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Abstract
In this paper, we explore scope graphs as a formal
model for constructing type checkers for program-
ming languages that support type classes. Type
classes provide a powerful mechanism for ad hoc-
polymorphism and code reuse. Nevertheless, the
incorporation of type classes into type checkers
poses challenges, as it necessitates the resolution
of instances and the assurance of coherence amidst
overlapping instances. Our approach facilitates the
separation of concerns between type class resolu-
tion and type checking, promoting extensibility and
maintainability of the type checker. We contribute
with a formal definition of scope graphs for lan-
guages with type classes, accompanied by algo-
rithms for type class resolution and type check-
ing. To assess the correctness of this approach, we
implement a prototype type checker, and conduct
experiments on a collection of representative pro-
grams. The results demonstrate the effectiveness of
this baseline approach.
Keywords: scope graphs, type checkers, type
classes, ad-hoc polymorphism.

1 Introduction
Type checking allows software engineers to catch bugs in
their code early in the development process. One particularly
challenging aspect of implementing type checkers is name
binding (associating references with the appropriate declara-
tions). Scope graphs can be particularly useful in this case, as
these provide a model for declaratively specifying the seman-
tics of name binding structures in programming languages.
This data structure allows defining declarative typing rules,
similar to the ones found in programming language litera-
ture. However, traditional typing rules rely on typing contexts
defined on a language by language basis for certain scoping
structures. In contrast, scope graphs offer a uniform repre-
sentation of name binding in a language parametric manner.
Therefore, by using scope graphs as a model, algorithms that
resolve names during type checking in a consistent manner
can be implemented, independent of language.

When it comes to languages with support for type classes,
it is not yet well understood how to implement type checkers
using scope graphs. A type class can be defined as a fam-
ily of types that implement a common set of functions. This
feature of programming languages enables ad hoc polymor-
phism. Type classes were introduced in [13], as a new ap-
proach to ad hoc polymorphism. The same paper explains ad
hoc polymorphism, named by Strachey in [10], as “occuring
when a function is defined over several different types, acting
in a different way for each type.” Work in the area of building
type checkers for languages with type classes include a set
of type inference rules for resolving overloading introduced
by type classes [1], Mark Jones’ type system of constructor
classes [3] and the type inference system [7] proposed by To-
bias Nipkow and Christian Prehofer.

Regarding the problem of building type checkers using
scope graphs, this has been achieved for a subset of Java,

Scala and a language with modules and records as a case
study for [9]. Other relevant work is introducing scopes as
types in [11], which uses scope graphs to model type systems
with more sophisticated form of type representation. How-
ever, both these papers use Statix1, which does the internal
scheduling of queries to resolve name resolution. This offers
less flexibility than the provided Haskell library used in this
paper, where the task of scheduling queries is done explicitly.

The research question that this paper aims to answer is
then the following: “How can we implement a type checker
for a language with support for type classes, using scope
graphs?”, combining aforementioned concepts. This paper
aims to answer this question by providing the following list
of contributions:

• We propose a novel approach for building type checkers
for type classes using scope graphs.

• We provide a practical implementation of our scope
graph-based type checker, demonstrating how the pro-
posed approach can handle type class resolution and
type inference accurately.

• We develop a test suite use for evaluation, consisting of
diverse Haskell program that cover challenges of type
checking type classes.

• We provide insights into the design and implementation
choices for handling type classes. We analyze the ben-
efits and limitations of our scope graph-based approach
compared to existing ones, highlighting its potential for
improving type checking for type classes.

In the subsequent sections of this research paper, a com-
prehensive exploration of the research questions at hand is
provided. Section 2 expands on the problem and how scope
graphs and type classes are integrated. In Section 3, we high-
light the novel aspects of the proposed solution and demon-
strate how the approach works for some example programs.
Section 4 presents the methods used to assess the proposed
implementation and presents the results. We compare the
declarativity and extensibility of the type checker to existing
approaches and cover the limitations, as well as potential ar-
eas for improvement, in Section 6, while Section 5 addresses
ethical considerations. Related work is discussed more in-
depth in Section 7. Finally, we summarize the key contribu-
tions and outline directions for further research in Section 8.

