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ABSTRACT

Emerging Low Earth Orbit (LEO) satellite constellations have been
considered for uses beyond plain Internet access, including content
caching and edge computing. Assuming satellites are equipped with
inter-satellite links, we propose using these links and thus the space
in-between satellites, paired with a dedicated satellite queuing sys-
tem, to “‘store” data and provide access by keeping data in constant
flux around the globe. We describe the properties and explore the
capabilities of such a system and discuss some potential uses.
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1 INTRODUCTION

As Low-Earth Orbit (LEO) satellite megaconstellations extend the
reach of the Internet, speculations about further use beyond plain
Internet access arise. These include ideas about caching content in
space [7, 13], CDNs [4], computation in orbit [2, 11], edge comput-
ing in space [5, 8], and application-specific data aggregration, e.g.,
in the context of scientific data sensing from space [5]. Building
satellite-based content delivery systems would usually require some
control plane to locate content objects, route requests, perform load
balancing, etc. and possibly actively manage content caches [4].

In this paper, we take a different route: we continuously move
content objects, represented as a series of packets, around in the
orbital shell, i.e., across all satellites on all orbits at the same altitude
of a megaconstellation, one orbit at a time, so that satellites can
just wait for objects, eliminating the need for active discovery. We
leverage the large distances in space and the high data rate of inter-
satellite laser links, which together yield a substantial bandwidth-
delay-product, to “store” content as data in flight between satellites
in addition to providing extra storage on each satellite. In a sample
configuration (see fig. 3 and 4), a single content object would traverse
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Satellite o

Figure 1: a) Distance d between two satellite in the same orbit
and b) d; between the two closest satellites in adjacent orbital
planes.

all 1,584 satellites (22 in each of 72 orbits) of the lowest Starlink
orbital shell at 550km altitude approximately every 11 seconds,
covering a total distance of 3.27M kilometers.

We present our assumptions and system model in §2 along with
the resulting basic system properties, especially the tradeoffs be-
tween storage capacity, content replication, and access latency. We
discuss mechanisms for adding, replicating, deleting, and routing
content objects in §3 and show via simulations how far simple local
algorithms with limited state and a lightweight protocol can carry in
§4. We conclude with a sample usages and a discussion of possible
directions in §5.

2 DESIGN

We assume a LEO satellite constellation in a single orbital shell that
covers the inhabited Earth surface with sufficient satellite density that
each point on the ground within the coverage area is served by at least
one satellite at any given instant. Each LEO satellite is equipped with
four lasers to establish ISLs at data rates of Rys; = 100 Gbps. Two
of the ISLs connect each satellite to its preceding and succeeding
neighbors in the same orbital plane, the remaining two connect to
satellites in adjacent orbits, creating a +grid topology [3]. We
assume that the satellites have sufficient power to operate their ISLs
continuously, which appears reasonable as current LEO deployments
use ISLs. We only consider the operation of a single orbital shell but
our considerations can be extended to multiple shells.

Each user terminal connects to exactly one satellite at a time. The
terminal reaches the Internet via a bent pipe to a ground station and
point of presence (PoP) of the satellite operator. We assume that
Internet traffic is routed to the closest ground station and does not
traverse many ISLs, minimizing ISL use by end user traffic, so that
the satellite operator may bound end user ISL traffic and dedicate an
ISL capacity share to storage traffic fs.

Satellites of an orbital shell O are at an altitude a and at an
inclination y,. The shell is comprised of N, orbital planes with
N, satellites per orbital plane (or: orbit), assumed to be evenly
spaced at an angular distance of & = 360°/N,. With a mean Earth
radius of r = 6371 km, this yields a distance (line of sight) of d =
2(r+a)sin(%a) as shown in figure 1a. The distance between satellites
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Figure 2: Satellite architecture showing three ISLs with their
outbound queues for Internet and storage traffic and the re-
spective forwarding logic, content object state table, and an
incoming flow from ISL 2. A data access module matches incom-
ing requests (not shown) against stored content objects with an
optional cache.

on adjacent orbital planes varies, being largest at the equator. Figure
1b illustrates the maximum distance dg between the closest satellites
on neighboring planes: the planes are spaced an equal angles of
B = 360°/Np, yielding a distance of dj = 2(r + a)sin(%ﬁ) (at the
equator), and the satellites are at a maximum phase shift relative to
each other, i.e., at an offset of % within their respective orbits. The

resulting maximum distance at the equator is then ds =~ / %dz +dp.
To reduce the system dynamics to be accounted for and to obtain
a conservative estimate, we assume the maximum distance d; for
computing the propation delay and we ignore that storage capacity
of the links across planes.

