
On the Effect of Code Quality on Agile
Effort Estimations: The Case of Shell

Version of October 11, 2017

Jorden van Breemen

On the Effect of Code Quality on Agile
Effort Estimations: The Case of Shell

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Jorden van Breemen
born in Heemskerk, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Engineering & Smart Delivery Vertical
Technical and Competitive IT

Projects & Technology
Shell Global Solutions International

Rijswijk, the Netherlands
www.shell.com

c©2017 Jorden van Breemen. All rights reserved.

On the Effect of Code Quality on Agile
Effort Estimations: The Case of Shell

Author: Jorden van Breemen
Student id: 4508696
Email: jvb@bloemsmavanbreemen.nl

Abstract

Agile software development has interested researchers for the last decade. Agile
software development teams develop iteration sessions that often last weeks. During
development, teams work on technical code and its content. Intuitively, more effort is
required to implement new features in poorly constructed code with low quality. This
study investigates if and how developers consider the quality of their code during their
agile effort estimations. Furthermore, we investigate whether the accuracy of their
estimations could increase if developers considered the quality of the code. This study
is conducted in a large software development department, that is part of Royal Dutch
Shell. We take a mixed method approach, where we interview nine developers and
quality experts and mine the repositories of six agile development teams. Initially, we
reviewed the existing importance measures of code quality during effort estimations,
including how code quality is maintained. We also evaluate the impact of code quality
on estimation accuracy.

Developers did not consider code quality high on the priority list during the es-
timation stage of development. Similarly, we did not find an empirical relationship
between the quality metrics and effort estimations. Surprisingly, code quality only had
minor effects on the accuracy of the effort estimations. Developers did often encounter
quality issues in legacy code. However, overall our study shows that code quality is
only of minor importance during agile effort estimations.

Thesis Committee:

Chair: Prof. dr. ir. Rini van Solingen, Faculty EEMCS, TU Delft
University supervisor: Dr. Alberto Bacchelli, Faculty EEMCS, TU Delft
Company supervisor: Dr. ir. Rik Essenius, ESDV, Shell
Committee Member: Anand A. Sawant, Faculty EEMCS, TU Delft

Preface

This thesis completes the final part of my master’s degree study in computer science at
Delft Univeristy of Technology. This thesis was done in collaboration with Royal Dutch
Shell during an eight-month internship.

Several people deserve my thanks for their support during the completion of this thesis.
First of all, I would like to thank my university supervisor, Alberto Bacchelli, for his invalu-
able guidance. He motivated and advised me in the right direction. Our meetings always
led to new insights and ideas. Many thanks to my second supervisor, Anand Sawant, for his
continuous support and for always providing me with guidance and motivation. He taught
me a lot about academic writing and gave me confidence in my work. I could not have
wished for better supervision.

Special thanks to my company supervisors, Rik Essenius and Adam Jordan. I had a
great time during my internship and they provided me with all the resources and knowledge
required to complete my thesis. They taught me many valuable lessons and provided me
with an eye-opening industry perspective.

Thanks to Rini van Solingen, who provided me with valuable feedback that had great
impact on my thesis. Last but not least, I would like to thank my family for their love and
support throughout my studies.

Jorden van Breemen
Delft, the Netherlands

October 11, 2017

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

2 Methodology 3
2.1 Research Questions . 3
2.2 Research Setting . 5
2.3 Project Selection . 8
2.4 Data Filters . 10
2.5 Metrics . 11
2.6 Reducing Metrics to a Task . 14
2.7 Reducing Metrics to a Product Backlog Item 15
2.8 Empirical Data Collection: Tracer . 16
2.9 Actual Development Effort . 17
2.10 Multiple-Linear Regression . 20
2.11 Interviews . 26
2.12 Threats to Validity . 28

3 Results 31
3.1 RQ1: How do developers consider code quality during agile effort estima-

tions? . 31
3.2 RQ2: How do code quality metrics relate to agile effort estimations? 34
3.3 RQ3: When and how do developers encounter code quality during actual

effort? . 40
3.4 RQ4: How accurate are agile effort estimations? 42

v

CONTENTS

3.5 RQ5: What is the influence of code quality metrics on the accuracy of agile
effort estimations? . 46

4 Discussion 49
4.1 Metric selection . 49
4.2 Code quality and effort estimations . 49
4.3 The impact of quality on actual effort . 51

5 Related Work 53

6 Conclusions 57

Bibliography 59

A Code Quality Metrics from the Tool Understand 67

B Tracer: Implementation and Data Visualization 69
B.1 Backlog . 71
B.2 Defects . 74

C Interview Questions 77
C.1 General questions . 77
C.2 Tasks . 79

D Additional Regression Results 81
D.1 PBI task effort and code Quality Metrics 81
D.2 Story points and Code Quality Metrics . 82

vi

List of Figures

2.1 The SCRUM method [3] . 6
2.2 Visual Studio Team Services work item hierarchy [7] 7
2.3 A task in VSTS . 8
2.4 Representing one task and its changes on a single row 15
2.5 Simplified Architecture of Tracer . 17
2.6 Activity for two users . 19
2.7 Simple one-day task selection . 19
2.8 Next day task selection . 20
2.9 R2 PCR for Project 4 Team 1 Combined Metrics for RQ1 - Task 22
2.10 R2 PCR with Cross Validation for Project 4 Team 1 Combined Metrics for RQ1

- Task . 23
2.11 Hierarchical Spearman clustering for metrics with estimated effort 23
2.12 Variables from Figure 2.11 after the selection procedure 24

3.1 Distribution of estimated effort for the selected tasks for all projects 35
3.2 PBI velocity for Project 1 and Project 4 Team 1 38
3.3 Accuracy of interview tasks . 42
3.4 Distribution of the absolute MRE for Project 4 Team 1 44

B.1 Tracer Server Architecture . 70
B.2 Left: PBI Velocity Right: Task velocity for the first 10 sprints 71
B.3 Rework Chart . 72
B.4 Task burndown . 72
B.5 Task cumulative flow . 73
B.6 PBI and Task distributions . 73
B.7 Reported and resolved bugs in the last four years. 74
B.8 Reported and resolved bugs in the last four years. 75

vii

List of Tables

2.1 Project Statistics . 9
2.2 Tasks after filtering . 11
2.3 Process metrics [69] . 12
2.4 Change metrics [62] . 13
2.5 Considered files for every project . 14
2.6 Total PBIs and considered PBIs . 15
2.7 Total metrics that serve as input . 21
2.8 Considered metrics after selection and tasks for every project 24
2.9 Interview Participants . 26

3.1 Regression results for Technical Code Quality metrics 36
3.2 Regression results for process metrics . 37
3.3 Regression results for combined metrics . 37
3.4 PBI task sum relations . 38
3.5 PBI story point relations . 39
3.6 Tasks for research question 2 . 43
3.7 Correlation actual effort - est effort . 43
3.8 The MMRE for all projects . 45
3.9 Technical Code quality metrics with MRE . 46
3.10 Process metrics for MRE . 46
3.11 Combined metrics for MRE . 47

D.1 Technical Code Quality and Process Metrics 81
D.2 Combined Metrics . 81
D.3 Technical Code Quality and Process Metrics 82
D.4 Combined Metrics . 82

viii

Chapter 1

Introduction

During the last decade, there has been tremendous interest in agile software development [81].
Agile software development aims at developing software quickly, precise and simply in an
environment of rapidly changing requirements [41], in which customer feedback plays an
important role [81]. In agile software development planning is done in short iterations, of-
ten lasting only a few weeks. The agile planning process is done in three levels: release
planning, iteration planning and current day planning [31]. An agile team will plan the it-
erations by defining a set of goals they need to realize in the iteration. The realization of
these goals often require teams to create a set of tasks. To accurately determine the number
of tasks and goals a team can realize in the coming iteration, the teams have to estimate the
effort required to complete them.

Effort estimation is an integral part of software project management. Effort estima-
tions are often done under the umbrella of the development process [81]. A wide variety
of research proposes different models, techniques, methods and tools to estimate and plan
software development effort. The way effort estimations are done dependents on the de-
velopment process the project follows. There are many software development processes
besides agile, all having different methods to realize planning [61, 34].

There are several techniques to estimate an agile iteration, such as planning poker [45],
expert opinion [32] or analogy and disaggregation [31]. These techniques rely on the expe-
rience of the team members, where their opinions define the goals and the estimated effort
required to complete these goals. The biggest influence that determines these estimations
is often the size of the change [31]. However, iterations in agile software development
are short and frequent, so the planning process is done differently from more traditional
software project estimations [61].

Development teams will undoubtedly encounter scenarios in which they must modify or
maintain existing code. Maintainability in software development is often defined in terms
of the ISO25010 standard [74, 17], consisting of the modularity, reusability, analyzabil-
ity, modifiability and testability of the product [2]. Technical code quality is an important
determinant for these characteristics [17]. In agile, quality assurance activities are often in-
tegrated into the team [20]. However, to realize these characteristics, effort and commitment
from the developer are required.

There are prior studies that focus on the relationship among effort and quality [12, 44,

1

1. INTRODUCTION

11]. However, to the best of our knowledge, none of these studies consider importance
of code quality for agile effort estimations. Therefore, we hypothesize that, if no time is
estimated in the iteration planning for quality maintenance efforts, developers can encounter
unexpected quality issues during development. These quality issues can lead to problems
in the agile iteration planning, and if not handled accordingly can lead to further quality
degradation. This study investigates what effect code quality consideration has on agile
effort estimations. Furthermore, we investigate if the accuracy of the effort estimations
would have increased if code quality was considered during the estimations.

To this aim, we conduct a mixed method investigation, where we interview nine devel-
opers and quality experts. We then mine the repositories of six development teams to find
associations among effort, estimations and code quality. These developers and teams orig-
inate from the Engineering and Smart Delivery Vertical, a department in the Royal Dutch
Shell1 that is accountable for software applications and their development.

During the interviews, we ask the participants a series of questions about how they
define code quality, if how they encounter it during their daily live, and how they incorporate
it into their effort estimations. Furthermore, we ask the interviewees how they maintain
quality, and if they think it affects their estimations. To further investigate the impact of
code quality on effort estimations, we present the interviewees with their development work
that suffers from poor code quality and that has peculiar effort characteristics.

To explore the effect of code quality on effort estimations beyond the perspective of
the interviewees, we empirically investigate this relationship. Metrics often serve as a good
indication of the maintainability of the code [17, 84]. We identify two sets of metrics:
code quality and process metrics [69, 62]. We look for relationships among these metrics
and effort estimations. We hypothesize that, if developers already think about code quality
during their effort estimations, poor quality metrics result in higher effort estimations, while
good quality metrics result in lower effort estimations. We evaluate if these metrics could
serve as a predictor for estimated effort. The data collection, storage, and visualization are
done via a tool we developed to mine and visualize data from Microsoft Visual Studio Team
Services 2.

Furthermore, we investigate if considering code quality metrics could impact the accu-
racy of estimations. We use a method based on user activity to calculate the actual effort
spent by developers. We then use this data to calculate the estimation accuracy and analyze
if the metrics relate to inaccuracies.

The remainder of this thesis is organized as follows: Chapter two describes the study
methodology of the study. Chapter three provides results of the empirical and qualitative
research. Chapter four discusses the results. Chapter five suggests related work and Chapter
six concludes on the results.

1http://www.shell.com/
2https://www.visualstudio.com/team-services/

2

Chapter 2

Methodology

This chapter introduces the research questions and the approaches taken to answer them.

2.1 Research Questions

In this study, we investigate how code quality is associated with agile effort estimations. We
hypothesize that, while not the most important driving force of an agile effort estimation
[31], code quality is associated with development effort and effort estimations. Research
has shown that technical code quality is an important determinant of the ability to main-
tain code [17]. Hence, we hypothesize that maintaining poor code quality may be linked to
effort. Furthermore, if developers do not account for code quality during their agile effort
estimations, the accuracy of the estimation could suffer. Therefore, to assess if code quality
considerations during agile effort estimations can have an impact on the estimation accu-
racy, we investigate if there is a relationship among code quality and the accuracy of the
effort estimations.

We follow a qualitative and quantitative research method to answer these questions.
We interview nine experienced developers and quality specialists in ESDV, a department in
Shell. Furthermore, we consider four projects, consisting of a total of six different devel-
opment teams. We look for empirical ways of measuring relationships between effort and
code quality.

We start investigating how developers measure code quality, how they maintain it, and
how they consider it during agile effort estimations. The answers will reveal if, why and
how developers consider code quality during their estimations. It will inform us about
the impact of code quality on developers while maintaining code, and if they consider it
important during their agile effort estimations. This yields the following question:

RQ1: How do developers consider code quality during agile effort estimations?

We investigate this question by interviewing developers about how they measure quality
and how they incorporate quality into their estimation process. We also want to identify
the factors that influence the estimations. Furthermore, we look for a set of tasks that were
executed in the past by every interviewee, all of which score poorly in terms of quality

3

2. METHODOLOGY

metrics. We ask the developer of the poor quality code if code quality influenced their
estimation procedure (Section 2.11).

Next, we investigate the empirical relationship among effort estimations and code qual-
ity attributes. While the interviewees might provide valuable insight, we try to further
explore the implications of quality metrics during the estimation procedure. We argue that
developers may already subconsciously consider quality metrics because they are familiar
with the code. Therefore, we formulate the following question:

RQ2: How do code quality metrics relate to agile effort estimations?

We use two groups of metrics: code quality and process metrics (see Section 2.5). The
relationships are evaluated by comparing effort estimations to the metrics. We suggest that
the developers will estimate higher for code that scores poor on quality metrics. They might
also realize that maintaining, and perhaps refactoring, will take longer on poor quality code.
Because the relationships between the estimated effort and the quality metrics are likely
a combination of a multitude of metrics, we apply two types of multiple linear regression
(Section 2.10).

To investigate the impact of code quality on effort, we want to know if, when and how
developers encounter code quality issues. Furthermore, we evaluate if these scenarios are
considered during agile effort estimations, and evaluate the impact and importance of code
quality on the developers’ ability to maintain code.

RQ3: When and how do developers encounter code quality during actual effort?

We investigate when and how developers face scenarios that take more effort than estimated
to maintain the code. We do so by asking developers a series of questions about their en-
counters with poor code quality. Furthermore, we present developers with development
tasks they recently completed, that are of highly inaccurate and poor code quality. We hy-
pothesize that code quality could have delayed or increased development effort, and hence
be the reason for the inaccurate estimation. Furthermore, we want to investigate if devel-
opers regularly encounter poor quality to investigate the frequency of poor quality and its
impact during the actual effort.

Next, we want to know how accurate agile effort estimations are. This will inform us if
there is room for improvement in the agile effort estimations, but also how the actual effort
compares to the estimated effort. Therefore, we propose the next research question:

RQ4: How accurate are agile effort estimations?

We define accuracy using the magnitude of relative error [85], a method commonly used
to define accuracy in (agile) effort estimations [81]. By calculating the actual time spent
on a task (Section 2.9), we can obtain the inaccuracies of effort estimations. Furthermore,
we can observe if developers tend to over or under estimate. This method also serves as an
assessment of the actual effort calculations.

4

Research Setting

Finally, we want to investigate if the estimation accuracy could have improved if devel-
opers considered code quality metrics. This will help us determine if developers could have
benefited from code quality considerations during their agile effort estimations.

RQ5: What is the influence of code quality metrics on the accuracy of agile effort
estimations?

To evaluate if considering metrics could have increased accuracy, we look for empirical re-
lationships between the accuracy of the effort estimations and the code quality metrics. We
suspect that if code quality is not accounted for during the effort estimations, the accuracy
of the estimation might suffer. Hence, we investigate if inaccurate scenarios are associated
with poor code quality, but also if good code quality leads to quicker or more accurate es-
timations. If they do, we would have an indication that considering code quality influences
the effort estimations.

2.2 Research Setting

This thesis was conducted in collaboration with Shell Global Solutions, primarily with the
Technical and Competitive IT (TaCIT) branch of the Project & Technology department.

2.2.1 Shell and TaCIT

Royal Dutch Shell is one of the major oil companies and one of the largest companies
in the world [4]. The company is involved with the production, refining, distribution and
marketing of petrochemicals, power generation, and oil/gas trading.

The Projects & Technology department focuses on the development and research that
leads to innovation and future low-cost investments. Technical and Competitive IT (TaCIT)
branch is part of the Projects & Technology division, which aims to create and deploy
information technology across Shell.

2.2.2 ESDV and DevOps

One of the three delivery organizations in TaCIT is the Engineering & SMART Delivery
Vertical (ESDV). The department is accountable for software systems and applications for
project engineering, process engineering, discipline engineering, real time control,and sup-
ply chain optimization. In addition, ESDV ensures affordable and competitive life cycle
management, from innovation to decommissioning. ESDV employs about three-hundred
active staff members.

While ESDV manage and maintain their (software) development projects, not all projects
are developed by ESDV staff. Some teams consist of full-time or part-time contractors who
are only hired for the duration of the project. Some projects are completely outsourced, and
only the project management is done by ESDV.

As of 2017, every development team that produces ESDV software in-house are re-
quired to adopt the DevOps way of working. DevOps enhances productivity by increasing

5

2. METHODOLOGY

collaboration between the developers/engineers (Dev) and IT operations (Ops) throughout
the complete software life-cycle [48, 72, 54].

One of the key components of successful DevOps adoption is the use of an agile work
process. Unlike traditional process methods, which frequently advocate extensive planning
and a codified process, agile processes rely on the capabilities and creativity of the develop-
ment team [35]. Teams are self-managed, and frequent collaboration is advocated. Teams
adhere to short development cycles, constantly adapting to change and embracing change
and customer feedback. Agile processes recognize a variety of implementation types, such
as XP, Scrum, Crystal, DSDM, FDD, and Lean [35]. Scrum is one of the most popular
implementations, and the method adopted by ESDV.

