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Abstract In this paper we extend certain correlation inequalities for vector-valued
Gaussian random variables due to Kolmogorov and Rozanov. The inequalities
are applied to sequences of Gaussian random variables and Gaussian processes.
For sequences of Gaussian random variables satisfying a correlation assumption,
we prove a Borel-Cantelli lemma, maximal inequalities and several laws of large
numbers. This extends results of Beśka and Ciesielski and of Hytönen and the author.
In the second part of the paper we consider a certain class of vector-valued Gaussian
processes which are α-Hölder continuous in p-th moment. For these processes
we obtain Besov regularity of the paths of order α. We also obtain estimates for
the moments in the Besov norm. In particular, the results are applied to vector-
valued fractional Brownian motions. These results extend earlier work of Ciesielski,
Kerkyacharian and Roynette and of Hytönen and the author.
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1 Introduction

Let (�,F , P) be a probability space. Let (ξ, η) be a centered Gaussian vector in
R

2 with Eξ 2 = Eη2 = 1. Let the correlation number between ξ and η be defined as
ρ = |Eξη|. The Gebelein inequality [13] (also see [2]) states that

|E f (ξ)g(η)| ≤ ρ
(
E| f (ξ)|2) 1

2
(
E|g(η)|2) 1

2 (1.1)

for all f, g : R → R such that f (ξ), g(η) ∈ L2(�) and E f (ξ) = g(η) = 0. In other
words, if Eq. 1.1 holds for all linear f and g, then it holds for all centered f and
g which are in L2(μ), where μ is the standard Gaussian measure on R. In the latter
formulation, the inequality (1.1) is extended by Kolmogorov and Rozanov [16] to
the multidimensional Gaussian setting (also see [9]). We will extend the result also to
vector-valued f and g. The Gebelein inequality gives a method to obtain control over
the rate of dependence of ξ and η. In particular, this is illustrated by the following
consequence due to Kolmogorov and Rozanov:

P(ξ ∈ A, η ∈ B) ≤ ρ

4
P(ξ ∈ A)P(η ∈ B), A, B ∈ BR.

In [1, 2], Beśka and Ciesielski have studied sequences of real valued centered
Gaussian random variables (ξi)n≥1 with Eξ 2

i = 1 and (ξ1, ξ2, . . . , ξn) is Gaussian for
all n. Let ρ be the matrix defined as ρij = |Eξiξ j|. Under the assumption that

C = sup
i≥1

∑

j≥1

ρij < ∞, (1.2)

the authors extend several result for independent random variables to the above
setting. For example the Borel-Cantelli lemma and several laws of large number are
proved for sequences of the form ( fn(ξn))n≥1, where fn : R → R is such that fn(ξn) ∈
L2(�).

In the first part of this paper, we will extend the above results to the setting where
(ξn)n≥1 are Gaussian random variables in a locally convex space X and fn : X → Y,
where Y is a Banach space. However, in some cases we have to assume more
structure of the space Y. We also extend a maximal inequality due to Hytönen
and the author [15] to the above setting. The result is a two-sided inequality for
E supn≥1 ‖ξn‖ in terms of the moments and weak variance of ξn.

In [5] Ciesielski proved that the standard Brownian motion W on [0, 1] has paths

in the Besov space B
1
2
p,∞(0, 1) for all p < ∞. Later Roynette [27] characterized all

triples (α, p, q) for which W ∈ Bα
p,q(0, 1). In [6] Ciesielski improved his result by

proving a Besov-Orlicz regularity result for W. The proofs of the above results
depend on non-trivial norm equivalences for Besov norms. In [15] Hytönen and the
author found a new method which gives a way to obtain the above Besov regularity
results directly from the definition of the Besov space. Also vector-valued Brownian
motions are considered there. Moreover, maximal inequalities are applied to obtain

two-sided estimates for the first moment of W in the Besov norm B
1
2
p,∞ and a certain

Besov-Orlicz space.
As a second application of Eq. 1.1 one can study regularity of Gaussian processes.
For Gaussian processes which do not have independent increments one can use

Eq. 1.1 to obtain Besov regularity results. This has been done for a certain class of
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Gaussian processes by Ciesielski, Kerkyacharian and Roynette in [7]. In particular,
they prove that the fractional Brownian motion with Hurst parameter H ∈ (0, 1) has
paths in BH

p,∞(0, 1). Again the proofs depend on the norm equivalences for Besov
spaces.

In the second part of this paper we will consider a certain class of Gaussian process
G : [0, 1] × � → X, where X is a Banach space. Assuming that G is α-Hölder
continuous in p-th moment, we will show that G has paths in Bα

p,∞(0, 1; X) and in
a certain Besov-Orlicz space. We will use the methods from [15] combined with the
vector-valued generalization of Eq. 1.1 to obtain the Besov regularity results directly
from the definition of the Besov space. We will also obtain two-sided estimates for
the first moment of G in the Besov and Besov-Orlicz norm. In particular, we apply
the results to vector-valued fractional Brownian motions.

The paper is organized in the following way. Some preliminaries are discussed
in Section 2. In Section 3 we prove a generalization of Eq. 1.1 to the vector-valued
situation. In Section 4 we consider sequences of Gaussian random variables with
values in a locally convex space under the assumption that Eq. 1.2 holds. In the last
and main Section 5, we consider the Besov regularity of Gaussian processes.

For convenience we will only consider real vector spaces in this paper.

2 Preliminaries

We will write a � b if there exists a universal constant C > 0 such that a ≤ Cb , and
a � b if a � b � a. If the constant C is allowed to depend on some parameter t, we
write a �t b and a �t b instead.

For sake of completeness, we recall the definitions of Orlicz and Besov spaces that
we will need. We use the same notation and definitions as in [15].

2.1 Orlicz Spaces

We briefly recall the definition of Orlicz spaces. More details can be found in
[18, 24, 29].

Let (S, �,μ) be a σ -finite measure space and let X be a Banach space. Let 	 :
R → R+ be an even convex function such that 	(0) = 0 and limx→∞ 	(x) = ∞. The
Orlicz space L	(S; X) is defined as the set of all strongly measurable functions f :
S → X (identifying functions which are equal μ-a.e.) with the property that there
exists a δ > 0 such that

M	( f/δ) :=
∫

S
	(‖ f (s)‖/δ) dμ(s) < ∞.

This space is a vector space and we define

ρ	( f ) = inf{δ > 0 : M	( f/δ) ≤ 1}.
The mapping ρ	 defines a norm on L	(S; X) and it turns L	(S; X) into a Banach
space. It is usually referred to as the Luxemburg norm.

For f ∈ L	(S; X) we also define the Orlicz norm

‖ f‖	 = inf
δ>0

{1

δ
(1 + M	(δ f ))

}
.
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Usually the Orlicz norm is defined in a different way using duality, but the above
norm gives exactly the same number (cf. [24, Theorem III.13]). The two norms are
equivalent (cf. [15, Lemma 2.1]).

2.2 Besov Spaces

We recall the definition of the vector-valued Besov spaces. For the real case we refer
to [28] and for the vector-valued Besov space we will give the treatise from [17].

Let X be a Banach space and let I = (0, 1). For α ∈ (0, 1), p, q ∈ [1, ∞] the vector-
valued Besov space Bα

p,q(I; X) is defined as the space of all functions f ∈ Lp(I; X)

for which the seminorm (with the usual modification for q = ∞)

⎛

⎝
1∫

0

(t−αωp( f, t))q dt
t

⎞

⎠

1/q

is finite. Here

ωp( f, t) = sup
|h|≤t

‖ f (· + h) − f (·)‖Lp(I(h);X)

with I(h) = {s ∈ I : s + h ∈ I}. The sum of the Lp-norm and this seminorm turn
Bα

p,q(I; X) into a Banach space. By a dyadic approximation argument (see [17,
Corollary 3.b.9]) one can show that the above seminorm is equivalent to

‖ f‖p,q,α :=
(
∑

n≥0

(
2nα‖ f (· + 2−n) − f (·)‖Lp(I(2−n);X)

)q
)1/q

.

For the purposes below it will be convenient to take

‖ f‖Bα
p,q(I;X) = ‖ f‖Lp(I;X) + ‖ f‖p,q,α

as a Banach space norm on Bα
p,q(I; X).

For 0 < β < ∞, we also introduce the exponential Orlicz and Orlicz–Besov
(semi)norms

‖ f‖L
	β (I;X) := sup

p≥1
p−1/β‖ f‖Lp(I;X),

‖ f‖	β,∞,α := sup
n≥1

2αn‖ f − f (· − 2−n)‖L
	β (I(2−n);X) = sup

p≥1
p−1/β‖ f‖p,∞,α,

and finally the Orlicz–Besov norm

‖ f‖Bα
	β ,∞(I;X) := sup

p≥1
p−1/β‖ f‖Bα

p,∞(I;X) � ‖ f‖L
	β (I;X) + ‖ f‖	β,∞,α.

Because of the inequalities between different Lp norms, it is immediate that
we have equivalent norms above, whether we understand p ≥ 1 as p ∈ [1, ∞) or
p ∈ {1, 2, . . .}. For definiteness and later convenience, we choose the latter.

The above-given norm of L	β (I; X) is equivalent to the usual norm of the Orlicz
space L	β (I; X) from Subsection 2.1 where 	β(x) = exp(|x|β) − 1 for β ≥ 1.
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3 Correlation Inequalities

Let X and Y be locally convex spaces. Let (�,F , P) be a probability space. A
measurable mapping ξ : � → X is said to be a centered Gaussian random variable
if for all x∗ ∈ X∗, 〈ξ, x∗〉 is a centered Gaussian random variable. A probability
measure μ on B(X) is called a centered Gaussian measure, if for all x∗ ∈ X∗ its image
μ ◦ (x∗)−1 is a centered Gaussian measure on B(R). In this section we will usually
assume that ξ and μ are also Radon.

An extensive theory for Gaussian measures on locally convex spaces can be found
in [3].

