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Abstract

Counterfactual explanations (CFEs) offer a tangible and actionable way to explain recommen-
dations by showing users a ”what-if” scenario that demonstrates how small changes in their
history would alter the system’s output. However, existing CFE methods are susceptible to bias,
generating explanations that might misalign with the user’s actual preferences. In this thesis, we
study ACCENT, a neural CFE framework, and analyze its behavior through the lens of popularity
bias. We introduce two alignment metrics, popularity distribution similarity (PDS) and expected
popularity deviation (EPD), and evaluate 736 users with strongly niche- or blockbuster-oriented
histories on MovieLens 1M and Amazon Video Games. Analysis shows that ACCENT’s expla-
nations are systematically misaligned with historical user popularity preference. To address this,
we propose a pre-processing step that leverages large language models to identify and filter
out-of-character history items before generating explanations. Compared to simple heuristics
and embedding-based filters, LLM-based filtering yields counterfactuals that are more closely
aligned with each user’s popularity preferences, while preserving explanation conciseness and
fidelity. A comparison between 4B and 8B parameter models further reveals that larger LLMs pro-
vide more stable, instruction-following behavior and stronger alignment, at the cost of increased
computational overhead.
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1
Introduction

This chapter provides the foundation for the thesis. In § 1.1, the broader context in which explain-
able recommender systems and counterfactual explanations have emerged is first discussed,
and then introduces how large language models can enhance these explanations by aligning
them more closely with user expectations. § 1.2 then states the research questions used to
approach the problem and goes over the main contributions of the thesis. Finally, § 1.3 goes
over the structure of the rest of this document.

1.1. Context and motivation
Recommendation and Explainability Recommender systems (RS) have become a vital tool
for guiding users to relevant content across various domains, including movies, music, and e-
commerce [48, 11]. By learning from past user interactions, modern RS can personalize sug-
gestions to each individual, greatly enhancing the user experience. As these systems become
increasingly complex, leveraging deep learning and vast amounts of data, the decision-making
process becomes more opaque. In the current age, where the content we see shapes our opin-
ions and actions, this raises concerns about transparency and trust; users and stakeholders may
question why certain items are recommended [12]. Explainability in recommender systems has
thus emerged as a critical area of research. An explainable RS attempts to provide a clear and
understandable reason behind its suggestions, which has been shown to increase user satisfac-
tion and confidence in the system [69]. Over the years, various explanation approaches have
been explored, but despite these advances, a key challenge remains: ensuring that the expla-
nations truly resonate with the user’s perspective and needs. It is not enough for an explanation
to be logically correct; it must also be meaningful to the user. This observation sets the stage for
more nuanced explanation strategies, such as counterfactual explanations, that can offer more
profound insight into the recommendation process.

Counterfactuals Counterfactual explanations (CFE) [15, 62] do not just state why a prediction
was made, but highlight how the prediction would change if the user behaviors or inputs were
(minimally) different. In the recommendation setting, this typically means identifying a subset of
the user’s past actions that, if removed, would alter the top recommendation. A user might, for
instance, be told the following:

You were recommended ’John Wick’ because you previously liked ’Taken’ and ’The
Equalizer’. Otherwise, you would have been recommended ’Mean Girls’.

This format provides a highly personalized and actionable explanation, allowing users to infer
how their interests drive recommendations. The usefulness of this type of explanation is backed
up by empirical research: participants in a user study on CFEs in recommendations [49] indi-
cated they would like to see more of these detailed explanations instead of high-level trans-
parency statements, which are often displayed in current applications. CFEs were especially

1



1.2. Research Questions and Contributions 2

preferred by participants if they perceived the decision-making based on the recommendation
as relatively consequential.

Rashomon and User-Alignment A well-known issue with CFEs is the Rashomon effect [38]:
multiple distinct explanations can be valid for the same recommendation, each highlighting a
different set of changes that might contradict each other. While this diversity of possible ex-
planations can be seen as a strength, it also raises the question of which explanation should
be shown to the user. Prior work tackles this in several, non-mutually exclusive ways, such as
keeping only the nearest edit [16, 55, 59] or returning a diverse set of multiple counterfactuals [6,
39]. Instead, this work argues that the selected CFE should align with the user’s expectations
and interests. Highlighting an obscure or marginally relevant item may satisfy formal criteria, yet
appear unintuitive or misleading to the user. Previous research also stresses that explanations
should be tailored to the user and context, as different users value different criteria [8, 58].

The need for alignment becomes even more relevant when considering that explanation meth-
ods may reflect biases in the underlying recommender model. Because many CFE frameworks
operate on internal signals such as gradients or influence measures, systemic biases can sur-
face in the generated explanations. Figure 1.1 demonstrates how this might look with popularity
bias [1], where users mainly interested in niche items may fail to resonate with explanations
based on popular items.

user profile 70% non-popular 30% popular

user expectation 70% non-popular 30% popular

recommendations 40% non-popular 60% popular

counterfactual set 100% popular

Figure 1.1: A user with both popular and non-popular items in their history may expect a similar balance in
recommendations and counterfactual explanations. However, this alignment often breaks due to popularity bias. The
effect can be even stronger in counterfactual sets, which are typically small and thus more sensitive to such skew.

Bridging the gap between model faithfulness and user-alignment is crucial for the next genera-
tion of explainable recommenders. Explanations should not only reflect the model’s reasoning
but also be framed in ways that resonate with the user, fostering trust and understanding. This
thesis investigates using Large Language Models (LLMs) to enhance counterfactual explana-
tion frameworks, leveraging their contextual understanding and nuanced reasoning to reduce
misalignment. The goal is to steer existing methods toward explanations that remain rigorous in
their counterfactual logic while better matching what users find intuitive and convincing.

1.2. Research Questions and Contributions
Research Questions To guide the approach that this thesis will take to improve the user-
alignment of counterfactuals, the following research questions will be answered:

Research Question 1: To what extent are counterfactual explanations generated by
ACCENT affected by misaligned items?

Before improving user alignment, it is essential to understand the extent and nature of the prob-
lem in an established CFE framework. ACCENT [59] is a recent neural recommender explana-
tion method that leverages influence functions to identify the most impactful training interactions
for generating counterfactuals. While effective in producing faithful explanations, its reliance on
internal influence signals may surface items that are not representative of a user’s core pref-
erences. For example, an influential but out-of-character item could dominate the explanation,
making it appear unintuitive or irrelevant. Quantifying this misalignment provides the empirical
basis for this research.
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Research Question 2: How effectively can the proposed LLM-augmented frame-
work improve the generation of counterfactual explanations?

Large language models can capture semantic relationships that traditional numerical methods
can overlook. Integrating them into the counterfactual explanation pipeline enables reasoning
over item meaning and user intent, which could guide the selection of counterfactuals closer to
the user’s perceived preferences.

Research Question 3: How does the size of the LLM influence the quality of the
counterfactual explanations?

Model size is a key variable in LLM performance, with larger models generally offering bet-
ter reasoning and contextual understanding. However, bigger is not always better for down-
stream tasks constrained by latency or cost. The final question examines how the parameter
count affects CFE quality, comparing the performance of a small (4B) and a medium (8B) sized
instruction-tuned model in the proposed framework.

Contributions This thesis makes the following contributions:

• Analysis of existing approach: Viewing a recent CFE method through the lens of pop-
ularity bias, current algorithms are shown to often generate counterfactual item sets that
diverge from users’ actual interaction histories.

• Methodology: A novel framework is introduced that integrates LLMs in the process of
generating counterfactual explanations for the recommendation task. The method uses
LLMs to create a user representation and evaluates each item’s contribution in their history.
Based on this, certain items are left out of the counterfactual generation process, leading
to a counterfactual that aligns more with user preferences.

• Implementation and Evaluation: The proposed approach is implemented and evaluated
on two public benchmarks, MovieLens 1M and Amazon VideoGames. Three metrics are
further introduced: two to identify popularity misalignment, and one to evaluate explanation
quality.

• Analysis of LLM Size Impact: The effectiveness of the framework is examined using two
different LLMs, Gemma3 (4B parameters) and Qwen3 (8B parameters). By comparing the
results, the influence of model size on the quality of explanations is shown.

Overall, this thesis advances the state of the art in explainable recommender systems by demon-
strating how large language models can be leveraged to enhance the user alignment of coun-
terfactual explanations. It ultimately aims to make personalized recommendations more trans-
parent and user-centric.

1.3. Structure
The remainder of this thesis is organized as follows. Chapter 2 provides the necessary back-
ground, covering the fundamentals of recommender systems, explainable recommender sys-
tems, and large language models. Chapter 3 focuses on counterfactual explanations, detailing
existing approaches in recommender systems, influence analysis, and the ACCENT framework,
and formulating the problem studied in this thesis. Chapter 4 provides a detailed description of
the proposed LLM-based augmentation step. Chapter 5 describes the datasets, experimental
design, and implementation details, followed by the presentation of results in Chapter 6. Chapter
7 discusses the findings, and Chapter 8 concludes the thesis with a summary.



2
Background

In this chapter, the technical foundation for this thesis is established. § 2.1 starts by summa-
rizing the fundamentals of modern recommender systems and the evolution towards neural ap-
proaches, followed by a brief review of popularity bias and common evaluation methods for RS.
§ 2.2 explores explainable recommender systems, examining types of explanations, the usage
landscape, and the evaluation of explanations. Finally, § 2.3 provides a concise primer on lan-
guage models.

2.1. Recommender Systems
Fundamentals Recommender systems are a fundamental area of research in Computer Sci-
ence and play a key role in many modern applications, such as e-commerce (Amazon), stream-
ing (Spotify, Netflix), and social media (TikTok, YouTube). Their primary objective is to predict
user preferences based on historical data, enhancing user experience through personalized
content delivery. Traditionally, recommender systems have relied on two main approaches:

• Collaborative Filtering (CF) [47] makes recommendations purely based on historical user-
item interaction data, assuming that similar users have similar preferences (user-based
CF) or that users prefer similar items (item-based CF). Early collaborative filtering methods
utilized nearest-neighbor approaches [46].

• Content-Based Filtering [60] suggests items based on explicit item attributes and a user’s
past preferences. Features such as genres, keywords, or textual descriptions are used.

Popularized by the Netflix Prize [3], matrix factorization (MF) is a particularly influential method
in collaborative filtering. It maps users and items into a shared latent factor space, modeling
user-item interactions through the inner product of their corresponding vectors. This latent rep-
resentation allows MF models to capture complex preference structures in a compact form, gen-
eralizing beyond observed interactions. The Netflix Prize competition demonstrated that MF
models outperform classic nearest-neighbor techniques by enabling the incorporation of addi-
tional information, such as temporal effects and implicit feedback [30].

Neural Collaborative Filtering Despite their success and widespread adoption, MF-based
methods are reliant on the inner product, which limits their ability to capture nonlinear relation-
ships. To overcome these limitations, deep learning models have gained traction in recommen-
dation tasks over the past decade. A notable development was the introduction of Neural Col-
laborative Filtering (NCF) [19], a general framework for learning user-item interactions through
neural networks. Within this framework, the authors proposed several models, among which
Neural Matrix Factorization (NeuMF) has become widely used. Figure 2.1 shows an overview
of the model.

