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Modeling potential domino scenarios in process plants includes the prediction of the most probable sequence of
events and the calculation of respective probabilities, so-called escalation probabilities, so that appropriate
prevention and mitigation safety measures can be devised. Domino effect modeling, however, is very challenging
mainly due to uncertainties involved in estimation of escalation probabilities (parameter uncertainty) and
prediction of the sequence of events during a domino effect (model uncertainty). In the present study, a
methodology based on dynamic Bayesian network is developed for identification of the most likely sequence of

events in domino scenarios while accounting for model uncertainty. Verifying the accuracy of the methodology
based on a comparison with previous studies, the methodology is applied to model single-primary-event and
multiple-primary-event domino scenarios in process plants.

1. Introduction

A domino effect, also known as cascading event, is a sequence of
events where an initial fire or explosion (primary event) causes damage
to neighboring equipment or units and triggers other fires or explosions
(secondary events), with overall consequences more severe than those
of the primary event (Reniers and Cozzani, 2013). The propagation
(escalation) of a primary event to secondary events occurs by means of
physical phenomena such as heat radiation, blast wave, or fragment
projection. These are termed escalation vectors in the context of
domino effect analysis.

Domino effects are among high-impact low-probability events
which have contributed to a number of catastrophic major accidents in
the chemical and process industries (Khan and Abbasi, 1999; Darbra
et al., 2010). Among others, are the notorious LPG explosions in a tank
farm in Mexico in 1984 (Arturson, 1987), fires and explosions at the
Hertfordshire Oil Storage Terminal in UK in 2005 (BBC, 2010), and the
Caribbean Petroleum Refining tank explosions and fires in Puerto Rico
in 2009 (CSB, 2015).

Domino effects are among high-consequence low probability events
which due to their rarity (data scarcity) from one side and their com-
plexity from the other side have not been well recognized in risk as-
sessment and management of chemical and process plants. Only re-
cently have regulations and standards such as Seveso Directive III
(2012) urged chemical facilities to include the risk of domino scenarios

* Corresponding author. Jaffalaan 5, Delft, 2628 BX, The Netherlands.
E-mail address: n.khakzadrostami@tudelft.nl (N. Khakzad).

https://doi.org/10.1016/j.jlp.2018.03.001

in their safety assessment and emergency response planning. Rarity of
domino scenarios along with large uncertainty embedded have made
their modeling very challenging and feasible only based on over-
simplifying assumptions.

In general, domino scenario modeling incorporates two main types
of uncertainty:

e parameter uncertainty, which is the uncertainty involved in the
prediction of potential accident scenarios (e.g., given a primary tank
fire at tank T1, what would be the type of the secondary fire at the
exposed tank T2, tank fire or pool fire?) and the estimation of es-
calation probabilities (e.g., what would be the probabilities of the
secondary tank fire or pool fire?), and

e model uncertainty, which is the uncertainty associate to modeling
the sequence of events during a domino scenario (cause-effect re-
lationships). For instance, given a primary tank fire at tank T1,
which tank(s) would sequentially become involved in the domino
scenario as the secondary units, tertiary units, and so forth.

The two types of uncertainty are intertwined, that is, incorrect es-
calation probabilities can give rise to identification of unlikely se-
quences of events — or at least not the most likely one — while an im-
proper identification of events’ sequence can lead to incorrect
escalation probabilities. Parameter uncertainty mainly arises from both
the randomness of domino scenarios (aleatory uncertainty) and our lack
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of knowledge (epistemic uncertainty) in predicting and identifying
failure modes and failure probabilities of target units, type and severity
of loss of containtment (minor, major, or catastrophic release), and the
type of ensuing accident scenarios (pool fire, tank fire, BLEVE, etc.). Not
to mention that uncertainties in environmental parameters (wind di-
rection, wind speed, air temperature, humidity, etc.) and operational
parameters (volume of chemical containtment, process pressure and
temperature, etc.) add to or result in foregoing uncertainties.

