

Delft University of Technology

Large-scale online ridesharing
the effect of assignment optimality on system performance
Fiedler, David; Čertický, Michal; Alonso-Mora, Javier; Pěchouček, Michal; Čáp, Michal

DOI
10.1080/15472450.2022.2121651
Publication date
2022
Document Version
Final published version
Published in
Journal of Intelligent Transportation Systems: technology, planning, and operations

Citation (APA)
Fiedler, D., Čertický, M., Alonso-Mora, J., Pěchouček, M., & Čáp, M. (2022). Large-scale online ridesharing:
the effect of assignment optimality on system performance. Journal of Intelligent Transportation Systems:
technology, planning, and operations, 28 (2024)(2), 189-210.
https://doi.org/10.1080/15472450.2022.2121651
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1080/15472450.2022.2121651
https://doi.org/10.1080/15472450.2022.2121651

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gits20

Journal of Intelligent Transportation Systems
Technology, Planning, and Operations

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gits20

Large-scale online ridesharing: the effect of
assignment optimality on system performance

David Fiedler, Michal Čertický, Javier Alonso-Mora, Michal Pěchouček &
Michal Čáp

To cite this article: David Fiedler, Michal Čertický, Javier Alonso-Mora, Michal Pěchouček &
Michal Čáp (2022): Large-scale online ridesharing: the effect of assignment optimality on system
performance, Journal of Intelligent Transportation Systems, DOI: 10.1080/15472450.2022.2121651

To link to this article: https://doi.org/10.1080/15472450.2022.2121651

Published online: 04 Dec 2022.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gits20
https://www.tandfonline.com/loi/gits20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15472450.2022.2121651
https://doi.org/10.1080/15472450.2022.2121651
https://www.tandfonline.com/action/authorSubmission?journalCode=gits20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gits20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/15472450.2022.2121651
https://www.tandfonline.com/doi/mlt/10.1080/15472450.2022.2121651
http://crossmark.crossref.org/dialog/?doi=10.1080/15472450.2022.2121651&domain=pdf&date_stamp=2022-12-04
http://crossmark.crossref.org/dialog/?doi=10.1080/15472450.2022.2121651&domain=pdf&date_stamp=2022-12-04

Large-scale online ridesharing: the effect of assignment optimality on
system performance

David Fiedlera , Michal �Certick�ya, Javier Alonso-Morab , Michal P�echou�ceka , and Michal �C�apa

aDepartment of Computer Science, Faculty of Electrical Engineering, CTU in Prague, Prague, Czech Republic; bDepartment of
Cognitive Robotics, TU Delft, Delft, The Netherlands

ABSTRACT
Mobility-on-demand (MoD) systems consist of a fleet of shared vehicles that can be hailed
for one-way point-to-point trips. The total distance driven by the vehicles and the fleet size
can be reduced by employing ridesharing, i.e., by assigning multiple passengers to one
vehicle. However, finding the optimal passenger-vehicle assignment in an MoD system is a
hard combinatorial problem. In this work, we demonstrate how the VGA method, a recently
proposed systematic method for ridesharing, can be used to compute the optimal passen-
ger-vehicle assignments and corresponding vehicle routes in a massive-scale MoD system.
In contrast to existing works, we solve all passenger-vehicle assignment problems to opti-
mality, regularly dealing with instances containing thousands of vehicles and passengers.
Moreover, to examine the impact of using optimal ridesharing assignments, we compare
the performance of an MoD system that uses optimal assignments against an MoD system
that uses assignments computed using insertion heuristic and against an MoD system that
uses no ridesharing. We found that the system that uses optimal ridesharing assignments
subject to the maximum travel delay of 4minutes reduces the vehicle distance driven by
57% compared to an MoD system without ridesharing. Furthermore, we found that the opti-
mal assignments result in a 20% reduction in vehicle distance driven and 5% lower average
passenger travel delay compared to a system that uses insertion heuristic.

ARTICLE HISTORY
Received 9 December 2020
Revised 5 July 2022
Accepted 10 July 2022

KEYWORDS
Mobility-on-demand; ride-
sharing; simulation; traffic
control; vehicle routing

1. Introduction

In densely populated cities, private cars are considered
as an unsustainable mode of transportation. Typically,
parking capacity and road capacity are insufficient to
accommodate all private transport and, at the same
time, difficult to expand due to lack of available urban
space or high cost. As a result, many modern cities
suffer from traffic congestion, unavailability of parking
spaces, and air pollution.

One of the proposed solutions to address these
problems is the deployment of metropolitan mobility-
on-demand (MoD) systems providing an alternative
to traveling in a private vehicle designed to be as
comfortable as traveling in a private car but with
smaller parking capacity and road capacity require-
ments (Alonso-Mora et al., 2017; �C�ap & Alonso-
Mora, 2018; Miller & How, 2017; Spieser et al., 2014).
These MoD systems consist of a fleet of shared pas-
senger vehicles that jointly serve the travel requests of
the system’s users. Usually, these systems are assumed
to use traditional vehicles able to carry up to four

passengers simultaneously. For each incoming travel
request, the MoD system assigns the request to one of
the vehicles and alters its route such that the passen-
ger is picked up and transported to the drop-off loca-
tion. Examples of such an MoD system include
services like Uber Pool or Lyft Line, as well as the
future systems of autonomous self-driving cars being
developed by companies such as Waymo, Cruise,
or Motional.

Such MoD systems employ vehicle sharing, so they
can serve the existing transportation demand with a
smaller, highly-utilized vehicle fleet and thus, signifi-
cantly reduce the need for urban parking space. To
further improve the system’s efficiency, the provider
can implement ridesharing, where multiple passengers
can be transported in one vehicle simultaneously
(Alonso-Mora et al., 2017). Efficient ridesharing
increases vehicle occupancy, which consequently
reduces the required fleet size and total distance
driven by the vehicle fleet, resulting in ecological and
economic benefits.

CONTACT David Fiedler david.fiedler@agents.fel.cvut.cz
� 2022 Taylor & Francis Group, LLC

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS
https://doi.org/10.1080/15472450.2022.2121651

http://crossmark.crossref.org/dialog/?doi=10.1080/15472450.2022.2121651&domain=pdf&date_stamp=2022-12-02
http://orcid.org/0000-0001-5374-1089
http://orcid.org/0000-0003-0058-570X
http://orcid.org/0000-0002-2582-6795
https://doi.org/10.1080/15472450.2022.2121651
http://www.tandfonline.com

Two clarifying notes on terminology are in order.
First, we note that MoD systems are ultimately envi-
sioned also to include high-capacity transportation
modes (e.g., trains, subway, buses) and to allow for
transfers between different vehicles (Shaheen &
Cohen, 2020). However, this article focuses on MoD
systems that transport each passenger from their pick-
up to their destination in one vehicle. Analysis of
MoD systems that allow transfers is left for future
work. Second, we also caution that the term rideshar-
ing is overloaded. This paper focuses on ridesharing
in on-demand mobility systems, where each vehicle is
driven by a for-hire driver who transports travelers
between their desired pick-up and drop-off locations.
Alternatively, in the future, these vehicles may be self-
driving. Apart from that, there is a distinct concept
called peer-to-peer ridesharing, where the vehicle is
typically owned and driven by one of the travelers,
whose primary motivation is to reach his/her intended
destination. Readers interested in peer-to-peer ride-
sharing are referred to the growing body of research
devoted to this model, for example, the work of Li
et al. (2019) that studies the impact of high occupancy
toll lane configurations on the willingness of (peer)
drivers to share a ride, or J. Ma et al. (2020) and Yan
et al. (2019) who study the ridesharing user equilib-
rium in the context of peer-to-peer ridesharing.

1.1. Related work

Recently, a number of mobility-on-demand system
models have been developed with the aim to provide
quantitative insights into the potential of large-scale
carsharing and ridesharing to improve the efficiency
of urban transportation.

Most existing models of MoD systems assume unit-
capacity vehicles (Bischoff & Maciejewski, 2016;
Fiedler et al., 2017; Maciejewski & Bischoff, 2018;
Spieser et al., 2014; Venkatraman & Levin, 2019).
However, transportation systems that do not employ
ridesharing suffer from poor operational efficiency
because the vehicles need to travel empty from the
drop-off point of a passenger to the pick-up point of
the following passenger. Such unallocated trips can
generate significant extra vehicular traffic in the sys-
tem; various studies indicate the growth in vehicle dis-
tance traveled from 17% to 40% depending on the
system configuration (Bischoff & Maciejewski, 2016;
Fiedler et al., 2017; Maciejewski & Bischoff, 2018).
The average vehicle occupancy observed in such sys-
tems is considerably lower than one passenger per
vehicle (Fiedler et al., 2018), a finding which also

corresponds to the average vehicle occupancy meas-
ured in already operating taxi services (NYC Taxi &
Limousine Commission, 2016). The low occupancy in
MoD systems can lead to congestion, which could be
partially alleviated by a congestion-aware dispatching
(Venkatraman & Levin, 2019).

Therefore, it is beneficial to consider vehicles with
a capacity higher than one and allow ridesharing
between passengers. In contrast to peer-to-peer ride-
sharing (Li et al., 2019; Masoud & Jayakrishnan, 2017;
Tamannaei & Irandoost, 2019), here we are interested
in the centralized setting, where a central dispatcher
decides on an efficient assignment of travel requests
to fleet vehicles. This problem is commonly formu-
lated as a Vehicle Routing Problem with Pickup and
Deliveries (VRPPD) or, more specifically, as Dial-a-
Ride Problem (DARP) (Cordeau & Laporte, 2007;
Toth & Vigo, 2014). These formulations can be solved
optimally using off-the-shelf Integer Linear
Programming (ILP) solvers or domain-tailored ILP
solution techniques. However, the applicability of
these methods is limited to small-scale instances with
at most tens of requests and vehicles. Large-scale
MoD systems typically require the ability to find
routes for many more vehicles and requests. For
example, in New York City (NYC), there are almost
100,000 active taxis per hour during peak traffic
(NYC Taxi & Limousine Commission, 2018).
Therefore, DARP instances appearing in large-scale
MoD systems are typically solved using heuris-
tic methods.

A popular heuristic method for large-scale dynamic
DARP is the Insertion Heuristic (IH) (Bischoff et al.,
2017; Campbell & Savelsbergh, 2004; Fiedler et al.,
2018; Kalina et al., 2015). Also, IH is often used as a
subcomponent of more sophisticated algorithms. For
example, in ridesharing with demand prediction (van
Engelen et al., 2018), when integrating ridesharing
with public transport (T.-Y. Ma et al., 2019), or as an
initial solution generator for metaheuristic methods
(Muelas et al., 2013). The metaheuristic methods,
which are effective in solving conventional DARP
problem instances (Ho et al., 2018), typically target
scenarios with less than twenty vehicles (Masmoudi
et al., 2016; Pfeiffer & Schulz, 2022) and suffer from
scalability issues when applied to large-scale DARPs.
However, in the last decade, there was some progress
with metaheuristic approaches enabling solving larger
instances. Jung et al. (2016) used simulated annealing
to solve scenarios with 600 operating vehicles.
Another popular metaheuristic is the Greedy
Randomized Adaptive Search Procedure (GRASP)

2 D. FIEDLER ET AL.

used by Santos and Xavier (2013). The authors were
able to solve instances with up to 750 requests. They
also tested an online setting with 78,000 requests per
day, and later, they improved the results significantly
(Santos & Xavier, 2015). Muelas et al. (2013) also
solved four types of specialized DARP scenarios with
up to 90 vehicles using Variable Neighborhood
Search. Later, Muelas et al. (2015) modified this
approach to a distributed version which was able to
solve scenarios with up to 1668 vehicles and 16,000
requests. Another metaheuristic, a modified artificial
bee colony algorithm, was used by Zhan et al. (2021).
The method was able to solve an instance of 3661
requests and 2400 vehicles. Later, this method was
used in a simulation-optimization framework for an
MoD system with electric vehicles (Zhan et al., 2022).