Figure 2.1: The SCRUM method [3]

In Scrum, the team maintains a backlog with a list of features that should be developed
to realize the product (Figure 2.1). The teams often plan their iterations in sprints that last
two to four weeks. For each sprint, the team selects a set of Product Backlog Items (PBIs)
from the backlog to determine the next sprint goal. Teams further divide the goals into
individual tasks that are required to complete the sprint. Meetings are held daily to discuss
the status of the tasks and debate any impediments.

2.2.3 Micorosft Visual Studio Team Services

ESDV software projects use of Microsoft Visual Studio Team Services (VSTS) 1, a soft-
ware that functions as a service solution. The platform offers functionalities to help soft-
ware developers with their builds, release management, test management, version control,
continuous integration and work item tracking.

1https://www.visualstudio.com/team-services/

6

Research Setting

Figure 2.2: Visual Studio Team Services work item hierarchy [7]

Most ESDV teams use Team Foundation Version Control 2 to manage their code; others
use Git, but this is only a fraction of the teams.

Work Item Tracking

Work item tracking allows users to set and monitor requirements, tests, bugs, tasks and
features. Work items are meant to assist developers and managers by providing transpar-
ent communication between development teams and stakeholders in terms of planning and
progress. A backlog, or Kanban, board is provided to users to manage their work items.
The hierarchy of work items is shown in in Figure 2.2.

A standard ESDV convention is to assign/create a minimum of four Product Backlog
Items (PBIs) for each sprint. However, the preference is that more PBIs are created. The
size of a PBI is expressed in unit less-numbers called story points. Teams assign sizes to
PBIs collectively, with an estimation technique like planning poker [42]. During planning
poker, each team member estimates the effort by picking a face down card. After everyone
has picked, team members discuss their picks and decide on an estimation. Bugs can also
be part of the sprint and should be treated as PBIs, i.e., bugs are assigned a set of tasks and
use the same planning technique.

Story points assigned to PBIs and bugs follow a Fibonacci sequence. Product backlog
items, bugs and features are categorized into one of five states: new, approved, committed,
resolved and done. Tasks can be categorized into one of three states: to do, in progress and
done.

Microsoft Visual Studio Team Service Tasks

In a normal scenario, every PBI or bug contains one or more tasks, as visualized in Figure
2.2. The number of tasks assigned to a team depends on how a team interprets the definition
of a task, PBI or bug. The task, like other work items, has a certain number of input fields.

2https://www.visualstudio.com/en-us/docs/tfvc/overview#team-foundation-version-control

7

2. METHODOLOGY

Figure 2.3: A task in VSTS

Figure 2.3 shows an example of such a task. A task belongs to a bug or PBI and should only
have a single purpose. A task should not last longer than 15 hours; a common duration of
an ESDV task is approximately four hours. Each task should emphasize a single explicit
activity, such as writing documentation, learning or development.

Every task can have changesets that provide information about modified files and the
exact content changed in every file. To create a connection between a changeset and a
task requires certain tooling (such as Visual Studio or plugins). This connection is only
consistently used in a subset of ESDV projects, and its consistent usage is one of the primary
selection criteria for a project; without it, there is no relationship between the modified code
and task. Thus, a development task has at least one changeset assigned to it. Without any
assigned changesets the task could have a different objective that does not involve changes
to code.

The remaining work fields are used to describe the time it will take to complete the
initial or remaining effort, in hours, to complete the task. Development teams use this field
for most their tasks. Our empirical definition of a task effort estimation originates from
the available entire in this field and those of the story points assigned to a PBI. There are
several ways to define an estimation using this field; in this study, we define an empirical
estimate by the value that the user assigned before the task was put to in progress on the
agile board. Revising earlier estimates before starting the task or changing the field during
the task are common practices. When this occurs, the estimated time increases; therefore,
we also consider a maximum estimated effort variable, which is the longest period an effort
assigned to a task can take.

2.3 Project Selection

The data integrity of the projects within ESDV differs greatly. To consider a project eligible
for analysis, it needs to meet certain criteria:

Criterion 1: Traceability To find files that were changed in a task, users need to assign
a changeset to a task. However, this connection is not mandatory. Projects are only con-
sidered when they connect or commit to at least half of their development tasks. Half of
the tasks is a relatively high number of reports, because only 15% of the projects meet this

8

Project Selection

threshold.

Criterion 2: Effort Estimation Consistency is required when performing an effort esti-
mation. Every selected project needs to have a realistic effort estimate for at least half the
tasks. The team is expected to perform sprint planning and assign a fitting number when
doing task estimates. We ensure that this criterion is met by manually inspecting the recent
estimates of each project. When recent tasks show promise, we look for the time when the
team started consistently assigning effort. Data are only considered beyond that point.

Criterion 3: Development process Not all projects have fully adopted the DevOps or
Agile ways of working. To distinguish this study from past work, it is essential that the
teams reached a certain level ASD maturity. To validate this level of maturity, we choose
projects in collaboration with the software engineering excellence team of ESDV because,
this team is responsible for the deployment and maturity of DevOps.

Criterion 4: Duration and Size Some of the projects are short-lived or have just started
development. A project must have at least 200 completed development tasks with a rela-
tionship to changesets before it is considered of significant size. After manual inspection,
we noticed that after 200 development tasks, projects reached sufficient size and maturity.
In these cases, they were at least six months old and produced a significant amount of code.
Furthermore, this provided a dataset with a sufficient size to make it eligible for analysis
while still getting significant results.

Four projects meet the criteria. Most projects were dismissed because they either lacked
effort estimates or were inconsistent in reporting the relationship between commits and
tasks. None of the projects that meet the criteria has high turnover, which means that most
of the projects have consistent development teams. Some projects meet the other criteria but
have just started development. Hence, their size ensured that the resulting data-set would
be insignificant.

One of the selected projects is very large; thus we consider three separate development
teams for this project. A complete overview of selected projects and teams are shown in
Table 2.1. The project names are omitted for privacy reasons.

Table 2.1: Project Statistics

Completed Tasks Fixed Bugs Status Duration in years
Project 1 8292 4268 Maintenance 5
Project 2 3029 287 Development 2+
Project 3 1304 116 Development 1-
Project 4 Team 1 5851 123 Maintenance 2+
Project 4 Team 2 8514 147 Disbanded 3
Project 4 Team 3 2038 16 Development 1

Project 1 was deployed three years ago; however, it requires constant updates to meet

9

2. METHODOLOGY

the constantly changing demand. Hence, development has been ongoing for five years.
Because the project has been deployed for such a long time, the number of bug fixes is
higher than those of other projects. On average, the team consisted of ten developers, but
during the last year, it has been shrinking to about five.

Project 2 and Project 3 are still in development by teams of of six to ten developers.
Project 4 is also deployed and in use by many users. All the selected teams are primarily
involved in maintaining the state of the project and fixing bugs.

The number of bug reports between Project 1 and Project 4 is very different, even though
both projects have been deployed for a long time. This has to do with how a project defines
a bug. Project 1 defines a bug as a small problem, best comparable to a task, while project
four defines it per the product backlog item level.

The developers of the teams are often co-located, while project management and archi-
tects are frequently located at a separate (geographical) location. The programming lan-
guages of the projects is primarily C#. Some projects use additional languages for web
development, primarily JavaScript and TypeScript.

2.4 Data Filters

Regression is sensitive to extreme values [24]; thus, it is important to remove unrealistic
outliers. Teams create tasks for anything that requires effort, such as learning new skills,
documenting, investigating, developing and reviewing. Therefore, many tasks are not con-
sidered development tasks. We consider a task a development task if it has a changeset
associated with it that modifies source code. Non-development tasks or PBIs are not con-
sidered.

We consider the state of changes before any modification is made; however, developers
are also going to add new files. We require at least 80% of the modifications are made to
already existing files and that only twenty percent can be made to new files. In this scenario,
we define ‘modifications’ by the number of lines added or deleted to the files. This should
include when the executed task maintained the existing code. 80% is chosen because this
large majority of the modification will portray a scenario in which maintenance work was
likely the primary incentive of the task.

Not every user performs realistic effort estimates for each task; hence, many tasks are
available with no effort or high amounts of effort assigned to them. There are also tasks
that do not have any effort assigned to them. Removing these cases and non-development
tasks has a major impact on the available tasks (see Table 2.2). The remaining data for
some projects, primarily for project two, are only a fraction of the original. But out of all
the projects available, these were still the projects that are most worthy of consideration.

Additional filtering includes tasks that only have a minor involvement in development.
In some scenarios, many of files included in a change are not related to the development
process. When the proportion is more than ten percent, these tasks are inspected manually.
When the great majority of the task revolve around development, or the extra files consist
of primarily meta-data (e.g., project files), the tasks are added to the set.

10

Metrics

Table 2.2: Tasks after filtering

Total Tasks Development Tasks Tasks After Filters
Project 1 8292 2683 546
Project 2 3029 998 158
Project 3 1304 471 303
Project 4 Team 1 5851 1363 723
Project 4 Team 2 8514 2929 930
Project 4 Team 3 2038 732 360

2.5 Metrics

Studies indicate that (code) metrics are related to the maintainability [17, 65, 53] of the
code. We hypothesize that developers benefit from analyzing quality metrics prior to their
estimation so they can incorporate this knowledge in their estimation, increasing the es-
timation accuracy. If the developer does not consider code quality, the estimate may be
inaccurate because the realization of the task/PBI requires more time than estimated.

Quality via statistical analysis tools can also be consistently defined for every task and
do not rely on bug reports from users or developers.

2.5.1 Technical Code Quality Metrics

We use Understand3, a tool that calculates static code quality metrics, to obtain a wide
variety of code quality metrics [69]. The version we used (4.0) can calculate 107 metrics.
A complete list can be found in Appendix A. The list includes a wide variety of commonly
used metrics to define maintainability, such as complexity, coupling, volume and unit size
metrics [17].

Most of the metrics are calculated for files, and some of them are specified for classes,
namespaces and methods. To reduce these methods to a file level, we consider the mean and
maximum of the method metrics in a single file. Even when the file is left unmodified, it
can have an impact on whether the code is understood. The mean gives an indication of the
general overview of the quality in that file. For a small number of metrics we also consider
the minimum, because the maximum does not have to indicate the poorest quality.

In all the files considered, more than 90% of the code that contains a class is written in
C#. Because the majority of these files only consist of a single class, only the minimum and
maximums values of a class are considered.

Whenever a development task is encountered, the metrics of all the changed files are
computed before actual changes are made to them. That is, the state of the project is de-
termined before the changesets in the tasks are applied. The output of Understand is then
stored for every file that was modified during the task.

Because an output from one tool can be unreliable, random results are extracted from
the database and validated using Visual Studio 2017. While Visual Studio is incapable

3https://scitools.com/

11

2. METHODOLOGY

of calculating all the metrics produced by Understand, the most fundamental metrics are
present. Using R, we compared the calculations of the metrics from both tools and found
no difference between the results from Understand and Visual Studio 2017. What Visual
Studio 2017 can do that, Understand cannot is calculate via the test coverage. Hence, we
can use Visual Studio output to calculate and export this metric.

2.5.2 Process Metrics

Rahman and Devanbu [69] conclude that process metrics are a better way to learn a defect
prediction model than code quality metrics. Because defects are frequently associated with
quality (Section 5), we choose to include process metrics. Also, during the interviews, we
find that developers find experience an important driver during their estimations. Research
also shows that experienced developers are better at maintaining the code [51]. Some of the
process metrics can express the experience and familiarity a developer has with a certain
file. Figure 2.3 shows an overview of a selection of these metrics.

Table 2.3: Process metrics [69]

Name Description

COMM Commit Count
ADEV Active Developer Count
ADD Total Lines Added
DEL Total Lines Deleted
OWN Owner Lines Added
MAJ Major Contributor Count
MINOR Minor Contributor Count
SCTR Code Scattering
OEXP Owner’s experience
EXP Contributor experience

COMM identifies the total number of commits/changes to the file. ADEV is the unique
number of developers that modified the file. ADD and DELL are the total lines added
and removed to the file up until that point in time. OWN identifies the total lines added
by the owner, the person with the highest number of contributions to the file. MAJ is
the number of contributors who contributed more than five percent to that file. This is
considered for both lines and total number of commits. The minor counts the number of
developers who contributed less than five percent. SCTR is the normalized deviation of the
changes from the center of the file. OEXP measures the experience of the file owner via
total lines contributed to the whole project during the change. EXP is the same but for the
developer who introduced the change to the file.

We further extend the process metrics to metrics related to the size of the change. These
metrics are a subset of the distribution shown in Moser et al. [62]. Commonly, in agile es-
timation procedures, size is the primary value that influences the estimation [31]. Although
developers might not be able to express the size of their changes via an exact metric (like

12

Metrics

LOC), we hypothesize that they do consider the size of the change during estimates. Table
2.4 lists these metrics.

Table 2.4: Change metrics [62]

Name Description

Bugfix File involvement in bugfix
LOC ADD Lines added to a file in commit
MAX ADD Maximum lines added in all commits
SUM ADD The sum of all lines of code added in a task
AVG ADD Average lines added per commit
LOC DEL Lines deleted to a file in commit
MAX DEL Maximum lines deleted in all commits
AVG DEL Average lines deleted per commit
SUM DEL The sum of all the lines of code deleted in a task
CHURN Sum of lines added - sum of lines deleted for all commits
MAX CHURN Maximum churn for all commits
AVG CHURN Average churn for all commits
MAX CHANGE Maximum number of files involved in one commit for a task
AVE CHANGE Average number of files involved in one commit for a task
AGE Age of a file in weeks
WEIGHTED AGE See formula 2.1

Bugfix represents the number of times a file was related to a bugfix up to that specific
point. This also includes tasks that are involved in a bug, which conform with the structure
shown in Figure 2.2. LOC ADD is the lines of code added to the file during the commit
in the task. MAX ADD includes the maximum number of lines added in a single commit
during the lifetime of the file, while AVG ADD is the average number of lines added over
all time. SUM ADD is the total number of lines added to a task. CHURN is simply the
total lines added minus the lines removed over the lifetime of the file. Thus, the weighted
age is calculated by equation 2.1 [62].

Weighted Age =
∑

N
i=1 Age(i)∗LOC ADD(i)

∑
N
i=1 LOC ADD(i)

(2.1)

In addition to these metrics, we also determine the mean, max and sum of all the files
that were changed during a task. Other than default files we also consider the mean, max
and sum of source files (e.g., excluding doc files). Finally, we consider the total number of
changesets that were applied to finish a task.

13

2. METHODOLOGY

2.6 Reducing Metrics to a Task

There is only a single effort estimation for a task. To have comparable impact from all tasks,
we should represent all the metrics on a task level, and not individual for every file.

Table 2.5 shows the average number of files changed in every considered task. File
changes contains the total number of files that were changed across all the tasks. Because
an effort estimation is done at the task level, we only have a single effort estimation for
a task. Therefore, the data should be further reduced to serve as input for the regression
model. The reduction consists of calculating the mean and the max [69] for every metric of
each file changed in a task. There are metrics that are better represented when summed up,
for example, when considering the lines added/removed in every file change in a task.

Table 2.5: Considered files for every project

Considered Tasks File Changes Average files/task
Project 1 546 6682 12.2
Project 2 158 1090 6.9
Project 3 303 2474 8.2
Project 4 Team 1 723 3726 5.2
Project 4 Team 2 930 14031 15.1
Project 4 Team 3 360 3660 10.2

After these steps, the input for the regression model consists of one row for every task
with an estimated effort and the means and maxes of code quality and process metrics (Fig-
ure 2.4). Process metrics consist of the means, max or sum of the metrics. The number
of rows will now equal the number of considered tasks. In Section 2.10, we discuss how
to further process these variables and how they might serve as an input for linear regres-
sion. We also evaluate two separate inputs for the regression model, one containing only
the means and another containing only maxes, to verify that these models do not provide
stronger results (due to lower multicollinearity). We report these results when they are more
significant than the combination of both the means and maxes.

Please note that bug tasks often involve many other factors than those described. There-
fore, we do not consider bug tasks in this context.

In an attempt to obtain stronger results, we also considered other methods. One of the
more notable is a binary approach, in which a file is considered a bad quality when a certain
metric threshold is met. If no scientific or industrial [1, 15] definition of such a threshold
can be found, we define it based on own experience and by inspecting the available data.
For example, if the number of fields declared in a class exceeds a threshold of twenty, then
it is considered bad quality, and the metric of the file level is flagged as 1. We also attempt a
methodology in which a certain number of metric thresholds must be exceeded, e.g., twenty
percent of metrics must be of bad quality before the file is flagged as having poor quality.
Because the results were either comparable or weaker, no further attention was given to
these representations.

14

Reducing Metrics to a Product Backlog Item

Figure 2.4: Representing one task and its changes on a single row

2.7 Reducing Metrics to a Product Backlog Item

A task does not incorporate the confounding work required to realize development, like an
investigation or a learning task. A PBI, however, will contain all the tasks required to realize
the implementation. To include these dependable tasks, and to assess if they are impacted
differently than code quality, we also consider the effort estimations of a PBI.

The quality of the code will be the average, max and sometimes the sum or minimum of
the metrics in a PBI. Hence, the technique is the same as for a task. The total effort will be
the sum of the estimated efforts of all tasks that belong to the PBI. Often separate tasks are
created for investigation, documentation and research required to complete the PBI. These
tasks belong to the same PBI but will not be incorporated in the task method. This technique
includes these additional hours needed to complete the work. The files that belong to the
PBI are all the files committed to the tasks of the PBI and all the files committed to the
PBI (it happens from time to time that one can also assign a changeset to a PBI). We also
consider a scenario in which we compare not the sum of the tasks, but the story points as
effort. Table 2.6 shows the total available data for this method.