With regard to parameter uncertainty, many studies have been
conducted to estimate the escalation probability of primary events
(Bagster and Pitblado, 1991; Gledhill and Lines, 1998; Khan and
Abbasi, 2001; Vilchez et al.,, 2001; Cozzani and Salzano, 2004;
Mingguang and Jiang, 2008; Landucci et al., 2009; Mukhim et al.,
2017). Escalation of primary events take place mainly due to the da-
mage probability of equipment such as storage tanks, distillation col-
umns, etc. when exposed to a primary fire or explosion. Likewise, a
number of techniques (Van den Bosch and Weterings, 1997; Assael and
Kakosimos, 2010; Casal, 2017) and software tools (ALOHA, PHAST,
etc,) have been developed to identify failure modes and potential ac-
cident scenarios.

Considering model uncertainty, however, fewer attempts have been
made to model the propagation of domino effects (Delvosalle, 1998;
Khan and Abbasi, 1998; Cozzani et al., 2005; Nguyen et al., 2009;
Abdolhamidzadeh et al., 2010; Khakzad et al., 2013; Khakzad, 2015;
Landucci et al., 2016). Due to the large uncertainties involved in pre-
dicting the sequence of events in domino scenarios, these studies have
mainly been based upon random selection of secondary units (e.g.,
using binomial distribution as in Cozzani et al. (2005) or Monte Carlo
simulation as in Abdolhamidzadeh et al. (2010)), ignoring concurrent
events and synergistic effects (as in Landucci et al., 2016) simplifying
assumptions (as in Khakzad, 2015).

Bayesian network (BN) is a robust technique for reasoning under
uncertainty (Jensen and Nielsen, 2007) with an ample application in
system safety due to its ability in handling data scarcity, expert opinion,
parameter uncertainty, model uncertainty, conditional dependencies,
and sequential failures. Having a sufficiently large and accurate data-
base for the occurrence of events during a domino scenario, Bayesian
parameter learning and model learning algorithms can be used to ad-
dress both parameter and model uncertainty. Regarding the parameter
uncertainty, given the model's structure M, the parameters 8 which lead
to the maximum likelihood (or natural logarithm of the likelihood) of
the dataset D can be determined as the best estimate of the parameters
(Neapolitan, 2003):

6 = maxLn (P(DIM; e))
] (€D)]

Likewise, regarding the model uncertainty, among model alter-
natives, the one which leads to the maximum likelihood (or natural
logarithm of the likelihood) of the dataset can be identified as the best
model structure. However, in order to prevent from data overfitting, a
simpler model structure, i.e., a model with lower number of parameters
k, is given priority over a more complex model structure. The both
features of a desired model structure, that is, the maximum likelihood
and the model simplicity, can be encoded in Bayesian Information
Criterion (BIC), in the sense that, a model structure with the lowest BIC
is the best model to choose (Neapolitan, 2003):

BIC = Ln(n)k — 2 Ln(P(DIM; 6)) )

where n is the number of data points (observations) in the dataset D. A
comprehensive discussion of parameter and model uncertainty can be
found in Briggs (2000) and Cairns (2000).

However, the data scarcity arising from the rarity of domino effects
along with the diversity of process plants and units involved in the
previous accidents hampers the application of the foregoing learning
algorithms to domino scenario modeling.
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Khakzad et al. (2013) developed a methodology based on BN to
model the escalation of domino scenarios, that is, the likeliest sequence
of events which can be triggered by a primary event. Despite having
merits such as accounting for conditional dependencies among the
events and taking into account the role of synergistic effects,’ identi-
fication of secondary events in their methodology introduces large
model uncertainty into the domino scenario modeling. In their ap-
proach, among units exposed to the escalation vecotrs of a primary
event (e.g., heat radiation emitted from a pool fire), identification of
secondary units is forced to the model based on a comparison among
the escalation probabilities of the target units. In other words, among
two target units, the one with a higher escalation probability is selected
as the secondary unit whereas the other one as the tertiary unit. Since
escalation probabilities reflect the analyst degrees of belief rather than
objective frequencies (which cannot easily be estimated due to the
rarity of domino effects), the secondary units identified using this ap-
proach could be quite different from the ones in a real situation given
the same primary event. Determining tertiary and quaternary units in
the same way introduces even more model uncertainty in the escalation
pattern of the domino effect, thus resulting in not necessarily the most
likely sequence of events.

Khakzad (2015) introduced a dynamic Bayesian network (DBN)
methodology to model the spatial and temporal escalation of domino
effects in process plants. His methodology significantly alleviates the
model uncertainty by letting the model decide the most likely sequence
of events while taking into account all possible mutual interactions
among the involved units rather than forcing the propagation pattern of
the domino scenario to the model. The idea of considering all possible
interactions among the units was later extended in the form of a graph
theoretic approach to identify the vulnerable units contributing to
possible domino scenarios in process plants (Khakzad and Reniers,
2015).