A systematic and scalable approach for pairwise
ridesharing based on bipartite matching in the so-
called shareability network was proposed by Santi
et al. (2014). The analysis revealed that up to 80% of
the trips could be pairwise shared while keeping the
travel delay lower than a couple of minutes. Later,
Alonso-Mora et al. (2017) proposed a new method
that lifted the limit of two passengers per car and
evaluated this method on the NYC taxi dataset.
Finally, �C�ap and Alonso-Mora (2018) utilized this
method to study the tradeoffs between the quality of
service and the operation cost inherent in ridesharing.

Finally, apart from optimizing the assignment of
passengers to vehicles, we can also optimize the
pickup and drop-off locations if we enable short walk-
ing for passengers. Such an approach was tested by
Fielbaum et al. (2021), showing that it can improve
the level of service and decrease the total travel time.
Later, Fielbaum (2021) tried optimizing pickup and
drop-off positions of precomputed vehicle plans to
measure the benefits exactly. He demonstrated that we
could decrease the travel cost by almost 19% when
optimizing the locations with a heuristic method and
24% with a slower optimal solution method.

1.2. Contribution

In this work, we extend the existing study of rideshar-
ing in large-scale MoD systems (Fiedler et al., 2018)
by analyzing the impact of passenger-vehicle assign-
ment optimality on system performance. To do this,
we use a variant of the vehicle-group assignment
(VGA) method used by Alonso-Mora et al. (2017)
and �C�ap and Alonso-Mora (2018). We chose this
method because it was previously demonstrated to be
able to efficiently solve large-scale DARP instances

with tight pick-up and drop-off time windows that are
characteristic of large-scale MoD systems. Moreover,
it is less complex than the classical exact methods for
DARP, and it can be easily modified to a resource-
constrained version, which we also evaluate in
this work.

The contribution of this paper is 3-fold:

1. Optimality: We took special care to ensure that all
ridesharing assignments and routes are computed
optimally. This is in contrast to Alonso-Mora
et al. (2017), who used a similar solution algo-
rithm to evaluate shareability within the NYC taxi
dataset, but to maintain computational tractabil-
ity, the actual implementation used in the experi-
ment resorted to heuristics and time-outs, leading
to suboptimal performance of the system.
Moreover, it remained unclear how far are the
reported performance metrics from optimum. In
this work, we identified and solved several algo-
rithmic bottlenecks, and consequently, we were
able to obtain optimal ridesharing assignments for
the majority of the evaluated scenarios.

2. Scale: We implemented performance optimiza-
tions that enable us to significantly scale the algo-
rithm and compute optimal ridesharing
assignments for instances of unprecedented size
peaking at more than 21,000 active travel requests
and 11,000 vehicles. This is in contrast to �C�ap
and Alonso-Mora (2018) who proposed the opti-
mal version of the VGA method but were only
able to solve problem instances with a bit less
than 500 requests.

3. Impact of Assignment Optimality: With an (1)
optimal and (2) scalable implementation of a ride-
sharing algorithm, we are able to achieve the
main objective of this work: to quantify the
impact of using an optimal ridesharing method
on system performance in comparison to the per-
formance achieved by sub-optimal ridesharing
methods. We quantify the reduction in vehicle
distance traveled, travel delay, used vehicles, and
traffic density for different ridesharing strategies.
Specifically, we compare the above metrics in six
scenarios: (a) a present-day transportation using
private vehicles, (b) an MoD system without ride-
sharing, (c) an MoD system with ridesharing
based on the IH, (d) an MoD system with optimal
ridesharing computed using Vehicle Group
Assignment (VGA) method, (e) an MoD system
with ridesharing solved by a VGA method with
limited computational resources, and (f) an MoD

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 3

system with ridesharing solved by a resource-con-
strained variant of VGA method as implemented
in Alonso-Mora et al. (2017). This allows us to
give a quantitative answer to the question of how
much do we gain by actually taking the effort to
compute optimal assignments?

The performance comparison of the system that
uses optimal assignments against the system that uses
IH is particularly interesting, as the latter approach is
widely used in existing studies of large-scale MoD sys-
tems (Bischoff et al., 2017; Campbell & Savelsbergh,
2004; Fiedler et al., 2018), while the former represents
the fundamental bound on system performance.

Our evaluation revealed that optimal ridesharing
assignments can reduce the distance driven in the sys-
tem by 57% compared to an MoD system without
ridesharing, and simultaneously, we managed to main-
tain the passenger travel delay below 4minutes.
Furthermore, we found that the optimal ridesharing
assignments are considerably more efficient than the
assignments computed by IH. Specifically, in the sys-
tem that uses optimal assignments, the total vehicle
distance driven is reduced by 20%, and simultan-
eously, average passenger travel delay is reduced by
5%. Moreover, in order to provide insights into the
limits of the VGA method, we performed a sensitivity
analysis on our city-scale scenarios with respect to (1)
the length of a ridesharing batch, (2) the vehicle cap-
acity, and (3) and the maximum allowed passenger
delay. Our results show that the VGA method is cap-
able of finding optimal assignments given that vehicle
capacity is no more than 5–10 passengers and the
maximum allowed delay is no more than 4–7minutes,
depending on the demand structure and intensity. For
scenarios using higher-capacity vehicles or with more
permissive delay constraints, the VGA algorithm can
no longer certify optimality of the computed rideshar-
ing assignments.

2. Methodology

We use a travel demand model to generate a dataset
of all private car trips in Prague. Then, we design an
MoD system that can serve these existing trips with
the required service quality (measured by maximum
travel delay). After that, we implement the considered
solution methods for passenger-vehicle matching.
Finally, we simulate various scenarios in multi-agent
simulation and analyze the results.

2.1. Input data

The set of trips that represent the transportation
demand is generated by the multi-agent activity-based
model described in Drchal et al. (2019). We chose the
city of Prague, the Czech Republic for a case study
because (a) we have access to the travel demand model
for the area and (b) because its demand density,
demand structure, and road topology are representative
for a large European city. This is in contrast to previ-
ously considered urban areas, such as Manhattan or
Singapore, which due to an extremely high density of
travel demand, lead to overly-optimistic estimates of
the benefits of ridesharing. Nevertheless, for interested
readers, we also performed a version of our experiment
using the Manhattan taxi demand dataset (the dataset
previously used by Alonso-Mora et al. (2017)), and we
present the results in Appendix A.

In contrast to traditional four-step demand models
(Hensher & Button, 2007), which use trips as the fun-
damental modeling unit, activity-based models employ
so-called activities (e.g., work, shop, sleep) and their
sequences to represent the transport-related behavior of
the population. Travel demand then occurs due to the
agents’ necessity to satisfy their needs through activities
performed at different places at different times. These
activities are arranged in time and space into sequential
daily schedules. Trip origins, destinations, and times are
endogenous outcomes of activity scheduling. The activ-
ity-based approach considers individual trips in context
and therefore allows representing realistic trip chains.

The model used in this work covers a typical work-
day in the metropolitan area of Prague. The population
of over 1.3 million is modeled by the same number of
autonomous, self-interested agents, whose behavior is
influenced by their sociodemographic attributes, cur-
rent needs, and situational context. Individual decisions
of the agents are implemented using four modules
responsible for choosing the activity type, duration,
location, and mode. Each module uses a dedicated
machine learning model (such as neural network, deci-
sion trees, regression tree) trained so that its output
matches various real-world data sets such as travel dia-
ries and other transportation-related surveys, demo-
graphic data, points of interests, and transport network
structure. Planned activity schedules are simulated and
tuned, and finally, their temporal, spatial, and structural
properties are validated against additional historical
real-world data (origin-destination matrices and sur-
veys) using the six-step validation framework
VALFRAM (Drchal et al., 2015, 2016).

The model consists of over three million trips by all
modes of transport in one 24-hour scenario, out of

4 D. FIEDLER ET AL.

which there are roughly one million trips realized by pri-
vate vehicles (Figure B2). Tables B1 and B2 and Figure
B1 show example activity schedules for two agents. In
this work, we select only the trips realized by private
vehicles in two representative time intervals: the peak
dataset includes trips that start 06:30 and 08:00, and the
off-peak dataset includes trips that start between 10:30
and 12:00. The two datasets contain about 130,000 and
45,000 trips, respectively. The duration of trips ranges
from 1 to 37minutes; the histogram is in Figure B3.

2.2. System model

For MoD systems design, we adopt a station-based
methodology described by Pavone et al. (2012) or by
Wallar et al. (2019), which means that idle MoD
vehicles are parked in dedicated parking facilities
instead of parking on-street or cruising. This setup is
typical in carsharing or bike-sharing systems because
curb parking would take valuable urban space, and
cruising for parking would increase fuel consumption
and congestion. Further, in case of electric vehicles,
stations will provide charging infrastructure. Vehicles
are initialized in stations and leave a station only to
serve travel requests. Whenever a vehicle becomes
idle, it starts driving to the nearest station to
park there.

Table B1. Example trips.
Trip Person From To Mode

4,500,942 50,719 0 1 PT
4,500,943 50,719 1 2 PT
4,500,944 50,719 2 3 WALK
4,500,945 50,719 3 4 PT
4,789,903 450,277 0 1 CAR
4,789,904 450,277 1 2 CAR
4,789,905 450,277 2 3 CAR

Each trip connects two activities, shown in Table B2. We can identify each
activity by Person column and From/To columns that correspond to
the Activity column in Table B2.

Table B2. Example activities.
Person Activity Start End Type Lat Lon

50,719 0 00:00 04:06 SLEEP 50.084294 14.490635
50,719 1 06:56 07:42 LEISURE 50.110286 14.496852
50,719 2 10:31 13:49 WORK 50.086623 14.461201
50,719 3 15:01 16:04 LEISURE 50.076027 14.439032
50,719 4 17:17 00:00 SLEEP 50.084294 14.490635
450,277 0 00:00 07:22 SLEEP 50.131751 14.423139
450,277 1 07:54 15:43 WORK 50.084170 14.360924
450,277 2 16:00 16:35 SHOP_LONG 50.059205 14.420547
450,277 3 17:26 00:00 SLEEP 50.131751 14.423139

Figure B1. Two example trips from the generated demand.
The filled circles represent activities, while the arrows represent
trips between those activities. Next to each activity, we can
see the person and activity IDs in the format person_id-activi-
ty_id. The activities corresponding to these IDs can be found
in Table B2.