2 Understanding Type Classes
This section presents a comprehensive overview of the prob-
lem addressed in this research, focusing on the task of build-
ing type checkers using scope graphs for languages with sup-
port for type classes. We adopt a problem-oriented perspec-
tive, aiming to outline the relevant background concepts, the-
ory, and models that form the foundation of this research. The
goal is to establish the necessary context and formalize the
problem under investigation.

1Constraint-based declarative language for the specification of
type systems that combines type constraints with name resolution
constraints based on scope graphs.
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To begin, an introduction is provided to the concept of type
checkers and their role in programming language analysis.
Next, the concept of type classes and their relevance in pro-
gramming languages is explored, highlighting their role in
enabling polymorphism and code reuse. Furthermore, we ex-
plain the significance of scope graphs in facilitating precise
type checking and name resolution, as well as the representa-
tion of scope graphs used in this paper.

Type checkers are fundamental tools in programming lan-
guage analysis. They play a crucial role in ensuring the cor-
rectness and reliability of programs by verifying the compati-
bility of data types used within a program. Type checkers ex-
amine the expressions, variables, and functions in a program
and ensure that the operations performed on them are consis-
tent and well-defined. By catching type-related errors early,
type checkers help prevent runtime crashes, improve program
reliability, and facilitate efficient debugging. It is considered
that a program that type checks correctly “cannot go wrong”
[6].

Type classes are a concept in programming languages that
enable ad hoc polymorphism and code reuse. These pro-
vide a mechanism for defining behavior that can be shared
across different data types. By defining type class instances,
programmers can specify how different types implement the
functions defined by the type class. This promotes generic
programming and allows code to be written in a more abstract
and reusable manner. Thus, type classes offer a powerful way
to abstract over different data types, while providing a unified
interface for interacting with them.

One particularly challenging aspect for type checkers is
name binding. This is due to the complex nature of scop-
ing rules and the resolution of names within a program. Type
checkers need to accurately determine the associations be-
tween names and their corresponding units, such as variables,
functions, or types. This involves traversing the program’s
scope hierarchy, considering factors such as lexical scoping
and nested scopes. However, the presence of shadowing,
aliasing, and dynamic scoping can introduce ambiguity and
make name binding more intricate. Additionally, type check-
ers often need to handle language-specific features such as
modules, object-oriented constructs, or type classes, further
complicating the task of accurately binding names to entities.
Achieving robust and efficient name binding in the context of
type checking requires careful consideration of language se-
mantics and the development of sophisticated algorithms and
data structures to navigate the complexities of scoping and
name resolution.

2.1 Scope Graphs

Scope graphs, first defined in [8], are data structures used in
programming language analysis, specifically in the context
of building type checkers. These can be used as a model to
conduct and represent the results of name resolution. They
capture the structural and lexical information of programs,
representing the scope hierarchy, variable bindings, and name
resolution relationships. In the context of scope graphs, name
resolution is solved by merely finding a valid path from ref-
erences to the corresponding declarations.

Generally, the following types of nodes are defined in
scope graphs:

• scope nodes, which represent a scope;

• declaration nodes;

• references.

There can be labeled edges between them, such as those
defined in Fig. 1. The label D is used for edges that go from
scope nodes to declarations, whereas P is used to denote a
parent relationship between two nodes. An edge from a ref-
erence node to a scope node does not have a label, as it is only
an edge used for searching through the scope graph to find
a matching declaration. The process of searching through a
scope graph for a declaration is called querying.

S x

x S

S S

D

P

Figure 1: Legend for scope graphs.

To illustrate how scope graphs are created, we take a look
at the simple example program and its scope graph depicted
in Figure 2. In this case, there are two references that need to
be resolved to declarations: a and f.

1 f a = a
2 where
3 a = 4
4

5 f 5

0

1

2

af

a

a

f

DD

P

P

D

Figure 2: Example program and scope graph.

We can observe that f will be resolved in the global scope
0, but for a there are two matching declarations: one in the
global scope, 0, and one in the scope introduced by the where
block, scope 1. This program should resolve to 4, as the a in-
troduced in the where-block will shadow the one given as
argument. To resolve this correctly, the shortest path match-
ing the regular expression P*D is chosen. This means it can
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traverse zero or more P edges and one D edge. The scope
introduced by the where-block is represented by 1 in Figure
2, and is closest to scope 2, which is where the reference for
a will be resolved. This simple example illustrates that scope
graphs are an intuitive model when it comes to name binding
and name resolution.