NeuMF combines a generalized matrix factorization (GMF) component, which models linear

4



2.1. Recommender Systems 5

Figure 2.1: Excerpt from [19]. Architecture of the Neural Matrix Factorization (NeuMF) model. NeuMF unifies two
complementary approaches: the Generalized Matrix Factorization (GMF) branch, which captures linear user-item
interactions via element-wise multiplications of embeddings, and the Multi-Layer Perceptron (MLP) branch, which
captures nonlinear relationships through successive nonlinear transformations of concatenated embeddings. By
combining these two perspectives, NeuMF can model both simple and complex interaction patterns, leading to

improved accuracy over traditional MF. The output of both branches is concatenated and fed into a final prediction
layer, producing a score representing the likelihood of user-item engagement.

interactions via element-wise product, with a multi-layer perceptron (MLP) component that cap-
tures nonlinear patterns by processing concatenated user and item embeddings. The outputs of
both components are fused and passed through a final prediction layer, allowing NeuMF to learn
both low- and high-order interaction functions. This hybrid design enables NeuMF to surpass
the limitations of MF’s linearity while still reaping the benefits of its powers. As a result, NeuMF
has become a foundational deep learning-based recommender model.

Bias Recommender systems are not neutral. They learn from historical data, which inevitably
reflects the preferences and consumption patterns of the user base. As a result, these systems
inherit and often amplify systematic biases, leading to recommendations that disproportionately
favor certain items, users, or viewpoints.

Among many forms of bias identified in recommendation studies, popularity bias remains one
of the most widespread and consequential. Popularity bias refers to the phenomenon where
already popular items (with many past interactions in the training data) receive disproportionately
more recommendations. This contributes to a ”rich-get-richer” effect that limits diversity and
reduces exposure for niche content [28, 1].

In real-world settings, biases can manifest in phenomena such as the filter bubble and echo
chambers, where users are repeatedly exposed to similar viewpoints, content, or products, nar-
rowing their informational landscape [25]. This can reinforce existing beliefs, reduce serendipity,
and hinder the discovery of new interests. Such effects have motivated the field of fair and re-
sponsible recommender systems, which aims not only to improve accuracy but also to promote
diversity, fairness, and transparency. By aligning recommendation strategies with broader social
values, these systems strive to mitigate harm, increase inclusivity, and ensure that recommen-
dations serve the interests of both individuals and society at large.
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Addressing bias often requires multi-faceted approaches: re-weighting or re-sampling training
data to better represent minority cases, incorporating fairness-aware objectives into model train-
ing, adding diversity-promoting constraints to ranking algorithms, or explicitly modeling bias fac-
tors to correct for them at inference time [5]. Increasingly, research also focuses on user-centric
evaluations, ensuring that debiasing techniques not only improve statistical measures but also
align with perceived fairness and trust from the user’s perspective.

Evaluation Offline evaluation in RS often depends on the nature of the prediction task. Two
widely used metrics are Root Mean Square Error (RMSE) for rating prediction tasks, and Nor-
malized Discounted Cumulative Gain (nDCG) for ranking tasks.

For rating prediction, RMSE measures the average magnitude of the prediction error between
the system’s predicted ratings and the true ratings in the test set [30]. A lower RMSE indicates
that the model is better at estimating users’ explicit feedback. It is defined as:

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(2.1)

Where ŷi are predicted values, yi are the ground truth values, and n is the number of test points.
RMSE treats all errors equally, regardless of whether they occur for high or low ratings, making
it a straightforward, albeit sometimes blunt tool for measuring recommendation quality.

For the top-K recommendation task, the focus shifts from predicting exact scores to ranking
items so that the most relevant appear at the top of the list. Among ranking metrics, nDCG@K
is particularly valued because it accounts for both the relevance of recommended items and their
positions in the top K rankings [23]. It first computes the Discounted Cumulative Gain (DCG):

DCG@K =

K∑
i=1

2reli − 1

log2(i+ 1)
(2.2)

where reli is the graded relevance of the item at rank i. Higher relevance scores contribute more
to the gain, but their impact is discounted logarithmically with rank, reflecting the diminishing
attention users pay to lower-ranked items. To normalize this across users with different numbers
of relevant items, the DCG is divided by the Ideal DCG (IDCG), which is the DCG obtained if all
relevant items were ranked in the best possible order:

nDCG@K =
DCG@K

IDCG@K
(2.3)

This gives us an nDCG score that ranges from 0 to 1, with 1 representing a perfect ranking.

In large-scale recommenders, computing nDCG over the entire item catalog can be computation-
ally expensive. A common workaround is nDCG with negative sampling, where a small subset
of items not interacted with by the user are randomly sampled to act as non-relevant items along-
side the relevant test items [19]. The system then ranks this reduced candidate set instead of
the full catalog. While this approach significantly reduces computation time, it is important to
note that it produces an estimate of nDCG rather than the exact value.

2.2. Explainable Recommender Systems
With the move towards deep-learning based approaches, many state-of-the-art recommenda-
tion algorithms are difficult to explain. Although increased model complexity often correlates
with higher accuracy, systems risk eroding trust and harming the user experience by not intu-
itively explaining why a user should like an item [20]. At the same time, regulations such as the
GDPR [13] and the upcoming AI Act [14] strengthen users’ right to explanation and algorithmic
accountability. Explanations can also reduce users’ cognitive workload and help them better
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understand and trust the underlying algorithms. The remainder of this section outlines the major
types of explanations, key applications, and evaluation strategies.

Types of Explanations Some machine learning models, such as linear regression or decision
trees, are considered inherently interpretable due to their simplicity. These have also been
applied to the recommendation task. For instance, [41] uses sparse linear models, learning
an item-item weight matrix to generate recommendations directly. Due to the sparse nature,
only a few feature weights will be non-zero, which can then easily be interpreted. Similarly, [50]
constructs a decision tree for each user, with the decision rules based on a single attribute value.
Each leaf represents a predicted rating, allowing the recommendation to be explained directly
through the decision path. These transparent models provide clear and faithful explanations,
as the scoring function of the model itself is used as an explanation. However, they typically
underperform in recommendation accuracy compared to complex black-box models.

To explain black-boxmodels, explanationmethods are commonly grouped into three categories [36,
51].

Surrogate models: A black-box model can be approximated with a simpler, inherently explain-
able model trained on the black box’s predictions [38]. The surrogate model is then used for
explanations. While this approach is intuitive and straightforward, it should be noted that the
global surrogate model only draws conclusions about the black-box model and not the actual
data: the surrogate model never sees the true outcome.

Feature importance: Feature-attribution methods quantify how much each input feature (e.g.,
user demographics, itemmetadata, interaction history) contributes to a recommendation. Pertubation-
based approaches, such as LIME [44] and its variation for recommender systems [42], modify
these features to observe the impact on the model’s output. Gradient-based methods, often
used with neural recommenders, utilize gradients to evaluate the effect of small changes in in-
put features on model predictions. Integrated Gradients is a widely used example, computing
attributions by averaging gradients along a path from a baseline to the actual input [52].

Examples: Example-based explanations justify recommendations by referencing specific data
points. Adversarial examples are small, imperceptible perturbations to an input that can cause
a system to make incorrect predictions [54], typically used to improve model robustness during
training [65]. Influential instances detect which inputs from the training data were the most influ-
ential for a prediction. The easiest way to do this is by retraining the model without specific inputs
and assessing the impact. However, this is impractical for large amounts of data. In practice,
mathematical techniques are used that do not require retraining [29]. Such methods can also be
adapted for recommender systems [7]. These techniques can also underpin the third category:
Counterfactual examples, which show how minimal changes to the input can alter the models
output. Influence-based and alternative approaches to counterfactual generation are discussed
in Chapter 3, with a focus on the former due to its relevance to the method used in this work.

Figure 2.2 provides an overview of the main categories of explainability techniques applied to
recommender systems, as outlined above.

Figure 2.2: Landscape of explainable recommenders.
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Usage Landscape Explainable recommenders are no longer just academic prototypes; they
are increasingly deployed in real-world systems across multiple domains [69]. Their usage can
be broadly grouped in three categories: high-stakes decision support, user engagement and
trust, and model development.

High-stakes: The European AI Act, scheduled for enforcement starting in 2026, classifies sys-
tems that could pose a significant risk of harm to the health, safety, or rights of a person as
high-risk and obliges providers to log clear, human-interpretable explanations for automated
decisions [14]. Explainability is therefore not always optional anymore. In the context of recom-
mender systems, some key examples might include suggesting treatment options in healthcare,
recommending credit products, personal loans, or financial advice, finding relevant precedents
or counter-arguments for case preparation, matching vacancies to job-seekers, or ranking appli-
cants for recruiters.

User engagement and trust: The most widespread use of explainable recommendations today
is in consumer-facing platforms, such as streaming services, e-commerce sites, and news apps.
These systems often display simple justifications to increase perceived transparency and trust.
Empirical studies show that even relatively shallow explanations can improve perceived trans-
parency, satisfaction, and sometimes choice confidence [31]. Typical interface patterns include:

• Recommendations tied to recent activity, such as ”Because you watched...” or ”Frequently
bought together...”

• Cold-start onboarding prompts, such as ”Did we guess right?” to quickly capture prefer-
ences

• Justifications for diverse or unexpected suggestions, aimed at increasing acceptance of
serendipitous or long-tail items

Model development: For system designers and researchers, explanations provide insight into
the model’s internal behavior, helping to diagnose failure cases, identify and mitigate biases, and
refine algorithms without relying solely on aggregate metrics or expensive online A/B tests. In
this setting, explanations are primarily a tool for debugging and analysis, rather than for end-user
persuasion.

Evaluating Explanations It isn’t easy to measure the quality of an explanation due to how
subjective this can be. A justification that one user finds useful might not be helpful at all for
another, and vice versa. As such, there are few approaches for quantifying the effectiveness of
recommender explanations.

Ideally, explanations would be evaluated offline, without requiring resource-intensive user stud-
ies. This is easier said than done. A comprehensive study on offline metrics for evaluating
explanations in recommender systems [68] finds that there is no consensus on which metrics to
use. In a review of 103 papers, the authors identify a broad range of metric families, including
but not limited to precision/recall-style measures against some form of ground truth, path-based
measures for knowledge-graph explanations, text-overlap metrics such as BLEU and ROUGE,
correlation-based analyses, and counterfactual metrics that test whether elements in the expla-
nation are causally relevant to the recommendation. In many cases, the choice of metric is tightly
coupled to how the explanation method is constructed.

While these offline metrics can provide valuable insights and can scale well, many fail to capture
the nuanced subjective value of an explanation to real users. BLEU and ROUGE, for example,
are some of the most commonly used metrics for offline evaluation, but research suggests they
only very weakly correlate with human perception of meaningfulness [35]. BLEU and ROUGE,
together with anecdotal evidence–which also is not rigorous [40]–make up about 60% of the
offline evaluations done in the papers reviewed in [68]. Offline evaluation should thus be inter-
preted with care and, where possible, complemented with user-based evaluation.

One approach that mixes offline and online evaluation is described in [64]. The authors conduct
a user study measuring the effectiveness of machine-generated explanations and then train ma-
chine learning models on the collected scores and justifications to derive a numerical evaluation
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metric. Although the resulting models do not achieve high accuracy against the human data, the
generated scores correlate better with human judgments than traditional explainability metrics.