Figure B2. Demand for personal vehicle traffic in Prague. The
start positions of all vehicle trips are discretized to squares of
200 square meters. Darker color translates to higher demand,
and the color bar has a logarithmic scale.

Figure B3. Histogram of fastest path travel times for each trip.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 5

2.2.1. Station positioning, rebalancing, and
fleet-sizing

We use 73 stations shown in Figure B4 chosen such
that every node on the road network (excluding roads
without travel requests such as tunnels or highways)
can be reached from one of the stations within 210 s,
and the number of stations is minimized. We compute
the station positions using an integer program with
binary variables sn for each node n in the set of serv-
iced nodes N, where each variable sn indicates if there
is a station at node n (1) or not (0). We minimize

X

n2N
sn, (1)

subject to
X

n02Pn
sn0 � 1 8n 2 N, (2)

where Pn is a set of nodes from which n is reachable
within 210 s.

The stock of vehicles at each station is stabilized by
a vehicle rebalancing process that continuously sends
empty vehicles from stations with a surplus of vehicles
to stations that have a shortage of vehicles. We use the
rebalancing policy introduced by Pavone et al. (2012)
and later evaluated by Spieser et al. (2014) in the
Singapore MoD case study. In one-minute intervals, we
generate an integer program for transferring vehicles
from stations with more vehicles compared to the ini-
tial state to stations with fewer vehicles compared to
the initial state such that the number of vehicles in
each station s is kept above a corresponding threshold
ss, and the total length of all rebalancing trips is mini-
mized. We experimentally determined that in order to
compensate for driving vehicles, the ss should be no

more than 85% of the initial number of vehicles parked
in s. Also, we use only stations with at least 5% more
vehicles over the initial state as source stations in order
to prevent rebalancing instabilities, i.e., rebalancing
flows in the opposite directions.

Our objective is to achieve full service availability dur-
ing the entire experiment, i.e., every request should be
served. We experimentally determined that in order to
be able to serve every request during the morning peak
(see Sec. 2.1) without ridesharing, the MoD system
requires a total of 68,201 vehicles.1 We used the same
fleet size for other scenarios (off-peak, ridesharing)2 as
these experiments are guaranteed to require fewer or
equal vehicles than the scenario without ridesharing.
Specifically, to determine the number of vehicles in each
station needed to ensure full service availability, we first
created a dedicated vehicle for each request in the station
closest to the requested pickup location. Then, we started
iteratively reducing the number of vehicles by the same
factor in each station until the first vehicle shortage event
occurred in any station. Then, we used the vehicle counts
from the last iteration without any shortage. This proced-
ure guarantees that there is a sufficient number of
vehicles to serve all requests from the nearest station.

2.2.2. Problem formulation
The set of all vehicles will be denoted as V ¼ 1, :::,m,
all vehicles have the same capacity K: Travel requests
are modeled as a sequence ðt1, o1, d1Þ, ðt2, o2, d2Þ, ::: ,
where ti, oi, and di are the announcement time, origin
point, and destination point of request i, respectively.
The ith request is revealed only at time ti. We obtain
requests from the demand model trips simply by set-
ting t equal to the trip start time, o equal to the trip
start location, and d equal to the trip end location.

The state of a vehicle v at a particular time point enc-
odes its current position, the set of passengers currently
on-board of the vehicle, and its current plan. The plan
of a vehicle is represented as a sequence of locations
p ¼ l1, l2, ::: , where each location li is either an origin
location oi, or a destination location di of request i that
is scheduled to be serviced by the plan. A vehicle plan is
valid only if the plan contains origin location and later
destination location for each onboard passenger.

The operational cost of vehicle v when following
plan p is denoted c(p, v). For simplicity, we define c(p,
v) to be equal to the distance driven by the vehicle
when it follows plan p: Each plan p requires a vehicle
of capacity jðpÞ, where jðpÞ � jpj: The travel delay of
request r when it is served by vehicle v following plan
p is computed as:

qrðp, vÞ :¼ ðtdropoffr � trÞ � dbaseliner : (3)

Figure B4. MoD system stations in the city of Prague. There
are 73 stations in total, shown as red circles.

6 D. FIEDLER ET AL.

Here, tdropoffr is the time when the request is dropped
off under plan p and dbaseliner is the duration along dir-
ect route from the request’s origin to its destination.
Note that the passenger’s waiting time is included in
the delay, and therefore, the maximum delay also limits
the maximum waiting time.

Our goal is to minimize the total operational cost
of the system, such that the delay of every passenger
is bounded by a constant qmax, and the maximum
capacity K is respected for all vehicles. That is, we
desire to minimize

X

v2V
cðp, vÞ (4)

subject to

qrðp, vÞ � qmax 8r 2 R (5)

jðpvÞ � K 8v 2 V: (6)

2.3. Request-vehicle matching

In an MoD system, new requests dynamically arrive
and need to be served. A ridesharing algorithm tries to
find the optimal system plan (i.e., a collection of vehicle
plans), such that (1) every request is served, (2) max-
imum discomfort constraint qmax is respected, and (3)
the total operation cost is minimized. This planning
procedure is repeated periodically, and each such plan-
ning period is referred to as a batch. During one batch,
we collect all newly announced requests and execute a
planning procedure that computes request-vehicle
matching and corresponding vehicle plans. We make
the following assumptions: (a) travel time on each road
segment is constant over time and does not depend on
the number of vehicles on the segment, (b) the execu-
tion of the vehicle schedule is perfect (there are no ran-
dom delays), and (c) the mode choice is fixed in the
demand model and customers accepts any plan that
satisfies the max delay constraint (which is guaranteed
in our setup, as explained in Sec. 2.2.1).

The request-vehicle matching can be modeled as a
Dial-a-Ride (DARP) problem, which is known to be
NP-hard (Toth & Vigo, 2014). In this work, we imple-
ment and compare two methods for computing such
request-vehicle matching. First, we implement Insertion
Heuristic (IH) (Campbell & Savelsbergh, 2004), a popu-
lar heuristic algorithm for DARP and other vehicle rout-
ing problems. Second, we implement Vehicle-Group
Assignment (VGA) method (�C�ap & Alonso-Mora,
2018), which is a recently proposed exact solution
method for DARP exhibiting good scalability properties.

2.3.1. Insertion heuristic
The pseudocode of the IH is presented in
Algorithm 1. The algorithm is implemented as fol-
lows: For each new request, the IH algorithm attempts
to insert the request into the plan of each vehicle. The
current plan of a vehicle v, denoted as pv, is the plan
computed in one of the previous iterations of the
algorithm. For a particular vehicle v, we try all pos-
sible indexes i in plan pv to insert pickup of the new
request before i and all possible indexes j, j > i to
insert drop off of the new request before j. We denote
such plan as pnewv : Note that the relative ordering of
all locations from pv remains unchanged in the new
plan, and therefore, optimality is not guaranteed.
Finally, among all plans generated this way, we select
the plan (and the corresponding vehicle) that mini-
mizes the increase in operating cost and at the same
time satisfies the service discomfort constraints.

Algorithm 1: Insertion Heuristic

input: Current plan pv of each vehicle v that was
computed in one of the previous itera-
tions of the algorithm and the set of new
requests Dn,
i.e., requests announced in the nth batch.

1 for r 2 Dn do
2 dmin

c 1; /� min. cost increment �/
3 v� null;
4 for v 2 V do
5 for i 2 1, :::, jpvj do
6 for j 2 iþ 1, :::, jpvj þ 1 do
7 pnewv pv;
8 insert or to pnewv before index i;
9 insert dr to pnewv before index j;
10 dc cðpnewv Þ � cðpvÞ;
11 if pnewv is feasible and dc < dmin

c then
12 dmin

c dc;
13 p� pnewv ;
14 v� v;
15 if v� not null then
16 vehicle v� follows plan p�

2.3.2. Vehicle group assignment method
The VGA method relies on the performance improve-
ment coming from conversion of a DARP problem to
a variant of assignment problem. In this work, we
generalize the formulation by �C�ap and Alonso-Mora
(2018) to be applicable in an online optimization set-
ting. That is, we reformulated the algorithm to sup-
port optimization with requests already onboard some
vehicles because the methodology by �C�ap and Alonso-

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 7

Mora (2018) assumes all vehicles to be empty before
the request-vehicle matching.

The VGA method can be divided into two phases:
group generation (Algorithm 3) and vehicle-group
assignment (Problem 1). We can see the overall pseudo-
code in Algorithm 2. Let Dv be a set of waiting requests,
i.e., the set of requests that have not been picked up
yet. Further, let group be a set of requests such that for
each group R, R � Dw: In the first phase, for each
vehicle, we compute all groups that can be serviced by
the vehicle without violating the maximum delay qmax

using the group generation algorithm (Algorithm 3).
The second phase uses ILP (Problem 1) to map exactly
one group to each vehicle so that every request is serv-
iced and the system plan is optimal. The whole proced-
ure is demonstrated by an example in Figure B5.

Algorithm 2: VGA method

input: The current position and on-board passen-
gers for each vehicle in V and the set of
waiting requests Dw.

1 for v 2 V do
2 Cv generate_groups(v, Dw);
3 p� Solve Problem 1 using C1:::Cm;

4 All vehicles follow the optimal system plan p�;

We say that a group R is feasible for vehicle v if a
plan exists for the vehicle that serves all requests from
R without violating maximum delay and capacity con-
straints and if all requests onboard vehicle v are mem-
bers of the group. We denote a set of all groups
feasible for vehicle v by Cv: The key property of feas-
ible groups, observed by Alonso-Mora et al. (2017), is
that if a group R1 is feasible, all subsets of the group
R2 � R1 are also feasible. This structural property is
used to limit the number of groups we need to test
for feasibility in the first part of the VGA method, the
group generation algorithm. To determine if a group
is feasible, we define function f ðR, vÞ that indicates
whether the group R is feasible for vehicle v:

The group generation algorithm (Algorithm 3)
computes feasible groups for each vehicle independ-
ently. First, the group generation algorithm computes
all feasible requests for each vehicle v, i.e., the feas-
ible groups of size 1 marked as C1

v (lines 4–6). Then,
we find larger groups iteratively by combining the
feasible groups from the previous iteration with all
feasible requests (lines 7–14). From the performance
perspective, it is important to try each group only
once (the purpose of checked) and also to check

Figure B5. Example of the VGA method assigning three pas-
sengers to two vehicles. (a) All possible request groups for
each vehicle. The lines between the request (left) and the
group (middle) denote the membership in the group. The lines
between the groups and vehicles denote feasible group
assignments. (b) Final assignment between vehicles and
groups is shown (bold lines).

8 D. FIEDLER ET AL.

that all possible subsets of R of size jRj � 1 are pre-
sent in CjRj�1v before checking group R for feasibility.
At the end of this step, we have a set of feasible
groups for each vehicle, as it is illustrated in
Figure B5(a).