2.2 Phased Haskell Library
For building type checkers using scope graphs, there are two
viable options: implementing the type checker using Statix,
or using the provided Haskell library 2. After careful consid-
eration, it was determined that the Haskell library offers more
flexibility, as it allows for manual scheduling of queries. In
the case of Statix, the internal scheduling posed a risk at actu-
ally implementing the feature. Therefore, our approach uses
the scope graph implementation provided by the Haskell li-
brary.

2.3 Syntax
To provide a concrete implementation for the type checker,
we first have to define a concrete language that the type
checker will run on. For this, the syntax for a mini-language
with support for type classes was defined. This definition
specified the necessary constructs for type class declarations,
instance declarations, and function calls with type class con-
straints. The syntax for this language can be found in Figure
3.

Type classes C
Type variables α
Types ty = Num numbers

| Bool booleans
| ty → ty function type
| C ⇒ α type variable with

constraint
Expressions e = x identifier

| num numbers
| bool booleans
| ⊕ e e addition
| (e e) function application
| λx.e function abstraction
| let x = e in e let binding

Declarations d = class C α where d type class
| instance C ty where d instance declaration
| x : ((x : ty) → ty) e function declaration

Programs p = [d] list of declarations

Figure 3: Syntax of the mini-language.

3 Type Checking Type Classes
This section lays forth the contribution of this research in the
field of computer science. More specifically, we present the
implementation of the type checking algorithm for a language
with type classes, using scope graphs.

Scope graphs can easily be constructed to support type
classes. A simple example of a program with type classes

2https://github.com/heft-lang/hmg

and its corresponding scope graph can be found in Figure 4.
We will first highlight the new things that are added on top
of a scope graph for a simple program, such as that in Figure
2, to support type classes, and then we will illustrate, through
examples, how this construction of the graph is useful and
why the changes were necessary.

Our algorithm for type checking type classes runs in two
phases: creating the scope graph with the necessary declara-
tions, as in Figure 2, and then type checking said declarations
on the complete graph. During the first phase, we add new
labels for the edges, TC and I, which introduce new scopes
in programs. The reason for new labels is to allow following
more specific paths when querying. Another addition to the
general scope graph constructed previously (Figure 2) is that
once we create a declaration for a type class, we also add an
instance for its type variable, a in line 1, which is useful later
on to resolve type constraints.

During the second phase of the type checker, we start by
verifying that the instance declarations are compatible with
the corresponding classes. Here we check that the type sig-
natures match, and if they do, we move on to resolving the
references.

1 class A a where
2 f :: a -> Bool
3

4 instance A Int where
5 f :: Int -> Bool
6 f x = True
7

8 foo :: Int -> Bool
9 foo x = f x

0

A : TCLASS(1) 1

f : a -> Bool

2

3

Int: INST(A)

foo : Int -> Bool

x x: Intf

f : Int -> Bool

A a: INST(A)

4 x: Int

TC

I

D D

D

D

P

P

P

P

D

D

Figure 4: Example program with type classes and its scope graph.

In the example program, we first try to resolve the refer-
ence for f, which we then apply to x. We will look through
the paths that match P*(TC)?D, as function declarations can
be found within type classes as well. This means it can tra-
verse zero or more parent edges, followed by zero or one type
class edge and, finally, it must match on a declaration. Func-
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tion f gets resolved to declaration f : a → Bool, through
the path 3 → P → 0 → TC → D. We encounter a type
variable in the declaration, namely a. Moreover, since we
matched to a declaration within a type class, a needs to be
an instance of class A. We model this as a type constraint on
variable a. This constraint needs to be resolved, so we will
look for evidence that the argument type f is applied on sat-
isfies it. We infer from the scope graph that the type of x is
Int, thus what is left is to check that Int is an instance of A.