Consider the Starlink orbital shell at a = 550 km altitude with
Np = 72 orbital planes at an inclination of y, = 53° and N, = 22
satellites per orbit. The satellites on an orbital plane are spaced d =
1969.72 km apart, at the equator, the distance between two adjacent
orbital planes is dp = 603.78 km, and the max distance between the
closest satellites on neighboring orbital planes is dg = 1155.29 km.

2.1 System model

Figure 2 sketches part of a single satellite system focusing on the
ISLs, i.e., not including the radio links to the ground stations and
terminals. Each satellite, at a minimum, provides two send queues
of different sizes per interface: one for regular (= Internet) traffic of
size Qr and one for storage traffic of size Qg. The queues receive
proportional treatment when scheduling packets for transmission
on an ISL with a share f; reserved for storage traffic, e.g., using
weighted fair queuing.

A content object maintained in the data store comprises a se-
quence of packets, each packet including at least the content id (e.g.,
a hash) and total size, its data offset into the object, its expiration
time, the total number of replicas and the replica instance number,
and a (cryptographic) checksum. A meta data table on the satellite
records per content object the id (32 bytes), size (6 bytes), expiration
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Figure 3: Simple propagation pattern of a single data object
from its originator (S) first along each orbital plane and then in
a defined area to the next plane.

time (6 bytes), sojourn time (6 bytes), and the storage queue (Q,
1 byte), plus internal maintence data, yielding some 64 bytes per
record, so that 1M entries would only consume ~60 MB of memory.

The figure also shows packets incoming from ISL 2 that are
classified into Internet and data store traffic and then handled by
independent forwarding units that determine their respective next
hops, e.g., ISL O or 1: the Internet forwarder implements regular
L2 switching or IP routing while the data store forwarding logic
comprises algorithms to ensure that content object packets circle
through all satellites of an orbital shell, to insert, possibly replicate,
and delete packets, and to perform error control. We will return such
algorithm in §3 and assume for now that a simple one exists that
forwards each packet along one orbit at a time and then shifts to the
next plane, as illustrated in figure 3.

The data store access unit interfaces to all storage queues and
responds to content object requests from satellite terminals (not
shown). The data store forwarder records which content objects are
in which ISL storage queue along with its expected sojourn time.
Given sufficient capacity, a record could be kept for all objects in
orbit until they expire and hold the # replicas per object (cf. §2.2)
and when it last passed through this satellite. This tells the data store
access unit from which queue to fetch the content object, whether it
would be feasible to retrieve it from a nearby satellite, or to predict
when when its next pass through this satellite is expected.

Content requests would, by default, arrive via the radio interfaces
to the ground, but they could also be forwarded by neighbors if those
cannot satisfy a request immediately or in the near future. We leave
this cooperative caching-style optimization using known techniques
for future work.

2.2 Basic properties and trade-offs

We now take a brief look at the theoretical properties of our design.
With content objects in constant flux around the globe, two perfor-
mance metrics are of particular interest: the total storage capacity,
Co, of the orbital shell and the content periodicity, t,. The periodicity
t, is defined as the time elapsing between a given content object
(or one of its replicas) passing twice through the same satellite and
serves as a rough approximation of the worst case access latency
from a terminal connected to that satellite.

For storage capacity, we consider: 1) the storage queue for each
ISL transmitter, Qg, and 2) the data in flight on each ISL, Fs =
% X fs X Rrsr, as per the link’s bandwidth-delay product for the
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Periodicity of content objects [s] for Starlink 1 (550km altitude)
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Figure 4: Effective storage space and periodicity of a content object passing through the same satellite as a function of the number of
replicas and the content queue size per satellite for Starlink orbital shell at 550km altitude.

traffic share f;, with ¢ = 299, 792.458 km/s. This yields a capacity
per satellite (including one outgoing ISL within its orbit) of Cs =
Qs + Fs, per orbital plane of Cp, = Cs X N,, and per orbital shell of
Co = Cp X Np. Due to their potential variability, we do not account
for the capacity added by links across orbital planes. If K replicas of
content objects are kept, the effective storage capacity of the shell is
Ce= 2.

