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Abstract—In this paper, the problem of formulating effective
processing pipelines for indoor human tracking is investigated,
with the usage of a Multiple Input Multiple Output (MIMO) Fre-
quency Modulated Continuous Wave (FMCW) radar. Specifically,
two processing pipelines starting with detections on the Range-
Azimuth (RA) maps and the Range-Doppler (RD) maps are for-
mulated and compared, together with subsequent clustering and
tracking algorithms and their relevant parameters. Experimental
results are presented to validate and assess both pipelines, using
a 24 GHz commercial radar platform with 250 MHz bandwidth
and 15 virtual channels. Scenarios where 1 and 2 people move
in an indoor environment are considered, and the influence of
the number of virtual channels and detectors’ parameters is
discussed. The characteristics and limitations of both pipelines
are presented, with the approach based on detections on RA
maps showing in general more robust results.

Index Terms—FMCW Radar, Human Monitoring, Indoor
Tracking

I. INTRODUCTION

Accurate human positioning & tracking in indoor environ-
ments is an interesting problem in many applications and
environments such as airports, public spaces, shopping malls.

Video cameras for human tracking [1] have been researched
for a long time. With the aid of a stereoscopic sensor, the
distance can be measured. However, privacy concerns are
high with this approach. On the other hand, the Lidar sensor
is another approach widely used in automotive research for
mapping and sensing environments. But, in indoor environ-
ments, Lidar is sensitive to ambient light and might raise
issues of lasers being used in confined spaces. As a sensor
capable of estimating the range and velocity information of
targets, radar has attracted considerable interest for indoor
tracking, also considering its (relative) safety for privacy
as no videos or pictures are recorded. With the progress
in electronic and manufacturing technologies, radar sensors
are becoming more compact and portable. Furthermore, the
development of Multiple Input Multiple Output (MIMO) radar
supported by the automotive domain delivered the capability
to estimate the angular position of targets, in both azimuth &
elevation, besides the more conventional estimations of range
and velocity.

This makes radar a very candidate for indoor human track-
ing [2], with different approaches presented in the literature,
either based on the Range-Azimuth (RA) domain [3], or
the Range-Doppler (RD) domain [4]–[6]. It should be noted

that the performances that these approaches can achieve are
strongly dependent on the specification of the radar and
of the processing pipelines’ parameters. In this paper, two
processing pipelines starting from detections on the RA and
RD maps are formulated and compared, assessing the effect of
different operational parameters, such as detectors’ parameters
and the number of azimuth channels determining the angular
resolution. Experiments are performed using a 24 GHz MIMO
radar for validation.

The paper is organized as follows. In Section II, the general
signal processing steps for indoor human tracking are reviewed
and the two proposed pipelines are described. In Section III,
the experimental setup is described and performance analysis
is provided. Specifically, various types of Constant False
Alarm Rate (CFAR) detectors are compared and the impact
of the number of azimuth channels is assessed, for scenarios
with 1 and 2 people moving in the indoor environment. Finally,
conclusions are presented in Section IV.

II. PROPOSED PROCESSING PIPELINES

The Frequency Modulated Continuous Wave (FMCW) radar
signal transmitted in the time domain can be defined as [7]:

x0(t) = exp
(
j2π

(
fct+

µ

2
t2
))

(1)

where fc is the carrier frequency, µ is the rate of change
(slope) of the instantaneous frequency of the chirp signal
(i.e., µ = fBW /Tc), fBW is the bandwidth, and Tc is the
sweep time. The range resolution is related to the band-
width by ∆r = c/2fBW , where c is the speed of light.
By transmitting multiple chirps in a frame to increase the
Doppler resolution, its value is defined as ∆v = λ/(2NcTc),
where λ is the wavelength, and Nc is the number of chirps
in a frame. Furthermore, using an antenna array with Nan

elements enables the estimation of the direction of arrival
(DOA) from the targets. The angular resolution is given by
∆θ = λ/(Nandcos(θ)), where d is the antenna spacing, and
θ is the angle in the radial direction. When θ = 0 at boresight,
the best angular resolution is obtained. To track multiple
people using a radar, advanced signal processing algorithms
have been formulated and applied in the literature [4], [6],
[8], [9]. Inspired by these works, in this paper two processing
pipelines are formulated and implemented, one based on RA
maps and one on RD maps, as shown in Fig. 1. In general,
their main processing steps are summarized as follows:
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1) Pre-processing: The typical pre-processing steps of
MIMO FMCW radar involve the de-chirping and the
application of Fast Fourier Transform (FFT) to infer range
information from the de-chirped signal. Furthermore, a
second FFT is often applied across a given number of
chirps (i.e., coherent processing interval CPI) to extract
Doppler information. Finally, the angle information can
also be extracted based on the phase differences between
different channels, often using an FFT-based beamform-
ing or more advanced techniques. The final product is the
so-called ’radar cube’ containing range, Doppler, and an-
gular information. Additionally, part of the pre-processing
steps include clutter filtering and background subtraction
that can help enhance the detection performance.