Our main purpose in this study is to establish a methodology based
on DBN to tackle the model uncertainty in domino scenario escala-
tionas. As such, parameter uncertainties involved in the calculation of
escalation vectors (e.g., magnitude of a tank fire's heat radiation) and
the estimation of escalation probabilities (e.g., escalation probability of
an atmospheric tank exposed to certain heat radiation) is beyond the
scope of this study. We will ilustrate that the developed methodology
can be applied to model both accidental domino effects and intentional
(e.g., triggered by terrorist attacks) domino effects, where in the latter
the possibility of having more than one initiating event is higher (so-
called multi-primary-event domino effects).

Compared to our previous works on domino scenario modeling
(Khakzad et al., 2013, 2015), the main contribution of the present study
can be considered from two viewpoints: (i) regarding our first attempt
where we developed a methodology based on conventional BN
(Khakzad et al., 2013), we will illustrate that application of conven-
tional BN to domino scenario modeling (and possibly other types of
cascading failures) is very likely to result in erroneous sequence of
events and probabilities; (ii) with respect to our previous work where
we developed a methodology based on DBN (Khakzad, 2015), we will
demonstrate that given an inadequate number of time steps, even the
application of DBN would not guarantee the most likely sequence of
events since not all possible interactions among the units would be
taken into account.

In Section 2, the fundamentals of BN and DBN are briefly presented.
In Section 3, the drawbacks of the BN methodology developed in
Khakzad et al. (2013) in capturing model uncertainty and thus under-
estimating (relative) escalation probabilities are discussed. The DBN
developed in Khakzad (2015) is then modified to account for model
uncertainty. In Section 4, the application of the methodology is

1 Synergistic effect is referred to cooperation of events (e.g., a primary event and a
secondary event) to escalate domino effect to other units (e.g., triggering tertiary events).
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Fig. 1. Schematics of a conventional Bayesian network.

demonstrated via both single-primary-event domino scenarios (here-
after, SPE domino effects) and multi-primary-event domino scenarios
(hereafter, MPE domino effects). Conclusions are presented in Section
5.

2. Bayesian networks

BN is a probabilistic method for reasoning under uncertainty
(Jensen and Nielsen, 2007) in which random variables are represented
by nodes and the conditional dependencies among them by directed
arcs (Fig. 1). The type and strength of the dependencies can be encoded
in form of conditional probability tables assigned to the nodes. Using
the chain rule and the concept of d-separation, the joint probability of a
set of random variables U = {X;, X;, ..., X,;} can be factorized as the
product of marginal and local conditional probabilities:

P(U) = [[ P&ilw (X))

i=1

3

where 7 (X;) is the parent set of the node X;. For instance, the joint
probability distribution of the random variables X;, X;, X; and X, in
Fig. 1 can exclusively be expanded as P(X, X, Xz, Xy) =
P(X) P(X%1X) PG 1%, X) P(X41X).

DBN is an extension of ordinary BN that, compared to its pre-
decessor, facilitates modeling of temporal evolution of random vari-
ables over time (Fig. 2(a)). Dividing the time line in a number of time

arcs denote the number of time intervals to be taken into account.

(b)

Fig. 2. (a) Schematics of a dynamic Bayesian network in three sequential time intervals. (b) The same Dynamic Bayesian network in an abstract presentation. The numbers attached to the
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intervals, DBN allows a node at the ith time slice to be conditionally
dependent not only on its parents at the same time slice but also on its
parents and itself at previous time slices:

n
PU™AY = [ PXIHAIXE, (X)), (X 20)

i=1

C)

For example, according to the DBN in Fig. 2(a), the conditional
probability of X, at the time slice ¢+ At can be presented as
P(XiA1|xA+AL X1 X1). An abstract presentation of the DBN has been
depicted in Fig. 2(b).