For the latter, access latency, we compute how long it takes a
single content item to pass through the entire orbital shell, ¢,. We
consider the processing and queuing delays per satellite, ¢y and fg,
respectively, as well as the propagation delay for each link within an
orbital plane, ¢, and across orbital planes t;. We assume ¢y = 0.1ms
for each content object, which roughly matches the interarrival time
of 1 MB sized objects at Rysy X fs = 80 Gbps and allows for sufficient

local processing and state management. We obtain the maximum

= [sXQs
q Rist

ts = % This yields the maximum time for a content object to pass
through all satellites of a shell, the rotation time, t,, as

and the propagation delays as t, = % and the worst case

to = No X (tp +1tg+1p) + Np X (tp +1tq +1t5)
for the above simple propagation pattern (fig. 3). As for storage
capacity, we may assume K replicas of a content item evently spaced
across all satellites, which would reduce the periodicity, i.e., the
effective access latency to t, = %“

Figure 4 shows the effective storage capacity C, (left) and effec-
tive periodicity t, (= access latency, right) for the Starlink orbital
shell 1 at 550 km altitude. Assuming a target access latency of <10s,
we see that up to 20 replicas would be needed, whereas staying
below 30s 1-8 replicas suffice.

There is an obvious tradeoff between capacity and periodicity.
Combining both, we may set a target periodicity and derive the
necessary number of replicas for a given storage queue size, from
which we can then compute the effective storage capacity. Doing
this for all megaconstellations as per table 2 in Appendix B, we
show the effective capacity of the data store for a target periodicity
of 10s as a function of the queue size in figure 5 (top). We find
that increasing the storage queue size yields an increasing capacity,
albeit not monotonically. The capacity growth is expectedly more
pronounced for shells with fewer orbits (Starlink 3, 4, 5 use just
8, 5, and 6 orbits, respectively) as less data is “in flight” between
satellites on fewer orbits. Fluctuation appears stronger for those
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Figure 5: Storage capacity for the orbital shells of different
megaconstellations for a target periodicity of 10 s (top) and for
varying periodicity at 128 MB queue size (bottom)

shells with fewer satellites. As increasing queue capacity leads to
longer object rotation times f,, this needs to be compensated by
additional replicas so that we observe dimishing (if any) returns. The
capacity grows roughly linearly as a step function with increasing
periodicity (figure 5, bottom). Overall, we obtain some 40—-80 GB
storage capacity for a periodicity of 10 s pretty much independent of
the megaconstellation.

Above, we assume sending the content objects into one direction
through the orbital plane, hence only considering half the available
transmission and storage capacity. Using both directions would thus
duplicate the available capacity and further reduce the latency; how-
ever, the intervals at which content objects pass through a satellite
would no longer be uniformly distributed; this is left for future study.

3 OPERATION

So far for some theory. We now introduce a strawman algorithm to
realize a baseline for storage in space, with routing (§3.1), insert-
ing/deleting content (§3.2), and error handling (§3.3). We assume a
system without malicious nodes which appears reasonable for closed
satellite systems as today’s megaconstellations are.



LEO-Net '25, September 8—11, 2025, Coimbra, Portugal

3.1 Steady state operation

A simple strawman routing algorithm as alluded to above makes a
content object traverse one orbital plane and then, upon reaching the
satellite it started at, move to the next orbital plane, shown in figure
6. We number the ISL interfaces clockwise as in figure 2; the odd
numbered ones are for the North-South directions to satellites within

the same orbit, the even numbered ones for East-Wast across orbits.

We assume that each storage packet carries two “hop” counters:
n to indicate the count of the satellite in the present orbit and p to
count the orbital plane: n allows determining when all satellites of a
given orbital plane were visited, p determines when the entire orbital
shell is covered. n is incremented whenever a packet is received
from a satellite within the same orbital plane. If n reaches Ny, n is
reset to 0 and the packet is passed on to the next plane, incrementing
p; otherwise, the packet is passed on to the next satellite within the
same plane (cf. fig. 3). This works in either North-South direction.