Algorithm 3: Function generate_groups that
generates groups for vehicle v. The Boolean-valued
function f(R, v) evaluates to true if vehicle v can serve
all requests from group R without violating maximum
delay and capacity constraints.

input: A vehicle v and the set of waiting
requests Dw.

output: Set of all feasible groups for the
vehicle (Cv).

1 Let Rinit be the set of requests onboard vehicle v;
2 k maxðjRinitj, 1Þ;
3 Ck

v fRinitg;
4 for r 2 Dw do
5 if f ðfrg, vÞ then
6 C1

v ffrgg [C1
v;

7 while Ck
v 6¼ ; do

8 Ckþ1
v ;;

/� not check groups repeatedly �/
9 checked ;;
10 forall R 2 Ck

v, frg 2 C1
v do

11 if ðR [frgÞ 62 checked and 8R0 �
ðR [frgÞ, jR0j ¼ k : R0 2 Ck

v and f ðR [
frg, vÞ then

12 Ckþ1
v ðR [frgÞ [Ckþ1

v ;
13 checked checked [ðR [frgÞ
14 k kþ 1;
15 if jRinitj > 0 then
16 C1

v ;;
17 Cv f;g [C1

v [C2
v [� � � [Ck

v;

The second part of the method finds the assign-
ment of groups to vehicles that minimizes the total
traveled distance resulting from vehicle plans such
that for each vehicle, exactly one of the groups feasible
for the vehicle is assigned, and all requests are served.
The assignment of groups to vehicles is formulated as
an ILP. There is a binary variable ngv for each possible
vehicle-group assignment where ngv ¼ 1 if a group g 2
f1, :::, jCvjg is assigned to vehicle v and ngv ¼ 0 other-
wise. Using these variables, the problem is defined as:

Problem 1 (Vehicle-group Assignment)

min
Xm

v¼1

XjCvj

g¼1
ngvcðpg�v Þ,

subject to

XjCvj

g¼1
ngv ¼ 1 8v 2 V (7)

Xm

v¼1

XjCvj

R¼1
1RðrÞnRv ¼ 1 8r 2 Dw (8)

In the objective function, pg�v denotes the optimal plan
for vehicle v to serve group Rg : Constraint (7) states
that only one group can be assigned to each vehicle.
Constraint (8) ensures that each request is served by
exactly one vehicle plan. The indicator function 1Rg ðrÞ
is equal to 1 if the request r is a member of the group
Rg and 0 otherwise.

By solving the above described ILP, we obtain an
optimal assignment of vehicles to feasible groups (see
Figure B5b for example assignment). This assignment
can be directly translated into vehicle plans that
replace vehicle plans from the previous iterations.

2.3.3. Complexity, optimality, and implementation
The worst-case complexity of computing an assign-
ment of a set of waiting requests Dw to a set of
vehicles V using IH is OðjDwj � jVj � lÞ where l is the
length of a plan and can be bounded as l � Kþ jDwj:
For VGA, we analyze the complexity of each phase
separately. For group generation, the computational
complexity is dominated by the need to verify the
feasibility of a group, represented by the call of func-
tion f ðR, vÞ: Solving this function, in fact, equals solv-
ing a single-vehicle DARP (see Section B for more
detail), which is an NP-hard (Toth & Vigo, 2014)
problem. The vehicle-group assignment is then
obtained by solving an ILP, which is also, in general,
an NP-hard problem (Schrijver, 1986). Therefore, the
VGA method can, in the worst case, require computa-
tional time that is exponential in the number of
requests and vehicles. However, DARP problem
instances appearing in the context of large-scale MoD
systems tend to have structural properties that are
beneficial to the VGA algorithm. Specifically, since
large-scale MoD systems are designed to provide qual-
ity of service comparable to using a private vehicle, the
maximum waiting at pick-up is usually constrained to
be less than a few minutes, and similarly limited is the
maximum delay at destination. Such tight pick-up and
drop-off time window constraints are used by the VGA
algorithm to prune the feasible solution space. In prac-
tice, the maximum group size that requires a feasibility
check tends to be relatively small, and also the total
number of feasible groups tends to be within the grasp
of existing ILP solvers. Under such conditions, the

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 9

VGA algorithm is able to generate optimal results in
practical computation time.

As for the optimality, IH is a heuristic approach,
and as such, it cannot guarantee that the generated
solution is optimal. VGA method will generate an
optimal solution if all feasible groups are generated
exhaustively, and the ILP program is solved to opti-
mality. For proof, see �C�ap and Alonso-Mora (2018).

For our case study, we implemented the IH and
the VGA method in Java. The ILP appearing in the
VGA method is solved using Gurobi.3 The request-
vehicle matching procedure is run every 30 s of the
simulation for both IH and VGA. For both methods,
the maximum delay constraint is set to 4min, and the
vehicle capacity is set to five passengers. The ILP
solver in the VGA method computes the optimal solu-
tion with the maximum optimality gap of 0.02%.

While the ability to compute optimal ridesharing
assignments is essential to understand the limit of
performance gains that can be achieved by ridesharing
(and the gap between the optimal performance and
the performance of the heuristic solutions), a practical
deployment may impose constraints on the maximum
run time of a ridesharing algorithm. Therefore, we
also tested a resource-constrained version of the VGA
method with the ILP solver optimality gap set to 0.5%
and group generation time-limited to 60ms per
vehicle. We refer to this version as VGA limited. Also,
for comparison, we reimplemented the method pro-
posed by Alonso-Mora et al. (2017) in their
Manhattan taxi ridesharing study. As described in the
supplemental material of Alonso-Mora et al. (2017),
this solution method employs specific heuristics and
optimization cutoffs to achieve practical run time. We
refer to this version as VGA PNAS.

We compute passenger-vehicle assignments
together with the simulation sequentially, and thus
from a simulation perspective, the ridesharing compu-
tation is an instantaneous event. In case of practical
deployment, one could achieve sufficiently low wall-
clock running time by computing on a computational
cluster with many CPU cores because the VGA algo-
rithm is easily parallelizable.

The existing variants of the VGA method
(Alonso-Mora et al., 2017; �C�ap & Alonso-Mora,
2018) were not able to solve the ridesharing instances
appearing in our case study to optimality within
24 hour limit on computational time or with a 60 GB
memory limit. Therefore, we implemented perform-
ance optimization described in Appendix B that
enabled us to find optimal solutions to our instances
respecting these limits.

2.4. Simulation

In our experiments, we simulated the following
five scenarios:

	 Present state: All the requests are served by private
vehicles. The vehicles are parked at the request’s
start location, i.e., there is no delay. The number
of used vehicles is equal to the number of requests,
and the total distance traveled is equal to the sum
of the shortest paths between the origins of all
requests and their destinations.

	 MoD w/o ridesharing: MoD system without ride-
sharing, the plans are computed using IH, and the
vehicle capacity is set to one, i.e., the passengers
are not allowed to share rides.

	 MoD w. IH Ridesharing: MoD system with ride-
sharing computed by the IH.

	 MoD w. VGA Ridesharing (optimal): MoD system
with ridesharing computed by the VGA method
to optimality.

	 MoD w. VGA Ridesharing (runtime limited): MoD
system with ridesharing computed by the VGA
method, with the group generation time-limited to
60ms per vehicle and the ILP solver maximum
optimality gap of 0.5%.

	 MoD w. VGA Ridesharing (PNAS): MoD system
with ridesharing computed by the VGA method,
with a set of timeouts/heuristics as described in
Alonso-Mora et al. (2017), which we have reimple-
mented for this article.

We simulate a morning peak time interval
7:00–8:00 and an off-peak time interval 11:00–12:00.
To avoid the “cold start” artifacts, the simulation
begins 30minutes before the analyzed time interval, at
6:30 and 10:30, respectively, but for subsequent ana-
lysis, we only use the data captured after the thirty-
minute start period. Including the 30minute warm-up
time, there are 122,473 requests in the morning peak,
and 42,633 requests in the off-peak experiment.

The scenarios were simulated in the multi-agent
transportation simulation framework AgentPolis.4 The
simulation environment consists of a) road network
composed of nodes (crossroads) and edges (road seg-
ments), b) on-demand vehicle stations, c) on-demand
vehicle agents, and d) passenger agents. In Figure B6,
we show a screenshot of the AgentPolis visualization
captured during one of the simulation experiments.

We use an OpenStreetMap5 road network consisting
of 158,674 edges and 63,995 nodes. The speed limit for
each road segment was also taken from OpenStreetMap
data, and missing entries were generated according to

10 D. FIEDLER ET AL.

Figure B6. AgentPolis visualization of the simulated traffic in Prague during the traffic peak. (a) (Left): The entire city of Prague in
the simulation. A more detailed (zoomed in) view can be seen in (b) (right). Vehicles are represented as blue triangles, with a
number indicating the onboard passenger count. Red circles represent passengers. Some vehicles are highlighted, and their current
plan is drawn with a yellow line. The pick-up and drop off locations of the remaining actions are marked with cyan and pink
circles, respectively, with a number indicating passenger ID. Note that in (b), there are some passengers already driving in two of
the vehicles, so the number of drop-off locations is greater than the number of pick-up locations. The green triangles are vehicles
that travel empty between stations (rebalancing). Video: https://sum.fel.cvut.cz/agentpolis/

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 11

https://sum.fel.cvut.cz/agentpolis/

following rules based on the local legislation: highway:
130km/h, living street: 20 km/h, otherwise: 50 km/h.

During initialization, we create vehicle stations,
each filled with the pre-determined number of
vehicles. During the simulation, we are creating pas-
senger agents for each request at its announcement
time and origin point. Each passenger is then picked
up by the assigned on-demand vehicle, driven to the
desired location, dropped off, and finally released
from the simulation. The vehicle to serve the pas-
senger is selected using the passenger-vehicle
matching procedure (see Sec. 2.3), either IH or
VGA. Note that each passenger can be either
matched to one of the empty vehicles parked in a
station or to a vehicle already serving some previ-
ously assigned requests. Each vehicle executes its
plan until it becomes empty (i.e., all assigned pas-
sengers have been dropped off), then it drives to
park itself in the nearest station. As explained in
our assumptions, the passengers always select the
MoD system as the mode for their trip. In the simu-
lation, any request that would wait for longer than
4minutes or would be delivered to its destination
with more than 4minutes of delay is considered a
rejected request. However, as mentioned before, we
configured the system so that these quality of ser-
vice bounds are always satisfied, and consequently,
there are no rejections during the simula-
tion experiment.

3. Results

In this section, we present the simulation results. To
run the experiments, we used a desktop system with
Intel Core i7-8700K CPU (3.7GHz, 6/12 physical/vir-
tual cores) and 64GB RAM.

3.1. Operating cost and computational time

Tables B3 and B4 summarize the main results of the
experiments. As explained in Sec. 2.2, we computed
the size of the fleet to always guarantee full service
availability. Since the service level is always 100%, we
do not show this metric in result tables and plots. The
first row shows the value of our optimization criter-
ion, i.e., the system operation cost measured in terms
of total distance driven by the fleet vehicles. We can
see that when using the VGA method instead of IH
during the morning peak, we can save more than
110,000 km of vehicle distance driven, which repre-
sents more than 20% reduction. Compared to the “no
ridesharing” scenario and to the present state, the
VGA method saves over 573,000 km (57%) and
328,000 km (43%), respectively. Even in off-peak time,
the VGA method can save about 17% of the total dis-
tance driven compared to the IH, and about 48%
compared to the “no ridesharing” scenario.