3. Application of Bayesian network to domino effect modeling
3.1. Conventional approach

In this section, the BN methodology developed by Khakzad et al.
(2013) is briefly revisited to build the modeling foundation for the rest
of the study. In their approach, the hazardous units (i.e., vessels with
credible amounts of flammable or explosive materials) are presented as
nodes of the BN while the escalation vectors between the units are
presented as directed arcs. Assuming there is a fire or an explosion at
one of the units (i.e., the primary unit), the magnitude of the escalation
vectors (i.e., heat or blast overpressure) received by adjacent units
determines whether the adjacent units can be considered as secondary
targets.

For atmospheric vessels a damage threshold of 15 kW/m? or 22 kPa
for heat radiation or overpressure, respectively, has been proposed
(Reniers and Cozzani, 2013); similarly, thresholds of 50 kw/m? or
16kPa have been proposed for pressurized vessels (Reniers and
Cozzani, 2013).

Knowing the intensity of escalation vectors, the conditional esca-
lation probability of a target vessel can be estimated using probabilistic
damage models expressed in the form of probit functions (Cozzani
et al., 2005; Mingguang and Jiang, 2008; Mukhim et al., 2017). Among
the target vessels, the one(s) with the highest escalation probability is
identified as the secondary unit involved in the domino effect (second
event in the sequence of events).

t t+ At
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Given that the secondary unit(s) is damaged, respective secondary
events (fire, explosion, toxic release) and the magnitude of escalation
vectors associated to fire or explosion can be identified, e.g., by event
tree analysis considering the type of equipment, type of substance re-
leased, and the vicinity of ignition sources (Delvosalle et al., 2006).
Following the same approach and considering possible synergistic ef-
fects, the tertiary units and ensuing events can be identified.

The methodology developed by Khakzad et al. (2013), however,
suffers from two types of uncertainty: parameter uncertainty and model
uncertainty:

Parameter uncertainty is embedded in the quantification of escala-
tion vectors and estimation of conditional escalation probabilities (e.g.,
based on probit models), which are then used to determine the condi-
tional probabilities (parameters) of the BN. This type of uncertainty is
characteristic of most quantitative risk analysis studies, including pre-
vious attempts in modeling domino effects.

The second type of uncertainty, which is the scope of the present
study, is model uncertainty — with respect to the methodology proposed
in Khakzad et al. (2013) — which arises from identification of secondary
units based on a comparison among the conditional escalation prob-
abilities of target units exposed to a primary fire or explosion. As such,
the sequence of events during a potential domino scenario would be
forced to the developed BN.

To make the discussion more concrete, the application of the BN
methodology (Khakzad et al., 2013) is demonstrated via a notional
chemical plant consisting of four atmospheric storage tanks T1-T4 in
Fig. 3(a). It is supposed that a tank fire (primary event) at T1 exposes T2
and T3 to heat radiation magnitudes above the threshold of 15 kW/m?.
The modeling is carried out under the assumption that the fire reaches a
steady radiant heat intensity in the absence of fire protection systems
and firefighting brigade.

Assuming that T2 and T3 are identical and receive the same heat
radiation intensities, they both can be identified as secondary units
(denote by the arcs from T1 to T2 and T3 in Fig. 3(a)), which in turn,
can cooperate to cause damage to storage tank T4, thus escalating the
domino effect to the next level (denoted by the arcs from T2 and T3 to
T4 in Fig. 3(a)). The units of the same order (i.e., T2 and T3 in Fig. 3(a))
do not presumably impact one another.

Following the sequence of events shown in Fig. 3(a), that is, {T1} —
{T2 or T3} — {T4}, the probability of the domino effect can be esti-
mated as P(T1, T2, T3, T4) = P(T1) P(T2 U T3IT1) P(T4/T2 U T3).

As can be noted from the right-hand side of the foregoing equation,
the term (T2 U T3) does not imply that both T2 and T3 would ne-
cessarily be impacted by the fire at T1. If this is the case, that is, if the
fire at T1 escalates to only one of T2 or T3, the sequence of events could
be modeled using the BNs in Fig. 3(b) or 3(c). Considering Fig. 3(b), for
instance, the sequence of events can be presented as {T1} — {T2} —
{T4} — {T3}, where the arc from T1 to T3 denotes the synergy between
T1 and T4 in order to escalate the domino effect to T3.

Considering a similar reasoning in Fig. 3(c), the collective possible
sequence of events in Fig. 3(a) and (b), and 3(c) can be illustrated as a
directed graph (not a BN, due to the cycles) in Fig. 3(d). As can be
noted, the BN developed in Fig. 3(a) following the approach of Khakzad
et al. (2013) is a subset of the directed graph shown in Fig. 3(d), that is,
only one of the possibile domino scenarios given a primary fire at T1.