Input:
Return:

Packet pkt, Incoming interface # if_in
Outgoing interface #

incomding_storage_pkt (pkt, if_in) {
if (if_in %2 == 1) {
// packets coming from a different orbital plane
if (++pkt.p == N_p)
pkt.p = 0;
return (if_in + 1) % 4;
}

// packets coming from within the orbital plane

if ((++pkt.n) == N_o) {
pkt.n = 0;
return (if_in + 3) % 4;
else
return (if_in + 2) % 4;

Figure 6: Simple routing algorithm to make a content object
pass through all satellites of an orbital shell.

Over time, the algorithm needs to adjust n to ensure that a packet
is always passed to a neighboring orbital plane when the sending
satellite is close to the equator. This is easily achieved as the satellite
can observe its own position and update n by +1 to pre- or postpone
switching orbital planes.

Obviously, other (smarter) algorithms are conceivable within the
limitations of the time-varying network topology. The task that each
content item should traverse each satellite within the orbital shell
translates into the well-known traveling salesman problem applied to
a grid-like topology with recurring visits. Interesting questions could
be how to use multiple salespersons (i.e., object replicas) to optimize
the distribution of the time between repeated visits by the same or
different salespersons for a given (non-)uniform utility function.

3.2 Adding and removing content

To add a content object into the distributed data store, the originating
satellite defines the object metadata: id I, expiration time t;;, and
replication factor R. The id I could be a cryptographic identifier of
the creator plus a hash to identify the content, e.g., like a CID in IPFS
[1]. Transmission of the replicas is evenly spaced by observing the
current rotation time t, of a single object , i.e., the time it takes the
object to pass through all satellites of the orbital shell, and dividing
this by R; each replica is associated with a unique instance identifier
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relative to I, e.g., by adding a replica count Ig, 0 < Ig < R. The
pair (I, Ir) can then be used to sample #,. To send the content object,
it is split across packets, each of which carries the metadata as a
header (plus the offset for the packet) and enqueued into the storage
queue(s) of its local ISL O (and ISL 2) interface(s).

The originating satellite adjusts the initial value chosen for n
based on its own position to ensure that the object is forwarded to
the next orbital plane close to the equator: setting n > 0 reduces
the number of hops before switching orbital planes; in this case, the
object will not do a full circle through all of the initial orbit. The
creator may retain a copy of the object after sending R replicas for
later repair.

To determine if there is room for further insertions, satellites
observe the object rotation time t, that represents the aggregate fill
level of the overall storage system.1

An object is deleted when its lifetime t;;; expires, for which we
may assume coarsely synchronized clocks across all satellites The
originating satellite may also explicitly delete a content object: it
simply stops forwarding any packets belonging to this object. With
our strawman routing algorithm, this would deterministically clear
the object from the orbital shell within ¢, as all packets pass through
all satellites. Other forwarding algorithms may have to rely on the
expiry time or craft explicit deletion packets (“anti-packets” [12]).

3.3 Error handling

Communication is subject to errors that lead to packet losses. Such
errors include 1) bit errors on the laser link, 2) tracking/pointing
errors when tracking the neighboring satellites, and 3) the reconfig-
uration time when connecting to a different neighboring satellite.
While 1) may lead to individual packet losses, 2) could incur short
loss bursts and 3) extended link unavailability and hence longer loss
bursts or delays.

1) could be overcome by applying FEC (e.g., simple XOR, Reed-
Solomon codes) mechanisms and ensure that all packets of an object
can be recovered at each hop to avoid error accumulation. If content
objects are small relative to the storage queue size, recovery could
happen while the object is queued and thus not negatively affect
periodicity. For 3), a simple approach is predicting when a recon-
figuration of a satellite link is to occur and route to the next orbital
plane one satellite earlier or later. The rerouting satellite needs to
consider its own and its neighbors’ queue capacity to not affect the
overall stability of the system.