Let ξ : � → X and η : � → Y be such that (ξ, η) is a centered Gaussian random
variable in X × Y. Define the (absolute) correlation between ξ and η as

ρ = sup
x∗∈X∗,y∗∈Y∗

|E〈ξ, x∗〉〈η, y∗〉|
(
E|〈ξ, x∗〉|2) 1

2
(
E|〈η, y∗〉|2) 1

2

, (3.1)

with the convention 0
0 = 0. Equivalently one can write

ρ = inf
{

r ≥ 0 : ∣∣E〈ξ, x∗〉〈η, y∗〉∣∣ ≤ r
(
E|〈ξ, x∗〉|2) 1

2
(
E|〈η, y∗〉|2) 1

2 , x∗ ∈ X∗, y∗ ∈ Y∗
}

.

Clearly, ρ ∈ [0, 1] and ρ = 0 if and only if ξ and η are independent. If we want to
emphasize the dependence of ρ on ξ and η we write ρ(ξ, η) instead of ρ.

If X = R
m and Y = R

n and if ξ and η are non-degenerate, then one can check that

ρ = ‖A
− 1

2
11 A12 A

− 1
2

22 ‖ with A11 = Eξξ t, A12 = Eξηt and A22 = Eηηt.
In the next result we will extend [6, Theorem 4.6] to the vector valued situation.

It will play a key role in the proof of Theorem 3.4. We will need the setting of
UMD Banach spaces. We refer to [4] for details on UMD spaces. UMD stands for
unconditional martingale differences. Example of UMD space are Hilbert spaces and
reflexive Lp-spaces. If Z is a UMD space, then its dual Z ∗ is also UMD.

Proposition 3.1 (Gebelein inequality, preliminary version) Let μ be a centered
Gaussian Radon measure on a locally convex space X. Let Z be a UMD Banach
space and let p, p′ ∈ (1,∞) be such that 1

p + 1
p′ = 1. Let (ξ, η) be a Gaussian random

variable such that ξ and η have distribution μ. Assume that there is a number
r ∈ [−1, 1] such that for all x∗ ∈ X∗ and y∗ ∈ X∗

E〈ξ, x∗〉〈η, y∗〉 = rE〈ξ, x∗〉〈ξ, y∗〉. (3.2)

Then for all f ∈ Lp(μ; Z ) and g ∈ Lp′
(μ; Z ∗) such that E f (ξ) = 0 and Eg(η) = 0

the following estimate holds

|E〈 f (ξ), g(η)〉| ≤ C|r|‖ f (ξ)‖Lp(�;Z )‖g(η)‖Lp′
(�;Z ∗), (3.3)

where C depends on p and Z only. Moreover, if f or g is even, then

|E〈 f (ξ), g(η)〉| ≤ C2|r|2‖ f (ξ)‖Lp(�;Z )‖g(η)‖Lp′
(�;Z ∗). (3.4)

Notice that from Eqs. 3.1 and 3.2 it follows that ρ = |r|.
The following will be clear from the proof of Proposition 3.1.
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Remark 3.2 Instead of the function 〈·, ·〉 : Z × Z ∗ → R, one may consider an arbi-
trary bilinear mapping 
 : Z1 × Z2 → Z3, where Z1, Z2 are UMD Banach spaces
and Z3 is a Banach space.

Remark 3.3 We do not know whether the assumption that Z is a UMD space is
necessary in Proposition 3.1. We do know that the result fails for p = 1 in general.
Indeed, in the case X = Z = R and μ is the standard Gaussian measure on R, then
as in the proof below the estimate (3.3) implies that

‖Qμ(t) f‖L1(μ) ≤ Ce−t‖ f‖L1(μ)

for all f ∈ L1(μ) with mean zero. This inequality cannot hold, since the point
spectrum of the generator of the Ornstein-Uhlenbeck operator is {λ ∈ C : Reλ < 0}.
(cf. [8, Theorem 3] and [22, Theorem 5.1]).

Proof We may assume r 
= 0. First assume r > 0. Let ξ̃ and η̃ be independent copies
of ξ . Then the Gaussian random variables (rη̃ + √

1 − r2ξ̃ , η̃) and (ξ, η) have the same
distribution and therefore

E〈 f (ξ), g(η)〉 = E

〈
f
(

rη̃ +
√

1 − r2ξ̃
)

, g(η̃)
〉
= 〈Qμ

Z (t) f, g〉(Lp(μ;Z ),Lp′
(μ;Z ∗)).

Here t = − ln(r) and (Qμ

Z (t))t≥0 on Lp(μ; Z ) is the vector-valued extension of the
the Ornstein-Uhlenbeck semigroup (Qμ(t))t≥0 on Lp(μ), i.e.

Qμ(t)g(x) =
∫

X
g
(

e−tx +
√

1 − e−2t y
)

dμ(y).

Note that by positivity of Qμ(t), Qμ

Z (t) = Qμ(t) ⊗ I extends to a contraction on
Lp(μ; Z ). It follows from the Hölder’s inequality that

∣∣∣E〈 f (ξ), g(η)〉(Lp(μ;Z ),Lp′
(μ;Z ∗))

∣∣∣ ≤ ‖Qμ

Z (t) f‖Lp(μ;Z )‖g‖Lp′
(μ;Z ∗).

Now since Z is a UMD space and p ∈ (1,∞), it follows from [21, Lemma 6.4] (also
see [23, Lemma 1.4.1]) and E f (ξ) = 0 that

‖Qμ

Z (t) f‖Lp(μ;Z ) ≤ Ce−t‖ f‖Lp(μ;Z ). (3.5)

This implies Eq. 3.3. To obtain Eq. 3.4 we first assume that f is even. Then [21,
Lemma 6.4] gives that

‖Qμ

Z (t) f‖Lp(μ;Z ) ≤ C2e−2t‖ f‖Lp(μ;Z )

If g is even, we have to argue as above but replacing the roles of f and g.
If r < 0, then one can reduce to the case r > 0 if one replaces ξ and f (x) by −ξ

and f (−x) respectively. ��

In the next result we extend the Gebelein inequality to the general setting. In the
case Z = R, this result is due to Kolmogorov and Rozanov [16] (see also [9, p. 66])
where it is formulated in a more geometric language. Also in the case Z = R, our
proof is of interest since it differs from the proof in [9, 16].
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Theorem 3.4 (Gebelein inequality, general version) Let ξ and η be centered Gaussian
Radon random variables with values in locally convex spaces X and Y respectively,
and such that (ξ, η) has a Gaussian distribution as well. Let Z be a UMD space and
let p ∈ (1,∞). If f : X → Z and g : Y → Z ∗ are such that f (ξ) ∈ Lp(ω; Z ) and
g(η) ∈ L2(�; Z ∗) and E f (ξ) = Eg(η) = 0, then

|E〈 f (ξ), g(η)〉| ≤ Cρ‖ f (ξ)‖Lp(�;Z )‖g(η)‖Lp′
(�;Z ∗), (3.6)

where ρ is as in Eq. 3.1 and C only depends on p and Z . Moreover, if f or g is even,
then

|E〈 f (ξ), g(η)〉| ≤ C2ρ2‖ f (ξ)‖Lp(�;Z )‖g(η)‖Lp′
(�;Z ∗). (3.7)

It will be clear from the proof that the same Remark 3.2 applies to Theorem 3.4.

Proof By approximation we may reduce to the case where f and g can be written as

f (x) = φ
(〈x, x∗

1〉, . . . , 〈x, x∗
m〉) , g(y) = ψ

(〈y, y∗
1〉, . . . , 〈y, y∗

n〉
)

where φ : R
m → Z and ψ : R

n → Z ∗ are measurable and x∗
1, . . . , x∗

m ∈ X∗ and
y∗

1, . . . , y∗
n ∈ Y∗ are such that (〈ξ, x∗

1〉, . . . , 〈ξ, x∗
m〉) and (〈η, y∗

1〉, . . . , 〈ξ, y∗
n〉) are stan-

dard Gaussian random variables in R
m and R

n respectively.
By the above observation it suffices to consider the case where X = R

m and
Y = R

n and ξ and η are standard Gaussian random variables, where possibly ρ in
the approximated case is smaller than the original ρ. We may assume ρ > 0. Let

A = E(ξ, η)(ξ tηt) =
(

Im A12

At
12 In

)

be the covariance block matrix of the Gaussian random variable (ξ, η), i.e. Im =
Eξξ t, A12 = Eξηt and In = Eηηt. One easily checks that ρ = ‖A12‖. Let ξ 1, ξ 2, ξ 3, ξ 4

independent standard Gaussian vectors, where ξ 1, ξ 3 take values in R
m and ξ 2, ξ 4

take values in R
n. Let ξ̃ = (ξ 1, ξ 2) and η̃ = ρξ̃ +√

1 − ρ2(ξ 3, ξ 4). We claim that there

exists an n × (m + n) matrix B = (B11 B12) such that (ξ 1, Bη̃)
D= (ξ, η). From this the

result would follow. Indeed, let f̃ : R
m × R

n → Z and g̃ : R
m × R

n → Z ∗ be defined
as f̃ (x, y) = f (x) and g̃(x, y) = g(B(x, y)), it follows from Proposition 3.1 that

|E〈 f (ξ), g(η)〉| = |E〈 f̃ (ξ̃ ), g̃(η̃)〉| ≤ Cρ‖ f̃ (ξ̃ )‖Lp(�;Z )‖g̃(η̃)‖Lp′
(�;Z ∗)

= Cρ‖ f (ξ)‖Lp(�;Z )‖g(η)‖Lp′
(�;Z ∗),

which shows Eq. 3.6. The same argument combined with Eq. 3.4 gives Eq. 3.7.
For the claim the two Gaussian random variables (ξ 1, Bη̃) and (ξ, η) have to have

the same covariance structure. Therefore, B has to satisfy

A22 = Eηηt = Bη̃η̃t Bt = BBt = B11 Bt
11 + B12 Bt

12

and

A12 = Eξηt = Eξ 1(Bη̃)t = Eξ 1η̃t Bt = ρ(Im 0)Bt = ρBt
11.