Table 2.6: Total PBIs and considered PBIs

Total PBI Considered PBI
Project 1 1609 223
Project 2 230 61
Project 3 143 77
Project 4 Team 1 108 61
Project 4 Team 2 204 72
Project 4 Team 3 31 16

The reason for the reduction in available data is comparable to that of the tasks. Not
all PBIs will be related to development and, in some cases, not all teams will be consistent

15

2. METHODOLOGY

in assigning changesets to PBIs and their underlying tasks. The method to calculate the
actual effort (Section 2.9) is not applicable here, primarily because one of the criteria for
both approaches is that no tasks can be executed at once. Thus, if we were to consider
these tasks, they would be near impossible for PBIs because it is very common to work
on multiple PBIs (and hence multiple tasks) simultaneously, leaving little, if any, data to
work with. We also manually inspect PBIs that appear to have a very small number of
file commits in accordance with the total effort, thereby removing any unrealistic scenarios
from the dataset.

2.8 Empirical Data Collection: Tracer

This section briefly describes an analytic platform developed for Shell that is used to ex-
tract, store and analyze data to answer research questions. The platform helps visualize
VSTS meta data and assists the software engineering excellence team with supplemental
analysis regarding VSTS use. In this chapter, we discuss the need for this platform, how it
is designed and how the data are collected. This analytic platform is called ‘Tracer’.

2.8.1 The Need for Data Collection and Visualization

VSTS has a reporting capability, but it is still under development and the scope is still quite
narrow. ESDV requires a visual method of monitoring the behavior in VSTS, a process
that is currently done manually. This includes general overviews of sprints, backlogs, de-
ployments, defects, tests and other metrics, but also errors and noncompliance, such as the
previously addressed missing effort fields. Teams that only make limited use of the features
available in VSTS frequently do this unintentionally. ESDV can then identify these teams
to provide them with appropriate coaching and training. Please note that these metrics and
charts are not related to software quality, but focus more on the software development pro-
cess. An explanation and visualization of the charts can be found in Appendix B.

Other than a visual need by ESDV, there is also demand from a research perspective. When
one considers a large number of work-items, Microsoft’s REST API does not immediately
support the retrieval of the effort fields. The platform must re-structure the data so it can
be easily and quickly accessible. For example, process metrics require information about
every individual file version. This would take an extraordinary amount of request in the
default REST API. Furthermore, we require a method that allows statistical analysis tooling
to calculate metrics for every version of the project, and store these states in a database.

2.8.2 Tracer and Metric Calculation

Visual Studio Team Services features a REST API4 that enables anyone with access to the
project to extract nearly all available information in some form. The original platform ar-
chitecture was primarily a front-end application that visualized the data available through

4https://www.visualstudio.com/en-us/docs/integrate/api/overview

16

Actual Development Effort

this API; however, when implementing more complex metrics that require insight into re-
vision histories of the work items, the data structure and performance of the rest API were
not sufficient or suitable. Therefore, the decision was made to incorporate a back-end into
the architecture to restructure and store all relevant data from VSTS. This architecture is
visualized in Figure 2.5.

Figure 2.5: Simplified Architecture of Tracer

For more (implementation) details about the platform, and some of the charts it can
visualize, please see Appendix B. Tracer is capable of storing all VSTS data we need,
meaning the complete estimation history but it is also capable of calculating all the metrics
previously described.

There are two methods to calculate the metrics. One simply pulls every version of an
individual file to the server and calculates the required metrics from the tooling. However,
metrics like test coverage require the current state of the project. Therefore, a second ap-
proach simply goes through the changeset history of the project and calculates the metrics
of the modified files for every individual changeset.

2.9 Actual Development Effort

To answer how accurate the estimations are, we need to devise a method to calculate the
actual time spent (actual effort) on the task. This actual effort is compared to the estimated
effort that measures the estimation accuracy. Using multiple linear regression, we determine
if code quality was poor for the prolonged development times. This will inform us about
the importance of code quality considerations during agile effort estimations.

Certain criteria should be met before a task can be eligible for the calculation of the
actual effort. Some developers can work on multiple tasks at once. In such scenarios, it is
inaccurate to consider the parallel tasks because one cannot accurately determine how many

17

2. METHODOLOGY

hours were spent on the individual tasks. Therefore, all tasks in the in progress state of the
Kanban board simultaneously are excluded from the considered tasks.

There are some scenarios in which a developer could drag a task to the ‘in progress’
state and quickly thereafter complete another task that was already in progress. When such
scenarios occur and the overlap only lasts for five minutes, the tasks are still considered. We
consider five minutes a sufficient amount of time to maintain tasks but not to perform any
actual development. When a task is very short-lived (under 10 minutes) we also exclude it.
These tasks have a very high likelihood that actual development work was done, but that the
work was completed before putting it in the in progress state. Something that is also very
probable for tasks that have commits assigned to them before they are set to ‘in progress’.
Hence, such tasks are also excluded.

When tasks are not completed on the same working day, but on a following day, many
uncertainties arise. For example, we cannot know exactly when the developer stopped work-
ing or when he or she started on the next day. To tackle this problem, we considered two
approaches that both make use of user activity. We calculate user activity by observing any
measurable VSTS activity with a timestamp. The primary source of this data is the platform
developed in Section 2.8. Examples include interaction with any of the work items (e.g.,
changing the state, estimate or comments) and committing files. We then combine the ac-
tivity of a single user, over several sprints, to determine the length of time a user is usually
active. Figure 3.3 shows an example of the activity of two individuals.

Activity is computed for every individual user. To determine the activity of the user, we
consider the highest and lowest ten percent of activity sets. Next, the median time of these
sets is calculated to determine the range of activity of a user. We choose the median, not
the mean, because it is less influenced by large outliers in the data set. Outliers consist of
people who perform actions beyond their normal working hours. This method was validated
by manually inspecting the activity of seven users, for which the actual times of activity
were known. These active hours are also confirmed for four of the interviewed developers.
Whenever the office hours deviate greatly from the actual hours, the methodology is revised.
We use these boundaries in two separate methods that we assess in Chapter 3.

We consider two methods to calculate the actual effort spent on a task. In the first
method, we simply exclude any tasks that was not completed on the same day. Any task
completed at an irregular time is also excluded. To determine what tasks should be part of
the subset, we use the previously determined periods of user activity. We apply a one-hour
grace period; tasks started until an hour before the start time, or finished up to an hour
after stop time are included. We subtract and add an hour because the working hours are
not completely consistent. One hour is just enough to exclude any tasks a developer might
complete at irregular hours. Figure 2.7 shows an example of two users who are active from
about nine to five and four to three.

This procedure results in a significant reduction of available tasks. In an attempt to
increase the subset, we try a second approach. Here we also consider tasks not completed
in a single day. To do so, we simply use the active hours to determine what time was spent
on the task. Figure 2.8 shows an example.

Because this approach likely has a reduced level of accuracy, primarily since users are
not always strictly active between the calculated time boundaries, we consider it separately

18

Actual Development Effort

Figure 2.6: Activity for two users

Figure 2.7: Simple one-day task selection

from the single day method. In an attempt to include certain scenarios of inactivity, such as
lunch breaks, we also consider two methods. One tries to derive the lunch break times from
user activity. For example, there are small gaps in some of the days in Figure 2.9. The other
method relies on feedback from users about when they usually take their lunch break in that
specific office, and on asking them how long they take on average.

To determine if a developer was active on a certain day we look at his or her activity on
that specific day. Before we consider a developer active, the developer should at least show

19

2. METHODOLOGY

Figure 2.8: Next day task selection

some form of activity on that day’s activity log. If the user was active that day, we include
it in the calculations; if not, we exclude that day from the calculations, in the sense that the
hours of that day are not included in the calculation of the actual uptime. When tasks were
modified during the weekend, we choose to manually inspect them, as weekends are days
off for most Shell staff.

Project 1 also has a custom completed work field attached to every task. This field
represents the actual work done, in hours and is filled in by the person who executed the
task after completion. Because this field has only been in use very recently (in the last three
months), not enough data are available to use it as an evaluation of our methods, primarily
because the methods do not seem to work very favorably for project one.

To see how the actual hours compare to the estimated effort we calculate the correlation
between the actual effort and the estimated effort. We do not consider this to be a method
of evaluation because deviations from the estimation are expected. We do however want to
discover how they compare to see how accurate the estimates are.

2.10 Multiple-Linear Regression

Table 2.7 shows the many metrics proposed for regression. Many predictors are very sim-
ilar in nature (Appendix A). These comparable predictors correlate strongly and, if not
handled, will greatly influence the model. We consider two separate approaches to reduce
multicollinearity [56]. The first approach, principal component regression, does not require
knowledge of the predictors. This method is applicable when we do not know what metrics

20

Multiple-Linear Regression

the developers prioritize. The second approach requires knowledge and makes assumptions
about the predictors, which will be more applicable after we interview developers and ask
them about what metrics they consider important.

We consider three separate models for regression, one for every set of code metrics de-
scribed in Section 2.5. The third combines all these metrics into one as a complete definition
of code quality.

Other than regression we also simply evaluate how the predictors correlate with the
dependent variable. We consider ρ = 0.3 a weak correlation, ρ = 0.5 a moderate correlation
and ρ = 0.7 a strong correlation [73]. Linearity between the relationships is not necessary,
so the Spearman correlation test is applied.

Table 2.7: Total metrics that serve as input

Metric Model Unique Metrics Total Metrics

Code Quality 108 204
Process Metrics 26 42
Combined 134 246

2.10.1 Principal Component Regression

Principal component regression (PCR) is based on principal component analysis. This tech-
nique overcomes the multicollinearity problem [56], another problem of similar predictors,
by excluding low variance principal components as the input for regression. PCR also vi-
sualizes the regression results and thus enables reduction of the dimensions of the model.
This means we can select the number of predictors required to obtain the most significant
results.

The pls 5 package in R allows an easy and complete implementation of PCR [6]. Be-
cause the PCR method from pls does not scale, we initially normalize the metrics and
effort. In the first step, we apply PCR to all the predictors and evaluate the outcome. When
plotting the R2 values, we evaluate how many predictors are required to achieve a consis-
tent result. We then reduce the total considered predictors to the influential predictors and
assess the impact of every individual predictor using the Jackknife test [36], a re-sampling
technique. As an example, consider figure 2.9, in which the number of predictors seem to
increase the accuracy.

This increasing effect, with an increasing number of components, is prone to overfitting.
The model keeps benefiting from the additional variables because they are a perfect fit for
the given input. To avoid overfitting effect, we apply cross-validation, which takes chunks
of the data set and validates the integrity of the model on those sections. Figure 2.9 shows
the effect of cross-validation on the same data-set as Figure 2.10.

This indicates that while the results in Figure 2.9 were not that favorable to begin with,
there seems to be a very limited use for predictors. Also, the model appears to suffer greatly

5https://cran.r-project.org/web/packages/pls/index.html

21

2. METHODOLOGY

Figure 2.9: R2 PCR for Project 4 Team 1 Combined Metrics for RQ1 - Task

from over-fitting, as indicated by the negative R2 values. As expected this effect increases
as the number of predictors increase. The R2 value we report for PCR regression are the
highest obtained values by cross validation.

In this chart one can see spikes (or points with a high gradient, like metric 18 in Figure
2.9) if there are predictors that greatly influence the model. We can determine the number
of influential variables using these spikes.

2.10.2 Predictor Selection

McIntosh et al. [60] analyze the impact of modern code review on software quality. While
their approach and definition of quality differs from this study, they provided a methodology,
that includes linear regression that is applicable to our setting. In this section, we summarize
and modify (when necessary) their approach to fit the setting of this study.

To reduce multicollinearity, we first identify which predictors correlate strongly with
each other, according to the Spearman rank correlation test (ρ). We choose Spearman be-
cause it is resilient to data that are not normally distributed [60]. To visually identify corre-
lation clusters, we use the varclus function from the rms package. We draw a dotted line
to identify any clusters that exceed a correlation value of ρ = 0.7 [19]. Figure 2.11 shows a
example for the process metrics of project 1 with the estimated effort.

Two choices are applicable when choosing the most fitting variable from the clusters. If
we possess knowledge to manually identify the most influential metric, based on the results
from the interviews or domain knowledge of the project or metric, we choose it manually.
If we are unable to choose one manually, we pick the variable that correlates most strongly
with the dependent variable.

22

Multiple-Linear Regression

Figure 2.10: R2 PCR with Cross Validation for Project 4 Team 1 Combined Metrics for
RQ1 - Task

Figure 2.11: Hierarchical Spearman clustering for metrics with estimated effort

The outcome of Figure 2.11, after the selection procedure can be seen in Figure 2.12.
Table 2.8 presents a complete overview of the remaining predictors for every model. The
great reduction in predictors (especially for code quality) indicate that there was a high cor-
relation among variables. This also tells us something about the high amount of redundancy
among the technical code quality metrics. While Understand can calculate many code qual-
ity metrics, most of the metrics seem to correlate strongly. One primary reasons is that the
tool tends to calculate many variations of the same metrics, such as variations on cyclo-
matic complexity, number of methods, number of comments and lines of code, that produce
results that are strongly correlated.

23

2. METHODOLOGY

Figure 2.12: Variables from Figure 2.11 after the selection procedure

Figure 2.11 shows that the mean and the max of all metrics, calculated according to
Section 2.6, frequently exceed the correlation threshold of ρ = 0.7. It is difficult to deter-
mine which would have a more significant effect on the dependent variable. The general
approach is to pick the variable that correlates most strongly with the dependent variable.
To verify that this selection procedure does not have a negative effect we compare it to the
output that the model would produce if only means and maxes were considered as input. In
all cases these results are either equal or less significant, we do not report further on these
results.

Table 2.8: Considered metrics after selection and tasks for every project

Tasks Code Quality Process Combined

Project 1 566 6 13 19
Project 2 161 9 12 16
Project 3 307 7 12 16
Project 4 Team 1 528 6 12 13
Project 4 Team 2 932 7 11 16
Project 4 Team 3 116 5 11 15

To further reduce the effect of overfitting the regression model, we define a limit for the
degrees of freedom. We initially define a total available budget for the degrees of freedom.

24

Multiple-Linear Regression

Harrel et al. [60] suggest a budget of
n
15

where n is the number of considered tasks.
After removing the correlated and redundant variables, we to identify the most relevant

variables to stay within our allocated budget. To identify relationships between these se-
lected variables we use the spearman2 function from the rms package. This function can
calculate the ρ2 value that is then plotted to identify strong non-linear relationships between
variables. The earlier calculated budget is then distributed among the relevant variables, in
which larger ρ2 values are allocated more degrees of freedom.

We use two regression functions, the default lm regression available in R and ols from
the rms 6 package, because each has some advantages we can use. Both assess the fit with
the default R2 and the adjusted R2. Adjusted R2 reduces model bias by penalizing models
based on their degrees of freedom spend. Because we reduce correlation and allocate the
degrees of freedom, the R2 and Adjusted R2 are not too distant from one another. To assess
the significance of the R2 we also report the p-values for every fit.

As a final measure to prevent overfitting, we apply a method that compares with cross
validation. We subtract the bootstrap calculated optimism [37], which is implemented using
the following five steps [60].

1. Select a subset of bootstrap samples from the original data set;

2. Fit the model using this subset and the same variables / degrees of freedom as the
original input;

3. Calculate the adjusted R2 values from the original model;

4. Assess the difference between the adjusted R2 and the original model;

5. Repeat these steps 1000 times using different bootstrap samples;

By comparing the output of the steps with the original input we can assess the overall
stability of the model. If they only differ slightly, we consider the model to be a stable fit.
These steps are made using the validate function from the rms package.

To evaluate the impact of every explanatory variable we use two techniques. One using
the χ2 maximum likelihood test [55] using the ‘drop one’ approach [40, 60]. Here the model
is initially assessed using all explanatory variables and then again without a certain variable.
The difference in performance then identifies the significance of the variable.

Another method to evaluate the impact of predictors applies the varImp [80] function
from the caret 7 package. This function takes the default R regression model as an input and
calculates the absolute value of the t-statistic for each model. This is only a second variable
assessment, the primary evaluation is done using the χ2 maximum likelihood test.

6https://cran.r-project.org/web/packages/rms/index.html
7http://topepo.github.io/caret/index.html

25

2. METHODOLOGY

2.11 Interviews

The reasons behind how developers and other experts estimate task efforts, or how they
incorporate code quality during their estimations, is hard to deduce only using data analysis
on history of source code. Therefore, we choose a mixed method approach, to validate
the quantitative results, but also to obtain knowledge about how developers improve code
quality, and determine the metrics they consider important. During the interviews, we want
to:

• Explore how developers define and maintain code quality;

• Explore how code quality and code quality metrics influence effort estimates;

• Explore how developers evaluate their code quality and if they consider these evalu-
ations while estimating;

• Identify factors that influence the estimates of a development task;

• check if developers perceive to frequently encounter scenarios where they require
more effort than estimated due to poor code quality;

• Ask what metrics they consider important;

• Explore the impact of (poor) code quality on actual effort.

The candidates consist of two Scrum masters, five senior developers, a quality expert
and the ESDV quality lead. The interview with the quality expert serves a different purpose
than the other interviewees; to acquire adequate suggestions and draw accurate conclusions,
because we need to validate that the projects follow the general guideline set by ESDV.
Table 2.9 shows an overview with all the interviewed developers and some background
information. We refer to the participants in this section using these abbreviations.

Table 2.9: Interview Participants

Identifier Project Role Experience in years

P1 Project 1 Senior Developer 4+
P2 Project 2 Senior Developer 5+
P3 Project 3 Quality specialist/Dev 7+
P4 Project 4 Team 1 Senior Developer 5+
P5 Project 4 Team 2 Scrum Master 5+
P6 Project 4 Team 2 Developer/Analyst 3+
P7 Project 4 Team 3 Scrum Master 8+
P8 Project 4 Team 3 Senior Developer 5+
P9 All Quality Assurance Lead 10+

We plan thirty to forty-five minutes for the interviews, which consist of two parts. Be-
fore the begin, we ask for informed consent to record the audio to assure anonymity.