() (b) (c)
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Fig. 4. Modeling all possible sequences of events as a Bayesian network given T1 as the
primary unit. Auxiliary nodes have been denoted by dashed outline.

In other words, forcing the sequence of events in modeling a po-
tential domino scenario merely based on respective escalation prob-
abilities would undermine the possibility of other sequences of events,
portraying a specific sequence of events out of all those possible, thus
leading to an underestimation of escalation probabilities thereof. In the
next section we discuss how such uncertainty in the modeling of the
sequence of events can be handled.

3.2. Model uncertainty

3.2.1. Application of auxiliary nodes

In order to take into account all possible sequences of events as
depicted in the cyclic directed graph in Fig. 3(d), the BN shown in
Fig. 3(a) can be modified by adding auxiliary nodes T2’ and T3’ as
shown in Fig. 4 such that no cycle, which otherwise is not allowed in BN
formalism, could take place.

The auxiliary node T2’ accounts for the possibility of T2 being im-
pacted by T4 in case T3 happens to be the secondary unit, whereas the
auxiliary node T3’ does the same for T3 in case T2 would happen to be
the secondary unit. In either case, T4 would be the tertiary unit while
one of T2’ (surrogate of T2) or T3’ (surrogate of T3) would be the
secondary unit while the other the quaternary unit. It should be noted
that when calculating the escalation probabilities of the units, the
probabilities of T2” and T3’ should be considered instead of T2 and T3.
For the sake of clarity, the conditional escalaion probabilities of T2’ is
reported in Table 1 for all the possible state combinations of its parents,
i.e., T1, T2, and T4 (see Fig. 4).

The conditional escalation probabilities P; = P(T2’ = Fire|
T1 = Fire, T2 = Safe, T4 = Safe), P4 = P(T2 = Fire| T1 = Safe,
T2 = Safe, T4 = Fire), and P,4 = P(T2’ = Fire| T1 = Fire, T2 = Safe,
T4 = Fire) in Table 1 can be calculated using a variety of techniques
such as probit models (Cozzani and Salzano, 2004; Landucci et al.,
2009; Mingguang and Jiang, 2008; Casal, 2017; Mukhim et al., 2017).

For the purpose of this study, i.e., addressing the model uncertainty,
we use a linear relationship to proportionate the conditional escalation
probability to the magnitude of the corresponding escalation vector
while considering the threshold value. This relationship is only for
demostrative purposes, to keep mathematical complexity at the
minimum, and is not aimed at replacing probit models. For atmospheric

Fig. 3. (a) Sequence of events as a BN, where both T2 and
T3 present equal escalation probabilities, and both are
identified as secondary units. (b) Sequence of events as a
BN, where both T2 and T3 present equal escalation prob-
abilities, but only T2 is damaged and thus selected as the
secondary unit. (c) Sequence of events as a BN, where both
T2 and T3 present equal escalation probabilities, but only
T3 is damaged and thus selected as the secondary unit. (d)
All possible sequences of events as a directed graph, where
either T2 or T3 can be selected as the secondary unit.

(d)
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Table 1
Conditional escalation probabilities assigned to T2’.

T1 T2 T4 T2/
Fire Safe

Fire Fire Fire 1 0
Fire Fire Safe 1 0
Fire Safe Fire Py 1- Py
Fire Safe Safe Py 1-P;
Safe Fire Fire 1 0
Safe Fire Safe 1 0
Safe Safe Fire P, 1- P,
Safe Safe Safe 0 1

vessels exposed to heat radiation of Q (kW/m?), the conditional esca-
lation probability may be calculated as:

P=1-—2

Q (5)
where 15 (kW/m?) is the threshold value of heat for atmospheric ves-
sels (Reniers and Cozzani, 2013). As such, for instance,
P, = P(T2 = Fire | T1 = Fire, T2 = Safe, T4=Safe) =1 — -+

QTSZ and Py, =
P(T2v = Fire | T1 = Fire, T2 = Safe, T4=Fire) =1 — ﬁ, where
Q1- and Q.- are the heat escalation vectors (kW/m?) T2 received from
fires at T1 and T4, respectively.

