
Nerve fiber tracing in bright-field images of
human skin using deep learning

Author:
Herman Bergwerf

Student TU Delft, Erasmus MC
hermanbergwerf@gmail.com

Supervisor:
Dr. ir. Erik Meijering

Biomedical Imaging Group Rotterdam
meijering@imagescience.org

June 28, 2018

Abstract

The goal of this thesis is to find an automated method that can trace all
nerve fibers in bright-field images of skin tissue. This is an important step
towards the automated quantification of intra-epidermal nerve fiber density,
an important biomarker in the diagnosis of small-fiber neuropathy. Deep
learning is a popular new field of research in computer vision. In recent
years it has been successfully applied to a lot of computer vision problems.
Here we try to use deep learning for nerve fiber segmentation. It will be
shown how a convolutional neural network can be implemented and trained
to produce nerve fiber segmentation maps. This involves the optimization of
many layers of computations (summing up to tens of millions of parameters),
which we did using a modern machine learning toolkit. Statistical analysis
of the obtained results show that the neural network has a performance that
is comparable to a human control, and out-competes an earlier method that
was developed using conventional image analysis tools, by a big margin. A
number of improvements are proposed to further increase the neural network
performance.

Contents

1 Introduction 3
1.1 Neuropathology . 3
1.2 Intra-Epidermal Nerve Fiber Density 3
1.3 Automated counting . 4
1.4 Previous work . 5
1.5 Challenges . 6
1.6 Deep learning in biomedical imaging 9
1.7 Goal . 10

2 Methods 11
2.1 Data . 11
2.2 Neural network . 19
2.3 Evaluation . 24
2.4 Implementation details . 28

3 Results 29
3.1 Training . 29
3.2 Post-processing parameter space 30
3.3 Cross-validation . 30
3.4 Comparison to other methods 40
3.5 Outliers . 43

4 Discussion 44
4.1 Cross-entropy divergence . 44
4.2 Learning rate implementation error 45
4.3 Spatial distance shortcomings 45
4.4 Ground-truth improvements 46
4.5 Further work . 47
4.6 General recommendations . 49

Acknowledgment 51

1

Appendices 52

A Architecture 53

B Predictions 55

Bibliography 60

2

Chapter 1

Introduction

1.1 Neuropathology

Neuropathology studies the nervous system tissue, and in particular diseases
that may occur with it, such as Alzheimer. The class of diseases that is
relevant for this thesis is called peripheral neuropathy. This class includes
damage or disease that affects the peripheral nervous system. The National
Institute of Neurological Disorders and Stroke has summarized the symptoms
of peripheral neuropathy on their website:[1]

Symptoms can range from numbness or tingling, to pricking
sensations (paresthesia), or muscle weakness. Areas of the body
may become abnormally sensitive leading to an exaggeratedly in-
tense or distorted experience of touch (allodynia). In such cases,
pain may occur in response to a stimulus that does not normally
provoke pain. Severe symptoms may include burning pain (es-
pecially at night), muscle wasting, paralysis, or organ or gland
dysfunction. Damage to nerves that supply internal organs may
impair digestion, sweating, sexual function, and urination. In
the most extreme cases, breathing may become difficult, or organ
failure may occur.

1.2 Intra-Epidermal Nerve Fiber Density

The specific peripheral neuropathy conditions relevant for this thesis are
small-fiber neuropathies (SFNs). SFNs are relatively common, affecting an
estimated 15 to 20 million people over 40 in the United States alone[2]. It is

3

(a) Original image (b) Nerve (c) Junction

Figure 1.1: Example of an intra-epidermal nerve fiber. All nerve
crossings have to be counted in selected regions of the imaged tissue
in order to determine the IENFD. In (c) the dermis and epidermis
are highlighted in green and blue.

characterized by the predominant involvement of somatic unmyelinated C-
fibers and thinly myelinated Aδ-fibers that convey thermal and nociceptive
stimuli. Symptoms typically start with burning feet and numb toes. Skin
biopsy is an important tool for investigating the small nerve fibers involved
in these conditions[3]. A widely used biomarker is the nerve fiber density be-
tween the dermis and epidermis, commonly referred to as the intra-epidermal
nerve fiber density (and often abbreviated as IENFD). To measure this quan-
tity the number of nerve fibers that cross the dermis/epidermis boundary is
counted and divided by the skin length. This involves significant manual
work: extracting a skin sample from the patient; slicing, staining and imag-
ing; and finally identification/counting of nerve fibers. For this reason a
diagnosis can take a long time, and is expensive. Figure 1.1 shows an exam-
ple of one intra-epidermal nerve fiber.

Both bright-field and immunofluorescence microscopy are used for tissue
imaging. The data for this study has been made available by the neurology
department at Erasmus MC where only bright-field microscopy is used for
skin biopsies1, therefore this thesis is focused on bright-field images.

1.3 Automated counting

In order to reduce the time and cost of measuring, and to improve the accu-
racy with respect to manual counting2, we would like to develop a computer

1One of the reasons is that immunofluorescence samples cannot be physically archived.
2One study showed a correlation coefficient between sites of 0.94, and a variability of

25.5% between laboratories[4].

4

program that can determine the intra-epidermal nerve fiber density. Four
high-level steps the automated procedure could follow based on the manual
counting process are:

1. Select regions of interest The raw data from the microscope con-
tains an array of samples, some are not usable for counting because
of artifacts such as folds. During the manual process a human expert
will select regions that look suitable enough for counting. A computer
program would need a similar ability to select regions of interest.

2. Determine location of nerves A human expert must learn to find
nerves in the imaged tissue in order to correctly count the number of
crossings. It is not necessary to trace the nerves, as long as all crossing
nerve fibers are identified.

3. Determine junction It is often not clear which part of the tissue
belongs to the epidermis, and which part to the dermis. By looking
at the location and orientation of nerve fibers, and the tissue staining
color and texture, an educated guess can be done3. This is sufficiently
accurate for counting the number of crossings4.

4. Measure skin surface length This is more of a formality since in
most cases the junction length is quite similar to that of the skin surface.
However, the European guidelines for determining the IENFD require
it to be computed with respect to the skin surface[5].

1.4 Previous work

In the past years there have been some attempts at automating the nerve
counting. Some interesting publications that are closely related to this topic,
or that were pointed out as relevant by previous publications, are listed in
Table 1.1. According to the literature research that was conducted for this
thesis there are only two publications that implement automated nerve fiber
detection in bright-field skin samples:

1. Shanon, Manuel, Kathrin, et al. [6] implemented a special two-level
edge detection algorithm using the Orbit image analysis program, and

3Unfortunately I am not an expert on this topic. I have seen a number of examples
but I cannot tell with confidence how to identify the epidermis/dermis junction in many.

4Guidelines for counting exist, such as the minimal nerve length after the crossing[5].

5

used several pre- and post-processing steps to reconnect nerves. Un-
fortunately no additional details are given about which steps are taken
exactly or how the method could be reimplemented. In their paper
they point out that for bright-field images only 40% of the data avail-
able to them could be automatically processed due to a high variability
in straining. The data from some labs was unsuitable due to a low
contrast between nerves and the epidermis.

2. Pontenagel [7] implemented a nerve detection algorithm using a Frangi
vesselness filter, tensor voting with steerable filters, and small object
removal. Section 2.3.1 describes this approach in more detail. This
method is also quantitatively compared to one developed in this thesis.

1.5 Challenges

From previous research and from expert experience we know that nerve de-
tection in bright-field images is not a straightforward task. An example of
this is illustrated in Figure 1.2. It is difficult to tune conventional image
processing algorithms such that the low contrast and high variability can
be accounted for. As shall later be demonstrated, counting nerves is not a
trivial task even for humans5.

Because the imaging method requires the samples to be thin slices, nerves
or nerve segments that do not run approximately parallel to the slicing plane
are not (or only partially) visible. Humans are experts at interpolating infor-
mation however, as is demonstrated in Figure 1.3. Imaged nerve fibers often
contain numerous gaps, have parts with low and high contrast, and go from
thick to extremely thin. All this poses significant challenges for automated
detection.

5See Figure 3.12. where the performance of a human expert is compared to two novices.

6

Table 1.1: A few recent publications involving nerve counting or nerve
density computation.

Year Author Topic/method

2011 Casanova-Molla,
Morales, Solà-Valls,
et al. [8]

Test correlation between PGP9.5 im-
munoreactive fluorescence and skin in-
nervation (IENFD is counted manually).
It is established there is a positive corre-
lation.

2012 Sathyanesan, Ogura,
and Lin [9]

Nerve fiber density measurement using
Hessian-based feature extraction (replac-
ing edge detection filters to reduce noise)
and line intensity scan analysis. This
publication deals with tissue from the
central nervous system.

2014 Vincenzo, Maria, An-
namaria, et al. [10]

Comparison between manual counting of
nerves in confocal 3D images using Neu-
rolucida software, and manual counting
directly through the oculars of an epiflu-
orescence microscope. It is established
both methods are in agreement.

2015 Shanon, Manuel,
Kathrin, et al. [6]

Nerve detection was based on special
two-level edge detection in combination
with several pre-processing and post-
processing steps to connect nerve frag-
ments. The epidermis/dermis junction is
drawn manually.