2.3. Language Models
Embedding models Embedding models map discrete objects such as words, users, or items
into continuous vector spaces where semantic or behavioral similarity corresponds to geomet-
ric proximity. Early approaches like word2vec learn embeddings by predicting neighboring to-
kens in large corpora, yielding dense representations that capture syntactic and semantic reg-
ularities [37]. Building on this idea, more recent transformer-based models such as Sentence-
BERT produce sentence- and document-level embeddings that can be used directly for similarity
search, clustering, and downstream tasks [43]. In recommender systems, embedding models
make it possible to represent users and items in a shared latent space, enabling efficient com-
putation of relevance and flexible integration of textual metadata.

LLM basics Large language models are a class of artificial intelligence models that learn to
generate and understand text by predicting the next token in a sequence. A token is a unit of text
used by the model, often a word, part of a word, or even a single character. LLMs are trained
on massive, diverse, textual datasets that contain trillions of tokens.

At their core, LLMs are giant neural networks, based on the transformer architecture [61], which
introduced self-attention to efficiently capture long-range dependencies in text. During inference,
the model takes the existing sequence of tokens and estimates the probability distribution over
possible next tokens, selecting one according to its decoding strategy. Figure 2.3 illustrates this
process.

Figure 2.3: Excerpt from [53]. LLMs work on basis of next-token prediction: given the sequence ”The sky is”, the
model assigns probabilities to possible continuations, with ”blue” being the most likely in this case.

The performance of LLMs follows scaling laws, which show that prediction accuracy improves
smoothly as model size, training data, and computing resources increase, driving a rapid growth
in model sizes [27]. After the initial pre-training, LLMs undergo instruction tuning. By fine-tuning
on prompt-response examples, the model is adapted to follow natural language instructions.
Then, as a final, optional step, LLMs can be adapted for the task at hand through supervised fine-
tuning and reinforcement learning from human feedback, refining the model based on human-
rated prompts and preferences.

LLMs in Recommender Systems LLMs are increasingly being explored in recommender sys-
tems, both as standalone recommenders and as components that enhance existingmethods. As
recommenders, they can use natural language prompts, product descriptions, and user reviews
to generate personalized suggestions without relying on traditional user-item interaction data.
For example, work on generative recommendation treats recommendation as a text-generation
problem, prompting an LLM to output item identifiers or titles directly as a ranked list of sugges-
tions [24].

They have also shown potential in improving explainability. LLMs can synthesize information
from user histories, itemmetadata, and reviews into fluent, human-readable justifications. XRec,
for instance, combines graph-based collaborative filtering with an LLM to generate explanations
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that are conditioned on both interaction signals and textual context, leading to more informative
and personalized explanations than template-based baselines [34].

Recently, research has also been done on using LLMs to mitigate bias in recommendations.
Lichtenberg et al. probe whether LLM-based recommenders contribute to or can alleviate pop-
ularity bias [33]. Using a new metric, traditional RS is compared to LLM-based models. LLM-
based recommenders are found to usually have less popularity bias than traditional approaches.
By including additional instructions, they find that it is possible to lower popularity bias even
further.

Limitations Despite their capabilities, LLMs have several important limitations that affect how
they should be used in practice. They can produce hallucinations: fluent, confident outputs that
are factually incorrect, logically inconsistent, or entirely fabricated [70]. Because these models
operate by learning statistical patterns from large text corpora, they do not possess genuine
understanding of their inputs or outputs, and are unable to reliably distinguish between true and
false statements [2]. As a result, they may also reproduce and amplify biases present in their
training data, and their behavior can vary greatly depending on prompt used. Finally, training
and deploying LLMs requires substantial computational resources, which constrains who can
build and operate them and raises concerns about cost and environmental impact [2].



3
Counterfactual Explanations

In this chapter, counterfactual explanations are examined in greater detail. Wachter et al. [62]
argue for CFEs as a means to provide intuitive ”what-if” scenarios to help users understand why
a particular decision is made. For example:

You were denied a loan because your annual income was $30.000. If your income
had been $45.000, you would have been offered a loan.

The black-box model’s decision is followed by a counterfactual: a statement of how the variables
would have to be different for the model to give a different desirable output. While a lot of the
earlier work focused on CFEs in the classification task, they can also be applied to recommender
systems. Figure 3.1 shows an example.

Figure 3.1: Excerpt from [18]. CFEs in recommendation attempt to find a change in user history that would result in a
new item being recommended. The items perturbed in the user history form the counterfactual set, and the item

recommended for this updated history is referred to as the replacement item. In this instance, if the user would have
purchased a tablet instead of a tie, the user would have been recommended a mouse instead of a suit.

Recent studies show that users appreciate this style of explanation, especially when the recom-
mendations influence meaningful decisions. For example, Shang et al. [49] found that users
preferred counterfactual explanations over generic transparency statements, particularly when
the stakes were perceived as high.

In the remainder of this chapter, several approaches for generating CFEs in recommender sys-
tems are discussed in § 3.1, followed by a closer examination of influence functions in § 3.2 and
the ACCENT framework used as the baseline in § 3.3. Finally, § 3.4 explores how bias may
manifest in ACCENT and outlines why LLMs are a promising candidate to mitigate it.

11
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3.1. Approaches for CFEs in RS
Various approaches have been proposed to generate CFEs in recommender systems. While
these methods differ significantly in focus and technical detail, they can generally be divided
into two categories: optimization-based methods, searching for changes to user representa-
tions or item features, and score-based methods, assessing the importance of individual user
interactions. Although some methods blur the lines between the two, this distinction captures
the dominant methodological patterns in the field.

Optimization-basedmethods Optimization-basedmethods frame the generation of CFE as a
constrained search problem. Rather than removing specific interactions, these methods perturb
features, embeddings, or user profiles to shift the model’s output. The goal is to find minimal,
plausible changes that lead to a different recommendation.

CountER [55] frames counterfactual generation as a causal-inference problem over item at-
tributes such as price or genre. It sets up a joint optimization problem for a given recommenda-
tion, balancing three terms: effectiveness (the rank of the original recommendation must drop),
sparsity (fewer items are preferred), and plausibility (changes should stay in realistic bounds).

LiCE4Recommenders [4] treats counterfactual generation as a mixed-integer optimization over
the full binary interaction vector. To avoid unrealistic histories, it augments the objective with
a likelihood term learned by a sum-product network that scores the plausibility of a given user
history. The solver searches for a minimal set of flips (also allowing adding items instead of
only removals) that satisfies the plausibility threshold and pushes the original item out of the
recommendation list.

CAVIAR [22] is a counterfactual framework that targets multi-modal recommenders that rely on
item images. CAVIAR searches for the smallest change to an item’s visual embedding that de-
motes it below the top-k. It solves a two-term optimization problem, optimizing for effectiveness
(the edited embedding must not be recommended) and simplicity (the perturbation should be
spatially sparse). The perturbed embedding is mapped back to a human-interpretable explana-
tion using a CLIP model, yielding natural language counterfactuals.

Score-based methods Score-based methods aim to identify a small subset of user interac-
tions whose removal would change the system’s recommendation. These methods assign im-
portance scores to items in the user history, based on graph structure, gradients, or other internal
signals. These scores are then used to select items for removal and find a replacement.

PRINCE [16] is one of the earliest frameworks applying counterfactual reasoning to graph-based
recommenders. It models each user’s interaction history in a dynamic interaction graph and
searches for the smallest set of edges (i.e., past interactions) whose removal would dethrone
the current top recommendation.

Model-Agnostic Counterfactual Search (MACS) [26] is a simple, heuristic approach that requires
no access to model internals. Starting from the user’s full history, it performs a greedy search:
at each step, it temporarily removes every remaining interaction, queries the recommender, and
measures how much the rank of the target item changes. The interaction that produces the
greatest rank drop is permanently deleted, and the process repeats until the original recom-
mendation is no longer top-ranked or a budget is reached. Because the importance score is
computed purely from observed rank changes, MACS can be applied to any recommender that
allows modified user histories at inference.

Fast Influence Analysis (FIA) [7] uses influence functions [29] to estimate howmuch each training
interaction influences a prediction in latent factor models. Approximating these influence scores
enables counterfactual explanations that cite a handful of past interactions without retraining the
model. Further discussion of influence analysis and FIA is provided in § 3.2.

ACCENT [59] builds on FIA and adapts it for neural recommenders. It extends influence analysis
to pairs of items–the top recommendation and a plausible alternative–and iteratively searches
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for the smallest set of user history items whose removal flips the ranking. Further discussion of
ACCENT is provided in § 3.3.

3.2. Influence Analysis
Koh et al. [29] introduced the idea of explaining a model by tracing a prediction back to the
training data and asking the counterfactual: what would happen to the prediction without this
training point, or if it were slightly different? As this is infeasible to achieve by perturbing the
training data and retraining due to computational cost, influence functions—a technique from
robust statistics—are used. Figure 3.2 shows an example of influence functions detecting the
most helpful training points for two fish vs. dog classification models.

Figure 3.2: Excerpt from [29]. Influence functions applied to identify the most helpful training points for a clownfish test
image (center right). Left: Influence score versus Euclidean distance for two models. In an RBF SVM (top), a classifier
looking at pixel-level similarities, the most helpful examples (green) are close to the test image in pixel space. In an
Inception deep network (bottom), high-influence points can be far in pixel space but close in learned feature space.

Middle: the two most helpful training images for each model. While both models surface fish images, the images most
helpful to the Inception model for this prediction are actually clownfish. An image of a dog is also found to be helpful.

Mathematical Foundation With n training points, each training point has a weight of 1
n . The

parameter change can be linearly approximated if a training point z were removed by upweight-
ing it by − 1

n :

ˆθ−z − θ̂ =
1

n
H−1

θ̂
∇L(z, θ̂) (3.1)

where θ̂ are the optimized model parameters, ˆθ−z are the model parameters after removing
training point z, Hθ̂ is the Hessian matrix computed as Hθ̂ = 1

n

∑n
i=1∇2

θ̂
L(zi, θ̂) and L(z, θ) is

the loss of a training point z on parameters θ.

The chain rule can then be applied to measure how upweighting z influences the loss at a test
point ztest, which gives:

Influence(z, ztest) = −∇θL(ztest, θ̂)
⊺H−1

θ̂
∇θL(z, θ̂) (3.2)

Note that influence functions are based on a convex and differentiable model. For non-convex
models, an approximation can still be found by enforcing the invertibility of Hθ̂ by adding a small
dampening factor λ to its diagonals. If the derivatives of the loss (∇θL and ∇2

θ) do not exist, a
smooth approximation can be used.

Influence in RS Fast Influence Analysis (FIA) [7] extends influence functions for generating
explanations for recommender systems. Given a recommended item, FIA aims to generate
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Figure 3.3: Excerpt from [7]. Overview of the Fast Influence Analysis (FIA) framework. In the recommendation stage
(blue), historical user-item ratings are used to train a latent factor model, producing predicted ratings and top-N
recommendations. In the explanation stage (green), FIA estimates the influence of historical ratings on a specific

recommendation without retraining. FIA is able to find both item-based explanations (most influential items rated by
the target user) or user-based explanations (most influential ratings from other users for the target item), providing

intuitive neighbor-style justifications.

neighbor-style explanations, containing the most influential items that a user has rated. An
overview of the FIA framework can be found in Figure 3.3.