Nevertheless, the application of auxiliary nodes to capture model
uncertainty in the sequence of events can become error prone and
cumbersome specially when the size of the process plant under con-
sideration and thus the respective BN grows. For instance, the BN de-
veloped to model the domino scenarios in a process plant comprising
six storage tanks T1-T6, given a primary event at T1, has been depicted
in Fig. 5. In the next section we demonstrate how DBN can be employed
to model such model uncertainty without resorting to auxiliary nodes.

3.2.2. Application of dynamic Bayesian network

Khakzad (2015) developed a methodology based on DBN to model
all possible interactions (escalation vectors) among the units during
potential domino scenarios. This allows for modeling the evolution of a
domino effect both spatially and temporally without forcing the iden-
tification of secondary units to the model, leaving the DBN to determine
the propagation pattern based on all possible escalation vectors re-
ceived by and/or emitted from the units. To address domino effect
model uncertainty in the present study, we adopt a similar framework

Fig. 5. Application of auxiliary nodes (dashed outlined) to address domino effect model
uncertainty in a process plants with six storage tanks.

53

Journal of Loss Prevention in the Process Industries 54 (2018) 49-56

just for considering all possible sequences of events rather than mod-
eling temporal evolution of domino scenarios.

In other words, in this study the DBN is employed to model the
number of steps required for all the units to contribute to the domino
effect via different sequences of events. As such, the transitional prob-
abilities from one step to the next are time-invariant as in a conven-
tional BN. The number of steps required to calculate the final escalation
probabilities of the involved units can be derived from the re-
presentation of all possible sequences of events as a directed graph si-
milar to the one depicted in Fig. 3(d).

In a directed graph, a path from the node X to Y is a sequence of
nodes and edges starting from the former to the latter when each in-
termediate node can be traversed only once. Similarly, the geodesic
distance between the nodes is the length of the shortest path from X to
Y. The diameter of a graph is the length of the longest geodesic distance
in the graph, i.e., the longest shortest path (Freeman, 1979). Con-
sidering the directed graph in Fig. 3(d), it can be seen that the diameter
of the graph - the longest path from T1 to T4 - is equal to 2, indicating
that it takes T1 two steps to reach (impact) T4, either via the path
consisting of {T1} — {T2} — {T4} or the path consisting of {T1} —
{T3} — {T4}.

The first path implies T3 is still safe and not engaged in the sequence
of events; thus, one more step would be needed for T4 and T1 to co-
operate to escalate the domino effect to T3 (synergistic effect), adding
up to a total of three steps. Likewise, the second path implies T2 is still
not engaged in the domino effect, and one more step would be needed
for T4 and T1 to impact it, again adding up to a total of three steps. The
DBN to model all possible sequences of events given a primary event at
T1 has been depicted in three steps in Fig. 6.

According to Fig. 6, a primary fire at T1 in step O can escalate to
either T2 or T3 in step 1 (the arcs from T1 in step O to T2 and T3 in step
1). The fire at T2 or T4, whichever is impacted by T1 and involved in
the fire domino effect, can impact T4 in the next step (the arcs from T2
and T3 in step 1 to T4 in step 2). If the fire escalates to T4 in step 2, T4
can cooperate with T1 to impact T2 or T3, whichever is still safe, in step
3 (the arcs from T4 in step 2 to T2 and T3 in step 3).

3.3. An illustrative example

To make a comparison among the results of the conventional BN
approach in Fig. 3(a), the modified BN with auxiliary nodes in Fig. 4,
and the DBN in Fig. 6, we assume that T1-T4 are gasoline atmospheric
storage tanks with a diameter of D = 33.5m, height of H = 9.1 m, and
capacity of V = 8000m®. Considering a tank fire as the most likely
primary and secondary events, the magnitudes of heat radiation
emitted and received by each tank are calculated in ALOHA (2016)
consequence analysis software as reported in Table 2.

Step 0 Step 1 Step 2 Step 3
@ T3 » T3 »{ T3

Fig. 6. Dynamic Bayesian network to address domino effect model uncertainty in a
process plant comprising four units T1-T4. The domino effect initiates at T1.
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Table 2
Heat radiation intensity (kW/m?) Tj received from a tank fire at Ti. Values less than
15kW/m? have not been taken into account.

