Building Technology Graduation Studio P5 Presentation, June 2022

Student: Sofia Angeliki Kouvela 5392748

Mentor Team: Faidra Oikonomopoulou (1st) Marcel Bilow (2nd)

Re-LOOP TRANSPARENCY

Exploring the potential of maximising circularity and transparency in an Insulated Glass Unit (IGU)

Glass facade. From https://seele.com/facades/structural-

Two aspects to be improved

in IGUs

Visible Black Edge Seals

Circularity

Insulated glass unit. From https://www.glastory.net/insulating-glass-types/

59 %

29 % insulation (glass wool)

Glass cullet. From https://www.sibelco.com/materials/recycled-glass

Contaminating Factors

Window glass recycling-momentum recycling. From https://colorado.momentumrecycling.com/colorado-window-recycling/

Research Gap

Main research question

To what extent can **transparency** and **circularity** be combined in an insulated glass unit (IGU) that can be applied in fully glazed facades?

* Definition of circularity:

DESIGN FOR **DISASSEMBLY**

enabling refurbishment of the unit

and **recycling** of glass panes at end of life of the unit

* Definition of guidelines for transparency:

Minimised and optically discrete connection elements

Research Sub-Questions

1. What are the main **design criteria** in the development of a circular IGU of maximised transparency?

(a) in terms of the whole unit

and

(b) in terms of its edge seal connection?

2. What are the current **potential** and **limitations** of implementing a circular design of maximised transparency in:

(a) an insulated glass unit

and

(b) during its application in a fully glazed facade

Focus of the Thesis

Research through Design

focusing on

Constructability and Detailing

Design Assignment

Reversible Connections of Maximum Transparency in an **Insulated Glass Unit** (IGU)

Application in a Fully Glazed Facade 2

Literature Review

Answer to Research Sub-Question:

1. What are the main **design criteria** in the development of a circular IGU of maximised transparency

(a) in terms of the whole unit? and (b) in terms of its edge seal connection?

How can we create an IGU?

5.6 W/m²K

2.8 W/m²K

Create a cavity

Apply low-emissivity coatings

Convective barriers

Fill the cavity with an inert gas

1.8 W/m²K

0.8 W/m²K

What type of glass can we use to create an IGU?

Float Glass

Cast Glass

Automated process

Highest optical transparency

Limited shape options

Not automated process

Varying levels of optical distortion

Great freedom of shape options

Which contaminating factors need to be avoided in an IGU assembly?

Associated with glass surfaces

Structural Silicone **Adhesives**

Heavy Contamination

Even careful removal of silicone leaves contamination traces

Which contaminating factors need to be avoided in an IGU assembly?

Associated with IGU edge seals

Structural Silicone **Adhesives**

Heavy Contamination

Even careful removal of silicone leaves contamination traces

What are the Properties of the Existing IGU Edge Seals?

How can these Properties of be Translated in the Design of the New IGU Edge Seal?

transfer loads between glass panes

low thermal conductivity

flexibility for movements

integrated dessicant

metal foil

Mapping the Existing Connections

Design Criteria

Unit

thermal insulation

u-value <1.25 W/m2K

contamination-free

avoid adhesives, lamination

•

transparency

optically discrete connection

structural rigidity

ensure load-sharing between glass panels

airtight cavity

air tight water and moisture tight

moisture absorption

integrated desiccant

feasibility of construction

accommodate tolerances, thermal expansions and movements

implicity of construction

simply applied principle

demountable

reversible connection without contaminating glass

thermal conductivity

low thermal conductivity (0,25 - 2 W/mK) avoid thermal bridges

u-value <1.25 W/m2K

transparency

optically discrete connection

1•1

structural rigidity

ensure load-sharing between glass panels

airtight cavity

air tight water and moisture tight

moisture absorption

integrated desiccant

feasibility of construction

accommodate tolerances, thermal expansions and movements

simply applied principle

Connection

demountable

reversible connection without contaminating glass

thermal conductivity

low thermal conductivity (0,25 - 2 W/mK), avoid thermal bridges

Investigation of Design Concepts

Answer to Research Sub-Question:

2. What are the current **potential** and **limitations** of implementing a circular design of maximised transparency in:

(a) in an IGU?