One easily checks that B11 = ρ−1 At
12 and B12 = P(I − ρ−2 E)

1
2 satisfy these equa-

tions. Here P is a orthogonal matrix and E a diagonal matrix such that At
12 A12 =

PEPt. Since maxi Eii = ‖A12‖2 = ρ2, B12 is well-defined. ��
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For later reference it will be convenient to state the case that Z is a Hilbert space
and p = 2 separately. In this case the result holds with constant C = 1.

Corollary 3.5 Let ξ and η be centered Gaussian Radon random variables with values
in locally convex spaces X and Y respectively, and such that (ξ, η) has a Gaussian
distribution as well. Let (H, [·, ·]) be a Hilbert space. If f : X → H and g : Y → H
are such that f (ξ), g(η) ∈ L2(�; H) and E f (ξ) = Eg(η) = 0, then

|E[ f (ξ), g(η)]H| ≤ ρ‖ f (ξ)‖L2(�;H)‖g(η)‖L2(�;H), (3.8)

where ρ is as in Eq. 3.1. Moreover, if f or g is even, then

|E f (ξ)g(η)| ≤ ρ2‖ f (ξ)‖L2(�;H)‖g(η)‖L2(�;H). (3.9)

Proof The constant C appearing in Proposition 3.1 and Theorem 3.4 comes from
estimate (3.5). Therefore, it suffices to show that

‖Qμ

H(t) f‖L2(μ;H) ≤ e−t‖ f‖L2(μ;H),

where μ and f are as in Proposition 3.1 and similarly with e−t replaced by e−2t if f is
also even. The case that H = R follows from [23, Lemma 1.4.1]. In the general case
we may assume without loss of generality that H is separable, because f (ξ) and g(η)

are strongly measurable. Let (hn)n≥1 be an orthonormal basis for H. By the result for
the case H = R we obtain that

∥
∥Qμ

H(t) f
∥
∥2

L2(μ;H)
=
∑

n≥1

∫

X

∣∣∣Qμ(t)[ f, hn]
∣∣∣
2

dμ

≤ e−2t
∑

n≥1

∫

X

∣∣∣[ f, hn]
∣∣∣
2

dμ = e−2t‖ f‖2
L2(μ;H)

.

For the improvement in the case f is even, one can argue in the same way. ��

4 Sequences of Gaussian Random Variables

In this section we will consider sequences of centered multivariate Gaussian Radon
random variables (ξn)n≥1 with values in a Banach space X. Here multivariate means
that (ξn)

N
n=1 is a Gaussian random variable in X N for each N. Many of the results

below extend without difficulty to the more general setting where each ξn takes values
in a Banach space Xn, and (ξn)

N
n=1 is a Gaussian random variable in

⊗N
n=1 Xn. This

can easily be checked by the interested reader.
Let BX∗ be the unit ball of X∗. Let σn = supx∗∈BX∗ (E〈ξn, x∗〉2)

1
2 denote the weak

variance of ξn. Define the correlation matrix ρij of (ξi)i≥1 by ρij = ρ(ξi, ξ j), where ρ

is as in Eq. 3.1. Throughout this section we will assume that

C := sup
i

∑

j≥1

|ρij| < ∞. (4.1)

If X = R, then Eq. 4.1 reduces to the assumption in [2]. Note that since ρii = 1, one
always has C ≥ 1. The (ξn)n≥1 are pairwise independent if and only if C = 1.
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With the same argument as in [2] one can obtain the following extension of
[2, Lemma 2.1] to the vector valued setting.

Lemma 4.1 Under the assumption (4.1) for arbitrary Borel subsets (Ai)i≥1 of X we
have

E

∣
∣∣∣

∑n
i=1 1Ai(ξi)∑n

i=1 P(ξi ∈ Ai)
− 1

∣
∣∣∣

2

≤ C
∑n

i=1 P(ξi ∈ Ai)
. (4.2)

Therefore, also the same Borel-Cantelli lemma [2, Corollary 2.1] extends to the
vector-valued setting.

Corollary 4.2 Assume Eq. 4.1. If (Ai)i≥1 is a sequence of Borel sets such that∑∞
i=1 P(ξi ∈ Ai) = ∞, then P(ξi ∈ Ai i.o.) = 1. Moreover, if

∑∞
i=1 P(ξi ∈ Ai) < ∞,

then P(ξi ∈ Ai i.o.) = 0.

Of course the second statement holds without assumption (4.1). As a consequence
we obtain the following result (see [2, Corollary 2.4]).

Corollary 4.3 Assume Eq. 4.1. Then the following statements hold:

(1) there exists an r ≥ 0 such that
∑∞

i=1 P(‖ξi‖ > r) < ∞ if and only if
P(supi≥1 ‖ξi‖ < ∞) = 1.

(2) for all r ≥ 0,
∑∞

i=1 P(‖ξi‖ > r) < ∞ if and only if P(limi→∞ ‖ξi‖ = 0) = 1.

If P(supi≥1 ‖ξi‖ < ∞) = 1, then (ξi)i≥1 can be seen as a Gaussian random variable
in l∞(X) with a definition of a Gaussian random variable which is slightly more
general (cf. [20] or Section 5). In particular, E supn ‖ξn‖ < ∞. In [15] two-sided
estimates for E supn ‖ξn‖ have been found under the condition that the ξn are
independent. Below we extend this result under the assumption that Eq. 4.1 holds.

Let � : R → R be defined as �(x) = x2e− 1
x2 , let l� denote the Orlicz sequence

space associated to � and let ρ�(a) denote the Luxemburg norm of a sequence
a = (an)n≥1, i.e.

ρ�(a) := inf

{

δ > 0 :
∑

n≥1

a2
n

δ2
exp

(
− δ2

2a2
n

)
≤ 1

}

< ∞.

Theorem 4.4 Let X be a Banach space. Let (ξn)n≥1 be an X-valued centered multivari-
ate Gaussian Radon random variables with first moments (mn)n≥1 and weak variances
(σn)n≥1. Let m = supn≥1 mn. Assume that condition (4.1) holds. Then

max

{
m,

1

3C
ρ�((σn)n≥1)

}
≤ E sup

n≥1
‖ξn‖ ≤ m + 3ρ�

(
(σn)n≥1

)
.

The upper estimate of E supn≥1 ‖ξn‖ in Theorem 4.4 has been obtained in [15]
without any assumption on the correlation structure. The lower estimate with C = 1
has been proved there in the case where the (ξn)n≥1 are independent.
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Proof To prove the lower estimate, we extend the arguments from [15]. Note that
E supn≥1 ‖ξn‖ ≥ m is clear. As for the estimate for ρ�((σn)n≥1), by scaling we may
assume that E supn≥1 ‖ξn‖=1. Let r > 1 be arbitrary. Then P(supn≥1 ‖ξn‖ > r) ≤ 1/r.
Let ε ∈ (0, 1) be arbitrary. For each j choose x∗

j ∈ BX∗ such that (E〈ξ j, x∗
j〉2)

1
2 ≥

σ j(1 − ε). Let X j = 〈ξ∗
j ,x

∗
j 〉

(E〈ξ∗
j ,x

∗
j 〉2)

1
2

. Then with r j = r/(E〈ξ ∗
j , x∗

j〉2)
1
2 it follows from Eq. 4.1

and [2, Lemma 2.1] (or Eq. 4.2 in the real case) that

n∑

j=1

P(|X j| ≥ r j) ≤ C

E

∣
∣∣

∑n
j=1 1|Xi |≥r j∑n

j=1 P(|X j|≥r j)
− 1

∣
∣∣
2 . (4.3)

For all n ≥ 1, we have

E

∣∣
∣∣∣

∑n
j=1 1|Xi|≥r j∑n

j=1 P(|X j| ≥ r j)
− 1

∣∣
∣∣∣

2

≥ E

⎡

⎣| − 1|2;
⋂

j≥1

{|X j| < r j}
⎤

⎦

= 1 − P

⎛

⎝
⋃

j≥1

{|X j| ≥ r j}
⎞

⎠

≥ 1 − P

(

sup
j≥1

|〈ξ j, x∗
j〉| ≥ r

)

≥ 1 − P

(

sup
j≥1

‖ξ j‖ ≥ r

)

≥ 1 − 1

r
.

If we combine this with Eq. 4.3 we obtain that

∑

j≥1

P
(|X j| ≥ r j

) ≤ C

1 − 1
r

.

On the other hand since E〈ξ j, x∗
n j

〉2 ≥ (1 − ε)2σ 2
j ,

P(|X j| ≥ r j) ≥
√

2√
π

∫

r/(σ j(1−ε))

e−t2/2 dt

≥
√

2√
π

rσ j(1 − ε)

σ 2
j (1 − ε)2 + r2

exp

(
−1

2

( r
σ j(1 − ε)

)2
)

.

Since ε ∈ (0, 1) was arbitrary it follows that

C

1 − 1
r

≥ r
√

2√
π

∑

j≥1

σ j

σ 2
j + r2

exp

(
−1

2

( r
σ j

)2
)

≥ r3
√

2√
π

1

( π
2 )

3
2 + r2( π

2 )
1
2

∑

j≥1

(σ j

r

)2
exp

(
−1

2

( r
σ j

)2
)

,
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where we used

σ 2
j = sup

x∗∈BX∗
E〈ξ j, x∗〉2 = π

2
sup

x∗∈BX∗

(
E|〈ξ j, x∗〉|

)2 ≤ π

2

(
E‖ξ j‖

)2 ≤ π

2
.

Therefore,

∑

j≥1

(σ j

r

)2
exp

(
−1

2

( r
σ j

)2
)

≤
C

√
π
(
( π

2 )
3
2 + r2( π

2 )
1
2

)

√
2(r3 − r)

.

Considering r ≥ 2 only, one can estimate

C
√

π
((

π
2

) 3
2 + r2

(
π
2

) 1
2

)

√
2(r3 − r)

≤
C

√
π
((

π
2

) 3
2 r2/4 + r2

(
π
2

) 1
2

)

√
2(r3 − r)

≤
C

√
π
((

π
2

) 3
2 1

4 + (
π
2

) 1
2

)

√
2
(
r − 1

2

) .