2) Detection: A detector is an algorithm used for extract-
ing relevant targets’ information against the background
noise and clutter components. Constant False Alarm Rate
(CFAR) detectors are a widely used signal processing
technique in radar systems to detect targets in the pres-
ence of background clutter and noise, while maintaining
a constant false alarm rate [9]. The primary goal of
CFAR-based detection is to set an appropriate detection
threshold that can also adapt to changes in the background
environment, ensuring reliable target detection in various
operating conditions. With the development of these
algorithms, their implementation can be applied to 1D
range profiles, or to 2D maps such as RA maps or RD
maps. In section III-A, the performance of different 2D-
CFAR detectors is discussed.

3) Clustering: Human targets observed by millimeter-wave
radar appear as ”extended targets” due to the short wave-
length relative to the size of the body and the movement
from different parts of the human body resulting in
Doppler dispersion. This leads to the presence of multiple
detected cells in the RA or RD maps for a single target,
which clustering algorithms can process. A commonly
used clustering method for mm-wave radars and extended
targets is the Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) algorithm [10]. DBSCAN
is particularly well-suited for radar signal processing
due to its ability to handle irregularly shaped clusters
and automatically identify outlier points within the data.
This step can help differentiate between multiple targets
and reduce false alarms, even if its performance can be
reduced when multiple targets are close to each other,
within one resolution cell.

4) Data Association: Tracking algorithms are used to main-
tain estimates of each target’s position, velocity, and
other relevant parameters over multiple observations over
time. Data association techniques are applied to assign
new/current radar detections to exist tracks, and when
needed establish new tracks for newly detected targets
based on distance metrics (e.g., the Mahalanobis distance
in Global Nearest Neighbor - GNN) or probability (e.g.,
Joint Probability Data Association - JPDA [11]). In this
paper, the probability-based method JPDA was used for

(a) Detection on RA map (b) Detection on RD map

Fig. 1. Block diagram of the proposed processing pipelines.

data association.
5) Tracking: In this paper, an Extended Kalman filter (EKF)

was used as a tracking algorithm to predict and update
the state according to the chosen kinematic model. The
EKF performs an analytic linearization operation, due
to the conversion from polar to Cartesian coordinates.
The model also includes the range, angle, and radial
velocity (r, θ, ṙ) components from the measurements. In
addition, the algorithm also defines history-based track
management for the generation of new tracks and the
deletion of no updated tracks.

Besides the general steps discussed above, additional details
on the detection steps based on RA and RD maps as shown
in Fig. 1 are presented in the following sub-sections.

A. Detection on RA maps

As radar systems are physically designed with an increasing
number of channels, their angle resolution is also increasingly
improved. The detection on RA maps can therefore be an
approach that extracts representative point clouds for short-
range indoor people tracking. For instance, one approach
proposed by Texas Instruments [3] shows to localize people
in 3D coordinates up to 15 m range and a counting density
of 1 person per square meter. Another example is derived
from marine target localization [12], but with the common
aspect that the targets in the context of this work and with the
considered radar, are also distributed/extended.

In this paper, the proposed algorithm pipeline of detection
on RA map IRA(r, θ) is shown in Fig. 1a, where r denotes
the range and θ denotes the (azimuth) angle information.
After range-angle FFT, a 2D CFAR detector is applied on the
resulting RA map, which produces a binary image IRAd(r, θ).
Before clustering the points from the binary image IRAd(r, θ),
a conversion from polar coordinate to Cartesian coordinate
is needed. After integration with the Doppler information
for each detected cell, the point clouds can be represented
by a sequence of triplets (r, θ, ṙ), where ṙ is the radial
velocity derived from the Doppler measurement. Afterward,
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the positions of detected objects are considered as measure-
ments given in input to the data association and tracking
algorithms, which estimate the position and velocity of targets
and help reduce the number of false alarms. However, this
processing pipeline may have limitations when considering
multiple targets, especially when they are getting too close to
each other and the spacing is less than the angular resolution.
This is particularly noticeable at a farther distance from the
radar or away from the boresight to the sides of the radar field
of view and will cause some missed detections to be dealt with.