26

Interviews

The first part of the interview consists of a semi-structured section [47] that explores all
the previously mentioned points. An early version of the interview questions can be found
in Appendix C. We encourage developers to speak freely to gain more information and to
ask follow up questions [47]. To examine the impact of the metrics, we explain the metrics
and ask the developers if and how they impact their estimates or if they use them in another
way. We constantly adjust the questions if the answers reach a saturation point.

The second part consists of discussing a set of three development tasks. These tasks are
no more than two months old because older tasks seemed to be difficult for developers to
recall in detail during the interviews. The first task has an effort estimate higher than six and
is of poor quality code. Tasks with poor code quality are identified by lining up all the tasks
completed by the developer in the last two months. We then look at the code quality metrics
that relate to every task and manually select the task with the poorest quality. The mean of
the effort estimates is frequently valued around four, hence we choose six as a threshold to
identify a task that took longer than average. However, some projects have a very different
distribution. Hence this value (six) might differ slightly for some projects. The goal of this
task is to identify if the higher effort estimate had something to do with the poor quality of
the task. And, if developers thought the work would require more maintenance effort due
to poor code quality, and how developers measured that code quality.

The second task identifies a scenario in which a task of poor quality has a revised es-
timate. Revised means that the developer initially created an estimate for the task, but
changed his or her estimate before starting development on the task. The purpose of this
task is to derive why the developer revised his or her estimate and if later obtained knowl-
edge about the quality of the code had anything to do with his or her revision. Because these
revisions are not a common, some tasks were actually not of poor code quality. Still, we
tried to derive the reasoning of the developer as to why they revised his or her estimate. In
most cases, developers fill in the effort field after the task has started. For example, if the
developer has to halt his or her work for the day, because his or her work day has ended, they
can use this field to inform the team about how much of the task they have completed, and
how much work remains. On some occasions this value would be higher than the estimate.

For the third task, we search for such scenarios. We hypothesize that someone might
have filled in a higher effort in this field because he encountered code with poor quality.
From the subset of tasks that meet these criteria we again select the one with the poorest
quality.

For every one of the tasks we ask the developer how he arrived to this estimated value,
what other factors than quality influenced his or her estimate, and how accurate the estimate
was.

27

2. METHODOLOGY

2.12 Threats to Validity

The selection criterion in Section 2.3 resulted in only four of many available projects. The
reason we chose these projects instead of the others, is primarily because there was a lack of
agile adoption or consistent reporting. These criteria resulted in mature and well managed
projects that followed the process guidelines correctly. The effect of quality on software
development might be stronger in projects that did not achieve this level of adoption. We
tried to validate whether the overall quality of the selected projects really is better than other
available projects, by considering the quality metrics of all projects in the current state and
from several months ago. We were unable to conclude that there is a significant difference
between the quality metrics of the selected projects and the excluded projects.

As becomes clearer in Section 2.4, the data and developers seem to lack consistency.
Without a certain level of consistency, in both the effort estimations and reporting of the
changesets to the tasks, the results will be inaccurate. We mitigate this threat by pre-
selecting the most consistent projects available and filtering out outliers (e.g., non-standard
times and types of data) (Section 2.4).

One could argue that the effect of code quality is highly dependent on the developer,
and that considerations from an agile team is too high level. However, agile effort estima-
tions during techniques such as planning poker are a team effort. All metrics are already
developer-specific. To further mitigate this threat we applied the same methodology as de-
scribed in Section 2.6 for every individual developer. Many of these results did not show
statistical significance or did not produce results that would result in different conclusions.

This research uses four large projects within ESDV at Shell Global Solutions and may
not be applicable to the whole industry. These projects all follow standards set within Shell
and their way of working. The way Agile and DevOps are deployed in ESDV may have a
great influence on the study results, limiting the overall scope. However, academics have
shown that individual cases can obtain details that research focused on groups cases could
not [16, 39].

During this study, we focus on a file. Developers may only consider the methods and
surrounding methods they changed. We attempted to identify the exact methods or functions
that got changed during a changeset, and then linked these specific method metrics to ef-
fort. The automated identification of the changed methods was however difficult to realize.
We consider the changes at a method, but determining which methods got changed during
a change proved to be very difficult, especially with multiple languages and complicated
syntax.

The calculation of the actual development effort imposes several limitations. We do our
very best to empirically define them, but this study could never reach the levels of confi-
dence that could be achieved by, for example, a controlled experiment [77]. The method
requires assumptions that, while applicable to most data, will not hold for all tasks. We
attempted to further enhance the actual effort method by including the Microsoft Exchange
used within Shell. This turned out to be impossible due to privacy and authentication poli-
cies deployed by Shell. However, we compare the method to a completed work field for one
project, and find that the method generates comparable results. Furthermore, we manually
inspect the tasks that remain for the actual effort calculation, to make sure that there were

28

Threats to Validity

no outside influences.
Understand calculates a wide variety of metrics. However, duplication, design and

smell metrics are excluded because the tools that allow these calculations require the .net
files generated by C#. Because the projects were very complicated, generating these .net
files in the same methodology (for every version of the file) would require very detailed
knowledge about how to compile the projects. The tasks would also require significant
computing power, knowledge and resources that were not available.

The interviewees only consisted of experienced developers from already mature projects.
One could criticize that these developers are all too experienced with the source code they
modify. To mitigate this threat, we attempt to vary the experience levels of the developers.

The interviews focus on the effect of code quality on agile effort estimations. This can
make the interviewee lose sight of what factors, other than those related to code quality,
can affect his judgment. We attempted to avoid these scenarios by first asking open and
project-specific questions about effort estimations without mentioning code quality. We
further invited the interviewees by email without mentioning such keywords.

29

Chapter 3

Results

3.1 RQ1: How do developers consider code quality during agile
effort estimations?

We investigate how developers define quality and assess how their definition compares to the
traditional definition of quality. Furthermore, we investigate how they attempt to maintain
high quality and question if code quality plays a role in agile effort estimation.

3.1.1 How do developers define code quality?

Most participants associate quality aspects to methods that improve code maintainability.
The Quality Assurance Lead (P9) defined quality as:

“I would define source code quality or the internal software quality, by the way the
quality is measured, if you are following or breaking any coding standards, are you pre-
forming any static quality analysis, how complex is your code and is the software properly
designed?”

P3 (table 2.9), who is responsible for the quality of the project says:
“Our primary definition of quality is meeting the acceptance criteria and maintaining

an adequate test coverage, we also incorporate code quality metrics using SonarQube at
every changeset.”

The definition of done differs in every project, i.e., includes reaching an adequate level
of test coverage. SonarQube can detect syntax policy violations, duplicate code and known
security vulnerabilities [5]. This tool is popular among teams because it was recently intro-
duced in ESDV by P9. P1 (from Project 1) did not use the tool, nor had he heard of plans
of deploying it in his team.

When asked about ways of measuring software quality, all participants from project 2,
3 and 4 mention SonarQube. They (P2-P8) use it by first submitting their code changes
and then validating the SonarQube output. If SonarQube warns the developers about issues
or shortcomings they fix them after their commit. They do not create a separate task for
it. When asked if they incorporate the SonarQube results into their estimates, developers
(P2-P5,P7 and P8) often mention they do account for it. P8 states,

31

3. RESULTS

“We take all of the SonarQube results into account. To incorporate the output of Sonar-
Qube we add an maximum of one hour to a task estimate. So overall it has a big impact on
the effort estimates.”

When asked what metrics developers emphasize in these (two) tools, P2-P8 mention
cyclomatic complexity, test coverage and code smells (SonarQube). McCabe’s cyclomatic
complexity measure has proven very successful [57], and testing is often seen as an impor-
tant practice to assure quality in DevOps [72]. Therefore, these metrics are prioritized in
ESDV and by the software engineering excellence team.

P4 and P8 also mention they use ReSharper 1 to maintain code quality. ReSharper in-
forms the developer about metric violations, redundancies, run-time errors, compiler errors
and code flaws during development. Other participants do not mention any other tools they
used to maintain quality. When we asked P9 about what she considered proper metrics to
pursue she mentions:

“Initially if we are breaking any coding violations, like specific language rules and
naming rules. We have to validate if we are adhering to these rules. You can also look at
the number of issues introduced and code duplication. Because if you just copy paste the
code the chances of introducing a bug in a new area is likely also more. Other than that
cyclomatic complexity, while not applicable for all code it certainly helps to optimize it.”

She mentions some factors covered by SonarQube, e.g., complexity and coding, naming
and language violations. Duplicate code is mentioned by a subset of developers (P4, P5,
P7). P7 mentions that SonarQube is not adequately able to identify duplicate code, and
hence they do not incorporate it frequently. Coding violations are covered by SonarQube,
which can identify errors such as naming violations. Only one interviewee (P1) mentions
code reviewing when asked about code quality:

“We do not think about the code we are going to change. It does not work in accordance
with our way of working. We very frequently review each others work, which helps us retain
quality and functionality.”

This confirms that Project 1 does not use any static analysis tools, but the team members
do review, a practice that is associated with positive quality effects [59]. The other teams
acknowledge they occasionally review code, but never comparable to the 80-100% review
coverage that Project 1 achieves according to P1.

When we ask P9 if she considers metrics a good method to quantify code quality, she
answers,

“In one way yes, because if you have a globally distributed team, you need to collab-
orative method, like a number, to read quality. To empirically quantify quality really helps
the team, because if everyone codes accordingly, standards will not be different from the
one person’s perspective to another person’s perspective.”

We observed that most of the developers seem to keeps control on the code qual-
ity through tools. They optimize for coding violations, complexity measures and test
coverage reported by primarily SonarQube.

1https://www.jetbrains.com/resharper/

32

RQ1: How do developers consider code quality during agile effort estimations?

3.1.2 How do developers consider code quality during effort estimations?

We asked a series of questions about their task effort estimation approach (Appendix C).
We review a specific task with every interviewee that has a high effort but poor quality.
We define the poorest quality by looking at all the modified tasks in the last months by the
developers, and pick the ones that scored the worst (or highest) according to the metrics.
We also considered a task with an estimated effort that was revised to a higher value. We
use this task to explore if quality had an impact on their revision.

The planning approach adopted by Shell is planning poker [31]. All developers mention
that they perform their planning as a team at the beginning of the sprint. P5 acknowledges
that their team often includes the opinion of the technical architect and business analyst
during the sprint planning.

P2, P7 and P8 mention that, when estimating task effort, they prefer to pick the highest
mentioned estimate from all developers because this is a good method to account for the
knowledge gap between team members. According to some developers (P3,P4-P6), the
deciding factor in estimates is experience and familiarity with the code. Only P4, P7 and P8
acknowledge they will manually inspect the content of the files before their estimate. All
developers acknowledge they think about the files or modules they have to modify. All but
P1, P2 and P4-P7 think prior inspection is too detailed, or simply find it tedious. Others
think it would add value, but they simply do not do it. As P7 puts it:

“It is not about thinking about the files, it’s about thinking what core things you will
change. We don’t really go through the lines of the files, rather we look at the functionality
and complexity and other things to estimate the task.”

When asked if static analysis tools were used during their estimation process, none of
the developers answered they did so. However, we previously found that they do consider
adding time to fix SonarQube issues.

Developers considered the process metrics, primarily the ADD (P1, P3-P8), OWN (P5,
P7, P8) and EXP (P5-P8) metrics, to be good descriptions of their familiarity. However,
none of these metrics is considered during estimates. When asked about code quality met-
rics P8, states,

“We should think of it during estimates, but honestly we don’t. We always consider
quality in the back of our minds however, because we have to meet the project standards.
Right now if we encounter bad code quality during the development of a task we often create
an additional task. If the developer thinks he is unable to understand the code, due to for
example poor quality, he creates an investigation task.”

This creation of additional tasks, like an investigation task, is something only done in
Project 4. In the other projects, developers will often revise their estimate or simply spend
more time on the task than initially planned (resulting in inaccurate estimations). Because
these investigation tasks will fall under the same PBI, they should be included in PBI effort
estimations. However, if they are added at a later stage, they are a result of inaccurate
estimations.

There is a clear consensus among the interviewees that code quality metrics are not con-
sidered in the estimations. The same reason holds for not inspecting files during estimates,
namely that details at such a level do not add enough value. When we asked developers

33

3. RESULTS

what they think influences their estimation the most, P4 mentions,
“The biggest impact is the size of the change we are going to introduce. I would measure

the size by means of experience we had with the product in our team, as we are well versed
with the existing code.”

This is interesting because the developer mentions experience and size as related. While
experience and size are mentioned by other developers (P1, P5-P8), they do not specifically
mention that they are related.

Developers use SonarQube to maintain code quality. No quality metrics are con-
sidered during effort estimates, but half of the developers add time to fix these issues
later.

3.2 RQ2: How do code quality metrics relate to agile effort
estimations?

We evaluate whether metrics can express the experience of the developer and the size of the
task/PBI. This will tell us if effort estimations by developers can be expressed in empirical
attributes. Furthermore, this will tell us if the experience the developer has with the code
already links quality to estimates.

We investigate the relationship between effort estimates and the proposed metrics (sec-
tion 2.5). We then consider a model in which these predictors are combined into a single
model. In this section, we show the distribution of the estimates and the results for both
regression techniques. Initially we assess the quality for effort estimations on a task. Next,
we evaluate the relationship between quality and the sum of the effort of a PBI. The sum is
all the estimated effort of the tasks that belong to the PBI.

3.2.1 Quality and task estimates

The dependent variable for regression has great influence over the results. Furthermore,
the definition of a task will likely differ for every project. Hence, before considering the
regression outputs we evaluate the distributions of the effort estimation for every project
(Figure 4.1).

Project 1 tends to estimate tasks at eight hours, while other projects estimate many of
the tasks under three hours. This indicates that the teams do not concur with the definition
of a task. When we ask P1 during the interviews why Project 1 deviates so much from the
rest, there was no reason given. Unlike other projects, they also follow a Fibonacci sequence
when estimating tasks (Section 2.2.3). This can be seen by the great gap in Figure 4.1 for
Project 1, in which there are nearly no tasks of the values 6, 7 or 9-12.

Most distributions are left skewed (there are many small tasks). This is something that
is expected because the general idea behind a task is that one should be able to finish it
within a day or less. Some projects, like Project 3 and Project 4 Team 2 appears to be left
skewed.

34

RQ2: How do code quality metrics relate to agile effort estimations?

Figure 3.1: Distribution of estimated effort for the selected tasks for all projects

First, we will consider the technical code quality metrics. Before inputting the variables
into the regression model, we evaluate how the variables are correlated with the estimated
effort. We only report variables that are correlated more strongly than a weak (r = 0.3)
positive or negative correlation. For the correlation to be statistical significant we require
that ρ < 0.05.

For Project 1, the sum of the cyclomatic complexity of the classes (a metric calculated
by Understand, not something we summed to reduce to task level) seems to have a weak
correlation (r = 0.37) with the estimated effort. The sum of the cyclomatic complexity in a
file intuitively would also correlate with the file size (which is indeed the case here). Hence,
this should not be considered as just a measure of cyclomatic complexity. In Project 2,

35

3. RESULTS

the total methods in every file seems to have a correlation of r = 0.35. In team three, the
number of lines in a file seems to correlate most strongly of all (r = 0.4). All the other
metrics correlate lower than r = 0.3 for all the projects.

During the interviews, we found that ESDV developers focused on test coverage and
cyclomatic complexity. Therefore, while manually selecting predictors, we choose to prior-
itize these metrics. There is, however, a point of criticism regarding these metrics because
developers validate that they meet the ESDV standards for these metrics, e.g., < 15 cyclo-
matic complexity. They are not frequently considered to be poor. PCR does not involve
a manual selection step and should give a different perspective. In Table 3.1, we can see
the adjusted-R2 values and significance results for both regression approaches for all the
projects.

Table 3.1: Regression results for Technical Code Quality metrics

Project PCR R2 ρ Selection R2 ρ

Project 1 0.06 0.01 0.05 0.00
Project 2 0.09 0.02 0.12 0.00
Project 3 0.05 0.04 0.08 0.02
Project 4 Team 1 0.01 0.16 0.02 0.15
Project 4 Team 2 0.1 0.01 0.15 0.02
Project 4 Team 3 0.05 0.5 0.00 0.7

R2 values close to 1 indicate that all dependent variables in the model can be explained
by (a subset of) the given predictors. R2 values close to zero, as is the case for code qual-
ity for the projects, indicate that only little of the data is explainable using the predictors.
Among all the projects, the most common explainable variables are related to the number
of methods reported, the ratio of the comment to code and the total lines of code present in
the files. For the strongest results, Project 4 Team 2, the ratio of the comment to code had
the biggest impact of all metrics. However, because the results are very weak, even these
relationships are negligible.

When performing a simple Spearman correlation between the estimated effort and the
technical code quality metrics, none of them are correlating above the ρ = 0.3 threshold.
Therefore, the results indicate that the technical code quality metrics seem to have a minimal
impact on the effort estimates of developers.

We apply the same technique, but for the process metrics and a combination of all met-
rics (Table 3.2 and Table 3.3). While selecting variables for the process metrics, we priori-
tize the ADD, OWN, EXP and COMM metrics. As the developers stated in the interviews,
they perceive these metrics as the most defining process metrics. Because developers men-
tioned that they consider size an important factor during the estimation, we also prioritize
the metrics related to the size of the change (LOC ADD and MAX ADD). In the com-
bined version, we simply combine every selection and once again reduce highly correlated
variables.