Possible Glass Cross Sections

Solid Cast Glass

+ Perfectly Smooth Surfaces

+ Safety Treatment

- Restricted Shape

+ Great Shape Freedom

+ Great Recyclability

- Lack of Perfectly Smooth Surfaces

- Lack of Safety Treatment

Hollow Cast Glass

Float Glass

Solid Cast Glass

+ Perfectly Smooth Surfaces

+ Safety Treatment

- Restricted Shape

+ Great Shape Freedom

+ Great Recyclability

- Lack of Perfectly Smooth Surfaces

- Lack of Safety Treatment

Hollow Cast Glass

Possible Glass Cross-Section Combinations

Combination of Glass Types					
Glass Types	Float Glass	Float Glass	Float Glass	Solid Cast Glass	Solid Cast G
	+ Float Glass	+ Solid Cast Glass	+ Hollow Cast Glass	+ Solid Cast Glass	+ Hollow Cast (
Possible Connection Types for each Glass Combination		Adhesion			
	OR	OR	Adhesion to float glass + Mechanical to cast glass	Mechanical	Mechanic
reversibility	+	++	++	++++	++++
optical transparency	++++ +++	++++ +++	++++	++	++
safety	++++	++++	++++	+	+

Development of Preliminary Concepts

Recyclable **Glass Part**

Altarnative Design Concepts

. Sliding Embedded Lock B	7. Sliding Embedded Lock C
+	++
+	+
++	++
+	+++
+	+
++++	++++
Difficult assembly due to tolerances in sliding / Thermal bridges/ Visible frame	Difficult assembly due to tolerances in sliding

Design Option Evaluation							
Criteria	1. Interlocking Gasket	2. "Tetris" Lock	3. Pushed Embedded Lock	4. "Tupper" Lock	5. Sliding Embedded Lock A	6. Sliding Embedded Lock B	7. Sliding Embedded Lock C
Optical Quality	+++	++	+++	+++	+++	+	++
Feasibility of Assembly	+++	++	+++	++++	+	+	+
Thermal Bridges	+++	+++	+	++++	+++	++	++
Simplicity of Design	++++	++	+++	++++	+++	+	+++
Potential for Full Reversibility	++++	+	+	++	++	+	+
Potential for 3rd Glass Pane	++++	+++_	++++	++++	++++	++++	++++
Notes	Feasible depend on geometry and material	Difficult to lock in position and seal cavity	Thermal Bridges / Cannot be fully reversible	Simplicity of design / Feasible assembly	Difficult assembly due to tolerances in sliding	Difficult assembly due to tolerances in sliding / Thermal bridges/ Visible frame	Difficult assembly due to tolerances in sliding

Further Development of Prevailing Designs

Interlocking Gasket

"Tupper" Lock

Final Design Development

rotate and click!

Fusion as alternative to cast glass

Fusion line

Can we make it fully reversible??

Mirror geometry!

Clamping mechanism

41

Add third glass pane and coating

u-value = 1.11 W/m2K

Float glass 10 mm

Leave space for tolerances and movements

Smoothen glass edges

Place gaskets for water and dirt protection

Final Detail

Materials

Glass Manufacturing

Raw materials

1. Float Glass Panes

2. Extruded Glass Profiles

Extruded profiles

Cooling rolls

3. Glass Tack Fusion

Place inside oven and place supports

Heat up oven to 650 °C

Lower extruded glass

Place press on top of extruded glass

Remove press and supports

Let glass cool down

^{4.} Coated float glass

5. Application of silicone foam with integrated desiccant

6. Addition of third glass pane

7. Application of aluminum tape around edge seal

8. Application of spring clips

9. Fixing of corner pieces

10. Application of neoprene gaskets

1. edge seal failure

1. edge seal failure

2. coating's reduced performance

1. edge seal failure

2. coating's reduced performance

3. glass breakage

REFURBISHMENT OPTION

Prolong IGU Life time

RECYCLING OPTION

Bring Glass Back Into The Loop

Facade Application

Answer to Research Sub-Question:

2. What are the current **potential** and **limitations** of implementing a circular design of maximised transparency in:

(b) in a curtain wall facade

Design Criteria

thermal insulation

u-value <1.25 W/m2K

weather proofing

air tight water tight

transparency

optically unobstructive facade connections

|=|

load-transfer

floor span height

construction feasibility

accommodate tolerances, thermal expansions, building movements

demountable

enable reversibility of the structure

substructure

beams

Selection of Suitable Facade Connection

			1	1
	Load-transfer	Reversibility	Transparency	Notes
Linear Clamping Bar	+++	+++	+	Visible Fran
Point Clamping Plates	++	+++	++	Less visible than lir
Point Drilled Fixings	++	+++	++	Stress Concen Requires attention at Optically Dis
Structural Silicone	+++	-	+++	Difficult disass Reversible with glass
Point Mechanical Clamp Fixing	++	+++	+++	Hidden Fixi Fully Revers

ning	
near clamps	
trations, sealing of IGU, screte	
sembly, contamination	
ings sible	

	Load-transfer	Reversibility	Transparency	Notes
Linear Clamping Bar	+++	+++	+	Visible Fran
Point Clamping Plates	++	+++	++	Less visible than lir
Point Drilled Fixings	++	+++	++	Stress Concen Requires attention at Optically Dis
Structural Silicone	+++	-	+++	Difficult disass Reversible with glass
Point Mechanical Clamp Fixing	. ++	+++	+++	Hidden Fix Fully Revers

ning
near clamps
itrations, sealing of IGU, screte
sembly, contamination
ings sible

Facade Structure Overview

Substructure: Beams

Load Transfer Mechanism: Per Floor

-> In-plane loads: Transfered through support blocks

-> Out-of-plane loads: Transfered by point fixing clamping plates

Movement Tolerance:

-> Fixed Bottom Connection -> Loose Top Connection

Vertical Connections

Vertical Section at Facade Support Block

Weather sealing silicone

Fastening Anchor

Steel beam

Vertical Connections

Vertical Section at Facade Clamp Fixing

Weather sealing silicone

Fastening Anchor

Steel beam

Horizontal Connection

Horizontal Section between Adjacent IGUs

Screw Vertical Linear Fixing

Assembly Order

1. Fixing of anchors in concrete slab

2. Fixing of steel beams to anchors

3. Fixing of support blocks

4. Fixing of Toggle Fixing Clips

5. Placement of IGU on Support Blocks

6. Turn of Toggle Fixing Clips

7. Fixing of Spring Clips for Gasket Holding

8. Placement of horizontal gaskets

9. Placement of Vertical Gaskets

Safety Measures

inner pane breakage

outer pane breakage

fixings

add safety inner fixings

additional measures

lamination

Conclusions

Answer to Main Research Question:

What are the potentials and limitations of implementing a **circular** design of **maximised transparency** in an insulated glass unit (IGU) that can be applied in fully glazed facades?

New Circular IGU

Standard IGU

Circularity

Potential

-> Fully reversible design

- -> Mechanical clamping connection
- -> Fusion of cast glass to float glass surface

Limitations

- -> Use of **coating** for desired u-value -> Reduced quality of specific recycled glass pane
- -> If **lamination** is necessary for structural reasons
 - -> Either downcycle of laminated pane
 - -> Or use of cast glass with thicker cross-section (provided that the external pane is heat treaded for safety)

Potential

Internal Connection

-> Reduced visible effect compared to a standard IGU

Limitations

- -> Desiccant
- -> Metal foil for moisture barrier
- -> Spring clip metal

Recommendations for further research

Glass extrusion process

Glass fusion process

Structural stability of IGU

Air and moisture impermeability of edge seal

Sufficiency of desiccant

Sound insulation

118

Thank you!

Time for questions

119