2017 Pontenagel [7] Automatic IENFD computation using
local variance focus stacking, Frangi
vesselness filtering, tensor voting with
steerable filters, thresholding, and mor-
phological operations.

7

(a) Immunofluorescence (b) Bright-field

Figure 1.2: An example of a nerve image obtained through im-
munofluorescence (left) and bright-field microscopy (right). Bright-
field microscopy generally produces images with much less contrast
between nerves and background, and much more variation in bright-
ness. This makes it harder to develop a consistent nerve detection
algorithm. The left image was copied from Casanova-Molla, Morales,
Solà-Valls, et al. [8] Fig. 6A

Figure 1.3: The human brain is very good at extracting continuous
structures from visual information such as the nerve fiber that is
shown here running from the left to the right side of the image. On
close inspection it turns out there are several gaps in the nerve stain-
ing. This makes tracing similar nerve fibers a challenging problem
for computers.

8

1.6 Deep learning in biomedical imaging

In 2012 AlexNet[11], a Convolutional Neural Network (CNN), won the Im-
ageNet image classification competition by a considerable margin. Since
then CNNs have quickly become the technique of choice for many computer
vision problems such as classification, detection, segmentation, and enhance-
ment[12]. Thanks to the development of hardware and software, increasingly
large CNNs can be developed (often called deep convolutional neural net-
works for their high number of stacked layers). Large CNNs, together with
other methods that involve building large neural networks, are often referred
to as deep learning.

The medical image analysis community has also picked up CNNs in order
to solve problems that were previously much harder or impossible to solve.
During 2015 and 2016 the number of papers on this subject grew strongly. An
important paper that is often cited in the context of segmentation problems
is U-Net: Convolutional Networks for Biomedical Image Segmentation[13]
which was published in 2015 and has been cited almost two thousand times6.
U-Net is a CNN that contains a symmetric contracting and expanding path,
and can be trained with a small number of images7 by using strong aug-
mentation (such as smooth deformations) and drop-out layers in the neural
network. U-Net out-computed rivals at the 2015 ISBI cell tracking chal-
lenge[14].

So far there seem to be no publications on applying CNNs to the seg-
mentation of nerves in bright-field images. However, for a somewhat similar
problem, the segmentation (and analysis) of blood vessels in retinal images,
a number of CNN based approaches have been published in the past few
years[12]. The automated assessment of retinal images for detecting or pre-
dicting a range of diseases has also been subject to study8. An example of
this is diabetic retinopathy, one of the fastest growing causes of blindness. In
2016 it was shown that a CNN (Google Inception v3) can identify diabetic
retinopathy with a performance comparable to a panel of human experts.
More recently it was shown that deep learning can also extract certain risk
factors of cardiovascular disease from retinal images[15].

The problem of retinal vessel segmentation has been extensively stud-

61951 times according to Google Scholar as of July 22th 2018.
7The paper presents a cell segmentation problem with a training set of 30 images of

512× 512 pixels.
8Big companies like Google have shown interest in this, possibly because of the big

potential for future health-care.

9

ied. Many supervised and unsupervised methods have been developed in
the past. However, deep CNN models have already outperformed all other
published methods by a significant margin[16]. Altogether this demonstrates
the tremendous potential of CNNs in biomedical imaging.

1.7 Goal

We have seen that automated counting of nerve fibers is desirable, but very
challenging. This thesis focuses on one step of this process: nerve detection.
Several conventional methods have been developed for this purpose but none
has demonstrated a satisfying performance. We believe that a neural network
has the potential to solve this problem by learning from existing annotations.
The goal is to develop a convolutional neural network that can produce nerve
fiber segmentation maps. In the following chapters a neural network and a
training procedure are described and evaluated.

10

Chapter 2

Methods

2.1 Data

The skin biopsy protocol used for a comparable SFN study is described in
detail by Lauria, Hsieh, Johansson, et al. [5]. A disk-shaped piece of skin
tissue is taken from a subject’s lower back or the distal part of the leg using
a 3mm disposable punch. The sample is immediately cooled to around 4 C◦.
Each biopsy is cut into about thirty 50µm slices (three such slices are shown
in Figure 2.1). The tissue samples are stained with PGP9.5 to increase the
nerve visibility, and scanned using a bright-field microscope1. The available
dataset contains slices from 4 volunteers (not affected by small-fiber neu-
ropathy) containing a total of 96 manually picked regions of 640×448 pixels.
Figure 2.2 shows an example.

1The images that were provided to us were obtained using the Hamamatsu NanoZoomer
at a 40× magnification.

Figure 2.1: Cropped slide showing three slices.

11

Figure 2.2: Small regions have been manually selected from the
scanned slices such as the one shown here.

2.1.1 Focus stacking

The slices are imaged at 31 focal planes in the range [15,−15]µm. In order
to simplify processing we have decided to compute an extended depth of field
image (also referred to as z-projection, focus stacking, and focus merging).
By doing so the neural network will not have to figure out how to deal
with multiple focal planes. On top of that the data size is reduced by an
order of magnitude which is very important since the GPU memory that
is available for training the neural network is limited. The Laplacian-of-
Gaussian (LoG) is used to determine which slide is in focus for each pixel.
The LoG function is visualized in Figure 2.3. It can be used as edge/noise
detector by convolving with an image. The Gaussian will smooth the image
while the Laplace operator will detect edges. Because there is a high response
for parts of the image that are in focus (since edges are more crisp there), the
in best focal plane can be determined for each pixel by finding the maximum
LoG value. Figure 2.4 shows two focal planes and a merged image.

12

−4 −2 0 2 4 −4
−2

0
2

4
−0.2

0

x
y

LoG(x, y) = − 1
πσ4

[
1− x2+y2

2σ2

]
e−

x2+y2

2σ2

Figure 2.3: The Laplacian-of-Gaussian with σ = 1.

(a) z = −4µm (b) z = 1µm (c) Merged image

Figure 2.4: Here (a) and (b) show two of the 31 focal planes, (c)
shows the result of merging all 31 focal planes.

13

2.1.2 Generated patches

To train, validate and test the neural network, 448×448 patches are cropped
from the focus stacked images. To prevent over-fitting it is very important
to use good image augmentation. By applying random transformations to
the patches the number of different training patches that can be generated
is much larger. The pipeline for generating training patches contains the fol-
lowing steps2. Figure 2.5 shows some examples of unnormalized, augmented
patches.

1. Random cropping Each 448 × 448 patch is cropped from a ran-
domly selected region with a uniform random horizontal offset (xoffset ∈
[0, 640− 448]). The cropped patches are also down-scaled to 224× 224
(this will be explained in the next section).

2. Affine transformation A relatively fast way to deform the image is
using affine transformations. A transformation is applied to each patch
that is described by M = M1 ·M2, where M1 is obtained by computing
the mapping between random translations of three corners, and M2 is a
transformation that rotates the patch around its center with a random
angle −0.8π ≤ α ≤ 0.8π (radians). To describe M1 more fully we
will look at a few equations. M1 it determined by OpenCV by solving
Equation 2.1 for three points (v1, v2, and v3) that are all randomly
translated to three new points (v́1, v́2, and v́3). Basically OpenCV
computes the transformation that fits the random displacement of these
three points, this transformation is M1.

2In practice new patches are constantly generated while the neural network is training.

14

[
x́i
ýi

]
= M1 ·

xiyi
1

 (2.1)

vi =

(
xi
yi

)
(2.2)

v1 =

(
0
0

)
v2 =

(
0
Sp

)
v3 =

(
Sp
Sp

)
(2.3)

v́i = vi +
Sp
5

(
Ri,0

Ri,1

)
(2.4)

where:

i ∈ {1, 2, 3} (2.5)

Sp = Patch size (2.6)

Ri,d ∈ [−1, 1] is a uniform random number (2.7)

Some projects use more sophisticated image distortion techniques that
stretch and squeeze multiple parts of the patch3.

3. Horizontal flipping (reverse rows) Because in this project informa-
tion along the vertical axis has an important meaning (transition from
dermal to epidermal tissue), only horizontal flipping is applied with a
50% probability4.

4. Color saturation/value shifting and hue rotation By converting
the RGB color data of the patch to HSV5, it is easy to apply a few color
transformations. In this project the hue, saturation, and value are all
offset by a random number. For the saturation and value this offset is

3An example of this can be found in the source code of the winning solution for the
MICCAI 2017 Endoscopic Vision Sub-Challenge: Robotic Instrument Segmentation. See
https://github.com/ternaus/robot-surgery-segmentation[17].

4Patches are generated on the fly. This means that, when a new patch is generated, a
uniform random number generator is used to determine if flipping will be applied

5In the equations that follow each channel has a floating point value between 0 and 1.

15

computed by finding the minimal shift that would cause overflow for
each pixel and multiplying this by a uniform random number in the
range [−1, 1] (Equation 2.8). The hue is offset by a random number as
well, but wrapped around to prevent overflow (Equation 2.10)6.