Concerning 2, assuming the above FEC mechanisms won’t suffice
to cope with an outage, a simple fallback mechanism could be used:
if restoring a replica fails, the satellite in question could just drop all
its packets and rely on the source node to re-instantiate the replica.
For this, the creator monitors if still all R replicas of its objects
circulate and recreates the missing ones if a gap in unique replica
numbers is detected. This would just cause a temporary spike in
periodicity and repair would happen within O(#,). Originators could
also send content objects using rateless codes (e.g., fountain codes)
for initial redundancy and add further encoding symbols in response
to observed losses.

IThis somewhat coarsely resembles FDDI token ring networks that use a target token
rotation time to determine the current utilization of the ring and thus if an attached
station is allowed to send data [9].
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4 INITIAL EVALUATION

To understand how does the above strawman design works “in prac-
tice”, we developed a custom simulator in Python that implements
the connectivity pattern of fig. 3 and the forwarding algorithm of
fig. 6. Objects are forwarded as messages and only processed by
the receiver after they were received in full, for which a dedicated
receive buffer is available. Once received, an object is moved to
the next hop storage queue provided that there is enough space;
otherwise it waits in the receive buffer. Objects sourced at a satel-
lite are kept in a source queue and wait there until there is enough
space in the next hop queue. Forwarding objects takes precedence
over introducing new locally sourced ones. In our simulations, we
introduce dedicated tokens (size: 1024 B), one per orbital plane, to
continuously measure the rotation time. For our initial evaluation of
the basic system properties, we consider only a period with stable
satellite topology. Simulations operate in ticks of 1 ms and collect
statistics every 10 ms.

We are interested in how the system stores incoming objects and
how the rotation time evolves compared to our theoretical consider-
ations. Therefore, we simulate the ramp-up phase from an initially
empty system until its theoretical storage capacity is exhausted. We
use a warmup time until all tokens have rotated once through the
constellation so that each satellite can independently compute the ro-
tation time. After the warmup, we start generating objects of fixed or
variable size in fixed intervals (just one replica per object, t;;; = o)
at randomly chosen satellites (uniform distribution). We observe the
data volume of the objects that are effectively stored in the system,
the evolution of the rotation time (measured via our tokens), and the
queue sizes across all satellites.

4.1 Basic operation

Fig. 7 shows a sample run for the Iridium constellation of 66 satel-
lites (N, = 6 orbits, N, = 11 satellites, a = 871 km).2 After a
warmup time of 8 s, objects are generated in 1 ms intervals, the to-
tal data volume of data generated indicated by the green line. In
the beginning, objects are usually sent immediately when they are
sourced as the queues are mostly empty, shown by the steep slope of
orange line representing data stored in flight, closely following the
objects generated. This is confirmed by the curve for data stored in
queues only growing gradudally in the beginning. At around 6.5 s,
an inflection point is reached and, statistically, all queues always
contain data so that all the links are constantly busy and no more data
can be stored in flight, so that further generated objects increase the
share of data stored in queues. At around 7 s, the system is saturated
and no further objects can be accepted. At this point, the theoretical
system capacity (purple line at the top) is not fully reached, i.e., a
fraction of objects never make it from the source queue into the
system.

This effect is expected because sourcing new objects is distributed
randomly across the satellites: since forwarding objects takes prece-
dence, a newly sourced object can only enter the storage queue if
there is room. Once a queue becomes full, it can only drain is there
is less incoming than outgoing traffic. However, at a certain fill level,

2We use Iridium here because its constellation with just 66 satellites helps readability of
the following graphs; result summaries for today’s megaconstellations are included in
Appendix B.
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Figure 7: Evolution of storage utilization for Qs = 64 MB and
S = 8 MB in the simulated Iridium constellation: a) shows how
much of the sent data is stored in queues vs. in flight as well
as the evolution of the mean rotation time measured across all
satellites (top); b) depicts the evolution of queue occupancy of
the satellite queues used (bottom).

all satellites have developed standing queues (at the above inflection
point) so that all links are constantly busy and queues cannot drain.

We illustrate this by looking at the queue occupancy across all
satellite queues: the Northbound queues of all satellites (0-10, 12-22,
... in the plot) plus the Eastbound ones for cross-orbit connectivity
(11, 23, 34, ...). Initially, only a few objects pass through the queues,
which are partly filled and then emptied again. Between 6 and 7 s,
we see queues grow so that standing queues develop and queue sizes
largely stabilize. While there is still room in some queues to hold
further objects, this space isn’t available to objects sourced at other
satellites. The remaining darker, i.e., less occupied, queues are the
Eastbound ones because new objects contributing to queue buildup
are only inserted into the Northbound ones.