To resolve an instance to the correct type class, we will
query paths with P*I?D. Furthermore, we check whether one
of the instances matches the type class constraint the argu-
ment should adhere to, as well as the argument type. Through
the path 3 → 0 → I → D, we find the declaration we
needed, namely that Int, our argument type, is an instance
of class A. Thus, the type constraint is resolved, and the pro-
gram type checks correctly.

Now we can consider how we type check a program that
has a type constraint explicitly in a function declaration, i.e.
foo: A a => a → Bool. In this case, the type checker
considers the parameter to be of type type variable A, keep-
ing track of which constraint it can resolve through it. If we
consider the same example illustrated above, with the method
signature for foo changed, our algorithm will find the same
declaration for f, inside type class A. This is where the al-
gorithm tries to resolve the type constraint of matching to a
declaration within a type class. For consistency with the ap-
proach when x is a concrete type and an instance provides
evidence to resolve the type constraint, the scope graphs has
an instance declaration for type variable with constraint A.
This directly solves the type constraint on x.

With the addition of type variables as instances of type
classes, one might wonder whether this leads to overlapping
instances. Namely, if we define an instance of class A for a
type variable, we have two matching declarations for A a:
INST(A): one comes from the class declarations, and the
other from the instance declaration. To mitigate this, the algo-
rithm first tries to resolve the type constraint through I edges,
and if that is not successful, will look through TC edges. In
the case of non-overlapping instances, the type constraint will
be resolved through class A, but for this case, the instance
declaration is more specific and takes precedence. An exam-
ple where ambiguous overloading arises, with proper over-
lapping instances, is discussed in Section 4.2.

4 Evaluation of Prototype Implementation

For evaluating the proposed implementation, the expected be-
haviour of a type checker for languages that support type
classes was considered to be that of Haskell’s type checker.
Thus, a set of 35 representative programs was meticulously
devised and executed on both the proposed implementation
and Haskell’s built-in type checker. This section presents a
justification for the suitability of the test suite as a compre-
hensive and representative set of tests. Subsequently, the be-
havior of this implementation on the provided programs is
thoroughly examined.

4.1 Test Suite
The test suite encompasses six distinct categories, each tar-
geting specific aspects of the type checker’s functionality.
The aim is to provide a thorough assessment of the correct-
ness and robustness of our implementation by incorporating
these diverse test cases.

The first category focuses on basic type checking, ensuring
that the type checker can correctly infer types and detect type
errors in simple programs that utilize type classes. This set of
tests covers basic language constructs and operations, serving
as a foundation for subsequent evaluations.

The second category examines the instance resolution
mechanism within the type checker. These tests assess the
type checker’s ability to resolve instances correctly, espe-
cially in scenarios where multiple instances are defined for
a particular type class. Through the evaluation of the instance
resolution functionality, the aim is to validate the proper se-
lection and utilization of instances based on the context.

Challenges arise when dealing with overlapping instances,
which necessitates dedicated tests in the third category. These
tests focus on scenarios where instances overlap, thereby
evaluating the type checker’s capability to handle ambiguity
and detect overlapping errors accurately. Verifying the cor-
rect resolution of overlapping instances is crucial for ensuring
reliable type checking outcomes.

The fourth category explores the type checker’s behav-
ior with polymorphic functions. These tests examine how
well the type checker infers and handles type variables and
constraints within polymorphic functions that involve type
classes. By evaluating this aspect, the type checker’s ability
to handle the complexity introduced by polymorphism and
type classes concurrently can be assessed.

The fifth category focuses on type class constraints in
method signatures of functions. These tests investigate how
the type checker handles these constraints. By evaluating this
aspect, the proper integration of type class constraints into the
type checking process is ensured.

Lastly, the test suite includes tests that assess error han-
dling. This category includes programs that contain type er-
rors. Thus, this set of tests evaluates the type checker’s error
reporting capabilities, ensuring clear and accurate error mes-
sages for ease of debugging.

By covering these six categories of tests, the comprehen-
sive test suite aims to provide a holistic evaluation of the
correctness and reliability of the prototype implementation.
These tests also serve as a means to identify potential bugs
and areas of improvement for the type checker. However, we
note that this set of tests only covers the baseline of what a
language widely used in practice covers.