Ti| Tj— T, T, Ts T,

T - 38 22 -

Ty 38 - - 22

T3 22 - - 38

T, - 22 38 -
Table 3

Escalation probabilities given a tank fire at T1.

Unit  Conventional Bayesian Bayesian network with Dynamic Bayesian
network auxiliary nodes network

T1 1.00 1.00 1.00

T2 0.61 0.86 0.85

T3 0.32 0.59 0.54

T4 0.36 0.36 0.36

Modeling the BNs shown in Figs. 3(a), 4 and 6 in GeNle software
(GeNlIe 2.2), the calculated escalation probabilities of the storage tanks
given a tank fire at T1 have been listed in Table 3. As can be seen, the
results obtained from the modified BN using auxiliary nodes (Fig. 4)
and the DBN (Fig. 6) are in good agreement, indicating that given a
tank fire at T1 as the primary event, {T1} — {T2} — {T3} — {T4}
would be the likeliest sequence of events in the domino effect.

It should be noted that for the DBN, the escalation probabilities
calculated in the last step have been reported in Table 3. Considering
the conventional BN methodology, however, not only the escalation
probabilities of T2 and T3 differ from those obtained from the other
methodologies, but also the sequence of events is different, i.e., {T1} —
{T2} — {T4} — {T3}. The discrepancy between the results of the
conventional approach and the developed methodologies, in terms of
escalation probabilities and the order of events, underlines the im-
portant role of model uncertainty which, if not taken into account, can
lead not only to underestimated escalation probabilities but also to an
incorrect sequence of events in the domino effect modeling.

4. Application

The methodology developed in Section 3.2.2 can be employed to
model an arbitrary number of domino scenarios triggered by single or
multiple primary event(s). Domino effects initiated from a single pri-
mary event (SPE domino effect) are more likely to occur due to random
failures since the probability of having more than one primary event at
a time is very low. On the other hand, in the case of intentional man-
made domino effects, especially those triggered by improvised ex-
plosive devices in terrorist attacks, the possibility of having more than
one primary event (MPE domino effect) is higher (Reniers et al., 2008).

To demonstrate the application of the methodology, a tank farm
consisting of six gasoline atmospheric storage tanks was considered in
Fig. 7 with the same characteristics as reported in the illustrative ex-
ample in Section 3.3. Considering tank fire as the envisaged primary
and secondary events, the amount of heat radiation Tank Tj receives
from Tank Ti has been calculated using ALOHA (2016) (Table 4). The
DBN methodology can be extended to account for all types of SPE and
MPE domino scenarios that may take place in the tank farm.

In the present section, we apply the methodology to model a SPE
and a MPE domino scenarios, where the latter is more likely to take
place as a consequence of an intentional attack with the aim of causing
more extensive damage to the plant.
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Fig. 7. Tank farm consisting of six atmospheric storage tanks containing gasoline. The
tanks are identical, with a diameter of D = 33.5m, height of H = 9.1 m, and capacity of
V = 8000 m®.

Table 4
Heat radiation intensity (kW/m?) Tj receives from a tank fire at Ti. Values less than
15 kW/m? have not been taken into account.

Ti| Tj— T T, Ts Ty Ts Te
T - 38 - 22 - -
Ts 38 - 38 - 22 -
Ts - 38 - - - 22
T4 22 - - - 38 -
Ts - - 38 - - 22
Te - - 22 - 38 -

4.1. Scenario 1: single-primary-event domino scenario

Assuming a primary tank fire at T1, the representation of possible
sequences of events can be shown as a directed graph in Fig. 8(a),
where the primary unit is highlighted with the color yellow for the sake
of clarity. As can be seen, the farthest node in the graph to T1 is T6; that
is, T6 is the farthest node that can be impacted by the primary event at
T1. As such, the longest shortest path (graph diameter) measured from
T1 is equal to 3, which is the shortest distance (the number of edges or
the number of nodes minus one) from T1 to T6 as: {T1} — {T2} — {T3}
— {T6} or {T1} — {T4} — {T5} — {T6}.

As such, according to Section 3.2.2, the number of steps required for
the DBN modeling would be equal to “graph diameter +1 = 4”.
Modeling the DBN shown in Fig. 9 in GeNle software (GeNle 2.2), the
escalation probabilities were calculated for the 4th time step as listed in
the first row of Table 5. Ranking the units based on their escalation
probabilities in a descending order, the sequence {T1: 1.00} — {T2:
0.94} — {T4: 0.72} — {T3: 0.66} — {T5: 0.65} — {T6: 0.31} would be
the likeliest order of events in the domino effect initiating at T1; the
numbers in the brackets denote the unconditional escalation prob-
abilities.