The considerable size of the parameters of recommendation models leads to a high computa-
tional cost for regular influence functions. To accelerate the process, FIA takes advantage of
the observation that for a given test point (ut, it), the predicted rating ŷ(ut, it) by matrix factor-
ization is only denoted by a small fraction of the model parameters. This fraction of the model
parameters consists of the latent factors of ut and it, denoted by θt = {put , qit}. Rt is defined
as the set of training points in the historical ratings of ut and it. The formulation for influence in
matrix factorization is as follows:

Influence(z, ut, it) = −
1

n′∇θtL(z, θ̂)
⊺H−1

θ̂t
∇θt ŷ(ut, it, θ̂) (3.3)

where z ∈ Rt, n′ = |Rt| and Hθ̂t
= 1

n′

∑n′

i=1∇2
θ̂
L(zi, θ̂), as the parameters θt are only optimized

by training points in Rt.

[7] also extends FIA to the Neural Collaborative Filtering setting. The parameters involved in
NCF are divided into two parts, θe and θn, where θe is the embedding of the users and items,
and θn is the parameters of the interaction function. These two parts of the parameters are
affected differently by the training points: θe is optimized by the training points in Rt, similarly to
θt in matrix factorization. θn, however, is learned using the complete set of training points. The
following equations thus formulate influence in the NCF setting:

Influence(z, ut, it) ≈ Influence(z, ut, it|∆θe) + Influence(z, ut, it|∆θn) (3.4)

Simplifications described in [7] allow for approximation

Influence(z, ut, it|∆θe) = −
1

n′∇θeL(z, θ̂)
⊺H−1

θ̂e
∇θe ŷ(ut, it, θ̂) (3.5)
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Where the Hessian is over n′

Influence(z, ut, it|∆θn) = −
1

n
∇θnL(z, θ̂)

⊺H−1

θ̂n
∇θn ŷ(ut, it, θ̂) (3.6)

Where the Hessian is over n.

3.3. ACCENT
One approach that utilizes the aforementioned influence functions to produce counterfactual
explanations for NCF models is ACCENT [59]. Given a user u that has an interaction history Iu
and a recommendation rec, ACCENT attempts to find a counterfactual set whose removal from
the training data results in a different recommendation rec∗. To achieve this, ACCENT extends
the use of influence scores to pairs of items, rec and rec∗.

The rating of user u for item i before and after the removal of training point z is denoted as ŷu,i
and ŷ−z

u,i respectively. The influence of z on ŷu,i is defined as:

Influence(z, ŷu,i) = ŷu,i − ŷ−z
u,i (3.7)

The influence of z on the score gap between two items i and j can be estimated:

Influence(z, ŷu,i − ŷu,j) = (ŷu,i − ŷu,j)− (ŷ−z
u,i − ŷ−z

u,j)

= (ŷu,i − ŷ−z
u,i )− (ŷu,j − ŷ−z

u,j)

= Influence(z, ŷu,i)− Influence(z, ŷu,j) (3.8)

Influence(z, ŷu,i − ŷu,j) = Influence(z, ŷu,i)− Influence(z, ŷu,j)

To determine the influence of removing a set of training points on the score gap, the effects
of removing each individual point can be summed. Note that the accuracy of this estimation
deteriorates for larger sets.

To replace rec with rec∗, the counterfactual set Z ⊆ Iu must be identified whose removal results
in:

ŷ−Z
u,rec − ŷ−Z

u,rec∗ < 0

⇔ ŷu,rec − ŷu,rec∗ − ŷ−Z
u,rec + ŷ−Z

u,rec∗ > ŷu,rec − ŷu,rec∗

⇔ Influence(Z, ŷu,rec − ŷu,rec∗) > ŷu,rec − ŷu,rec∗

⇔
m∑

k=1

Influence(zk, ŷu,rec − ŷu,rec∗) > ŷu,rec − ŷu,rec∗ (3.9)

The optimal way to replace rec with rec∗ is thus to add training points zk to Z in order of decreas-
ing Influence(zk, ŷu,rec − ŷu,rec∗) until the equation is satisfied.

To select rec∗, the item to be replaced with the initial recommendation, any item can be chosen.
However, checking all items is computationally expensive, and a practical choice is to use the
original set of top-k recommendations, as it ensures that rec∗ remains relevant to u.
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3.4. Problem Formulation
Limitations of influence-based CFEs. In recommender data, training signals are highly un-
even: interactions involving popular items appear far more frequently and can exert dispropor-
tionate influence on the learned model compared to those involving long-tail items [1]. ACCENT
estimates how much each of these signals would shift a target recommendation by computing
their influence function. Figure 3.4 illustrates the idea in the simplest setting of linear regres-
sion: a handful of high-leverage outliers bend the fitted line away from the cloud of inlier points,
whereas deleting them produces a model that follows the main trend. Influence plots highlight
exactly these points because their removal would cause the greatest change in the estimator.

Figure 3.4: Only a handful of outliers can distort a linear regression model. These are the most influential points: they
have the largest impact on the model predictions.

A similar effect can arise in recommender systems. Items that exert disproportionate leverage on
the predicted score are flagged as ”most influential”, even when they are not necessarily central
to the user’s preferences. When a systematic mismatch exists between the training signals that
dominate influence and the subset that actually reflects a user’s taste, ACCENT’s counterfactual
set can surface poorly aligned items, such as mainstream blockbuster items for a niche-oriented
user or obscure long-tail items for a mainstream-oriented one.

A related phenomenon is observed in the work that introduced influence functions for machine
learning [29]. There, the points with the highest influence often correspond to mislabeled or prob-
lematic training examples, and inspecting these emails allowed humans to detect and correct
most flipped labels in a spam-classification dataset. This illustrates that highly influential points
need not be ”typical” examples, but rather those that most strongly affect the model.

Popularity bias in ACCENT In recommender data, popular items converge the fastest [28].
As there are many more interactions, there are more training iterations and updates, giving them
disproportionate weight during learning. ACCENT is based on influence functions, which tell us
which training points are most used for a recommendation. However, due to the disproportionate
weight of popular items due to popularity bias, these are more influential in most predictions.
These popular items thus usually have a high influence score, making it likely that ACCENT
picks them.

Towards bias-aware CFEs with LLMs Keeping in mind this property of influence functions,
creating CFEs using them might lead to low user-alignment. However, it is possible to attempt
to correct for it. LLMs can encode high-level preferences, such as tone, themes, or narrative
style, by reading free- text descriptions of consumed items. Recent work shows that LLM-based
recommenders exhibit lower popularity bias than traditional baselines, and that careful prompting
can reduce bias further [33]. This thesis therefore investigates whether LLMs can act as a pre-
processing step, filtering a user’s history so that existing CFE frameworks such as ACCENT
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can start from a less biased candidate pool, leading to an explanation that aligns more with user
interest.



4
LLM-augmented ACCENT

The central hypothesis of this work is that certain items in a user’s interaction history may dis-
proportionately influence the generation of counterfactual explanations, leading to explanations
that are technically correct but misaligned with the user’s preferences. This chapter proposes
a novel framework that identifies and excludes such items from the counterfactual generation
process to address this, aiming to produce counterfactual sets that are more representative of
a user’s perceived interests.

Two approaches are proposed for finding these misaligned items, both of which are based on
greedy heuristics. The first approach, described in § 4.1, employs a transformer-based embed-
ding model, whereas the other approach uses large language models, which is described in
§ 4.2. Figure 4.1 presents a global overview of our framework.

User
Interaction

History

Misaligned Item
Selection

Item
Metadata

Embedding 
approach

LLM approach

Misaligned item set CFE Framework
(ACCENT)

Recommender
System

Counterfactual
Explanation

Figure 4.1: Global overview of the LLM-augmented counterfactual explanations framework.

4.1. Embedding-based identification
Our initial method leverages an embedding model to quantify the influence of individual items in
a user’s history on their overall preference profile. These high-dimensional embeddings aim to
capture semantic similarities based on textual item metadata, such as item titles, descriptions,
or categories, and are generated using an attention-based transformer model.

A high-dimensional vector embedding for a singular item i using Sentence Transformer (SBERT) [43]
can be created as follows:

18
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ei = SBERT(pi) (4.1)

Where pi is the present metadata of item i.

User Embeddings by Aggregating Item Embeddings Having defined the embedding of a
singular item, this can now be extended to the user level. Let Hu denote the interaction history
of user u, and let ei be the embedding of item i ∈ Hu. The embedding of a user is then given
by the sum of the embeddings of the items in the user’s history:

eu =
∑
i∈Hu

ei (4.2)

Key to our approach is comparing the similarity of alternate user histories. A modified user
embedding after removing an item or a set of items S ⊆ Hu from the user profile is defined as:

eu′ = eu −
∑
i∈S

ei (4.3)

Finally, the impact of the removal of S on the user embedding with the cosine dissimilarity be-
tween eu and eu′ is quantified:

removal_impact(S) = 1− eu · eu′

∥eu∥∥eu′∥
(4.4)

A high influence score indicates that removing S significantly alters the user’s profile: the re-
moved items strongly affected the user’s latent representation, suggesting that they may overly
dominate the recommendation and counterfactual generation logic.

Picking the Items The goal is to find the subset that, when removed, maximally alters the user
embedding, indicating that its items might misalign with a user’s self-perceived preference. The
size n of this subset is left as a hyperparameter. One possibility is to generate and check all
possible unique subsets of the user history of size n and smaller, but this quickly blows up the
search space due to the factorial nature of subsets. This makes it infeasible when working with
longer histories, which is the standard in many domains such as multimedia recommendation.
To combat this, a greedy algorithm is adopted that iteratively selects the most impactful removal
at each step.

At step zero, the process starts with a user’s full interaction history H
(0)
u = Hu. Then, for a fixed

number of steps n, the following is iterated:

• For every remaining item i′ ∈ H
(j−1)
u (history before step j), compute the embedding

obtained after its removal e(j−1)
u\{i′}.

• Select the item whose removal produces the largest cosine dissimilarity with the current
profile:

i∗j = argmax
i′∈H

(j−1)
u

(1− cos(e(j−1)
u , e

(j−1)
u\{i′})) (4.5)

• Permanently discard i∗j : H
(j)
u = H

(j−1)
u \ {i∗j}.

The pseudo-code for this algorithm is presented in Algorithm 1.