4.2 Results
This subsection presents the results of evaluating the imple-
mentation against the aforementioned test suite. The results
are summarized in Table 1, categorizing the tests based on
whether they should type check without errors (Type checks)
or should result in type check errors (Type check error). The
table provides the percentage of tests exhibiting correct and
incorrect behavior, with correctness defined as emulating the
behavior of Haskell’s type checker.
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Table 1: Results of prototype implementation.

Haskell
Prototype Type checks Type check error

Type checks 82.61% (19/23) 17.39% (4/23)
Type check error 8.33% (1/12) 91.67% (11/12)

Out of the total number of tests conducted, we observed
that 30 out of 35 tests passed. The test suite has 12 tests that
should raise an error, and 23 that should type check. The re-
sults suggest that the implementation works better when iden-
tifying type check errors and has difficulty in type checking
correctly when no errors should arise. We look at two exam-
ples more in-depth, one that should throw an error and cor-
rectly does so, and one that fails to type check.

Furthermore, in the process of evaluating our approach, we
encountered a specific case related to overlapping instances.
Consider the code snippet shown in Figure 5, where two in-
stances, A a: INST(A) and Int: INST(A), could poten-
tially match the same path in our implementation, P*I?D. Ad-
ditionally, the type of the argument could be considered to
resolve either constraint. In line with Haskell’s behavior, our
type checker does not make a choice between Num or A a as
the argument type for 42, resulting in an error being raised.
This test program was inspired by [5], highlighting the han-
dling of ambiguous types and overlapping instances. Our im-
plementation aligns with the expected behavior in Haskell,
which detects overlapping instances for f and raises an error.

1 class A a where
2 f :: a -> Bool
3

4 instance A a where
5 f :: a -> Bool
6 f x = False
7

8 instance A Int where
9 f :: Int -> Bool

10 f x = True
11

12 foo :: A a => a -> Bool
13 foo x = f 42

Figure 5: Example program illustrating overlapping instances in
Haskell.

For the failing tests, it has been observed that these all have
something in common: all of the programs have references to
parameters inside instances or type classes. An example of
such a program can be found in Figure 6. The current imple-
mentation raises an error, stating that no matching declaration
was found for x. Since function f introduces a new scope, say
2, the declaration for its parameter, x: Int, is found inside
2. If we consider the instance’s scope to be 1, there is a P -
labeled edge from 2 to 1. The current implementation seems
to add the reference to x in scope 1 instead of the scope of
the function, namely 2, and no declaration for x can be found

through P*(TC)?D paths. Concretely, this means that when
we type check the program within the instance declaration,
we use the instance scope and not the one introduced by f,
and there is no edge we can take to get inside the function
scope.

1 class A a where
2 f :: a -> Int
3

4 instance A Int where
5 f :: Int -> Int
6 f x = x + 2
7

8 foo :: Int -> Int
9 foo y = f y

Figure 6: Example program illustrating failing test case.

To resolve the failing test cases, the implementation needs
to be updated to either find the correct function scope even
within instances and classes. Regarding the one test that does
not raise an error when it should, this is because, currently,
we allow for functions with the same name to be declared,
as long as their signatures are not identical. Haskell does not
allow for this, thus this is a difference in language semantics
that should be resolved if Haskell’s semantics are needed.

It is important to acknowledge that our test suite, while
comprehensive, is not exhaustive and represents a subset of
the language with support for type classes commonly used in
practice. Although we have made efforts to include diverse
and challenging cases, it is possible that certain edge cases
and intricate interactions within a complex type system have
not been fully captured. Therefore, it is essential to interpret
the results with caution and recognize that the evaluation’s
scope is limited by the coverage of the test suite.

We conclude that our approach can be used as a baseline for
type checking type classes using scope graphs, whilst miss-
ing more interesting features. Although the prototype imple-
mentation resulted in incorrect behavior, thus revision of the
code is necessary, the proposed model using scope graphs still
proves to be reliable.

5 Ethical Considerations
We undertook this study with a strong emphasis on conduct-
ing research in a manner that aligns with responsible prac-
tices and principles. Throughout the research process, partic-
ular attention was given to ensuring transparency and repro-
ducibility.