4.2 Subtle Backpressure

To alleviate this statistical effect, the system needs to “move” space
in the queues around to those satellites what have new objects wait-
ing. While this could happen over time as objects expire, such an
optimistic do-nothing-and-wait approach would only work proabilis-
tically. Instead, we seek to actively make room. Since queues only
drain if the incoming rate is less than the outgoing rate, we can apply
some backpressure to ask the preceding satellite to reduce the outgo-
ing rate. This must be done with care because: 1) any reduction in
data rate immediately reduces the in-flight storage capacity. 2) Every
satellite has a predecessor, all of which ultimately form a circle, so
we must beware of cascading and oscillation effects.
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At a storage traffic rate of 80 Gbps for the ISLs, a rate change
of 1% rate yields 100 MB/s and hence can assist shifting queue
occupancy at short timescales. Based upon extensive simulations,
we choose to limit rate adjustment R,q; € [0.0,1.0]%. We define a
simple feedback message sent to a neighbor satellite if the own send
queue is full and (sourced) data is pending to ask the neighbor to
reduce its traffic by R,q;. We compute R,4;, capped at 1 %, from
the space in the send queue of an ISL, the size of waiting locally
sourced objects, and the ratio of the incoming to outgoging traffic
rate so that the queue drains faster than it fills until there is enough
room to hold the locally sourced objects. These control messages
propagate into the opposite direction and hence do not interfere with
data traffic, but they could also go into a priority queue to ensure
transmissioin without delay.

15000

1.50
12500 1.25
o -
= 10000 Data stored in queues |1 00
g Data stored in flight 2
5 7500 —8— Objects generated 0,75%
g —<— Data stored in total k]
& 5000 —— Total capacity 0_50§
a
2500 0.25
—— Periodicit
0 Y Jo.00
0 2 4 8 10 12
Time (s)
Queue occupancy (MB) _
il 60
[}
820 >0
2 40
240 30
% T 20
v 60 10
0

0 71.000
g 0.998
020
5 0.996
[
%40 0.994
& 60 0.992
h 3 0.990

Time (s)

Figure 8: Applying a simple backpressure protocol helps uti-
lizing the full storage capacity (top) and dissolve the standing
queues (middle). The bottom plot shows where which backpres-
sure is applied.

Fig. 8 depicts the effects of applying the simple backpressure pro-
tocol. The objects stored in total now reaches the objects generated
(top) and the standing queues are dissolved (middle). The plot also
shows the rate adjustments applied to each queue over time (bottom),
indicating that the system enters and stays in a state of constant
flux of minor rate adjustments. This is due to the communication
latency between neighboring satellites that delays the effect of the
rate adjustments: simulations without delays have shown the system
to stabilize. We leave exploring proactive adjustment algorithms that
can make up for the latency for future study.
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The above figures show findings for the small Iridium topology
to illustrate the observed effects. Appendix B also summarizes the
results for the ten constellations also shown in fig. 5.

S DISCUSSION AND CONCLUSION

In this paper, we take an unconventional approach to distributed data
handling: we exploit the vast distances in space between satellites to
store data “in flight” and have objects constantly rotate through all
access locations so that requesting nodes just have to wait for them
to pass by—rather than fixing the (replicated) storage locations and
maintaining an index to find the data via a control plane. The avail-
ability of powerful ISLs in LEO satellite megaconstellations could
provide a foundation for such design. While our strawman algorithm
makes full use of ISLs within an orbital plane and largely spared
those interconnecting different orbital planes, other configurations
are conceivable, including mixing different shells to differentiate on
latency and capacity needs.

But what to do with a modest amount of distributed storage ca-
pacity of some 40-80 GB at an access latency of <10s (or more
with additional delay)? Anything requiring large volumes such as
CDNs [4] would need different mechanisms but other interesting
uses come to mind: One option is building a global user directory
(a key-value store) with entries exclusively updated by their owners,
e.g., along the lines of a Minimal Global Broadcast [10]: 128 B per
user would just require 675 MB of storage and be hardly noticeable,
leaving room for growth; extending this to today’s 5.5 bn Internet
users would require 670 GB and thus 512 MB storage queues. An-
other idea is using space as a backup for critical infrastructure data,
such as the globale BGP routing tables: the 1.5 GB data (Sep 2024,
from routeviews.org) would fit easily and need only a very small
link capacity share.