B. Detection on RD maps

In [4]–[6], an alternative signal processing pipeline is pre-
sented where the detector is applied on RD maps IRD(r, ṙ).
In modern mm-wave radars, range resolution and Doppler
resolution are generally good enough to separate objects, as
they are located in different range bins or Doppler bins,
or both. However, in the context of indoor human tracking,
some cases can happen when two or more people move
close to each other and walk next to each other, shoulder by
shoulder or one behind the other. In these cases of ’grouped
people’, the conventional range and Doppler resolution may
be insufficient for reliable discrimination and tracking of all
individuals, and addressing this remains an open problem. In
the processing pipeline, after the CFAR detection the objects
are represented by 1 in binary images IRDd(r, ṙ). Then, the
detected points are associated with their corresponding angle
information via azimuth DOA estimation. Before clustering
the resulting point clouds, the polar coordinates need to be
converted into Cartesian coordinates to fit the distance criterion
in the clustering algorithm. The remaining steps are then
the same as for the detection on RA maps discussed in the
previous subsection.

III. EXPERIMENTAL RESULTS COMPARISON

For the purpose of this research, a data set was specifically
collected with 5 individuals and 10 activities in the laboratory
room of the MS3 group at TU Delft. To emulate the cluttered
environment of normal office space, pieces of furniture such
as tables, chairs, and cabinets were placed in the environment,
and a metallic curtain was also present at the window, which
contributed to the multi-path. As illustrated in Fig. 2a, the
marked ABCD points are reference points to guide the move-
ments of the participants along different trajectories. The radar
was placed at around 1.3-meter height in the corner of the
room, with its line of sight pointing along the diagonal of the
room to get wide coverage, as shown in Fig. 2b.

In this paper, a commercial 24GHz FMCW radar (by Joby
Austria, former INRAS) with a relatively low bandwidth of
250MHz is used to evaluate the performance. The relatively
small bandwidth results in a range resolution of approximately
60 cm, which indicates that the target occupies a large area
in the range profile while also making it difficult to isolate
individual body parts. The detailed parameters used are listed
in Table I.

(a) Experimental room (b) Setup of radar and laptop

Fig. 2. Experimental environment for data collection in the MS3 Radar
Laboratory at TU Delft

TABLE I
JOBY (FORMER INRAS) FMCW RADAR PARAMETERS

FMCW radar model RadarBook2 (RBK2)
Operating frequency 24 GHz
Sweep bandwidth 250 MHz
ADC sampling rate 120 ksps
ADC samples 56
Up chirp duration 467 µs
Chirp repetition interval 483 µs
Number of chirps in a frame 90
Slow-time sampling frequency 10 Hz
Number of TX & RX channels 2 x 8
Antenna horizontal 3 dB beamwidth 76.5◦

A. Analysis of CFAR detectors on RA and RD maps

Representative CFAR methods considered are cell-
averaging (CA) [13], greatest-of (GO) [14], smallest-of (SO)
[15] and order statistics (OS) [16] CFAR. The process of
detecting the presence of a target in the cell under test begins
with comparing the radar measurement with a calculated
threshold. The calculation of the threshold changes for each
specific CFAR type, but depends on the desired probability of
false alarm PFA and on the number of the training cells used
to estimate the background level, and the guard cells used to
prevent energy leakage in a cell under test. The OS-CFAR
is designed to suppress target masking in a multi-target
environment and widely used in previous research with
mm-wave radars [3], [17]. However, when operating on 2D
data rather than on range or Doppler profiles, due to the
relatively high computational complexity of sorting the cells’
values, it is hard to achieve real-time performance. Therefore,
a modified version of OSCA-CFAR was proposed by [18].

In order to compare the performance of different CFAR
detectors, the aforementioned five methods have been imple-
mented on RA and RD maps containing one person moving
in an indoor scenario. The receiver operating characteristic
(ROC) curve is used to quantify the performance as a function
of different parameters such as the number of training cells
NTC and the number of guard cells NG, as shown in Fig.
3 and Fig. 4. Only the results for CA-CFAR, OS-CFAR and
OSCA-CFAR are reported here for conciseness. It can be seen
that in general, the OS-CFAR has the highest probability of
detection PD for a given PFA. Comparing the two pipelines,
the detection on RD maps produces more false alarms than
the detection on RA maps, i.e., the lower area under the ROC
curve for the same detector and parameters. Such false alarms
can come from the indoor environment, such as multipath
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reflections from the walls, metallic curtains and furniture.

