sloped terrain filled
with rocks. The 3D MPPI indeed manages to keep a safer
distance from the collision space than the 2D MPPI whose
inaccuracies lead to dangerous passages. An interesting idea
for improvement would be to dynamically switch from 2D
to 3D projections, for instance based on IMU data, when the
robot detects that it is being forced to drive on significantly
uneven terrain.

B. GPU-Based MPPI for Lunar Navigation

The GPU-accelerated MPPI controller developed using
the WARP framework was benchmarked against Python and
C++ implementations. The control loop performance clearly
highlighted the acceleration provided by the GPU version.
In particular, increasing the number of sampled trajectories
significantly impacted the control loop durations of the
CPU-based versions, whereas the GPU-based MPPI scaled
much more efficiently. This result demonstrates the potential
of parallelisation for real-time trajectory optimisation in
sampled-based MPPI, particularly in high-speed applications
that demand high-frequency control updates.

The GPU-based MPPI controller, combined with the de-
signed cost function, consistently achieved high success
rates in reaching the navigation goal. Two collisions were
recorded when using 350 sampled trajectories, caused by
unanticipated last-minute deviations due to terrain slippage.
However, no collisions occurred with higher sample counts,
showing that richer sampling indeed allows for more optimal,
and therefore safer, trajectories.

Failures to reach the goal generally stemmed from dead-
lock situations, where the placement of rocks prevented
the MPPI controller from sampling any safe trajectories,
forcing the robot to stop. Aside from these edge cases,
the controller maintained safe navigation across all tested
terrain configurations. It avoided most craters, travelled at
high speeds, and rarely crossed unsafe regions.

C. Limitations & Future work

Despite the promising results, several limitations must be
acknowledged within the framework of this research. Firstly,

the 3D projection method, though effective, relies on a simple
model to predict linear and angular velocities. That model
ignores the friction factor, which can lead, for instance,
to unexpected slippage. The current model also does not
account for factors that could reduce velocity under the same
control inputs, such as ascending slopes or varying surface
roughness. A promising mitigation strategy is the use of a
low-level PI feedback controller, as presented in this work
to correct speed mismatches.

Throughout the research, the assumptions of perfect per-
ception and perfect localisation were maintained. In practice,
however, those processes are real challenges, especially in the
context of lunar navigation. In the scope of this thesis, they
were deliberately excluded to focus on the motion planning
area.

Lastly, while the GPU-based MPPI demonstrates strong
potential for onboard, high-frequency motion planning, its
real-world deployment in space remains constrained by
current hardware limitations. GPUs are not yet radiation-
hardened, although GPU-like architectures are being devel-
oped for such applications [50, 51]. Nevertheless, although
the primary intended application of this research is lunar
navigation, the insights gained regarding the parallelisation
potential of MPPI remain broadly applicable, among others
to Earth-based navigation tasks.

A natural continuation of this work involves validating the
MPPI motion planner in a real-world setting. For instance,
the SpaceR research group in Luxembourg, where this re-
search was conducted, operates a dedicated lunar analogue
environment along with planetary rovers. Testing MPPI in
this environment would provide valuable insights into the
planner’s robustness under realistic conditions, in order to
fill the sim-to-real gap. Furthermore, real-world testing will
likely require further tuning, particularly of the cost function
weights. This reflects a broader challenge in MPPI, which
is that performance is closely tied to the parameters tuning.
In this context, learning-based methods could enhance the
controller’s adaptability across varying terrain types.

Another important direction is the integration of the mo-
tion planner into a complete robotic autonomy pipeline.
In future work, proper perception and localisation systems
should be incorporated to evaluate MPPI’s performance
within the constraints of a real robotic stack. Additionally,
simulating degraded sensor performance to approximate lu-
nar conditions would provide further insights of the MPPI
planner suitability for planetary navigation missions.

IX. CONCLUSION

This work explores the use of MPPI for fast and au-
tonomous navigation on the Moon, focusing on two main
aspects: a GPU-based implementation using the WARP
framework to enable large-scale parallel sampling, and a
3D trajectory projection model to better account for lunar
topography in motion planning. The results indicate that
GPU-accelerated MPPI is a promising solution for such
application. While further testing in real-world conditions is
required, its ability to handle multiple constraints efficiently,



combined with the scalability of GPU parallelism, makes
it well-suited for future lunar missions. Finally, although
3D trajectory prediction improves performance in specific
cases, traditional 2D MPPI remains highly robust. The added
computational cost of 3D planning may only be justified in
scenarios involving significant terrain variations, suggesting a
hybrid strategy that switches between 2D and 3D projections
could be optimal.
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