The ownership metric always seems to have one of the strongest correlation values and
is the only metric to exceed ρ = 0.3. On average the correlation values for ownership are

36

RQ2: How do code quality metrics relate to agile effort estimations?

in the range of 0.1 and 0.3. For project 1, 2 and 3, the total lines added to the task during
the change correlate between a range of 0.3 and 0.45. For Projects 1 and 3, the total file
and source changes perform similarly. The primary influence is frequently explainable by
the lines and the total files one is going to modify during the task. These metrics are the
reason Project 3 performs well. This seems to contradict what we would expect after the
interviews, namely, that the size metrics would be an influential predictor.

Table 3.2: Regression results for process metrics

Project PCR R2 ρ Selection R2 ρ

Project 1 0.14 0.00 0.11 0.00
Project 2 0.12 0.06 0.15 0.04
Project 3 0.19 0.00 0.22 0.00
Project 4 Team 1 0.08 0.01 0.05 0.00
Project 4 Team 2 0.09 0.02 0.05 0.00
Project 4 Team 3 0.04 0.00 0.05 0.07

Surprisingly, the effect of the metrics is negligible. The primary influential metrics are
related to age and the size of the work added. In Project 3, we observe the strongest metrics
when the lines added metrics perform well. However, the overall results are weak. Next,
we observe the combination of the technical code quality and process metrics.

Table 3.3: Regression results for combined metrics

Project PCR R2 ρ Selection R2 ρ

Project 1 0.2 0.00 0.16 0.00
Project 2 0.03 0.03 0.11 0.00
Project 3 0.23 0.02 0.26 0.00
Project 4 Team 1 0.09 0.07 0.04 0.00
Project 4 Team 2 0.12 0.04 0.06 0.00
Project 4 Team 3 0.1 0.1 0.07 0.07

Looking at the overall effect of the metrics on tasks, we observed that the primary impact
of metrics that indicate the size or volume, either of the file itself (LOC, methods), or of the
change in the file (LOC added, number of files). While cyclomatic complexity seemed to
be an important driver in ESDV, we only see this influence in Project 1. The other metrics
seemed to have a minor imperial measurable impact on the developers’ effort estimations.
We also observed that there are differences in the PCR and prediction selection regression
methods, but the differences are not very strong.

37

3. RESULTS

3.2.2 Quality and PBI estimates

We consider an approach in which we do not calculate the effort and quality at a task level,
but at a feature level (product backlog item), as discussed in Section 2.7. Table 3.4 shows
the total input data for this method. We report the most significant R2 values of the two
regression methods. For the complete output, see Appendix D.

Table 3.4: PBI task sum relations

T-Code Quality Process Combined

Project R2 ρ R2 ρ R2 ρ

Project 1 0.11 0.00 0.48 0.00 0.4 0.01
Project 2 0.07 0.16 0.23 0.00 0.35 0.00
Project 3 0.18 0.02 0.34 0.00 0.42 0.02
Project 4 Team 1 0.23 0.03 0.40 0.00 0.41 0.00
Project 4 Team 2 0.01 0.36 0.49 0.00 0.42 0.00
Project 4 Team 3 0.04 0.22 0.07 0.42 0.18 0.06

These results are stronger than the task results, especially for the process metrics. How-
ever, intuitively it makes sense that process metrics perform so well using this approach,
especially those related to the size of the change. The size of a feature ranges from only a
few hours to hundreds of hours. Figure 5.2 shows the distribution of the PBI effort of the
two strongest performing process metric projects, project 1 and project 4 Team 2.

Figure 3.2: PBI velocity for Project 1 and Project 4 Team 1

While it is harder to estimate the exact number of hours, the accuracy is intuitively
going to be higher than the task estimates, especially when one compares smoother estimate
distribution (Figure 5.1 and Figure 5.2).

The most influential process metrics of all the projects is the lines of code added during
the PBI, which informs us that developers can accurately predict the total size of the change
for a greater time period. Other strong metrics are the maximum lines of code added dur-
ing all changes to the PBI, further confirming this relationship. Moreover, the amount of

38

RQ2: How do code quality metrics relate to agile effort estimations?

bugfixes the file was involved in and the age also show a minor relationship. While these
effects are minimal, we see that legacy or bug prone code seem to influence developers,
often resulting in higher estimations.

An interesting find is that the experience of project 4 Team 2 has a very strong effect,
accounting for nearly all of the result. In Project 2 there seems to be a great influence by
the commit count of the history of the developers. While the turnover is not that high, it
certainly is the highest of all the considered teams. We speculate that this could be one of
the reasons that process metrics perform better in Project 2, because new developers are less
experienced with the code, they will likely estimate higher.

The results for the process metrics perform better than the combined metric in two cases.
This can be due to two reasons. First, the selection procedure does not have to result in the
most significant metrics. This is one reasons we also apply PCR regression. Second, in
regression a larger amount of predictors does not have to generate a more significant result
because the adjusted R2 values already compensate for a great part of this effect.

Code quality metrics seemed to have a small impact on Project 4 Team 1 and Project 3.
The higher values are best explained by the mean of the average lines of code in the modi-
fied files. The sum of the tasks is something that should be comparable to the story points,
because in a normal scenario all the tasks are estimated during the iteration planning. There-
fore, consider the relationship among story points and the metrics (Table 3.5).

Table 3.5: PBI story point relations

T-Code Quality Process Combined

Project R2 ρ R2 ρ R2 ρ

Project 1 0.03 0.59 0.35 0.00 0.07 0.08
Project 2 0.11 0.12 0.17 0.01 0.09 0.12
Project 3 0.02 0.29 0.25 0.18 0.33 0.01
Project 4 Team 1 0.28 0.12 0.32 0.00 0.32 0.00
Project 4 Team 2 0.02 0.23 0.34 0.00 0.37 0.00
Project 4 Team 3 0.01 0.29 0.01 0.35 0.14 0.4

We observe comparable results but, we notice that some results problems show statis-
tical insignificance. The code quality metrics in particular seem to show problematic ρ

values. The measures of the process metrics, while smaller than the previous approach, are
still stronger than for a task. Like the summed hours tasks, this is an interesting observation.
Because it indicates process metrics, and especially those related to the size of the change,
have a stronger relationship with PBIs than with task estimations.

For tasks we observed very weak relationships among the metrics and effort esti-
mations. We found stronger relationships among the process metrics for a PBI.

39

3. RESULTS

3.3 RQ3: When and how do developers encounter code quality
during actual effort?

Before we look for an empirical relationship between code quality metrics and actual effort,
we investigate how developers encounter and deal with code quality issues during develop-
ment. This is done to determine what developers consider during agile effort estimations.

We simply ask the developers a series of questions (see Appendix C), to explore if they
encounter poor quality during their development activities and how this affects their ability
to implement new features. One of the three tasks that we ask developers about is a task of
poor quality with an intermediate estimate (an estimation made after the task was started).
This estimate should preferably be higher than the original estimation. This is an uncommon
scenario, and hence was not available for all interviewees. We could only identify tasks with
recent inaccurate estimation with poor quality for three developers.

All developers acknowledge they encounter scenarios in which they face code quality
issues. They often mention legacy code, as P7 did.

“We primarily have issues with legacy code that was developed before we started work-
ing on the project. Whenever we encounter legacy code of poor quality we try to include
time to improve it in our planning for the current or next sprint.”

Legacy code is often mentioned (P1,P4,P5,P7 and P8) as the most frequent scenario in
which developers encounter poor quality. P1 and P4-6 acknowledge that when they work
with bad quality legacy code, they take their time to refactor it. The other interviewees say
it is highly dependent on the situation, whereas P7 mentions that if for example depends
on the frequency of use of the legacy code. The frequency at which developers encounter
legacy code is however limited according to all. Overall developers mention they do not
encounter poor code quality frequently. None of the developers mentions that code quality
is a big issue in their project.

We figured out if it was the unfamiliarity with the code that made the developers con-
sider the legacy code of poor quality. As legacy code is something that is likely not recently
maintained by the developers. P4 and P7 state that legacy code impacts their ability to esti-
mate the task. Other interviewees say that they did not really consider whether it was legacy
code or not during their estimations.

When we ask the interviewees about the length of the time lost on poor code quality,
they consider it a difficult question to answer. P1 mentions 20% and P5 mentions 30%, but
both emphasize that they are very uncertain about this number. However, all acknowledge
it will likely result in more actual effort than estimated.

When we present the developers with the task none of them acknowledge it was due to
poor code quality. P4 mentions:

“The encountered task was more difficult than we initially estimated. After we completed
our investigation task we noticed that there was more to the task and that it would take more
time to complete.”

Once again, we encountered the investigation task to initially inspect the work. All other
developers give comparable reasons, they frequently (56%) made faulty estimates because
it turned out the size of the work was more than estimated. P1 mentions:

40

RQ3: When and how do developers encounter code quality during actual effort?

“If the task takes longer than I expected I will simply work longer on it. This can have
an effect on the overall planning.”

None of the interviewees addressed the poor quality (identified by our metrics) of the
code that belongs to the tasks. When we presented the three developers with the tasks that
are inaccurate and of poor quality, P1 acknowledged that he thought the quality of the code,
among other things, was an issue during development. The other developers mention it is
because they underestimated the total number of hours for the task, resulting in more time
spent. P7 mentions:

“I thought the implementation of the feature would take less time. However, during
development I noticed there was more to it than was thought.”

Why his task took longer is due to a highly technical reason, that required more effort
than thought. One developer mentions that the actual over-estimate was not as great, while
in the other cases, the actual calculation was not far off.

We ask developers about a scenario in which quality had an impact on their actual effort.
P3 and P6 both address a scenario in which the project architecture was to blame, resulting
in re-factors at an architecture level. P4,P5 and P7 address a scenario in which they did not
fully understand the code and considered this to be a consequence of poor (documentation)
quality. P1 and P8 mention a scenario where they could not understand the hierarchy of the
code, losing sight of what is going on. When asked about how to handle code quality issues
P9 says:

“In case you have a lot of technical debt, like you encounter poor code quality during
development or have a large amount of SonarQube issues or have a lot of bugs in the back-
log, then you can add this as additional work during the estimation to the PBI during the
sprint planning. However, this should also be considered during the day-to day planning.”

While developers encounter quality issues in their every-day work, the majority mention
legacy code as problematic. These cases are, however, isolated problems that developers
only encounter on an irregular basis. Surprisingly, in the tasks that we considered to be
of poor quality (according to the metrics), none of the developers actually address the fact
that the code was of poor quality. Overall we found that developers do not encounter poor
quality issues on a frequent basis.

Developers primarily encounter these poor quality scenarios on an irregular basis
in legacy code. In all the 24 tasks of poor quality, none of the developers mentioned
that quality was an issue.

41

3. RESULTS

3.4 RQ4: How accurate are agile effort estimations?

To answer if poor quality does indeed result in developers spending more time to develop
than anticipated, we empirically investigate the accuracy of the effort estimations. Further-
more, during the presented tasks, we asked the developers about the actual effort and how
it compared to their estimate.

Accuracy of the estimates

We asked developers about the accuracy of their estimates by means of two methods. For
every task we presented, we asked them how accurate the estimate actually was, and how
accurate they consider their general estimates to be. Figure 3.3 shows the results for the
tasks presented to the developers.

Figure 3.3: Accuracy of interview tasks

Three out of five developers could not recall the estimation accuracy of the cases. For
instance, P7 had not been developing on the project for a while and hence was unable to
recollect the exact hours spent on the tasks. While the data is not sufficient to consider the
results significant, we can see that developers think they are accurate with their estimates.
P4, however, mentions:

“None of the estimated will be accurate. There will always be a room of 0.5-1h. Some-
times we complete less than the estimated hours. It depends on the person who picked it.
Few people are well versed with the background services. If they pick it it will be completed
before the estimated hours. If they are not very familiar with the code it will take longer.”

This indicates that while the range of 0.5-1h is not that bad there will always be dif-
ferences in precision of the estimations. Interestingly, we noticed another mention of the
importance of experience from the developer.

Accuracy of empirical estimations

Before we observe the effect of the magnitude of relative error on quality, we first assess
how the actual effort compares to the estimated effort (accuracy). Table 3.6 shows the total
number of tasks that met the criteria from Section 2.9 for both approaches. We also see how

42

RQ4: How accurate are agile effort estimations?

many of these tasks are considered development tasks; this is a result of intersecting these
selected tasks and the tasks that serve as an input for research question one (Table 2.8).

Table 3.6: Tasks for research question 2

Project One day technique Dev. Tasks Multiple-day technique Dev. Tasks

Project 1 60 31 108 63
Project 2 180 14 290 22
Project 3 69 52 104 72
Project 4 Team 1 394 102 632 157
Project 4 Team 2 293 64 419 93
Project 4 Team 3 126 37 248 76

There is a large reduction in tasks for most projects. The reason is that some teams
frequently drag a number of tasks to ‘in progress’ simultaneously. This simply means that
developers sometimes work on multiple tasks at once. Next, we evaluate how these two
techniques correlate with the estimated effort (Table 3.7). We choose a Spearman corre-
lation because the results do not have to be linear. We also report the significance of the
correlation.

Table 3.7: Correlation actual effort - est effort

Project One day r ρ Mult. day r ρ

Project 1 0.4 0.00 0.32 0.00
Project 2 0.17 0.02 0.3 0.00
Project 3 0.23 0.06 0.42 0.00
Project 4 Team 1 0.36 0.00 0.32 0.00
Project 4 Team 2 0.33 0.00 0.37 0.00
Project 4 Team 3 0.3 0.00 0.35 0.00

Developers could easily overshoot their estimated time for many reasons. Perfect es-
timation accuracy would result in perfect correlation. During the interviews developers
sometimes mention an accuracy within 20-30%, something currently not reflected by the
correlation values. To evaluate the accuracy we use the magnitude of relative error (MRE)
[79], which expresses the difference between actual and estimated effort relative to the ac-
tual effort (formula 3.1). The MRE is commonly used to measure the accuracy of software
effort estimations [81].

MRE =
| actual effort- estimated effort |

actual effort
(3.1)

This should help to identify outliers in the data. Consider the distribution for the largest
dataset, Project 4 Team 1, in Figure 3.4.

One case requires close to 2000% more time than the estimated time. There appears
to be several such tasks in every project. This behavior seems to be either errors (due to

43

3. RESULTS

Figure 3.4: Distribution of the absolute MRE for Project 4 Team 1

our applied methods) or has an unidentified reason, and has a great influence on both the
regression and the correlation.

We manually inspect all peculiar cases (from Table 3.6) and remove unrealistic ones.
During manual inspection we investigate (if we have access) the agenda of the developer
on the date. When we observe something that was non development related we immedi-
ately remove the task from the set of considered tasks. After that we manually inspect the
contributions made and if the effort does not justify the contribution we exclude it.

This has a positive impact on the correlation, changing the mean values from the previ-
ous r = 0.3 to about r = 0.5. Project 2 in particular shows significant improvements, from
0.3 to a correlation of 0.6. This is due to some very extreme differences between the actual
and estimated effort (one being 4000% more).

As mentioned in Section 2, Project 1 very recently started using a ‘completed work’
field, that describes the amount of time, in hours, that it took to complete a task. We treat the
completed work field equally to that of the actual work field, because it should describe the
same amount of hours worked on. We call this case Project 1 CW from here on. This field
would be a perfect evaluation of the performance of our ‘actual effort’ method. However,
there are currently only 8 out of the 108 tasks from the multiple day technique that overlap.
We consider this an insufficient amount to be significant for evaluation. The reason is that

44

RQ4: How accurate are agile effort estimations?

this field has been in use for less than three months, and the previously mentioned behavior
of Project 1, in which they simultaneously put many tasks to ‘in progress’.

Let us consider all the tasks of Project 1 that have both a completed work field and an
effort estimate, a total of 291 tasks. The Spearman correlation between these two variables
is 0.65. One could once again question if this should be set as a goal, but it should give
an indication about the accuracy of the estimate in general, indicating that a very strong
correlation does not have to represent reality. Out of these 291 tasks 39 are development
tasks. These tasks serve as the input for regression. Other than correlation we can calculate
the accuracy of the effort estimations, or the estimation error. By taking the mean of all the
MRE values (MMRE), or the approximation error, for all the considered tasks in a project
(Table 3.8).

Table 3.8: The MMRE for all projects

Project One Day Mult Day

Project 1 130% 97%
Project 1 CW - 91%
Project 2 78% 81%
Project 3 85% 75%
Project 4 Team 1 67% 63%
Project 4 Team 2 66% 65%
Project 4 Team 3 69% 66%

The level of inaccuracy seems a little higher for project 1 than other work, in which
teams report an MMRE of 28-90% [81]. Only Project 1 seems to be inconsistent with other
literature. What is surprising is that Project 1, Project 1 CW, Project 2, Project 3 and Project
4 Team 1 under-estimate their estimates while Project 2 and Project 4 Team 2 and Team
3 over-estimate their estimations. We observe no large difference between the completed
work field and the calculated method for Project 1, indicating that the method perform
accurately. We also observe no large difference between the multiple day and the one day
technique for any project.

We found that the estimation error (MMRE) ranges from 63-130%. The interviews
indicated that developers considered more than half of their estimations to be accurate
in a range of ±1h.

45

3. RESULTS

3.5 RQ5: What is the influence of code quality metrics on the
accuracy of agile effort estimations?

We will assess the relationship between the code quality metrics and the mean magnitude of
relative error (MMRE) assessed in the previous question. If we find a (positive) relationship,
it would indicate that the code quality metrics have an effect on the extended development
time. We apply the same technique as in Section 3.1, also applying the same metric selection
procedure based on the results obtained in the interviews. The input consists of the same
tasks selected during research question four. The results for the code quality metrics can be
seen in Table 3.9.