The VGA method is considerably slower than IH.
The average computational time per one optimization
batch in the peak scenario was about 193 s, compared

Table B3. Main results from the considered scenarios during the morning peak (7:00–8:00).
Mobility-on-demand

Present No Ridesh. IH VGA VGA lim VGA PNAS
Optimal – – no yes no no

Total veh. dist. (km) 758,001 1,002,766 539,793 429,172 451,978 475,378
Avg. delay (s) – 132 190 180 178 161
Avg. density (veh./km) 0.0077 0.0085 0.0053 0.0046 0.0048 0.0049
Congested seg. 8 25 1 1 1 0
Heavily loaded seg. 163 291 31 10 17 20
Used vehicles 122,473 33,066 15,685 13,787 14,449 14,607
Avg. comp. time (ms) – 181 18 192,903 27,714 15,598

Congested segments are segments on which traffic density is above critical density, and heavily loaded segments are segments with density above 50%
of the critical density.

Table B4. Main results from the considered scenarios, off-peak (11:00–12:00).
Mobility-on-demand

Present No Ridesh. IH VGA VGA lim VGA PNAS
Optimal – – no yes no no

Total veh. dist. (km) 283,483 344,613 211,285 175,865 176,957 186,520
Avg. delay (s) – 131 191 179 179 165
Avg. density (veh./km) 0.0045 0.0047 0.0034 0.0032 0.0032 0.0032
Congested seg. 0 1 1 0 0 0
Heavily loaded seg. 5 10 3 1 2 2
Used vehicles 42,633 7727 4646 4746 4802 5180
Avg. comp. time (ms) – 4 1 5438 4408 4113

Congested segments are segments on which traffic density is above critical density, and heavily loaded segments are segments with density above 50%
of the critical density.

12 D. FIEDLER ET AL.

to 18ms for the IH. Such a difference in the computa-
tional time may look extreme, but we have to consider
the scale of the scenarios that were solved to optimal-
ity using the VGA method. The largest assignment
problems (batches) contained more than 3000 waiting
requests, 21,000 active requests (including passengers
already driving to their destination), and
11,000 vehicles.

The runtime-limited experiment shows that we can
speed up the VGA method significantly by merely
limiting the computational time for the group gener-
ation and the solver. In the VGA limited experiment,
we reduce the computation time more than six-fold
over the unconstrained version of the VGA method
while still reducing the total traveled distance by more
than 16% over the IH. The VGA PNAS experiment
reduces the computational time by another 42% at the
cost of being closer to IH in the traveled distance
(12% improvement). In the off-peak scenario, the
VGA limited performs almost the same as the uncon-
strained version because the time limits are rarely
reached. Note, however, that there is more than a 5%
increase of traveled distance in VGA PNAS, despite
similar computational times suggesting that this
method is not suitable for scenarios where sufficient
computational resources are available.

3.2. Tradeoff between operating cost and
passenger discomfort

Another metric that we tracked is the service quality,
represented by the passenger delay relative to trans-
portation by the private vehicle. From Tables B3 and
B4, we can see that the optimal VGA method saves
about 5% time over the IH in both peak and off-peak
experiments. The tradeoff between the operating cost
(distance traveled) and the service quality (average
delay) is depicted in Figure B7.

A more detailed overview of the passenger delays
with a delay histogram for the four MoD scenarios in
both time windows is in Figure B8. It is clear that for
both peak and off-peak time, the VGA method
reduces the passenger delay resulting from ridesharing
compared to the IH. Nevertheless, even in the case of
the VGA method, there is a noticeably greater delay
compared to the no ridesharing scenario, where the
delay can occur only before the passenger is picked
up or over the present state, where there is no delay
because a car is assumed to be available at the origin
of each passenger trip.

3.3. Impact of MoD on congestion

In addition to the operational cost, we measured the
impact of the MoD system on congestion. We con-
sider road segments with traffic density above the crit-
ical density of 0:08 vehicle m�1 (Tadaki et al., 2015)
as congested. Segments with density above
0:04 vehicle m�1 are considered as heavily loaded. As
you can see in Table B3, in the morning peak, using
the optimal VGA method reduces the average traffic
density by 13% over the ridesharing that uses IH, and
by 46% and 40% over the MoD without ridesharing
and the current state, respectively. We can see the
same trend when we look at the number of congested
and heavily loaded segments. In the off-peak experi-
ment, the situation is similar, but the absolute num-
bers indeed show that there is no congestion in any of
the scenarios. Finally, Figures B9 and B10 depict traf-
fic densities on every road for all five scenarios.

3.4. Fleet size and vehicle occupancy

Also, for each scenario, we recorded the number of
vehicles that were used at least once during the simu-
lation. For the present state scenario, we consider a
dedicated vehicle for each request. Therefore, the
number of used vehicles is equal to the number of
requests. The results confirm that the VGA method
indeed makes the MoD system more efficient. During
peak-hour, the optimal VGA used 1898 (12%) fewer

Figure B7. The tradeoff between total distance traveled by all
vehicles and the average delay of one passenger trip.

Figure B8. Histograms of delays. The present state scenario is
omitted as the delay is always zero.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 13

vehicles than the IH. Compared to the MoD system
without ridesharing, the MoD system with optimal
ridesharing used about one-third of the vehicle fleet,
and compared to the present state system, the reduc-
tion is almost thirteen-fold.

In the off-peak time, however, we registered that
the optimal VGA method uses about 2% more
vehicles than IH. By analyzing the simulation output,
we found an explanation for this perhaps surprising

result. First, counterintuitively, it is possible that a
suboptimal vehicle assignment that generates plans
with longer total distance can lead to fewer vehicles
being used, as it is illustrated in Figure B11. Second,
by analyzing the vehicle trips in both IH and VGA
scenario, we found that such situations occur fre-
quently due to unbalanced demand. In other words,
the optimal method uses more vehicles not despite,
but because its plans are more operating cost-efficient:

Figure B9. Traffic density map of the four scenarios during the morning peak. Darker colors signalize higher traffic density. Black
color means that the road segment is congested. We omit the density map for the VGA PNAS experiment from this figure as it is
very similar to the density map for the VGA limited experiment.

Figure B10. Traffic density map of the four scenarios during the off-peak time. Darker colors signalize higher traffic density. Black
color means that the road segment is congested. We omit the density map for the VGA PNAS experiment from this figure as it is
very similar to the density map for the VGA limited experiment. (a) IH Iteration 1, (b) IH Iteration 2, (c) VGA Iteration 1, (d) VGA
Iteration 2.

Figure B11. Example of the capital cost paradox. (a, b) Two iterations of the IH. (a) There are three vehicles: vehicles A and B, and
vehicle C that resides in the station, representing a potentially unlimited pool of vehicles. Also, there are two passengers (1 and
2), that request the travel from their current locations P1 and P2 to their destinations D1 and D2 (denoted by dashed arrows).
Solid arrows denote the plans for both vehicles computed by the first iteration of the IH. (b) There is the same scenario in the
next iteration. Both cars moved by five steps in the grid, and also, a new request appeared. We can see the new plans generated
by the second iteration of IH too. The second set of figures (c and d) shows the exact same two iterations solved by the VGA
method. Note that although we saved one segment of traveled distance (vehicles traveled 14 segments in the grid combined com-
pared to 15 segments in case of the IH), we used one extra vehicle (vehicle C) that was not needed in the IH scenario, thus effect-
ively increased the required fleet.

14 D. FIEDLER ET AL.

the vehicles simply serve requests too quickly, which
increase the chance of ending up in the areas with
lower demand, where they need to wait a long time
before another request appears nearby. This reminds
us that to fully understand MoD systems, we need to
study not only operation cost vs. service quality trade-
offs, but also operation-cost vs. capital cost tradeoffs
associated with different design and control strategies.

Next, we measured vehicle occupancy: Figure B12
shows the occupancy histogram for the four compared
scenarios. We can see that vehicle occupancy is the
highest when using the optimal method in both peak
and off-peak scenarios.

3.5. Sensitivity analysis of the VGA method

We analyze the sensitivity of IH and the three variants
of the VGA method (optimal, limited, PNAS) to vari-
ation in batch length, maximum delay, and capacity
with respect to total traveled distance, computation
time, and average passenger delay. Note that the time
between a request announcement and the end of the
batch, when the passenger-vehicle assignment is
recomputed, counts toward the delay of the request.
Therefore, for scenarios with longer batches, we also
extended the maximum delay in order to keep the
average effective maximum delay of 4minutes. Also,
note that we use the same stations and fleet for all
experiments, and consequently, some requests were
rejected in configurations with shorter maximum
delay or longer batch length. However, the service
level remains above 99% in all configurations, so the
impact of rejected requests on the results is negligible.

We can see the results in Figures B13 (peak scen-
ario) and B14 (off-peak scenario). In the peak scen-
ario, we were able to compute the optimal solution
only for a batch length of up to 30 seconds and for a
maximum delay of up to 4 minutes. For larger values,
the algorithm failed to terminate within 24 hours. As
expected, the runtime of the optimal method grows
exponentially with maximum delay. This is best seen
in the case of the off-peak experiment, where the

algorithm was able to find an optimal solution within
5minutes of runtime on average for the 6-minute
maximum delay but failed to compute optimal solu-
tions within 24 hours runtime for the 7-minute max-
imum delay. Clearly, the optimal method would not
scale to scenarios with larger limits on maximum
delay, and one of the resource-limited variants would
have to be employed.

We can observe that the system’s efficiency (meas-
ured in terms of total distance driven) monotonically
increases with maximum allowed delay for all

Figure B12. Occupancy histogram of all five scenarios.

Figure B13. Sensitivity analysis: peak. Each column represents
one experiment set, and inside each column, each value on
the x-axis represents one experiment. Each row displays a sin-
gle measured quantity. The optimal VGA method is only com-
puted for batch length 30 s, maximum delay 3 and 4minutes,
and capacity 2 and 5 persons per vehicle. For other parameter
values, the optimal VGA method did not terminate
within 24 hours.

Figure B14. Sensitivity analysis: off-peak. Each column repre-
sents one experiment set, and inside each column, each value
on the x-axis represents one experiment. Each row displays a
single measured quantity. The optimal VGA method is only
computed for the maximum delay of up to 6minutes. For the
maximum delay of 7minutes, the optimal ridesharing assign-
ment cannot be computed within 24 hours limit.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 15

considered methods with the exception of the VGA
limited method, which achieves low runtimes by pre-
maturely terminating computation in several stages of
the algorithm. As we can see, the values of cutoff
parameters that work well for 3–5minute maximum
delay lead to inferior performance for larger max-
imum delays. We can also observe that with the
increasing maximum delay, the gap between the opti-
mal method and both resource-constrained VGA
methods increases. Remarkably, our experiments show
that for high values of max delay, the IH achieves
almost identical performance as the VGA PNAS algo-
rithm while using only a fraction of computa-
tional resources.