4.2. LLM-based identification
Our second approach attempts to harness the richer and more flexible reasoning of LLMs. In-
stead of pre-computing item embeddings, LLMs are employed.
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Algorithm 1: Greedy identification of misaligned items, embedding model approach.
Input: Hu: set of item IDs representing the user’s interaction history
Ie: mapping from item IDs to their embedding vectors
n: size of the misaligned set to create
Output: A subset of n items from Hu that, when removed, maximally reduce dissimilarity

1 Compute e
(0)
u using Eq. 4.2;

2 Set H(0)
u ← Hu, S ← ∅;

3 for j = 1 to n do
4 foreach i′ ∈ H

(j−1)
u do

5 Compute ej−1
u\{i′} using Eq. 4.3;

6 Compute dissimilarity d = 1− cos(e
(j−1)
u , e

(j−1)
u\{i′});

7 end
8 Select i∗j = argmax d;
9 Update H

(j)
u ← H

(j−1)
u \ {i∗j};

10 Update S ← S ∪ {i∗j};
11 Update e

(j)
u ← ej−1

u\{i∗j }
;

12 end
13 return S;

User Embeddings with LLM-Generated User Profiles The expressive capacity of LLMs is
harnessed by prompting them to generate free-form natural language descriptions of a user’s
preferences, based on their interaction history. This step reframes a list of consumed items into
a coherent and human-readable user profile. This builds on the work of Sabouri et al., who use
LLMs to uncover temporal dynamics in user preferences [45]. While their focus is on highlighting
the temporal preferences of users, they also highlight the general utility of using LLMs for textual
user profiles.

The prompting template asks the LLM to describe the user in fewer than 300 words, avoiding
overly broad genre classifications or direct item references. Instead, the model is encouraged
to extract recurring patterns in tone, themes, character types, or narrative structures. A list of
all items in the user’s interaction history is provided, including features when possible. This
allows us to see not only what the user consumed, but why they might have liked it. Once the
textual profile is generated, it is encoded into a high-dimensional embedding using a pre-trained
embedding model. An example prompt for the movie domain is provided in Figure 4.2.

The mathematical definition of generating a textual profile tu of the user’s preferences using an
LLM prompted on their full interaction history and item descriptions is as follows:

tu = LLM(concat
i∈Hu

(pi)) (4.6)

Then, embed tu into a high-dimensional vector eu using Sentence Transformer (SBERT) [43]:

eu = SBERT(tu) (4.7)

Where pi is the description of item i. Textual profiles and embeddings without items S are again
defined as follows:

tu\S = LLM
(
concat
i∈Hu\S

(pi)

)
eu\S = SBERT(tu\S) (4.8)
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Figure 4.2: Example LLM Query and Response (Movie Domain)

Query: Your task is to analyze a list of movies a user has interacted with and describe
the profile and the preferences of the user in less than 300 words. Try to not be too
broad (e.g. mention too many general categories such as action or comedy). Do not
mention specific movie titles.

The user has watched the following movies:

Die Hard (1988) - Action, Thriller - NYPD cop John McClane’s plan to reconcile with his...
Raiders of the Lost Ark (1981) - Action, Adventure - When Dr. Indiana Jones–the tweed...
...

Response: The user enjoys action-packed, high-stakes narratives with strong protago-
nists overcoming formidable odds. They prefer films that blend suspense, tension, and
personal growth. There’s a clear affinity for classic cinema, particularly Westerns and
gritty, character-driven stories. The user appreciates intelligent storytelling, moral com-
plexity, and visually striking sequences. They also enjoy sci-fi and fantasy elements,
especially those with a grounded or realistic approach. Themes of redemption, survival,
and resilience are prominent. The user is drawn to films that challenge the mind and de-
liver emotional depth, often favoring well-crafted plots over spectacle. They appreciate
both solo heroics and ensemble dynamics, and have a taste for both serious and slightly
humorous tones.

Picking the Items Rather than iterating over raw item embeddings, a textual profile is repeat-
edly created from the current history via Eq. 4.6, embed that profile with SBERT (Eq. 4.7), and
score the effect of removing each candidate item by recomputing the profile without that item and
measuring cosine dissimilarity to the current profile. In each iteration, the item that maximally
perturbs the profile is removed, continuing until n items have been discarded. This mirrors the
strategy discussed in § 4.1 but swaps the representation: user state is tracked as an LLM-written
profile t

(j)
u and its embedding e

(u)
j = SBERT (t

(j)
u ). The pseudo-code for this approach is shown

in Algorithm 2.

4.3. Updating the Counterfactuals
After n iterations, the set of all discarded items is τu = {i∗1, . . . , i∗n}. Finally, the filtered history
H

(n)
u = Hu \ τu is created and fed it to ACCENT (or any other history-based CFE framework),

ensuring explanations exclude these misaligned items.

Recall that ACCENT creates counterfactual sets by iteratively adding training points from the
user history to the explanation, prioritizing those with the most significant influence score gap
relative to a potential replacement item. To exclude misaligned items, the process is modified
and these items are filtered out of the user history in a pre-processing step, by simply passing
the filtered history H

(n)
u into ACCENT.
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Algorithm 2: Greedy identification of misaligned items, large language model approach.
Input: Hu: set of item IDs representing the user’s interaction history
n: size of the misaligned set to create
Output: A subset of n items from Hu that, when removed, maximally reduce dissimilarity

1 Generate initial profile t
(0)
u using Eq. 4.6;

2 Embed into e
(0)
u using Eq. 4.7;

3 Set H(0)
u ← Hu, S ← ∅;

4 for j = 1 to n do
5 foreach i′ ∈ H

(j−1)
u do

6 Form reduced profile t′ and embed e′ using Eq. 4.8;
7 Compute dissimilarity d = 1− cos(e

(j−1)
u , e′);

8 end
9 Select i∗j = argmax d;
10 Update H

(j)
u ← H

(j−1)
u \ {i∗j};

11 Update S ← S ∪ {i∗j};
12 Update e

(j)
u ← ej−1

u\{i∗j }
;

13 end
14 return S;



5
Methodology

This chapter outlines the datasets, experimental design, and implementation details used to
evaluate the proposed framework. Users are first partitioned into groups with predominantly
mainstream (blockbuster) or niche preferences, as described in § 5.1. The underlying datasets
are introduced in § 5.2, followed in § 5.3 by the baselines against which the proposed method
is compared. Evaluation metrics in § 5.4 cover both recommendation performance and proper-
ties of the generated explanations, enabling a joint view on accuracy and popularity alignment.
Finally, § 5.5 details the implementation choices required to reproduce the experiments.

5.1. Defining User Groups
As this work attempts to analyze how well users align with an explanation through a lens of
popularity bias, users are first categorized into distinct groups based on their historical prefer-
ences. This approach follows the methodology previously proposed by Abdollahpouri et al, who
investigate popularity bias from a user-centric perspective [1]. The key idea in their work is to
understand how a user’s inclination towards popular or niche items interacts with the behavior
of the RS. This work looks at the interaction with the counterfactual example.

Items are first classified based on their popularity, where item popularity is computed by con-
sidering the fraction of total interactions involving the item (Equation 5.1). After computing item
popularity scores, all items are sorted. The top 20% are defined as popular and the bottom 20%
as niche. All other items are classified as diverse.

popularityi =
number of interactions with i

total number of interactions
(5.1)

The fraction of each item category in each users’ history is calculated, which is in turn used to
categorize users into niche, blockbuster, and diverse:

• Niche users: These are defined as the bottom 20% of users in terms of the ratio of popular
items in their profile.

• Blockbuster users: These are defined as the top 20% of users in terms of the ratio of
popular items in their profile.

• Diverse users: These are defined as all of the users that do not fit into the niche or
blockbuster categories.

This grouping enables us to examine how counterfactual explanations behave across different
user types, reflecting the heterogeneity in user preferences that is often overlooked in global
evaluations.
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5.2. Datasets
To evaluate the proposed approach, two multimedia-oriented datasets are utilized: the Movie-
Lens 1M dataset [17] and the Amazon Video Games dataset, a subset of the Amazon Reviews
2023 dataset [21]. Multimedia-oriented datasets were chosen as they provide not only user-
item interactions, but also the rich item metadata, including textual descriptions and categories
required for the proposed pre-processing step. Table 5.1 presents the high-level details of the
datasets.

Dataset No. Users No. Items No. Interactions Density
MovieLens 1M 6,040 3,952 1,000,209 4.19%

Amazon VideoGames (5-core) 94,761 25,612 814,587 0.03%

Table 5.1: High-level dataset statistics.

In each dataset 20% of every user’s interactions was held out to construct the test set, with the
remaining 80% used for training.

MovieLens 1M The MovieLens 1M dataset is a well-established benchmark in recommender
systems. It contains just over one million user-item interactions in the form of movie ratings,
making the MovieLens data dense relative to typical recommendation datasets.
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(b) Item popularity distribution.

Figure 5.1: Distributions in our training split of the MovieLens 1M dataset (log-scaled y-axis). Left: most users have
20–200 interactions, indicating density. Right: both popular and niche items are present, but the long tail is less

extreme compared to Amazon Video Games.

Figure 5.1 shows the history size and item popularity distributions for MovieLens 1M. Panel 5.1a
illustrates that most users have relatively long histories, with the median history consisting of 76
interactions and many users providing several hundred ratings. Panel 5.1b shows the popularity
distribution: while some movies attract many interactions, the distribution is much less skewed
than in e-commerce domains. Both blockbuster and niche titles are represented in meaningful
quantities.

Amazon Video Games The Amazon Video Games dataset is a category-specific subset of
the Amazon Reviews 2023 dataset. The 5-core version was used, ensuring all users and items
have at least five interactions. This results in a significantly sparser dataset than MovieLens,
with a long-tail distribution in both item and user activity. In addition to core video game titles,
the dataset contains peripheral items such as accessories and collectibles. These are kept to
preserve realistic user profiles, but could introduce noise.
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Figure 5.2: Distributions in our training split of the Amazon Video Games dataset (log-scaled y-axis). Left: most users
have very short histories, reflecting extreme sparsity. Right: a few blockbuster items dominate interactions, while the

majority fall into the long tail.

Figure 5.2 highlights the contrasting properties of the Amazon Video Games dataset. Panel 5.2a
shows that most users interact with only a few items, with the median history size being only 4.
Panel 5.2b shows that the popularity distribution follows an extreme long tail pattern, with a
couple of blockbuster items dominating. The vast majority of items are rarely consumed.

Filtering Due to the nature of the LLM-based approach, generating a single misaligned item
set can take a considerable amount of time, particularly for users with large histories. Because
evaluating every user in full would exceed the available computational resources, two filtering
steps are applied. First, the maximum history size is limited: generating a textual user profile
with the LLM-based approach described in § 4.2 takes 10–15 seconds per query, depending
on the model, hardware, and query length. Since the number of queries scales with both the
number of problematic items sought (n) and the size of the user history (s), the overall cost
grows quickly (n × s). To keep the evaluation feasible, users with more than 100 interactions
are excluded. Second, the focus is placed on users most likely to exhibit alignment issues.
Specifically, the 250 most niche and 250 most blockbuster users are selected for each dataset,
as these extremes are expected to show the most pronounced gaps between model-generated
and user-expected explanations.

5.3. Baselines
To assess the effectiveness of the proposed framework, its counterfactual sets are compared
against several baselines. Two categories are distinguished: direct counterfactual baselines,
which generate complete counterfactual sets directly, and alternate-removal baselines, which
first identify potentially misaligned items and then apply ACCENT on the filtered history.

Direct The direct baselines represent alternative ways of constructing counterfactual sets from
a user’s history. Three methods are considered:

• ACCENT, which explains recommendations via influence-based counterfactuals. ACCENT
selects items from the user’s history that, when removed, change the top-1 prediction. This
serves as the primary baseline, since the proposed framework builds directly upon it.