Table 3.9: Technical Code quality metrics with MRE

One Day Technique Mult. Day Technique

PCR ρ SEL ρ PCR ρ SEL ρ

Project 1 0.1 0.12 0.14 0.09 0.12 0.03 0.14 0.00
Project 1 CW - - - - 0.15 0.06 0.16 0.00
Project 2 0.00 0.87 0.03 0.67 0.01 0.83 0.06 0.74
Project 3 0.03 0.45 0.06 0.87 0.1 0.82 0.02 0.7
Project 4 Team 1 0.00 0.27 0.03 0.48 0.00 0.82 0.01 0.71
Project 4 Team 2 0.11 0.09 0.07 0.14 0.06 0.76 0.1 0.81
Project 4 Team 3 0.03 0.16 0.05 0.27 0.00 0.12 0.00 0.37

Many results seem statistically insignificant, meaning they exceed the threshold of ρ >
0.05. This can be explained by the large reduction in data with the applied methods. The
biggest impact of code quality seems to be in Project 1. The other projects seem to show
very low values and seem to be of no significance. It is interesting to see that the results of
the completed work field and the applied method are very similar, hinting that the devised
method to calculate actual effort shows promise. The metrics with the highest impact for
Project 1 are the test coverage, coupled classes, inheritance tree, declared methods and the
total amount of semicolons in a file.

Table 3.10: Process metrics for MRE

One day Technique Mult. day Technique

PCR ρ SEL ρ PCR ρ SEL ρ

Project 1 0.18 0.22 0.16 0.32 0.19 0.04 0.21 0.03
Project 1 CW - - - - 0.22 0.03 0.17 0.04
Project 2 0.11 0.55 0.22 0.71 0.06 0.87 0.07 0.79
Project 3 0.12 0.49 0.08 0.35 0.04 0.69 0.09 0.61
Project 4 Team 1 0.17 0.03 0.19 0.04 0.17 0.04 0.14 0.06
Project 4 Team 2 0.13 0.06 0.19 0.06 0.07 0.30 0.17 0.29
Project 4 Team 3 0.08 0.32 0.16 0.43 0.09 0.26 0.06 0.21

46

RQ5: What is the influence of code quality metrics on the accuracy of agile effort
estimations?

Table 3.10 clearly shows that most of the results do not support our hypothesis. When
looking at process metrics, a very common metric to have a decent impact on the model is
‘age’, meaning that older files seem harder to maintain than recent ones. Legacy code was
also considered very influential during the interviews. Hence we reason that this relationship
exists because legacy code could be indicated by the age metric. Furthermore, the metrics
related to the lines added and removed seem to have the biggest impact. In addition, we see
an effect from the total number of files that was changed.

Table 3.11: Combined metrics for MRE

One day Technique Mult. day Technique

PCR ρ SEL ρ PCR ρ SEL ρ

Project 1 0.22 0.25 0.17 0.22 0.23 0.04 0.28 0.01
Project 1 CW - - - - 0.19 0.09 0.21 0.07
Project 2 0.00 0.83 0.35 0.76 0.00 0.9 0.1 0.76
Project 3 0.04 0.76 0.07 0.65 0.02 0.87 0.05 0.83
Project 4 Team 1 0.07 0.00 0.12 0.01 0.1 0.03 0.06 0.06
Project 4 Team 2 0.21 0.06 0.2 0.02 0.06 0.32 0.17 0.42
Project 4 Team 3 0.00 0.4 0.03 0.45 0.03 0.51 0.07 0.63

We see a weak (0.2-0.3) relationship between the quality and a prolonged development
time for Project 1. We speculate that this stronger relationship in project exists because they
do not seem to use any quality tooling. They use no tooling measure the code quality metrics
maintain a certain standard; hence, there is more fluctuation and impact by the code quality.
The other projects, however, acknowledge they have been using quality maintenance tooling
for between four to twelve months.

We found weak relationships among the estimation accuracy and the metrics. We
find the strongest (R2 0.3) results for Project 1, the only project that does not use any
quality tools.

47

Chapter 4

Discussion

4.1 Metric selection

It is common for software projects to collect an excessive amount of metrics [82]. During
the reduction of the metrics in the predictor selection procedure we saw that many metrics
are very strongly correlated (Table 2.7 and Table 2.8). This had a significant impact on
the results, as without this procedure the results would have been a lot stronger. While
Understand can calculate a large amount of technical code quality metrics (Appendix A),
their similarities are astonishing.

The fact that a large amount of metrics did not produce better or more significant results
has been found in previous work [82]. During selection we also noticed that, like previous
work [17], the metrics often form a pattern of: volume, complexity, sizing and coupling. We
found that the developers in Shell often optimize for a small set of metrics. While not all of
the groups of metrics are covered, this does indicate that pursuing only a small amount of
carefully selected metrics can have great implications. We do however recommend pursu-
ing more metrics than just testing and cyclomatic complexity, especially because size and
volume related metrics were the most influential metrics in most of our results.

Table 2.8 shows that, while combining the metrics, the correlation among the three
groups is not strong. This indicates that the three groups of metrics are sufficiently different
from each other that it seemed to make sense to consider them separately.

4.2 Code quality and effort estimations

In RQ1 (Section 3.1), developers mention they did consider their experience and the size
of the change important influences during effort estimations. The importance of size and
experience for effort estimations are also mentioned in previous literature [67, 31]. Some
developers said their ability to estimate the size becomes more accurate with experience.
Developers acknowledged they are aware of technical code quality, but none consider it in
depth by looking at static analyses tools. However, half the developers add a static amount
of time to their tasks simply to resolve any problems generated by SonarQube. So, we do
observe impact on the effort estimations, but it is primarily a static amount of time.

49

4. DISCUSSION

In RQ2 (Section 3.2) we attempted to quantify a relationship between effort estima-
tions, size and experience. We use size related process metrics to quantify size, the process
metrics related to experience to quantify experience, and technical code quality metrics to
measure the maintainability of the code. During the interviews we found that the size of the
change and experience are considered during effort estimations. Therefore we suspected
that process metrics would perform well.

We found weak relationships among all of the metrics and task effort estimations. Ev-
idently, there is more to size than the additions made in terms of code volume, but these
metrics did show such minor relationships for tasks. However, studies that focus on size
metrics comparable to ours (lines of code related) for agile effort predictions did not have
high prediction accuracy [10] either. Hence we provide further evidence that size measured
by lines has only minor implications for agile effort prediction.

We observed similar results for process metrics and technical code quality metrics for
a task. Our expectation was to find at least some relationship among effort estimates and
technical code quality metrics, as we hypothesized bad experience and poor code quality
would result in higher estimates. However, during the interviews we found that developers
do not seem to incorporate technical code quality during their estimates. Some teams men-
tion they assign a static amount of hours to fix these issues, which should result in an effort
increase independent of the quality of the task.

We suspect that we observe weak overall relationships because there are many more
factors to the estimations than the metrics we considered. As an example, Soh et al. [78]
find that developers spent the majority of their time exploring what files they have to modify
during maintenance related tasks. Secondly, in Figure 3.2.1 clearly shows that estimations
are frequently low (1-3 hours) and inaccurate (Table 3.8). Some developers even mention
during the interviews that their estimates are just a guess, and have very little outside influ-
ence. We question if this left skewed set of inaccurate effort estimations serve as a proper
dependent variable for regression.

We further investigated the relationships among the effort of the tasks that are part of a
PBI. We found stronger relations among change size-related metrics, and in two projects,
stronger relationships for process metrics. These results hold for both story points and the
sum of the effort of the tasks. This is surprising, because it hints that story point (PBI)
estimations are more affected by or more accurately predict the size than the estimates
assigned to tasks.

Project 2, the project with the highest turnover, performed worst in estimating the size.
We speculate that this has something to do with developers’ statements, i.e., that the ability
to predict the size of the change depends on the experience of the developers.

We observed overall stronger performance for the PBI process metrics compared to
the tasks. In particular, metrics related to the experience, like the experience metric and
the commit count of the developers, seemed to have some effect. We reason that stronger
relations exists because working on legacy code requires more effort. Something also men-
tioned by developers. For a task we looked at a single developer, while for a PBI we looked
at the experience of the developer(s) who worked on that PBI (often multiple). When we
consider process metrics for a task it only describes the experience of that developer, but the
experience of the multiple developers involved in the PBI might be a better representation

50

The impact of quality on actual effort

of experience.
Hence, code quality seems to hold a stronger influence on PBI estimates. However,

technical code quality was weak for both tasks and PBIs. The method developers seem to
use to maintain technical code quality is by adding a static amount time to every task to fix
generated quality violations after development. We expected stronger results for the process
metrics, especially because developers mention they consider these factors important during
their effort estimations, but overall the impact of code quality and the metrics on effort
estimations was minor.

4.3 The impact of quality on actual effort

In RQ3 (Section 3.3) we observed rather high levels of inaccuracy (Table 3.8) for effort
estimations, but such levels of inaccuracy are observed in prior work as well [81]. We
did observe certain extreme outliers to the actual effort calculation, confirming (Section
2.12) that the method imposes limitations on the results. However, we observed striking
similarities between the actual effort results and the completed work field from Project 1.
Furthermore, we observed that, during the interviews, developers thought their estimations
were accurate (56% accurate, 33% under estimate 21% over estimate). Some developers
mention 20% to 30% of their estimations are inaccurate.

During the interviews in RQ4 (Section 3.4) we presented the developers with tasks that
contained poor technical code quality according to Understand. None of the developers
actually acknowledged the fact that they considered these tasks of poor quality. They all
mentioned specific technical reasons or simply that it took overall more time than estimated.
This hints that the definition of poor according to these metrics might not be as influential
during actual effort. Furthermore, developers mentioned that in the large majority of their
time they consider the code they work on of good quality.

Developers seemed to frequently encounter code quality issues in legacy code. This
indicated that legacy code, while encountered irregularly, seemed to be have a big impact
on actual effort. During the empirical evaluation between the accuracy and the code quality
metrics we found that the age metrics performs rather well. We reason estimation accuracy
can be improved for these legacy code scenarios. Developers could take prior considerations
about the state of the code, by considering process and other age related metrics. This would
open the possibility to allocate time to improve or refactor the legacy code.

In RQ5 (Section 3.5) there seemed to be low relationships among code quality metrics
and the estimation accuracy. What we did observe is that the strongest results are those of
Project 1. This is worth mentioning, because Project 1 is the only project that does not use
any tools to maintain quality. We can only speculate that this is the reason why they have the
strongest relationship. If the developers do not maintain the overall code quality via static
analysis tooling, they could face maintainability issues during development. These unfore-
seen maintainability issues could require additional time, resulting in higher inaccuracies.
This hints that pursuing code quality metrics does improve maintainability [17].

Even though Project 1 does not pursue quality metrics, the team members review their
code regularly. Code reviewing may improve software quality, style and properties like

51

4. DISCUSSION

shared ownership [59, 16]. During the interviews we find that all of the developers ac-
knowledge they encounter poor quality code on an irregular basis or in legacy code. The
pursuit of review coverage, SonarQube and the adoption of DevOps could have resulted in
a very good quality state for the chosen repositories. Combined with the additional effort
already assigned by a subset of developers for quality assurance, quality issues could be a
rare occasion, something developers acknowledge during the interviews. On rare occasions,
we would indeed observe a negligible effect.

52

Chapter 5

Related Work

(Agile) Effort estimations

There are often multiple approaches for effort estimations. There are several methods to
estimate the total cost of the project [13, 18, 25, 49]. The scope and end goal of these
models are to predict the cost or effort required to complete the whole project. The input
of these models consists primarily of methods to measure software properties, such as size,
complexity or the analysis of productivity [27, 70].

We question the implications of these methods in agile software development because as
these methods require careful planning and considerations before starting the project, some-
thing not endorsed in agile software development. There is however plethora of research
that tries to perform effort estimations in an agile setting [81]. This research frequently
tends to only focus on the planning process, such as planning procedures performed during
agile software development, and not on the relationship with the quality of the code.

There are several iteration planning techniques in agile software development. Fre-
quently used techniques include: planning poker [45], usese case points [66], expert judg-
ment [9], linear regression and neural networks [81]. Abrahamsson et al. [9] use a set of
metrics derived from user stories, a prominent method to define requirements in agile [30],
to predict the implementation effort required. They extract measures such as number of
characters, words, but also the frequency of certain keywords like ‘test’ and ‘report’ from
the user stories. Using linear regression they find rather poor accuracy results and hence
limitation implications for such methods.

Popli and Chauhan [67] mention four common methods to perform agile effort estima-
tion for the complete software development life-cycle. The learning-orientated approach,
which use collective learning techniques from previous estimations, and experience and
knowledge from managers, creates the planning. The expertise-based approach, uses an
expert to defines the long-term planning for the project. A regression method, where the
model consist of developing regression equations to make estimations and the bottom up
approach, where all components are separately estimated and the results are aggregated to
produce an overall estimate. However, none of these methods seem to devote much atten-
tion to scenarios where projects have to work on existing code. Or the everyday life of a
software developer.

53

5. RELATED WORK

Previous agile studies primarily use size or cost metrics as predictor for effort [29]. To
the best of our knowledge no projects use technical code quality or process metrics as a
predictor for agile effort.

Metrics and Software Maintainability

There are different methods studies define quality in agile. Some studies measure it by
means of customer satisfaction [8]. A large number of the studies that revolve around the
quality maintenance in agile evaluate the effect of engineering best practices, such as pair
programming or test driven development. These techniques show great quality improve-
ments throughout the majority of the studies [74]. While we certainly agree they are good
practise, they are not adopted by all agile projects, as they require discipline and investment.

Sjøberg et al. [77] try to quantify the effect of Code Smells on maintenance effort.
They hire six developers to perform a controlled experiment. The developers are asked to
perform maintenance work on code with different flaws in code smells. They use regression
to quantify the relationship among the code smells and effort spend on maintaining the files.
They seem to find no significant code smell metrics that associate with an increase in effort.
The file size and the number of changes seem to be the primary explainable variable.

Baggen et al. [17] provide an overview how the Software Improvement Group 1 per-
forms code analysis and quality consulting. Their primary incentive is reduce software
maintainability. They follow the ISO/IEC 9126 definition of maintainability, a standard
that has been replaced after the publishment of the article by ISO 25010 2. With respect
to maintainability they come up with six source code properties that can be expressed in
metrics: Volume, Redundancy, Unit size, Complexity, Unit interface sizing and Coupling
[46]. Nugroho et al. [64] create an empirical model of technical debt and interest. They use
SIG maintainability properties and use these qualities to measure technical debt.

Yuming and Baowen [84] investigate if a set of 15 design metrics can predict the main-
tainability of open source software. They quantify maintainability using a maintainability
index, a formula more frequently used, which is made up of three metrics: Halstead’s Vol-
ume [43], cyclomatic complexity and lines of code. They find that size and complexity
metrics are strongly related to the quantified maintainability in open source projects. Cohe-
sion and coupling on the other hand show no significance. They succeed in fairly accurate
maintenance effort predictions (MRE < 30%). However, Sjøberg et al. [76] find that a
maintainability index are mutually inconsistent, nor is there much evidence that regarding
the software maintainability index [71]. They come to a comparable conclusion as their
previously discussed work, where they indicate that size metrics (class size, method size
and file size) are underrated by the software engineering community as a measure of main-
tainability.

Oman and Hagemeister [65] propose a large set of metrics to measure the maintainabil-
ity of software projects. These source code metrics are placed in a tree with three main
branches: Maturity attributes, source code and supporting documentation. There are a lot

1https://www.sig.eu/
2http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

54

of inspiring metrics found in their work, however none of them revolve around the expe-
rience of the developer (process metrics), while other research points out that experienced
developers can reduce maintenance effort [51, 52]

One can see there are different approaches to define maintainability and maintainability
effort. Shen et al. [75] empirically investigate the relation among maintainability and cou-
pling metrics. They quantitatively define maintenance by the amount of software changes
made to a certain file.

Capra et al. [27]. perform an empirical study that attempts to quantify the relationship
among software design quality, development effort and governance in open source projects.
They hypothesize that, as projects approach the OS end of continuum, governance becomes
less formal. Their results indicate that software design quality, mainly measured by coupling
and inheritance, does not have to increase development effort, but do show to be good
variables to implement more open governance.

Frequently research tries to investigate the relationship among software design quality
and maintenance development effort [21]. Design quality is frequently expressed by means
of metrics, such as coupling or cohesion [33]. Alshayeb et al. [14] research if object oriented
metrics can predict size of effort. They define effort by the total lines of source code added,
changed or deleted. They also investigate if the object orientated metrics can predict the
maintenance effort (in hours). They look for relationships using multiple linear regression.
It seems the metrics are unable to predict maintenance effort, but do find that the object
oriented metrics are able to predict the upcoming source lines added, deleted or changed.
Their methodology to relate object oriented metrics to quality is not uncommon [26].

Soh et al. [78] empirically investigate how developers spend their task maintenance
effort. For a large amount of users they crawl through their open source projects to look for
relations. They measure the complexity of a task using the cyclomatic complexity metric
and define effort by the total amount of changes a developer made in a patch. They find no
correlation between the complexity of a task and the total amount of effort spent. Instead
they find that developers spend the majority of their time on exploring what files they have
to modify. They also find that the developers experience does not reduce maintenance effort,
but observe, that as a program evolves, developers tend to perform tasks in sections of the
code they are unfamiliar with.

Rahman and Devanbu [69] evaluate how process and code quality metrics serve in defect
prediction models. Their results suggest that process metrics are better for defect prediction
than code quality metrics. They find that code metrics may not evolve with the changing
distribution of defects. Their combination of both metrics cover a great amount of the
covered influential metrics. Hence, we choose to use the similar tooling and process metrics
they use.

Research that mines software repositories often defines quality by means of post-release
defects or failures[59, 22, 38, 58, 63, 68, 50, 28]. As an example Bird et al. [23] try to
examine the effect of ownership metrics (a subset of our process metrics) and software
quality. They define quality as the number of post release failures. They use correlations to
evaluate the relations and conclude that high values of ownership and major (section 2.5.2)
are associated with less defects.