While we explored storage queues of various sizes, an interesting
case is an effectively queueless system for global broadcasting with
memory: as shown in table 3, small content objects of a total volume
of 7-100 GB could circulate once per 1-11s. We may exploit these
properties to efficiently distribute state synchronization messages in
global consensus protocols where individual transactions are rather
small. This may allow for a small high-priority traffic share f;, in
some cases, even LEDBAT-style scavenging traffic may suffice: both
could be a start to explore this concept further.
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A NOTATION USED IN THIS PAPER

Table 1 summarizes the notation used in this paper.

Symbol Explanation

r Earth radius (~ 6371 km)

a sallite altitude above ground

d distance between two consecutive satellites in the same orbital plane

dp distance between two adjacent orbital planes at the equator

dg max distance between two satellites on adjacent orbital planes around the equator

No number of satellite per orbital plane

Np number of orbital planes in a constellation

Rrst, data rate of the ISL laser links

fs fraction of Rygy, allocated to storage traffic

Qs size of the storage queue

Fs Data volume in flight between two satellites on the same orbit at rate Rysy, X fs

Cs STorage capacity per satellite: Cs = Qs + Fs

Cp Storage capacity per orbital plane: Cp = Cs X Ny

Co Storage capacity of the orbital shell Co = Cp X Np

K number of replicas per content object

Ce effective storage capacity of the orbital shell with K replicas: C, = Co/K

c speed of light in vacuum: ¢ = 299, 792.458 km/s

ty processing delay per satellite: tp =0.1ms

tq queuing delay per satellite: t5 = fs X Os/Ryst

tp propagation delay between consective satellites within an orbit: t4 = d/c

ts propagation delay between satellites in adjacent orbits at distance ds: tq = ds/c

to rotation time of a single object through all satellites of an orbital shell

tq mean access time to one of K replicas of an object in a orbital shell

ts submission time of a newly created object to a satellite

te time at which a newly created object enters the storage queue

tyw waiting time between object creation and its entering the storage queue: t,, = te — ts

Table 1: Overview of the symbols and notation

B DETAILED SIMULATION RESULTS

This appendix has further details on our simulations results for all the
network topologies we investigated; those are summarized in table 2.
As discussed above, the storage capacity of these megaconstellations
is a function of the queue size per outgoing satellite link and the data
in flight between any two satellites on the circular path through the
orbital shell. The in-flight capacity obviously grows linearly with
the number of orbits (plus marginally with the altitude) while the
queue capacity grows linearly with the number of satellites; this also
holds for the periodicity t, of a data object.

70

LEO-Net '25, September 8-11, 2025, Coimbra, Portugal

Constellation Altitude #orbits #sats/orbit Inclination
S1: Starlink 1 550km 72 22 53.0°
S2: Starlink 2 1110km 32 50 53.8°
S3: Starlink 3 1110km 8 50 74.0°
S4: Starlink 4  1275km 5 75 81.0°
S5: Starlink 5 1325km 6 75 70.0°
K1: Kuiper 1 630km 34 34 51.9°
K2: Kuiper 2 630 km 36 36 43.0°
K3: Kuiper 3 590 km 28 28 33.0°
T1: Telesat 1 1015 km 27 13 98.98°
T2: Telesat2  1325km 40 33 50.88°
I: Iridium 871 km 6 11 86.4°

Table 2: LEO megaconstellation characteristics [6]

We carry out simulations using our custom simulator, written in
Python, that simulates a short (stable) period in a +grid topology.
We simulate different queue sizes Qs € {16, 32, 64, 128,192, 256} MB
and explore constant objects sizes of s € {1,2,4,8,16} MB as well as
objects sizes uniformly distributed in s € [1,16] MB. We compute
the maximum capacity Cp as per §2.2 of a (constellation, queue
size) pair and then, after a warmup period (> t,), fill the system up
to 100% capacity, with new objects generated in 1 ms intervals at a
randomly chosen satellite; objects do not expire. After capacity is
reached, we run the simulation for another 10 s to determine if all
objects are distributed across the storage queues.