• Popularity-based counterfactuals, where counterfactual sets are constructed from the
most popular items in the user’s history, with set sizes matched to those produced by
ACCENT.

• Random counterfactuals, a lower-bound baseline that selects items uniformly at random
from the user’s history, used to assess whether more sophisticated methods provide ben-
efits beyond chance.
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Alternate removals The alternate-removal baselines evaluate the effect of different filtering
strategies when combined with ACCENT. In this setting, a set of potentially misaligned items is
first removed from the user’s history, after which ACCENT is applied to generate counterfactuals
on the reduced profile. Three variants are considered:

• FIA-based removal, which selects themost influential items based on raw influence scores,
providing a baseline that uses the unprocessed influence signal.

• Popularity-based removal, which removes the most popular items from the user’s history
before running ACCENT.

• Random removal, which removes a random subset of history items prior to running AC-
CENT.

5.4. Evaluation Metrics
The updated counterfactuals are evaluated along two main dimensions: user alignment, i.e.,
whether the counterfactuals reflect the user’s underlying preferences, and validity, i.e., whether
the counterfactual effectively alters the recommendation outcome.

User alignment In the user-alignment axis, the analysis examines whether the suggested ap-
proaches result in counterfactuals that are closer in content to what the user actually prefers. As
the augmentations rely on a general ”does this suit the user?” test rather than on attribute-specific
rules, they should, in theory, alleviate many kinds of mismatch. The approach is evaluated solely
on one well-known dimension, popularity bias. Two new metrics are proposed.

Popularity Distribution Similarity (PDS): To evaluate how well the counterfactual sets align with
users’ general taste profiles, the popularity distribution of items in the counterfactual sets is
compared to that of the items in each user’s history. LetH be the complete collection of items that
appear in users’ interaction histories and C the collection of items that appear in the generated
counterfactual explanations. If an item occurs multiple times (e.g., across different users), it
is included that many times in the collection. Each item is converted to its global popularity
score and the scores are placed into B equal-width bins, producing two histograms (empirical
distributions) PH and PC . The similarity between the two popularity profiles can then be defined
as the χ2 distance:

PDS =

B∑
b=1

(PH(b)− PC(b))
2

PC(b) + ϵ
(5.2)

with ϵ = 10−10 for numerical stability. A smaller PDS indicates that counterfactual items follow
nearly the same popularity distribution as the historical items, suggesting lower popularity bias
and better alignment.

Expected Popularity Deviation (EPD): EPD is introduced as a more fine-grained, user-level met-
ric. For each user, the average popularity of items in their history and in their counterfactual set
is computed, and the squared difference is taken:

EPDu = (pucf − puhist)
2 (5.3)

This value is then averaged over all users to obtain a global view:

EPD =
1

|U |
∑
u∈U

EPDu (5.4)

A lower EPD implies that the counterfactuals are more similar in popularity distribution to the
user’s original profile, which can be interpreted as a proxy for better personalization.
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Validity The validity of a counterfactual refers to whether it effectively alters the recommen-
dation outcome. This section discusses established approaches–necessity, sufficiency, and
counterfactual set size–and introduces an aspect-based evaluation.

Necessity and sufficiency: A natural way to evaluate counterfactual explanations is to retrain
the recommender system after removing the training points associated with the explanation set
Eu, and observing whether the explained recommendation disappears. This strategy is used
by ACCENT, and formalized as Counterfactual Proximity by Yao et al. [67]. While this provides
a faithful measure of causal inference, it is computationally expensive, as a new recommender
must be trained for every explanation that is evaluated.

Instead, the same reasoning process is approximated using a lightweight surrogate model that
captures how a user’s history Hu affects the likelihood of recommending a specific item, as
is done by other explanation approaches [42]. For each evaluation, a lightweight surrogate
classifier fsur is trained that predicts the probability a users top-1 recommended item x would
be recommended given their interaction history. The surrogate is trained on all users’ histories,
where the target label is set to 1 if x appeared in that user’s top-K recommendations, and 0
otherwise. Once trained, fsur can be queried multiple times with modified versions of the same
user history to estimate how the recommendation of x changes when certain items are removed
or isolated.

The effects of these modified user histories are quantified using the necessity and sufficiency
framework proposed by Watson et al. [63], which previous works also have used to evaluate
counterfactuals [56]. Necessity measures whether the explanation items are required for the
recommendation to occur, and thus directly corresponds to counterfactual proximity:

Necessity(u, x,Eu) = fsur(Hu)− fsur(Hu \ Eu) (5.5)

Sufficiency measures whether the items in the counterfactual set on their own are capable of
reproducing the recommendation:

Sufficiency(u, x,Eu) = fsur(Eu) (5.6)

Both necessity and sufficiency speak to the quality of the counterfactual: a high necessity score
means the explanation captures factors responsible for recommending x, while a high sufficiency
implies the explanation is self-consistent.

Counterfactual size: While the size of the counterfactual set does not directly determine its
quality, it significantly impacts its interpretability. A smaller counterfactual set allows users to
examine and comprehend the explanation more easily. This follows naturally from the principle
of cognitive load, which states that humans process and interpret smaller sets of information
more effectively.

Aspect overlap: Counterfactuals are also evaluated at a semantic level using aspect overlap. An
LLM is prompted to extract key aspects from a user’s interaction history and, separately, from
the items in the counterfactual set. The underlying intuition is that a counterfactual explanation
is more meaningful when it appeals to the same properties that matter to the user. If the user’s
history repeatedly highlights aspects such as ”small form factor” and ”RGB lighting” for peripher-
als, then a counterfactual set for a recommended headset is more convincing when those same
aspects are prominent. The explanation then essentially says that the recommendation fits the
user for the same reasons they liked the previous items. Conversely, if the counterfactual items
revolve around unrelated aspects, the justification may feel arbitrary or unpersuasive. Greater
overlap between aspects in the user history and in the counterfactual items therefore serves as
a signal that the explanation is grounded in the user’s established preferences.
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5.5. Implementation Details
For both the embedding model approach and the embedding of textual user profiles generated
by LLMs, Mixbread’s mxbai-embed-large-v1 model [32] was used. This open-weight model
achieves state-of-the-art performance in its size class. All embedding operations were per-
formed using the SentenceTransformers (SBERT) Python library [43].

The performance of a small and medium-sized recent open-weight large language model is com-
pared on our LLM-augmented counterfactuals, neither of which was fine-tuned on multimedia
data. For the small model, Gemma3-4B was used, an lightweight 4-billion-parameter instruction-
tuned model developed by Google DeepMind as part of the open Gemma3 model family [57],
based on the same research and technology that powers the Gemini 2.0 models. Gemma3-
4B provides strong performance on instruction-following tasks at a much lower resource cost
than larger models. For the medium-sized model, Qwen3-8B was used, an 8-billion-parameter
instruction-tuned model developed by Alibaba Group as part of the Qwen3 series [66]. Qwen3
allows for both reasoning and traditional queries. In our experiments, the reasoning function-
ality is not used. A quantized model (Q3_K_S) created using Unsloth was used to improve
performance [9]. For the aspect overlap evaluation, the Deepseek v3 API was used [10].

For recommendation, a standard Neural Matrix Factorization (NeuMF)model was used [19]. The
model was trained with an embedding size of 16, a learning rate of 1e-3, and a weight decay of
1e-3. The implementation and hyperparameters of the recommendation model and the counter-
factual approach were forked from the publicly available ACCENT codebase 1. The implemen-
tation of the proposed method can be found at https://github.com/ahasami/llm-augmented-cfs.

1https://github.com/hieptk/accent



6
Results

In this chapter, the empirical results of the study are presented. § 6.1 addresses the first research
question by examining the extent of misalignment in raw ACCENT. § 6.2 then considers the
second research question, analyzing how LLM-augmented ACCENT improves the quality of
counterfactual explanations. Finally, § 6.3 discusses the third research question, evaluating the
impact of LLM size on performance

The first step towards answering our research questions, is the training of two Neural Collab-
orative Filtering models for MovieLens 1M and Amazon Video Games respectively. Using the
negative-sampling based nDCG calculation as described in § 2.1, nDCG@10 scores of 1.303
and 0.0481 are obtained on MovieLens 1M and Amazon Video Games, respectively. This dif-
ference in performance can be expected when looking at Table 5.1, where the Amazon dataset
has a density of only 0.03% compared to 4.19% for MovieLens.

6.1. Misalignment in ACCENT
The first research question asks, ”To what extent are counterfactual explanations generated
by ACCENT affected by misaligned items?”. This question is examined from a popularity-bias
perspective using two proposed metrics: Popularity Distribution Similarity (PDS) and Expected
Popularity Deviation (EPD). A total of 736 user histories across two datasets, MovieLens 1M
and Amazon VideoGames, were selected based on their inclination towards popular or niche
items, with users in the extremes being selected. For these users, counterfactual explanations
were generated and inspected.

Heuristic baselines The PDS and EPD values for the baselines in Table 6.2 show that the
heuristic CF-set construction approaches perform worst across both datasets. Sets composed
of the most popular items yield extremely high PDS values, indicating severe misalignment.
Although the corresponding EPD valuesmay appear small (e.g., 0.095 for niche users in ML-1M),
these numbers need to be interpreted in the context of the underlying popularity scale. Table 6.1
shows that the average popularity of items in ML-1M is only 0.043, with niche items averaging
as low as 0.0008. Against this backdrop, a deviation of 0.095 means that the counterfactual sets
for niche users are, on average, shifted toward items more than twice as popular as the user’s
historical norm. What looks like a small numerical value, therefore, represents a substantial
misalignment.

For the random CF-set baseline, the misalignment is less extreme than for top-popular but still
clear. Since items are sampled uniformly from histories, these sets largely reflect the dataset
average rather than user-specific patterns. This is visible in the high PDS values (e.g., 20.65
for niche users in ML-1M and 6.15 in Amazon), which shows a poor match with user histories.
Unlike the top-popular baseline, this mismatch is not caused by an explicit bias toward popular
items, but rather by the randomness of the sampling, which fails to preserve the characteristic

29
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skew of individual user profiles

In sum, top-popular counterfactuals illustrate the extreme case of popularity bias, while random
sets highlight the incoherence of ignoring user alignment altogether. These baselines are thus
reported for comparison.

Dataset Item Group Group Size Avg. Popularity Std. Dev.

ML-1M

Niche 776 0.0008 0.0008
Diverse 2330 0.0234 0.0179
Blockbuster 777 0.1421 0.0775
Total 3883 0.0426 0.0628

Amazon

Niche 5122 5.68 ∗ 10−5 5.13 ∗ 10−6

Diverse 15367 1.47 ∗ 10−4 7.17 ∗ 10−5

Blockbuster 5123 1.18 ∗ 10−3 1.57 ∗ 10−3

Total 25612 3.36 ∗ 10−4 8.24 ∗ 10−4

Table 6.1: Average popularity of items, measured by the proportion of users who interacted with them. Items are
grouped into three categories: the top 20% most popular (blockbuster), the bottom 20% least popular (niche), and the

remaining 60% (diverse).