The batch length negatively impacts the average
travel delay experienced by passengers because they
need to wait for the end of the batch for their request
to be assigned to a vehicle. The motivation for using
longer batch lengths is to gather more requests and to
find a more efficient passenger-vehicle assignment.
However, it appears that even in the off-peak experi-
ment, these efficiency gains get only realized using the
optimal solution method. For suboptimal solution
methods, the efficiency gains are either negligible or
straight-out negative. The higher vehicle capacity also
increases the potential for ridesharing, which, in turn,
could improve the operational efficiency of the system.
In the peak experiment, the increased complexity pre-
vented the computation of the optimal solution for
vehicle capacity set to 10 passengers. However, our
results show that the resource-limited variants were not
able to improve the solution significantly. This can be
caused by reaching the time limits before the algorithm
can generate high-occupancy plans, or it can indicate
that the capacity of 5 passengers per vehicle is suffi-
cient. For reference, in the off-peak experiment, we
were able to compute optimal solutions, and our results
show that the vehicle capacity of 5 is sufficient for the
off-peak demand intensity. However, it is still possible
that high-capacity vehicles would be better utilized
when planning for peak-intensity demand.

Concerning the suboptimal versions of the VGA
method, our VGA limited method computes higher
quality solutions for shorter batch lengths and shorter
maximum travel delays, while the PNAS version of
the VGA method achieves better performance for the
longer batch lengths and longer maximum delays.
This is probably because the PNAS version uses IH to
compute plans for groups larger than four (see the
supplemental material of Alonso-Mora et al. (2017)).
This will negatively affect solution quality for easier
instances. However, for harder instances, this

approach may be beneficial compared to our strategy
because it allows forming larger groups with poten-
tially suboptimal plans. This observation suggests that
a resource-constrained VGA method should use a
heuristic to compute larger groups, but the threshold
for using this heuristic should be determined by the
remaining computational time.

3.6. Computational time analysis of the
VGA method

Finally, we inspect the computational requirements of
the VGA method. In Figure B15, we show the evolu-
tion of the number of active requests (top), maximum
computed group size (middle), and computational
time for group generation and group-vehicle assign-
ment process (bottom) during the peak scenarios,
including the warm-up period. Looking at the max-
imum group size, we see that the 60ms limit for the
group generation results in groups of the maximum
size of 5–7 in most batches, while in the optimal scen-
ario, the maximum group size has high variance and
goes up to 11.

When we compare the maximum group size with
the computation times, we can obtain other valuable
insights: (a) the group generation time is strongly

Figure B15. Computational efficiency analysis of the VGA scenarios
during the peak time. In the top figure, we show the evolution of the
number of active requests over time. We can see that after the warm-
up time, the number of active requests in the system is stable, only
slowly decreasing. The middle figure displays the maximum group
size that was computed in each batch. The bottom figure demon-
strates how the computational time, consisting of the group gener-
ation time and the ILP solver time, change during the simulation.

16 D. FIEDLER ET AL.

dependent on the maximum group size, and thus it
has low variance in the limited scenario and high vari-
ation in the optimal scenario, (b) the solver time does
not depend on maximum group generation time much,
and it is highly variable in both limited and optimal
variant, and (c) the group generation time dominates
in both scenarios. These findings suggest that further
performance optimization of the group generation pro-
cess may lead to a more favorable tradeoff between the
solution cost and computational time.

4. Conclusion

Urban MoD systems represent a promising alterna-
tive to private car transport that can reduce the num-
ber of vehicles by employing massive vehicle sharing.
To further improve the efficiency of an MoD system,
the system operator can implement large-scale ride-
sharing, where multiple passengers are transported in
one vehicle simultaneously. Ridesharing can increase
vehicle occupancy and reduce the total distance
driven in the system, but finding the optimal assign-
ment of passengers to vehicles is a hard combinator-
ial problem. Traditional exact algorithms for vehicle
routing are only applicable to the instances that are
orders of magnitude smaller than instances occurring
in the metropolitan-scale MoD systems. Therefore
simpler heuristic methods for ridesharing are often
employed. Recently, the Vehicle-Group Assignment
(VGA) has been shown to be capable of solving ride-
sharing problems with up to 500 vehicles and
requests optimally.

In this work, we implemented algorithmic improve-
ments that allowed us to successfully apply the VGA
method to a metropolitan-scale MoD system. In con-
trast to previous studies that sacrifice either scale or
optimality, we can regularly compute optimal assign-
ments of more than 21,000 active requests to over
10,000 vehicles. Also, we study the tradeoff between
the MoD system efficiency and computational perform-
ance for several other passenger-vehicle assignment
methods. Specifically, we compared six different scen-
arios: (1) the” status quo” system with private vehicles,
(2) MoD system without ridesharing, (3) MoD system
with ridesharing using IH, (4) MoD system with ride-
sharing using optimal assignments computed by the
VGA method, (5, 6) MoD systems with ridesharing
that use two resource-limited versions of the VGA
method. For all six scenarios, we measured operation
cost (total vehicle distance driven), service quality
(average delay), fleet size, and congestion levels. Also,
we measured the computational time for ridesharing

methods, and in the case of the VGA method, we per-
formed an analysis of the contribution of different sub-
problems to the overall computational time.

The results confirmed that ridesharing dramatic-
ally increases the efficiency of an MoD system: by
employing the VGA method, we reduced the total
distance driven in the system by more than 57%
compared to the present state. Moreover, we demon-
strated that the optimal ridesharing assignments are
significantly more efficient than assignments com-
puted by the heuristic approach. Our results show
that by using the optimal method instead of the IH,
we can reduce the total distance traveled by more
than 20% while simultaneously reducing the average
passenger delay by 5%. Finally, our resource-con-
strained VGA method provides more than 16% travel
distance saving over IH while reducing the computa-
tional time by almost 90%. Besides the expected con-
clusion that ridesharing yields significant savings,
these results identify and quantify the optimality gap
between a previously proposed resource-constrained
version of the VGA method and the optimal solu-
tion, and also between a resource constrained VGA
method and an IH-based ridesharing method. Our
sensitivity analysis provided insights into the limits
of the VGA method. The method is capable of find-
ing optimal assignments given that vehicle capacity is
no more than 5–10 passengers and the maximum
allowed delay is no more than 4–7minutes, depend-
ing on the intensity and structure of the demand.
However, for scenarios using higher-capacity vehicles
or with more permissive delay constraints, the VGA
algorithm can no longer certify the optimality of the
computed ridesharing assignments. We believe that
all these findings can help future researchers and
practitioners to understand the tradeoffs between dif-
ferent MoD system operating policies. Moreover, the
optimality gaps provide insights into maximum effi-
ciency gain that one can hope to achieve by develop-
ing new heuristic solutions.

In future work, we plan to include more advanced
metaheuristics in the comparison. Also, we plan to
consider a more general model of a mobility-on-
demand system, where travelers could transfer
between different vehicles, some of them potentially
being fixed-route high-capacity vehicles such as buses
or trains. Finally, we plan to investigate the process of
MoD system design, including fleet-sizing, fleet com-
position, and MoD operation from a multi-objective
perspective, studying tradeoffs between capital cost,
operation cost, and service quality.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 17

Notes

1. The number of vehicles is smaller than the number of
trips. This is possible because even without ridesharing,
one vehicle can serve more travel requests sequentially.

2. In practice, we can use lot fewer vehicles, especially for
the ridesharing scenarios. However, since the fleet-
sizing problem is not the focus of this article, we used
this fleet-sizing method to ensure that the size of the
fleet is not the limiting factor. The number of vehicles
that were actually used in each experiment is in our
experimental results.

3. http://www.gurobi.com/
4. https://github.com/aicenter/agentpolis
5. https://www.openstreetmap.org/
6. https://movement.uber.com/

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Czech Science Foundation
under Grant No. 18-23623S; AMS Institute, and OP VVV
MEYS funded project under Grant No. CZ.02.1.01/0.0/0.0/
16_019/0000765 “Research Center for Informatics.” Access
to computing and storage facilities owned by parties and
projects contributing to the National Grid Infrastructure
MetaCentrum, provided under the program “Projects of
Large Infrastructure for Research, Development, and
Innovations” (LM2010005), is greatly appreciated.

ORCID

David Fiedler http://orcid.org/0000-0001-5374-1089
Javier Alonso-Mora http://orcid.org/0000-0003-
0058-570X
Michal P�echou�cek http://orcid.org/0000-0002-2582-6795

References

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E.,
& Rus, D. (2017). Ondemand high-capacity ride-sharing
via dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences, 114(3), 462–467. https://
doi.org/10.1073/pnas.1611675114

Bischoff, J., & Maciejewski, M. (2016). Simulation of city-
wide replacement of private cars with autonomous taxis
in Berlin. Procedia Computer Science, 83, 237–244.
https://doi.org/10.1016/j.procs.2016.04.121

Bischoff, J., Maciejewski, M., & Nagel, K. (2017). City-wide
shared taxis: A simulation study in Berlin. 2017 IEEE
20th International Conference on Intelligent
Transportation Systems (ITSC), 275–280. https://doi.org/
10.1109/ITSC.2017.8317926

Campbell, A., & Savelsbergh, M. (2004). Efficient insertion
heuristics for vehicle routing and scheduling problems.

Transportation Science, 38(3), 369–378. https://doi.org/10.
1287/trsc.1030.0046

�C�ap, M., & Alonso-Mora, J. (2018). Multi-objective analysis
of ridesharing in automated mobility-on-demand. Science
and Systems XIV.

Cordeau, J.-F., & Laporte, G. (2007). The dial-a-ride prob-
lem: Models and algorithms. Annals of Operations
Research, 153(1), 29–46. https://doi.org/10.1007/s10479-
007-0170-8

Drchal, J., �Certick�y, M., & Jakob, M. (2015). Data driven
validation framework for multi-agent activity-based mod-
els. International Workshop on Multi-Agent Sys-Tems
and Agent-Based Simulation, 55–67.

Drchal, J., �Certick�y, M., & Jakob, M. (2016). VALFRAM:
Validation framework for activity-based models. Journal
of Artificial Societies and Social Simulation, 19(3), 1–5.
https://doi.org/10.18564/jasss.3127

Drchal, J., �Certick�y, M., & Jakob, M. (2019). Data-driven
activity scheduler for agent based mobility models.
Transportation Research Part C: Emerging Technologies,
98, 370–390. https://doi.org/10.1016/j.trc.2018.12.002

Fiedler, D., �C�ap, M., & �Certick�y, M. (2017). Impact of
mobility-on-demand on traffic congestion: Simulation-
based study. 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), 1–6. https://
doi.org/10.1109/ITSC.2017.8317830

Fiedler, D., �Certick�y, M., Alonso-Mora, J., & �C�ap, M.
(2018). The impact of ridesharing in mobility-on-demand
systems: Simulation case study in Prague. 2018 21st
International Conference on Intelligent Transportation
Systems (ITSC), 1173–1178. https://doi.org/10.1109/ITSC.
2018.8569451

Fielbaum, A. (2021). Optimizing a vehicle’s route in an on-
demand ridesharing system in which users might walk.
Journal of Intelligent Transportation Systems, 26, 1–20.