R[x,y] is a uniform random number in the range [x, y] (2.8)

Shift(x,R[−1,1]) = min{x, 1− x} ·R[−1,1] (2.9)

Rotate(x,R[0,1]) = (x+R[0,1]) mod 1.0 (2.10)

5. Normalization The last transformation is image normalization. The
normalized image is computed by subtracting the mean and dividing
by the standard deviation (Equation 2.11). This kind of normalization
is very common in image processing tasks because it standardizes the
data to a set of numbers that is always similarly distributed around 0.7

N(P, x, y) =
P [x, y]−mean(P)

stdev(P)
(2.11)

2.1.3 Ground-truth

The ground-truth data contains traced nerves and traced skin surfaces. From
this data a number of masks are generated that will be used to train the neural
network. The skin surface annotation is used to generate a skin mask that is
used to ignore all pixels that do not belong to the normal skin (also excluding
the layer of dead skin). An example of this mask is shown in Figure 2.6.

For reasons that are explained in the next section, three other masks
are extracted from the nerve annotations: a background tissue mask, a nerve

6The saturation/value shifts and hue rotation that are used here are rather extreme. In
our case it turned out to work reasonably well but that is no guarantee that this is a good
augmentation strategy. More trials with varying augmentation parameters would have to
be conducted to find this out. It could be argued that by introducing these more extreme
augmentations, the validation/testing set appear as a small subset of the data that was
used for training. This can be a good thing because the network is forced to learn the
features from topologies, rather than from colors.

7It is now also popular to normalize the training batch between some network layers.
This is called batch normalization[18]. Batch normalization is not used in this project.

16

Figure 2.5: A few examples of augmented image patches before nor-
malization.

(a) Input image (b) Mask

Figure 2.6: Skin mask example (red border is not part of the mask).

17

(a) Image patch (b) Ground-truth

Figure 2.7: An augmented patch and the corresponding transformed
ground-truth. The background tissue, nerve boundary, and nerve
class are colored red, green, and blue, respectively.

boundary mask, and a nerve mask. The nerve mask is generated by drawing 4
pixel thick lines along the traced nerve fiber coordinates. The nerve boundary
mask covers an area of 6 pixels around each line in the nerve mask. Finally
the background tissue mask is generated by subtracting the nerve and nerve
boundary mask from the skin mask. The coordinate transformations that are
applied to the image patches are also applied to the corresponding ground-
truth. An example of this is shown in Figure 2.7.

18

2.2 Neural network

2.2.1 Architecture

The neural network architecture (or ‘model’) that is used in this project is
based on the U-Net model[13]. The first part of the neural network uses
the same design as the first five blocks of VGG16[19] (a CNN). Pre-trained
weights are used for this part, which helps improve the training results. This
is a strategy that can also be found in literature and has been shown to
produce better results for some cases8[20]. The network9 input is a 3-channel
(RGB) image patch with size 448× 44810. Because the original images have
a relatively good resolution, the patch is first down-scaled to 224× 224 using
linear interpolation11.

At the network ‘bottom’ there is a residual block, a type of connection
that was suggested in 2015 to allow training much deeper neural networks[21].
It is included in this model because is has been used successfully in other
segmentation models such as LinkNet-34[22][17]. The up-scaling blocks in
the model use an equivalent number of filters as the corresponding down-
scaling blocks from VGG1612. Figure 2.8 depicts the entire neural network
as a simplified flowchart. A detailed description can be found in Appendix A.

Finally three 1×1 convolutions are used to produce a 3-channel prediction,
each channel representing one segmentation class. In the same order as the
output channels these classes are: background tissue, nerve boundary, and
nerves. The nerve boundary class is included to help the training converge
by allowing the network to predict something between nerve and tissue. A
softmax function is applied to the output layer to determine the winning class

8Pre-training can be particularly effective when a neural network is first trained on a
similar (not identical) problem for which there is much more training data available. By
pre-training the neural network it can learn filters that may also be useful for the target
problem.

9For convenience the term neural network is often referred to as network in this thesis.
10It is important that the input patch is relatively big in order for the neural network

to get enough context information for detecting nerves.
11Manual inspection of down-scaled images showed that nerves are still visible to the

human eye at a 50% scale. It was suggested to me to use down-scaling because it reduces
the number of parameters in the network (less down-scaling blocks are necessary to find
similar global features). This should make it easier to train the network.

12There is no direct reason to pick the same number of up-scaling filters as down-scaling
filters. As a general rule the number of filters should increase when removing localized
information (in this case by max-pooling), and decrease when adding localized information
(in this case by bilinear upscaling and concatenation).

19

for each pixel. The similarly named masks that are described in Section 2.1.3
are used to train the network.

2.2.2 Loss function

The loss function that is used to train this network is a mix between the
multi-class Jaccard coefficient and categorical cross-entropy, both with pre-
computed weights per class. As described in the previous section, the net-
work outputs a three-dimensional result for each input pixel representing the
probability that it belongs to one of the pre-defined classes (numbered 1 to
3 in the equations that follow). Since the images contain a disproportionate
amount of tissue, weights are introduced into the loss function to make all
three classes equally important. The weight for each class is computed using
Equation 2.13 where Xi indicates the total area of class i in the entire dataset
(in number of pixels).

Wnet = 1 =
3∑
i=1

WiXi (2.12)

WiXi =
1

3
, Wi =

1

3Xi

(2.13)

Both cross-entropy (2.14) and the Jaccard coefficient (2.15) are used be-
cause together they are expected to produce a better landscape for converg-
ing13. Cross-entropy is suitable for per-pixel classification, and the Jaccard
coefficient measures the similarity between predicted and actual nerve from
the intersection to union ratio. Experiments showed that training using the
Jaccard coefficient alone does not converge (data not shown). Therefore
cross-entropy is added to create a good initial training gradient14.

13There are various examples of mixing cross-entropy and the Jaccard coefficient. One
loss that is used is L = H − log J [17][23].

14There is no rigorous argument for using cross-entropy as secondary loss. I have been
using it because of its popularity in deep learning applications including image segmenta-
tion.

20

VGG16

m
ore global

Input

Block 1

Block 2

Block 3

Block 4

Block 5

Residual

Block 6

Block 7

Block 8

Block 9

Block 10

Output

m
or

e
lo

ca
l

= Concatenation

= 2× bilinear upscaling

= 2×2 max-pooling

2× down-scaling
softmax, 2× up-scaling

Figure 2.8: Flowchart of the neural network presented in this thesis.
Each box represents several convolutional layers. The dashed box
contains the part of the network that corresponds to VGG16.

21

H(Ytrue,i, Ypred,i) = −〈Ytrue,i · ln(Ypred,i)〉 (2.14)

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B| (2.15)

Hnet(Ytrue, Ypred) =
3∑
i=1

Wi ·H(Ytrue,i, Ypred,i) (2.16)

Jnet(Ytrue, Ypred) =
3∑
i=1

Wi (1− J(Ytrue,i, Ypred,i)) (2.17)

Because early experiments in this study showed that the cross-entropy
strongly diverges again when the Jaccard coefficient is still steadily converg-
ing, a pre-factor that depends on the Jaccard coefficient is added to the
cross-entropy in order to decay its influence after the training progresses.
This pre-factor is plotted in Figure 2.9. The final loss is computed as fol-
lows:

L(Ytrue, Ypred) = 25 [S(J − 85)]
1
10 ·H + J (2.18)

where:

J = Jnet(Ytrue, Ypred) (2.19)

H = Hnet(Ytrue, Ypred) (2.20)

S(x) =
ex

ex + 1
(Sigmoid function) (2.21)

2.2.3 Training procedure

The VGG16 part in the neural network is initialized with weights that have
been pre-trained on the ImageNet challenge[19]. All other weights are ini-
tialized with a random initializer15.

15The default weight initializer in Keras is used. At the time of writing, this is the
Glorot uniform initializer[24].

22

60 70 80 90 100 110

0

10

20

30

J

H

Figure 2.9: Curve of the heuristic cross-entropy pre-factor:

25 [S(J − 85)]
1
10 . The red region roughly covers the value of J during

the steep decline in the first 100 epochs. The green region represents
the rest of the optimization (the Jaccard coefficient converges roughly
at 80-75 while the cross-entropy is already diverging at this point).

The 96 images are randomly shuffled and split into 6 sets of 16 images.
Each set is labeled Di where 1 ≤ i ≤ 6. A total of 5 networks16 is trained
using the same initialization weights to cross-validate the performance and
reproducibility. The training, validation, and testing data for each network
are defined by (2.22), (2.23) and (2.24) where n denotes the network number
(1 ≤ n ≤ 5). So one sixth of the data is put aside for testing, the rest is used
to create 5 different training/validation combinations.

Trn =

[
5⋃
i=1

Di

]
−Dn (2.22)

V ln = Dn (2.23)

Tsn = D6 (2.24)

16The different trained weights are referred to as separate networks despite sharing
the same architecture. In some cases they are referred to as CNN (convolutional neural
network) to distinguish from other methods.

23

Each network is trained for 1500 epochs, each epoch containing 64 ‘batches’
of only one patch17. After each epoch the validation loss is computed based
on 8 randomly cropped and flipped patches from the validation set. The
final set of weights for each network (after 1500 epochs of training) is picked
based on the lowest validation loss.