To promote transparency, a clear documentation of the
tools used in building the type checker is provided in Sub-
section 2.2. This documentation allows other researchers
to understand the approach taken and replicate it if desired.
Additionally, to further facilitate reproducibility, we made
the implementation of the type checker openly accessible on
Github3. By sharing the implementation, along with the test
suite, it enables others to examine and validate the findings
presented in this research.

3https://github.com/andreealmocanu/scope-graph-type-class
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In the interest of full transparency, all results obtained dur-
ing the evaluation process have been reported, including both
successful and failing test cases that are part of the test suite
used for evaluation. No results have been omitted or exag-
gerated, ensuring the accuracy and integrity of the findings.
In Subsection 4.2, we include False Positives (test cases that
are expected to not type check, but do so in our implementa-
tion) and False Negatives (test cases that are expected to type
check, but do not in our implementation) and explicitly re-
port them as what these are. In the context of type checking,
presenting false positives as positives can have significant im-
plications in real-life applications. These can lead to incorrect
program behavior or runtime errors, causing system failures,
data corruption, or security vulnerabilities. The consequences
can be severe, particularly in safety-critical systems, where
incorrect type checking can compromise the integrity and re-
liability of the entire system.

We strive to bridge the gap between technical expertise and
societal impact. We recognize that as engineers, our respon-
sibilities extend beyond the mere technical creation of prod-
ucts, contrary to what separatism promotes. Separatism is
defined in [12] as “the notion that scientists and engineers
should apply the technical inputs, but appropriate manage-
ment and political organs should make the value decisions.”
In our efforts to recognize engineers’ responsibility, we rec-
ognize the impact that faking results could have and that

Furthermore, it is important to acknowledge that the cor-
rectness of the implementation is determined against a re-
stricted set of tests. Given the complexity of building a type
checker with support for type classes, there is a possibility
that bugs have been introduced in the implementation and
were not caught by the test suite, or may arise in future imple-
mentations. To minimize the probability of such occurrences,
rigorous testing is essential. The current test suite presented
in Subsection 4.1 consists of 35 test cases and does not in-
clude programs that are not supported by the mini-language
we use throughout this paper, whose limitations are discussed
more in Section 6. Thus, this suite only covers a subset of
Haskell’s features that involve type classes.

By adhering to responsible research practices, including
transparency, reproducibility, and not promoting separatism,
this study strives to contribute to the collective advancement
of the field. These considerations not only enhance the in-
tegrity of the research, but also encourage further exploration
and refinement of our proposed approach.

6 Discussion
In this section, we compare the declarativity and feature
extensibility of our implementation for type checking type
classes with the prototype implementation given in [3]. We
are particularly interested to make a comparison with [3], as
it introduces a type system similar to Haskell’s current ap-
proach. This comparison aims to evaluate the strengths and
limitations of our approach in relation to a widely adopted
language, such as Haskell.

Declarativity refers to the ability of a type system to pro-
vide concise and expressive constructs for specifying types
and their relationships. Haskell’s type checker is renowned

for its declarative nature, offering a rich set of type inference
features. Haskell’s extended Hindley-Milner type system can
infer the principal type of most expressions, making explicit
typing usually optional. For more information on Hindley-
Milner type system, we guide the reader towards the papers
that laid the foundation for these systems, namely [2] and [6].

In contrast, our prototype type checker does not possess
the same level of declarativity as Haskell. Due to the limited
language features of the mini-language employed in our pro-
totype, explicit type annotations are required to guide the type
checker in the absence of comprehensive type inference capa-
bilities. This lack of automatic type inference diminishes the
declarative nature of our approach, as it necessitates explicit
type declarations.

A simple example in which explicit typing is necessary
even for Haskell’s type inference system is given in Figure 7.
In this example, the parameter of foo has a type constraint,
but in the declaration f 42, multiple types can be inferred
for the argument 42: Int, Float, Double etc. Depending on
which one it infers, the result of Haskell’s type checker would
be different, as only Int is an instance of A. This example
highlights that omitting explicit typing cannot be done for all
cases, even for a complex type checker such as Haskell’s, and
how type annotations guide the type checker.

1 class A a where
2 f :: a -> Bool
3

4 instance A Int where
5 f :: Int -> Bool
6 f x = True
7

8 foo :: A a => a -> Bool
9 foo x = f (42::Int)

Figure 7: Example program with explicit typing in Haskell.