Noting that C ≥ 1, one easily checks that the latter expression is less than 1 for r =
3C. This completes the proof. ��

In the last part of this section we will consider several cases of the law of
large numbers for random variables ( fn(ξn))n≥1, where the ( fn)n≥1 are measurable
functions from the locally convex space X into a Banach space Y. The presented
results generalize several results from [1, 2], where the case that X = Y = R is
studied.

First we state a generalization of [1, Theorem 3.1].

Theorem 4.5 Let μ be a centered Gaussian Radon measure on a locally convex space
X. Let (H, [·, ·]) be a separable Hilbert space. Let (ξn)n≥1 be a multivariate Gaussian
sequence with distribution μ. Let ( fn)n≥1 be Borel measurable functions from X into
H such (‖ fn‖)n≥1 are uniformly integrable in L1(μ). If Eq. 4.1 holds, then

lim
n→∞

1

n

n∑

i=1

(
fi(ξi) − E fi(ξi)

) = 0 in L1(�; H).

Using Corollary 3.5 the proof is a straightforward extension of the proof from [1,
Theorem 3.1]. We leave the details to the reader.

A similar generalization holds for [1, Theorem 3.2] as the interested reader can
easily check. Next we extend [2, Theorem 3.3] to the vector-valued setting.

Theorem 4.6 Let μ be a centered Gaussian Radon measure on a locally convex space
X. Let Y be a Banach space. Let (ξn)n≥1 be a multivariate Gaussian sequence with
distribution μ. Let f ∈ L1(μ; Y). If Eq. 4.1 holds, then

lim
n→∞

1

n

n∑

i=1

f (ξi) = E f (ξ1) a.s. and in L1.

In particular, if X is a separable Banach space, then

lim
n→∞

1

n

n∑

i=1

ξi = 0 a.s. and in Lp for all p ∈ [1, ∞).
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Proof The proof of the a.s. convergence is divided into two steps.

Step 1: The case Y = R. This can be proved in the same way as [2, Theorem 3.3]
using the straightforward extension of [2, Lemma 3.2] or Lemma 4.8 with
H = R.

Step 2: The general case. We use a well-known approximation argument (cf. [14,
Theorem III.1.1]). We present it for convenience to the reader. Without
loss of generality we may assume E f (ξ1) = 0. Let ε > 0 be arbitrary. Since
f ∈ L1(μ; Y) we can find a simple Borel function g : X → Y such that

∫

X
g(x) dμ(x) = 0 and ‖ f − g‖L1(μ;Y) < ε.

Since g(X) ⊂ Y is finite dimensional, we can apply Step 1 (on each coordinate) to
obtain

lim
n→∞

1

n

n∑

i=1

g(ξi) = 0 a.s. (4.4)

Let h : X → R be defined as h(x) = ‖ f (x) − g(x)‖. Again by Step 1,

lim
n→∞

1

n

n∑

i=1

h(ξi) = Eh(ξ1) < ε a.s. (4.5)

We conclude that

lim sup
n→∞

∥∥∥
1

n

n∑

i=1

f (ξi)

∥∥∥ ≤ lim sup
n→∞

(∥∥∥
1

n

n∑

i=1

g(ξi)

∥∥∥+
∥∥∥

1

n

n∑

i=1

h(ξi)

∥∥∥
)

≤ ε a.s.

Since ε > 0 is arbitrary, the result follows.
The final statement follows by taking f (x) = x, and noting that by the separability

of X, the function f is strongly measurable. By [26] the Lp-convergence follows from
the almost sure convergence.

The proof of the L1 convergence follows by a similar approximation result and [1,
Theorem 3.1]. ��

Conversely, we have the following result which extends [2, Proposition 3.1].

Proposition 4.7 Let μ be a centered Gaussian Radon measure on a locally convex
space X. Let Y be a Banach space. Let (ξn)n≥1 be a multivariate Gaussian sequence

with distribution μ. Assume Eq. 4.1 holds. If lim sup
n→∞

∥
∥∥n−1

n∑

i=1

f (ξi)

∥
∥∥ < ∞ on a set of

positive probability, then f (ξ1) ∈ L1(μ; Y).

Using Corollary 4.2 one can show the result in the same as in [2].
Next, we consider the case of a.s. convergence where the (ξi)i≥1 are not necessarily

identically distributed and the function f is replaced by a sequence of functions
( fi)i≥1. For this we will need the following lemma which extends [2, Lemma 3.2]. For
a random variable ξ : � → X, where X is a Banach space, let Var(ξ) = E‖ξ − Eξ‖2.
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Lemma 4.8 Let X be a locally convex space. Let (H, [·, ·]) be a separable Hilbert
space. Let (ξn)n≥1 be a centered multivariate Gaussian Radon sequence that satisfies
Eq. 4.1. Let ( fn)n≥1 be Borel measurable functions from X into H. Then for each
n ≥ 1, we have

C−1
n∑

i=1

Var
(

fi(ξi)
) ≤ Var

(
n∑

i=1

fi(ξi)

)

≤ C
n∑

i=1

Var
(

fi(ξi)
)
.

The first inequality seems to be new even in the case X = H = R.

Proof Without loss of generality, we can assume E fi(ξi) = 0 for all i. By Corollary
3.5, the Cauchy-Schwarz inequality and [2, Lemma 3.1],

Var

(
n∑

i=1

fi(ξi)

)

=
n∑

i, j=1

E

[
fi(ξi), f j(ξi)

]
≤

n∑

i, j=1

ρij (Var( fi(ξi)))
1
2
(
Var( f j(ξ j))

) 1
2

≤
⎛

⎝
n∑

j=1

∣∣
∣

n∑

i=1

ρij (Var( fi(ξi)))
1
2

∣∣
∣
2

⎞

⎠

1
2
⎛

⎝
n∑

j=1

Var
(

f j(ξ j)
)
⎞

⎠

1
2

≤ C
n∑

j=1

Var
(

f j(ξ j)
)
.

This proves the second inequality.
To prove the first inequality let (ρ̂ij) be defined as ρ̂ij = ρij if i 
= j and ρ̂ii = 0. As

in [2, Lemma 3.1] by the assumption (4.1), ‖ρ̂‖B(�2) = C − 1. Recall that C ≥ 1. We
obtain

∣
∣∣∣
∣∣

∑

i≥1

∑

j
=i

E

[
fi(ξi), f j(ξ j)

]
∣
∣∣∣
∣∣
≤
∑

i≥1

∑

j
=i

ρ̂ij (Var( fi(ξi)))
1
2
(
Var( f j(ξ j))

) 1
2

≤ (C − 1)
∑

i≥1

Var ( fi(ξi)) .

Therefore, it follows that

n∑

i=1

Var( fi(ξi)) = C
n∑

i=1

Var( fi(ξi)) − (C − 1)

n∑

i=1

Var( fi(ξi))

≤ C
n∑

i=1

Var( fi(ξi)) +
∑

i≥1

∑

j
=i

E

[
fi(ξi), f j(ξ j)

]

≤ CVar

(
n∑

i=1

fi(ξi)

)

.

��

The next result is a generalization of [2, Theorem 3.6].
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Theorem 4.9 Let X be a locally convex space and let (H, [·, ·]) be a separable Hilbert
space. Let (ξn)n≥1 be a centered multivariate Gaussian Radon sequence in X that
satisfies Eq. 4.1. Let fn : X → H be such fn(ξn) ∈ L2(�; H) for all n ≥ 1. Moreover,
assume

sup
n≥1

E‖ fn(ξn)‖ < ∞ and
∑

i≥1

Var( fi(ξi))

i2
< ∞.

Then

lim
n→∞

1

n

n∑

i=1

fi(ξi) − E fi(ξi) = 0 a.s.

If additionally, X = H and supn≥1 E‖ξn‖ < ∞, then

lim
n→∞

1

n

n∑

i=1

ξi = 0 a.s. and in Lp for all p < ∞.

The proof of [2, Theorem 3.6] is based on the techniques of [10, 11] which use the
order of R. Since we consider vector-valued random variables, we have to extend this
argument.

Proof Let (hl)l≥1 be an orthonormal basis for H. For an h ∈ H, let (h)+ and (h)− be
defined as

(h)± =
∑

l≥1

[h, hl]±hl,

where for a ∈ R, a+ = max{a, 0} and a− = max{−a, 0}. With this notation we can
write

fi(Xi) − E fi(Xi) = ( fi(Xi) − E fi(Xi))
+ − ( fi(Xi) − E fi(Xi))

−.

Since [(h)+, (h)−] = 0, one has

‖ fi(Xi) − E fi(Xi)‖2 = ‖( fi(Xi) − E fi(Xi))
+‖2 + ‖( fi(Xi) − E fi(Xi))

−‖2

and therefore,

Var( fi(Xi)) ≥ Var(( fi(Xi) − E fi(Xi))
+) + Var(( fi(Xi) − E fi(Xi))

−).

It follows that it suffices to prove the theorem in the case that [ fi(Xi), hl] ≥ 0 for all
l ≥ 1 and all i ≥ 1.