ACCENT ACCENT’s counterfactual explanations are also affected by popularity bias, though
less so than the heuristic baselines. On ML-1M, niche users obtain a PDS of 7.12 and block-
buster users 18.36, both higher than the random-augmentation or top-influential strategies dis-
cussed later. On Amazon, the gap between user groups becomes even clearer: niche users
have a PDS of 3.54, while blockbuster users reach 14.29. The corresponding EPD values,
although numerically small, consistently indicate that ACCENT counterfactuals are shifted to-
ward more popular items than those in the user histories. The effect is particularly strong for
blockbuster users, whose explanations tend to overemphasize already popular items, thereby
amplifying existing bias. This pattern is visible across both datasets and confirms that ACCENT
is not neutral to popularity, but systematically misaligned for large groups of users.

Answer to RQ1

Counterfactual explanations generated by ACCENT are indeed affected by misaligned
items. Both in ML-1M and Amazon, the popularity distribution of ACCENT explanations
diverges significantly from user histories. While less extreme than naïve heuristics, these
results show that ACCENT counterfactuals are systematically misaligned in popularity,
failing to fully reflect user preferences.

6.2. Language models for increased alignment
The second research question asks, ”How effectively can the proposed LLM-augmented frame-
work improve the generation of counterfactual explanations?”. While the first question estab-
lished that ACCENT itself is prone to misalignment, the next step is to evaluate whether aug-
menting ACCENT with additional filtering strategies can address this issue. Returning to the
same set of 736 users introduced earlier, the augmentation procedure described in Chapter 4 is
applied, where potentially misaligned items are removed from user histories before running AC-
CENT. First, simple augmentation baselines are examined, and then they are compared against
the proposed language-model-based filtering.

Augmentation baselines The augmentation baselines that build on ACCENT by filtering mis-
aligned items perform consistently better than the direct set-creation baselines. For the random
and top-popular variants, EPD values remain close to those of randomly constructed counterfac-
tual sets, indicating limited improvement. However, the PDS scores improve notably for random
removal compared to random set creation, showing that ACCENT itself imposes some useful
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Niche Blockbuster
Dataset Method Type Method PDS ↓ EPD ↓ PDS ↓ EPD ↓

ML-1M

Heuristic Random 20.65 0.014 11.24 0.015
Top Popular 1290.24 0.095 839.63 0.057

Augmentation
Random 7.38 0.011 7.93 0.016
Top Popular 14.48 0.013 18.41 0.015
Top Influential 2.69 0.007 7.05 0.012

SOTA ACCENT 7.12 0.010 18.36 0.015

Proposed
Embedding-Augmented 2.42 0.010 7.36 0.016
LLM-Augmented (4B) 7.49 0.008 10.39 0.017
LLM-Augmented (8B) 5.30 0.008 6.26 0.014

Amazon

Heuristic Random 6.15 4.1 ∗ 10−9 3.12 1.3 ∗ 10−9

Top Popular 199.99 9.0 ∗ 10−9 165.87 4.2 ∗ 10−5

Augmentation
Random 2.14 4.1 ∗ 10−9 1.63 1.6 ∗ 10−5

Top Popular 4.59 4.2 ∗ 10−9 8.34 1.2 ∗ 10−5

Top Influential 3.16 2.9 ∗ 10−9 5.78 1.1 ∗ 10−5

SOTA ACCENT 3.54 4.1 ∗ 10−9 14.29 1.4 ∗ 10−5

Proposed
Embedding-Augmented 2.93 3.8 ∗ 10−9 6.77 1.2 ∗ 10−5

LLM-Augmented (4B) 4.77 4.0 ∗ 10−9 6.30 1.6 ∗ 10−5

LLM-Augmented (8B) 3.35 3.7 ∗ 10−9 6.06 1.4 ∗ 10−5

Table 6.2: Popularity alignment comparison of methods with respect to item groups on ML-1M and Amazon datasets.

structure, even when combined with a naive filtering strategy. For example, in ML-1M, the ran-
dom augmentation reduces the PDS for niche users from 20.65 (random set creation) to 7.38,
bringing it in line with the 7.12 score achieved by ACCENT. On the Amazon dataset, random
augmentation unexpectedly yields the best PDS scores. This likely reflects the extreme sparsity
of Amazon user histories, often consisting of only four or five interactions. Here, removing a
single item has a disproportionate effect, making results less stable and harder to generalize.
Running ACCENT with the top-popular items removed also distorts the PDS scores for both
datasets, though less severely than in the direct top-popular set creation, which again suggests
that ACCENT counteracts the introduced bias.

The top-influential strategy is particularly noteworthy among the baselines. It achieves the low-
est overall EPD for both datasets and user groups. This supports the hypothesis that influence
functions often surface items that are impactful for the model but not representative of the user’s
actual preferences. By filtering out these items before applying ACCENT, the resulting counter-
factuals align more closely with user histories.

Proposed approach Turning to the proposedmethods, which augment ACCENT by excluding
misaligned items found with either an embedding-based filter or a large language model filter,
and remove them from the CF generation process.

The embedding-based variant shows mixed results. On MovieLens, it is particularly effective
for niche users, lowering the PDS from 7.12 with ACCENT to 2.42. This indicates that the
embedding filter can identify and exclude popular outliers that distort explanations for niche
users. For blockbuster users, the method does not improve over ACCENT (PDS 7.36 vs. 7.05),
suggesting that embeddings are less effective at capturing mainstream alignment. On Amazon,
PDS for blockbuster users is lowered from 14.29 to 6.77, but niche users only improve marginally
(3.54 vs. 2.93). EPD values remain close to baseline across all user groups and datasets.

LLM-based augmentation produces more consistent improvements. On MovieLens, the PDS
for blockbusters falls sharply from 18.36 with ACCENT to 6.26, while niche users also improve,
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though less dramatically (7.12 vs. 5.30). On Amazon, the effect is similar: blockbuster users
see clear gains (14.29 vs. 6.06), whereas niche users improve only marginally (3.54 vs. 3.35).
A slight improvement in EPD for all user groups and datasets is also visible.

Taken together, these results show that while embeddings can help, their impact is limited and
can be inconsistent. The LLM-based approach delivers more consistent improvements across
datasets, particularly in scenarios where ACCENT produces the largest misalignment. This
makes LLMs a more effective strategy for improving user alignment of counterfactuals. Further
strengthening this point, the only result found to be statistically significant improvement over
ACCENT was the overall EPD on MovieLens (blockbuster and niche combined, not shown)
using LLM-augmentation (8B). The proposed approach outperformed ACCENT (0.017 vs 0.014,
p < 0.05).

Steering the explanations Beyond improvements in PDS and EPD, Figure 6.1 illustrates
how augmentation strategies actively steer the composition of counterfactual explanations. The
plots show the shift in average counterfactual popularity against the shift in position within the
popularity-sorted user history when moving from pure ACCENT to the augmented variants.

In MovieLens, the filtered counterfactuals move downward and slightly rightward for bins of niche
users (left panels), indicating less-popular items drawn from deeper in each user’s long-tail his-
tory. For the bins of blockbuster users (right panel), the same mechanism pushes explanations
upward and leftward, highlighting even more popular items near the head of the profile. The
result is a bidirectional correction. The same analysis on Amazon is noisier. Some bins of block-
buster users benefit from a popularity boost, and for niche users, the range of the user profile
from which counterfactuals are generated is tightened.

Quality of explanations The effect of the augmentation on the overall quality of the counter-
factual explanation was also examined. Table 6.3 shows that the average CF set sizes remain
nearly identical across methods, indicating no loss in conciseness. Aspect overlap improves
slightly on MovieLens (0.207 vs. 0.189) and stay stable on Amazon. This suggests that aug-
mented sets do not harm fidelity, and might even better capture the themes of the explained
items. The necessity and sufficiency scores also remain comparable between the original and
augmented methods across both datasets, indicating that the augmented counterfactuals retain
their causal validity.

These results suggest that the augmentation does not degrade explanation quality, which is
expected: since the LLM-augmentation is a pre-processing step, the explanations are in the
end still found by ACCENT, and thus should maintain the same quality in underlying causal
relationships.

Dataset Method Mean CF Set Size Aspect Overlap Necessity Sufficiency

ML-1M ACCENT 1.35 0.189 0.019 0.386
LLM-Augmented (8B) 1.32 0.207 0.012 0.379

Amazon ACCENT 1.19 0.270 0.100 0.259
LLM-Augmented (8B) 1.13 0.269 0.096 0.260

Table 6.3

Explanation coverage A slight decrease in cases where an explanation can be found is gen-
erally noticed after augmenting ACCENT. Table 6.4 shows that coverage on MovieLens drops
from 80.2% to 78.8% with LLM augmentation (8B), and similar small reductions appear for most
baselines. On Amazon, coverage remains closer to ACCENT levels, with LLM augmentation
(8B) reaching 72.7% versus 72.9%. These results indicate that filtering occasionally prevents
ACCENT from producing a valid counterfactual, but the effect remains minor.
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Figure 6.1: Average popularity of counterfactual sets versus average position of counterfactual items in the
normalized popularity-sorted user history, delta view. Dots represent the shift made from pure ACCENT to the variants
of augmented ACCENT. Users have been grouped into 20 bins based on the average popularity of the user history.

Answer to RQ2

The results show that LLM augmentation improves the alignment of CFEs, especially
on ML-1M, where user histories are richer and more stable. Bidirectional corrections
are consistent: niche users get less popular explanations, while blockbuster users are
nudged toward mainstream ones. Gains in EPD on ML-1M are small but statistically
significant. On Amazon, impact is weaker—sparser histories limit the LLM’s ability to
infer profiles and guide filtering. Still, the method generally does not harm performance,
suggesting it remains safe to apply even with limited effect.

6.3. Impact of LLM size
The third and final research question asks, ”How does the size of the LLM influence the quality
of the counterfactual explanations?”. This question arises from the observation that larger lan-
guage models generally provide stronger reasoning capabilities and more nuanced contextual
understanding, at the cost of increased computational requirements. To examine this trade-off,
the performance of a smaller model (Gemma3 4B) is compared with the previously examined
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Dataset Method Coverage

ML-1M ACCENT 80.2%
Random Augmented 78.8%
Top Popular Augmented 80.5%
Top Influential Augmented 78.5%
Embedding-Augmented 79.9%
LLM-Augmented (8B) 78.8%
LLM-Augmented (4B) 79.9%

Amazon

ACCENT 72.9%
Random Augmented 70.0%
Top Popular Augmented 70.0%
Top Influential Augmented 70.2%
Embedding-Augmented 70.4%
LLM-Augmented (8B) 72.7%
LLM-Augmented (4B) 69.3%

Table 6.4

medium-sized model (Qwen3 8B). This allows us to assess whether scaling the LLM improves
the alignment of the explanations, and if those improvements justify the higher resource footprint.

Quantitative results in Table 6.2 show that scaling from 4B to 8B generally improves alignment.
On MovieLens, the 8B model reduces PDS for blockbuster users from 10.39 to 6.26, and for
niche users from 7.49 to 5.30. EPD stays stable with only a slight improvement for blockbuster
users with the larger model. On Amazon, improvements are smaller but follow suit, with block-
buster users again seeing the largest improvements.