We explore both the baseline operation (§4.1) and the simple back-
pressure mechanism (§4.2). To characterize the system operation,
we consider two metrics: 1) The object waiting time t,, is defined
as the difference between the time ts at which the object is created
at (or: submitted to) the source queue of a satellite for storage and
the time ¢4 at which the respective object leaves the source queue
and enters the storage queue and thus is effectively stored in the
syste: ty = tq — ts. Recall that stored objects take precedence over
newly generated ones so that a newly created object can only enter
the system if the storage queue has enough space, hence, this is a
measure for the agility of the system. 2) We count ny how many
objects (if any) were not accepted into the storage system (before the
end of the simulation), i.e., t,, = oo, dubbed (submission) failure.

We run each simulation with ten different random seeds and report
the mean number of objects created, the mean number of failure ng,
and the maximum waiting time t,,. We show the results in tables
4-14. For each message size, the upper line of the row indicates the
performance of the baseline operation (§4.1), whereas the lower line
shows results with backpressure (§4.2).

Across almost all simulated configuration, we find that the simple
backpressure algorithm can substantially reduce the number of object
submission failures by shifting queue contents around. The exception
is when the queue size equals the object size, Qs = s = 16 MB,
in which case the message either all fit without backpressure or
backpressure won’t help. For the failures, note that ny includes
objects that were created close to the end of the simulation but could
not be sent before the simulation ended—which may hold for some
configurations with large queue sizes.
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Const. Periodicity (s) Storage capacity (GB)
Qs (MB) - 16 32 64 128 192 256 - 16 32 64 128 192 256

Starlink 1 109 13.6 164 22.0 33.1 442 553 97 122 146 196 295 394 493
Starlink2 53 8.1 10.8 163 272 382 492 47 72 97 147 247 347 447
Starlink3 14 21 28 42 69 97 124 12 18 24 37 62 87 112
Starlink4 1.0 16 23 35 61 86 112 7 13 19 31 54 78 101
Starlink5 1.2 19 27 42 73 103 134 9 16 23 37 65 93 122

Kuiper 1 53 73 93 133 212 292 372 46 64 83 119 191 263 335
Kuiper2 5.6 7.8 10.0 145 235 324 413 49 69 90 130 211 292 373
Kuiper 3 43 57 70 98 152 207 261 38 50 62 87 136 185 234

Telesat 1 44 50 57 69 95 120 145 39 44 50 60 82 104 126
Telesat2 6.8 9.0 11.3 159 250 341 433 60 81 101 142 225 307 390

Iridium 1.1 12 13 1.5 20 25 30 8 9 10 12 17 21 25

Table 3: Periodicities and max storage capacities for different satellite constellations and queue sizes. These theoretical values do not
consider the inter-orbit links and queues, while the simulations below do, which leads a systematically lower values in this table.
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Table 4: Constellation starlink-1 storage properties

0, 16MB 32MB 64MB 128MB 192MB 256 MB
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Table 5: Constellation starlink-2 storage properties

[oN 16MB 32MB 64MB 128MB 192MB 256 MB
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Table 6: Constellation starlink-3 storage properties
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Table 7: Constellation starlink-4 storage properties
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Table 8: Constellation starlink-5 storage properties
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Table 9: Constellation kuiper-1 storage properties
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Table 10: Constellation kuiper-2 storage properties
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Table 11: Constellation kuiper-3 storage properties
Qs 16 MB 32MB 64 MB 128 MB 192MB 256 MB
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Table 12: Constellation telesat-1 storage properties
Qs 16 MB 32MB 64 MB 128 MB 192MB 256 MB
s (MB) # obj ny | max fy # obj ny | max fy # obj ny | max ity # obj ny | max fy #o0bj | #fails | max t,, # obj nyp | max fy
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Table 13: Constellation telesat-2 storage properties
Qs 16 MB 32MB 64 MB 128 MB 192MB 256 MB
s (MB) # obj ny | maxt, # obj ng | max ity # obj ny | max ity # obj ny | maxty #o0bj | #fails | max t,, # obj ny | maxt,
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Table 14: Constellation iridium storage properties
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