As in [2] let α > 1 be fixed and define the integers (kn)n≥1 by k0 = 1 and kn = [αn],
where [x] is the greatest integer less than or equal to x. Then limn→∞ kn

kn+1
= 1

α
and

for all m ≥ 1 there exists an n(m) ≥ 1 such that kn(m)−1 ≤ m ≤ kn(m). We claim that
for all α > 1,

lim
n→∞

Skn − ESkn

kn
= 0 a.s. (4.6)
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Before we prove the claim let us show how the theorem follows from this. Since

‖Sm − ESm‖2 =
∑

l≥1

m∑

i, j=1

[
fi(Xi) − E fi(Xi), hl

][
f j(X j) − E f j(X j), hl

]

≤
∑

l≥1

kn(m)−1∑

i, j=1

[
fi(Xi) − E fi(Xi), hl

][
f j(X j) − E f j(X j), hl

]

+
∑

l≥1

kn(m)∑

i, j=kn(m)−1+1

([
fi(Xi), hl

][
f j(X j), hl

]

+
[
E fi(Xi), hl

][
E f j(X j), hl

])

= ∥∥Skn(m)−1 − ESkn(m)−1

∥∥2 +
∥∥
∥∥∥
∥

kn(m)∑

i=kn(m)−1+1

fi(Xi)

∥∥
∥∥∥
∥

2

+
∥∥
∥∥∥
∥

kn(m)∑

i=kn(m)−1+1

E fi(Xi)

∥∥
∥∥∥
∥

2

,

it follows that
∥∥Sm − ESm

∥∥

m
≤
∥∥Skn(m)−1 − ESkn(m)−1

∥∥

knm−1
+ 2 sup

i≥1
E
∥∥ fi(Xi)

∥∥kn(m) − kn(m)−1

kn(m)−1
.

We obtain

lim sup
m→∞

∥∥Sm − ESm
∥∥

m
≤ 2 sup

i≥1
E
∥∥ fi(Xi)

∥∥(α − 1).

Since α > 1 is arbitrary, this gives the result.
It remains to show Eq. 4.6. Equivalently, we can show that P(lim supn→∞ ‖Skn −

ESkn‖ > εkn) = 0 for all ε > 0. For this it suffices to show that for all ε > 0,
∑

n≥1

P
(∥∥Skn − ESkn

∥∥ > εkn
)

< ∞.

Let ε > 0 be arbitrary. By Chebychev’s inequality and by Lemma 4.8 it follows that
∑

n≥1

P
(∥∥Skn − ESkn

∥∥ > εkn
) ≤ 1

ε2

∑

n≥1

Var(Skn)

k2
n

≤ C
ε2

∑

n≥1

1

k2
n

kn∑

i=1

Var( fi(ξi)) = C
ε2

∑

i≥1

Var( fi(ξi))
∑

n≥1,i≤kn

1

k2
n

≤ CCα

ε2

∑

i≥1

Var( fi(ξi))

i2
< ∞.

The final result follows from the first part and [26]. ��

One could hope to extend Theorem 4.9 to more general Banach spaces. For
instance under assumption on the type of the Banach space. We only know how
to extend the second part of Theorem 4.9 to Banach spaces with non-trivial type.
For the definition and properties of type we refer to [14]. We will need the following
proposition.
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Proposition 4.10 Let X be a Banach space. Let (ξn)n≥1 be a centered multivariate
Gaussian Radon sequence in X that satisfies Eq. 4.1. Let (ξ̃n)n≥1 be a sequence of

independent Gaussian Radon random variables such that for each n ≥ 1, ξ̃n
D= ξi. Let

ϕ : X → R+ be a measurable convex function. Then for all n ≥ 1,

Eϕ

(

C− 1
2

n∑

i=1

ξ̃i

)

≤ Eϕ

(
n∑

i=1

ξi

)

≤ Eϕ

(

C
1
2

n∑

i=1

ξ̃i

)

. (4.7)

In particular,
∑

i≥1 ξ̃i converges in L2(�; X) if and only if
∑

i≥1 ξi converges in
L2(�; X).

As explained in [19, p. 129], by Anderson’s inequality it also holds that for all
convex and symmetric Borel sets K ⊂ X, one has

P

(

C− 1
2

n∑

i=1

ξ̃i /∈ K

)

≤ P

(
n∑

i=1

ξi /∈ K

)

≤ P

(

C
1
2

n∑

i=1

ξ̃i /∈ K

)

.

Proof Let ξ = ∑n
i=1 ξi and ξ̃ = ∑n

i=1 ξ̃i. First we show the right-hand side of Eq. 4.7.
One can check that for all x∗ ∈ X∗, E〈ξ, x∗〉2 ≤ CE〈ξ̃ , x∗〉2. Indeed, this follows from
Lemma 4.8 with H = R and

E〈ξ̃ , x∗〉2 =
n∑

i=1

E〈ξ̃i, x∗〉2. (4.8)

Now the result follows from a standard argument based on covariance domination.
We present it for convenience of the reader. By [19, p. 128] we can find a centered
Gaussian Radon random variable η independent of ξ and such that C

1
2 ξ̃ has the same

distribution as ξ + η and ξ − η. It follows from the convexity of ϕ that

Eϕ(ξ) = Eϕ
(ξ + η

2
+ ξ − η

2

)
≤ 1

2 Eϕ(ξ + η) + 1
2 Eϕ(ξ − η) = Eϕ(C

1
2 ξ̃ ).

To prove the left-hand side of Eq. 4.7 note that it follows from Lemma 4.8
with H = R that E〈ξ̃ , x∗〉2 ≤ CE〈ξ, x∗〉2. Now the result follows again by covariance
domination.

The final statement clearly follows if we apply the result to ϕ(x) = ‖x‖2. ��

Theorem 4.11 Let X be a Banach space with type p for some p > 1. Let (ξn)n≥1

be a centered multivariate Gaussian Radon sequence in X that satisfies Eq. 4.1 and
supn≥1 E‖ξn‖ < ∞. Then

lim
n→∞

1

n

n∑

i=1

ξi = 0 a.s. and in Lq for all q < ∞.
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Proof By the Kahane-Khinchine inequalities (cf. [20, Corollary 3.2]) and the as-
sumption we have that K := supi≥1 E‖ξi‖p < ∞. By Proposition 4.10 applied to
φ(x) = ‖x‖p and by the type p condition we obtain that for all n ≥ 1,

E

∥∥∥
∥∥

n−1
n∑

i=1

ξi

∥∥∥
∥∥

p

≤ C
p
2 Cp

pn−p
n∑

i=1

E‖ξi‖p

≤ C
p
2 Cp

p Kn−p+1.

For q < ∞ again by the Kahane-Khinchine inequalities it follows that

aq,n := E

∥∥
∥∥∥

n−1
n∑

i=1

ξi

∥∥
∥∥∥

q

≤ Cq
p,q

(

E

∥∥
∥∥∥

n−1
n∑

i=1

ξi

∥∥
∥∥∥

p) q
p

≤ C
q
2 Cq

pK
q
p n(−1+ 1

p )q
.

Since −1 + 1
p < 0, this proves the convergence in Lq for arbitrary q < ∞. Further-

more, choosing q < ∞ so large that
∑

n≥1 aq,n < ∞, the Borel-Cantelli lemma
implies that limn→∞ n−1∑n

i=1 ξi = 0 a.s. ��

5 Besov Regularity of Gaussian Processes

Let X be a Banach space. A process G : [0, 1] × � → X is called a Gaussian process
if it is strongly measurable and if for all x∗ ∈ X∗, the real-valued process 〈G, x∗〉 is a
Gaussian process.

A theorem of Kolmogorov (cf. [12, 25]) gives a way to obtain Hölder regularity of
paths from Hölder regularity in p-th moments. In particular, if G : [0, 1] × � → X is
a Gaussian processes such that G ∈ Cα([0, 1]; L2(�; X)) for some α ∈ (0, 1), then G
is in Cα([0, 1]; Lp(�; X)) for all p < ∞. Applying the above mentioned theorem by
Kolmogorov gives that G has a version in Lp(�; Cβ([0, 1]; X)) for all β ∈ (0, α) and
all p < ∞.

We will study regularity in the case β = α. Of course it is not true in general that G
has a version with β-Hölder continuous paths. Indeed, if one takes G = W, where W
is a standard Brownian motion, then W ∈ C

1
2 ([0, 1]; L2(�)), but a.s. W /∈ C

1
2 ([0, 1])

(cf. [25]). Instead of Hölder spaces one has to consider certain Besov spaces.

In [5] (also see [27]) it has been shown that W ∈ B
1
2
p,∞(0, 1) a.s. for all p < ∞.

Moreover, it has been shown in [6] that the paths of W belong to a certain Besov-
Orlicz space. In [15] this has been extended to Brownian motions with values in a
Banach space with more direct proofs.

In [7] the authors have obtained Besov and Besov-Orlicz regularity for fractional
Brownian motion and other Gaussian processes. Their methods are based on non-
trivial norm equivalences for Besov and Besov-Orlicz spaces. We will use the
methods of [15] to obtain the Besov and Besov-Orlicz regularity directly from the
definition of the spaces. We consider a certain class of vector-valued Gaussian
processes which in particular contains fractional Brownian motion.

For random variables ξ, η : � → X such that (ξ, η) is a centered Gaussian random
variables, we write ρ(ξ, η) for the correlation number ρ as defined in Eq. 3.1.
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Theorem 5.1 Let X be a Banach space. Let α ∈ (0, 1). Let (Gt)t∈[0,1] be an X-valued
centered Gaussian process with the property that for all s, t, a, b ∈ [0, 1] with s + a,

t + a ∈ [0, 1] and (s, s + a) ∩ (t, t + a) = ∅, it holds that

ρ(G(t + a) − G(t), G(s + a) − G(s)) ≤ K(a, |t − s|), (5.1)

with K : [0, 1]2 → [0, 1] such that

∑

n≥1

2−2n
2n−1∑

i=1

(2n − i)
(
K
(
2−n, i2−n))2

< ∞. (5.2)

If for some p ∈ [1,∞), G ∈ Cα([0, 1]; Lp(�; X)), then for all p ∈ [1, ∞), G ∈
Bα

p,∞(0, 1; X) a.s. Moreover, G ∈ Bα
	2,∞(0, 1; X) a.s.

If additionally,

lim inf
t↓0

t−αp
E‖G(t + s) − G(s)‖p ≥ kp

p, (5.3)

uniformly in s ∈ [0, 1) for some constant kp then ‖G‖Bα
p,∞(0,1;X) ≥ kp a.s. and for all

q ∈ [1, ∞), G /∈ Bα
p,q(0, 1; X) a.s.