McIntosh et al. [60] explore the empirical relationship between modern code review

55

5. RELATED WORK

and software quality. They build regression models for three large software systems that
explain the incidence of post-release defects on the systems. They find strong empirical
evidence to support their claim. Projects that have high code review coverage, participation
and expertise will lead to less defect-prone software and hence higher quality. They provide
a methodology for multiple linear regression, which we apply in section 2.10.2.

56

Chapter 6

Conclusions

During agile software development developers often plan in iterations. To set the goals for
these iterations developers will estimate the size of the features they want to realize. If the
developers have to maintain existing code, the quality of that code will likely impact the
effort required to realize those goals. In this study we investigated what the effects of code
quality are on agile effort estimations, and if prior knowledge of the code quality would
have a positive benefit on the estimation accuracy.

To this aim we took a mixed method approach where we interviewed nine developers
and mined the repositories of four large software projects. To collect and analyze empirical
data we developed a tool to mine repositories and visualize data from Microsoft Visual Stu-
dio Team Services. All the data and interviewees originated from ESDV, an IT department
in Shell.

We found that developers rarely consider technical code quality during agile effort esti-
mations. Quality considerations were not integrated in the estimation process. Half of the
developers add a static amount of time to their estimations to fix any quality issues found by
static analysis tooling. Developers mentioned that the key considerations during their effort
estimations are the size of the change and their experience with the code.

Next, we turned to quantifying the relationship between effort estimations and technical
code quality, experience and size. We found that there was a negligible relation among any
of the metrics and task effort estimates. For product backlog items the relationship was
stronger for both process metrics and especially change metrics. This indicates that story
points are more driven or related to size than (task) estimates. The ability to estimate the
size seemed to scale as the team became more experienced.

Our results show that considerations of code quality metrics prior to the effort estimation
would have had a minimal impact on the estimation accuracy. The team that suffered the
most from estimation inaccuracies due to code quality was the only team that did not use
any static analysis tooling, thus hinting that the use of static analysis tooling may eventually
lead to improved maintainability of the code.

The effect of code quality on effort estimations did not seem negligible, but more of
an irregular occurrence. For example, developers mention that they frequently face code
quality issues while working on legacy code. Prior identification of these scenarios could
be beneficial for the developers. However, our study indicates that in general scenarios the

57

6. CONCLUSIONS

effect of code quality is of minor importance on agile effort estimations. With this thesis we
make the following main contributions:

• An analysis on the effect of code quality on agile effort estimations. Our results give
agile developers an understanding of the importance of code quality considerations
during their iteration planning;

• An understanding of how well agile effort estimations can be quantified. This will
help researchers understand how feasible it is to quantify this relationship;

• A perspective from industry on how developers maintain their code quality and when
they encounter code quality issues. This will help researchers and agile developers
with the first steps to identify and overcome these quality issues.

58

Bibliography

[1] Designite faq containing metric tresholds. http://www.designite-tools.com/
faq/. Accessed: 2017-03-13.

[2] ISO software quality standards. https://www.iso.org/standard/35733.html.
Accessed: 2017-08-28.

[3] Scrum guide. http://www.scrumguides.org/scrum-guide.html. Accessed:
2017-09-01.

[4] Shell global ranking. http://beta.fortune.com/global500/
royal-dutch-shell-5. Accessed: 2017-03-13.

[5] Sonarqube metric definition. https://docs.sonarqube.org/display/SONAR/
Metric+Definitions. Accessed: 2017-07-13.

[6] Using pcr in r. http://www2.imm.dtu.dk/courses/27411/eNotepdfs/
eNote4-PCRinR.pdf. Accessed: 2017-07-10.

[7] Visual studio team services work item structure. https://www.visualstudio.com/
en-us/docs/work/guidance/scrum-process-workflow.

[8] Noura Abbas, Andrew M Gravell, and Gary B Wills. The impact of organization,
project and governance variables on software quality and project success. In AGILE
Conference, 2010, pages 77–86. IEEE, 2010.

[9] Pekka Abrahamsson, Ilenia Fronza, Raimund Moser, Jelena Vlasenko, and Witold
Pedrycz. Predicting development effort from user stories. In Empirical Software En-
gineering and Measurement (ESEM), 2011 International Symposium on, pages 400–
403. IEEE, 2011.

[10] Pekka Abrahamsson, Raimund Moser, Witold Pedrycz, Alberto Sillitti, and Giancarlo
Succi. Effort prediction in iterative software development processes–incremental ver-
sus global prediction models. In Empirical Software Engineering and Measurement,
2007. ESEM 2007. First International Symposium on, pages 344–353. IEEE, 2007.

59

BIBLIOGRAPHY

[11] O Ege Adali, N Alpay Karagöz, Zeynep Gürel, Touseef Tahir, and Cigdem Gencel.
Software test effort estimation: State of the art in turkish software industry. In Software
Engineering and Advanced Applications (SEAA), 2017 43rd Euromicro Conference
on, pages 412–420. IEEE, 2017.

[12] Manish Agrawal and Kaushal Chari. Software effort, quality, and cycle time: A study
of cmm level 5 projects. IEEE Transactions on software engineering, 33(3), 2007.

[13] Yunsik Ahn, Jungseok Suh, Seungryeol Kim, and Hyunsoo Kim. The software main-
tenance project effort estimation model based on function points. Journal of Software:
Evolution and Process, 15(2):71–85, 2003.

[14] Mohammad Alshayeb and Wei Li. An empirical validation of object-oriented metrics
in two different iterative software processes. IEEE Transactions on software engineer-
ing, 29(11):1043–1049, 2003.

[15] Maurı́cio Aniche, Christoph Treude, Andy Zaidman, Arie van Deursen, and
Marco Aurélio Gerosa. Satt: Tailoring code metric thresholds for different software
architectures. In Source Code Analysis and Manipulation (SCAM), 2016 IEEE 16th
International Working Conference on, pages 41–50. IEEE, 2016.

[16] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of mod-
ern code review. In Proceedings of the 2013 international conference on software
engineering, pages 712–721. IEEE Press, 2013.

[17] Robert Baggen, José Pedro Correia, Katrin Schill, and Joost Visser. Standardized
code quality benchmarking for improving software maintainability. Software Quality
Journal, 20(2):287–307, 2012.

[18] Victor Basili, Lionel Briand, Steven Condon, Yong-Mi Kim, Walcélio L Melo, and
Jon D Valett. Understanding and predicting the process of software maintenance re-
lease. In Proceedings of the 18th international conference on Software engineering,
pages 464–474. IEEE Computer Society, 1996.

[19] JP Bernard, J Sahel, M Giovannini, and H Sarles. Pancreas divisum is a probable
cause of acute pancreatitis: a report of 137 cases. Pancreas, 5(3):248–254, 1990.

[20] Sonali Bhasin. Quality assurance in agile: A study towards achieving excellence. In
AGILE India (AGILE INDIA), 2012, pages 64–67. IEEE, 2012.

[21] Aaron B Binkley and Stephen R Schach. Validation of the coupling dependency met-
ric as a predictor of run-time failures and maintenance measures. In Proceedings
of the 20th international conference on Software engineering, pages 452–455. IEEE
Computer Society, 1998.

[22] Christian Bird, Nachiappan Nagappan, Premkumar Devanbu, Harald Gall, and Bren-
dan Murphy. Does distributed development affect software quality?: an empirical case
study of windows vista. Communications of the ACM, 52(8):85–93, 2009.

60

[23] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and Premkumar
Devanbu. Don’t touch my code!: examining the effects of ownership on software
quality. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, pages 4–14. ACM, 2011.

[24] B Boehm and K Sullivan. Software economics: status and prospects. Information and
Software Technology, 41(14):937–946, 1999.

[25] Barry W Boehm, Ray Madachy, Bert Steece, et al. Software cost estimation with
Cocomo II with Cdrom. Prentice Hall PTR, 2000.

[26] Lionel C Briand, Jürgen Wüst, and Hakim Lounis. Replicated case studies for inves-
tigating quality factors in object-oriented designs. Empirical software engineering,
6(1):11–58, 2001.

[27] Eugenio Capra, Chiara Francalanci, and Francesco Merlo. An empirical study on the
relationship between software design quality, development effort and governance in
open source projects. IEEE Transactions on Software Engineering, 34(6):765–782,
2008.

[28] Cagatay Catal and Banu Diri. A systematic review of software fault prediction studies.
Expert systems with applications, 36(4):7346–7354, 2009.

[29] Evita Coelho and Anirban Basu. Effort estimation in agile software development using
story points. International Journal of Applied Information Systems (IJAIS), 3(7), 2012.

[30] Mike Cohn. User stories applied: For agile software development. Addison-Wesley
Professional, 2004.

[31] Mike Cohn. Agile estimating and planning. Pearson Education, 2005.

[32] Kieran Conboy and Brian Fitzgerald. Method and developer characteristics for ef-
fective agile method tailoring: A study of xp expert opinion. ACM Transactions on
Software Engineering and Methodology (TOSEM), 20(1):2, 2010.

[33] David P Darcy, Chris F Kemerer, Sandra A Slaughter, and James E Tomayko. The
structural complexity of software an experimental test. IEEE Transactions on software
engineering, 31(11):982–995, 2005.

[34] Karel Dejaeger, Wouter Verbeke, David Martens, and Bart Baesens. Data mining
techniques for software effort estimation: a comparative study. IEEE transactions on
software engineering, 38(2):375–397, 2012.

[35] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software development: A
systematic review. Information and software technology, 50(9):833–859, 2008.

[36] Bradley Efron. The jackknife, the bootstrap and other resampling plans. SIAM, 1982.

61

BIBLIOGRAPHY

[37] Bradley Efron and Robert Tibshirani. Bootstrap methods for standard errors, confi-
dence intervals, and other measures of statistical accuracy. Statistical science, pages
54–75, 1986.

[38] Khaled El Emam, Saı̈da Benlarbi, Nishith Goel, and Shesh N. Rai. The confounding
effect of class size on the validity of object-oriented metrics. IEEE Transactions on
Software Engineering, 27(7):630–650, 2001.

[39] Bent Flyvbjerg. Five misunderstandings about case-study research. Qualitative in-
quiry, 12(2):219–245, 2006.

[40] Takafumi Fukushima, Yasutaka Kamei, Shane McIntosh, Kazuhiro Yamashita, and
Naoyasu Ubayashi. An empirical study of just-in-time defect prediction using cross-
project models. In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 172–181. ACM, 2014.

[41] Des Greer and Yann Hamon. Agile software development. Software: Practice and
Experience, 41(9):943–944, 2011.

[42] James Grenning. Planning poker or how to avoid analysis paralysis while release
planning. Hawthorn Woods: Renaissance Software Consulting, 3, 2002.

[43] Maurice Howard Halstead. Elements of software science, volume 7. Elsevier New
York, 1977.

[44] Donald E Harter, Mayuram S Krishnan, and Sandra A Slaughter. Effects of process
maturity on quality, cycle time, and effort in software product development. Manage-
ment Science, 46(4):451–466, 2000.

[45] Nils Christian Haugen. An empirical study of using planning poker for user story
estimation. In Agile Conference, 2006, pages 9–pp. IEEE, 2006.

[46] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring
maintainability. In Quality of Information and Communications Technology, 2007.
QUATIC 2007. 6th International Conference on the, pages 30–39. IEEE, 2007.

[47] Siw Elisabeth Hove and Bente Anda. Experiences from conducting semi-structured
interviews in empirical software engineering research. In Software metrics, 2005. 11th
ieee international symposium, pages 10–pp. IEEE, 2005.

[48] Michael Httermann. DevOps for developers. Apress, 2012.

[49] Chris F Kemerer. An empirical validation of software cost estimation models. Com-
munications of the ACM, 30(5):416–429, 1987.

[50] Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. Do faster releases
improve software quality?: an empirical case study of mozilla firefox. In Proceedings
of the 9th IEEE Working Conference on Mining Software Repositories, pages 179–188.
IEEE Press, 2012.

62

[51] Barbara A Kitchenham, Guilherme H Travassos, Anneliese Von Mayrhauser, Frank
Niessink, Norman F Schneidewind, Janice Singer, Shingo Takada, Risto Vehvilainen,
and Hongji Yang. Towards an ontology of software maintenance. Journal of Software
Maintenance, 11(6):365–389, 1999.

[52] Daniël Knippers. Agile software sevelopment and maintainability. In 15th Twente
Student Conf, 2011.

[53] Wei Li and Sallie Henry. Object-oriented metrics that predict maintainability. Journal
of systems and software, 23(2):111–122, 1993.

[54] Mike Loukides. What is DevOps? ” O’Reilly Media, Inc.”, 2012.

[55] Nathan Mantel. Chi-square tests with one degree of freedom; extensions of the mantel-
haenszel procedure. Journal of the American Statistical Association, 58(303):690–
700, 1963.

[56] William F Massy. Principal components regression in exploratory statistical research.
Journal of the American Statistical Association, 60(309):234–256, 1965.

[57] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineer-
ing, (4):308–320, 1976.

[58] David W McDonald and Mark S Ackerman. Expertise recommender: a flexible rec-
ommendation system and architecture. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work, pages 231–240. ACM, 2000.

[59] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. The impact
of code review coverage and code review participation on software quality: A case
study of the qt, vtk, and itk projects. In Proceedings of the 11th Working Conference
on Mining Software Repositories, pages 192–201. ACM, 2014.

[60] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. An empirical
study of the impact of modern code review practices on software quality. Empirical
Software Engineering, 21(5):2146–2189, 2016.

[61] Kjetil Molokken and Magen Jorgensen. A review of software surveys on software
effort estimation. In Empirical Software Engineering, 2003. ISESE 2003. Proceedings.
2003 International Symposium on, pages 223–230. IEEE, 2003.

[62] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of
the efficiency of change metrics and static code attributes for defect prediction. In
Proceedings of the 30th international conference on Software engineering, pages 181–
190. ACM, 2008.

[63] Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. Random graphs with
arbitrary degree distributions and their applications. Physical review E, 64(2):026118,
2001.

63

BIBLIOGRAPHY

[64] Ariadi Nugroho, Joost Visser, and Tobias Kuipers. An empirical model of technical
debt and interest. In Proceedings of the 2nd Workshop on Managing Technical Debt,
pages 1–8. ACM, 2011.

[65] Paul Oman and Jack Hagemeister. Metrics for assessing a software system’s main-
tainability. In Software Maintenance, 1992. Proceerdings., Conference on, pages 337–
344. IEEE, 1992.

[66] Abu Wahid Md Masud Parvez. Efficiency factor and risk factor based user case point
test effort estimation model compatible with agile software development. In Informa-
tion Technology and Electrical Engineering (ICITEE), 2013 International Conference
on, pages 113–118. IEEE, 2013.

[67] Rashmi Popli and Naresh Chauhan. Cost and effort estimation in agile software de-
velopment. In Optimization, Reliabilty, and Information Technology (ICROIT), 2014
International Conference on, pages 57–61. IEEE, 2014.

[68] Foyzur Rahman and Premkumar Devanbu. Ownership, experience and defects: a fine-
grained study of authorship. In Proceedings of the 33rd International Conference on
Software Engineering, pages 491–500. ACM, 2011.

[69] Foyzur Rahman and Premkumar Devanbu. How, and why, process metrics are better.
In Proceedings of the 2013 International Conference on Software Engineering, pages
432–441. IEEE Press, 2013.

[70] Juan F Ramil. Continual resource estimation for evolving software. In Software Main-
tenance, 2003. ICSM 2003. Proceedings. International Conference on, pages 289–
292. IEEE, 2003.

[71] Mehwish Riaz, Emilia Mendes, and Ewan Tempero. A systematic review of software
maintainability prediction and metrics. In Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, pages 367–377.
IEEE Computer Society, 2009.

[72] James Roche. Adopting devops practices in quality assurance. Communications of the
ACM, 56(11):38–43, 2013.

[73] David L Rumpf. Statistics for dummies, 2004.

[74] Panagiotis Sfetsos and Ioannis Stamelos. Empirical studies on quality in agile prac-
tices: A systematic literature review. In Quality of Information and Communications
Technology (QUATIC), 2010 Seventh International Conference on the, pages 44–53.
IEEE, 2010.

[75] Haihao Shen, Sai Zhang, and Jianjun Zhao. An empirical study of maintainability in
aspect-oriented system evolution using coupling metrics. In Theoretical Aspects of
Software Engineering, 2008. TASE’08. 2nd IFIP/IEEE International Symposium on,
pages 233–236. IEEE, 2008.

64

[76] Dag IK Sjøberg, Bente Anda, and Audris Mockus. Questioning software mainte-
nance metrics: a comparative case study. In Proceedings of the ACM-IEEE interna-
tional symposium on Empirical software engineering and measurement, pages 107–
110. ACM, 2012.

[77] Dag IK Sjøberg, Aiko Yamashita, Bente CD Anda, Audris Mockus, and Tore Dybå.
Quantifying the effect of code smells on maintenance effort. IEEE Transactions on
Software Engineering, 39(8):1144–1156, 2013.

[78] Zéphyrin Soh, Foutse Khomh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. To-
wards understanding how developers spend their effort during maintenance activities.
In Reverse Engineering (WCRE), 2013 20th Working Conference on, pages 152–161.
IEEE, 2013.

[79] Erik Stensrud, Tron Foss, Barbara Kitchenham, and Ingunn Myrtveit. An empirical
validation of the relationship between the magnitude of relative error and project size.
In Software Metrics, 2002. Proceedings. Eighth IEEE Symposium on, pages 3–12.
IEEE, 2002.

[80] Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim
Zeileis. Conditional variable importance for random forests. BMC bioinformatics,
9(1):307, 2008.

[81] Muhammad Usman, Emilia Mendes, Francila Weidt, and Ricardo Britto. Effort esti-
mation in agile software development: a systematic literature review. In Proceedings
of the 10th International Conference on Predictive Models in Software Engineering,
pages 82–91. ACM, 2014.