Learning rate

In this project the Adam optimizer is used18[25]. It is important to start
with the highest possible learning rate19. In this project the initial rate is set
to 1× 10−4.

One method to slowly reduce the learning rate is to decrease it as function
of the epoch index. Another method is to reduce it when the validation loss
encounters a plateau. This is the case when no improvements are found after
n epochs (the patience). The learning rate is then multiplied by a factor
f . In this project the second method is used with n = 100 and f = 0.5.
The learning rate is not reduced below 1× 10−6 because at this point it
has practically converged20. Since the cross-entropy shows quite unstable
progress, the learning rate is reduced according to the validation Jaccard
coefficient instead21 (see Equation 2.15).

2.3 Evaluation

To compute a prediction for each test image, all horizontally shifted 448×448
patches in the test images are extracted in order to average these predictions.
The prediction quality near the edge of a patch can be less accurate than in

17Usually the batch size is much larger, like 32 patches, in order get a more stable
gradient. Unfortunately this was not possible for this project since the GPU that was
used did not have sufficient memory.

18This was recommended as a good choice in general. I think that, if the optimizer can
converge, it is not likely that much better results will be obtained with another optimizer.
The learning rate is the important parameter because it determines the step size in the
parameter space.

19The learning rate can be thought of as the step size along the network gradient. When
this step size is too big the iterations practically step to arbitrary points in the parameter
space. However, when the step size is too small the network will converge to a local
minimum too quickly.

20This was also confirmed in experiments (data not shown).
21This choice is based on heuristics. Limited time has made this approach the one that

was tried for the final comparison, although it is certainly not claimed as effective one.

24

the center because there is less contextual information22. Since the images
are 640 pixels wide, for each image 640 − 447 = 193 shifted patches can
be extracted. The final prediction for each pixel in the test images is the
average of all overlapping shifted patches (so pixels on the left and right edge
are predicted only once and so on).

In order to determine the network performance we compute the spatial
distance between the predicted and annotated nerves. This measure is also
used in the V3D software to score traced neurons[27].

Given the nerve fibers A and B containing nA and nB equidistant (with
respect to neighboring points) vertices, the directed divergence DDIV (A,B)
is defined as the average distance from each vertex on A to the nearest one on
B. The spatial distance (SD) is the average of DDIV (A,B) and DDIV (B,A).
The mathematical description of this formula is given below where the coor-
dinate vector of the n-th vertex on a nerve23 X is given by Xi.

DDIV (A,B) =
1

nA

nA∑
i=1

min{||Ai −Bj||2 : 0 < j < nB} (2.25)

SD(A,B) =
DDIV (A,B) +DDIV (B,A)

2
(2.26)

The 3-channel prediction produced by the neural network is processed
into a nerve distance map24 using the steps described below. Such a pixel-
wise distance map is also computed for the annotations, and can be used to
easily extract the distances that are required to compute the spatial distance.

1. Thresholding The third channel of the prediction25 is thresholded to
obtain a binary nerve mask.

2. Skeletonization A nerve skeleton is computed to get rid of the varying
width of the nerve prediction.

22When regarding the convolution filters as indicating certain features, like demon-
strated for ZF-Net[26], then zero-padding in the convolution layers essentially turns off all
contextual features. It is not hard to imagine this might be a problem for the detection
of nerves which strongly depends on contextual information as described in Section 1.5.

23Here we are talking about a single nerve fiber. However, eventually the measure is
applied to a whole image that may contain multiple nerve fibers.

24In the distance map the value of each pixel contains the distance to the closest nerve.
25The third channel holds the nerve segmentation, see Section 2.2.1.

25

3. Remove small nerve segments Small nerve segments are removed26

using the skimage.morphology.remove small objects algorithm from
scikit-image (Python library)[28].

4. Distance transform Finally the Euclidean distance map is approxi-
mated with OpenCV using a 5×5 mask27

In order to obtain comparable results, the spatial distance is always com-
puted for patches that correspond to 448 × 448 squares in the original test
images. When the conventional method and the neural network are evalu-
ated, such a patch is cropped from the left and right side of each test image.
When a patch contains no nerve predictions, or no ground-truth nerves, the
spatial distance cannot be computed (an empty array has no mean). These
patches are ignored when computing the mean or median on the entire test
set.

2.3.1 Conventional reference method

The neural network performance will be compared to human performance,
and to the performance of a conventional method developed by Pontenagel
[7] in 2017. His approach contains 4 main steps:28

1. Select blue channel By analyzing the histogram of some images it is
determined that the blue channel ‘is the best channel to use for contrast
based thresholding for the epidermis segmentation’ 29. It is used for all
further processing, including the nerve segmentation.

2. Frangi vesselness filter A 2D Frangi vesselness filter is used to find
vessel like structures in the grayscale image. The result of this step is
shown in Figure 2.10c.

3. Tensor voting Tensor voting with steerable filters is used to emulate
the perceptual grouping that is happening in the human brain when

26In practice is appears that short nerve segments have often not been annotated, causing
some trouble for the training and evaluation.

27The algorithm that is used by OpenCV has been described by Borgefors [29].
28Unfortunately the original thesis does not appear to be available online. The Biomed-

ical Imaging Group Rotterdam could be contacted to request the thesis documents.
29Apart from segmenting nerves this method also attempts to segment the epidermis so

that the nerve crossings can be determined.

26

(a) Input image (b) Blue channel (c) Frangi vesselness

(d) Tensor voting (e) Thresholding (f) Filtered skeleton

Figure 2.10: Some intermediate images of the conventional nerve
detection method.

looking for line like structures30. The intention is to find continuous
nerve structures (connecting segments that point along the same direc-
tion), and create a good basis for thresholding. The result of this step
is shown in Figure 2.10d.

4. Thresholding and binary processing A binary nerve mask is pro-
duced by thresholding on a fixed value (Figure 2.10e). From this mask
a nerve skeleton is computed. Nerve segments that contain less than
50 pixels are removed (Figure 2.10f).

2.3.2 Human performance

To measure the human annotation accuracy, test subjects (expert and non-
expert) will be asked to annotate nerves in a set of 100 random patches
(generated as described in Section 2.1.2 excluding affine transformations,
color augmentation and normalization). These annotations will be compared

30When looking for nerves the human brain is able to interpolate a lot of information.
When parts of the nerve cannot be seen, perhaps because it is not part of that particular
slice, a human can still reconstruct the presence of a line.

27

to the ground-truth in the same way as the neural network (e.g. the spatial
distance is computed).

2.4 Implementation details

This section contains references to some of the software that was used to
implement the method described here for anyone attempting to do a similar
project. Everything is implemented in Python 3. NumPy is used to deal with
most matrix data[30]. OpenCV and skikit-image are used for advanced image
manipulation[31][28]. Keras is used to build and train the neural network[32].
A Python library called deepdish is used to deal with the large volumes of
hierarchical data (processed annotations, images, masks, predictions, etc.).
The NDPITools software is used to extract the regions of interest from the
NDPI data files produced by the Hamamatsu NanoZoomer[33]. The neural
network was trained using an NVIDIA GeForce GTX 980 GPU which has
roughly 4GB of memory.

28

Chapter 3

Results

3.1 Training

The running average in Figure 3.1 shows that there is a converging and
diverging trend, although the validation loss varies strongly between epochs.
A potential reason for this high variability could be that the validation score
is computed based on only 8 randomly cropped and flipped patches from the
training set. If the segmentation difficulty varies strongly between patches,
then picking one ‘unlucky’ patch will have a strong negative effect on the
validation loss. In Section 3.5 a nerve is shown that is much more difficult
to see than most other nerves. Such difficult nerves may account for some of
the noise in both training and evaluation.

The neural network training shows some peculiar behaviour. It is common
that the validation loss slightly diverges when the neural network starts to
over-fit on the training set1. However, the cross-entropy diverges so strongly
that it even exceeds the converged value after the first epoch (see Figure 3.2).
This also strongly affects the mixed loss, despite the Jaccard coefficient de-
pendent pre-factor that was added to prevent this2. It is unclear why this
happens, but some ideas are discussed in Section 4.1.

The learning rate was intended to be reduced only when the validation
Jaccard coefficient reaches a plateau. However, when plotting the training
curves it turned out that this is not quite what happened. Instead the learn-

1A way to think of this is that instead of learning universal patterns, the neural network
starts to remember patterns that are specific to the training images. This would cause
worse performance on the validation images.

2The parameters for this pre-factor were no more than an educated guess. It is certainly
possible that another pre-factor performs much better.

29

0 200 400 600 800 1,000 1,200 1,400

100

150

200

250

Epochs

V
al

id
at

io
n

lo
ss

10−6

10−5

10−4

L
ea

rn
in

g
ra

te

Figure 3.1: Validation loss of the first network (n = 1, see Sec-
tion 2.2.3). The solid blue line represents a running average of the
raw data points (also blue). The orange line corresponds to the right
axis and represents the learning rate.

ing rate has been reduced every time the patience threshold of 100 epochs
was reached (as can be seen in Figure 3.3). Further inspection showed that
this was caused by an implementation error which is discussed in Section 4.2.