In qualitative evaluation, the 4B model more often failed to follow instructions and occasionally
produced hallucinatory summaries, which sometimes led to irrelevant filtering. For instance,
despite explicit instructions not to mention specific item titles, it frequently did so. In one instance,
the response even switched to a different language halfway through generating the summary. In
contrast, the 8B model adhered to the prompt format much more consistently and avoided such
failures. This indicates that larger models not only improve alignment metrics but also enhance
the reliability of the filtering process.

Answer to RQ3

Increaingmodel size improves both alignment and reliability of LLM-augmented ACCENT.
The 8B model consistently outperforms the 4B model, following instructions more closely
and producing fewer hallucinations. However, both models remain relatively small in
modern LLM terms, and it is likely that larger models could yield further gains, although
the increased computational cost may not be justified for all applications.
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Discussion

This thesis set out to investigate how counterfactual explanations in recommender systems can
be made more user-aligned, with a particular focus on mitigating popularity bias. Through a
series of experiments on MovieLens and Amazon VideoGames, we evaluated the baseline be-
havior of ACCENT, tested several augmentation strategies, and proposed LLM-based filtering
as a new approach. The three research questions addressed whether ACCENT counterfactuals
suffer from misalignment, whether augmentation can mitigate this issue, and how the size of the
LLM affects performance.

The results indicate that ACCENT explanations are indeedmisaligned, particularly for blockbuster-
oriented users, and that naive heuristics or embedding-based corrections provide only limited im-
provements. LLM-based augmentation yields more consistent gains, especially on MovieLens,
and exhibits a bidirectional correction effect. In the remainder of this chapter, § 7.1 reflects on
the implications of these findings, § 7.2 discusses the main limitations of the study, and § 7.3
outlines promising directions for future research. Finally, § 7.4 discusses the computational
complexity of the pre-processing steps based on language models.

7.1. Implications
The findings of this work have several implications for the design, evaluation, and deployment
of counterfactual explanations in recommender systems.

First, it is demonstrated that user alignment cannot be assumed, even for well-established ex-
planation frameworks. Our results show that ACCENT counterfactuals can diverge significantly
from user histories, particularly for blockbuster-oriented users. Explanations that amplify pop-
ularity bias risk being dismissed as generic, thereby failing to foster trust. By quantifying this
misalignment with PDS and EPD, we establish that alignment should be treated as a possible
evaluation dimension in future explanation research, alongside the more common fidelity met-
rics.

Second, the study shows that LLMs can serve as a pre-processing step in the counterfactual
explanation pipeline. Language models are able to reason about the coherence of items with
the context of a user’s preferences, enabling corrections that adapt dynamically to user group
characteristics. This is underscored by the bidirectional correction observed: instead of shifting
all explanations toward niche content or the global average, explanations are adjusted to be
more popular for blockbuster users and downward for niche users. This is in line with research
that use LLMs for other tasks in other areas, such as bias mitigation [33].

The findings also highlight a tension between alignment and efficiency. The improvements pro-
vided by LLM augmentation are most evident in MovieLens, where histories are richer, and for
blockbuster users, where ACCENT is most misaligned. Yet, these gains come with steep compu-
tational cost. This raises practical questions: should LLM augmentation be deployed universally,

35
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or selectively applied only to user groups where it has the largest impact? These considerations
are key for large scale, real-world deployment.

Finally, the results show that the evaluation practices for explainable recommender systems
have to evolve. As mentioned in § 2.2, evaluating explanations is a task that is already hard due
to their subjective nature, andmany published works fail to rigorously evaluate their methods [68].
In this work, we have aimed to expose the alignment domain, and popularity-aware metrics
such as PDS and EPD provide one lens for this. Further dimensions, such as diversity, novelty
and fairness should also be considered to obtain a broader picture. The success of the LLM-
based method in improving alignment demonstrates that explanation research can benefit from
integrating user-centric metrics more systematically.

7.2. Limitations
While our LLM-augmentation step shows promising improvements in user alignment, several
limitations remain.

A first limitation concerns data sparsity. In sparse datasets such as Amazon, where user histories
often consist of only a few interactions, the deletion of even a single item can disproportionately
distort the profile. In these cases, the LLM may struggle to infer coherent preferences, as the
available data is too limited. This explains why the benefits observed on MovieLens do not
always transfer to Amazon, and suggest a minimum history density might be required.

Second, the use of languagemodels introduces its own challenges. LLMs are known to generate
inconsistent, overly generic, or even hallucinatory results, and such errors directly affect the
quality of the filtering. While these issues do not strongly impact global evaluation scores, they
imply that a small number of individual users may actually receive worse explanations than
with unaugmented ACCENT. Although careful prompt design, validation, and model choice can
mitigate these risks, occasional failures remain unavoidable. A related concern is the black-
box nature of LLMs: since the goal of counterfactual explanations is to make the recommender
model more transparent, there is an inherent tension in relying on another opaque model to
achieve this.

Third, the computational cost of the LLM-based approach is high. Each iteration requires mul-
tiple LLM calls proportional to the size of the user history, leading to runtimes far greater than
embedding-based methods. A full complexity analysis is provided in § 7.4, but in practice this
overhead might limit the scalability of the approach to large-scale or real-time applications.

A minor point of consideration is the reduced counterfactual coverage. By removing misaligned
items before running ACCENT, the method reduces the pool of candidate items available for
constructing explanations. A simple fallback is to return the raw ACCENT explanation if it exists,
which ensures that overall coverage matches the baseline.

Finally, while we report statistically significant improvement for the overall EPD on MovieLens,
most gains are relatively small in absolute terms. This raises the issue of practical significance. A
conclusive answer requires user studies that assess perceived alignment, trust, and satisfaction,
as offline metrics alone cannot fully capture the subjective nature of explanations.

7.3. Future work
Several avenues remain open for extending and deepening this work.

A first direction is to move beyond pre-processing and examine the impact of removing mis-
aligned items on the recommendations themselves. In this thesis, the LLM-augmentation step
was applied purely as a filter prior to running ACCENT, without modifying the recommendation
model or its outputs. Future research could retrain recommenders on histories where misaligned
items have been removed, or simulate this effect through the use of influence functions. Such ex-
periments would clarify whether misaligned items not only distort explanations but also degrade
the recommendations themselves.

A second avenue is to conduct user studies. While PDS and EPD provide useful signals about
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popularity alignment, they do not capture how users perceive explanations in practice. User
studies could assess whether LLM-augmented explanations are indeed considered more faith-
ful, whether the bidirectional correction is noticed and valued, and whether alignment improve-
ments translate into higher trust or satisfaction. Such studies would also shed light on the prac-
tical significance of improvements that are statistically measurable but small in absolute terms.
They would also allow for a broader evaluation than looking at only the popularity; as LLM-
augmentation relies on a general ”does this suit the user?” test rather than on attribute-specific
rules, it should, in principle, alleviate many kinds of mismatch.

A third line of inquiry involves testing different recommendation models. The experiments in this
thesis were carried out on standard NCF-based recommenders, which are themselves known to
be popularity-biased. It remains unclear whether the misalignment observed originates primarily
from the recommender or from the counterfactual explanation framework. Running the same
pipeline with debiased recommendation models would reveal whether LLM augmentation still
adds value in systems that alreadymitigate different forms of bias. Similarly, applying themethod
to alternative counterfactual explanation frameworks beyond ACCENT would test whether the
improvements generalize across explanation paradigms.

The final direction concerns methods for identifying misaligned items. While we explored em-
beddings, influence scores, and LLMs, many more variants are possible. Larger LLMs may offer
stronger reasoning capabilities, while fine-tunedmodels trained on domain-specific data (e.g., re-
views or product descriptions) could improve both accuracy and robustness. Hybrid approaches
could also increase efficiency: embeddings could first narrow down candidate misaligned items,
after which a smaller or distilled LLM provides the final decision. Exploring these options would
help balance alignment quality with computational cost.

7.4. Computational Complexity
The computational complexity of our approach depends on the method used for identifying prob-
lematic items.

Embedding-based identification Let s be the number of items in the user’s interaction history,
and n the number of items to be selected. The first step in the algorithm is to create the complete
user embedding. Vector addition is O(d) for d-dimensional vectors, giving us a time complexity
of O(s ∗ d) for creating the full user embedding. Then, in each of the n greedy iterations, the
algorithm evaluates the influence of removing each of the remaining items in Hu. Each item
being evaluated requires a vector subtraction and cosine similarity computation, both of which
are O(d) for d-dimensional embeddings. This yields a total complexity of O((s ∗d)+ (n ∗ (s ∗d)+
(s ∗ d))) per user. This simplifies to O(n ∗ d ∗ s). Since the embeddings can be pre-computed,
we do not need to consider the inference of the embedding model.

LLM-based identification The LLM-based approach is more costly. Each item being evalu-
ated requires generating a user summary with the LLM and embedding that summary. Assuming
LLM generation and embedding take constant time TLLM per call (which in actuality is not the
case, as LLM inference is not independent from s), each iteration involves s such calls, resulting
in a total complexity of O(n ∗ s ∗ TLLM). Since TLLM ≫ d, this method is significantly slower in
practice, particularly for large s.

While both methods are greedy and avoid an exhaustive subset search, the LLM-based method
incurs a significantly higher real-world runtime due to the repeated generation of prompts.
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Summary

This thesis investigates how counterfactual explanations (CFEs) in recommender systems can
be made more user-aligned, with a particular focus on mitigating popularity bias. While CFEs
have the potential to increase transparency by showing users how recommendations would
change under small perturbations, they risk losing credibility if the counterfactual sets are sys-
tematically misaligned with user preferences. To study this issue, three research questions
were posed: (1) to what extent are ACCENT explanations affected by misaligned items, (2) how
effectively can augmentation strategies, particularly large language models (LLMs), improve
alignment, and (3) how does the size of the LLM influence the quality of the explanations?

Two NCFmodels were trained on MovieLens 1M and Amazon VideoGames. Using these recom-
menders, CFEs were generated for 736 extreme users (blockbuster- and niche-oriented), and
their alignment with user histories was assessed. Two metrics were proposed for this purpose:
popularity distribution similarity (PDS) and expected popularity deviation (EPD).

The core method introduced is LLM-based augmentation of ACCENT. An additional filtering step
is applied before running ACCENT, where an LLM is prompted with the user’s interaction history
and candidate items, and greedily removing the items that, when removed, cause the largest
shift in the user’s profile. ACCENT then generates counterfactuals on the reduced history. In this
way, the LLM acts as a filter that aligns explanations more closely with the user’s preferences

The results show that ACCENT explanations are indeed misaligned, and the proposed LLM-
based augmentation delivered the most consistent improvements out of the baselines, in partic-
ularly on MovieLens, where histories are richer. Importantly, it produced a bidirectional correc-
tion: for blockbuster users, counterfactuals became more popular, while for niche users, spuri-
ous popular items were removed. This adaptivity distinguishes the LLM approach from simpler
heuristics. Statistical testing further showed that overall EPD on MovieLens improved signifi-
cantly with LLM augmentation, making it the only variant to demonstrate measurable gains over
ACCENT at scale.

In sum, this thesis demonstrates that misalignment is a real and measurable problem in coun-
terfactual explanations, and that LLM-based augmentation offers a promising, if computationally
costly, solution. The work contributes new metrics for evaluating alignment, empirical evidence
of popularity bias in CFEs, and the first systematic study of LLMs for mitigating this bias.
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