4.2. Scenario 2: double-primary-event domino scenario

In this scenario, it is assumed that there are two simultaneous tank
fires at T1 and T6 (two primary events). This type of domino effect is
more likely to occur in the case of intentional attacks (Reniers et al.,
2008; BBC, 2015). The representation of possible sequences of events
can be shown as the directed graph in Fig. 8(b), where the primary units
are highlighted with the color yellow.

A can be seen, the farthest nodes that can be impacted by T1 are T2
and T4 (T3 and T5 are immediately impacted by T6 and thus will be
ruled out) while the farthest nodes that can be impacted by T6 are T5
and T3 (T2 and T4 are immediately impacted by T1 and thus will be
ruled out). In either case, the longest short distances measured from the
primary units T1 or T6 are equal to 1, and thus the number of required
steps to run the DBN would be equal to 2. The calculated unconditional
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(a)

(b)

Fig. 8. (a) Directed graph to incorporate all possible sequences of events triggered by a primary event at T1 (SPE domino effect). (b) Directed graph to incorporate all possible sequences

of events triggered by two simultaneous primary events at T1 and T6 (MPE domino effect).

Fig. 9. Modeling of possible domino scenarios as a DBN.

Table 5
Unconditional escalation probabilities for the domino scenarios in Fig. 8.

Domino effect | Unit— T1 T2 T3 T4 T5 T6

Fig. 8(a): Probabilities in Step 4 1.00 094 066 072 065 031
Fig. 8(b): Probabilities in Step 2 1.00 0.61 032 032 061 1.00
Fig. 8(b): Probabilities in Step 4 1.00 0.98 0.91 0.91 0.98 1.00

escalation probabilities in the 2nd step are reported in the second row
of Table 5. Rank ordering the units based on their escalation prob-
abilities (Table 5), the most likely sequence of events would be {T1 and
T6: 1.00} — {T2 and T5: 0.61} — {T3 and T4: 0.32}.

Making a comparison between the escalation probabilities calcu-
lated for the SPE and MPE domino effects in Table 5, at first glance the
SPE domino scenario might seem to have resulted in higher escalation
probabilities and thus more extensive damage. To identify the severity
of the domino effects, however, the comparison between the two
domino scenarios should be made based on a comparison between the
escalation probabilities calculated at similar steps.

To this end, the escalation probabilities of the MPE domino effect at
the 4th time step have also been calculated and listed in the last row of
Table 5 so that they can be compared with the corresponding prob-
abilities of the SPE domino effect listed in the first row of the table. It
can be seen that given the same number of time steps (i.e., 4 steps), the
escalation probabilities of the MPE domino effect would be higher than
those of the SPE domino effect. It can also be noted that given enough
steps, the escalation probabilities in both SPE and MPE domino sce-
narios would approach unity. This, in turn, emphasizes the need for an
accurate calculation of the number of steps required for the analysis of
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the DBN.
5. Conclusions

In the present study, a methodology based on dynamic Bayesian
network was developed to model the propagation of domino effects via
the likeliest sequence of events that may take place. The methodology
accounts for the uncertainties in identification of the sequence of events
(model uncertainty), thus leading to a more accurate calculation of the
escalation probabilities which are crucial for the risk assessment and
management of domino effects.

Presenting possible domino scenarios as a directed graph, we illu-
strated that the graph diameter, if measured from the primary unit, can
be used as a metric to identify the minimum number of time steps
needed in the modeling of the corresponding dynamic Bayesian net-
work so that all possible interactions among the units can be taken into
account. This way, the most likely sequence of events during a domino
scenario is identified by the model rather than being forced by the
analyst (as is the case in conventional Bayesian network approach),
which could otherwise result in incorrect or a less likely sequence of
events. The methodology was demonstrated to be of great value in
vulnerability assessment of process plants where the main emphasis
would be on the ranking of the units based on their relative contribu-
tion to domino scenarios rather than their individual failure prob-
abilities.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.
doi.org/10.1016/4.jlp.2018.03.001.
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