If G has independent increments Eq. 5.2 is always fulfilled because Eq. 5.1
holds with K = 0. Secondly, for Eq. 5.2 it suffices to find C, ε > 0 such that
for all a ∈ (0, 1) and b ≥ 1, K(a, ab) ≤ Cb−ε. This condition should be compared
to [7, p. 173, Condition (H)].

Proof The Kahane-Khinchine inequalities and the assumption yield that for all
p < ∞, cp := ‖G‖Cα([0,1];Lp(�;X)) is of order

√
p as p → ∞.

Let p < ∞ be arbitrary. Denote

Yn,p = 2αn‖G(· + 2−n) − G‖Lp(I(2−n);X).

As in [15] we can write

Y p
n,p =

1∫

0

2−n
2n−1∑

m=1

‖γn,m,s‖p ds,

where γn,m,s = 2αn(G((s + m)2−n) − G((s + m − 1)2−n)) for m = 1, . . . , 2n − 1 and
n ≥ 1 and s ∈ [0, 1]. Denote

cp
p,n,m,s = E‖γn,m,s‖p ≤ cp

p = ‖G‖p
Cα([0,1];Lp(�;X))

and

cp
p,n =

∫ 1

0
2−n

2n−1∑

m=1

cp
p,n,m,s ds.

Then also cp
p,n ≤ cp

p.



Correlation inequalities and applications 359

It follows from Jensen’s inequality that

an := E(Y p
n,p − cp

p,n)
2 = E

∣∣
∣∣∣
∣

1∫

0

2−n
2n−1∑

m=1

[‖γn,m,s‖p − cp
p,n,m,s

]
ds

∣∣
∣∣∣
∣

2

≤
1∫

0

E

∣
∣∣∣
∣
2−n

2n−1∑

m=1

[‖γn,m,s‖p − cp
p,n,m,s

]
∣
∣∣∣
∣

2

ds

=
1∫

0

2−2n
2n−1∑

k,m=1

E
(‖γn,k,s‖p − cp

p,n,k,s

)(‖γn,m,s‖p − cp
p,n,m,s

)
ds.

By Corollary 3.5 with H = R we obtain that for m 
= k,

E
(‖γn,k,s‖p − cp

p,n,k,s

)(‖γn,m,s‖p − cp
p,n,m,s

)

≤ (
K(2−n, |m − k|2−n)

)2
(

c2p
2p,n,k,s − c2p

p,n,k,s

) 1
2
(

c2p
2p,n,m,s − c2p

p,n,m,s

) 1
2

≤ (
K(2−n, |m − k|2−n)

)2
c2p

2p.

For m = k we can write

E

∣∣∣‖γn,k,s‖p − cp
p,n,k,s

∣∣∣
2 = c2p

2p,n,k,s − c2p
p,n,k,s ≤ c2p

2p,n,k,s.

Therefore,

an ≤ 2−2n
2n−1∑

k,m=1

(
K(2−n, |m − k|2−n)

)2
c2p

2p

≤
(

2−n + 2−2n2
2n−1∑

m=1

m−1∑

k=1

(K(2−n, (m − k)2−n))2
)

c2p
2p

=
(

2−n + 2−2n2
2n−1∑

m=1

m−1∑

i=1

(K(2−n, i2−n))2
)

c2p
2p

= Cnc2p
2p,

where

Cn =
(

2−n + 2−2n2
2n−1∑

i=1

(2n − i)(K(2−n, i2−n))2
)
.

By Eq. 5.2,
∑

n≥1 Cn < ∞ holds, hence
∑

n an < ∞. From this we obtain that for
all ε > 0

∑

n≥1

P(|Y p
n,p − cp

p,n| > ε) ≤ ε−2
∑

n≥1

an < ∞.
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Therefore the Borel–Cantellli lemma gives that

lim
n→∞ Y p

n,p − cp
p,n = 0 a.s.

Since cp,n ≤ cp this implies that Yn,p is uniformly bounded a.s. This proves the first
statement. Since Eq. 5.3 implies that lim supn→∞ cp,n ≥ kp, the two final statement
also follow.

We still need to show that G ∈ Bα
	2,∞(0, 1; X) a.s. We proved that E(Y p

n,p − cp
p)

2 ≤
c2p

2pCn. Therefore,

E
(
Y p

n,pc−p
p − 1

)2 ≤ c2p
2pc−2p

p Cn ≤ K2pCn,

where K ≥ 1 is some constant. Hence for all λ > 1,

P
(
Yn,pc−1

p > λ
) ≤ P

(|Y p
n,pc−p

p − 1| > λp − 1
) ≤ K2pCn

(
λp − 1

)−2
,

and thus for λ = 2K
∞∑

n,p=1

P
(
Yn,pc−1

p > λ
) ≤

∞∑

n=1

Cn

∞∑

p=1

K2p(λp − 1
)−2

< ∞,

so that by the Borel–Cantelli lemma

P

(
Yn,pc−1

p > λ for infinitely many pairs (n, p)
)

= 0.

Since cp � p1/2 this means that a.s.

sup
n,p

2nα‖G(· + 2−n) − G‖Lp(I(2−n);X) p−1/2 < ∞,

hence G ∈ Bα
	2,∞(0, 1; X). ��

It would be interesting to construct a Gaussian process such that the assertion
of Theorem 5.1 does not hold. Of course such a process does not satisfy Eqs. 5.1
and 5.2.

Problem 5.2 Let α ∈ (0, 1) Does there exists a centered Gaussian process G : [0, 1] ×
� → R such that G ∈ Cα([0, 1]; L2(�)) and G /∈ Bα

p,∞(0, 1) a.s. for some p < ∞?

Next we apply Theorem 5.1 to fractional Brownian motions. Let H ∈ (0, 1). Recall
that GH : R+ × � → R is called an H-fractional Brownian (H-fBM) if GH is a mean
zero Gaussian process with GH(0) = 0 and

EGH(t)GH(s) = t2H + s2H − |t − s|2H

2

for all s, t ∈ R+. A process GH : R+ × � → X is called an H-fractional Brownian
motion (H-fBM) if for all x∗ ∈ X∗, 〈GH, x∗〉 is a constant times an H-fractional
Brownian motion. One can check that GH is a stationary process and for each
t ∈ [0, 1],

GH(t) D= tHGH(1). (5.4)
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As a consequence of Theorem 5.1 we obtain the following vector valued extension
of a result in [7]. The case H = 1

2 has been considered in [15].

Corollary 5.3 Let GH : R+ × � → X be an nonzero H-fractional Brownian motion.
Then for all p ∈ [1,∞), GH ∈ BH

p,∞(0, 1; X) a.s. and GH ∈ BH
	2,∞(0, 1; X) a.s. More-

over, ‖GH‖BH
p,∞(0,1;X) ≥ (E‖GH(1)‖p)

1
p a.s. and for all q ∈ [1,∞), GH /∈ BH

p,q(0, 1; X)

a.s.

Proof It follows from the above discussion that for all s, t, a ∈ R+ and x∗, y∗ ∈ X∗,

E〈GH(t + a) − GH(t), x∗〉〈GH(s + a) − GH(s), y∗〉

= 〈Qx∗, y∗〉 |t + a − s|2H + |t − a − s|2H − 2|t − s|2H

2
.

Therefore,

ρ(GH(t + a) − GH(t),GH(s + a) − GH(s)) = K(a, |t − s|).
where

K(a, |t − s|) =
∣∣∣|t + a − s|2H + |t − a − s|2H − 2|t − s|2H

∣∣∣

a2H
.

It follows that for a ∈ (0, 1) and b ∈ [1, a−1],
K(a, ab) =

∣
∣∣(b + 1)2H + (b − 1)2H − 2b 2H

∣
∣∣.

One easily checks that

K(a, ab) ≤ CHb 2H−2, a ∈ (0, 1), b ∈ [1, a−1], (5.5)

where C only depends on H. Therefore, the condition of Theorem 5.1 (see the
remarks below it) is satisfied, so Eq. 5.2 is fulfilled.

By stationarity and Eq. 5.4 we obtain that for t > s

E‖GH(t) − GH(s)‖p = E‖GH(t − s)‖p = (t − s)Hp
E‖GH(1)‖p.

The first result now follows from Theorem 5.1. The estimate ‖GH‖BH
p,∞(0,1;X) ≥

(E‖GH(1)‖p)
1
p follows from Theorem 5.1, since by Eq. 5.4

E‖GH(t)‖p = tHp
E‖GH(1)‖p.

��

Next we consider the case that G : [0, 1] × � → X is of the form

G(t) =
∑

n≥1

Gn(t)xn. (5.6)

Here (Gn)n≥1 are centered real-valued independent Gaussian processes on [0, 1] with

sup
n≥1

sup
t∈[0,1]

E|Gn(t)|2 < ∞,
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and (xn)n≥1 in X are such that
∑

n≥1 γnxn converges in L2(�; X) where (γn)n≥1 is
a sequence of independent standard Gaussian random variables. By the Kahane
contraction principle for each t ∈ [0, 1], G(t) is well-defined in L2(�; X). As it turns
out, in this situation it suffices to assume Eq. 5.1 for each of the processes Gn.

Corollary 5.4 Let G be as above. Let α ∈ (0, 1). Assume that for all n ≥ 1 and for all
s, t, a, b ∈ [0, 1] with s + a, t + a ∈ [0, 1] and (s, s + a) ∩ (t, t + a) = ∅ it holds that

ρ(Gn(t + a) − Gn(t), Gn(s + a) − Gn(s)) ≤ K(a, |t − s|), (5.7)

with K : [0, 1]2 → [0, 1] such that Eq. 5.2 holds. If for some p ∈ [1, ∞), G ∈
Cα([0, 1]; Lp(�; X)) then for all p ∈ [1, ∞), G ∈ Bα

p,∞(0, 1; X) a.s. Moreover, G ∈
Bα

	2,∞(0, 1; X) a.s.