B. Analysis as a function of number of channels

Experimental data are collected with the complete 15 virtual
channels available in the RBK2 radar. Then, the effect of the
number of channels for subsequent processing is evaluated in
two scenarios. Firstly, in the scenario with one single target
shown in Fig. 5 and Fig. 6, it appears to be no significant
changes in the tracked trajectories when reducing the number
of channels used in angle estimation for both pipelines on
RA and RD maps. In Fig. 6e, the trajectories appear to shift
from the marker point B when using 4 channels with the RD
pipeline, whereas they remain the same for the RA pipeline.

However, the importance of angular resolution is very clear
in multiple target scenarios. Tracking results for a different
number of channels are evaluated for two people walking side
by side away from and towards the radar. As shown in Fig. 7
& Fig. 8, the two tracks start to merge into one earlier, i.e.,
closer to the radar, when reducing the channels available for
angular estimation in the RA-based pipeline. From Fig. 7, the
separation of two targets at a close distance needs at least 8
channels, as using 4 or 6 channels produces unrecognizable
trajectories. As in Fig. 8, the trajectories can be recognized
as two targets when using 15 channels. However, the issue
of tracking ID switch appears. The detection on RD maps
relies more on high angular resolution when two targets are
close together. When the spacing of the targets is less than
the angular resolution in a farther range bin, the separation of
the two detected clusters is still a challenge. In such cases,
more advanced methods for the separation of each individual
may be explored [19], or alternative approaches for tracking
multiple targets as a group [6].

C. Tracking results of selected scenarios

In order to compare the two processing pipelines, an ex-
ample of tracking results is presented for a specific scenario.
As shown in Fig. 9, two targets start moving from the sides
of the room and walk tangentially to the radar line of sight,
approaching each other and then separating at about 4 m.
The pipeline based on detection on RA maps shows complete
trajectories when targets are getting close, at a distance of
about 30 cm, when using 15 channels for angle estimation.
The root mean square error (RMSE) is 15.84 cm. On the
contrary, the pipeline based on detection on RD maps could
not reconstruct the complete trajectories and RMSE here is not
meaningful. As the targets are moving in tangential directions,
their Doppler contributions are in general reduced and easily
mixed, which makes their separation based on RD maps rather
challenging.

D. Discussion on algorithm limitation

Based on the presented experiments and analysis, the RA-
based pipeline in Fig. 1a appears to be more robust than the al-
ternative based on RD maps. However, for good performances,
this also requires multiple channels for finer angular resolution
and is affected by the resolution variation with radial distance

and angular separation from the foresight. The detection on
RD maps shows less favorable performance to detect multiple
targets at a close range. However, the Doppler information
only depends on targets’ movements and is not related to their
range & angular position, potentially leading to more reliable
performance within the area under test.

It is also important to consider the effect of the available
resolution on the performance. Doppler resolution depends on
the number of chirps used and on RD maps it can be useful to
distinguish the contributions from different body parts for later
classification or individual identification. On RA maps, the
Doppler resolution will impact the estimation of radial velocity
and alter the measurement noise in the Kalman filter within
the tracking stage. Additionally, the availability of multiple
snapshots (i.e., more chirps/frames) will contribute to angular
estimation by separating the signal and noise components
when decomposing the covariance matrix. In this context,
iterative techniques to update the covariance matrix with fewer
snapshots could be beneficial [20].

IV. CONCLUSION

In this paper, two processing pipelines for multiple target
tracking for indoor human monitoring are presented and
compared based on experimental data collected with a 24 GHz
MIMO FMCW radar. The pipeline based on detections on RA
maps appears to be more robust than the alternative based on
detections on RD maps, where the latter is shown to underper-
form in tracking targets located at close range bins. Different
CFAR methods for indoor human detection are compared,
with OS-CFAR showing the best performance, and OSCA-
CFAR providing a viable alternative when the computational
complexity may become a limitation. Varying the number of
channels used in azimuth estimation is also compared, showing
that at least 8 channels are needed when 2 people are walking
at a close distance. Future work will consider integrating more
advanced tracking algorithms into the pipeline and information
from the cadence velocity diagram (CVD) to better estimate
scenarios with grouped people clustered [6].
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