Feature extensibility refers to the ability of a type sys-
tem to accommodate and handle a wide range of language
features. Among the features that Haskell’s type checker,
we find higher-order functions, type classes, subclasses
of type classes, type constructors, and polymorphic types.
This extensibility empowers programmers to write expres-
sive and flexible code, enabling sophisticated abstractions and
reusable components.

In comparison, our prototype type checker is limited in fea-
ture extensibility. The mini-language designed for this pa-
per intentionally omits advanced language features, which are
also discussed in Section 6. Consequently, the scope of our
prototype is more restricted, and it may not be directly appli-
cable to scenarios that necessitate these features. The absence
of these language constructs limits the flexibility and expres-
siveness of our type checker and restricts its ability to handle
complex programming paradigms.

In [3], Mark Jones introduces constructor classes, which
were an extension to what type classes in Haskell were de-
fined to be at that time. Before [3], type classes in Haskell
provided a mechanism for ad-hoc polymorphism, but were
defined on types alone, based on [13]. Constructor classes
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generalize type classes to operate on data constructors defined
in the program, supporting the use of monads. Nowadays,
there is no distinction in Haskell between constructor classes
and type classes [5].

In terms of feature extensibility and expressiveness, our
prototype is limited and does not support data constructors
and type classes defined for those. Thus, our implementation
lacks the novelty introduced by [3], but the approach could
be extended once data constructors are introduced in the lan-
guage.

Another feature that is mentioned in [3] is qualied types.
Qualified types are defined by Mark Jones in [4] as types for
which some predicates P hold: P ⇒ ty in our syntax. P
is defined to be “an expression of the form P C1...Cn, rep-
resenting the assertion that constructors C1...Cn are related
by P ” [3]. As we do not support constructors, we refer to
these as type variables with class constraints instead of con-
structors. In our implementation, we encode qualified types
as type variables with zero or one class constraint. Currently,
we resolve at most one class constraint for a type variable,
while in [3], P is a set of predicates.

For dealing with qualified types, Mark Jones uses the typ-
ing rules that can be found in Figure 8. In these rules, ρ is
defined as a qualified type, ρ = P ⇒ τ , and τ represents
types. Rule (⇒ E) states that, given an expression E with
a predicate π on ⇒ ρ, and that predicate π can be inferred
from the predicates in P , E has type ρ. The predicate is elim-
inated and E has qualified type ρ. Our scope graph encoding
works similarly, if we consider P to be the set of type classes
available within the program, and π to be a class constraint.

Figure 8: Typing rules for qualified types, defined by Mark Jones.

The second rule for dealing with qualified types, rule (⇒
I), states that if expression E requires predicate π, and π is
available within the context, predicate π can be put into the
qualified type.

In the same paper, Mark Jones also proposed typing rules
for dealing with (parametric) polymorphism. Parametric
polymorphism can be explained as when a function is defined
over a range of types, acting essentially in the same way for
each type. This can easily be illustrated through an exam-
ple: take the function that returns the length of a list. This
length function acts in the same way for a list of integers,
characters, or floats. Because our language did not include
type schemes and data constructors, the functionality for this
type of polymorphism has not been implemented. Nonethe-
less, using scope graphs as a model is still a viable option for
dealing with polymorphism, as it does not impose this limita-
tion.

The language designed for this research paper takes inspi-
ration from Haskell’s syntax. However, it was intentionally
kept simple to focus on a subset for which it is feasible to
provide an implementation in the given timeframe. As a re-

sult, this simplicity introduces limitations to the expressive-
ness of the language. Notably, the mini-language does not
support language features such as subclasses and type or data
constructors. These limitations restrict the applicability of the
type checker to more complex scenarios where these features
are used.

Future work for this research would include extending
the approach to type constructors, and eventually subclasses.
Type and data constructors would add a great amount of ex-
pressiveness to the language defined in this paper. After ex-
tending the syntax and semantics to support these features,
the complexity of the type checker will increase, as it will
have to deal with resolving constructor instances. Resolving
instance resolution in that case may not be as simple as in our
approach, as the possible types range over a much wider set;
it would allow for defining new types within a program.