Proof We only need to show Eq. 5.1 for G. Let us denote �Gn(t, a) = Gn(t + a) −
Gn(t). For x∗, y∗ ∈ X∗ we can estimate

|E〈G(t + a) − G(t), x∗〉〈G(s + a) − G(s), y∗〉|

=
∣∣∣
∣∣

∑

n≥1

E(�Gn(t, a)�Gn(s, a))〈xn, x∗〉〈xn, y∗〉
∣∣∣
∣∣

≤
∑

n≥1

∣
∣∣E(�Gn(t, a)�Gn(s, a))

∣
∣∣
∣
∣∣〈xn, x∗〉

∣
∣∣
∣
∣∣〈xn, y∗〉

∣
∣∣

≤ K(a, |t − s|)
∑

n≥1

(E|�Gn(t, a)|2) 1
2 (E|�Gn(s, a)|2) 1

2 |〈xn, x∗〉||〈xn, y∗〉|

≤ K(a, |t − s|)
(
∑

n≥1

E|�Gn(t, a)|2|〈xn, x∗〉|2
) 1

2
(
∑

n≥1

E|�Gn(s, a)|2|〈xn, y∗〉|2
) 1

2

= K(a, |t − s|)(E〈G(t + a) − G(t), x∗〉2)
1
2 (E〈G(s + a) − G(s), y∗〉2)

1
2 .

The result follows from this. ��

Remark 5.5 In Eq. 5.6 and Corollary 5.4 the assumption that (Gn)n≥1 are inde-
pendent is not needed. It suffices to assume the correlation behaves properly. Let
ρij(t, s, a) = ρ(�Gi(t, a),�G j(s, a)). Assume that (compare Eq. 4.1)

C := sup sup
i≥1

∑

j≥1

|ρij(t, s, a)|, (5.8)

where the supremum is taken over all t, s ∈ [0, 1) and a ∈ [0, 1] such that t + a, s + a ∈
[0, 1]. Then by Proposition 4.10, G is well-defined. If each Gn satisfies the conditions
(5.7) and K satisfies Eq. 5.2, then using similar arguments as in the proofs of Lemma
4.8 and Proposition 4.10 one can show that Eq. 5.1 holds and therefore the assertion
in Corollary 5.4 extends to the case of Gaussian processes (Gn)n≥1 which are not
necessarily independent and satisfy Eq. 5.8.
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Another application of Theorem 5.1 is the following.

Corollary 5.6 Let r ∈ (2,∞] and φ ∈ Lr(0, 1). Let (W(t))t∈[0,1] be a standard

Brownian motion. Then the integral process ζ(t) = ∫ t
0 φ dW satisfies ζ ∈ B

1
2 − 1

r
p,∞ (0, 1)

a.s. for all p ∈ [1, ∞) and ζ ∈ B
1
2 − 1

r
	2,∞(0, 1) a.s.

This result can be generalized in various ways. It has an extension to the case
where φ takes its values in a Banach space X with type 2. Further, one may
consider integration with respect to other Gaussian processes for which a stochastic
integration theory exists.

For r = ∞, in [27] Roynette considers the more general situation that φ is an
adapted process with φ ∈ L∞(0, 1) a.s.

Proof Since ζ has independent increments, it suffices to show that ζ is ( 1
2 − 1

r )-
Hölder continuous in second moment. Let 0 ≤ s1 < s2 ≤ 1. Then using the L2-
isometric property of the stochastic integral and Hölder’s inequality, we deduce

(
E|ζ(s2) − ζ(s1)|2

) 1
2 =

(∫ s2

s1

φ2(t) dt
) 1

2

≤ (s2 − s1)
1
2 − 1

r ‖φ‖Lr(0,1).

��

If G ∈ Bα
p,∞(0, 1; X) a.s., then as in [15] one can show that G : � → Bα

p,∞(0, 1; X)

is a centered Gaussian in a slightly different sense than we defined before. Namely
it does not have to be a measurable mapping in general and it does not have to be
Radon. Let us recall some definitions (cf. [20, Section 3.1]).

Let X be a Banach space with the property that there exists a norming sequence
of functionals, i.e. there exist x∗

1, x∗
2, . . . in BX∗ such that for all x ∈ X, ‖x‖ =

supn≥1 |〈x, x∗
n〉|. Examples of such Banach spaces are all separable Banach spaces,

but also spaces like l∞ and Bα
p,∞(0, 1; Y) for a separable Banach space Y.

Let X be a Banach space with norming sequence (x∗
n)n≥1. A mapping ξ : � → X

will be called a centered Gaussian if for all x∗ ∈ span{x∗
n : n ≥ 1} the random variable

〈ξ, x∗〉 is a centered Gaussian. For a centered Gaussian random variable we define

σ(ξ) = sup
n≥1

(E|〈ξ, x∗
n〉|2)1/2. (5.9)

The value of σ is independent of the norming sequence (x∗
n)n≥1 (cf. [20, Section

3.1]). Note that we do not assume that ξ is strongly measurable. However, by the
assumptions ‖ξ‖ is always measurable.

Let us turn back to the mapping G : � → Bα
p,∞(0, 1; X) that one can consider

in the setting of Theorem 5.1. As in [15] one can show that G is a centered
Gaussian. The centered Gaussian G : � → Bα

p,∞(0, 1; X) has the peculiar property
that ‖G‖Bα

p,∞(0,1;X) ≥ kp a.s. Therefore, it is not Radon (cf. [20, Section 3.1]).
Due to the fact that G is a centered Gaussian Fernique’s theorem implies that

there exists an ε > 0 such that E exp(ε‖G‖2
Bα

p,∞(0,1;X)) < ∞. Using Lemma 5.9 and [20,
Corollary 3.2] one can even show that ε > 0 can be chosen independent of p ∈ [1, ∞).
Similarly, there exists an ε > 0 such that E exp(ε‖G‖2

Bα
	2 ,∞(0,1;X)) < ∞.
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In the next result we will estimate E‖G‖Bα
p,∞(0,1;X) and E‖G‖Bα

	2 ,∞(0,1;X). This
extends [15, Theorem 6.1] where the case that G is a vector valued Brownian has
been considered. The assumption on the correlation structure will be slightly stronger
than the assumption in Theorem 5.1. It is the same condition as below Theorem 5.1.
There exists an ε > 0 such that

K(a, ab) ≤ Cb−ε, a ∈ (0, 1), b ∈ [1, a−1]. (5.10)

Theorem 5.7 Let X be a Banach space. Let α ∈ (0, 1). Let (Gt)t∈[0,1] be an X-
valued centered Gaussian process starting at zero with the property that for all
s, t, a, b ∈ [0, 1] with s + a, t + a ∈ [0, 1] and (s, s + a) ∩ (t, t + a) = ∅, Eq. 5.1 holds
where K : [0, 1]2 → [0, 1] satisfies Eq. 5.10. Assume that for some p ∈ [1, ∞), G ∈
Cα([0, 1]; Lp(�; X)). Then for all p ∈ [1, ∞),

E‖G‖Bα
p,∞(0,1;X) �K ‖G‖α,p, (5.11)

E‖G‖Bα
	2 ,∞(0,1;X) �K ‖G‖α,1. (5.12)

Here

‖G‖α,p = sup
s
=t

(E‖G(t) − G(s)‖p)
1
p

|t − s|α . (5.13)

The inequalities (5.11) and (5.12) are new even in the case X = R. The constant
in the inequality depends on ε and contains a factor (C + 1)

1
2 , where ε and C are as

in Eq. 5.10.
Notice that if Eq. 5.3 holds for some p ∈ [1, ∞), then Theorem 5.1 also yields the

following estimates from below hold:

E‖G‖Bα
p,∞(0,1;X) ≥ kp,

E‖G‖Bα
	2 ,∞(0,1;X) ≥ p− 1

2 kp.

Recall that for H-fBMs we already obtained Eq. 5.10 in Eq. 5.5. Therefore, as a
consequence of Theorem 5.7 we have the following result.

Corollary 5.8 Let X be a Banach space. Let p ∈ [1, ∞). Let H ∈ (0, 1). For an
X-valued H-fractional Brownian motion GH we have

E‖GH‖BH
p,∞(0,1;X) �H (E‖GH(1)‖p)1/p, (5.14)

E‖GH‖BH
	2 ,∞(0,1;X) �H E‖GH(1)‖. (5.15)

For a centered Gaussian Radon random variable ξ with values in a Banach space
X, let Qξ ∈ B(X∗, X) denote its covariance operator, i.e.

Qξ x∗ = E〈ξ, x∗〉ξ.

The following estimate for Qξ will be needed: for all p ∈ [1,∞), we have

‖Qξ‖ 1
2 � p−1/2(E‖ξ‖p)

1
p . (5.16)
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Indeed,

‖Qξ‖ 1
2 = sup

x∗∈BX∗
(E|〈ξ, x∗〉|2) 1

2 � p− 1
2 sup

x∗∈BX∗
(E|〈ξ, x∗〉|p)

1
p ≤ p− 1

2 (E‖ξ‖p)
1
p .

For the proof of Theorem 5.7 we need the following lemmas.

Lemma 5.9 Let (Gt)t∈[0,1] be an X-valued centered Gaussian process with the property
that for all s, t, a, b ∈ [0, 1] with s + a, t + a ∈ [0, 1] and (s, s + a) ∩ (t, t + a) = ∅,
Eq. 5.1 holds where K : [0, 1]2 → [0, 1] satisfies Eq. 5.10. Let c ∈ (0, 1). Let p ∈
[1,∞). Consider �G(·, c) = G(· + c) − G as an Lp(0, 1 − c, X)-valued Gaussian
random variable. Then

σ(�G(·, c)) �K sup
t∈[0,1]

‖Q�G(t,c)‖ 1
2 c1/p.

The lemma is similar as [15, Lemma 6.2] where the case G is a vector valued
Brownian motion is considered. The proof in [15] uses stochastic integration theory.
Since we cannot use a “good” stochastic integration theory for our class of Gaussian
processes, we give a different argument.