3.2 Post-processing parameter space

The post-processing steps that are applied in order to evaluate the neural
network performance have two parameters: a thresholding level and a mini-
mum object size (for filtering). Figure 3.4 shows the median spatial distance
score for a range of parameters. Roughly it can be said that a lower threshold
value can be compensated with a higher object size filter. The first optimum
is at L = 0.25 and Omin = 60. These settings are used for all further evalua-
tion of the neural network. The exact values of the first 10 optima are listed
in Table 3.1.

3.3 Cross-validation

Five networks were trained using a different training/validation data split in
accordance with the method. An important question is now how large the

30

0

2

4

6

8

10

H
: Cro

ss
-e
nt

ro
py

40

60

80

100

120

140

J :
Ja

cc
ar

d
co

effi
cie

nt

0 200 400 600 800 1,000 1,200 1,400
40

80

120

160

200

240

Epochs

L:
Los

s

Figure 3.2: Loss, weighted categorical cross-entropy, and Jaccard co-
efficient of the first network. The solid lines represent the running
average of these measures for the validation images, and the dashed
lines for the training images.

31

0 200 400 600 800 1,000 1,200 1,400

70

80

90

100

Epochs

va
li
d
at

io
n

J
ac

ca
rd

co
effi

ci
en

t
(J
n
et

)

10−6

10−5

10−4

L
ea

rn
in

g
ra

te

Figure 3.3: Learning rate of the first network (orange) together with
the validation Jaccard coefficient (the solid green line represents the
minimum Jaccard coefficient since the first epoch, and the dashed
green line the running average) which is used for automatically drop-
ping the learning rate. It is apparent that the learning rate has been
reduced every time the patience threshold of 100 epochs was reached
instead of when a plateau is reached.

0.2 0.4 0.6 0.8
0

20

40

60

80

Threshold level (L)

M
in

.
ob

je
ct

si
ze

(O
m
in

)

10

15

20

25

30

35

Figure 3.4: Median spatial distance between ground-truth and pre-
diction for different post-processing settings.

32

Table 3.1: The top 10 optimal settings for threshold level and min-
imum object size for minimizing the spatial distance median. The
4th column contains the total number of patches that contained any
nerve predictions after the corresponding settings were applied.

Threshold Min. size SD median Patch count

0.25 60 9.94 145
0.31 70 10.14 141
0.23 70 10.26 144
0.11 70 10.26 144
0.33 60 10.27 145
0.31 60 10.38 145
0.29 70 10.4 141
0.09 70 10.47 145
0.15 70 10.51 144
0.31 30 10.6 146

variation is between the predictions by these networks. We compared three
factors:

1. The optimized validation loss value The validation loss improve-
ments during the first 500 epochs are plotted in Figure 3.5. The final
validation loss and median spatial distance of each network is listed
in Table 3.2. Figure 3.6 shows that the correlation between validation
loss and median spatial distance is not very strong (not enough data is
available to make any rigorous statements). Potential reasons for this
include: (1) the loss function or evaluation measure is unsuitable, or
(2) the training set is not very representative and therefore the test set
gives strongly varied results.

2. The spatial distances of each network The distribution of spatial
distance scores for each network, and for the median and average pre-
dictions of all five networks combined, is shown in Figure 3.7. There
are some quite extreme outliers such as a value of 234 for network 2
which is not shown in the plot3.

3Given that the spatial distance can be thought of as an average distance between the
prediction and ground-truth in pixels, 234 is a huge deviation. This outlier could have
been caused by an entire nerve that is not segmented (maybe because the network has not
learned certain subtle edge features).

33

0 50 100 150 200 250 300 350 400 450 500

100

150

200

Epochs

V
al

id
at

io
n

lo
ss

Network 1
Network 2
Network 3
Network 4
Network 5

94.63
85.18

Figure 3.5: Running average (dashed) and minimum (solid) of the
validation loss of all five network for the first 500 epochs (all networks
converge in this interval). On the right axis the values of the smallest
and largest final minimum loss values are shown.

3. The spatial distances between networks The spatial distance be-
tween each network and every other one was computed. All possible
combinations are plotted in Figure 3.8. It is clear that the networks
do not compute very consistent predictions. This is an important in-
dication that the training sets are not representative enough to get
reproducible training results. Assigning different training images could
cause each network to learn different features than the other networks
(this is why taking the median of the prediction of each network is
effective). Another explanation is that the training converges to a lo-
cal minimum too quickly, and that each network has converged to a
different, bad local minimum4.

4This is made less likely by the fact that the same initialization weights were used for
each network. So each network started at the same point in the parameter space.

34

Table 3.2: Validation loss minimum for each network.

Network Validation loss SD median

1 94.63 16.56
2 85.18 12.08
3 91.28 12.06
4 86.42 12.57
5 87.02 9.88

85 90 95
8

10

12

14

16

18

Validation loss (Lval)

S
p
at

ia
l

d
is

ta
n
ce

m
ed

ia
n

Figure 3.6: Linear regression between validation loss and spatial dis-
tance median (Table 3.2).

35

0 20 40 60 80 100 120 140

CNN 1

CNN 2

CNN 3

CNN 4

CNN 5

CNN median

CNN average

Spatial distance

Figure 3.7: Distribution of the spatial distance scores for each net-
work and the median and average prediction of all networks com-
bined. The whisker top and bottom of the box-plot represent the
smallest and largest value. Network 2 has one outlier at 233.52 that
is not shown.

36

0 20 40 60 80 100 120 140 160 180 200 220 240

1,2

1,3

1,4

1,5

2,3

2,4

2,5

3,4

3,5

4,5

Spatial distance

N
et

w
or

k
A

,
N

et
w

or
k

B

Figure 3.8: Distribution of the spatial distance between the trained
networks.

37

(a) Input image (b) CNN 1 (c) CNN 2

(d) CNN 3 (e) CNN 4 (f) CNN 5

Figure 3.9: Example prediction from each network. Substantial dif-
ferences between the predictions are visible. The fifth network fails
to predict the nerve.

The cross-validation factors that we have looked at show that there are
significant differences between each network. Although this can be attributed
to different reasons (such as an unsuitable loss function causing bad conver-
gence), it is quite reasonable to conclude that the training images are not
representative enough for the trained networks to learn very similar image
features. To obtain a more reproducible result the test set has to be larger.
Figure 3.9 shows an example segmentation from each network with substan-
tial differences between each other5. Fortunately there are also examples
where there the differences are a bit more subtle, such as the one in Fig-
ure 3.10. Small differences between the five networks are almost universally
noticeable across the test set. Using the median or average of all predictions
is a powerful way to obtain better results. To get a more complete impression
of the neural network predictions, the average prediction for all test images
is included in Appendix B.

5I think that, when looking at this figure, it is not so hard to imagine the large number
of different edges and nerve structures that must be learned.

38

(a) Input image (b) CNN 1 (c) CNN 2

(d) CNN 3 (e) CNN 4 (f) CNN 5

Figure 3.10: Another set of example predictions.

39

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

20

40

60

80

100

120

140

160

Threshold level

S
p
at

ia
l

d
is

ta
n
ce

Figure 3.11: Distribution of the spatial distances computed for the 16
test images using the conventional method when using different values
to threshold the tensor voting output. The results for a threshold
value larger than 0.50 are omitted because they are very bad.

3.4 Comparison to other methods

3.4.1 Optimizing the conventional method

The conventional method is especially sensitive to the threshold level that is
applied after tensor voting. To get a fair comparison this value is optimized
for our testing set by evaluating all threshold values in {0.05, 0.10, ..., 0.95}.
The result of this analysis is plotted in Figure 3.11. The best performing
threshold value 0.40 is picked for the final comparison.

40

3.4.2 Final results

The performance of the neural network is compared to the conventional
method developed by Pontenagel [7], and to the performance of a few human
test subjects. Two human novices and an expert were asked to trace nerves
manually. They were given unlimited time. The test subjects have different
experience levels with this type of task that are interesting when interpreting
the results:

• Expert This is the same person who created the ground-truth anno-
tations 1-2 months earlier. It should therefore be reasonable to expect
that this person can perform very well with respect to the ground-
truth6.

• Novice 1 The first novice is me (the author of this thesis). I have no
specialist knowledge to tell me what a nerve should look like. How-
ever, I have seen plenty examples of nerves over the past months, and
discussed some considerations related to tracing nerves with the expert.

• Novice 2 The second novice is someone with no prior training at all.
Only a few examples of nerve fibers in the test images have been shown
before the test.

The results of this experiment are plotted in Figure 3.12 together with the
conventional method and the results of the neural network median (because
it performed best). Only the human expert performs better than the deep
convolutional neural network presented in this thesis. The neural network
defeats the conventional method by a big margin, and performs similar to
a human novice. This shows that deep CNNs are a promising and suitable
technique for nerve segmentation7. In the next chapter a number of improve-
ments to the method presented here are discussed that could result in even
better results from the neural network.