[82] Huanjing Wang, Taghi M Khoshgoftaar, and Naeem Seliya. How many software met-
rics should be selected for defect prediction? In FLAIRS Conference, 2011.

[83] Haiyun Xu, Jeroen Heijmans, and Joost Visser. A practical model for rating software
security. In Software Security and Reliability-Companion (SERE-C), 2013 IEEE 7th
International Conference on, pages 231–232. IEEE, 2013.

[84] Yuming Zhou and Baowen Xu. Predicting the maintainability of open source software
using design metrics. Wuhan University Journal of Natural Sciences, 13(1):14–20,
2008.

[85] Donald W Zimmerman and Richard H Williams. The relative error magnitude in three
measures of change. Psychometrika, 47(2):141–147, 1982.

65

Appendix A

Code Quality Metrics from the Tool
Understand

This appendix contains a list of the code quality metrics.

Complexity Metrics: Average Cyclomatic Complexity, Average Modified Cyclomatic
Complexity, Average Strict Cyclomatic Complexity, Average Essential Cyclomatic
Complexity, Average Essential Strict Modified Complexity, Number of Paths, Cyclo-
matic Complexity, Modified Cyclomatic Complexity, Strict Cyclomatic Complexity,
Essential Complexity, Essential Strict Modified Complexity, Knots, Max Cyclomatic
Complexity, Max Modified Cyclomatic Complexity, Max Strict Cyclomatic Com-
plexity, Max Essential Complexity, Max Knots, Max Essential Strict Modified Com-
plexity, Depth of Inheritance Tree, Nesting, Minimum Knots, Comment to Code Ra-
tio, Sum Cyclomatic Complexity, Sum Modified Cyclomatic Complexity, Sum Strict
Cyclomatic Complexity, Sum Essential Complexity, Sum Essential Strict Modified
Complexity

Volume Metrics: Average Number of Blank Lines, Average Number of Lines of Code,
Average Number of Lines with Comments, Blank Lines of Code, Lines of Code,
Lines with Comments, Average Number of Lines, Number of Function, Internal In-
stance Variables, Protected Internal Instance Variables, Friend Methods, Local Inter-
nal Methods, Local Protected Internal Methods, Inputs, Physical Lines, Blank Lines
of Code, Semicolons, Statements, Comment to Code Ratio

Object Oriented Metrics: Number of classes, Coupling, Number of Children, Class
Methods, Class Variables, Instance Methods, Instance Variables, Private Instance
Variables, Protected Instance Variables, Public Instance Variables, Local Methods,
Methods, Local Const Methods, Local Default Visibility Methods, Friend Methods,
Private Methods, Protected Methods, Public Methods, Local strict private methods,
Local strict published methods, Modules, Program Units, Subprograms, Depth of
Inheritance Tree, Lack of Cohesion in Methods

67

Appendix B

Tracer: Implementation and Data
Visualization

While the architecture itself (2.5) is simple, implementation and optimization were not as
straightforward. Before the client can be used, authentication through both VSTS (OAuth
2.0) and the client itself are a necessities. The Shell client only interacts with the Tracer
server using a rest API. The load on the client side is very light and all calculations are
primarily done on the server. The client uses morris.js1 to visualize the charts. The back-
end consists of ExpressJS 2 (a node.js framework), Mongoose (to interact with the database)
and small pieces of code that are hard to realize in Javascript are written in R.

As previously mentioned, the structure and data of VSTS was not suitable for analytics
(some charts would take hours to calculate), hence we choose to create a back-end (tracer
server). The amount of data, however, is rather large (the database currently is sized close
to 25GB), and fetching frequent queries in real time with limited computational power can
be difficult, primarily because all the data also have to contain the history of the projects.
We will show some examples of difficult to optimize charts in the next section. Consider
a more detailed image of the architecture of the ‘Tracer Server’ from Figure 2.5 in Figure
B.1.

In essence, the calls to the REST API consist of database queries and the results to the
query are simply returned to the user. Lists of queries are also accepted. This results in a
limited amount of chatter between the front and the server. In some scenarios optimization
is required, by which the API calls consist of only a couple of parameters and the server
will then return an optimized response.

Because we store nearly all data that are available in VSTS, we have the option to filter
out any form of activity performed by a single user to determine if he or she was active on
VSTS at the given time. This information is the source of the user activity in Section 2.9.

To enhance security, the features are only available within the Shell intranet. Because
the platform mostly serves to review existing data, the synchronization between VSTS and
the server is not instantaneous. Every two hours the server pulls the latest changes from

1http://morrisjs.github.io/morris.js/
2https://expressjs.com/

69

B. TRACER: IMPLEMENTATION AND DATA VISUALIZATION

Figure B.1: Tracer Server Architecture

VSTS (the Trigger in Figure B.1) and adds them to the database. The data are restructured
to serve the analytic purposes of Tracer and stored in a MongoDB database.

The metrics are calculated in two ways. The first just pulls the complete repository,
calculates the metrics and exports them. Then it pulls the difference and repeats. Another
(quicker) approach pulls the complete file history for a single file, calculates the metrics,
exports them and repeats the step. Some process and change metrics require information
that is already part of the database. Therefore, the database is also accessed to calculate,
for example, the number of versions of the file. All the results are stored in a temporary
database that is then exported as CSV. This CSV file will serve as input for the calculations
in R (Section 2.10).

We split the visualization of the metrics into two categories; defects and backlog. The

70

Backlog

defect page is primarily involved in the representation of defects. Backlog refers to the
agile backlog and is more involved in agile metrics. There is a general overview page that
compares all the metrics from the projects in a heatmap, but we won’t discuss it in this
section. These metrics are primarily a product of user (within Shell) input or obtained from
existing literature. These charts were also used during the project selection procedure to
identify for example consistency (section 2.3). There are twenty graphs in total and about
fifteen numerical metrics. In this section, we present some interesting graphs.

B.1 Backlog

The backlog metrics revolve around the visualization of the agile backlog behavior. The
metrics can be filtered based on projects, team and sprint. Sprint is not a necessity because
filtering can also be done between two dates. In this section we provide a brief overview of
some of the charts.

Velocity

Velocity is the measure of the amount of work that can be tackled or has been tackled during
a time period. These charts will frequently be calculated for a sprint. We have two separate
interpretations for velocity. Often velocity will be interpreted by calculating the sum of the
story points assigned to a PBI. We also consider an implementation in which the velocity is
the sum of the hours assigned to a task. This gives insight into the estimated time into story
points for a sprint and the actual hours spent. We choose to represent these values in a bar
charts, as shown in Figure 4.2.

Figure B.2: Left: PBI Velocity Right: Task velocity for the first 10 sprints

71

B. TRACER: IMPLEMENTATION AND DATA VISUALIZATION

These two variations open up possibilities to review the actual hours spent on a PBI
or hours spent for every individual story point (sum of tasks hours for PBI/story points for
PBI). This could ease the identification of PBIs, which took a lot longer than estimated.
We present these metrics in a table for every individual PBI. These velocity charts do not
directly incorporate the story points that were required to complete a bug. Therefore, we
create a rework chart. A chart that contains the sum of the story points of the PBIs, the bugs
and an optional ’rework field’. The rework field can be part of a PBI and is the amount of
rework required (in story points) to complete the PBI. Figure B.3 shows an example of a
rework chart.

Figure B.3: Rework Chart

Burn and flow charts

To visualize the progression during a time period, frequently a sprint, one can use a burn-
down, burn-up or a cumulative flow chart. These charts represent the flow of time or the
statuses of the tasks/PBIs at a certain moment in time. An example of a burndown chart for
a task can be observed in Figure B.4 and the cumulative flow for tasks in Figure B.5.

Figure B.4: Task burndown

The same charts can be generated for PBIs or any other work item (bug, impediments).
These can help identify moments of setback in the project. They also make it possible to
identify pitfalls in the process, if for example a developer chooses to perform all his or her

72

Backlog

Figure B.5: Task cumulative flow

task maintenance at one and the same point in time. The initial plan was to also implement
lead and cycle time, but Microsoft already deployed very neat versions of this during the
development of the platform.

This can be a good time to reflect on the complexity of the calculations. The examples
in Figures B.4 and B.5 only contain 140 tasks. This number can increase very quickly if one
chooses not to filter on sprints (like this example) but between two dates (e.g., a year). Every
work item will have a number of revisions in which some sort of change was introduced. A
task, for example, has 30 revisions on average and a PBI of about 150. The user can choose
how many intervals he or she wants to view on the chart (e.g., 20 in the above examples).
We have to optimize the application in such a way that in real time, the application is able to
retrieve the state and effort in these work items for multiple points in time. While in essence
it is not a complicated problem, certain difficulties arise when the data-set is large and the
computational power is limited.

Distributions and effort

If we wish to identify cases in which developers neglect the effort field, because they for
example just fill in 0 everywhere, a distribution is a good method. The same is applicable
to PBIs and story points. Consider Figure B.6, which represents the distribution of the task
and PBI effort.

Figure B.6: PBI and Task distributions

More charts can be realized for effort. People estimate a certain number of story points
to a PBI, but it is difficult to trace how much time was actually spent on development. We

73

B. TRACER: IMPLEMENTATION AND DATA VISUALIZATION

sum up the effort of all the tasks in a PBI (the same as our methodology in section 2.7). In
a table, one can than see an overview of the total effort spent on every PBI or bug, and how
it compares to the total number of story points assigned to the work items. We also provide
the user with information about the number of tasks it took to complete the PBI, either in
the selected sprint or in all the sprints.

Other metrics

Every work item can contain multiple descriptions. A PBI for example has a description
and acceptance criteria (in words). We count the words of these descriptions and using a
rating [83] system we attempt to rate the textual content of the work items.

In a normal scenario it should be possible to complete a PBI in one single sprint. How-
ever, in practice these PBIs may be moved from one sprint to another. This sometimes
happens a multitude of times. To identify these cases, we simply add a field to the table
that provides the number of unique sprints a PBI was part of. The user could then inspect
these PBIs, and validate the number of story points and actual hours spend to see if planning
mistakes were made. To further identify the longevity of the PBI we present the time it took
to complete the PBI from both the created and the ’in progress’ date.

B.2 Defects

It is of course interesting to see how many bugs are reported and resolved at any point of
time. Consider the chart in Figure B.7 which displays the total number of bugs reported and
resolved over the past four years for a project.

Figure B.7: Reported and resolved bugs in the last four years.

We create comparable distributions and effort charts as we did for the PBI. Other than
providing the word count and rating for the description and acceptance criteria we also
include the words for the fix description. The charts for the task and its effort, distributions
and the burn-charts are also available for the defects. In figure B.7 one can see a small
drop-down to select the severity of the defects. Teams can manually define the severity of
the bug and often are identified in four categories: low, medium high or critical. Teams also
use a label to categorize the bug to for example let the team know it was a production, test
or deployment defect. We represent these using a donut chart as can be seen in figure B.8.

74

Defects

Figure B.8: Reported and resolved bugs in the last four years.

Furthermore there is an overview available of the most complicated defects during the
selected time period. Complicated means that they took the longest time to fix. One can see
an overview of the defects for a given sprint, but also between a selected time periods.

75

Appendix C

Interview Questions

Please note that during all questions improvisation occurred. This is just a guideline.
During a lot of questions we ask for examples.

C.1 General questions

• When you create the efforts for tasks, do you do it with your SCRUM team? Or
individual?

• How do you create an estimate for a task?

• What factors influence your estimation?

– How would you measure ...?

• Before doing a task estimation do you think about the files/methods you have to
modify?

– [Y ES] Only files or also methods?

– [Y ES] Do you inspect these files/methods?

– [Y ES] Do you think these considerations increase your accuracy?

– [NO] Why not? If you would do you think it would increase the accuracy of
your estimation?

• Do you take Code Quality and complexity (elaborate) into account when doing an
estimation?

– [Y ES] What kind of impact does it have on your decision? Why?

– [NO] Why not? Do you think code quality has a negative impact on maintain-
ability?

– Do you feel like bad code quality has an impact on the speed at which you
develop? How severe and why?

77

C. INTERVIEW QUESTIONS

∗ [Y ES] Can you give an example where bad code quality has an impact on
task development speed?

• Do you take Design Smells (elaborate) into account when doing an estimation?

– [Y ES] Does it have a big impact on your decision? Why?

– [Y ES] Is the impact greater than that of Code Quality? Why?

– [NO] Why not, don’t you think this has a big impact?

– Do you feel like design smells (could) have an impact on the speed at which you
develop? How severe and why?

– Do you use SonarQube?

∗ How do you use it?
∗ Do you consider SonarQube when making estimates? Why (not)?
∗ Would you say the improved code quality, as a result of SonarQube, allows

you to deploy new features faster? Why?
∗ How many time do you spend don keeping SonarQube results up to stan-

dard?

• Do you take the history and your familiarity (elaborate, process metrics) with the file
into account when doing an estimation?

– [Y ES] Does it have a big impact on your decision? Why?

– [Y ES] Is the impact greater than that of Design Smells?

∗ [NO] What about code quality?

– [NO] Don’t you think your experience with the specific files would influence
your development speed?

– [NO] What about the history of the file?

• What other factors do you consider when creating an estimation?

– Do you consider these factors to have a bigger impact than the code quality,
process metrics or design smells? Why?

– Do you consider the total size of the change? How would you measure the size
of a change?

• Do you perceive a difference between your estimate and your actual development
time? Can you give an example of where you went over the limit of the hours?

• Where do you frequently encounter quality issues?

– How do you deal with them?

– What do you do if you did not estimate the time for it?

• How do quality issues influence your effort estimations?

• Do you ever feel like your estimations suffer because of code quality?

78

Tasks

C.2 Tasks

High effort - bad quality:

• What was your reasoning before you estimated the x hours for this task?

– Were you familiar with the code?

– Did this familiarity impact your estimation? Why?

• Do you think the quality of the modified code had an effect on your estimation?

– [Y ES] What quality factors did you take into account? Ask about CQ, Process,
Design

– [NO] Do you think your estimate would have been more accurate if you did?
Why (not)? Why not do it?

• Do you think the quality of the code had an effect on your actual time spend on the
task? Why?

– [Y ES] Ask to put in order of severity: Code Quality, Design Smells, Process
Metrics

• What other factors did you take into account when estimating the x hours for this
task?

• Do you think your estimate was accurate?

– [BAD] What made the time spend deviate from your estimation?

Intermediate estimation

Questions:

• What was your reasoning before you estimated the x hours for this task?

– Were you familiar with the code?

– Did this familiarity impact your estimation? Why?

• Why did you create an intermediate estimation?

• Do you think your estimation would be more accurate because your familiarity in-
creased?

• Is this intermediate estimations more impacted by the quality of the code?

– Ask what had the highest impact; process, code quality, design smells. Why?

– What about intermediate estimates in general?

• What other factors did you take into account when estimating the x hours for this
task?

79

C. INTERVIEW QUESTIONS

Revised estimation

• Why did you revise your estimation?

• [If not CQ] Do you ever revise your estimation because you realize the quality of the
code is worse than expected?

• Do you think your revised estimates are more accurate?

– [YES] Is it because you keep the quality into account?

– Why/what else influenced it?

• Do you consider it important to have an accurate estimation before you start a task?

80

Appendix D

Additional Regression Results

D.1 PBI task effort and code Quality Metrics

Table D.1: Technical Code Quality and Process Metrics

Technical Code Quality Metrics Process Metrics

Project PCR ρ SEL ρ PCR ρ SEL ρ

Project 1 0.11 0.00 0.10 0.00 0.48 0.00 0.39 0.00
Project 2 0.05 0.10 0.07 0.16 0.23 0.00 0.19 0.00
Project 3 0.12 0.01 0.18 0.02 0.32 0.03 0.34 0.00
Project 4 Team 1 0.1 0.02 0.23 0.03 0.40 0.00 0.33 0.02
Project 4 Team 2 0.01 0.36 0.05 0.40 0.49 0.00 0.35 0.00
Project 4 Team 3 0.04 0.22 0.02 0.37 0.15 0.45 0.07 0.42

Table D.2: Combined Metrics

Combined Metrics

Project ρ SEL ρ

Project 1 0.4 0.01 0.39 0.04
Project 2 0.23 0.01 0.35 0.00
Project 3 0.29 0.04 0.42 0.02
Project 4 Team 1 0.39 0.02 0.41 0.00
Project 4 Team 2 0.32 0.00 0.42 0.00
Project 4 Team 3 0.18 0.09 0.18 0.06

81

D. ADDITIONAL REGRESSION RESULTS

D.2 Story points and Code Quality Metrics

Table D.3: Technical Code Quality and Process Metrics

Technical Code Quality Metrics Process Metrics

Project PCR ρ SEL ρ PCR ρ SEL ρ

Project 1 0.00 0.85 0.03 0.59 0.35 0.00 0.31 0.02
Project 2 0.11 0.12 0.15 0.15 0.17 0.01 0.25 0.07
Project 3 0.08 0.35 0.02 0.29 0.25 0.18 0.19 0.23
Project 4 Team 1 0.1 0.45 0.28 0.12 0.32 0.00 0.23 0.04
Project 4 Team 2 0.02 0.23 0.25 0.41 0.31 0.00 0.34 0.00
Project 4 Team 3 0.05 0.36 0.01 0.29 0.09 0.45 0.01 0.35

Table D.4: Combined Metrics

Combined Metrics

Project ρ SEL ρ

Project 1 0.07 0.08 0.30 0.70
Project 2 0.11 0.15 0.09 0.12
Project 3 0.17 0.00 0.33 0.01
Project 4 Team 1 0.19 0.04 0.32 0.00
Project 4 Team 2 0.29 0.00 0.37 0.00
Project 4 Team 3 0.14 0.40 0.15 0.52

82