Proof We may assume ε ∈ (0, 1). Secondly we may assume p > 2
ε
. Indeed, if the

lemma holds for p ∈ ( 2
ε
,∞), then let q = 2

ε
+ 1. For p ∈ [1, 2

ε
) it follows from

‖φ‖Lp(0,1−c;X) ≤ ‖φ‖Lq(0,1−c;X) and c
1
q ≤ c

1
p that

σLp(0,1−c;X)(G(· + c) − G) ≤ σLq(0,1−c;X)(G(· + c) − G)

�K sup
t∈[0,1]

‖Q�G(t,c)‖ 1
2 c1/p.

Fix p ∈ ( 2
ε
,∞) and f ∈ Lp′

(0, 1 − c; X∗). In particular note that p > 2. We use the
same symbol for the extension of f to R as being zero outside (0, 1 − c). By Fubini’s
theorem and symmetry we can write

E

∣
∣∣∣

∫ 1−c

0
〈�G(t, c), f (t)〉 dt

∣
∣∣∣

2

=
∫ 1−c

0

∫ 1−c

0
E〈�G(t, c), f (t)〉〈�G(s, c), f (s)〉 ds dt.

= 2
∫ 1−c

0

∫ t

0
E〈�G(t, c), f (t)〉〈�G(s, c), f (s)〉 ds dt.

By the assumptions (5.1) and (5.10) for all s ∈ (0, t − c), we have

E〈�G(t, c), f (t)〉〈�G(s, c), f (s)〉 ≤ ‖Q�G(·,c)‖ ‖ f (t)‖ ‖ f (s)‖K(c, t − s)

≤ C‖Q�G(t,c)‖ 1
2 ‖Q�G(s,c)‖ 1

2 ‖ f (t)‖ ‖ f (s)‖cε(t−s)−ε.
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Let g : (−∞,−c) → R be defined as g(s) = (−s)−ε. By Hölder’s inequality, Fu-
bini’s theorem and Young’s inequality we obtain that

∫ 1−c

0

∫ t−c

0
E〈�G(t, c), f (t)〉〈�G(s, c), f (s)〉 ds dt

≤ C sup
t∈[0,1]

‖Q�G(t,c)‖cε

∫

R

∫

R

‖ f (t)‖ ‖ f (s)‖1(0,t−c)(s)(t − s)−ε ds dt

= C sup
t∈[0,1]

‖Q�G(t,c)‖cε

∫

R

(
(1(−∞,−c)g) ∗ ‖ f‖)(s)‖ f (s)‖ ds

≤ C sup
t∈[0,1]

‖Q�G(t,c)‖cε‖ f‖Lp′
(0,1−c;X∗)

∥
∥(1(−∞,−c)g) ∗ ‖ f‖ ∥∥Lp(R)

≤ C sup
t∈[0,1]

‖Q�G(t,c)‖cε‖ f‖2
Lp′

(0,1−c;X∗)‖1(−∞,−c)g‖
L

p
2 (R)

�ε C sup
t∈[0,1]

‖Q�G(t,c)‖‖ f‖2
Lp′

(0,1−c;X∗)c
2
p ,

where in the last line we used p > 2
ε
.

For the other part again by Hölder’s inequality, Fubini’s theorem and Young’s
inequality,

∫ 1−c

0

∫ t

t−c
E〈�G(t, c), f (t)〉〈�G(s, c), f (s)〉 ds dt

≤ sup
t∈[0,1]

‖Q�G(t,c)‖
∫ 1−c

0

∫ t

t−c
‖ f (t)‖ ‖ f (s)‖ ds dt

≤ sup
t∈[0,1]

‖Q�G(t,c)‖
∫

R

(1(−c,0) ∗ ‖ f‖)(s) ‖ f (s)‖ ds

≤ sup
t∈[0,1]

‖Q�G(t,c)‖‖ f‖Lp′(0,1−c;X∗)‖1(−c,0) ∗ ‖ f‖ ‖Lp(R)

≤ sup
t∈[0,1]

‖Q�G(t,c)‖‖ f‖2
Lp′

(0,1−c;X∗)‖1(−c,0)‖L
p
2 (R)

= sup
t∈[0,1]

‖Q�G(t,c)‖‖ f‖2
Lp′

(0,1−c;X∗)c
2
p .

Therefore, we can conclude that

(
E

∣∣
∣
∫ 1−c

0
〈�G(t, c), f (t)〉 dt

∣∣
∣
2)1/2

�ε (C + 1)
1
2 sup

t∈[0,1]
‖Q�G(t,c)‖ 1

2 ‖ f‖Lp′
(0,1−c;X∗)c

1
p .

Since, Lp′
(0, 1 − c; X∗) is norming for Lp(0, 1 − c; X) the result follows. ��

Corollary 5.10 Let (Gt)t∈[0,1] be an X-valued centered Gaussian process with the prop-
erty that for all s, t, a, b ∈ [0, 1] with s + a, t + a ∈ [0, 1] and (s, s + a) ∩ (t, t + a) = ∅,
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Eq. 5.1 holds where K : [0, 1]2 → [0, 1] satisfies Eq. 5.10. Let c ∈ (0, e−1/2]. Consider
G(· + c) − G as an L	2(0, 1 − c; X)-valued Gaussian random variable. Then

σ(G(· + c) − G) �K sup
t∈[0,1]

‖Q�G(t,c)‖ 1
2 (log c−1)−1/2.

This follows from Lemma 5.9 using similar arguments as in the proof of [15,
Corollary 6.1].

We are now ready to prove Theorem 5.7. It is an extension of [15, Theorem 6.1].

Proof of Theorem 5.7 Since G(0) = 0, the Lp-part of the norm in Bα
p,∞(0, 1; X) can

be estimated as

E‖G‖Lp(0,1;X) ≤ (E‖G‖p
Lp(0,1;X))

1
p =

( ∫ 1

0
E‖G(t) − G(0)‖p dt

) 1
p

≤
( ∫ 1

0
tαp‖G‖p

α,p dt
) 1

p ≤ ‖G‖α,p.

For the other part of the Besov norm we consider

E sup
n≥1

2nα‖G(· + 2−n) − G‖Lp(0,1−2−n;X). (5.17)

To estimate this, we apply Theorem 4.4 to the Lp(0, 1; X)-valued Gaussian random
variables ξn = 2nα[G(· + 2−n) − G]1[0,1−2−n]:

E sup
n≥1

‖ξn‖ � sup
n≥1

E‖ξn‖ + ‖(σn)n≥1‖�,

where σn are the weak variances of ξn in Lp(0, 1; X).
The first term is smaller than ‖G‖α,p. For the second term note that by Eq. 5.16,

‖Qξn‖
1
2 � p− 1

2 ‖G‖α,p. (5.18)

By Eq. 5.18 and Lemma 5.9 we the Hölder continuity assumption we obtain

σn = 2nασLp(0,1−2−n;X)(�G(t, 2−n)) �K 2nα sup
t∈[0,1]

‖Q�G(t,2−n)‖ 1
2 2− n

p

= sup
t∈[0,1]

‖Qξn‖
1
2 2− n

p � p− 1
2 ‖G‖α,p2− n

p

Therefore, using [15, Example 2.1] we obtain

‖(σn)n≥1‖� �K p− 1
2 ‖G‖α,p‖(2−n/p)n≥1‖�

� p− 1
2 ‖G‖α,p

√
log(1 − 2−1/p)−1

� ‖G‖α,p p− 1
2 (1 +√

log p).

Since p− 1
2 (1 + √

log p) is uniformly bounded for p ∈ [1,∞), the proof of Eq. 5.11 is
complete.
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Next, we show Eq. 5.12. By [15, Equation (2.2)] we can write

E‖G‖Bα
	2 ,∞(0,1;X)

≤ E‖G‖L	2 (0,1;X) + E sup
n≥1

2nα‖G(· + 2−n) − G‖L	2 (0,1−2−n;X). (5.19)

The first term can again be estimated as

E‖G‖L	2 (0,1;X) ≤ E inf
λ>0

1

λ

∫ 1

0
E exp(λ2‖G(t)‖2) dt

≤ inf
λ>0

1

λ

∫ 1

0
E exp(λ2‖G(t)‖2) dt.

By a power series expansion and the Kahane-Khinchine inequalities (cf. [20,
Corollary 3.2]) we obtain that

E exp(λ2‖G(t)‖2) dt =
∑

k≥0

λ2k

k! E‖G(t)‖2k

≤
⎡

⎣1 +
∑

k≥1

λ2k

k! (L
√

2k E‖G(t)‖)2k

⎤

⎦

≤
⎡

⎣1 +
∑

k≥1

(2e[λLE‖G(t)‖]2)k

⎤

⎦ ,

≤
⎡

⎣1 +
∑

k≥1

(2e[λL‖G‖α,1]2)k

⎤

⎦ ,

where L is an absolute constant from the Gaussian norm comparison result [20,
Corollary 3.2], and we used kk/k! ≤ ek. Letting λ = (2eL‖G‖α,1)

−1, we find that

E‖G‖L	2 (0,1;X) � ‖G‖α,1. (5.20)

The second term in Eq. 5.19 can be estimated as before using Theorem 4.4.
Consider the L	2(0, 1; X)-valued Gaussian random variables ξn = 2n/2[G(· + 2− j) −
G]1[0,1−2−n]. Let σn denote the weak variance of ξn. In the same way as in Eq. 5.20 one
can show

E‖ξn‖L	2 (0,1;X) ≤ E‖ξn‖L	2 (0,1;X) � ‖G‖α,1.

By Theorem 4.4, [15, Remark 3.1], Corollary 5.10 and Eq. 5.18, it follows that

E sup
n≥1

‖ξn‖L	2 (0,1;X) � sup
n≥1

E‖ξn‖L	2 (0,1;X) +
(
∑

n≥1

σ 4
n

)1/4

,

�K ‖G‖α,1 + ‖G‖α,1

(
∑

n≥1

n−2

) 1
4

.

This clearly gives the result. ��



Correlation inequalities and applications 369

Acknowledgements The author thanks Jan Maas and Jan van Neerven for helpful comments. In
particular, Jan Maas brought [23, Lemma 1.4.1] and [21, Lemma 6.4] to our attention. The author
also thanks the anonymous referee for carefully reading the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References
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