6It should be noted that in this test the images are focus-stacked, while the ground-
truth was annotated in Aperio ImageScope (by Leica) where you can scroll through the
focal planes manually. Whether or not this is an advantage is discussed in Section 4.5.1.

7If you find this quantitative analysis unconvincing, or a bit limited, perhaps the images
in Appendix B can convince you instead.

41

0 10 20 30 40 50 60 70 80 90 100

Expert

Novice 1

Novice 2

CNN

Frangi/TV

Spatial distance

Figure 3.12: Distribution of the spatial distances computed for the
16 test images by different methods. Exact values can be found in
Table 3.3.

Table 3.3: Data points that are presented in Figure 3.7 and 3.12. Q1
and Q3 are the first (25% of the data is better) and third (75% of the
data is better) quartile.

Method Q1 Median Q3 Min. Max.

Expert 4.15 6.18 11.83 2.17 96.67
Novice 1 4.94 11.07 26.12 2.11 78.18
Novice 2 11.84 18.16 31.45 2.59 72.83
CNN 1 4.76 12.65 27.99 1.76 77.96
CNN 2 5.6 12.96 31.08 2.44 233.52
CNN 3 5.19 14.09 29.98 1.72 123.49
CNN 4 5.02 9.25 23.06 2.2 75.81
CNN 5 3.65 6.48 24.71 2.28 83.31
CNN median 3.52 7.69 19.89 1.52 75.19
CNN average 3.25 7.98 19.91 2 75.87
Conventional 26.61 35.01 45.7 19.08 63.95

42

(a) Input image (b) Ground-truth

(c) Conventional method (d) CNN 3

Figure 3.13: A nerve that causes significant trouble for the neural
network. The nerve here is hard to see, but in the ground-truth it is
annotated as a nerve.

3.5 Outliers

In the results there are some large outliers. To illustrate where these may
come from we look at one example image8 that, according to the ground-
truth, shows a nerve fiber. This nerve fiber is particularly hard to see, even
for a human observer, and unsurprisingly all networks except for the third
one fail to recognize any nerve in this area9. The conventional method does
detect a part of this nerve along with some false positives.

8See image 6 in Appendix B.
9When looking at other predictions of network 3 it is apparent that it is much more

sensitive for subtle nerve fiber features (data not shown).

43

Chapter 4

Discussion

This chapter touches on several problems that were encountered during the
development and evaluation of the neural network, and makes some recom-
mendations for further work.

4.1 Cross-entropy divergence

It was found that the cross-entropy diverges very strongly after a minimum
(see for example Figure 3.1). To prevent this from affecting the composite
loss too much the pre-factor could be shifted, although it is questionable if the
pre-factor is a good idea at all. I think the more important and interesting
question is why the cross entropy shows this behaviour. I can think of one
reason: the class weights. They could be causing this because they create a
huge difference between the way false negatives are treated by the categorical
cross-entropy and the Jaccard coefficient.

The categorical cross-entropy penalizes false negatives for each class, but
not false positives. Instead, false positives are penalized as false negative
for another class (note that the softmax function will make sure the sum
of all classes per pixel is one). This would not be a major problem if we
weren’t using per-class weights. However, the weight that is applied to the
nerve class is almost 73 times that of the background class because there are
much more background pixels than nerve pixels in the ground-truth. This
means that for the nerve class, cross-entropy highly penalizes false negatives,
but not false-positives. The Jaccard coefficient however does not suffer from
this problem. As training goes on the Jaccard coefficient forces the network
to make sharper predictions in order to improve the intersection-over-union.
This could help create false negatives that are highly penalized by the nerve
cross-entropy.

44

So the suspicion is that cross-entropy would like the prediction to be
more spread out (more ‘speculative’), while the Jaccard coefficient wants the
prediction to be more sharp in order to obtain a better intersection-over-
union ratio. It would be interesting to see what happens when the weighted
categorical cross-entropy is replaced with multi-class binary cross-entropy.

4.2 Learning rate implementation error

Inspecting the Keras source code revealed why the implementation that was
supposed to reduce the learning rate on plateaus (like illustrated in Fig-
ure 4.1) did not work properly. The Keras ‘callback’, a function that is
executed after every epoch, that was used for automatic learning rate re-
duction (ReduceLROnPlateau) takes the name of the metric that should be
checked after each epoch as input in order to determine if a plateau has
been reached. The metric name I used for the multi-class Jaccard coefficient
is ‘val jaccard multi coeff’. It turns out that by default Keras checks
if the metric name contains the string ‘acc’ to determine if it should be
minimized or maximized1. Keras thought I wanted to maximize the Jaccard
coefficient (only because the metric name we picked happened to contain
‘acc’) and was looking for plateaus in the positive direction, which did not
occur. I found this unexpected because elsewhere the default is always to
minimize (unfortunately the API documentation does not specifically warns
for this special behaviour). There was not enough time to compute new
results.

4.3 Spatial distance shortcomings

Although the spatial distance does a relatively good job at producing easy
to understand numbers, there are some serious drawbacks. For example,
a small false positive could benefit the overall score when it is close to a
false negative. In this case DDIV (Ypred, Ytrue) would not be much worse (see
Section 2.3 for the equations), but DDIV (Ytrue, Ypred) would be much lower. I
think that a future comparison should look for a different way to measure the
similarity between prediction and ground-truth. I looked at the histograms
of the individual distances that are averaged in DDIV , but I did not manage
to process this into something that could be presented in this report. Perhaps

1The string ‘acc’ is commonly used in Keras examples to denote accuracy, a property
that should be maximized.

45

Figure 4.1: Artist impression of idealized loss plateaus and learning
rate reduction.

a future study can come up with another similarity measurement. Recent
work on developing a metric for scoring retinal vessel segmentations, such as
[34], could be interesting to look at.

4.4 Ground-truth improvements

Earlier we concluded that the training sets are not representative enough
for highly reproducible results, and that therefore more data (in the form
of annotated images) is required. Another problem with the data is its low
precision. Figure 4.2 shows a few duplicate expert annotations. At the pixel
level quite some variation can be observed between them. While it cannot be
expected of a single human annotator to reproduce annotations with 100%
agreement, I suspect this uncertainty does create a problem for training the
neural network. If there were enough training examples (and sufficient GPU
memory to allow larger batches), this could probably be overcome. But this
is not the case, and therefore I suspect the network has a hard time to learn
definite features in some cases. An edge might belong to a nerve in one
example, but not in the next one.

It would certainly be a good idea to gather more data, and achieve a
higher precision (for example by having a group of experts produce annota-
tions, and computing the median). More information-rich annotations that
do not only indicate the nerve fiber centerline, but also the thickness, could

46

(a) (b)

(c) (d)

Figure 4.2: The same nerve from three annotated patches in the
human evaluation test as annotated by the expert. This is the same
nerve as in Figure 3.9.

improve the performance as well2.
Another aspect that has not been discussed so far is the origin of the

training data. In this study only data from volunteers was used. However,
it is not a given that the nerve fibers in SFN patients look similar enough
to those in healthy volunteers, that volunteer data is sufficient for training a
neural network that can detect nerves in patients with the required accuracy.
Further studies should consider using a more diverse set of data for training
to ensure reproducible results across different targets.

4.5 Further work

4.5.1 Focus stacking

As described in the methods, a Laplacian-of-Gaussian was used for z-projection
of the focal planes recorded by the microscope. Other methods such as local
variance might produce better looking results (although that doesn’t mean
the neural network will automatically be able to perform better). The net-
work could also be designed to deal with the different focal planes by adding
a z dimension to the input tensor. This could even allow the network to

2Since in the current ground-truth all nerves have the same width, the network does
not only have to learn to detect nerves, but also to filter this information in such a way
that it can compute a constant-width segmentation in the end.

47

extract more information; while discussing the annotation routine I observed
that scrolling through focal planes is often done to see if a line structure
linearly propagates through the focal planes (if adjacent parts are in focus in
adjacent focal planes, this can hint at a nerve fiber). It could certainly be the
case that this makes it easier for the neural network to detect nerve fibers,
and given the high amount of subjectivity involved in this task it could be
critical for further improvement.

4.5.2 Secondary network

In order to count nerves and further automate the IENFD measurement, a
secondary neural network could be developed that takes the nerve segmen-
tation that is computed by this network (or an analog), along with the input
image, as input. This network could learn to segment the dermis and epider-
mis based on both the tissue texture, and the location of nerve fibers. If this is
successful the next step could be to automatically count the intra-epidermal
nerve fiber crossings.

4.5.3 Different architectures

While developing the neural network presented here a lot of layers were added
in an attempt to get better results. Although I am quite sure that the
max-pooling layers are very important (to find global features), some of the
convolution layers can probably be removed. There are a lot of large con-
volution layers since the VGG16 architecture was copied for the first half of
the network. Apart from trying to shrink the model, there are also newer
segmentation CNN models (such as LinkNet[22]) that would be interesting
to evaluate.

48

4.6 General recommendations

I thought it would be useful to sum up some findings that lead to good results
when developing a convolutional neural network for image segmentation.