Fielbaum, A., Bai, X., & Alonso-Mora, J. (2021). On-
demand ridesharing with optimized pick-up and drop-off
walking locations. Transportation Research Part C:
Emerging Technologies, 126, 103061. https://doi.org/10.
1016/j.trc.2021.103061

Hensher, D. A., & Button, K. J. (2007). Handbook of trans-
port modelling. Emerald Group Publishing Limited.

Ho, S. C., Szeto, W. Y., Kuo, Y.-H., Leung, J. M. Y.,
Petering, M., & Tou, T. W. H. (2018). A survey of dial-a-
ride problems: Literature review and recent develop-
ments. Transportation Research Part B: Methodological,
111, 395–421. https://doi.org/10.1016/j.trb.2018.02.001

Jung, J., Jayakrishnan, R., & Young Park, J. (2016).
Dynamic shared-taxi dispatch algorithm with hybrid
simulated annealing. Computer-Aided Civil and
Infrastructure Engineering, 31(4), 275–291. https://doi.org/
10.1111/mice.12157

Kalina, P., Vok�r�ınek, J., & Ma�r�ık, V. (2015). Agents toward
vehicle routing problem with time windows. Journal of
Intelligent Transportation Systems, 19(1), 3–17. https://
doi.org/10.1080/15472450.2014.889953

Li, M., Di, X., Liu, H. X., & Huang, H.-J. (2019). A
restricted path-based ridesharing user equilibrium.
Journal of Intelligent Transportation Systems, 24, 1–21.

Ma, J., Xu, M., Meng, Q., & Cheng, L. (2020). Ridesharing
user equilibrium problem under OD-based surge pricing

18 D. FIEDLER ET AL.

http://www.gurobi.com/
https://github.com/aicenter/agentpolis
https://www.openstreetmap.org/
https://movement.uber.com/
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1016/j.procs.2016.04.121
https://doi.org/10.1109/ITSC.2017.8317926
https://doi.org/10.1109/ITSC.2017.8317926
https://doi.org/10.1287/trsc.1030.0046
https://doi.org/10.1287/trsc.1030.0046
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.18564/jasss.3127
https://doi.org/10.1016/j.trc.2018.12.002
https://doi.org/10.1109/ITSC.2017.8317830
https://doi.org/10.1109/ITSC.2017.8317830
https://doi.org/10.1109/ITSC.2018.8569451
https://doi.org/10.1109/ITSC.2018.8569451
https://doi.org/10.1016/j.trc.2021.103061
https://doi.org/10.1016/j.trc.2021.103061
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1111/mice.12157
https://doi.org/10.1111/mice.12157
https://doi.org/10.1080/15472450.2014.889953
https://doi.org/10.1080/15472450.2014.889953

strategy. Transportation Research Part B: Methodological,
134, 1–24. https://doi.org/10.1016/j.trb.2020.02.001

Ma, T.-Y., Rasulkhani, S., Chow, J. Y. J., & Klein, S. (2019).
A dynamic ridesharing dispatch and idle vehicle reposi-
tioning strategy with integrated transit transfers.
Transportation Research Part E: Logistics and
Transportation Review, 128, 417–442. https://doi.org/10.
1016/j.tre.2019.07.002

Maciejewski, M., & Bischoff, J. (2018). Congestion effects of
autonomous taxi fleets. Transport, 33(4), 971–980.
https://doi.org/10.3846/16484142.2017.1347827

Masmoudi, M. A., Hosny, M., Braekers, K., & Dammak, A.
(2016). Three effective metaheuristics to solve the multi-
depot multi-trip heterogeneous dial-a-ride problem.
Transportation Research Part E: Logistics and
Transportation Review, 96, 60–80. https://doi.org/10.1016/
j.tre.2016.10.002

Masoud, N., & Jayakrishnan, R. (2017). A real-time algo-
rithm to solve the peer-topeer ride-matching problem in
a flexible ridesharing system. Transportation Research
Part B: Methodological, 106, 218–236. https://doi.org/10.
1016/j.trb.2017.10.006

Miller, J., & How, J. P. (2017). Predictive positioning and
quality of service ridesharing for campus mobility on
demand systems. 2017 IEEE International Conference on
Robotics and Automation (ICRA), 1402–1408. https://doi.
org/10.1109/ICRA.2017.7989167

Muelas, S., LaTorre, A., & Pe~na, J.-M. (2013). A variable
neighborhood search algorithm for the optimization of a
dial-a-ride problem in a large city. Expert Systems with
Applications, 40(14), 5516–5531. https://doi.org/10.1016/j.
eswa.2013.04.015

Muelas, S., LaTorre, A., & Pe~na, J.-M. (2015). A distributed
VNS algorithm for optimizing dial-a-ride problems in
large-scale scenarios. Transportation Research Part C:
Emerging Technologies, 54, 110–130. https://doi.org/10.
1016/j.trc.2015.02.024

NYC Taxi & Limousine Commission. (2016). 2016 TLC
Factbook. NYC Taxi & Limousine Commission.

NYC Taxi & Limousine Commission. (2018). 2018
Factbook. NYC Taxi & Limousine Commission.

Pavone, M., Smith, S. L., Frazzoli, E., & Rus, D. (2012).
Robotic load balancing for mobility-on-demand sys-
tems. The International Journal of Robotics Research,
31(7), 839–854. https://doi.org/10.1177/
0278364912444766

Pfeiffer, C., & Schulz, A. (2022). An ALNS algorithm for
the static dial-a-ride problem with ride and waiting time
minimization. Or Spectrum, 44(1), 87–119. https://doi.
org/10.1007/s00291-021-00656-7

Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S. H.,
& Ratti, C. (2014). Quantifying the benefits of vehicle
pooling with shareability networks. Proceedings of the
National Academy of Sciences, 111(37), 13290–13294.
https://doi.org/10.1073/pnas.1403657111

Santos, D. O., & Xavier, E. C. (2013). Dynamic taxi and
ridesharing: A framework and heuristics for the optimiza-
tion problem. Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence,
2885–2891.

Santos, D. O., & Xavier, E. C. (2015). Taxi and ride sharing:
A dynamic dial-a-ride problem with money as an incen-
tive. Expert Systems with Applications, 42(19), 6728–6737.
https://doi.org/10.1016/j.eswa.2015.04.060

Schrijver, A. (1986). Theory of linear and integer program-
ming. John Wiley & Sons, Inc.

Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton,
D., & Pavone, M. (2014). Toward a systematic approach
to the design and evaluation of automated mobility-on-
demand systems: A case study in Singapore. In G. Meyer
& S. Beiker (Eds.), Road vehicle automation (pp.
229–245). Springer International Publishing.

Shaheen, S., & Cohen, A. (2020). Similarities and differences
of mobility on demand (MOD) and mobility as a service
(MaaS) j Transportation Sustainability Research Center.
ITE Journal, 90(6), 29–35.

Tadaki, S.-i., Kikuchi, M., Fukui, M., Nakayama, A.,
Nishinari, K., Shibata, A., Sugiyama, Y., Yosida, T., &
Yukawa, S. M. (2015). Critical density of experimental
traffic jam. In M. Chraibi, M. Boltes, A. Schadschneider,
& A. Seyfried (Eds.), Traffic and granular flow ’13 (pp.
505–511). Springer International Publishing.

Tamannaei, M., & Irandoost, I. (2019). Carpooling problem:
A new mathematical model, branch-and-bound, and
heuristic beam search algorithm. Journal of Intelligent
Transportation Systems, 23(3), 203–215. https://doi.org/
10.1080/15472450.2018.1484739

Toth, P., & Vigo, D. (2014). Vehicle routing: Problems,
methods, and applications (2nd ed.). SIAM.

van Engelen, M., Cats, O., Post, H., & Aardal, K. (2018).
Enhancing flexible transport services with demand-antici-
patory insertion heuristics. Transportation Research Part
E: Logistics and Transportation Review, 110, 110–121.
https://doi.org/10.1016/j.tre.2017.12.015

Venkatraman, P., & Levin, M. W. (2019). A congestion-
aware Tabu search heuristic to solve the shared autono-
mous vehicle routing problem. Journal of Intelligent
Transportation Systems, 25, 1–13.

Wallar, A., Alonso-Mora, J., & Rus, D. (2019). Optimizing
vehicle distributions and fleet sizes for shared mobility-on-
demand. 2019 International Conference on Robotics and
Automation (ICRA), 3853–3859. https://doi.org/10.1109/
ICRA.2019.8793685

Yan, C.-Y., Hu, M.-B., Jiang, R., Long, J., Chen, J.-Y., &
Liu, H.-X. (2019). Stochastic ridesharing user equilibrium
in transport networks. Networks and Spatial Economics,
19(4), 1007–1030. https://doi.org/10.1007/s11067-019-
9442-5

Zhan, X., Szeto, W. Y., & X. M. Chen. (2022). A simulatio-
n–optimization framework for a dynamic electric ride-
hailing sharing problem with a novel charging strategy.
Transportation Research Part E: Logistics and
Transportation Review, 159, 102615. https://doi.org/10.
1016/j.tre.2022.102615

Zhan, X., Szeto, W. Y., Shui, C. S., & Chen, X. (2021). A
modified artificial bee colony algorithm for the dynamic
ride-hailing sharing problem. Transportation Research
Part E: Logistics and Transportation Review, 150, 102124.
https://doi.org/10.1016/j.tre.2020.102124

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 19

https://doi.org/10.1016/j.trb.2020.02.001
https://doi.org/10.1016/j.tre.2019.07.002
https://doi.org/10.1016/j.tre.2019.07.002
https://doi.org/10.3846/16484142.2017.1347827
https://doi.org/10.1016/j.tre.2016.10.002
https://doi.org/10.1016/j.tre.2016.10.002
https://doi.org/10.1016/j.trb.2017.10.006
https://doi.org/10.1016/j.trb.2017.10.006
https://doi.org/10.1109/ICRA.2017.7989167
https://doi.org/10.1109/ICRA.2017.7989167
https://doi.org/10.1016/j.eswa.2013.04.015
https://doi.org/10.1016/j.eswa.2013.04.015
https://doi.org/10.1016/j.trc.2015.02.024
https://doi.org/10.1016/j.trc.2015.02.024
https://doi.org/10.1177/0278364912444766
https://doi.org/10.1177/0278364912444766
https://doi.org/10.1007/s00291-021-00656-7
https://doi.org/10.1007/s00291-021-00656-7
https://doi.org/10.1073/pnas.1403657111
https://doi.org/10.1016/j.eswa.2015.04.060
https://doi.org/10.1080/15472450.2018.1484739
https://doi.org/10.1080/15472450.2018.1484739
https://doi.org/10.1016/j.tre.2017.12.015
https://doi.org/10.1109/ICRA.2019.8793685
https://doi.org/10.1109/ICRA.2019.8793685
https://doi.org/10.1007/s11067-019-9442-5
https://doi.org/10.1007/s11067-019-9442-5
https://doi.org/10.1016/j.tre.2022.102615
https://doi.org/10.1016/j.tre.2022.102615
https://doi.org/10.1016/j.tre.2020.102124

Appendix A: Manhattan experiment

In order to demonstrate general applicability of our method
and to allow for easier comparison with previous work, we
repeat our experiment in Manhattan using a publicly avail-
able dataset of taxi trips as transportation demand.
Specifically, we use the same demand and road network as
used by Alonso-Mora et al. (2017). Identically to our
Prague experiment, we simulated the system for one hour
with a 30-minute warm-up period. While Alonso-Mora
et al. (2017) run the simulation for one week worth of data,
here, for simplicity, we selected the day and hour with the
largest number of requests, which was Friday, May 10,
2013, between 19:00 and 20:00. There are 137,202 travel
request in the selected period, Figure B16 shows the spatial
structure of the demand.