7 Related Work
The concept of type classes in programming languages, as in-
troduced in [13] has been widely studied and extended in the
literature. Several approaches have been proposed to build
type checkers for type classes, each with their own advan-
tages and limitations.

In [13], a practical solution for resolving ad-hoc polymor-
phism through type classes is proposed. Their work intro-
duces the limitations of ad-hoc polymorphism and elaborates
on the mechanisms for type class instance resolution. Al-
though our research paper diverges from their specific ap-
proach, their insights into the practical aspects of type class
implementation and the challenges associated with instance
resolution have informed our considerations.

Another approach to type checking type classes is pre-
sented in [7]. This paper aims to give the simplest imple-
mentation to Haskell’s type inference algorithm, using sorts
(sets of type classes). A less general approach, that ex-
plicitly focuses on type classes in Haskell, can be found in
[1]. This paper also provides an extensive problem overview,
which helped with the understanding of type classes and their
specifics in Haskell.

Current approaches seem to use mechanisms specific to
type classes, which can introduce additional complexity and
may require a deeper understanding of the exact features. In
contrast, the use of scope graphs provides a unified and more
general framework that is not tied to specific type class ex-
tensions or language constructs. Using scope graphs for type
checking type classes seems to be an approach that is more in-
tuitive than other existing models. Moreover, solutions with
scope graphs are more general and can capture various scop-
ing mechanisms, including non-lexical scoping.

Regarding type checking using scope graphs, one influen-
tial work in this area is [11], which presents a novel approach
to resolving more complex type systems, including structural
records and generic classes, using scopes as types. The con-
cepts and ideas presented in this paper have influenced the
design choices made in our type checker.

Our research paper builds upon these prior works by
proposing a new approach for building type checkers for type
classes using scope graphs. By leveraging the concept of
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scopes and their relationships, we aim to address some of the
challenges in type class resolution and provide a more princi-
pled and modular framework for type checking type classes.

8 Conclusion
In this paper, we addressed the question of how to build a
type checker for a language with support for type classes, us-
ing scope graphs as a model. We presented an approach that
leverages scope graphs to capture the relationships between
types and type classes, allowing for effective type checking.

By designing and implementing a prototype type checker
for type classes using scope graphs, we demonstrated the fea-
sibility of our approach. Using a comprehensive test suite, we
evaluated this approach. Our results indicate that type check-
ing type classes using scope graphs is a promising approach.

However, our research also revealed several areas for im-
provement and future work. First, the limited language fea-
tures of the mini-language used in this research paper re-
stricted the expressiveness and applicability of our approach.
Future work should explore extending the type checking sys-
tem to support advanced language constructs such as sub-
classes and type constructors. By incorporating these fea-
tures, the type checker can address a wider range of pro-
gramming scenarios and offer more comprehensive support
for real-world languages. Additionally, further research is
needed to enhance expressiveness of the type checking sys-
tem. While our prototype type checker relied often times on
explicit type annotations due to the absence of extensive type
inference capabilities, future work can focus on developing
more advanced type inference algorithms.

In conclusion, we have shown that building a type checker
for a language with support for type classes using scope
graphs is a promising approach. While there are limitations
and areas for improvement, our research provides a founda-
tion for future work in this domain. By addressing the chal-
lenges of feature extensibility and declarativity, we can ad-
vance the state of type checking and contribute to the devel-
opment of type checking algorithms that are independent of
language.
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nology, and engineering: An introduction. John Wiley
& Sons, 2023.

[13] P. Wadler and S. Blott. How to make ad-hoc polymor-
phism less ad hoc. In Proceedings of the 16th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’89, page 60–76, New
York, NY, USA, 1989. Association for Computing Ma-
chinery. doi:10.1145/75277.75283.

9

https://doi.org/10.1145/227699.227700
https://doi.org/10.1145/165180.165190
https://doi.org/10.1145/165180.165190
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1145/158511.158698
http://dx.doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://doi.org/10.1145/75277.75283

	Introduction
	Understanding Type Classes
	Scope Graphs
	Phased Haskell Library
	Syntax

	Type Checking Type Classes
	Evaluation of Prototype Implementation
	Test Suite
	Results

	Ethical Considerations
	Discussion
	Related Work
	Conclusion