1. Enough pooling If a neural network fails to learn features that can
only be constructed from pixels that are far apart, it is critical that
more pooling layers are added in order to allow the network to collect
global information, before computing the final localized prediction. It
can be hard to find out if this is indeed the limiting factor. Fortunately
too much pooling is not immediately harmful.

2. Good augmentation One of the central challenges of training a neu-
ral network is over-fitting. Initially I tried to prevent this by adding
dropout layers and reducing the number of parameters using less pool-
ing. However, this approach is not very productive. It was advised
to me not to use dropout in CNNs, and certainly not to compromise
the network flexibility/depth. Instead stronger augmentation, such as
contrast and hue shifts, and affine transformations, proved a more suc-
cessful method.

3. Stick to standard models first During my study I had a tendency
to try specialized approaches, such as introducing pixel based weights
into the loss function. Implementing such approaches can be fun (and
time consuming), but according to my limited experience they do gen-
erally not create huge improvements. Instead it is more productive to
first modify more simple aspects of the network design, such as the
amount of pooling, or the type of loss function, in order to find an ap-
proach that roughly solves the problem. If this doesn’t work there are
also more sophisticated models for segmentation problems that have
been published (such as the aforementioned LinkNet). When there are
specific problems, such as the incorrect segmentation of two adjacent
cells as one (this was the case in the original U-Net paper), then it
is a good time to start trying specialized solutions such as per-pixel
weighted cross-entropy.

4. Start with a high learning rate When I noticed that my network
was showing very chaotic training behaviour I decided to remedy this
by reducing the initial learning rate. This does indeed produce a more
stable training curve because smaller steps are taken through the pa-
rameter space. However, with small steps the network will also more
quickly converge to a local minimum. For good results the learning

49

rate should start as high as possible so the gradient descent can make
big steps through the parameter space until it reaches some hyper-
dimensional ‘area’ where jumping around in big steps doesn’t improve
the loss anymore. At this ‘plateau’ the learning rate should be re-
duced so that a new plateau can be found within this area, and so on
(illustrated in Figure 4.1).

50

Acknowledgment

For technical advice and discussions, I thank my supervisor Erik Meijering,
as well as Ihor Smal (postdoc at the Biomedical Imaging Group Rotterdam)
and Aleksei Tiulpin (data scientist in the field of Medical Technology and
PhD candidate at Oulu University, Finland). Through a couple of discussions
Aleksei helped me to find a working neural network architecture and suit-
able loss function. I also thank the Erasmus MC neurology department for
providing us data for this study. And finally I thank Malik Bechakra (PhD
candidate at Erasmus MC Rotterdam) for his work on data acquisition and
collection, annotation, and discussions.

51

Appendices

52

Appendix A

Architecture

53

Layer type Tensor shape

Input 4482 × 3

2x Down-scaling 2242 × 3

3x3 2D Conv. 2242 × 64

3x3 2D Conv. 2242 × 64

2x2 Max-Pool 1122 × 64

3x3 2D Conv. 1122 × 128

3x3 2D Conv. 1122 × 128

2x2 Max-Pool 562 × 128

3x3 2D Conv. 562 × 256

3x3 2D Conv. 562 × 256

3x3 2D Conv. 562 × 256

2x2 Max-Pool 282 × 256

3x3 2D Conv. 282 × 512

3x3 2D Conv. 282 × 512

3x3 2D Conv. 282 × 512

2x2 Max-Pool 142 × 512

3x3 2D Conv. 142 × 512

3x3 2D Conv. 142 × 512

3x3 2D Conv. 142 × 512

2x2 Max-Pool 72 × 512

3x3 2D Conv. 72 × 512

3x3 2D Conv. 72 × 512

Block 1

Block 2

Block 3

Block 4

Block 5

Residual

Concatenate 72 × (512+ 512)

3x3 2D Conv. 72 × 512

3x3 2D Conv. 72 × 512

2x Up-scaling 142 × 512

Concatenate 142 × (512+ 512)

3x3 2D Conv. 142 × 512

3x3 2D Conv. 142 × 512

2x Up-scaling 282 × 512

Concatenate 282 × (512+ 512)

3x3 2D Conv. 282 × 512

3x3 2D Conv. 282 × 512

2x Up-scaling 562 × 512

Concatenate 562 × (512+ 256)

3x3 2D Conv. 562 × 256

3x3 2D Conv. 562 × 256

2x Up-scaling 1122 × 256

Concatenate 1122 × (256+ 128)

3x3 2D Conv. 1122 × 128

3x3 2D Conv. 1122 × 128

2x Up-scaling 2242 × 128

Concatenate 2242 × (128 + 64)

3x3 2D Conv. 1122 × 64

3x3 2D Conv. 1122 × 64

1x1 2D Conv.* 2242 × 3

2x Up-scaling 4482 × 3

Figure A.1: Detailed network architecture diagram containing the
tensor size at each layer (excluding the batch size dimension).
Block 1-5 correspond to the five convolution blocks in VGG16.
The number of convolutions that is applied in a convolution layer
can be determined from the last tensor shape dimension. All
convolution layers use zero padding and apply the ReLU function to
the convolution output.

*Uses softmax activation.

54

Appendix B

Predictions

The following images are the averaged predictions for all 16 test images. I
decided to include the average predictions because they reveal a bit of the
variation between the five trained networks (i.e. faded out predictions were
produced by only one). In the input images (left) the ground-truth annota-
tions are circled by a red line (the enclosed area exactly represents the nerve
and boundary class). I think these images demonstrate the variability in the
ground-truth. Some structures I would classify as nerve are not annotated
as such (and I believe there is a good change some nerves are missing in
the ground-truth). However, I also find the predictions of the neural network
stunningly accurate, in particular considering the total training set contained
only 80 images. A grid is drawn on top of all images with a step size of 20µm.

55

56

57

58

59

Bibliography

[1] National Institute of Neurological Disorders and Stroke, Peripheral neuropa-
thy fact sheet, [Online; accessed 20. Jun. 2018].

[2] L. Z. Jinny Tavee, “Small fiber neuropathy: A burning problem,” Cleveland
Clinic Journal of Medicine, pp. 297–305, May 2009.

[3] G. Lauria, R. Lombardi, F. Camozzi, and G. Devigili, “Skin biopsy for the
diagnosis of peripheral neuropathy,” Histopathology, vol. 54, no. 3, pp. 273–
285, Jul. 2008, issn: 1365-2559. doi: 10.1111/j.1365-2559.2008.03096.x.

[4] W. Kennedy, G. Wendelschafer-Crabb, M. Polydefkis, and J. McArthur,
“Pathology and quantitation of cutaneous innervation,” English (US), in
Peripheral Neuropathy. Elsevier Inc., Dec. 2005, vol. 1, pp. 869–895, isbn:
9780721694917. doi: 10.1016/B978-0-7216-9491-7.50037-5.

[5] G. Lauria, S. T. Hsieh, O. Johansson, W. R. Kennedy, J. M. Leger, S. I. Mell-
gren, M. Nolano, I. S. J. Merkies, M. Polydefkis, A. G. Smith, C. Sommer,
and J. Valls-Solé, “European Federation of Neurological Societies/Peripheral
Nerve Society Guideline on the use of skin biopsy in the diagnosis of small
fiber neuropathy. Report of a joint task force of the European Federation of
Neurological Societies and the Peripheral Nerve Society,” European Journal
of Neurology, vol. 17, no. 7, pp. 903–912, Jul. 2010, issn: 1468-1331. doi:
10.1111/j.1468-1331.2010.03023.x.

[6] S. Shanon, S. Manuel, D. Kathrin, F. Stephan, P. Adrian, K. Thierry, S. An-
dreas, P. Axel, S. Claudia, and S. A. K, “A semi-automated method to assess
intraepidermal nerve fibre density in human skin biopsies,” Histopathology,
vol. 68, no. 5, pp. 657–665, Aug. 2015. doi: 10.1111/his.12794.

[7] P. Pontenagel, “Towards automated quantification of intra-epidermal nerve
fibers for diagnosis of small-fiber neuropathy in brightfield microscopy,” Mas-
ter’s thesis, Erasmus MC, TU Delft, Feb. 2017.

[8] J. Casanova-Molla, M. Morales, N. Solà-Valls, A. Bosch, M. Calvo, J. M.
Grau-Junyent, and J. Valls-Solé, “Axonal fluorescence quantitation provides
a new approach to assess cutaneous innervation,” Journal of Neuroscience
Methods, vol. 200, no. 2, pp. 190–198, 2011, issn: 0165-0270. doi: https:
//doi.org/10.1016/j.jneumeth.2011.06.022.

60

https://doi.org/10.1111/j.1365-2559.2008.03096.x
https://doi.org/10.1016/B978-0-7216-9491-7.50037-5
https://doi.org/10.1111/j.1468-1331.2010.03023.x
https://doi.org/10.1111/his.12794
https://doi.org/https://doi.org/10.1016/j.jneumeth.2011.06.022
https://doi.org/https://doi.org/10.1016/j.jneumeth.2011.06.022

[9] A. Sathyanesan, T. Ogura, and W. Lin, “Automated measurement of nerve
fiber density using line intensity scan analysis,” Journal of Neuroscience
Methods, vol. 206, no. 2, pp. 165–175, 2012, issn: 0165-0270. doi: https:
//doi.org/10.1016/j.jneumeth.2012.02.019.