Like Alonso-Mora et al. (2017), we use travel speeds
along individual road segments derived from historical data,
but instead of computing the speeds from the travel
demand, we use the speeds from the Uber Movement6 open
data project. Other than that, we followed the methodology
described in the main part of this article. That is, we
assume a station-based model and perform rebalancing,
fleet sizing, and passenger-vehicle matching as described in
Sec. 2. Because the historical speeds from Uber Movement
dataset are on average approximately half of the posted
speed and there are a lot of one-way streets on Manhattan,
we need 236 stations to provide the required quality of ser-
vice, even though Manhattan is about five times smaller
than Prague. Figure B17 shows the locations of stations.

On Manhattan, we evaluated five of the six scenarios
tested in the Prague case study. We do not evaluate the pre-
sent state scenario, as the Manhattan dataset represents taxi
trips, and therefore, the scenario with MoD system without
ridesharing is, in fact, also the “present state” scenario. In
Table B5, we can see the results of the same set of experi-
ments as we performed in the Prague case study. Our opti-
mal implementation of the VGA method was able to
compute the optimal assignments while the average compu-
tational time for a 30 seconds batch was less than 7 seconds.
This is in contrast to results reported in Alonso-Mora et al.
(2017) that were not computed to optimality and required
more than 21 seconds to compute the most similar config-
uration (qmax ¼ 5minutes, vehicle capacity of four passen-
gers, 3000 vehicles). This may be because the algorithm by
Alonso-Mora et al. (2017) was developed and optimized to
allow evaluation of scenarios with even larger delays of
7minutes and with vehicle capacities of up to 10 passengers;
such configurations result in an exponentially larger num-
ber of potential passenger-vehicle assignments and conse-
quently, cannot be computed to optimality even with our
performance-optimized VGA method.

Because the Manhattan experiment is less complex com-
pared to the Prague experiment, we can observe a similar
effect as in the Prague off-peak experiment: the VGA lim-
ited method computes only slightly worse solutions than
the optimal method, and also the computational times are

Figure B16. Manhattan taxi trip requests on Friday, May 10, 2013,
between 19:00 and 20:00. The start positions of all vehicle trips are
discretized to squares of 200 square meters. Darker color translates
to higher demand, and the color bar has a logarithmic scale. Figure B17. MoD stations on Manhattan. Each red circle repre-

sents a single MoD system station.

20 D. FIEDLER ET AL.

similar. This is because the time limits of the VGA limited
method were not reached in the majority of iterations.

Our re-implementation of the PNAS method gives a
rather surprising result: the performance metrics are worse
than the IH while using more computational time than the
optimal method. We investigated this surprising result and
found out that the cause is one of the heuristics that limits
the number of vehicles considered for assignment to a par-
ticular request to 30 nearest vehicles. This heuristic can
limit the exploration so much that the solution can be
worse than the IH solution. Moreover, for less complex
scenarios, the time needed to compute the 30 nearest
vehicles can dominate the total computational time, as it
happened in our case, probably because this heuristic was
not optimized. This observation suggests that in order to
achieve acceptable performance, one may need to vary the
parameters of heuristics based on the complexity of the
problem instance at hand. We also performed the experi-
ment using the VGA PNAS method with this heuristic
turned off. For results, see numbers in parentheses in the
last column of result tables (Tables B5 and B6).

Table B6 shows another set of results of experiments
with qmax ¼ 7minutes and the capacity of 10 persons per
vehicle, which corresponds to the most complex configur-
ation in Alonso-Mora et al. (2017). In this experiment set,
we only evaluated the three sub-optimal ridesharing meth-
ods to see how they behave under such parametrization.
Interestingly, for this scenario, the IH achieves the best per-
formance: The IH finds plans with a total traveled distance
that is 12% smaller than plans found by both sub-optimal
versions of the VGA method using only a fraction of

computational resources. This experiment demonstrates the
limit of applicability of the VGA method for routing in
large-scale MoD systems. The relaxed time windows and
increased vehicle capacity increase the number of feasible
groups and the maximum group size to a level that cannot
be solved by the ILP solver and the single-vehicle solver,
respectively, in practical time. Consequently, the VGA algo-
rithm is unable to return an optimal solution to
such instances.

Finally, we performed a sensitivity analysis for the
Manhattan case study: the results are reported in Figure
B18. It tells a similar story as the sensitivity analysis for
the Prague case study (Sec. 3). Some of the previously dis-
cussed phenomena are even more apparent in the
Manhattan sensitivity analysis. We can see that the com-
putational requirements grow with the maximum delay
not only for the optimal VGA method but also for the
resource-constrained VGA methods. Also, we can clearly
see that the efficiency (total distance driven) gap between
IH and the constrained VGA methods is shrinking for
larger maximum delays. For the maximum delay of
7minutes, the IH method starts to outperform both
resource constrained VGA methods.

Table B5. Main results from the Manhattan scenarios during the peak (19:00–20:00) with a maximum passenger delay
of 4minutes.

No Ridesh. IH VGA VGA lim VGA PNAS�
Optimal – no yes no no

Total veh. dist. (km) 868,899 362,387 334,195 334,737 377,563 (344,057)
Avg. delay (s) 109 117 109 109 83 (110)
Avg. density (veh./km) 0.0183 0.0085 0.008 0.008 0.0089 (0.0082)
Congested seg. 220 9 9 8 14 (10)
Heavily loaded seg. 692 129 117 112 152 (115)
Used vehicles 46,186 20,272 19,714 19,712 22,545 (20,293)
Avg. comp. time (ms) 918 57 6646 6650 24,717 (7170)

Congested segments are segments on which traffic density is above critical density, and heavily loaded segments are segments with a density above
50% of the critical density. For the VGA PNAS method, we also tested a version that does not limit the vehicles considered for each request to 30 near-
est vehicles (in parentheses).

Table B6. Main results from the Manhattan scenarios during
the peak (19:00–20:00) with a maximum passenger delay of
7minutes and vehicle capacity of 10 persons per vehicle.

IH VGA lim VGA PNAS�
Optimal no no no

Total veh. dist. (km) 233,859 275,028 267,471
Avg. delay (s) 227 224 217
Avg. density (veh./km) 0.006 0.0067 0.0066
Congested seg. 0 1 0
Heavily loaded seg. 24 53 48
Used vehicles 13,319 16,517 16,025
Avg. comp. time (ms) 25 57,554 139,811

Congested segments are segments on which traffic density is above crit-
ical density, and heavily loaded segments are segments with a density
above 50% of the critical density. For the VGA PNAS method, we used
the version that does not limit the vehicles considered for each request
to 30 nearest vehicles.

Figure B18. Sensitivity analysis: Manhattan. Each column rep-
resents one experiment set, and inside each column, each
value on the x-axis represents one experiment. Each row dis-
plays a single measured quantity. The optimal VGA method is
only computed for the maximum delay of up to 6minutes. For
the maximum delay of 7minutes, the optimal ridesharing
assignment cannot be computed within 24 hours run
time limit.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 21

Appendix B: VGA optimizations

The main objective of this article is to quantify the perform-
ance gap between optimal ridesharing assignments and
assignments computed using heuristic solutions. However, a
naive implementation of the VGA algorithm would require
prohibitively long computation time and an extreme
amount of memory to compute an optimal solution. In
order to arrive at the optimal solutions in a manageable
time, we had to implement several performance optimiza-
tions. Without these optimizations, the VGA method would
need several hours to compute an optimal ridesharing
assignment for each 30-second-long batch.

To reduce the number of vehicles considered in
request-vehicle matching, we leverage the specific proper-
ties of the station-based MoD system and modify the VGA
method accordingly. We reduce the number of vehicles for
which the groups are generated as follows: First, we
observe that we need at most as many vehicles as the
number of waiting requests since, in the worst case, each
request can be transported in a dedicated vehicle from the
nearest station. Second, we exploit symmetries in the solu-
tion space. We observe that vehicles parked in a station
can be arbitrarily relabeled without any effect on the solu-
tion quality. Therefore, instead of computing feasible
groups for each vehicle parked in a station, we generate
feasible groups for only one vehicle from that station, rep-
resenting any other vehicle currently parked in the station.
Consequently, in the assignment ILP, we can relax
Constraint (7) corresponding to this representative vehicle
to allow assigning as many vehicle plans as there are
vehicles parked in the station:

XjCvj
g¼1 n

g
v � jVsj 8s 2 S: (B1)

In this modified version of Constraint (7), Vs is the set
of vehicles parked in station s, and S is the set of
all stations.

We paid special attention to an efficient implementa-
tion of the function f that is used to determine the feasibil-
ity of a newly formed group and to compute the optimal
route for the group. This function solves a single-vehicle
DARP by searching through all feasible permutations of
travel schedules. Most of the time during group generation
is spent inside this function. We achieved significant per-
formance gains by implementing the algorithm in a way
that constructs permutations “in place” and avoids mem-
ory allocation during the search process. Also, we imple-
mented a look-ahead procedure that is triggered each time
a pickup or drop-off location is added to extend a partial
plan. In this look-ahead, we verify that the maximum
allowed time for each pickup and drop-off location that
are still waiting to be added to the plan is higher than the
time of the most recently added order to the partial plan;
if the above does not hold, we can safely discard the par-
tial plan as infeasible.

Finally, we parallelized the group generation process so
that feasible groups are computed in a separate thread for
each vehicle. An even better approach would be to parallel-
ize the function f because that way, we can distribute the
work among threads even if there is only a small number of
vehicles with a larger number of vehicle groups. However,
we leave this optimization for future work.

22 D. FIEDLER ET AL.

	Abstract
	Introduction
	Related work
	Contribution

	Methodology
	Input data
	System model
	Station positioning, rebalancing, and fleet-sizing
	Problem formulation

	Request-vehicle matching
	Insertion heuristic
	Vehicle group assignment method
	Complexity, optimality, and implementation

	Simulation

	Results
	Operating cost and computational time
	Tradeoff between operating cost and passenger discomfort
	Impact of MoD on congestion
	Fleet size and vehicle occupancy
	Sensitivity analysis of the VGA method
	Computational time analysis of the VGA method

	Conclusion
	Disclosure statement
	Funding
	Orcid
	References
	Appendix A
	Appendix B