[10] P. Vincenzo, N. Maria, S. Annamaria, C. Giuseppe, V. D. F., and S. Lu-
cio, “Intraepidermal nerve fiber analysis using immunofluorescence with and
without confocal microscopy,” Muscle & Nerve, vol. 51, no. 4, pp. 501–504,
Jul. 2014. doi: 10.1002/mus.24338. eprint: https://onlinelibrary.

wiley.com/doi/pdf/10.1002/mus.24338.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, May 2017, issn: 0001-0782. doi: 10.1145/3065386.

[12] Litjens Geert, Kooi Thijs, Bejnordi Babak Ehteshami, Setio Arnaud Arindra
Adiyoso, Ciompi Francesco, Ghafoorian Mohsen, van der Laak Jeroen A.W.M.,
van Ginneken Bram, and Sánchez Clara I., “A survey on deep learning in
medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017,
issn: 1361-8415. doi: http://dx.doi.org/10.1016/j.media.2017.07.
005.

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M.
Wells, and A. F. Frangi, Eds., Cham: Springer International Publishing,
2015, pp. 234–241, isbn: 978-3-319-24574-4.

[14] Ulman Vladimı́r, Maška Martin, Magnusson Klas E G, Ronneberger Olaf,
Haubold Carsten, Harder Nathalie, Matula Pavel, Matula Petr, Svoboda
David, Radojevic Miroslav, Smal Ihor, Rohr Karl, Jaldén Joakim, Blau He-
len M, Dzyubachyk Oleh, Lelieveldt Boudewijn, Xiao Pengdong, Li Yuex-
iang, Cho Siu-Yeung, Dufour Alexandre C, Olivo-Marin Jean-Christophe,
Reyes-Aldasoro Constantino C, Solis-Lemus Jose A, Bensch Robert, Brox
Thomas, Stegmaier Johannes, Mikut Ralf, Wolf Steffen, Hamprecht Fred A,
Esteves Tiago, Quelhas Pedro, Demirel Ömer, Malmström Lars, Jug Florian,
Tomancak Pavel, Meijering Erik, Muñoz-Barrutia Arrate, Kozubek Michal,
and Ortiz-de-Solorzano Carlos, “An objective comparison of cell-tracking al-
gorithms,” Nature Methods, vol. 14, p. 1141, Oct. 2017. doi: http://dx.
doi.org/10.1038/nmeth.447310.1038/nmeth.4473.

[15] Poplin Ryan, Varadarajan Avinash V., Blumer Katy, Liu Yun, McConnell
Michael V., Corrado Greg S., Peng Lily, and Webster Dale R., “Prediction of
cardiovascular risk factors from retinal fundus photographs via deep learn-
ing,” Nature Biomedical Engineering, vol. 2, no. 3, pp. 158–164, 2018, issn:
2157-846X. doi: https://doi.org/10.1038/s41551-018-0195-0.

61

https://doi.org/https://doi.org/10.1016/j.jneumeth.2012.02.019
https://doi.org/https://doi.org/10.1016/j.jneumeth.2012.02.019
https://doi.org/10.1002/mus.24338
https://onlinelibrary.wiley.com/doi/pdf/10.1002/mus.24338
https://onlinelibrary.wiley.com/doi/pdf/10.1002/mus.24338
https://doi.org/10.1145/3065386
https://doi.org/http://dx.doi.org/10.1016/j.media.2017.07.005
https://doi.org/http://dx.doi.org/10.1016/j.media.2017.07.005
https://doi.org/http://dx.doi.org/10.1038/nmeth.4473 10.1038/nmeth.4473
https://doi.org/http://dx.doi.org/10.1038/nmeth.4473 10.1038/nmeth.4473
https://doi.org/https://doi.org/10.1038/s41551-018-0195-0

[16] C. L Srinidhi, P. Aparna, and J. Rajan, “Recent advancements in retinal
vessel segmentation,” Journal of Medical Systems, vol. 41, no. 4, p. 70, Mar.
2017, issn: 1573-689X. doi: 10.1007/s10916-017-0719-2.

[17] A. Shvets, A. Rakhlin, A. A. Kalinin, and V. Iglovikov, “Automatic instru-
ment segmentation in robot-assisted surgery using deep learning,” bioRxiv,
2018. doi: 10.1101/275867. eprint: https://www.biorxiv.org/content/
early/2018/06/20/275867.full.pdf.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the 32nd
International Conference on Machine Learning, F. Bach and D. Blei, Eds.,
ser. Proceedings of Machine Learning Research, vol. 37, Lille, France: PMLR,
Jul. 2015, pp. 448–456.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” Computing Research Repository, vol. abs/1409.1556,
2014. arXiv: 1409.1556.

[20] V. Iglovikov and A. Shvets, “TernausNet: U-Net with VGG11 Encoder Pre-
Trained on ImageNet for Image Segmentation,” Computing Research Repos-
itory, vol. abs/1801.05746, 2018. arXiv: 1801.05746.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[22] A. Chaurasia and E. Culurciello, “Linknet: Exploiting encoder representa-
tions for efficient semantic segmentation,” Computing Research Repository,
vol. abs/1707.03718, 2017. arXiv: 1707.03718.

[23] V. Iglovikov, S. Mushinskiy, and V. Osin, “Satellite imagery feature detection
using deep convolutional neural network: A kaggle competition,” Computing
Research Repository, vol. abs/1706.06169, 2017. arXiv: 1706.06169.

[24] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial
Intelligence and Statistics, 2010.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations 2015, 2015. arXiv:
1412.6980.

[26] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele,
and T. Tuytelaars, Eds., Cham: Springer International Publishing, 2014,
pp. 818–833, isbn: 978-3-319-10590-1.

62

https://doi.org/10.1007/s10916-017-0719-2
https://doi.org/10.1101/275867
https://www.biorxiv.org/content/early/2018/06/20/275867.full.pdf
https://www.biorxiv.org/content/early/2018/06/20/275867.full.pdf
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1801.05746
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1707.03718
http://arxiv.org/abs/1706.06169
http://arxiv.org/abs/1412.6980

[27] Peng Hanchuan, Ruan Zongcai, Long Fuhui, Simpson Julie H, and Myers
Eugene W, “V3D enables real-time 3D visualization and quantitative anal-
ysis of large-scale biological image data sets,” Nature Biotechnology, vol. 28,
p. 348, Mar. 2010. doi: http://dx.doi.org/10.1038/nbt.161210.1038/
nbt.1612.

[28] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D.
Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image contributors,
“scikit-image: image processing in Python,” PeerJ, vol. 2, p. 453, Jun. 2014,
issn: 2167-8359. doi: 10.7717/peerj.453.

[29] G. Borgefors, “Distance transformations in digital images,” Computer Vi-
sion, Graphics, and Image Processing, vol. 34, pp. 344–371, 1986.

[30] T. E. Oliphant, Guide to NumPy, 2nd. USA: CreateSpace Independent Pub-
lishing Platform, 2015, isbn: 9781517300074.

[31] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

[32] F. Chollet et al., Keras, https://keras.io, 2015.

[33] C. Deroulers, D. Ameisen, M. Badoual, C. Gerin, A. Granier, and M. Lar-
taud, “Analyzing huge pathology images with open source software,” Di-
agnostic Pathology, vol. 8, no. 1, p. 92, Jun. 2013, issn: 1746-1596. doi:
10.1186/1746-1596-8-92.

[34] Z. Yan, X. Yang, and K. T. Cheng, “A skeletal similarity metric for quality
evaluation of retinal vessel segmentation,” IEEE Transactions on Medical
Imaging, vol. 37, no. 4, pp. 1045–1057, Apr. 2018, issn: 0278-0062. doi:
10.1109/TMI.2017.2778748.

63

https://doi.org/http://dx.doi.org/10.1038/nbt.1612 10.1038/nbt.1612
https://doi.org/http://dx.doi.org/10.1038/nbt.1612 10.1038/nbt.1612
https://doi.org/10.7717/peerj.453
https://doi.org/10.1186/1746-1596-8-92
https://doi.org/10.1109/TMI.2017.2778748

	1 Introduction
	1.1 Neuropathology
	1.2 Intra-Epidermal Nerve Fiber Density
	1.3 Automated counting
	1.4 Previous work
	1.5 Challenges
	1.6 Deep learning in biomedical imaging
	1.7 Goal

	2 Methods
	2.1 Data
	2.2 Neural network
	2.3 Evaluation
	2.4 Implementation details

	3 Results
	3.1 Training
	3.2 Post-processing parameter space
	3.3 Cross-validation
	3.4 Comparison to other methods
	3.5 Outliers

	4 Discussion
	4.1 Cross-entropy divergence
	4.2 Learning rate implementation error
	4.3 Spatial distance shortcomings
	4.4 Ground-truth improvements
	4.5 Further work
	4.6 General recommendations

	Acknowledgment
	Appendices
	A Architecture
	B Predictions
	Bibliography

